Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
   4 *
   5 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/completion.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmapool.h>
  14#include <linux/err.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/kthread.h>
  19#include <linux/module.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/of.h>
 
  23#include <linux/reset.h>
  24#include <linux/spi/spi.h>
  25
  26#define SPI_COMMAND1				0x000
  27#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
  28#define SPI_PACKED				(1 << 5)
  29#define SPI_TX_EN				(1 << 11)
  30#define SPI_RX_EN				(1 << 12)
  31#define SPI_BOTH_EN_BYTE			(1 << 13)
  32#define SPI_BOTH_EN_BIT				(1 << 14)
  33#define SPI_LSBYTE_FE				(1 << 15)
  34#define SPI_LSBIT_FE				(1 << 16)
  35#define SPI_BIDIROE				(1 << 17)
  36#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
  37#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
  38#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
  39#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
  40#define SPI_IDLE_SDA_MASK			(3 << 18)
  41#define SPI_CS_SW_VAL				(1 << 20)
  42#define SPI_CS_SW_HW				(1 << 21)
  43/* SPI_CS_POL_INACTIVE bits are default high */
  44						/* n from 0 to 3 */
  45#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
  46#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
  47
  48#define SPI_CS_SEL_0				(0 << 26)
  49#define SPI_CS_SEL_1				(1 << 26)
  50#define SPI_CS_SEL_2				(2 << 26)
  51#define SPI_CS_SEL_3				(3 << 26)
  52#define SPI_CS_SEL_MASK				(3 << 26)
  53#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
  54#define SPI_CONTROL_MODE_0			(0 << 28)
  55#define SPI_CONTROL_MODE_1			(1 << 28)
  56#define SPI_CONTROL_MODE_2			(2 << 28)
  57#define SPI_CONTROL_MODE_3			(3 << 28)
  58#define SPI_CONTROL_MODE_MASK			(3 << 28)
  59#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
  60#define SPI_M_S					(1 << 30)
  61#define SPI_PIO					(1 << 31)
  62
  63#define SPI_COMMAND2				0x004
  64#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
  65#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
  66
  67#define SPI_CS_TIMING1				0x008
  68#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
  69#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
  70		((((val) & 0xFFu) << ((cs) * 8)) |	\
  71		((reg) & ~(0xFFu << ((cs) * 8))))
  72
  73#define SPI_CS_TIMING2				0x00C
  74#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
  75#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
  76#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
  77#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
  78#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
  79#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
  80#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
  81#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
  82#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
  83		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
  84			((reg) & ~(1 << ((cs) * 8 + 5))))
  85#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
  86		(reg = (((val) & 0x1F) << ((cs) * 8)) |		\
  87			((reg) & ~(0x1F << ((cs) * 8))))
  88#define MAX_SETUP_HOLD_CYCLES			16
  89#define MAX_INACTIVE_CYCLES			32
  90
  91#define SPI_TRANS_STATUS			0x010
  92#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
  93#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
  94#define SPI_RDY					(1 << 30)
  95
  96#define SPI_FIFO_STATUS				0x014
  97#define SPI_RX_FIFO_EMPTY			(1 << 0)
  98#define SPI_RX_FIFO_FULL			(1 << 1)
  99#define SPI_TX_FIFO_EMPTY			(1 << 2)
 100#define SPI_TX_FIFO_FULL			(1 << 3)
 101#define SPI_RX_FIFO_UNF				(1 << 4)
 102#define SPI_RX_FIFO_OVF				(1 << 5)
 103#define SPI_TX_FIFO_UNF				(1 << 6)
 104#define SPI_TX_FIFO_OVF				(1 << 7)
 105#define SPI_ERR					(1 << 8)
 106#define SPI_TX_FIFO_FLUSH			(1 << 14)
 107#define SPI_RX_FIFO_FLUSH			(1 << 15)
 108#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
 109#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
 110#define SPI_FRAME_END				(1 << 30)
 111#define SPI_CS_INACTIVE				(1 << 31)
 112
 113#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
 114			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
 115#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
 116
 117#define SPI_TX_DATA				0x018
 118#define SPI_RX_DATA				0x01C
 119
 120#define SPI_DMA_CTL				0x020
 121#define SPI_TX_TRIG_1				(0 << 15)
 122#define SPI_TX_TRIG_4				(1 << 15)
 123#define SPI_TX_TRIG_8				(2 << 15)
 124#define SPI_TX_TRIG_16				(3 << 15)
 125#define SPI_TX_TRIG_MASK			(3 << 15)
 126#define SPI_RX_TRIG_1				(0 << 19)
 127#define SPI_RX_TRIG_4				(1 << 19)
 128#define SPI_RX_TRIG_8				(2 << 19)
 129#define SPI_RX_TRIG_16				(3 << 19)
 130#define SPI_RX_TRIG_MASK			(3 << 19)
 131#define SPI_IE_TX				(1 << 28)
 132#define SPI_IE_RX				(1 << 29)
 133#define SPI_CONT				(1 << 30)
 134#define SPI_DMA					(1 << 31)
 135#define SPI_DMA_EN				SPI_DMA
 136
 137#define SPI_DMA_BLK				0x024
 138#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
 139
 140#define SPI_TX_FIFO				0x108
 141#define SPI_RX_FIFO				0x188
 142#define SPI_INTR_MASK				0x18c
 143#define SPI_INTR_ALL_MASK			(0x1fUL << 25)
 144#define MAX_CHIP_SELECT				4
 145#define SPI_FIFO_DEPTH				64
 146#define DATA_DIR_TX				(1 << 0)
 147#define DATA_DIR_RX				(1 << 1)
 148
 149#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
 150#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
 151#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
 152#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
 153#define MAX_HOLD_CYCLES				16
 154#define SPI_DEFAULT_SPEED			25000000
 155
 156struct tegra_spi_soc_data {
 157	bool has_intr_mask_reg;
 158};
 159
 160struct tegra_spi_client_data {
 161	int tx_clk_tap_delay;
 162	int rx_clk_tap_delay;
 163};
 164
 165struct tegra_spi_data {
 166	struct device				*dev;
 167	struct spi_controller			*host;
 168	spinlock_t				lock;
 169
 170	struct clk				*clk;
 171	struct reset_control			*rst;
 172	void __iomem				*base;
 173	phys_addr_t				phys;
 174	unsigned				irq;
 175	u32					cur_speed;
 176
 177	struct spi_device			*cur_spi;
 178	struct spi_device			*cs_control;
 179	unsigned				cur_pos;
 180	unsigned				words_per_32bit;
 181	unsigned				bytes_per_word;
 182	unsigned				curr_dma_words;
 183	unsigned				cur_direction;
 184
 185	unsigned				cur_rx_pos;
 186	unsigned				cur_tx_pos;
 187
 188	unsigned				dma_buf_size;
 189	unsigned				max_buf_size;
 190	bool					is_curr_dma_xfer;
 191	bool					use_hw_based_cs;
 192
 193	struct completion			rx_dma_complete;
 194	struct completion			tx_dma_complete;
 195
 196	u32					tx_status;
 197	u32					rx_status;
 198	u32					status_reg;
 199	bool					is_packed;
 200
 201	u32					command1_reg;
 202	u32					dma_control_reg;
 203	u32					def_command1_reg;
 204	u32					def_command2_reg;
 205	u32					spi_cs_timing1;
 206	u32					spi_cs_timing2;
 207	u8					last_used_cs;
 208
 209	struct completion			xfer_completion;
 210	struct spi_transfer			*curr_xfer;
 211	struct dma_chan				*rx_dma_chan;
 212	u32					*rx_dma_buf;
 213	dma_addr_t				rx_dma_phys;
 214	struct dma_async_tx_descriptor		*rx_dma_desc;
 215
 216	struct dma_chan				*tx_dma_chan;
 217	u32					*tx_dma_buf;
 218	dma_addr_t				tx_dma_phys;
 219	struct dma_async_tx_descriptor		*tx_dma_desc;
 220	const struct tegra_spi_soc_data		*soc_data;
 221};
 222
 223static int tegra_spi_runtime_suspend(struct device *dev);
 224static int tegra_spi_runtime_resume(struct device *dev);
 225
 226static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
 227		unsigned long reg)
 228{
 229	return readl(tspi->base + reg);
 230}
 231
 232static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
 233		u32 val, unsigned long reg)
 234{
 235	writel(val, tspi->base + reg);
 236
 237	/* Read back register to make sure that register writes completed */
 238	if (reg != SPI_TX_FIFO)
 239		readl(tspi->base + SPI_COMMAND1);
 240}
 241
 242static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
 243{
 244	u32 val;
 245
 246	/* Write 1 to clear status register */
 247	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
 248	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
 249
 250	/* Clear fifo status error if any */
 251	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 252	if (val & SPI_ERR)
 253		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
 254				SPI_FIFO_STATUS);
 255}
 256
 257static unsigned tegra_spi_calculate_curr_xfer_param(
 258	struct spi_device *spi, struct tegra_spi_data *tspi,
 259	struct spi_transfer *t)
 260{
 261	unsigned remain_len = t->len - tspi->cur_pos;
 262	unsigned max_word;
 263	unsigned bits_per_word = t->bits_per_word;
 264	unsigned max_len;
 265	unsigned total_fifo_words;
 266
 267	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
 268
 269	if ((bits_per_word == 8 || bits_per_word == 16 ||
 270	     bits_per_word == 32) && t->len > 3) {
 271		tspi->is_packed = true;
 272		tspi->words_per_32bit = 32/bits_per_word;
 273	} else {
 274		tspi->is_packed = false;
 275		tspi->words_per_32bit = 1;
 276	}
 277
 278	if (tspi->is_packed) {
 279		max_len = min(remain_len, tspi->max_buf_size);
 280		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
 281		total_fifo_words = (max_len + 3) / 4;
 282	} else {
 283		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
 284		max_word = min(max_word, tspi->max_buf_size/4);
 285		tspi->curr_dma_words = max_word;
 286		total_fifo_words = max_word;
 287	}
 288	return total_fifo_words;
 289}
 290
 291static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
 292	struct tegra_spi_data *tspi, struct spi_transfer *t)
 293{
 294	unsigned nbytes;
 295	unsigned tx_empty_count;
 296	u32 fifo_status;
 297	unsigned max_n_32bit;
 298	unsigned i, count;
 299	unsigned int written_words;
 300	unsigned fifo_words_left;
 301	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 302
 303	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 304	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
 305
 306	if (tspi->is_packed) {
 307		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
 308		written_words = min(fifo_words_left, tspi->curr_dma_words);
 309		nbytes = written_words * tspi->bytes_per_word;
 310		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
 311		for (count = 0; count < max_n_32bit; count++) {
 312			u32 x = 0;
 313
 314			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
 315				x |= (u32)(*tx_buf++) << (i * 8);
 316			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 317		}
 318
 319		tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
 320	} else {
 321		unsigned int write_bytes;
 322		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
 323		written_words = max_n_32bit;
 324		nbytes = written_words * tspi->bytes_per_word;
 325		if (nbytes > t->len - tspi->cur_pos)
 326			nbytes = t->len - tspi->cur_pos;
 327		write_bytes = nbytes;
 328		for (count = 0; count < max_n_32bit; count++) {
 329			u32 x = 0;
 330
 331			for (i = 0; nbytes && (i < tspi->bytes_per_word);
 332							i++, nbytes--)
 333				x |= (u32)(*tx_buf++) << (i * 8);
 334			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 335		}
 336
 337		tspi->cur_tx_pos += write_bytes;
 338	}
 339
 340	return written_words;
 341}
 342
 343static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
 344		struct tegra_spi_data *tspi, struct spi_transfer *t)
 345{
 346	unsigned rx_full_count;
 347	u32 fifo_status;
 348	unsigned i, count;
 349	unsigned int read_words = 0;
 350	unsigned len;
 351	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
 352
 353	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 354	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
 355	if (tspi->is_packed) {
 356		len = tspi->curr_dma_words * tspi->bytes_per_word;
 357		for (count = 0; count < rx_full_count; count++) {
 358			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
 359
 360			for (i = 0; len && (i < 4); i++, len--)
 361				*rx_buf++ = (x >> i*8) & 0xFF;
 362		}
 363		read_words += tspi->curr_dma_words;
 364		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 
 365	} else {
 366		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 367		u8 bytes_per_word = tspi->bytes_per_word;
 368		unsigned int read_bytes;
 369
 370		len = rx_full_count * bytes_per_word;
 371		if (len > t->len - tspi->cur_pos)
 372			len = t->len - tspi->cur_pos;
 373		read_bytes = len;
 374		for (count = 0; count < rx_full_count; count++) {
 375			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
 376
 377			for (i = 0; len && (i < bytes_per_word); i++, len--)
 378				*rx_buf++ = (x >> (i*8)) & 0xFF;
 379		}
 
 380		read_words += rx_full_count;
 381		tspi->cur_rx_pos += read_bytes;
 382	}
 383
 384	return read_words;
 385}
 386
 387static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
 388		struct tegra_spi_data *tspi, struct spi_transfer *t)
 389{
 390	/* Make the dma buffer to read by cpu */
 391	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
 392				tspi->dma_buf_size, DMA_TO_DEVICE);
 393
 394	if (tspi->is_packed) {
 395		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 396
 397		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
 398		tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 399	} else {
 400		unsigned int i;
 401		unsigned int count;
 402		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 403		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
 404		unsigned int write_bytes;
 405
 406		if (consume > t->len - tspi->cur_pos)
 407			consume = t->len - tspi->cur_pos;
 408		write_bytes = consume;
 409		for (count = 0; count < tspi->curr_dma_words; count++) {
 410			u32 x = 0;
 411
 412			for (i = 0; consume && (i < tspi->bytes_per_word);
 413							i++, consume--)
 414				x |= (u32)(*tx_buf++) << (i * 8);
 415			tspi->tx_dma_buf[count] = x;
 416		}
 417
 418		tspi->cur_tx_pos += write_bytes;
 419	}
 
 420
 421	/* Make the dma buffer to read by dma */
 422	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
 423				tspi->dma_buf_size, DMA_TO_DEVICE);
 424}
 425
 426static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
 427		struct tegra_spi_data *tspi, struct spi_transfer *t)
 428{
 429	/* Make the dma buffer to read by cpu */
 430	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
 431		tspi->dma_buf_size, DMA_FROM_DEVICE);
 432
 433	if (tspi->is_packed) {
 434		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 435
 436		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
 437		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 438	} else {
 439		unsigned int i;
 440		unsigned int count;
 441		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
 442		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 443		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
 444		unsigned int read_bytes;
 445
 446		if (consume > t->len - tspi->cur_pos)
 447			consume = t->len - tspi->cur_pos;
 448		read_bytes = consume;
 449		for (count = 0; count < tspi->curr_dma_words; count++) {
 450			u32 x = tspi->rx_dma_buf[count] & rx_mask;
 451
 452			for (i = 0; consume && (i < tspi->bytes_per_word);
 453							i++, consume--)
 454				*rx_buf++ = (x >> (i*8)) & 0xFF;
 455		}
 456
 457		tspi->cur_rx_pos += read_bytes;
 458	}
 
 459
 460	/* Make the dma buffer to read by dma */
 461	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 462		tspi->dma_buf_size, DMA_FROM_DEVICE);
 463}
 464
 465static void tegra_spi_dma_complete(void *args)
 466{
 467	struct completion *dma_complete = args;
 468
 469	complete(dma_complete);
 470}
 471
 472static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
 473{
 474	reinit_completion(&tspi->tx_dma_complete);
 475	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
 476				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
 477				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 478	if (!tspi->tx_dma_desc) {
 479		dev_err(tspi->dev, "Not able to get desc for Tx\n");
 480		return -EIO;
 481	}
 482
 483	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
 484	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
 485
 486	dmaengine_submit(tspi->tx_dma_desc);
 487	dma_async_issue_pending(tspi->tx_dma_chan);
 488	return 0;
 489}
 490
 491static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
 492{
 493	reinit_completion(&tspi->rx_dma_complete);
 494	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
 495				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
 496				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 497	if (!tspi->rx_dma_desc) {
 498		dev_err(tspi->dev, "Not able to get desc for Rx\n");
 499		return -EIO;
 500	}
 501
 502	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
 503	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
 504
 505	dmaengine_submit(tspi->rx_dma_desc);
 506	dma_async_issue_pending(tspi->rx_dma_chan);
 507	return 0;
 508}
 509
 510static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
 511{
 512	unsigned long timeout = jiffies + HZ;
 513	u32 status;
 514
 515	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 516	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
 517		status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
 518		tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
 519		while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
 520			status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 521			if (time_after(jiffies, timeout)) {
 522				dev_err(tspi->dev,
 523					"timeout waiting for fifo flush\n");
 524				return -EIO;
 525			}
 526
 527			udelay(1);
 528		}
 529	}
 530
 531	return 0;
 532}
 533
 534static int tegra_spi_start_dma_based_transfer(
 535		struct tegra_spi_data *tspi, struct spi_transfer *t)
 536{
 537	u32 val;
 538	unsigned int len;
 539	int ret = 0;
 540	u8 dma_burst;
 541	struct dma_slave_config dma_sconfig = {0};
 
 
 
 
 
 
 
 542
 543	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
 544	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 545
 546	if (tspi->is_packed)
 547		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
 548					4) * 4;
 549	else
 550		len = tspi->curr_dma_words * 4;
 551
 552	/* Set attention level based on length of transfer */
 553	if (len & 0xF) {
 554		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
 555		dma_burst = 1;
 556	} else if (((len) >> 4) & 0x1) {
 557		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
 558		dma_burst = 4;
 559	} else {
 560		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
 561		dma_burst = 8;
 562	}
 563
 564	if (!tspi->soc_data->has_intr_mask_reg) {
 565		if (tspi->cur_direction & DATA_DIR_TX)
 566			val |= SPI_IE_TX;
 567
 568		if (tspi->cur_direction & DATA_DIR_RX)
 569			val |= SPI_IE_RX;
 570	}
 571
 572	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 573	tspi->dma_control_reg = val;
 574
 575	dma_sconfig.device_fc = true;
 576	if (tspi->cur_direction & DATA_DIR_TX) {
 577		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
 578		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 579		dma_sconfig.dst_maxburst = dma_burst;
 580		ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
 581		if (ret < 0) {
 582			dev_err(tspi->dev,
 583				"DMA slave config failed: %d\n", ret);
 584			return ret;
 585		}
 586
 587		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
 588		ret = tegra_spi_start_tx_dma(tspi, len);
 589		if (ret < 0) {
 590			dev_err(tspi->dev,
 591				"Starting tx dma failed, err %d\n", ret);
 592			return ret;
 593		}
 594	}
 595
 596	if (tspi->cur_direction & DATA_DIR_RX) {
 597		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
 598		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 599		dma_sconfig.src_maxburst = dma_burst;
 600		ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
 601		if (ret < 0) {
 602			dev_err(tspi->dev,
 603				"DMA slave config failed: %d\n", ret);
 604			return ret;
 605		}
 606
 607		/* Make the dma buffer to read by dma */
 608		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 609				tspi->dma_buf_size, DMA_FROM_DEVICE);
 610
 611		ret = tegra_spi_start_rx_dma(tspi, len);
 612		if (ret < 0) {
 613			dev_err(tspi->dev,
 614				"Starting rx dma failed, err %d\n", ret);
 615			if (tspi->cur_direction & DATA_DIR_TX)
 616				dmaengine_terminate_all(tspi->tx_dma_chan);
 617			return ret;
 618		}
 619	}
 620	tspi->is_curr_dma_xfer = true;
 621	tspi->dma_control_reg = val;
 622
 623	val |= SPI_DMA_EN;
 624	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 625	return ret;
 626}
 627
 628static int tegra_spi_start_cpu_based_transfer(
 629		struct tegra_spi_data *tspi, struct spi_transfer *t)
 630{
 631	u32 val;
 632	unsigned cur_words;
 633
 634	if (tspi->cur_direction & DATA_DIR_TX)
 635		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
 636	else
 637		cur_words = tspi->curr_dma_words;
 638
 639	val = SPI_DMA_BLK_SET(cur_words - 1);
 640	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 641
 642	val = 0;
 643	if (tspi->cur_direction & DATA_DIR_TX)
 644		val |= SPI_IE_TX;
 645
 646	if (tspi->cur_direction & DATA_DIR_RX)
 647		val |= SPI_IE_RX;
 648
 649	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 650	tspi->dma_control_reg = val;
 651
 652	tspi->is_curr_dma_xfer = false;
 653
 654	val = tspi->command1_reg;
 655	val |= SPI_PIO;
 656	tegra_spi_writel(tspi, val, SPI_COMMAND1);
 657	return 0;
 658}
 659
 660static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
 661			bool dma_to_memory)
 662{
 663	struct dma_chan *dma_chan;
 664	u32 *dma_buf;
 665	dma_addr_t dma_phys;
 
 
 666
 667	dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
 668	if (IS_ERR(dma_chan))
 669		return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
 670				     "Dma channel is not available\n");
 
 
 
 
 
 671
 672	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
 673				&dma_phys, GFP_KERNEL);
 674	if (!dma_buf) {
 675		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
 676		dma_release_channel(dma_chan);
 677		return -ENOMEM;
 678	}
 679
 680	if (dma_to_memory) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		tspi->rx_dma_chan = dma_chan;
 682		tspi->rx_dma_buf = dma_buf;
 683		tspi->rx_dma_phys = dma_phys;
 684	} else {
 685		tspi->tx_dma_chan = dma_chan;
 686		tspi->tx_dma_buf = dma_buf;
 687		tspi->tx_dma_phys = dma_phys;
 688	}
 689	return 0;
 
 
 
 
 
 690}
 691
 692static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
 693	bool dma_to_memory)
 694{
 695	u32 *dma_buf;
 696	dma_addr_t dma_phys;
 697	struct dma_chan *dma_chan;
 698
 699	if (dma_to_memory) {
 700		dma_buf = tspi->rx_dma_buf;
 701		dma_chan = tspi->rx_dma_chan;
 702		dma_phys = tspi->rx_dma_phys;
 703		tspi->rx_dma_chan = NULL;
 704		tspi->rx_dma_buf = NULL;
 705	} else {
 706		dma_buf = tspi->tx_dma_buf;
 707		dma_chan = tspi->tx_dma_chan;
 708		dma_phys = tspi->tx_dma_phys;
 709		tspi->tx_dma_buf = NULL;
 710		tspi->tx_dma_chan = NULL;
 711	}
 712	if (!dma_chan)
 713		return;
 714
 715	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 716	dma_release_channel(dma_chan);
 717}
 718
 719static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
 720{
 721	struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
 722	struct spi_delay *setup = &spi->cs_setup;
 723	struct spi_delay *hold = &spi->cs_hold;
 724	struct spi_delay *inactive = &spi->cs_inactive;
 725	u8 setup_dly, hold_dly;
 726	u32 setup_hold;
 727	u32 spi_cs_timing;
 728	u32 inactive_cycles;
 729	u8 cs_state;
 730
 731	if (setup->unit != SPI_DELAY_UNIT_SCK ||
 732	    hold->unit != SPI_DELAY_UNIT_SCK ||
 733	    inactive->unit != SPI_DELAY_UNIT_SCK) {
 734		dev_err(&spi->dev,
 735			"Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
 736			SPI_DELAY_UNIT_SCK);
 737		return -EINVAL;
 738	}
 739
 740	setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES);
 741	hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES);
 742	if (setup_dly && hold_dly) {
 743		setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
 744		spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
 745						  spi_get_chipselect(spi, 0),
 746						  setup_hold);
 747		if (tspi->spi_cs_timing1 != spi_cs_timing) {
 748			tspi->spi_cs_timing1 = spi_cs_timing;
 749			tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
 750		}
 751	}
 752
 753	inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES);
 754	if (inactive_cycles)
 755		inactive_cycles--;
 756	cs_state = inactive_cycles ? 0 : 1;
 757	spi_cs_timing = tspi->spi_cs_timing2;
 758	SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
 759					  cs_state);
 760	SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
 761				       inactive_cycles);
 762	if (tspi->spi_cs_timing2 != spi_cs_timing) {
 763		tspi->spi_cs_timing2 = spi_cs_timing;
 764		tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
 765	}
 766
 767	return 0;
 768}
 769
 770static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
 771					struct spi_transfer *t,
 772					bool is_first_of_msg,
 773					bool is_single_xfer)
 774{
 775	struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
 776	struct tegra_spi_client_data *cdata = spi->controller_data;
 777	u32 speed = t->speed_hz;
 778	u8 bits_per_word = t->bits_per_word;
 779	u32 command1, command2;
 780	int req_mode;
 781	u32 tx_tap = 0, rx_tap = 0;
 782
 783	if (speed != tspi->cur_speed) {
 784		clk_set_rate(tspi->clk, speed);
 785		tspi->cur_speed = speed;
 786	}
 787
 788	tspi->cur_spi = spi;
 789	tspi->cur_pos = 0;
 790	tspi->cur_rx_pos = 0;
 791	tspi->cur_tx_pos = 0;
 792	tspi->curr_xfer = t;
 793
 794	if (is_first_of_msg) {
 795		tegra_spi_clear_status(tspi);
 796
 797		command1 = tspi->def_command1_reg;
 798		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 799
 800		command1 &= ~SPI_CONTROL_MODE_MASK;
 801		req_mode = spi->mode & 0x3;
 802		if (req_mode == SPI_MODE_0)
 803			command1 |= SPI_CONTROL_MODE_0;
 804		else if (req_mode == SPI_MODE_1)
 805			command1 |= SPI_CONTROL_MODE_1;
 806		else if (req_mode == SPI_MODE_2)
 807			command1 |= SPI_CONTROL_MODE_2;
 808		else if (req_mode == SPI_MODE_3)
 809			command1 |= SPI_CONTROL_MODE_3;
 810
 811		if (spi->mode & SPI_LSB_FIRST)
 812			command1 |= SPI_LSBIT_FE;
 813		else
 814			command1 &= ~SPI_LSBIT_FE;
 815
 816		if (spi->mode & SPI_3WIRE)
 817			command1 |= SPI_BIDIROE;
 818		else
 819			command1 &= ~SPI_BIDIROE;
 820
 821		if (tspi->cs_control) {
 822			if (tspi->cs_control != spi)
 823				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 824			tspi->cs_control = NULL;
 825		} else
 826			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 827
 828		/* GPIO based chip select control */
 829		if (spi_get_csgpiod(spi, 0))
 830			gpiod_set_value(spi_get_csgpiod(spi, 0), 1);
 831
 832		if (is_single_xfer && !(t->cs_change)) {
 833			tspi->use_hw_based_cs = true;
 834			command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
 835		} else {
 836			tspi->use_hw_based_cs = false;
 837			command1 |= SPI_CS_SW_HW;
 838			if (spi->mode & SPI_CS_HIGH)
 839				command1 |= SPI_CS_SW_VAL;
 840			else
 841				command1 &= ~SPI_CS_SW_VAL;
 842		}
 843
 844		if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) {
 845			if (cdata && cdata->tx_clk_tap_delay)
 846				tx_tap = cdata->tx_clk_tap_delay;
 847			if (cdata && cdata->rx_clk_tap_delay)
 848				rx_tap = cdata->rx_clk_tap_delay;
 849			command2 = SPI_TX_TAP_DELAY(tx_tap) |
 850				   SPI_RX_TAP_DELAY(rx_tap);
 851			if (command2 != tspi->def_command2_reg)
 852				tegra_spi_writel(tspi, command2, SPI_COMMAND2);
 853			tspi->last_used_cs = spi_get_chipselect(spi, 0);
 854		}
 855
 
 856	} else {
 857		command1 = tspi->command1_reg;
 858		command1 &= ~SPI_BIT_LENGTH(~0);
 859		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 860	}
 861
 862	return command1;
 863}
 864
 865static int tegra_spi_start_transfer_one(struct spi_device *spi,
 866		struct spi_transfer *t, u32 command1)
 867{
 868	struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
 869	unsigned total_fifo_words;
 870	int ret;
 871
 872	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
 873
 874	if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
 875		command1 |= SPI_BOTH_EN_BIT;
 876	else
 877		command1 &= ~SPI_BOTH_EN_BIT;
 878
 879	if (tspi->is_packed)
 880		command1 |= SPI_PACKED;
 881	else
 882		command1 &= ~SPI_PACKED;
 883
 884	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
 885	tspi->cur_direction = 0;
 886	if (t->rx_buf) {
 887		command1 |= SPI_RX_EN;
 888		tspi->cur_direction |= DATA_DIR_RX;
 889	}
 890	if (t->tx_buf) {
 891		command1 |= SPI_TX_EN;
 892		tspi->cur_direction |= DATA_DIR_TX;
 893	}
 894	command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0));
 895	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 896	tspi->command1_reg = command1;
 897
 898	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
 899		tspi->def_command1_reg, (unsigned)command1);
 900
 901	ret = tegra_spi_flush_fifos(tspi);
 902	if (ret < 0)
 903		return ret;
 904	if (total_fifo_words > SPI_FIFO_DEPTH)
 905		ret = tegra_spi_start_dma_based_transfer(tspi, t);
 906	else
 907		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
 908	return ret;
 909}
 910
 911static struct tegra_spi_client_data
 912	*tegra_spi_parse_cdata_dt(struct spi_device *spi)
 913{
 914	struct tegra_spi_client_data *cdata;
 915	struct device_node *target_np;
 916
 917	target_np = spi->dev.of_node;
 918	if (!target_np) {
 919		dev_dbg(&spi->dev, "device node not found\n");
 920		return NULL;
 921	}
 922
 923	cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
 924	if (!cdata)
 925		return NULL;
 926
 927	of_property_read_u32(target_np, "nvidia,tx-clk-tap-delay",
 928			     &cdata->tx_clk_tap_delay);
 929	of_property_read_u32(target_np, "nvidia,rx-clk-tap-delay",
 930			     &cdata->rx_clk_tap_delay);
 931	return cdata;
 932}
 933
 934static void tegra_spi_cleanup(struct spi_device *spi)
 935{
 936	struct tegra_spi_client_data *cdata = spi->controller_data;
 937
 938	spi->controller_data = NULL;
 939	if (spi->dev.of_node)
 940		kfree(cdata);
 941}
 942
 943static int tegra_spi_setup(struct spi_device *spi)
 944{
 945	struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
 946	struct tegra_spi_client_data *cdata = spi->controller_data;
 947	u32 val;
 948	unsigned long flags;
 949	int ret;
 950
 951	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
 952		spi->bits_per_word,
 953		spi->mode & SPI_CPOL ? "" : "~",
 954		spi->mode & SPI_CPHA ? "" : "~",
 955		spi->max_speed_hz);
 956
 957	if (!cdata) {
 958		cdata = tegra_spi_parse_cdata_dt(spi);
 959		spi->controller_data = cdata;
 960	}
 961
 962	ret = pm_runtime_resume_and_get(tspi->dev);
 963	if (ret < 0) {
 964		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
 965		if (cdata)
 966			tegra_spi_cleanup(spi);
 967		return ret;
 968	}
 969
 970	if (tspi->soc_data->has_intr_mask_reg) {
 971		val = tegra_spi_readl(tspi, SPI_INTR_MASK);
 972		val &= ~SPI_INTR_ALL_MASK;
 973		tegra_spi_writel(tspi, val, SPI_INTR_MASK);
 974	}
 975
 976	spin_lock_irqsave(&tspi->lock, flags);
 977	/* GPIO based chip select control */
 978	if (spi_get_csgpiod(spi, 0))
 979		gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
 980
 981	val = tspi->def_command1_reg;
 982	if (spi->mode & SPI_CS_HIGH)
 983		val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
 984	else
 985		val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
 986	tspi->def_command1_reg = val;
 987	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
 988	spin_unlock_irqrestore(&tspi->lock, flags);
 989
 990	pm_runtime_put(tspi->dev);
 991	return 0;
 992}
 993
 994static void tegra_spi_transfer_end(struct spi_device *spi)
 995{
 996	struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
 997	int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
 998
 999	/* GPIO based chip select control */
1000	if (spi_get_csgpiod(spi, 0))
1001		gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
1002
1003	if (!tspi->use_hw_based_cs) {
1004		if (cs_val)
1005			tspi->command1_reg |= SPI_CS_SW_VAL;
1006		else
1007			tspi->command1_reg &= ~SPI_CS_SW_VAL;
1008		tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1009	}
1010
1011	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1012}
1013
1014static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1015{
1016	dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1017	dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
1018		tegra_spi_readl(tspi, SPI_COMMAND1),
1019		tegra_spi_readl(tspi, SPI_COMMAND2));
1020	dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
1021		tegra_spi_readl(tspi, SPI_DMA_CTL),
1022		tegra_spi_readl(tspi, SPI_DMA_BLK));
1023	dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
1024		tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1025		tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1026}
1027
1028static int tegra_spi_transfer_one_message(struct spi_controller *host,
1029			struct spi_message *msg)
1030{
1031	bool is_first_msg = true;
1032	struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1033	struct spi_transfer *xfer;
1034	struct spi_device *spi = msg->spi;
1035	int ret;
1036	bool skip = false;
1037	int single_xfer;
1038
1039	msg->status = 0;
1040	msg->actual_length = 0;
1041
1042	single_xfer = list_is_singular(&msg->transfers);
1043	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044		u32 cmd1;
1045
1046		reinit_completion(&tspi->xfer_completion);
1047
1048		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1049						    single_xfer);
1050
1051		if (!xfer->len) {
1052			ret = 0;
1053			skip = true;
1054			goto complete_xfer;
1055		}
1056
1057		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1058		if (ret < 0) {
1059			dev_err(tspi->dev,
1060				"spi can not start transfer, err %d\n", ret);
1061			goto complete_xfer;
1062		}
1063
1064		is_first_msg = false;
1065		ret = wait_for_completion_timeout(&tspi->xfer_completion,
1066						SPI_DMA_TIMEOUT);
1067		if (WARN_ON(ret == 0)) {
1068			dev_err(tspi->dev, "spi transfer timeout\n");
1069			if (tspi->is_curr_dma_xfer &&
1070			    (tspi->cur_direction & DATA_DIR_TX))
1071				dmaengine_terminate_all(tspi->tx_dma_chan);
1072			if (tspi->is_curr_dma_xfer &&
1073			    (tspi->cur_direction & DATA_DIR_RX))
1074				dmaengine_terminate_all(tspi->rx_dma_chan);
1075			ret = -EIO;
1076			tegra_spi_dump_regs(tspi);
1077			tegra_spi_flush_fifos(tspi);
1078			reset_control_assert(tspi->rst);
1079			udelay(2);
1080			reset_control_deassert(tspi->rst);
1081			tspi->last_used_cs = host->num_chipselect + 1;
1082			goto complete_xfer;
1083		}
1084
1085		if (tspi->tx_status ||  tspi->rx_status) {
1086			dev_err(tspi->dev, "Error in Transfer\n");
1087			ret = -EIO;
1088			tegra_spi_dump_regs(tspi);
1089			goto complete_xfer;
1090		}
1091		msg->actual_length += xfer->len;
1092
1093complete_xfer:
1094		if (ret < 0 || skip) {
1095			tegra_spi_transfer_end(spi);
1096			spi_transfer_delay_exec(xfer);
 
1097			goto exit;
1098		} else if (list_is_last(&xfer->transfer_list,
1099					&msg->transfers)) {
1100			if (xfer->cs_change)
1101				tspi->cs_control = spi;
1102			else {
1103				tegra_spi_transfer_end(spi);
1104				spi_transfer_delay_exec(xfer);
 
1105			}
1106		} else if (xfer->cs_change) {
1107			tegra_spi_transfer_end(spi);
1108			spi_transfer_delay_exec(xfer);
 
1109		}
1110
1111	}
1112	ret = 0;
1113exit:
1114	msg->status = ret;
1115	spi_finalize_current_message(host);
1116	return ret;
1117}
1118
1119static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1120{
1121	struct spi_transfer *t = tspi->curr_xfer;
1122	unsigned long flags;
1123
1124	spin_lock_irqsave(&tspi->lock, flags);
1125	if (tspi->tx_status ||  tspi->rx_status) {
1126		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1127			tspi->status_reg);
1128		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1129			tspi->command1_reg, tspi->dma_control_reg);
1130		tegra_spi_dump_regs(tspi);
1131		tegra_spi_flush_fifos(tspi);
1132		complete(&tspi->xfer_completion);
1133		spin_unlock_irqrestore(&tspi->lock, flags);
1134		reset_control_assert(tspi->rst);
1135		udelay(2);
1136		reset_control_deassert(tspi->rst);
1137		return IRQ_HANDLED;
 
1138	}
1139
1140	if (tspi->cur_direction & DATA_DIR_RX)
1141		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1142
1143	if (tspi->cur_direction & DATA_DIR_TX)
1144		tspi->cur_pos = tspi->cur_tx_pos;
1145	else
1146		tspi->cur_pos = tspi->cur_rx_pos;
1147
1148	if (tspi->cur_pos == t->len) {
1149		complete(&tspi->xfer_completion);
1150		goto exit;
1151	}
1152
1153	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1154	tegra_spi_start_cpu_based_transfer(tspi, t);
1155exit:
1156	spin_unlock_irqrestore(&tspi->lock, flags);
1157	return IRQ_HANDLED;
1158}
1159
1160static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1161{
1162	struct spi_transfer *t = tspi->curr_xfer;
1163	long wait_status;
1164	int err = 0;
1165	unsigned total_fifo_words;
1166	unsigned long flags;
1167
1168	/* Abort dmas if any error */
1169	if (tspi->cur_direction & DATA_DIR_TX) {
1170		if (tspi->tx_status) {
1171			dmaengine_terminate_all(tspi->tx_dma_chan);
1172			err += 1;
1173		} else {
1174			wait_status = wait_for_completion_interruptible_timeout(
1175				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1176			if (wait_status <= 0) {
1177				dmaengine_terminate_all(tspi->tx_dma_chan);
1178				dev_err(tspi->dev, "TxDma Xfer failed\n");
1179				err += 1;
1180			}
1181		}
1182	}
1183
1184	if (tspi->cur_direction & DATA_DIR_RX) {
1185		if (tspi->rx_status) {
1186			dmaengine_terminate_all(tspi->rx_dma_chan);
1187			err += 2;
1188		} else {
1189			wait_status = wait_for_completion_interruptible_timeout(
1190				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1191			if (wait_status <= 0) {
1192				dmaengine_terminate_all(tspi->rx_dma_chan);
1193				dev_err(tspi->dev, "RxDma Xfer failed\n");
1194				err += 2;
1195			}
1196		}
1197	}
1198
1199	spin_lock_irqsave(&tspi->lock, flags);
1200	if (err) {
1201		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1202			tspi->status_reg);
1203		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1204			tspi->command1_reg, tspi->dma_control_reg);
1205		tegra_spi_dump_regs(tspi);
1206		tegra_spi_flush_fifos(tspi);
1207		complete(&tspi->xfer_completion);
1208		spin_unlock_irqrestore(&tspi->lock, flags);
1209		reset_control_assert(tspi->rst);
1210		udelay(2);
1211		reset_control_deassert(tspi->rst);
 
 
1212		return IRQ_HANDLED;
1213	}
1214
1215	if (tspi->cur_direction & DATA_DIR_RX)
1216		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1217
1218	if (tspi->cur_direction & DATA_DIR_TX)
1219		tspi->cur_pos = tspi->cur_tx_pos;
1220	else
1221		tspi->cur_pos = tspi->cur_rx_pos;
1222
1223	if (tspi->cur_pos == t->len) {
1224		complete(&tspi->xfer_completion);
1225		goto exit;
1226	}
1227
1228	/* Continue transfer in current message */
1229	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1230							tspi, t);
1231	if (total_fifo_words > SPI_FIFO_DEPTH)
1232		err = tegra_spi_start_dma_based_transfer(tspi, t);
1233	else
1234		err = tegra_spi_start_cpu_based_transfer(tspi, t);
1235
1236exit:
1237	spin_unlock_irqrestore(&tspi->lock, flags);
1238	return IRQ_HANDLED;
1239}
1240
1241static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1242{
1243	struct tegra_spi_data *tspi = context_data;
1244
1245	if (!tspi->is_curr_dma_xfer)
1246		return handle_cpu_based_xfer(tspi);
1247	return handle_dma_based_xfer(tspi);
1248}
1249
1250static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1251{
1252	struct tegra_spi_data *tspi = context_data;
1253
1254	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1255	if (tspi->cur_direction & DATA_DIR_TX)
1256		tspi->tx_status = tspi->status_reg &
1257					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1258
1259	if (tspi->cur_direction & DATA_DIR_RX)
1260		tspi->rx_status = tspi->status_reg &
1261					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1262	tegra_spi_clear_status(tspi);
1263
1264	return IRQ_WAKE_THREAD;
1265}
1266
1267static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1268	.has_intr_mask_reg = false,
1269};
1270
1271static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1272	.has_intr_mask_reg = false,
1273};
1274
1275static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1276	.has_intr_mask_reg = true,
1277};
1278
1279static const struct of_device_id tegra_spi_of_match[] = {
1280	{
1281		.compatible = "nvidia,tegra114-spi",
1282		.data	    = &tegra114_spi_soc_data,
1283	}, {
1284		.compatible = "nvidia,tegra124-spi",
1285		.data	    = &tegra124_spi_soc_data,
1286	}, {
1287		.compatible = "nvidia,tegra210-spi",
1288		.data	    = &tegra210_spi_soc_data,
1289	},
1290	{}
1291};
1292MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1293
1294static int tegra_spi_probe(struct platform_device *pdev)
1295{
1296	struct spi_controller	*host;
1297	struct tegra_spi_data	*tspi;
1298	struct resource		*r;
1299	int ret, spi_irq;
1300	int bus_num;
1301
1302	host = spi_alloc_host(&pdev->dev, sizeof(*tspi));
1303	if (!host) {
1304		dev_err(&pdev->dev, "host allocation failed\n");
1305		return -ENOMEM;
1306	}
1307	platform_set_drvdata(pdev, host);
1308	tspi = spi_controller_get_devdata(host);
1309
1310	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1311				 &host->max_speed_hz))
1312		host->max_speed_hz = 25000000; /* 25MHz */
1313
1314	/* the spi->mode bits understood by this driver: */
1315	host->use_gpio_descriptors = true;
1316	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1317			  SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1318	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1319	host->setup = tegra_spi_setup;
1320	host->cleanup = tegra_spi_cleanup;
1321	host->transfer_one_message = tegra_spi_transfer_one_message;
1322	host->set_cs_timing = tegra_spi_set_hw_cs_timing;
1323	host->num_chipselect = MAX_CHIP_SELECT;
1324	host->auto_runtime_pm = true;
1325	bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1326	if (bus_num >= 0)
1327		host->bus_num = bus_num;
1328
1329	tspi->host = host;
1330	tspi->dev = &pdev->dev;
1331	spin_lock_init(&tspi->lock);
1332
1333	tspi->soc_data = of_device_get_match_data(&pdev->dev);
1334	if (!tspi->soc_data) {
1335		dev_err(&pdev->dev, "unsupported tegra\n");
1336		ret = -ENODEV;
1337		goto exit_free_host;
1338	}
1339
1340	tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1341	if (IS_ERR(tspi->base)) {
1342		ret = PTR_ERR(tspi->base);
1343		goto exit_free_host;
1344	}
1345	tspi->phys = r->start;
1346
1347	spi_irq = platform_get_irq(pdev, 0);
1348	if (spi_irq < 0) {
1349		ret = spi_irq;
1350		goto exit_free_host;
1351	}
1352	tspi->irq = spi_irq;
 
 
 
 
 
 
 
 
1353
1354	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1355	if (IS_ERR(tspi->clk)) {
1356		dev_err(&pdev->dev, "can not get clock\n");
1357		ret = PTR_ERR(tspi->clk);
1358		goto exit_free_host;
1359	}
1360
1361	tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1362	if (IS_ERR(tspi->rst)) {
1363		dev_err(&pdev->dev, "can not get reset\n");
1364		ret = PTR_ERR(tspi->rst);
1365		goto exit_free_host;
1366	}
1367
1368	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1369	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1370
1371	ret = tegra_spi_init_dma_param(tspi, true);
1372	if (ret < 0)
1373		goto exit_free_host;
1374	ret = tegra_spi_init_dma_param(tspi, false);
1375	if (ret < 0)
1376		goto exit_rx_dma_free;
1377	tspi->max_buf_size = tspi->dma_buf_size;
1378	init_completion(&tspi->tx_dma_complete);
1379	init_completion(&tspi->rx_dma_complete);
1380
1381	init_completion(&tspi->xfer_completion);
1382
1383	pm_runtime_enable(&pdev->dev);
1384	if (!pm_runtime_enabled(&pdev->dev)) {
1385		ret = tegra_spi_runtime_resume(&pdev->dev);
1386		if (ret)
1387			goto exit_pm_disable;
1388	}
1389
1390	ret = pm_runtime_resume_and_get(&pdev->dev);
1391	if (ret < 0) {
1392		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1393		goto exit_pm_disable;
1394	}
1395
1396	reset_control_assert(tspi->rst);
1397	udelay(2);
1398	reset_control_deassert(tspi->rst);
1399	tspi->def_command1_reg  = SPI_M_S;
1400	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1401	tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1402	tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1403	tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1404	tspi->last_used_cs = host->num_chipselect + 1;
1405	pm_runtime_put(&pdev->dev);
1406	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1407				   tegra_spi_isr_thread, IRQF_ONESHOT,
1408				   dev_name(&pdev->dev), tspi);
1409	if (ret < 0) {
1410		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1411			tspi->irq);
1412		goto exit_pm_disable;
1413	}
1414
1415	host->dev.of_node = pdev->dev.of_node;
1416	ret = devm_spi_register_controller(&pdev->dev, host);
1417	if (ret < 0) {
1418		dev_err(&pdev->dev, "can not register to host err %d\n", ret);
1419		goto exit_free_irq;
1420	}
1421	return ret;
1422
1423exit_free_irq:
1424	free_irq(spi_irq, tspi);
1425exit_pm_disable:
1426	pm_runtime_disable(&pdev->dev);
1427	if (!pm_runtime_status_suspended(&pdev->dev))
1428		tegra_spi_runtime_suspend(&pdev->dev);
1429	tegra_spi_deinit_dma_param(tspi, false);
1430exit_rx_dma_free:
1431	tegra_spi_deinit_dma_param(tspi, true);
1432exit_free_host:
1433	spi_controller_put(host);
 
 
1434	return ret;
1435}
1436
1437static void tegra_spi_remove(struct platform_device *pdev)
1438{
1439	struct spi_controller *host = platform_get_drvdata(pdev);
1440	struct tegra_spi_data	*tspi = spi_controller_get_devdata(host);
1441
1442	free_irq(tspi->irq, tspi);
1443
1444	if (tspi->tx_dma_chan)
1445		tegra_spi_deinit_dma_param(tspi, false);
1446
1447	if (tspi->rx_dma_chan)
1448		tegra_spi_deinit_dma_param(tspi, true);
1449
1450	pm_runtime_disable(&pdev->dev);
1451	if (!pm_runtime_status_suspended(&pdev->dev))
1452		tegra_spi_runtime_suspend(&pdev->dev);
 
 
1453}
1454
1455#ifdef CONFIG_PM_SLEEP
1456static int tegra_spi_suspend(struct device *dev)
1457{
1458	struct spi_controller *host = dev_get_drvdata(dev);
1459
1460	return spi_controller_suspend(host);
1461}
1462
1463static int tegra_spi_resume(struct device *dev)
1464{
1465	struct spi_controller *host = dev_get_drvdata(dev);
1466	struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1467	int ret;
1468
1469	ret = pm_runtime_resume_and_get(dev);
1470	if (ret < 0) {
1471		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1472		return ret;
1473	}
1474	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1475	tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1476	tspi->last_used_cs = host->num_chipselect + 1;
1477	pm_runtime_put(dev);
1478
1479	return spi_controller_resume(host);
1480}
1481#endif
1482
1483static int tegra_spi_runtime_suspend(struct device *dev)
1484{
1485	struct spi_controller *host = dev_get_drvdata(dev);
1486	struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1487
1488	/* Flush all write which are in PPSB queue by reading back */
1489	tegra_spi_readl(tspi, SPI_COMMAND1);
1490
1491	clk_disable_unprepare(tspi->clk);
1492	return 0;
1493}
1494
1495static int tegra_spi_runtime_resume(struct device *dev)
1496{
1497	struct spi_controller *host = dev_get_drvdata(dev);
1498	struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1499	int ret;
1500
1501	ret = clk_prepare_enable(tspi->clk);
1502	if (ret < 0) {
1503		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1504		return ret;
1505	}
1506	return 0;
1507}
1508
1509static const struct dev_pm_ops tegra_spi_pm_ops = {
1510	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1511		tegra_spi_runtime_resume, NULL)
1512	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1513};
1514static struct platform_driver tegra_spi_driver = {
1515	.driver = {
1516		.name		= "spi-tegra114",
1517		.pm		= &tegra_spi_pm_ops,
1518		.of_match_table	= tegra_spi_of_match,
1519	},
1520	.probe =	tegra_spi_probe,
1521	.remove_new =	tegra_spi_remove,
1522};
1523module_platform_driver(tegra_spi_driver);
1524
1525MODULE_ALIAS("platform:spi-tegra114");
1526MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1527MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1528MODULE_LICENSE("GPL v2");
v4.6
 
   1/*
   2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
   3 *
   4 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/dmaengine.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/dmapool.h>
  25#include <linux/err.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/kernel.h>
  29#include <linux/kthread.h>
  30#include <linux/module.h>
  31#include <linux/platform_device.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/of.h>
  34#include <linux/of_device.h>
  35#include <linux/reset.h>
  36#include <linux/spi/spi.h>
  37
  38#define SPI_COMMAND1				0x000
  39#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
  40#define SPI_PACKED				(1 << 5)
  41#define SPI_TX_EN				(1 << 11)
  42#define SPI_RX_EN				(1 << 12)
  43#define SPI_BOTH_EN_BYTE			(1 << 13)
  44#define SPI_BOTH_EN_BIT				(1 << 14)
  45#define SPI_LSBYTE_FE				(1 << 15)
  46#define SPI_LSBIT_FE				(1 << 16)
  47#define SPI_BIDIROE				(1 << 17)
  48#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
  49#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
  50#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
  51#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
  52#define SPI_IDLE_SDA_MASK			(3 << 18)
  53#define SPI_CS_SS_VAL				(1 << 20)
  54#define SPI_CS_SW_HW				(1 << 21)
  55/* SPI_CS_POL_INACTIVE bits are default high */
  56						/* n from 0 to 3 */
  57#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
  58#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
  59
  60#define SPI_CS_SEL_0				(0 << 26)
  61#define SPI_CS_SEL_1				(1 << 26)
  62#define SPI_CS_SEL_2				(2 << 26)
  63#define SPI_CS_SEL_3				(3 << 26)
  64#define SPI_CS_SEL_MASK				(3 << 26)
  65#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
  66#define SPI_CONTROL_MODE_0			(0 << 28)
  67#define SPI_CONTROL_MODE_1			(1 << 28)
  68#define SPI_CONTROL_MODE_2			(2 << 28)
  69#define SPI_CONTROL_MODE_3			(3 << 28)
  70#define SPI_CONTROL_MODE_MASK			(3 << 28)
  71#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
  72#define SPI_M_S					(1 << 30)
  73#define SPI_PIO					(1 << 31)
  74
  75#define SPI_COMMAND2				0x004
  76#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
  77#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
  78
  79#define SPI_CS_TIMING1				0x008
  80#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
  81#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
  82		((((val) & 0xFFu) << ((cs) * 8)) |	\
  83		((reg) & ~(0xFFu << ((cs) * 8))))
  84
  85#define SPI_CS_TIMING2				0x00C
  86#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
  87#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
  88#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
  89#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
  90#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
  91#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
  92#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
  93#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
  94#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
  95		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
  96			((reg) & ~(1 << ((cs) * 8 + 5))))
  97#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
  98		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
  99			((reg) & ~(0xF << ((cs) * 8))))
 
 
 100
 101#define SPI_TRANS_STATUS			0x010
 102#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
 103#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
 104#define SPI_RDY					(1 << 30)
 105
 106#define SPI_FIFO_STATUS				0x014
 107#define SPI_RX_FIFO_EMPTY			(1 << 0)
 108#define SPI_RX_FIFO_FULL			(1 << 1)
 109#define SPI_TX_FIFO_EMPTY			(1 << 2)
 110#define SPI_TX_FIFO_FULL			(1 << 3)
 111#define SPI_RX_FIFO_UNF				(1 << 4)
 112#define SPI_RX_FIFO_OVF				(1 << 5)
 113#define SPI_TX_FIFO_UNF				(1 << 6)
 114#define SPI_TX_FIFO_OVF				(1 << 7)
 115#define SPI_ERR					(1 << 8)
 116#define SPI_TX_FIFO_FLUSH			(1 << 14)
 117#define SPI_RX_FIFO_FLUSH			(1 << 15)
 118#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
 119#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
 120#define SPI_FRAME_END				(1 << 30)
 121#define SPI_CS_INACTIVE				(1 << 31)
 122
 123#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
 124			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
 125#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
 126
 127#define SPI_TX_DATA				0x018
 128#define SPI_RX_DATA				0x01C
 129
 130#define SPI_DMA_CTL				0x020
 131#define SPI_TX_TRIG_1				(0 << 15)
 132#define SPI_TX_TRIG_4				(1 << 15)
 133#define SPI_TX_TRIG_8				(2 << 15)
 134#define SPI_TX_TRIG_16				(3 << 15)
 135#define SPI_TX_TRIG_MASK			(3 << 15)
 136#define SPI_RX_TRIG_1				(0 << 19)
 137#define SPI_RX_TRIG_4				(1 << 19)
 138#define SPI_RX_TRIG_8				(2 << 19)
 139#define SPI_RX_TRIG_16				(3 << 19)
 140#define SPI_RX_TRIG_MASK			(3 << 19)
 141#define SPI_IE_TX				(1 << 28)
 142#define SPI_IE_RX				(1 << 29)
 143#define SPI_CONT				(1 << 30)
 144#define SPI_DMA					(1 << 31)
 145#define SPI_DMA_EN				SPI_DMA
 146
 147#define SPI_DMA_BLK				0x024
 148#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
 149
 150#define SPI_TX_FIFO				0x108
 151#define SPI_RX_FIFO				0x188
 
 
 152#define MAX_CHIP_SELECT				4
 153#define SPI_FIFO_DEPTH				64
 154#define DATA_DIR_TX				(1 << 0)
 155#define DATA_DIR_RX				(1 << 1)
 156
 157#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
 158#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
 159#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
 160#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
 161#define MAX_HOLD_CYCLES				16
 162#define SPI_DEFAULT_SPEED			25000000
 163
 
 
 
 
 
 
 
 
 
 164struct tegra_spi_data {
 165	struct device				*dev;
 166	struct spi_master			*master;
 167	spinlock_t				lock;
 168
 169	struct clk				*clk;
 170	struct reset_control			*rst;
 171	void __iomem				*base;
 172	phys_addr_t				phys;
 173	unsigned				irq;
 174	u32					cur_speed;
 175
 176	struct spi_device			*cur_spi;
 177	struct spi_device			*cs_control;
 178	unsigned				cur_pos;
 179	unsigned				words_per_32bit;
 180	unsigned				bytes_per_word;
 181	unsigned				curr_dma_words;
 182	unsigned				cur_direction;
 183
 184	unsigned				cur_rx_pos;
 185	unsigned				cur_tx_pos;
 186
 187	unsigned				dma_buf_size;
 188	unsigned				max_buf_size;
 189	bool					is_curr_dma_xfer;
 
 190
 191	struct completion			rx_dma_complete;
 192	struct completion			tx_dma_complete;
 193
 194	u32					tx_status;
 195	u32					rx_status;
 196	u32					status_reg;
 197	bool					is_packed;
 198
 199	u32					command1_reg;
 200	u32					dma_control_reg;
 201	u32					def_command1_reg;
 
 
 
 
 202
 203	struct completion			xfer_completion;
 204	struct spi_transfer			*curr_xfer;
 205	struct dma_chan				*rx_dma_chan;
 206	u32					*rx_dma_buf;
 207	dma_addr_t				rx_dma_phys;
 208	struct dma_async_tx_descriptor		*rx_dma_desc;
 209
 210	struct dma_chan				*tx_dma_chan;
 211	u32					*tx_dma_buf;
 212	dma_addr_t				tx_dma_phys;
 213	struct dma_async_tx_descriptor		*tx_dma_desc;
 
 214};
 215
 216static int tegra_spi_runtime_suspend(struct device *dev);
 217static int tegra_spi_runtime_resume(struct device *dev);
 218
 219static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
 220		unsigned long reg)
 221{
 222	return readl(tspi->base + reg);
 223}
 224
 225static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
 226		u32 val, unsigned long reg)
 227{
 228	writel(val, tspi->base + reg);
 229
 230	/* Read back register to make sure that register writes completed */
 231	if (reg != SPI_TX_FIFO)
 232		readl(tspi->base + SPI_COMMAND1);
 233}
 234
 235static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
 236{
 237	u32 val;
 238
 239	/* Write 1 to clear status register */
 240	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
 241	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
 242
 243	/* Clear fifo status error if any */
 244	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 245	if (val & SPI_ERR)
 246		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
 247				SPI_FIFO_STATUS);
 248}
 249
 250static unsigned tegra_spi_calculate_curr_xfer_param(
 251	struct spi_device *spi, struct tegra_spi_data *tspi,
 252	struct spi_transfer *t)
 253{
 254	unsigned remain_len = t->len - tspi->cur_pos;
 255	unsigned max_word;
 256	unsigned bits_per_word = t->bits_per_word;
 257	unsigned max_len;
 258	unsigned total_fifo_words;
 259
 260	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
 261
 262	if (bits_per_word == 8 || bits_per_word == 16) {
 263		tspi->is_packed = 1;
 
 264		tspi->words_per_32bit = 32/bits_per_word;
 265	} else {
 266		tspi->is_packed = 0;
 267		tspi->words_per_32bit = 1;
 268	}
 269
 270	if (tspi->is_packed) {
 271		max_len = min(remain_len, tspi->max_buf_size);
 272		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
 273		total_fifo_words = (max_len + 3) / 4;
 274	} else {
 275		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
 276		max_word = min(max_word, tspi->max_buf_size/4);
 277		tspi->curr_dma_words = max_word;
 278		total_fifo_words = max_word;
 279	}
 280	return total_fifo_words;
 281}
 282
 283static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
 284	struct tegra_spi_data *tspi, struct spi_transfer *t)
 285{
 286	unsigned nbytes;
 287	unsigned tx_empty_count;
 288	u32 fifo_status;
 289	unsigned max_n_32bit;
 290	unsigned i, count;
 291	unsigned int written_words;
 292	unsigned fifo_words_left;
 293	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 294
 295	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 296	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
 297
 298	if (tspi->is_packed) {
 299		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
 300		written_words = min(fifo_words_left, tspi->curr_dma_words);
 301		nbytes = written_words * tspi->bytes_per_word;
 302		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
 303		for (count = 0; count < max_n_32bit; count++) {
 304			u32 x = 0;
 305
 306			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
 307				x |= (u32)(*tx_buf++) << (i * 8);
 308			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 309		}
 
 
 310	} else {
 
 311		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
 312		written_words = max_n_32bit;
 313		nbytes = written_words * tspi->bytes_per_word;
 
 
 
 314		for (count = 0; count < max_n_32bit; count++) {
 315			u32 x = 0;
 316
 317			for (i = 0; nbytes && (i < tspi->bytes_per_word);
 318							i++, nbytes--)
 319				x |= (u32)(*tx_buf++) << (i * 8);
 320			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 321		}
 
 
 322	}
 323	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
 324	return written_words;
 325}
 326
 327static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
 328		struct tegra_spi_data *tspi, struct spi_transfer *t)
 329{
 330	unsigned rx_full_count;
 331	u32 fifo_status;
 332	unsigned i, count;
 333	unsigned int read_words = 0;
 334	unsigned len;
 335	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
 336
 337	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 338	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
 339	if (tspi->is_packed) {
 340		len = tspi->curr_dma_words * tspi->bytes_per_word;
 341		for (count = 0; count < rx_full_count; count++) {
 342			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
 343
 344			for (i = 0; len && (i < 4); i++, len--)
 345				*rx_buf++ = (x >> i*8) & 0xFF;
 346		}
 
 347		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 348		read_words += tspi->curr_dma_words;
 349	} else {
 350		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 
 
 351
 
 
 
 
 352		for (count = 0; count < rx_full_count; count++) {
 353			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
 354
 355			for (i = 0; (i < tspi->bytes_per_word); i++)
 356				*rx_buf++ = (x >> (i*8)) & 0xFF;
 357		}
 358		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
 359		read_words += rx_full_count;
 
 360	}
 
 361	return read_words;
 362}
 363
 364static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
 365		struct tegra_spi_data *tspi, struct spi_transfer *t)
 366{
 367	/* Make the dma buffer to read by cpu */
 368	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
 369				tspi->dma_buf_size, DMA_TO_DEVICE);
 370
 371	if (tspi->is_packed) {
 372		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 373
 374		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
 
 375	} else {
 376		unsigned int i;
 377		unsigned int count;
 378		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 379		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
 
 380
 
 
 
 381		for (count = 0; count < tspi->curr_dma_words; count++) {
 382			u32 x = 0;
 383
 384			for (i = 0; consume && (i < tspi->bytes_per_word);
 385							i++, consume--)
 386				x |= (u32)(*tx_buf++) << (i * 8);
 387			tspi->tx_dma_buf[count] = x;
 388		}
 
 
 389	}
 390	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 391
 392	/* Make the dma buffer to read by dma */
 393	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
 394				tspi->dma_buf_size, DMA_TO_DEVICE);
 395}
 396
 397static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
 398		struct tegra_spi_data *tspi, struct spi_transfer *t)
 399{
 400	/* Make the dma buffer to read by cpu */
 401	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
 402		tspi->dma_buf_size, DMA_FROM_DEVICE);
 403
 404	if (tspi->is_packed) {
 405		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 406
 407		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
 
 408	} else {
 409		unsigned int i;
 410		unsigned int count;
 411		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
 412		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 
 
 413
 
 
 
 414		for (count = 0; count < tspi->curr_dma_words; count++) {
 415			u32 x = tspi->rx_dma_buf[count] & rx_mask;
 416
 417			for (i = 0; (i < tspi->bytes_per_word); i++)
 
 418				*rx_buf++ = (x >> (i*8)) & 0xFF;
 419		}
 
 
 420	}
 421	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 422
 423	/* Make the dma buffer to read by dma */
 424	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 425		tspi->dma_buf_size, DMA_FROM_DEVICE);
 426}
 427
 428static void tegra_spi_dma_complete(void *args)
 429{
 430	struct completion *dma_complete = args;
 431
 432	complete(dma_complete);
 433}
 434
 435static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
 436{
 437	reinit_completion(&tspi->tx_dma_complete);
 438	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
 439				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
 440				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 441	if (!tspi->tx_dma_desc) {
 442		dev_err(tspi->dev, "Not able to get desc for Tx\n");
 443		return -EIO;
 444	}
 445
 446	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
 447	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
 448
 449	dmaengine_submit(tspi->tx_dma_desc);
 450	dma_async_issue_pending(tspi->tx_dma_chan);
 451	return 0;
 452}
 453
 454static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
 455{
 456	reinit_completion(&tspi->rx_dma_complete);
 457	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
 458				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
 459				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 460	if (!tspi->rx_dma_desc) {
 461		dev_err(tspi->dev, "Not able to get desc for Rx\n");
 462		return -EIO;
 463	}
 464
 465	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
 466	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
 467
 468	dmaengine_submit(tspi->rx_dma_desc);
 469	dma_async_issue_pending(tspi->rx_dma_chan);
 470	return 0;
 471}
 472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473static int tegra_spi_start_dma_based_transfer(
 474		struct tegra_spi_data *tspi, struct spi_transfer *t)
 475{
 476	u32 val;
 477	unsigned int len;
 478	int ret = 0;
 479	u32 status;
 480
 481	/* Make sure that Rx and Tx fifo are empty */
 482	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 483	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
 484		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
 485			(unsigned)status);
 486		return -EIO;
 487	}
 488
 489	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
 490	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 491
 492	if (tspi->is_packed)
 493		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
 494					4) * 4;
 495	else
 496		len = tspi->curr_dma_words * 4;
 497
 498	/* Set attention level based on length of transfer */
 499	if (len & 0xF)
 500		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
 501	else if (((len) >> 4) & 0x1)
 
 502		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
 503	else
 
 504		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
 
 
 505
 506	if (tspi->cur_direction & DATA_DIR_TX)
 507		val |= SPI_IE_TX;
 
 508
 509	if (tspi->cur_direction & DATA_DIR_RX)
 510		val |= SPI_IE_RX;
 
 511
 512	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 513	tspi->dma_control_reg = val;
 514
 
 515	if (tspi->cur_direction & DATA_DIR_TX) {
 
 
 
 
 
 
 
 
 
 
 516		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
 517		ret = tegra_spi_start_tx_dma(tspi, len);
 518		if (ret < 0) {
 519			dev_err(tspi->dev,
 520				"Starting tx dma failed, err %d\n", ret);
 521			return ret;
 522		}
 523	}
 524
 525	if (tspi->cur_direction & DATA_DIR_RX) {
 
 
 
 
 
 
 
 
 
 
 526		/* Make the dma buffer to read by dma */
 527		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 528				tspi->dma_buf_size, DMA_FROM_DEVICE);
 529
 530		ret = tegra_spi_start_rx_dma(tspi, len);
 531		if (ret < 0) {
 532			dev_err(tspi->dev,
 533				"Starting rx dma failed, err %d\n", ret);
 534			if (tspi->cur_direction & DATA_DIR_TX)
 535				dmaengine_terminate_all(tspi->tx_dma_chan);
 536			return ret;
 537		}
 538	}
 539	tspi->is_curr_dma_xfer = true;
 540	tspi->dma_control_reg = val;
 541
 542	val |= SPI_DMA_EN;
 543	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 544	return ret;
 545}
 546
 547static int tegra_spi_start_cpu_based_transfer(
 548		struct tegra_spi_data *tspi, struct spi_transfer *t)
 549{
 550	u32 val;
 551	unsigned cur_words;
 552
 553	if (tspi->cur_direction & DATA_DIR_TX)
 554		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
 555	else
 556		cur_words = tspi->curr_dma_words;
 557
 558	val = SPI_DMA_BLK_SET(cur_words - 1);
 559	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 560
 561	val = 0;
 562	if (tspi->cur_direction & DATA_DIR_TX)
 563		val |= SPI_IE_TX;
 564
 565	if (tspi->cur_direction & DATA_DIR_RX)
 566		val |= SPI_IE_RX;
 567
 568	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 569	tspi->dma_control_reg = val;
 570
 571	tspi->is_curr_dma_xfer = false;
 572
 573	val |= SPI_DMA_EN;
 574	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 
 575	return 0;
 576}
 577
 578static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
 579			bool dma_to_memory)
 580{
 581	struct dma_chan *dma_chan;
 582	u32 *dma_buf;
 583	dma_addr_t dma_phys;
 584	int ret;
 585	struct dma_slave_config dma_sconfig;
 586
 587	dma_chan = dma_request_slave_channel_reason(tspi->dev,
 588					dma_to_memory ? "rx" : "tx");
 589	if (IS_ERR(dma_chan)) {
 590		ret = PTR_ERR(dma_chan);
 591		if (ret != -EPROBE_DEFER)
 592			dev_err(tspi->dev,
 593				"Dma channel is not available: %d\n", ret);
 594		return ret;
 595	}
 596
 597	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
 598				&dma_phys, GFP_KERNEL);
 599	if (!dma_buf) {
 600		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
 601		dma_release_channel(dma_chan);
 602		return -ENOMEM;
 603	}
 604
 605	if (dma_to_memory) {
 606		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
 607		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 608		dma_sconfig.src_maxburst = 0;
 609	} else {
 610		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
 611		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 612		dma_sconfig.dst_maxburst = 0;
 613	}
 614
 615	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
 616	if (ret)
 617		goto scrub;
 618	if (dma_to_memory) {
 619		tspi->rx_dma_chan = dma_chan;
 620		tspi->rx_dma_buf = dma_buf;
 621		tspi->rx_dma_phys = dma_phys;
 622	} else {
 623		tspi->tx_dma_chan = dma_chan;
 624		tspi->tx_dma_buf = dma_buf;
 625		tspi->tx_dma_phys = dma_phys;
 626	}
 627	return 0;
 628
 629scrub:
 630	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 631	dma_release_channel(dma_chan);
 632	return ret;
 633}
 634
 635static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
 636	bool dma_to_memory)
 637{
 638	u32 *dma_buf;
 639	dma_addr_t dma_phys;
 640	struct dma_chan *dma_chan;
 641
 642	if (dma_to_memory) {
 643		dma_buf = tspi->rx_dma_buf;
 644		dma_chan = tspi->rx_dma_chan;
 645		dma_phys = tspi->rx_dma_phys;
 646		tspi->rx_dma_chan = NULL;
 647		tspi->rx_dma_buf = NULL;
 648	} else {
 649		dma_buf = tspi->tx_dma_buf;
 650		dma_chan = tspi->tx_dma_chan;
 651		dma_phys = tspi->tx_dma_phys;
 652		tspi->tx_dma_buf = NULL;
 653		tspi->tx_dma_chan = NULL;
 654	}
 655	if (!dma_chan)
 656		return;
 657
 658	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 659	dma_release_channel(dma_chan);
 660}
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
 663		struct spi_transfer *t, bool is_first_of_msg)
 
 
 664{
 665	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 
 666	u32 speed = t->speed_hz;
 667	u8 bits_per_word = t->bits_per_word;
 668	u32 command1;
 669	int req_mode;
 
 670
 671	if (speed != tspi->cur_speed) {
 672		clk_set_rate(tspi->clk, speed);
 673		tspi->cur_speed = speed;
 674	}
 675
 676	tspi->cur_spi = spi;
 677	tspi->cur_pos = 0;
 678	tspi->cur_rx_pos = 0;
 679	tspi->cur_tx_pos = 0;
 680	tspi->curr_xfer = t;
 681
 682	if (is_first_of_msg) {
 683		tegra_spi_clear_status(tspi);
 684
 685		command1 = tspi->def_command1_reg;
 686		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 687
 688		command1 &= ~SPI_CONTROL_MODE_MASK;
 689		req_mode = spi->mode & 0x3;
 690		if (req_mode == SPI_MODE_0)
 691			command1 |= SPI_CONTROL_MODE_0;
 692		else if (req_mode == SPI_MODE_1)
 693			command1 |= SPI_CONTROL_MODE_1;
 694		else if (req_mode == SPI_MODE_2)
 695			command1 |= SPI_CONTROL_MODE_2;
 696		else if (req_mode == SPI_MODE_3)
 697			command1 |= SPI_CONTROL_MODE_3;
 698
 
 
 
 
 
 
 
 
 
 
 699		if (tspi->cs_control) {
 700			if (tspi->cs_control != spi)
 701				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 702			tspi->cs_control = NULL;
 703		} else
 704			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 705
 706		command1 |= SPI_CS_SW_HW;
 707		if (spi->mode & SPI_CS_HIGH)
 708			command1 |= SPI_CS_SS_VAL;
 709		else
 710			command1 &= ~SPI_CS_SS_VAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711
 712		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
 713	} else {
 714		command1 = tspi->command1_reg;
 715		command1 &= ~SPI_BIT_LENGTH(~0);
 716		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 717	}
 718
 719	return command1;
 720}
 721
 722static int tegra_spi_start_transfer_one(struct spi_device *spi,
 723		struct spi_transfer *t, u32 command1)
 724{
 725	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 726	unsigned total_fifo_words;
 727	int ret;
 728
 729	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
 730
 
 
 
 
 
 731	if (tspi->is_packed)
 732		command1 |= SPI_PACKED;
 
 
 733
 734	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
 735	tspi->cur_direction = 0;
 736	if (t->rx_buf) {
 737		command1 |= SPI_RX_EN;
 738		tspi->cur_direction |= DATA_DIR_RX;
 739	}
 740	if (t->tx_buf) {
 741		command1 |= SPI_TX_EN;
 742		tspi->cur_direction |= DATA_DIR_TX;
 743	}
 744	command1 |= SPI_CS_SEL(spi->chip_select);
 745	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 746	tspi->command1_reg = command1;
 747
 748	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
 749		tspi->def_command1_reg, (unsigned)command1);
 750
 
 
 
 751	if (total_fifo_words > SPI_FIFO_DEPTH)
 752		ret = tegra_spi_start_dma_based_transfer(tspi, t);
 753	else
 754		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
 755	return ret;
 756}
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758static int tegra_spi_setup(struct spi_device *spi)
 759{
 760	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 
 761	u32 val;
 762	unsigned long flags;
 763	int ret;
 764
 765	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
 766		spi->bits_per_word,
 767		spi->mode & SPI_CPOL ? "" : "~",
 768		spi->mode & SPI_CPHA ? "" : "~",
 769		spi->max_speed_hz);
 770
 771	ret = pm_runtime_get_sync(tspi->dev);
 
 
 
 
 
 772	if (ret < 0) {
 773		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
 
 
 774		return ret;
 775	}
 776
 
 
 
 
 
 
 777	spin_lock_irqsave(&tspi->lock, flags);
 
 
 
 
 778	val = tspi->def_command1_reg;
 779	if (spi->mode & SPI_CS_HIGH)
 780		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
 781	else
 782		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
 783	tspi->def_command1_reg = val;
 784	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
 785	spin_unlock_irqrestore(&tspi->lock, flags);
 786
 787	pm_runtime_put(tspi->dev);
 788	return 0;
 789}
 790
 791static void tegra_spi_transfer_delay(int delay)
 792{
 793	if (!delay)
 794		return;
 
 
 
 
 
 
 
 
 
 
 
 
 795
 796	if (delay >= 1000)
 797		mdelay(delay / 1000);
 798
 799	udelay(delay % 1000);
 
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802static int tegra_spi_transfer_one_message(struct spi_master *master,
 803			struct spi_message *msg)
 804{
 805	bool is_first_msg = true;
 806	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
 807	struct spi_transfer *xfer;
 808	struct spi_device *spi = msg->spi;
 809	int ret;
 810	bool skip = false;
 
 811
 812	msg->status = 0;
 813	msg->actual_length = 0;
 814
 
 815	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 816		u32 cmd1;
 817
 818		reinit_completion(&tspi->xfer_completion);
 819
 820		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
 
 821
 822		if (!xfer->len) {
 823			ret = 0;
 824			skip = true;
 825			goto complete_xfer;
 826		}
 827
 828		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
 829		if (ret < 0) {
 830			dev_err(tspi->dev,
 831				"spi can not start transfer, err %d\n", ret);
 832			goto complete_xfer;
 833		}
 834
 835		is_first_msg = false;
 836		ret = wait_for_completion_timeout(&tspi->xfer_completion,
 837						SPI_DMA_TIMEOUT);
 838		if (WARN_ON(ret == 0)) {
 839			dev_err(tspi->dev,
 840				"spi trasfer timeout, err %d\n", ret);
 
 
 
 
 
 841			ret = -EIO;
 
 
 
 
 
 
 842			goto complete_xfer;
 843		}
 844
 845		if (tspi->tx_status ||  tspi->rx_status) {
 846			dev_err(tspi->dev, "Error in Transfer\n");
 847			ret = -EIO;
 
 848			goto complete_xfer;
 849		}
 850		msg->actual_length += xfer->len;
 851
 852complete_xfer:
 853		if (ret < 0 || skip) {
 854			tegra_spi_writel(tspi, tspi->def_command1_reg,
 855					SPI_COMMAND1);
 856			tegra_spi_transfer_delay(xfer->delay_usecs);
 857			goto exit;
 858		} else if (list_is_last(&xfer->transfer_list,
 859					&msg->transfers)) {
 860			if (xfer->cs_change)
 861				tspi->cs_control = spi;
 862			else {
 863				tegra_spi_writel(tspi, tspi->def_command1_reg,
 864						SPI_COMMAND1);
 865				tegra_spi_transfer_delay(xfer->delay_usecs);
 866			}
 867		} else if (xfer->cs_change) {
 868			tegra_spi_writel(tspi, tspi->def_command1_reg,
 869					SPI_COMMAND1);
 870			tegra_spi_transfer_delay(xfer->delay_usecs);
 871		}
 872
 873	}
 874	ret = 0;
 875exit:
 876	msg->status = ret;
 877	spi_finalize_current_message(master);
 878	return ret;
 879}
 880
 881static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
 882{
 883	struct spi_transfer *t = tspi->curr_xfer;
 884	unsigned long flags;
 885
 886	spin_lock_irqsave(&tspi->lock, flags);
 887	if (tspi->tx_status ||  tspi->rx_status) {
 888		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
 889			tspi->status_reg);
 890		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
 891			tspi->command1_reg, tspi->dma_control_reg);
 
 
 
 
 892		reset_control_assert(tspi->rst);
 893		udelay(2);
 894		reset_control_deassert(tspi->rst);
 895		complete(&tspi->xfer_completion);
 896		goto exit;
 897	}
 898
 899	if (tspi->cur_direction & DATA_DIR_RX)
 900		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
 901
 902	if (tspi->cur_direction & DATA_DIR_TX)
 903		tspi->cur_pos = tspi->cur_tx_pos;
 904	else
 905		tspi->cur_pos = tspi->cur_rx_pos;
 906
 907	if (tspi->cur_pos == t->len) {
 908		complete(&tspi->xfer_completion);
 909		goto exit;
 910	}
 911
 912	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
 913	tegra_spi_start_cpu_based_transfer(tspi, t);
 914exit:
 915	spin_unlock_irqrestore(&tspi->lock, flags);
 916	return IRQ_HANDLED;
 917}
 918
 919static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
 920{
 921	struct spi_transfer *t = tspi->curr_xfer;
 922	long wait_status;
 923	int err = 0;
 924	unsigned total_fifo_words;
 925	unsigned long flags;
 926
 927	/* Abort dmas if any error */
 928	if (tspi->cur_direction & DATA_DIR_TX) {
 929		if (tspi->tx_status) {
 930			dmaengine_terminate_all(tspi->tx_dma_chan);
 931			err += 1;
 932		} else {
 933			wait_status = wait_for_completion_interruptible_timeout(
 934				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
 935			if (wait_status <= 0) {
 936				dmaengine_terminate_all(tspi->tx_dma_chan);
 937				dev_err(tspi->dev, "TxDma Xfer failed\n");
 938				err += 1;
 939			}
 940		}
 941	}
 942
 943	if (tspi->cur_direction & DATA_DIR_RX) {
 944		if (tspi->rx_status) {
 945			dmaengine_terminate_all(tspi->rx_dma_chan);
 946			err += 2;
 947		} else {
 948			wait_status = wait_for_completion_interruptible_timeout(
 949				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
 950			if (wait_status <= 0) {
 951				dmaengine_terminate_all(tspi->rx_dma_chan);
 952				dev_err(tspi->dev, "RxDma Xfer failed\n");
 953				err += 2;
 954			}
 955		}
 956	}
 957
 958	spin_lock_irqsave(&tspi->lock, flags);
 959	if (err) {
 960		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
 961			tspi->status_reg);
 962		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
 963			tspi->command1_reg, tspi->dma_control_reg);
 
 
 
 
 964		reset_control_assert(tspi->rst);
 965		udelay(2);
 966		reset_control_deassert(tspi->rst);
 967		complete(&tspi->xfer_completion);
 968		spin_unlock_irqrestore(&tspi->lock, flags);
 969		return IRQ_HANDLED;
 970	}
 971
 972	if (tspi->cur_direction & DATA_DIR_RX)
 973		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
 974
 975	if (tspi->cur_direction & DATA_DIR_TX)
 976		tspi->cur_pos = tspi->cur_tx_pos;
 977	else
 978		tspi->cur_pos = tspi->cur_rx_pos;
 979
 980	if (tspi->cur_pos == t->len) {
 981		complete(&tspi->xfer_completion);
 982		goto exit;
 983	}
 984
 985	/* Continue transfer in current message */
 986	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
 987							tspi, t);
 988	if (total_fifo_words > SPI_FIFO_DEPTH)
 989		err = tegra_spi_start_dma_based_transfer(tspi, t);
 990	else
 991		err = tegra_spi_start_cpu_based_transfer(tspi, t);
 992
 993exit:
 994	spin_unlock_irqrestore(&tspi->lock, flags);
 995	return IRQ_HANDLED;
 996}
 997
 998static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
 999{
1000	struct tegra_spi_data *tspi = context_data;
1001
1002	if (!tspi->is_curr_dma_xfer)
1003		return handle_cpu_based_xfer(tspi);
1004	return handle_dma_based_xfer(tspi);
1005}
1006
1007static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1008{
1009	struct tegra_spi_data *tspi = context_data;
1010
1011	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1012	if (tspi->cur_direction & DATA_DIR_TX)
1013		tspi->tx_status = tspi->status_reg &
1014					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1015
1016	if (tspi->cur_direction & DATA_DIR_RX)
1017		tspi->rx_status = tspi->status_reg &
1018					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1019	tegra_spi_clear_status(tspi);
1020
1021	return IRQ_WAKE_THREAD;
1022}
1023
 
 
 
 
 
 
 
 
 
 
 
 
1024static const struct of_device_id tegra_spi_of_match[] = {
1025	{ .compatible = "nvidia,tegra114-spi", },
 
 
 
 
 
 
 
 
 
1026	{}
1027};
1028MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1029
1030static int tegra_spi_probe(struct platform_device *pdev)
1031{
1032	struct spi_master	*master;
1033	struct tegra_spi_data	*tspi;
1034	struct resource		*r;
1035	int ret, spi_irq;
 
1036
1037	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1038	if (!master) {
1039		dev_err(&pdev->dev, "master allocation failed\n");
1040		return -ENOMEM;
1041	}
1042	platform_set_drvdata(pdev, master);
1043	tspi = spi_master_get_devdata(master);
1044
1045	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1046				 &master->max_speed_hz))
1047		master->max_speed_hz = 25000000; /* 25MHz */
1048
1049	/* the spi->mode bits understood by this driver: */
1050	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051	master->setup = tegra_spi_setup;
1052	master->transfer_one_message = tegra_spi_transfer_one_message;
1053	master->num_chipselect = MAX_CHIP_SELECT;
1054	master->auto_runtime_pm = true;
 
 
 
 
 
 
 
 
1055
1056	tspi->master = master;
1057	tspi->dev = &pdev->dev;
1058	spin_lock_init(&tspi->lock);
1059
1060	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1061	tspi->base = devm_ioremap_resource(&pdev->dev, r);
 
 
 
 
 
 
1062	if (IS_ERR(tspi->base)) {
1063		ret = PTR_ERR(tspi->base);
1064		goto exit_free_master;
1065	}
1066	tspi->phys = r->start;
1067
1068	spi_irq = platform_get_irq(pdev, 0);
 
 
 
 
1069	tspi->irq = spi_irq;
1070	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1071			tegra_spi_isr_thread, IRQF_ONESHOT,
1072			dev_name(&pdev->dev), tspi);
1073	if (ret < 0) {
1074		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1075					tspi->irq);
1076		goto exit_free_master;
1077	}
1078
1079	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1080	if (IS_ERR(tspi->clk)) {
1081		dev_err(&pdev->dev, "can not get clock\n");
1082		ret = PTR_ERR(tspi->clk);
1083		goto exit_free_irq;
1084	}
1085
1086	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1087	if (IS_ERR(tspi->rst)) {
1088		dev_err(&pdev->dev, "can not get reset\n");
1089		ret = PTR_ERR(tspi->rst);
1090		goto exit_free_irq;
1091	}
1092
1093	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095
1096	ret = tegra_spi_init_dma_param(tspi, true);
1097	if (ret < 0)
1098		goto exit_free_irq;
1099	ret = tegra_spi_init_dma_param(tspi, false);
1100	if (ret < 0)
1101		goto exit_rx_dma_free;
1102	tspi->max_buf_size = tspi->dma_buf_size;
1103	init_completion(&tspi->tx_dma_complete);
1104	init_completion(&tspi->rx_dma_complete);
1105
1106	init_completion(&tspi->xfer_completion);
1107
1108	pm_runtime_enable(&pdev->dev);
1109	if (!pm_runtime_enabled(&pdev->dev)) {
1110		ret = tegra_spi_runtime_resume(&pdev->dev);
1111		if (ret)
1112			goto exit_pm_disable;
1113	}
1114
1115	ret = pm_runtime_get_sync(&pdev->dev);
1116	if (ret < 0) {
1117		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1118		goto exit_pm_disable;
1119	}
 
 
 
 
1120	tspi->def_command1_reg  = SPI_M_S;
1121	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
 
 
 
 
1122	pm_runtime_put(&pdev->dev);
 
 
 
 
 
 
 
 
1123
1124	master->dev.of_node = pdev->dev.of_node;
1125	ret = devm_spi_register_master(&pdev->dev, master);
1126	if (ret < 0) {
1127		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1128		goto exit_pm_disable;
1129	}
1130	return ret;
1131
 
 
1132exit_pm_disable:
1133	pm_runtime_disable(&pdev->dev);
1134	if (!pm_runtime_status_suspended(&pdev->dev))
1135		tegra_spi_runtime_suspend(&pdev->dev);
1136	tegra_spi_deinit_dma_param(tspi, false);
1137exit_rx_dma_free:
1138	tegra_spi_deinit_dma_param(tspi, true);
1139exit_free_irq:
1140	free_irq(spi_irq, tspi);
1141exit_free_master:
1142	spi_master_put(master);
1143	return ret;
1144}
1145
1146static int tegra_spi_remove(struct platform_device *pdev)
1147{
1148	struct spi_master *master = platform_get_drvdata(pdev);
1149	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1150
1151	free_irq(tspi->irq, tspi);
1152
1153	if (tspi->tx_dma_chan)
1154		tegra_spi_deinit_dma_param(tspi, false);
1155
1156	if (tspi->rx_dma_chan)
1157		tegra_spi_deinit_dma_param(tspi, true);
1158
1159	pm_runtime_disable(&pdev->dev);
1160	if (!pm_runtime_status_suspended(&pdev->dev))
1161		tegra_spi_runtime_suspend(&pdev->dev);
1162
1163	return 0;
1164}
1165
1166#ifdef CONFIG_PM_SLEEP
1167static int tegra_spi_suspend(struct device *dev)
1168{
1169	struct spi_master *master = dev_get_drvdata(dev);
1170
1171	return spi_master_suspend(master);
1172}
1173
1174static int tegra_spi_resume(struct device *dev)
1175{
1176	struct spi_master *master = dev_get_drvdata(dev);
1177	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1178	int ret;
1179
1180	ret = pm_runtime_get_sync(dev);
1181	if (ret < 0) {
1182		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1183		return ret;
1184	}
1185	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
 
 
1186	pm_runtime_put(dev);
1187
1188	return spi_master_resume(master);
1189}
1190#endif
1191
1192static int tegra_spi_runtime_suspend(struct device *dev)
1193{
1194	struct spi_master *master = dev_get_drvdata(dev);
1195	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1196
1197	/* Flush all write which are in PPSB queue by reading back */
1198	tegra_spi_readl(tspi, SPI_COMMAND1);
1199
1200	clk_disable_unprepare(tspi->clk);
1201	return 0;
1202}
1203
1204static int tegra_spi_runtime_resume(struct device *dev)
1205{
1206	struct spi_master *master = dev_get_drvdata(dev);
1207	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1208	int ret;
1209
1210	ret = clk_prepare_enable(tspi->clk);
1211	if (ret < 0) {
1212		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1213		return ret;
1214	}
1215	return 0;
1216}
1217
1218static const struct dev_pm_ops tegra_spi_pm_ops = {
1219	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1220		tegra_spi_runtime_resume, NULL)
1221	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1222};
1223static struct platform_driver tegra_spi_driver = {
1224	.driver = {
1225		.name		= "spi-tegra114",
1226		.pm		= &tegra_spi_pm_ops,
1227		.of_match_table	= tegra_spi_of_match,
1228	},
1229	.probe =	tegra_spi_probe,
1230	.remove =	tegra_spi_remove,
1231};
1232module_platform_driver(tegra_spi_driver);
1233
1234MODULE_ALIAS("platform:spi-tegra114");
1235MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1236MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1237MODULE_LICENSE("GPL v2");