Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 *
5 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 */
7
8#include <linux/clk.h>
9#include <linux/completion.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmapool.h>
14#include <linux/err.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kernel.h>
18#include <linux/kthread.h>
19#include <linux/module.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/of.h>
23#include <linux/reset.h>
24#include <linux/spi/spi.h>
25
26#define SPI_COMMAND1 0x000
27#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
28#define SPI_PACKED (1 << 5)
29#define SPI_TX_EN (1 << 11)
30#define SPI_RX_EN (1 << 12)
31#define SPI_BOTH_EN_BYTE (1 << 13)
32#define SPI_BOTH_EN_BIT (1 << 14)
33#define SPI_LSBYTE_FE (1 << 15)
34#define SPI_LSBIT_FE (1 << 16)
35#define SPI_BIDIROE (1 << 17)
36#define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
37#define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
38#define SPI_IDLE_SDA_PULL_LOW (2 << 18)
39#define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
40#define SPI_IDLE_SDA_MASK (3 << 18)
41#define SPI_CS_SW_VAL (1 << 20)
42#define SPI_CS_SW_HW (1 << 21)
43/* SPI_CS_POL_INACTIVE bits are default high */
44 /* n from 0 to 3 */
45#define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
46#define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
47
48#define SPI_CS_SEL_0 (0 << 26)
49#define SPI_CS_SEL_1 (1 << 26)
50#define SPI_CS_SEL_2 (2 << 26)
51#define SPI_CS_SEL_3 (3 << 26)
52#define SPI_CS_SEL_MASK (3 << 26)
53#define SPI_CS_SEL(x) (((x) & 0x3) << 26)
54#define SPI_CONTROL_MODE_0 (0 << 28)
55#define SPI_CONTROL_MODE_1 (1 << 28)
56#define SPI_CONTROL_MODE_2 (2 << 28)
57#define SPI_CONTROL_MODE_3 (3 << 28)
58#define SPI_CONTROL_MODE_MASK (3 << 28)
59#define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
60#define SPI_M_S (1 << 30)
61#define SPI_PIO (1 << 31)
62
63#define SPI_COMMAND2 0x004
64#define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
65#define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
66
67#define SPI_CS_TIMING1 0x008
68#define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
69#define SPI_CS_SETUP_HOLD(reg, cs, val) \
70 ((((val) & 0xFFu) << ((cs) * 8)) | \
71 ((reg) & ~(0xFFu << ((cs) * 8))))
72
73#define SPI_CS_TIMING2 0x00C
74#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
75#define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
76#define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
77#define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
78#define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
79#define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
80#define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
81#define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
82#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
83 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
84 ((reg) & ~(1 << ((cs) * 8 + 5))))
85#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
86 (reg = (((val) & 0x1F) << ((cs) * 8)) | \
87 ((reg) & ~(0x1F << ((cs) * 8))))
88#define MAX_SETUP_HOLD_CYCLES 16
89#define MAX_INACTIVE_CYCLES 32
90
91#define SPI_TRANS_STATUS 0x010
92#define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
93#define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
94#define SPI_RDY (1 << 30)
95
96#define SPI_FIFO_STATUS 0x014
97#define SPI_RX_FIFO_EMPTY (1 << 0)
98#define SPI_RX_FIFO_FULL (1 << 1)
99#define SPI_TX_FIFO_EMPTY (1 << 2)
100#define SPI_TX_FIFO_FULL (1 << 3)
101#define SPI_RX_FIFO_UNF (1 << 4)
102#define SPI_RX_FIFO_OVF (1 << 5)
103#define SPI_TX_FIFO_UNF (1 << 6)
104#define SPI_TX_FIFO_OVF (1 << 7)
105#define SPI_ERR (1 << 8)
106#define SPI_TX_FIFO_FLUSH (1 << 14)
107#define SPI_RX_FIFO_FLUSH (1 << 15)
108#define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
109#define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
110#define SPI_FRAME_END (1 << 30)
111#define SPI_CS_INACTIVE (1 << 31)
112
113#define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
114 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
115#define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
116
117#define SPI_TX_DATA 0x018
118#define SPI_RX_DATA 0x01C
119
120#define SPI_DMA_CTL 0x020
121#define SPI_TX_TRIG_1 (0 << 15)
122#define SPI_TX_TRIG_4 (1 << 15)
123#define SPI_TX_TRIG_8 (2 << 15)
124#define SPI_TX_TRIG_16 (3 << 15)
125#define SPI_TX_TRIG_MASK (3 << 15)
126#define SPI_RX_TRIG_1 (0 << 19)
127#define SPI_RX_TRIG_4 (1 << 19)
128#define SPI_RX_TRIG_8 (2 << 19)
129#define SPI_RX_TRIG_16 (3 << 19)
130#define SPI_RX_TRIG_MASK (3 << 19)
131#define SPI_IE_TX (1 << 28)
132#define SPI_IE_RX (1 << 29)
133#define SPI_CONT (1 << 30)
134#define SPI_DMA (1 << 31)
135#define SPI_DMA_EN SPI_DMA
136
137#define SPI_DMA_BLK 0x024
138#define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
139
140#define SPI_TX_FIFO 0x108
141#define SPI_RX_FIFO 0x188
142#define SPI_INTR_MASK 0x18c
143#define SPI_INTR_ALL_MASK (0x1fUL << 25)
144#define MAX_CHIP_SELECT 4
145#define SPI_FIFO_DEPTH 64
146#define DATA_DIR_TX (1 << 0)
147#define DATA_DIR_RX (1 << 1)
148
149#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
150#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
151#define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
152#define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
153#define MAX_HOLD_CYCLES 16
154#define SPI_DEFAULT_SPEED 25000000
155
156struct tegra_spi_soc_data {
157 bool has_intr_mask_reg;
158};
159
160struct tegra_spi_client_data {
161 int tx_clk_tap_delay;
162 int rx_clk_tap_delay;
163};
164
165struct tegra_spi_data {
166 struct device *dev;
167 struct spi_controller *host;
168 spinlock_t lock;
169
170 struct clk *clk;
171 struct reset_control *rst;
172 void __iomem *base;
173 phys_addr_t phys;
174 unsigned irq;
175 u32 cur_speed;
176
177 struct spi_device *cur_spi;
178 struct spi_device *cs_control;
179 unsigned cur_pos;
180 unsigned words_per_32bit;
181 unsigned bytes_per_word;
182 unsigned curr_dma_words;
183 unsigned cur_direction;
184
185 unsigned cur_rx_pos;
186 unsigned cur_tx_pos;
187
188 unsigned dma_buf_size;
189 unsigned max_buf_size;
190 bool is_curr_dma_xfer;
191 bool use_hw_based_cs;
192
193 struct completion rx_dma_complete;
194 struct completion tx_dma_complete;
195
196 u32 tx_status;
197 u32 rx_status;
198 u32 status_reg;
199 bool is_packed;
200
201 u32 command1_reg;
202 u32 dma_control_reg;
203 u32 def_command1_reg;
204 u32 def_command2_reg;
205 u32 spi_cs_timing1;
206 u32 spi_cs_timing2;
207 u8 last_used_cs;
208
209 struct completion xfer_completion;
210 struct spi_transfer *curr_xfer;
211 struct dma_chan *rx_dma_chan;
212 u32 *rx_dma_buf;
213 dma_addr_t rx_dma_phys;
214 struct dma_async_tx_descriptor *rx_dma_desc;
215
216 struct dma_chan *tx_dma_chan;
217 u32 *tx_dma_buf;
218 dma_addr_t tx_dma_phys;
219 struct dma_async_tx_descriptor *tx_dma_desc;
220 const struct tegra_spi_soc_data *soc_data;
221};
222
223static int tegra_spi_runtime_suspend(struct device *dev);
224static int tegra_spi_runtime_resume(struct device *dev);
225
226static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
227 unsigned long reg)
228{
229 return readl(tspi->base + reg);
230}
231
232static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
233 u32 val, unsigned long reg)
234{
235 writel(val, tspi->base + reg);
236
237 /* Read back register to make sure that register writes completed */
238 if (reg != SPI_TX_FIFO)
239 readl(tspi->base + SPI_COMMAND1);
240}
241
242static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
243{
244 u32 val;
245
246 /* Write 1 to clear status register */
247 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
248 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
249
250 /* Clear fifo status error if any */
251 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
252 if (val & SPI_ERR)
253 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
254 SPI_FIFO_STATUS);
255}
256
257static unsigned tegra_spi_calculate_curr_xfer_param(
258 struct spi_device *spi, struct tegra_spi_data *tspi,
259 struct spi_transfer *t)
260{
261 unsigned remain_len = t->len - tspi->cur_pos;
262 unsigned max_word;
263 unsigned bits_per_word = t->bits_per_word;
264 unsigned max_len;
265 unsigned total_fifo_words;
266
267 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
268
269 if ((bits_per_word == 8 || bits_per_word == 16 ||
270 bits_per_word == 32) && t->len > 3) {
271 tspi->is_packed = true;
272 tspi->words_per_32bit = 32/bits_per_word;
273 } else {
274 tspi->is_packed = false;
275 tspi->words_per_32bit = 1;
276 }
277
278 if (tspi->is_packed) {
279 max_len = min(remain_len, tspi->max_buf_size);
280 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
281 total_fifo_words = (max_len + 3) / 4;
282 } else {
283 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
284 max_word = min(max_word, tspi->max_buf_size/4);
285 tspi->curr_dma_words = max_word;
286 total_fifo_words = max_word;
287 }
288 return total_fifo_words;
289}
290
291static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292 struct tegra_spi_data *tspi, struct spi_transfer *t)
293{
294 unsigned nbytes;
295 unsigned tx_empty_count;
296 u32 fifo_status;
297 unsigned max_n_32bit;
298 unsigned i, count;
299 unsigned int written_words;
300 unsigned fifo_words_left;
301 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
302
303 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
304 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
305
306 if (tspi->is_packed) {
307 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
308 written_words = min(fifo_words_left, tspi->curr_dma_words);
309 nbytes = written_words * tspi->bytes_per_word;
310 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
311 for (count = 0; count < max_n_32bit; count++) {
312 u32 x = 0;
313
314 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
315 x |= (u32)(*tx_buf++) << (i * 8);
316 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
317 }
318
319 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
320 } else {
321 unsigned int write_bytes;
322 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
323 written_words = max_n_32bit;
324 nbytes = written_words * tspi->bytes_per_word;
325 if (nbytes > t->len - tspi->cur_pos)
326 nbytes = t->len - tspi->cur_pos;
327 write_bytes = nbytes;
328 for (count = 0; count < max_n_32bit; count++) {
329 u32 x = 0;
330
331 for (i = 0; nbytes && (i < tspi->bytes_per_word);
332 i++, nbytes--)
333 x |= (u32)(*tx_buf++) << (i * 8);
334 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
335 }
336
337 tspi->cur_tx_pos += write_bytes;
338 }
339
340 return written_words;
341}
342
343static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344 struct tegra_spi_data *tspi, struct spi_transfer *t)
345{
346 unsigned rx_full_count;
347 u32 fifo_status;
348 unsigned i, count;
349 unsigned int read_words = 0;
350 unsigned len;
351 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
352
353 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
354 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
355 if (tspi->is_packed) {
356 len = tspi->curr_dma_words * tspi->bytes_per_word;
357 for (count = 0; count < rx_full_count; count++) {
358 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
359
360 for (i = 0; len && (i < 4); i++, len--)
361 *rx_buf++ = (x >> i*8) & 0xFF;
362 }
363 read_words += tspi->curr_dma_words;
364 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
365 } else {
366 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
367 u8 bytes_per_word = tspi->bytes_per_word;
368 unsigned int read_bytes;
369
370 len = rx_full_count * bytes_per_word;
371 if (len > t->len - tspi->cur_pos)
372 len = t->len - tspi->cur_pos;
373 read_bytes = len;
374 for (count = 0; count < rx_full_count; count++) {
375 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
376
377 for (i = 0; len && (i < bytes_per_word); i++, len--)
378 *rx_buf++ = (x >> (i*8)) & 0xFF;
379 }
380 read_words += rx_full_count;
381 tspi->cur_rx_pos += read_bytes;
382 }
383
384 return read_words;
385}
386
387static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388 struct tegra_spi_data *tspi, struct spi_transfer *t)
389{
390 /* Make the dma buffer to read by cpu */
391 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
392 tspi->dma_buf_size, DMA_TO_DEVICE);
393
394 if (tspi->is_packed) {
395 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
396
397 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
398 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
399 } else {
400 unsigned int i;
401 unsigned int count;
402 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404 unsigned int write_bytes;
405
406 if (consume > t->len - tspi->cur_pos)
407 consume = t->len - tspi->cur_pos;
408 write_bytes = consume;
409 for (count = 0; count < tspi->curr_dma_words; count++) {
410 u32 x = 0;
411
412 for (i = 0; consume && (i < tspi->bytes_per_word);
413 i++, consume--)
414 x |= (u32)(*tx_buf++) << (i * 8);
415 tspi->tx_dma_buf[count] = x;
416 }
417
418 tspi->cur_tx_pos += write_bytes;
419 }
420
421 /* Make the dma buffer to read by dma */
422 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
423 tspi->dma_buf_size, DMA_TO_DEVICE);
424}
425
426static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427 struct tegra_spi_data *tspi, struct spi_transfer *t)
428{
429 /* Make the dma buffer to read by cpu */
430 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
431 tspi->dma_buf_size, DMA_FROM_DEVICE);
432
433 if (tspi->is_packed) {
434 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
435
436 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
437 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438 } else {
439 unsigned int i;
440 unsigned int count;
441 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
442 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
443 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
444 unsigned int read_bytes;
445
446 if (consume > t->len - tspi->cur_pos)
447 consume = t->len - tspi->cur_pos;
448 read_bytes = consume;
449 for (count = 0; count < tspi->curr_dma_words; count++) {
450 u32 x = tspi->rx_dma_buf[count] & rx_mask;
451
452 for (i = 0; consume && (i < tspi->bytes_per_word);
453 i++, consume--)
454 *rx_buf++ = (x >> (i*8)) & 0xFF;
455 }
456
457 tspi->cur_rx_pos += read_bytes;
458 }
459
460 /* Make the dma buffer to read by dma */
461 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
462 tspi->dma_buf_size, DMA_FROM_DEVICE);
463}
464
465static void tegra_spi_dma_complete(void *args)
466{
467 struct completion *dma_complete = args;
468
469 complete(dma_complete);
470}
471
472static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
473{
474 reinit_completion(&tspi->tx_dma_complete);
475 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
476 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
477 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
478 if (!tspi->tx_dma_desc) {
479 dev_err(tspi->dev, "Not able to get desc for Tx\n");
480 return -EIO;
481 }
482
483 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
484 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
485
486 dmaengine_submit(tspi->tx_dma_desc);
487 dma_async_issue_pending(tspi->tx_dma_chan);
488 return 0;
489}
490
491static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
492{
493 reinit_completion(&tspi->rx_dma_complete);
494 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
495 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
497 if (!tspi->rx_dma_desc) {
498 dev_err(tspi->dev, "Not able to get desc for Rx\n");
499 return -EIO;
500 }
501
502 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
503 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
504
505 dmaengine_submit(tspi->rx_dma_desc);
506 dma_async_issue_pending(tspi->rx_dma_chan);
507 return 0;
508}
509
510static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
511{
512 unsigned long timeout = jiffies + HZ;
513 u32 status;
514
515 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
516 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
517 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
518 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
519 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
520 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
521 if (time_after(jiffies, timeout)) {
522 dev_err(tspi->dev,
523 "timeout waiting for fifo flush\n");
524 return -EIO;
525 }
526
527 udelay(1);
528 }
529 }
530
531 return 0;
532}
533
534static int tegra_spi_start_dma_based_transfer(
535 struct tegra_spi_data *tspi, struct spi_transfer *t)
536{
537 u32 val;
538 unsigned int len;
539 int ret = 0;
540 u8 dma_burst;
541 struct dma_slave_config dma_sconfig = {0};
542
543 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
544 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
545
546 if (tspi->is_packed)
547 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
548 4) * 4;
549 else
550 len = tspi->curr_dma_words * 4;
551
552 /* Set attention level based on length of transfer */
553 if (len & 0xF) {
554 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
555 dma_burst = 1;
556 } else if (((len) >> 4) & 0x1) {
557 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
558 dma_burst = 4;
559 } else {
560 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
561 dma_burst = 8;
562 }
563
564 if (!tspi->soc_data->has_intr_mask_reg) {
565 if (tspi->cur_direction & DATA_DIR_TX)
566 val |= SPI_IE_TX;
567
568 if (tspi->cur_direction & DATA_DIR_RX)
569 val |= SPI_IE_RX;
570 }
571
572 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573 tspi->dma_control_reg = val;
574
575 dma_sconfig.device_fc = true;
576 if (tspi->cur_direction & DATA_DIR_TX) {
577 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
578 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
579 dma_sconfig.dst_maxburst = dma_burst;
580 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
581 if (ret < 0) {
582 dev_err(tspi->dev,
583 "DMA slave config failed: %d\n", ret);
584 return ret;
585 }
586
587 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
588 ret = tegra_spi_start_tx_dma(tspi, len);
589 if (ret < 0) {
590 dev_err(tspi->dev,
591 "Starting tx dma failed, err %d\n", ret);
592 return ret;
593 }
594 }
595
596 if (tspi->cur_direction & DATA_DIR_RX) {
597 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 dma_sconfig.src_maxburst = dma_burst;
600 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
601 if (ret < 0) {
602 dev_err(tspi->dev,
603 "DMA slave config failed: %d\n", ret);
604 return ret;
605 }
606
607 /* Make the dma buffer to read by dma */
608 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
609 tspi->dma_buf_size, DMA_FROM_DEVICE);
610
611 ret = tegra_spi_start_rx_dma(tspi, len);
612 if (ret < 0) {
613 dev_err(tspi->dev,
614 "Starting rx dma failed, err %d\n", ret);
615 if (tspi->cur_direction & DATA_DIR_TX)
616 dmaengine_terminate_all(tspi->tx_dma_chan);
617 return ret;
618 }
619 }
620 tspi->is_curr_dma_xfer = true;
621 tspi->dma_control_reg = val;
622
623 val |= SPI_DMA_EN;
624 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
625 return ret;
626}
627
628static int tegra_spi_start_cpu_based_transfer(
629 struct tegra_spi_data *tspi, struct spi_transfer *t)
630{
631 u32 val;
632 unsigned cur_words;
633
634 if (tspi->cur_direction & DATA_DIR_TX)
635 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
636 else
637 cur_words = tspi->curr_dma_words;
638
639 val = SPI_DMA_BLK_SET(cur_words - 1);
640 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
641
642 val = 0;
643 if (tspi->cur_direction & DATA_DIR_TX)
644 val |= SPI_IE_TX;
645
646 if (tspi->cur_direction & DATA_DIR_RX)
647 val |= SPI_IE_RX;
648
649 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
650 tspi->dma_control_reg = val;
651
652 tspi->is_curr_dma_xfer = false;
653
654 val = tspi->command1_reg;
655 val |= SPI_PIO;
656 tegra_spi_writel(tspi, val, SPI_COMMAND1);
657 return 0;
658}
659
660static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
661 bool dma_to_memory)
662{
663 struct dma_chan *dma_chan;
664 u32 *dma_buf;
665 dma_addr_t dma_phys;
666
667 dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
668 if (IS_ERR(dma_chan))
669 return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
670 "Dma channel is not available\n");
671
672 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
673 &dma_phys, GFP_KERNEL);
674 if (!dma_buf) {
675 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
676 dma_release_channel(dma_chan);
677 return -ENOMEM;
678 }
679
680 if (dma_to_memory) {
681 tspi->rx_dma_chan = dma_chan;
682 tspi->rx_dma_buf = dma_buf;
683 tspi->rx_dma_phys = dma_phys;
684 } else {
685 tspi->tx_dma_chan = dma_chan;
686 tspi->tx_dma_buf = dma_buf;
687 tspi->tx_dma_phys = dma_phys;
688 }
689 return 0;
690}
691
692static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
693 bool dma_to_memory)
694{
695 u32 *dma_buf;
696 dma_addr_t dma_phys;
697 struct dma_chan *dma_chan;
698
699 if (dma_to_memory) {
700 dma_buf = tspi->rx_dma_buf;
701 dma_chan = tspi->rx_dma_chan;
702 dma_phys = tspi->rx_dma_phys;
703 tspi->rx_dma_chan = NULL;
704 tspi->rx_dma_buf = NULL;
705 } else {
706 dma_buf = tspi->tx_dma_buf;
707 dma_chan = tspi->tx_dma_chan;
708 dma_phys = tspi->tx_dma_phys;
709 tspi->tx_dma_buf = NULL;
710 tspi->tx_dma_chan = NULL;
711 }
712 if (!dma_chan)
713 return;
714
715 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
716 dma_release_channel(dma_chan);
717}
718
719static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
720{
721 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
722 struct spi_delay *setup = &spi->cs_setup;
723 struct spi_delay *hold = &spi->cs_hold;
724 struct spi_delay *inactive = &spi->cs_inactive;
725 u8 setup_dly, hold_dly;
726 u32 setup_hold;
727 u32 spi_cs_timing;
728 u32 inactive_cycles;
729 u8 cs_state;
730
731 if (setup->unit != SPI_DELAY_UNIT_SCK ||
732 hold->unit != SPI_DELAY_UNIT_SCK ||
733 inactive->unit != SPI_DELAY_UNIT_SCK) {
734 dev_err(&spi->dev,
735 "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
736 SPI_DELAY_UNIT_SCK);
737 return -EINVAL;
738 }
739
740 setup_dly = min_t(u8, setup->value, MAX_SETUP_HOLD_CYCLES);
741 hold_dly = min_t(u8, hold->value, MAX_SETUP_HOLD_CYCLES);
742 if (setup_dly && hold_dly) {
743 setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
744 spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
745 spi_get_chipselect(spi, 0),
746 setup_hold);
747 if (tspi->spi_cs_timing1 != spi_cs_timing) {
748 tspi->spi_cs_timing1 = spi_cs_timing;
749 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
750 }
751 }
752
753 inactive_cycles = min_t(u8, inactive->value, MAX_INACTIVE_CYCLES);
754 if (inactive_cycles)
755 inactive_cycles--;
756 cs_state = inactive_cycles ? 0 : 1;
757 spi_cs_timing = tspi->spi_cs_timing2;
758 SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
759 cs_state);
760 SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0),
761 inactive_cycles);
762 if (tspi->spi_cs_timing2 != spi_cs_timing) {
763 tspi->spi_cs_timing2 = spi_cs_timing;
764 tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
765 }
766
767 return 0;
768}
769
770static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
771 struct spi_transfer *t,
772 bool is_first_of_msg,
773 bool is_single_xfer)
774{
775 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
776 struct tegra_spi_client_data *cdata = spi->controller_data;
777 u32 speed = t->speed_hz;
778 u8 bits_per_word = t->bits_per_word;
779 u32 command1, command2;
780 int req_mode;
781 u32 tx_tap = 0, rx_tap = 0;
782
783 if (speed != tspi->cur_speed) {
784 clk_set_rate(tspi->clk, speed);
785 tspi->cur_speed = speed;
786 }
787
788 tspi->cur_spi = spi;
789 tspi->cur_pos = 0;
790 tspi->cur_rx_pos = 0;
791 tspi->cur_tx_pos = 0;
792 tspi->curr_xfer = t;
793
794 if (is_first_of_msg) {
795 tegra_spi_clear_status(tspi);
796
797 command1 = tspi->def_command1_reg;
798 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
799
800 command1 &= ~SPI_CONTROL_MODE_MASK;
801 req_mode = spi->mode & 0x3;
802 if (req_mode == SPI_MODE_0)
803 command1 |= SPI_CONTROL_MODE_0;
804 else if (req_mode == SPI_MODE_1)
805 command1 |= SPI_CONTROL_MODE_1;
806 else if (req_mode == SPI_MODE_2)
807 command1 |= SPI_CONTROL_MODE_2;
808 else if (req_mode == SPI_MODE_3)
809 command1 |= SPI_CONTROL_MODE_3;
810
811 if (spi->mode & SPI_LSB_FIRST)
812 command1 |= SPI_LSBIT_FE;
813 else
814 command1 &= ~SPI_LSBIT_FE;
815
816 if (spi->mode & SPI_3WIRE)
817 command1 |= SPI_BIDIROE;
818 else
819 command1 &= ~SPI_BIDIROE;
820
821 if (tspi->cs_control) {
822 if (tspi->cs_control != spi)
823 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
824 tspi->cs_control = NULL;
825 } else
826 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
827
828 /* GPIO based chip select control */
829 if (spi_get_csgpiod(spi, 0))
830 gpiod_set_value(spi_get_csgpiod(spi, 0), 1);
831
832 if (is_single_xfer && !(t->cs_change)) {
833 tspi->use_hw_based_cs = true;
834 command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
835 } else {
836 tspi->use_hw_based_cs = false;
837 command1 |= SPI_CS_SW_HW;
838 if (spi->mode & SPI_CS_HIGH)
839 command1 |= SPI_CS_SW_VAL;
840 else
841 command1 &= ~SPI_CS_SW_VAL;
842 }
843
844 if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) {
845 if (cdata && cdata->tx_clk_tap_delay)
846 tx_tap = cdata->tx_clk_tap_delay;
847 if (cdata && cdata->rx_clk_tap_delay)
848 rx_tap = cdata->rx_clk_tap_delay;
849 command2 = SPI_TX_TAP_DELAY(tx_tap) |
850 SPI_RX_TAP_DELAY(rx_tap);
851 if (command2 != tspi->def_command2_reg)
852 tegra_spi_writel(tspi, command2, SPI_COMMAND2);
853 tspi->last_used_cs = spi_get_chipselect(spi, 0);
854 }
855
856 } else {
857 command1 = tspi->command1_reg;
858 command1 &= ~SPI_BIT_LENGTH(~0);
859 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
860 }
861
862 return command1;
863}
864
865static int tegra_spi_start_transfer_one(struct spi_device *spi,
866 struct spi_transfer *t, u32 command1)
867{
868 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
869 unsigned total_fifo_words;
870 int ret;
871
872 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
873
874 if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
875 command1 |= SPI_BOTH_EN_BIT;
876 else
877 command1 &= ~SPI_BOTH_EN_BIT;
878
879 if (tspi->is_packed)
880 command1 |= SPI_PACKED;
881 else
882 command1 &= ~SPI_PACKED;
883
884 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
885 tspi->cur_direction = 0;
886 if (t->rx_buf) {
887 command1 |= SPI_RX_EN;
888 tspi->cur_direction |= DATA_DIR_RX;
889 }
890 if (t->tx_buf) {
891 command1 |= SPI_TX_EN;
892 tspi->cur_direction |= DATA_DIR_TX;
893 }
894 command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0));
895 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
896 tspi->command1_reg = command1;
897
898 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
899 tspi->def_command1_reg, (unsigned)command1);
900
901 ret = tegra_spi_flush_fifos(tspi);
902 if (ret < 0)
903 return ret;
904 if (total_fifo_words > SPI_FIFO_DEPTH)
905 ret = tegra_spi_start_dma_based_transfer(tspi, t);
906 else
907 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
908 return ret;
909}
910
911static struct tegra_spi_client_data
912 *tegra_spi_parse_cdata_dt(struct spi_device *spi)
913{
914 struct tegra_spi_client_data *cdata;
915 struct device_node *target_np;
916
917 target_np = spi->dev.of_node;
918 if (!target_np) {
919 dev_dbg(&spi->dev, "device node not found\n");
920 return NULL;
921 }
922
923 cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
924 if (!cdata)
925 return NULL;
926
927 of_property_read_u32(target_np, "nvidia,tx-clk-tap-delay",
928 &cdata->tx_clk_tap_delay);
929 of_property_read_u32(target_np, "nvidia,rx-clk-tap-delay",
930 &cdata->rx_clk_tap_delay);
931 return cdata;
932}
933
934static void tegra_spi_cleanup(struct spi_device *spi)
935{
936 struct tegra_spi_client_data *cdata = spi->controller_data;
937
938 spi->controller_data = NULL;
939 if (spi->dev.of_node)
940 kfree(cdata);
941}
942
943static int tegra_spi_setup(struct spi_device *spi)
944{
945 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
946 struct tegra_spi_client_data *cdata = spi->controller_data;
947 u32 val;
948 unsigned long flags;
949 int ret;
950
951 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
952 spi->bits_per_word,
953 spi->mode & SPI_CPOL ? "" : "~",
954 spi->mode & SPI_CPHA ? "" : "~",
955 spi->max_speed_hz);
956
957 if (!cdata) {
958 cdata = tegra_spi_parse_cdata_dt(spi);
959 spi->controller_data = cdata;
960 }
961
962 ret = pm_runtime_resume_and_get(tspi->dev);
963 if (ret < 0) {
964 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
965 if (cdata)
966 tegra_spi_cleanup(spi);
967 return ret;
968 }
969
970 if (tspi->soc_data->has_intr_mask_reg) {
971 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
972 val &= ~SPI_INTR_ALL_MASK;
973 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
974 }
975
976 spin_lock_irqsave(&tspi->lock, flags);
977 /* GPIO based chip select control */
978 if (spi_get_csgpiod(spi, 0))
979 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
980
981 val = tspi->def_command1_reg;
982 if (spi->mode & SPI_CS_HIGH)
983 val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
984 else
985 val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0));
986 tspi->def_command1_reg = val;
987 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
988 spin_unlock_irqrestore(&tspi->lock, flags);
989
990 pm_runtime_put(tspi->dev);
991 return 0;
992}
993
994static void tegra_spi_transfer_end(struct spi_device *spi)
995{
996 struct tegra_spi_data *tspi = spi_controller_get_devdata(spi->controller);
997 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
998
999 /* GPIO based chip select control */
1000 if (spi_get_csgpiod(spi, 0))
1001 gpiod_set_value(spi_get_csgpiod(spi, 0), 0);
1002
1003 if (!tspi->use_hw_based_cs) {
1004 if (cs_val)
1005 tspi->command1_reg |= SPI_CS_SW_VAL;
1006 else
1007 tspi->command1_reg &= ~SPI_CS_SW_VAL;
1008 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1009 }
1010
1011 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1012}
1013
1014static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
1015{
1016 dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
1017 dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
1018 tegra_spi_readl(tspi, SPI_COMMAND1),
1019 tegra_spi_readl(tspi, SPI_COMMAND2));
1020 dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
1021 tegra_spi_readl(tspi, SPI_DMA_CTL),
1022 tegra_spi_readl(tspi, SPI_DMA_BLK));
1023 dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
1024 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
1025 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
1026}
1027
1028static int tegra_spi_transfer_one_message(struct spi_controller *host,
1029 struct spi_message *msg)
1030{
1031 bool is_first_msg = true;
1032 struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1033 struct spi_transfer *xfer;
1034 struct spi_device *spi = msg->spi;
1035 int ret;
1036 bool skip = false;
1037 int single_xfer;
1038
1039 msg->status = 0;
1040 msg->actual_length = 0;
1041
1042 single_xfer = list_is_singular(&msg->transfers);
1043 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1044 u32 cmd1;
1045
1046 reinit_completion(&tspi->xfer_completion);
1047
1048 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
1049 single_xfer);
1050
1051 if (!xfer->len) {
1052 ret = 0;
1053 skip = true;
1054 goto complete_xfer;
1055 }
1056
1057 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
1058 if (ret < 0) {
1059 dev_err(tspi->dev,
1060 "spi can not start transfer, err %d\n", ret);
1061 goto complete_xfer;
1062 }
1063
1064 is_first_msg = false;
1065 ret = wait_for_completion_timeout(&tspi->xfer_completion,
1066 SPI_DMA_TIMEOUT);
1067 if (WARN_ON(ret == 0)) {
1068 dev_err(tspi->dev, "spi transfer timeout\n");
1069 if (tspi->is_curr_dma_xfer &&
1070 (tspi->cur_direction & DATA_DIR_TX))
1071 dmaengine_terminate_all(tspi->tx_dma_chan);
1072 if (tspi->is_curr_dma_xfer &&
1073 (tspi->cur_direction & DATA_DIR_RX))
1074 dmaengine_terminate_all(tspi->rx_dma_chan);
1075 ret = -EIO;
1076 tegra_spi_dump_regs(tspi);
1077 tegra_spi_flush_fifos(tspi);
1078 reset_control_assert(tspi->rst);
1079 udelay(2);
1080 reset_control_deassert(tspi->rst);
1081 tspi->last_used_cs = host->num_chipselect + 1;
1082 goto complete_xfer;
1083 }
1084
1085 if (tspi->tx_status || tspi->rx_status) {
1086 dev_err(tspi->dev, "Error in Transfer\n");
1087 ret = -EIO;
1088 tegra_spi_dump_regs(tspi);
1089 goto complete_xfer;
1090 }
1091 msg->actual_length += xfer->len;
1092
1093complete_xfer:
1094 if (ret < 0 || skip) {
1095 tegra_spi_transfer_end(spi);
1096 spi_transfer_delay_exec(xfer);
1097 goto exit;
1098 } else if (list_is_last(&xfer->transfer_list,
1099 &msg->transfers)) {
1100 if (xfer->cs_change)
1101 tspi->cs_control = spi;
1102 else {
1103 tegra_spi_transfer_end(spi);
1104 spi_transfer_delay_exec(xfer);
1105 }
1106 } else if (xfer->cs_change) {
1107 tegra_spi_transfer_end(spi);
1108 spi_transfer_delay_exec(xfer);
1109 }
1110
1111 }
1112 ret = 0;
1113exit:
1114 msg->status = ret;
1115 spi_finalize_current_message(host);
1116 return ret;
1117}
1118
1119static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1120{
1121 struct spi_transfer *t = tspi->curr_xfer;
1122 unsigned long flags;
1123
1124 spin_lock_irqsave(&tspi->lock, flags);
1125 if (tspi->tx_status || tspi->rx_status) {
1126 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1127 tspi->status_reg);
1128 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1129 tspi->command1_reg, tspi->dma_control_reg);
1130 tegra_spi_dump_regs(tspi);
1131 tegra_spi_flush_fifos(tspi);
1132 complete(&tspi->xfer_completion);
1133 spin_unlock_irqrestore(&tspi->lock, flags);
1134 reset_control_assert(tspi->rst);
1135 udelay(2);
1136 reset_control_deassert(tspi->rst);
1137 return IRQ_HANDLED;
1138 }
1139
1140 if (tspi->cur_direction & DATA_DIR_RX)
1141 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1142
1143 if (tspi->cur_direction & DATA_DIR_TX)
1144 tspi->cur_pos = tspi->cur_tx_pos;
1145 else
1146 tspi->cur_pos = tspi->cur_rx_pos;
1147
1148 if (tspi->cur_pos == t->len) {
1149 complete(&tspi->xfer_completion);
1150 goto exit;
1151 }
1152
1153 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1154 tegra_spi_start_cpu_based_transfer(tspi, t);
1155exit:
1156 spin_unlock_irqrestore(&tspi->lock, flags);
1157 return IRQ_HANDLED;
1158}
1159
1160static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1161{
1162 struct spi_transfer *t = tspi->curr_xfer;
1163 long wait_status;
1164 int err = 0;
1165 unsigned total_fifo_words;
1166 unsigned long flags;
1167
1168 /* Abort dmas if any error */
1169 if (tspi->cur_direction & DATA_DIR_TX) {
1170 if (tspi->tx_status) {
1171 dmaengine_terminate_all(tspi->tx_dma_chan);
1172 err += 1;
1173 } else {
1174 wait_status = wait_for_completion_interruptible_timeout(
1175 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1176 if (wait_status <= 0) {
1177 dmaengine_terminate_all(tspi->tx_dma_chan);
1178 dev_err(tspi->dev, "TxDma Xfer failed\n");
1179 err += 1;
1180 }
1181 }
1182 }
1183
1184 if (tspi->cur_direction & DATA_DIR_RX) {
1185 if (tspi->rx_status) {
1186 dmaengine_terminate_all(tspi->rx_dma_chan);
1187 err += 2;
1188 } else {
1189 wait_status = wait_for_completion_interruptible_timeout(
1190 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1191 if (wait_status <= 0) {
1192 dmaengine_terminate_all(tspi->rx_dma_chan);
1193 dev_err(tspi->dev, "RxDma Xfer failed\n");
1194 err += 2;
1195 }
1196 }
1197 }
1198
1199 spin_lock_irqsave(&tspi->lock, flags);
1200 if (err) {
1201 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1202 tspi->status_reg);
1203 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1204 tspi->command1_reg, tspi->dma_control_reg);
1205 tegra_spi_dump_regs(tspi);
1206 tegra_spi_flush_fifos(tspi);
1207 complete(&tspi->xfer_completion);
1208 spin_unlock_irqrestore(&tspi->lock, flags);
1209 reset_control_assert(tspi->rst);
1210 udelay(2);
1211 reset_control_deassert(tspi->rst);
1212 return IRQ_HANDLED;
1213 }
1214
1215 if (tspi->cur_direction & DATA_DIR_RX)
1216 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1217
1218 if (tspi->cur_direction & DATA_DIR_TX)
1219 tspi->cur_pos = tspi->cur_tx_pos;
1220 else
1221 tspi->cur_pos = tspi->cur_rx_pos;
1222
1223 if (tspi->cur_pos == t->len) {
1224 complete(&tspi->xfer_completion);
1225 goto exit;
1226 }
1227
1228 /* Continue transfer in current message */
1229 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1230 tspi, t);
1231 if (total_fifo_words > SPI_FIFO_DEPTH)
1232 err = tegra_spi_start_dma_based_transfer(tspi, t);
1233 else
1234 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1235
1236exit:
1237 spin_unlock_irqrestore(&tspi->lock, flags);
1238 return IRQ_HANDLED;
1239}
1240
1241static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1242{
1243 struct tegra_spi_data *tspi = context_data;
1244
1245 if (!tspi->is_curr_dma_xfer)
1246 return handle_cpu_based_xfer(tspi);
1247 return handle_dma_based_xfer(tspi);
1248}
1249
1250static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1251{
1252 struct tegra_spi_data *tspi = context_data;
1253
1254 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1255 if (tspi->cur_direction & DATA_DIR_TX)
1256 tspi->tx_status = tspi->status_reg &
1257 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1258
1259 if (tspi->cur_direction & DATA_DIR_RX)
1260 tspi->rx_status = tspi->status_reg &
1261 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1262 tegra_spi_clear_status(tspi);
1263
1264 return IRQ_WAKE_THREAD;
1265}
1266
1267static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1268 .has_intr_mask_reg = false,
1269};
1270
1271static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1272 .has_intr_mask_reg = false,
1273};
1274
1275static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1276 .has_intr_mask_reg = true,
1277};
1278
1279static const struct of_device_id tegra_spi_of_match[] = {
1280 {
1281 .compatible = "nvidia,tegra114-spi",
1282 .data = &tegra114_spi_soc_data,
1283 }, {
1284 .compatible = "nvidia,tegra124-spi",
1285 .data = &tegra124_spi_soc_data,
1286 }, {
1287 .compatible = "nvidia,tegra210-spi",
1288 .data = &tegra210_spi_soc_data,
1289 },
1290 {}
1291};
1292MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1293
1294static int tegra_spi_probe(struct platform_device *pdev)
1295{
1296 struct spi_controller *host;
1297 struct tegra_spi_data *tspi;
1298 struct resource *r;
1299 int ret, spi_irq;
1300 int bus_num;
1301
1302 host = spi_alloc_host(&pdev->dev, sizeof(*tspi));
1303 if (!host) {
1304 dev_err(&pdev->dev, "host allocation failed\n");
1305 return -ENOMEM;
1306 }
1307 platform_set_drvdata(pdev, host);
1308 tspi = spi_controller_get_devdata(host);
1309
1310 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1311 &host->max_speed_hz))
1312 host->max_speed_hz = 25000000; /* 25MHz */
1313
1314 /* the spi->mode bits understood by this driver: */
1315 host->use_gpio_descriptors = true;
1316 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1317 SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1318 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1319 host->setup = tegra_spi_setup;
1320 host->cleanup = tegra_spi_cleanup;
1321 host->transfer_one_message = tegra_spi_transfer_one_message;
1322 host->set_cs_timing = tegra_spi_set_hw_cs_timing;
1323 host->num_chipselect = MAX_CHIP_SELECT;
1324 host->auto_runtime_pm = true;
1325 bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1326 if (bus_num >= 0)
1327 host->bus_num = bus_num;
1328
1329 tspi->host = host;
1330 tspi->dev = &pdev->dev;
1331 spin_lock_init(&tspi->lock);
1332
1333 tspi->soc_data = of_device_get_match_data(&pdev->dev);
1334 if (!tspi->soc_data) {
1335 dev_err(&pdev->dev, "unsupported tegra\n");
1336 ret = -ENODEV;
1337 goto exit_free_host;
1338 }
1339
1340 tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1341 if (IS_ERR(tspi->base)) {
1342 ret = PTR_ERR(tspi->base);
1343 goto exit_free_host;
1344 }
1345 tspi->phys = r->start;
1346
1347 spi_irq = platform_get_irq(pdev, 0);
1348 if (spi_irq < 0) {
1349 ret = spi_irq;
1350 goto exit_free_host;
1351 }
1352 tspi->irq = spi_irq;
1353
1354 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1355 if (IS_ERR(tspi->clk)) {
1356 dev_err(&pdev->dev, "can not get clock\n");
1357 ret = PTR_ERR(tspi->clk);
1358 goto exit_free_host;
1359 }
1360
1361 tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1362 if (IS_ERR(tspi->rst)) {
1363 dev_err(&pdev->dev, "can not get reset\n");
1364 ret = PTR_ERR(tspi->rst);
1365 goto exit_free_host;
1366 }
1367
1368 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1369 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1370
1371 ret = tegra_spi_init_dma_param(tspi, true);
1372 if (ret < 0)
1373 goto exit_free_host;
1374 ret = tegra_spi_init_dma_param(tspi, false);
1375 if (ret < 0)
1376 goto exit_rx_dma_free;
1377 tspi->max_buf_size = tspi->dma_buf_size;
1378 init_completion(&tspi->tx_dma_complete);
1379 init_completion(&tspi->rx_dma_complete);
1380
1381 init_completion(&tspi->xfer_completion);
1382
1383 pm_runtime_enable(&pdev->dev);
1384 if (!pm_runtime_enabled(&pdev->dev)) {
1385 ret = tegra_spi_runtime_resume(&pdev->dev);
1386 if (ret)
1387 goto exit_pm_disable;
1388 }
1389
1390 ret = pm_runtime_resume_and_get(&pdev->dev);
1391 if (ret < 0) {
1392 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1393 goto exit_pm_disable;
1394 }
1395
1396 reset_control_assert(tspi->rst);
1397 udelay(2);
1398 reset_control_deassert(tspi->rst);
1399 tspi->def_command1_reg = SPI_M_S;
1400 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1401 tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
1402 tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
1403 tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
1404 tspi->last_used_cs = host->num_chipselect + 1;
1405 pm_runtime_put(&pdev->dev);
1406 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1407 tegra_spi_isr_thread, IRQF_ONESHOT,
1408 dev_name(&pdev->dev), tspi);
1409 if (ret < 0) {
1410 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1411 tspi->irq);
1412 goto exit_pm_disable;
1413 }
1414
1415 host->dev.of_node = pdev->dev.of_node;
1416 ret = devm_spi_register_controller(&pdev->dev, host);
1417 if (ret < 0) {
1418 dev_err(&pdev->dev, "can not register to host err %d\n", ret);
1419 goto exit_free_irq;
1420 }
1421 return ret;
1422
1423exit_free_irq:
1424 free_irq(spi_irq, tspi);
1425exit_pm_disable:
1426 pm_runtime_disable(&pdev->dev);
1427 if (!pm_runtime_status_suspended(&pdev->dev))
1428 tegra_spi_runtime_suspend(&pdev->dev);
1429 tegra_spi_deinit_dma_param(tspi, false);
1430exit_rx_dma_free:
1431 tegra_spi_deinit_dma_param(tspi, true);
1432exit_free_host:
1433 spi_controller_put(host);
1434 return ret;
1435}
1436
1437static void tegra_spi_remove(struct platform_device *pdev)
1438{
1439 struct spi_controller *host = platform_get_drvdata(pdev);
1440 struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1441
1442 free_irq(tspi->irq, tspi);
1443
1444 if (tspi->tx_dma_chan)
1445 tegra_spi_deinit_dma_param(tspi, false);
1446
1447 if (tspi->rx_dma_chan)
1448 tegra_spi_deinit_dma_param(tspi, true);
1449
1450 pm_runtime_disable(&pdev->dev);
1451 if (!pm_runtime_status_suspended(&pdev->dev))
1452 tegra_spi_runtime_suspend(&pdev->dev);
1453}
1454
1455#ifdef CONFIG_PM_SLEEP
1456static int tegra_spi_suspend(struct device *dev)
1457{
1458 struct spi_controller *host = dev_get_drvdata(dev);
1459
1460 return spi_controller_suspend(host);
1461}
1462
1463static int tegra_spi_resume(struct device *dev)
1464{
1465 struct spi_controller *host = dev_get_drvdata(dev);
1466 struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1467 int ret;
1468
1469 ret = pm_runtime_resume_and_get(dev);
1470 if (ret < 0) {
1471 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1472 return ret;
1473 }
1474 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1475 tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
1476 tspi->last_used_cs = host->num_chipselect + 1;
1477 pm_runtime_put(dev);
1478
1479 return spi_controller_resume(host);
1480}
1481#endif
1482
1483static int tegra_spi_runtime_suspend(struct device *dev)
1484{
1485 struct spi_controller *host = dev_get_drvdata(dev);
1486 struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1487
1488 /* Flush all write which are in PPSB queue by reading back */
1489 tegra_spi_readl(tspi, SPI_COMMAND1);
1490
1491 clk_disable_unprepare(tspi->clk);
1492 return 0;
1493}
1494
1495static int tegra_spi_runtime_resume(struct device *dev)
1496{
1497 struct spi_controller *host = dev_get_drvdata(dev);
1498 struct tegra_spi_data *tspi = spi_controller_get_devdata(host);
1499 int ret;
1500
1501 ret = clk_prepare_enable(tspi->clk);
1502 if (ret < 0) {
1503 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1504 return ret;
1505 }
1506 return 0;
1507}
1508
1509static const struct dev_pm_ops tegra_spi_pm_ops = {
1510 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1511 tegra_spi_runtime_resume, NULL)
1512 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1513};
1514static struct platform_driver tegra_spi_driver = {
1515 .driver = {
1516 .name = "spi-tegra114",
1517 .pm = &tegra_spi_pm_ops,
1518 .of_match_table = tegra_spi_of_match,
1519 },
1520 .probe = tegra_spi_probe,
1521 .remove_new = tegra_spi_remove,
1522};
1523module_platform_driver(tegra_spi_driver);
1524
1525MODULE_ALIAS("platform:spi-tegra114");
1526MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1527MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1528MODULE_LICENSE("GPL v2");
1/*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
3 *
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/delay.h>
22#include <linux/dmaengine.h>
23#include <linux/dma-mapping.h>
24#include <linux/dmapool.h>
25#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kernel.h>
29#include <linux/kthread.h>
30#include <linux/module.h>
31#include <linux/platform_device.h>
32#include <linux/pm_runtime.h>
33#include <linux/of.h>
34#include <linux/of_device.h>
35#include <linux/reset.h>
36#include <linux/spi/spi.h>
37
38#define SPI_COMMAND1 0x000
39#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
40#define SPI_PACKED (1 << 5)
41#define SPI_TX_EN (1 << 11)
42#define SPI_RX_EN (1 << 12)
43#define SPI_BOTH_EN_BYTE (1 << 13)
44#define SPI_BOTH_EN_BIT (1 << 14)
45#define SPI_LSBYTE_FE (1 << 15)
46#define SPI_LSBIT_FE (1 << 16)
47#define SPI_BIDIROE (1 << 17)
48#define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
49#define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
50#define SPI_IDLE_SDA_PULL_LOW (2 << 18)
51#define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
52#define SPI_IDLE_SDA_MASK (3 << 18)
53#define SPI_CS_SS_VAL (1 << 20)
54#define SPI_CS_SW_HW (1 << 21)
55/* SPI_CS_POL_INACTIVE bits are default high */
56 /* n from 0 to 3 */
57#define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
58#define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
59
60#define SPI_CS_SEL_0 (0 << 26)
61#define SPI_CS_SEL_1 (1 << 26)
62#define SPI_CS_SEL_2 (2 << 26)
63#define SPI_CS_SEL_3 (3 << 26)
64#define SPI_CS_SEL_MASK (3 << 26)
65#define SPI_CS_SEL(x) (((x) & 0x3) << 26)
66#define SPI_CONTROL_MODE_0 (0 << 28)
67#define SPI_CONTROL_MODE_1 (1 << 28)
68#define SPI_CONTROL_MODE_2 (2 << 28)
69#define SPI_CONTROL_MODE_3 (3 << 28)
70#define SPI_CONTROL_MODE_MASK (3 << 28)
71#define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
72#define SPI_M_S (1 << 30)
73#define SPI_PIO (1 << 31)
74
75#define SPI_COMMAND2 0x004
76#define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
77#define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
78
79#define SPI_CS_TIMING1 0x008
80#define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
81#define SPI_CS_SETUP_HOLD(reg, cs, val) \
82 ((((val) & 0xFFu) << ((cs) * 8)) | \
83 ((reg) & ~(0xFFu << ((cs) * 8))))
84
85#define SPI_CS_TIMING2 0x00C
86#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
87#define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
88#define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
89#define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
90#define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
91#define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
92#define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
93#define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
94#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
95 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
96 ((reg) & ~(1 << ((cs) * 8 + 5))))
97#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
98 (reg = (((val) & 0xF) << ((cs) * 8)) | \
99 ((reg) & ~(0xF << ((cs) * 8))))
100
101#define SPI_TRANS_STATUS 0x010
102#define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
103#define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
104#define SPI_RDY (1 << 30)
105
106#define SPI_FIFO_STATUS 0x014
107#define SPI_RX_FIFO_EMPTY (1 << 0)
108#define SPI_RX_FIFO_FULL (1 << 1)
109#define SPI_TX_FIFO_EMPTY (1 << 2)
110#define SPI_TX_FIFO_FULL (1 << 3)
111#define SPI_RX_FIFO_UNF (1 << 4)
112#define SPI_RX_FIFO_OVF (1 << 5)
113#define SPI_TX_FIFO_UNF (1 << 6)
114#define SPI_TX_FIFO_OVF (1 << 7)
115#define SPI_ERR (1 << 8)
116#define SPI_TX_FIFO_FLUSH (1 << 14)
117#define SPI_RX_FIFO_FLUSH (1 << 15)
118#define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
119#define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
120#define SPI_FRAME_END (1 << 30)
121#define SPI_CS_INACTIVE (1 << 31)
122
123#define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
124 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125#define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127#define SPI_TX_DATA 0x018
128#define SPI_RX_DATA 0x01C
129
130#define SPI_DMA_CTL 0x020
131#define SPI_TX_TRIG_1 (0 << 15)
132#define SPI_TX_TRIG_4 (1 << 15)
133#define SPI_TX_TRIG_8 (2 << 15)
134#define SPI_TX_TRIG_16 (3 << 15)
135#define SPI_TX_TRIG_MASK (3 << 15)
136#define SPI_RX_TRIG_1 (0 << 19)
137#define SPI_RX_TRIG_4 (1 << 19)
138#define SPI_RX_TRIG_8 (2 << 19)
139#define SPI_RX_TRIG_16 (3 << 19)
140#define SPI_RX_TRIG_MASK (3 << 19)
141#define SPI_IE_TX (1 << 28)
142#define SPI_IE_RX (1 << 29)
143#define SPI_CONT (1 << 30)
144#define SPI_DMA (1 << 31)
145#define SPI_DMA_EN SPI_DMA
146
147#define SPI_DMA_BLK 0x024
148#define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
149
150#define SPI_TX_FIFO 0x108
151#define SPI_RX_FIFO 0x188
152#define MAX_CHIP_SELECT 4
153#define SPI_FIFO_DEPTH 64
154#define DATA_DIR_TX (1 << 0)
155#define DATA_DIR_RX (1 << 1)
156
157#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
158#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
159#define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
160#define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
161#define MAX_HOLD_CYCLES 16
162#define SPI_DEFAULT_SPEED 25000000
163
164struct tegra_spi_data {
165 struct device *dev;
166 struct spi_master *master;
167 spinlock_t lock;
168
169 struct clk *clk;
170 struct reset_control *rst;
171 void __iomem *base;
172 phys_addr_t phys;
173 unsigned irq;
174 u32 cur_speed;
175
176 struct spi_device *cur_spi;
177 struct spi_device *cs_control;
178 unsigned cur_pos;
179 unsigned words_per_32bit;
180 unsigned bytes_per_word;
181 unsigned curr_dma_words;
182 unsigned cur_direction;
183
184 unsigned cur_rx_pos;
185 unsigned cur_tx_pos;
186
187 unsigned dma_buf_size;
188 unsigned max_buf_size;
189 bool is_curr_dma_xfer;
190
191 struct completion rx_dma_complete;
192 struct completion tx_dma_complete;
193
194 u32 tx_status;
195 u32 rx_status;
196 u32 status_reg;
197 bool is_packed;
198
199 u32 command1_reg;
200 u32 dma_control_reg;
201 u32 def_command1_reg;
202
203 struct completion xfer_completion;
204 struct spi_transfer *curr_xfer;
205 struct dma_chan *rx_dma_chan;
206 u32 *rx_dma_buf;
207 dma_addr_t rx_dma_phys;
208 struct dma_async_tx_descriptor *rx_dma_desc;
209
210 struct dma_chan *tx_dma_chan;
211 u32 *tx_dma_buf;
212 dma_addr_t tx_dma_phys;
213 struct dma_async_tx_descriptor *tx_dma_desc;
214};
215
216static int tegra_spi_runtime_suspend(struct device *dev);
217static int tegra_spi_runtime_resume(struct device *dev);
218
219static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220 unsigned long reg)
221{
222 return readl(tspi->base + reg);
223}
224
225static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226 u32 val, unsigned long reg)
227{
228 writel(val, tspi->base + reg);
229
230 /* Read back register to make sure that register writes completed */
231 if (reg != SPI_TX_FIFO)
232 readl(tspi->base + SPI_COMMAND1);
233}
234
235static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236{
237 u32 val;
238
239 /* Write 1 to clear status register */
240 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242
243 /* Clear fifo status error if any */
244 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245 if (val & SPI_ERR)
246 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247 SPI_FIFO_STATUS);
248}
249
250static unsigned tegra_spi_calculate_curr_xfer_param(
251 struct spi_device *spi, struct tegra_spi_data *tspi,
252 struct spi_transfer *t)
253{
254 unsigned remain_len = t->len - tspi->cur_pos;
255 unsigned max_word;
256 unsigned bits_per_word = t->bits_per_word;
257 unsigned max_len;
258 unsigned total_fifo_words;
259
260 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261
262 if (bits_per_word == 8 || bits_per_word == 16) {
263 tspi->is_packed = 1;
264 tspi->words_per_32bit = 32/bits_per_word;
265 } else {
266 tspi->is_packed = 0;
267 tspi->words_per_32bit = 1;
268 }
269
270 if (tspi->is_packed) {
271 max_len = min(remain_len, tspi->max_buf_size);
272 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273 total_fifo_words = (max_len + 3) / 4;
274 } else {
275 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276 max_word = min(max_word, tspi->max_buf_size/4);
277 tspi->curr_dma_words = max_word;
278 total_fifo_words = max_word;
279 }
280 return total_fifo_words;
281}
282
283static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284 struct tegra_spi_data *tspi, struct spi_transfer *t)
285{
286 unsigned nbytes;
287 unsigned tx_empty_count;
288 u32 fifo_status;
289 unsigned max_n_32bit;
290 unsigned i, count;
291 unsigned int written_words;
292 unsigned fifo_words_left;
293 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294
295 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297
298 if (tspi->is_packed) {
299 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300 written_words = min(fifo_words_left, tspi->curr_dma_words);
301 nbytes = written_words * tspi->bytes_per_word;
302 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303 for (count = 0; count < max_n_32bit; count++) {
304 u32 x = 0;
305 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
306 x |= (u32)(*tx_buf++) << (i * 8);
307 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
308 }
309 } else {
310 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
311 written_words = max_n_32bit;
312 nbytes = written_words * tspi->bytes_per_word;
313 for (count = 0; count < max_n_32bit; count++) {
314 u32 x = 0;
315 for (i = 0; nbytes && (i < tspi->bytes_per_word);
316 i++, nbytes--)
317 x |= (u32)(*tx_buf++) << (i * 8);
318 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
319 }
320 }
321 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
322 return written_words;
323}
324
325static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
326 struct tegra_spi_data *tspi, struct spi_transfer *t)
327{
328 unsigned rx_full_count;
329 u32 fifo_status;
330 unsigned i, count;
331 unsigned int read_words = 0;
332 unsigned len;
333 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
334
335 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
336 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
337 if (tspi->is_packed) {
338 len = tspi->curr_dma_words * tspi->bytes_per_word;
339 for (count = 0; count < rx_full_count; count++) {
340 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
341 for (i = 0; len && (i < 4); i++, len--)
342 *rx_buf++ = (x >> i*8) & 0xFF;
343 }
344 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
345 read_words += tspi->curr_dma_words;
346 } else {
347 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
348 for (count = 0; count < rx_full_count; count++) {
349 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
350 for (i = 0; (i < tspi->bytes_per_word); i++)
351 *rx_buf++ = (x >> (i*8)) & 0xFF;
352 }
353 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
354 read_words += rx_full_count;
355 }
356 return read_words;
357}
358
359static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
360 struct tegra_spi_data *tspi, struct spi_transfer *t)
361{
362 /* Make the dma buffer to read by cpu */
363 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
364 tspi->dma_buf_size, DMA_TO_DEVICE);
365
366 if (tspi->is_packed) {
367 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
368 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
369 } else {
370 unsigned int i;
371 unsigned int count;
372 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
373 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
374
375 for (count = 0; count < tspi->curr_dma_words; count++) {
376 u32 x = 0;
377 for (i = 0; consume && (i < tspi->bytes_per_word);
378 i++, consume--)
379 x |= (u32)(*tx_buf++) << (i * 8);
380 tspi->tx_dma_buf[count] = x;
381 }
382 }
383 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
384
385 /* Make the dma buffer to read by dma */
386 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
387 tspi->dma_buf_size, DMA_TO_DEVICE);
388}
389
390static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
391 struct tegra_spi_data *tspi, struct spi_transfer *t)
392{
393 /* Make the dma buffer to read by cpu */
394 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
395 tspi->dma_buf_size, DMA_FROM_DEVICE);
396
397 if (tspi->is_packed) {
398 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
399 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
400 } else {
401 unsigned int i;
402 unsigned int count;
403 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
404 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
405
406 for (count = 0; count < tspi->curr_dma_words; count++) {
407 u32 x = tspi->rx_dma_buf[count] & rx_mask;
408 for (i = 0; (i < tspi->bytes_per_word); i++)
409 *rx_buf++ = (x >> (i*8)) & 0xFF;
410 }
411 }
412 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
413
414 /* Make the dma buffer to read by dma */
415 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
416 tspi->dma_buf_size, DMA_FROM_DEVICE);
417}
418
419static void tegra_spi_dma_complete(void *args)
420{
421 struct completion *dma_complete = args;
422
423 complete(dma_complete);
424}
425
426static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
427{
428 reinit_completion(&tspi->tx_dma_complete);
429 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
430 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
431 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
432 if (!tspi->tx_dma_desc) {
433 dev_err(tspi->dev, "Not able to get desc for Tx\n");
434 return -EIO;
435 }
436
437 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
438 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
439
440 dmaengine_submit(tspi->tx_dma_desc);
441 dma_async_issue_pending(tspi->tx_dma_chan);
442 return 0;
443}
444
445static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
446{
447 reinit_completion(&tspi->rx_dma_complete);
448 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
449 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
450 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
451 if (!tspi->rx_dma_desc) {
452 dev_err(tspi->dev, "Not able to get desc for Rx\n");
453 return -EIO;
454 }
455
456 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
457 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
458
459 dmaengine_submit(tspi->rx_dma_desc);
460 dma_async_issue_pending(tspi->rx_dma_chan);
461 return 0;
462}
463
464static int tegra_spi_start_dma_based_transfer(
465 struct tegra_spi_data *tspi, struct spi_transfer *t)
466{
467 u32 val;
468 unsigned int len;
469 int ret = 0;
470 u32 status;
471
472 /* Make sure that Rx and Tx fifo are empty */
473 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
474 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
475 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
476 (unsigned)status);
477 return -EIO;
478 }
479
480 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
481 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
482
483 if (tspi->is_packed)
484 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
485 4) * 4;
486 else
487 len = tspi->curr_dma_words * 4;
488
489 /* Set attention level based on length of transfer */
490 if (len & 0xF)
491 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
492 else if (((len) >> 4) & 0x1)
493 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
494 else
495 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
496
497 if (tspi->cur_direction & DATA_DIR_TX)
498 val |= SPI_IE_TX;
499
500 if (tspi->cur_direction & DATA_DIR_RX)
501 val |= SPI_IE_RX;
502
503 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
504 tspi->dma_control_reg = val;
505
506 if (tspi->cur_direction & DATA_DIR_TX) {
507 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
508 ret = tegra_spi_start_tx_dma(tspi, len);
509 if (ret < 0) {
510 dev_err(tspi->dev,
511 "Starting tx dma failed, err %d\n", ret);
512 return ret;
513 }
514 }
515
516 if (tspi->cur_direction & DATA_DIR_RX) {
517 /* Make the dma buffer to read by dma */
518 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
519 tspi->dma_buf_size, DMA_FROM_DEVICE);
520
521 ret = tegra_spi_start_rx_dma(tspi, len);
522 if (ret < 0) {
523 dev_err(tspi->dev,
524 "Starting rx dma failed, err %d\n", ret);
525 if (tspi->cur_direction & DATA_DIR_TX)
526 dmaengine_terminate_all(tspi->tx_dma_chan);
527 return ret;
528 }
529 }
530 tspi->is_curr_dma_xfer = true;
531 tspi->dma_control_reg = val;
532
533 val |= SPI_DMA_EN;
534 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
535 return ret;
536}
537
538static int tegra_spi_start_cpu_based_transfer(
539 struct tegra_spi_data *tspi, struct spi_transfer *t)
540{
541 u32 val;
542 unsigned cur_words;
543
544 if (tspi->cur_direction & DATA_DIR_TX)
545 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
546 else
547 cur_words = tspi->curr_dma_words;
548
549 val = SPI_DMA_BLK_SET(cur_words - 1);
550 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
551
552 val = 0;
553 if (tspi->cur_direction & DATA_DIR_TX)
554 val |= SPI_IE_TX;
555
556 if (tspi->cur_direction & DATA_DIR_RX)
557 val |= SPI_IE_RX;
558
559 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560 tspi->dma_control_reg = val;
561
562 tspi->is_curr_dma_xfer = false;
563
564 val |= SPI_DMA_EN;
565 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
566 return 0;
567}
568
569static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
570 bool dma_to_memory)
571{
572 struct dma_chan *dma_chan;
573 u32 *dma_buf;
574 dma_addr_t dma_phys;
575 int ret;
576 struct dma_slave_config dma_sconfig;
577
578 dma_chan = dma_request_slave_channel_reason(tspi->dev,
579 dma_to_memory ? "rx" : "tx");
580 if (IS_ERR(dma_chan)) {
581 ret = PTR_ERR(dma_chan);
582 if (ret != -EPROBE_DEFER)
583 dev_err(tspi->dev,
584 "Dma channel is not available: %d\n", ret);
585 return ret;
586 }
587
588 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
589 &dma_phys, GFP_KERNEL);
590 if (!dma_buf) {
591 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
592 dma_release_channel(dma_chan);
593 return -ENOMEM;
594 }
595
596 if (dma_to_memory) {
597 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599 dma_sconfig.src_maxburst = 0;
600 } else {
601 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
602 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
603 dma_sconfig.dst_maxburst = 0;
604 }
605
606 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
607 if (ret)
608 goto scrub;
609 if (dma_to_memory) {
610 tspi->rx_dma_chan = dma_chan;
611 tspi->rx_dma_buf = dma_buf;
612 tspi->rx_dma_phys = dma_phys;
613 } else {
614 tspi->tx_dma_chan = dma_chan;
615 tspi->tx_dma_buf = dma_buf;
616 tspi->tx_dma_phys = dma_phys;
617 }
618 return 0;
619
620scrub:
621 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
622 dma_release_channel(dma_chan);
623 return ret;
624}
625
626static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
627 bool dma_to_memory)
628{
629 u32 *dma_buf;
630 dma_addr_t dma_phys;
631 struct dma_chan *dma_chan;
632
633 if (dma_to_memory) {
634 dma_buf = tspi->rx_dma_buf;
635 dma_chan = tspi->rx_dma_chan;
636 dma_phys = tspi->rx_dma_phys;
637 tspi->rx_dma_chan = NULL;
638 tspi->rx_dma_buf = NULL;
639 } else {
640 dma_buf = tspi->tx_dma_buf;
641 dma_chan = tspi->tx_dma_chan;
642 dma_phys = tspi->tx_dma_phys;
643 tspi->tx_dma_buf = NULL;
644 tspi->tx_dma_chan = NULL;
645 }
646 if (!dma_chan)
647 return;
648
649 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
650 dma_release_channel(dma_chan);
651}
652
653static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
654 struct spi_transfer *t, bool is_first_of_msg)
655{
656 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
657 u32 speed = t->speed_hz;
658 u8 bits_per_word = t->bits_per_word;
659 u32 command1;
660 int req_mode;
661
662 if (speed != tspi->cur_speed) {
663 clk_set_rate(tspi->clk, speed);
664 tspi->cur_speed = speed;
665 }
666
667 tspi->cur_spi = spi;
668 tspi->cur_pos = 0;
669 tspi->cur_rx_pos = 0;
670 tspi->cur_tx_pos = 0;
671 tspi->curr_xfer = t;
672
673 if (is_first_of_msg) {
674 tegra_spi_clear_status(tspi);
675
676 command1 = tspi->def_command1_reg;
677 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
678
679 command1 &= ~SPI_CONTROL_MODE_MASK;
680 req_mode = spi->mode & 0x3;
681 if (req_mode == SPI_MODE_0)
682 command1 |= SPI_CONTROL_MODE_0;
683 else if (req_mode == SPI_MODE_1)
684 command1 |= SPI_CONTROL_MODE_1;
685 else if (req_mode == SPI_MODE_2)
686 command1 |= SPI_CONTROL_MODE_2;
687 else if (req_mode == SPI_MODE_3)
688 command1 |= SPI_CONTROL_MODE_3;
689
690 if (tspi->cs_control) {
691 if (tspi->cs_control != spi)
692 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
693 tspi->cs_control = NULL;
694 } else
695 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
696
697 command1 |= SPI_CS_SW_HW;
698 if (spi->mode & SPI_CS_HIGH)
699 command1 |= SPI_CS_SS_VAL;
700 else
701 command1 &= ~SPI_CS_SS_VAL;
702
703 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
704 } else {
705 command1 = tspi->command1_reg;
706 command1 &= ~SPI_BIT_LENGTH(~0);
707 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
708 }
709
710 return command1;
711}
712
713static int tegra_spi_start_transfer_one(struct spi_device *spi,
714 struct spi_transfer *t, u32 command1)
715{
716 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
717 unsigned total_fifo_words;
718 int ret;
719
720 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
721
722 if (tspi->is_packed)
723 command1 |= SPI_PACKED;
724
725 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
726 tspi->cur_direction = 0;
727 if (t->rx_buf) {
728 command1 |= SPI_RX_EN;
729 tspi->cur_direction |= DATA_DIR_RX;
730 }
731 if (t->tx_buf) {
732 command1 |= SPI_TX_EN;
733 tspi->cur_direction |= DATA_DIR_TX;
734 }
735 command1 |= SPI_CS_SEL(spi->chip_select);
736 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
737 tspi->command1_reg = command1;
738
739 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
740 tspi->def_command1_reg, (unsigned)command1);
741
742 if (total_fifo_words > SPI_FIFO_DEPTH)
743 ret = tegra_spi_start_dma_based_transfer(tspi, t);
744 else
745 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
746 return ret;
747}
748
749static int tegra_spi_setup(struct spi_device *spi)
750{
751 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
752 u32 val;
753 unsigned long flags;
754 int ret;
755
756 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
757 spi->bits_per_word,
758 spi->mode & SPI_CPOL ? "" : "~",
759 spi->mode & SPI_CPHA ? "" : "~",
760 spi->max_speed_hz);
761
762 ret = pm_runtime_get_sync(tspi->dev);
763 if (ret < 0) {
764 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
765 return ret;
766 }
767
768 spin_lock_irqsave(&tspi->lock, flags);
769 val = tspi->def_command1_reg;
770 if (spi->mode & SPI_CS_HIGH)
771 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
772 else
773 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
774 tspi->def_command1_reg = val;
775 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
776 spin_unlock_irqrestore(&tspi->lock, flags);
777
778 pm_runtime_put(tspi->dev);
779 return 0;
780}
781
782static void tegra_spi_transfer_delay(int delay)
783{
784 if (!delay)
785 return;
786
787 if (delay >= 1000)
788 mdelay(delay / 1000);
789
790 udelay(delay % 1000);
791}
792
793static int tegra_spi_transfer_one_message(struct spi_master *master,
794 struct spi_message *msg)
795{
796 bool is_first_msg = true;
797 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
798 struct spi_transfer *xfer;
799 struct spi_device *spi = msg->spi;
800 int ret;
801 bool skip = false;
802
803 msg->status = 0;
804 msg->actual_length = 0;
805
806 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
807 u32 cmd1;
808
809 reinit_completion(&tspi->xfer_completion);
810
811 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
812
813 if (!xfer->len) {
814 ret = 0;
815 skip = true;
816 goto complete_xfer;
817 }
818
819 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
820 if (ret < 0) {
821 dev_err(tspi->dev,
822 "spi can not start transfer, err %d\n", ret);
823 goto complete_xfer;
824 }
825
826 is_first_msg = false;
827 ret = wait_for_completion_timeout(&tspi->xfer_completion,
828 SPI_DMA_TIMEOUT);
829 if (WARN_ON(ret == 0)) {
830 dev_err(tspi->dev,
831 "spi trasfer timeout, err %d\n", ret);
832 ret = -EIO;
833 goto complete_xfer;
834 }
835
836 if (tspi->tx_status || tspi->rx_status) {
837 dev_err(tspi->dev, "Error in Transfer\n");
838 ret = -EIO;
839 goto complete_xfer;
840 }
841 msg->actual_length += xfer->len;
842
843complete_xfer:
844 if (ret < 0 || skip) {
845 tegra_spi_writel(tspi, tspi->def_command1_reg,
846 SPI_COMMAND1);
847 tegra_spi_transfer_delay(xfer->delay_usecs);
848 goto exit;
849 } else if (list_is_last(&xfer->transfer_list,
850 &msg->transfers)) {
851 if (xfer->cs_change)
852 tspi->cs_control = spi;
853 else {
854 tegra_spi_writel(tspi, tspi->def_command1_reg,
855 SPI_COMMAND1);
856 tegra_spi_transfer_delay(xfer->delay_usecs);
857 }
858 } else if (xfer->cs_change) {
859 tegra_spi_writel(tspi, tspi->def_command1_reg,
860 SPI_COMMAND1);
861 tegra_spi_transfer_delay(xfer->delay_usecs);
862 }
863
864 }
865 ret = 0;
866exit:
867 msg->status = ret;
868 spi_finalize_current_message(master);
869 return ret;
870}
871
872static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
873{
874 struct spi_transfer *t = tspi->curr_xfer;
875 unsigned long flags;
876
877 spin_lock_irqsave(&tspi->lock, flags);
878 if (tspi->tx_status || tspi->rx_status) {
879 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
880 tspi->status_reg);
881 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
882 tspi->command1_reg, tspi->dma_control_reg);
883 reset_control_assert(tspi->rst);
884 udelay(2);
885 reset_control_deassert(tspi->rst);
886 complete(&tspi->xfer_completion);
887 goto exit;
888 }
889
890 if (tspi->cur_direction & DATA_DIR_RX)
891 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
892
893 if (tspi->cur_direction & DATA_DIR_TX)
894 tspi->cur_pos = tspi->cur_tx_pos;
895 else
896 tspi->cur_pos = tspi->cur_rx_pos;
897
898 if (tspi->cur_pos == t->len) {
899 complete(&tspi->xfer_completion);
900 goto exit;
901 }
902
903 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
904 tegra_spi_start_cpu_based_transfer(tspi, t);
905exit:
906 spin_unlock_irqrestore(&tspi->lock, flags);
907 return IRQ_HANDLED;
908}
909
910static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
911{
912 struct spi_transfer *t = tspi->curr_xfer;
913 long wait_status;
914 int err = 0;
915 unsigned total_fifo_words;
916 unsigned long flags;
917
918 /* Abort dmas if any error */
919 if (tspi->cur_direction & DATA_DIR_TX) {
920 if (tspi->tx_status) {
921 dmaengine_terminate_all(tspi->tx_dma_chan);
922 err += 1;
923 } else {
924 wait_status = wait_for_completion_interruptible_timeout(
925 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
926 if (wait_status <= 0) {
927 dmaengine_terminate_all(tspi->tx_dma_chan);
928 dev_err(tspi->dev, "TxDma Xfer failed\n");
929 err += 1;
930 }
931 }
932 }
933
934 if (tspi->cur_direction & DATA_DIR_RX) {
935 if (tspi->rx_status) {
936 dmaengine_terminate_all(tspi->rx_dma_chan);
937 err += 2;
938 } else {
939 wait_status = wait_for_completion_interruptible_timeout(
940 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
941 if (wait_status <= 0) {
942 dmaengine_terminate_all(tspi->rx_dma_chan);
943 dev_err(tspi->dev, "RxDma Xfer failed\n");
944 err += 2;
945 }
946 }
947 }
948
949 spin_lock_irqsave(&tspi->lock, flags);
950 if (err) {
951 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
952 tspi->status_reg);
953 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
954 tspi->command1_reg, tspi->dma_control_reg);
955 reset_control_assert(tspi->rst);
956 udelay(2);
957 reset_control_deassert(tspi->rst);
958 complete(&tspi->xfer_completion);
959 spin_unlock_irqrestore(&tspi->lock, flags);
960 return IRQ_HANDLED;
961 }
962
963 if (tspi->cur_direction & DATA_DIR_RX)
964 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
965
966 if (tspi->cur_direction & DATA_DIR_TX)
967 tspi->cur_pos = tspi->cur_tx_pos;
968 else
969 tspi->cur_pos = tspi->cur_rx_pos;
970
971 if (tspi->cur_pos == t->len) {
972 complete(&tspi->xfer_completion);
973 goto exit;
974 }
975
976 /* Continue transfer in current message */
977 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
978 tspi, t);
979 if (total_fifo_words > SPI_FIFO_DEPTH)
980 err = tegra_spi_start_dma_based_transfer(tspi, t);
981 else
982 err = tegra_spi_start_cpu_based_transfer(tspi, t);
983
984exit:
985 spin_unlock_irqrestore(&tspi->lock, flags);
986 return IRQ_HANDLED;
987}
988
989static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
990{
991 struct tegra_spi_data *tspi = context_data;
992
993 if (!tspi->is_curr_dma_xfer)
994 return handle_cpu_based_xfer(tspi);
995 return handle_dma_based_xfer(tspi);
996}
997
998static irqreturn_t tegra_spi_isr(int irq, void *context_data)
999{
1000 struct tegra_spi_data *tspi = context_data;
1001
1002 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1003 if (tspi->cur_direction & DATA_DIR_TX)
1004 tspi->tx_status = tspi->status_reg &
1005 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1006
1007 if (tspi->cur_direction & DATA_DIR_RX)
1008 tspi->rx_status = tspi->status_reg &
1009 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1010 tegra_spi_clear_status(tspi);
1011
1012 return IRQ_WAKE_THREAD;
1013}
1014
1015static struct of_device_id tegra_spi_of_match[] = {
1016 { .compatible = "nvidia,tegra114-spi", },
1017 {}
1018};
1019MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1020
1021static int tegra_spi_probe(struct platform_device *pdev)
1022{
1023 struct spi_master *master;
1024 struct tegra_spi_data *tspi;
1025 struct resource *r;
1026 int ret, spi_irq;
1027
1028 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1029 if (!master) {
1030 dev_err(&pdev->dev, "master allocation failed\n");
1031 return -ENOMEM;
1032 }
1033 platform_set_drvdata(pdev, master);
1034 tspi = spi_master_get_devdata(master);
1035
1036 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1037 &master->max_speed_hz))
1038 master->max_speed_hz = 25000000; /* 25MHz */
1039
1040 /* the spi->mode bits understood by this driver: */
1041 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1042 master->setup = tegra_spi_setup;
1043 master->transfer_one_message = tegra_spi_transfer_one_message;
1044 master->num_chipselect = MAX_CHIP_SELECT;
1045 master->auto_runtime_pm = true;
1046
1047 tspi->master = master;
1048 tspi->dev = &pdev->dev;
1049 spin_lock_init(&tspi->lock);
1050
1051 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1052 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1053 if (IS_ERR(tspi->base)) {
1054 ret = PTR_ERR(tspi->base);
1055 goto exit_free_master;
1056 }
1057 tspi->phys = r->start;
1058
1059 spi_irq = platform_get_irq(pdev, 0);
1060 tspi->irq = spi_irq;
1061 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1062 tegra_spi_isr_thread, IRQF_ONESHOT,
1063 dev_name(&pdev->dev), tspi);
1064 if (ret < 0) {
1065 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1066 tspi->irq);
1067 goto exit_free_master;
1068 }
1069
1070 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1071 if (IS_ERR(tspi->clk)) {
1072 dev_err(&pdev->dev, "can not get clock\n");
1073 ret = PTR_ERR(tspi->clk);
1074 goto exit_free_irq;
1075 }
1076
1077 tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1078 if (IS_ERR(tspi->rst)) {
1079 dev_err(&pdev->dev, "can not get reset\n");
1080 ret = PTR_ERR(tspi->rst);
1081 goto exit_free_irq;
1082 }
1083
1084 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1085 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1086
1087 ret = tegra_spi_init_dma_param(tspi, true);
1088 if (ret < 0)
1089 goto exit_free_irq;
1090 ret = tegra_spi_init_dma_param(tspi, false);
1091 if (ret < 0)
1092 goto exit_rx_dma_free;
1093 tspi->max_buf_size = tspi->dma_buf_size;
1094 init_completion(&tspi->tx_dma_complete);
1095 init_completion(&tspi->rx_dma_complete);
1096
1097 init_completion(&tspi->xfer_completion);
1098
1099 pm_runtime_enable(&pdev->dev);
1100 if (!pm_runtime_enabled(&pdev->dev)) {
1101 ret = tegra_spi_runtime_resume(&pdev->dev);
1102 if (ret)
1103 goto exit_pm_disable;
1104 }
1105
1106 ret = pm_runtime_get_sync(&pdev->dev);
1107 if (ret < 0) {
1108 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1109 goto exit_pm_disable;
1110 }
1111 tspi->def_command1_reg = SPI_M_S;
1112 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1113 pm_runtime_put(&pdev->dev);
1114
1115 master->dev.of_node = pdev->dev.of_node;
1116 ret = devm_spi_register_master(&pdev->dev, master);
1117 if (ret < 0) {
1118 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1119 goto exit_pm_disable;
1120 }
1121 return ret;
1122
1123exit_pm_disable:
1124 pm_runtime_disable(&pdev->dev);
1125 if (!pm_runtime_status_suspended(&pdev->dev))
1126 tegra_spi_runtime_suspend(&pdev->dev);
1127 tegra_spi_deinit_dma_param(tspi, false);
1128exit_rx_dma_free:
1129 tegra_spi_deinit_dma_param(tspi, true);
1130exit_free_irq:
1131 free_irq(spi_irq, tspi);
1132exit_free_master:
1133 spi_master_put(master);
1134 return ret;
1135}
1136
1137static int tegra_spi_remove(struct platform_device *pdev)
1138{
1139 struct spi_master *master = platform_get_drvdata(pdev);
1140 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1141
1142 free_irq(tspi->irq, tspi);
1143
1144 if (tspi->tx_dma_chan)
1145 tegra_spi_deinit_dma_param(tspi, false);
1146
1147 if (tspi->rx_dma_chan)
1148 tegra_spi_deinit_dma_param(tspi, true);
1149
1150 pm_runtime_disable(&pdev->dev);
1151 if (!pm_runtime_status_suspended(&pdev->dev))
1152 tegra_spi_runtime_suspend(&pdev->dev);
1153
1154 return 0;
1155}
1156
1157#ifdef CONFIG_PM_SLEEP
1158static int tegra_spi_suspend(struct device *dev)
1159{
1160 struct spi_master *master = dev_get_drvdata(dev);
1161
1162 return spi_master_suspend(master);
1163}
1164
1165static int tegra_spi_resume(struct device *dev)
1166{
1167 struct spi_master *master = dev_get_drvdata(dev);
1168 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1169 int ret;
1170
1171 ret = pm_runtime_get_sync(dev);
1172 if (ret < 0) {
1173 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1174 return ret;
1175 }
1176 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1177 pm_runtime_put(dev);
1178
1179 return spi_master_resume(master);
1180}
1181#endif
1182
1183static int tegra_spi_runtime_suspend(struct device *dev)
1184{
1185 struct spi_master *master = dev_get_drvdata(dev);
1186 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1187
1188 /* Flush all write which are in PPSB queue by reading back */
1189 tegra_spi_readl(tspi, SPI_COMMAND1);
1190
1191 clk_disable_unprepare(tspi->clk);
1192 return 0;
1193}
1194
1195static int tegra_spi_runtime_resume(struct device *dev)
1196{
1197 struct spi_master *master = dev_get_drvdata(dev);
1198 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1199 int ret;
1200
1201 ret = clk_prepare_enable(tspi->clk);
1202 if (ret < 0) {
1203 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1204 return ret;
1205 }
1206 return 0;
1207}
1208
1209static const struct dev_pm_ops tegra_spi_pm_ops = {
1210 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1211 tegra_spi_runtime_resume, NULL)
1212 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1213};
1214static struct platform_driver tegra_spi_driver = {
1215 .driver = {
1216 .name = "spi-tegra114",
1217 .owner = THIS_MODULE,
1218 .pm = &tegra_spi_pm_ops,
1219 .of_match_table = tegra_spi_of_match,
1220 },
1221 .probe = tegra_spi_probe,
1222 .remove = tegra_spi_remove,
1223};
1224module_platform_driver(tegra_spi_driver);
1225
1226MODULE_ALIAS("platform:spi-tegra114");
1227MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1228MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1229MODULE_LICENSE("GPL v2");