Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "farch_regs.h"
  24#include "io.h"
  25#include "phy.h"
  26#include "workarounds.h"
  27#include "selftest.h"
  28#include "mdio_10g.h"
  29
  30/* Hardware control for SFC4000 (aka Falcon). */
  31
  32/**************************************************************************
  33 *
  34 * NIC stats
  35 *
  36 **************************************************************************
  37 */
  38
  39#define FALCON_MAC_STATS_SIZE 0x100
  40
  41#define XgRxOctets_offset 0x0
  42#define XgRxOctets_WIDTH 48
  43#define XgRxOctetsOK_offset 0x8
  44#define XgRxOctetsOK_WIDTH 48
  45#define XgRxPkts_offset 0x10
  46#define XgRxPkts_WIDTH 32
  47#define XgRxPktsOK_offset 0x14
  48#define XgRxPktsOK_WIDTH 32
  49#define XgRxBroadcastPkts_offset 0x18
  50#define XgRxBroadcastPkts_WIDTH 32
  51#define XgRxMulticastPkts_offset 0x1C
  52#define XgRxMulticastPkts_WIDTH 32
  53#define XgRxUnicastPkts_offset 0x20
  54#define XgRxUnicastPkts_WIDTH 32
  55#define XgRxUndersizePkts_offset 0x24
  56#define XgRxUndersizePkts_WIDTH 32
  57#define XgRxOversizePkts_offset 0x28
  58#define XgRxOversizePkts_WIDTH 32
  59#define XgRxJabberPkts_offset 0x2C
  60#define XgRxJabberPkts_WIDTH 32
  61#define XgRxUndersizeFCSerrorPkts_offset 0x30
  62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  63#define XgRxDropEvents_offset 0x34
  64#define XgRxDropEvents_WIDTH 32
  65#define XgRxFCSerrorPkts_offset 0x38
  66#define XgRxFCSerrorPkts_WIDTH 32
  67#define XgRxAlignError_offset 0x3C
  68#define XgRxAlignError_WIDTH 32
  69#define XgRxSymbolError_offset 0x40
  70#define XgRxSymbolError_WIDTH 32
  71#define XgRxInternalMACError_offset 0x44
  72#define XgRxInternalMACError_WIDTH 32
  73#define XgRxControlPkts_offset 0x48
  74#define XgRxControlPkts_WIDTH 32
  75#define XgRxPausePkts_offset 0x4C
  76#define XgRxPausePkts_WIDTH 32
  77#define XgRxPkts64Octets_offset 0x50
  78#define XgRxPkts64Octets_WIDTH 32
  79#define XgRxPkts65to127Octets_offset 0x54
  80#define XgRxPkts65to127Octets_WIDTH 32
  81#define XgRxPkts128to255Octets_offset 0x58
  82#define XgRxPkts128to255Octets_WIDTH 32
  83#define XgRxPkts256to511Octets_offset 0x5C
  84#define XgRxPkts256to511Octets_WIDTH 32
  85#define XgRxPkts512to1023Octets_offset 0x60
  86#define XgRxPkts512to1023Octets_WIDTH 32
  87#define XgRxPkts1024to15xxOctets_offset 0x64
  88#define XgRxPkts1024to15xxOctets_WIDTH 32
  89#define XgRxPkts15xxtoMaxOctets_offset 0x68
  90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  91#define XgRxLengthError_offset 0x6C
  92#define XgRxLengthError_WIDTH 32
  93#define XgTxPkts_offset 0x80
  94#define XgTxPkts_WIDTH 32
  95#define XgTxOctets_offset 0x88
  96#define XgTxOctets_WIDTH 48
  97#define XgTxMulticastPkts_offset 0x90
  98#define XgTxMulticastPkts_WIDTH 32
  99#define XgTxBroadcastPkts_offset 0x94
 100#define XgTxBroadcastPkts_WIDTH 32
 101#define XgTxUnicastPkts_offset 0x98
 102#define XgTxUnicastPkts_WIDTH 32
 103#define XgTxControlPkts_offset 0x9C
 104#define XgTxControlPkts_WIDTH 32
 105#define XgTxPausePkts_offset 0xA0
 106#define XgTxPausePkts_WIDTH 32
 107#define XgTxPkts64Octets_offset 0xA4
 108#define XgTxPkts64Octets_WIDTH 32
 109#define XgTxPkts65to127Octets_offset 0xA8
 110#define XgTxPkts65to127Octets_WIDTH 32
 111#define XgTxPkts128to255Octets_offset 0xAC
 112#define XgTxPkts128to255Octets_WIDTH 32
 113#define XgTxPkts256to511Octets_offset 0xB0
 114#define XgTxPkts256to511Octets_WIDTH 32
 115#define XgTxPkts512to1023Octets_offset 0xB4
 116#define XgTxPkts512to1023Octets_WIDTH 32
 117#define XgTxPkts1024to15xxOctets_offset 0xB8
 118#define XgTxPkts1024to15xxOctets_WIDTH 32
 119#define XgTxPkts1519toMaxOctets_offset 0xBC
 120#define XgTxPkts1519toMaxOctets_WIDTH 32
 121#define XgTxUndersizePkts_offset 0xC0
 122#define XgTxUndersizePkts_WIDTH 32
 123#define XgTxOversizePkts_offset 0xC4
 124#define XgTxOversizePkts_WIDTH 32
 125#define XgTxNonTcpUdpPkt_offset 0xC8
 126#define XgTxNonTcpUdpPkt_WIDTH 16
 127#define XgTxMacSrcErrPkt_offset 0xCC
 128#define XgTxMacSrcErrPkt_WIDTH 16
 129#define XgTxIpSrcErrPkt_offset 0xD0
 130#define XgTxIpSrcErrPkt_WIDTH 16
 131#define XgDmaDone_offset 0xD4
 132#define XgDmaDone_WIDTH 32
 133
 134#define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
 135	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 136
 137#define FALCON_DMA_STAT(ext_name, hw_name)				\
 138	[FALCON_STAT_ ## ext_name] =					\
 139	{ #ext_name,							\
 140	  /* 48-bit stats are zero-padded to 64 on DMA */		\
 141	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
 142	  hw_name ## _ ## offset }
 143#define FALCON_OTHER_STAT(ext_name)					\
 144	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 145#define GENERIC_SW_STAT(ext_name)				\
 146	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 147
 148static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 149	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 150	FALCON_DMA_STAT(tx_packets, XgTxPkts),
 151	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 152	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 153	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 154	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 155	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 156	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 157	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 158	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 159	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 160	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 161	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 162	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 163	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 164	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 165	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 166	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 167	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 168	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 169	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 170	FALCON_OTHER_STAT(rx_bad_bytes),
 171	FALCON_DMA_STAT(rx_packets, XgRxPkts),
 172	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 173	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 174	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 175	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 176	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 177	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 178	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 179	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 180	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 181	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 182	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 183	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 184	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 185	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 186	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 187	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 188	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 189	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 190	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 191	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 192	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 193	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 194	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 195	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 196	GENERIC_SW_STAT(rx_nodesc_trunc),
 197	GENERIC_SW_STAT(rx_noskb_drops),
 198};
 199static const unsigned long falcon_stat_mask[] = {
 200	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 201};
 202
 203/**************************************************************************
 204 *
 205 * Basic SPI command set and bit definitions
 206 *
 207 *************************************************************************/
 208
 209#define SPI_WRSR 0x01		/* Write status register */
 210#define SPI_WRITE 0x02		/* Write data to memory array */
 211#define SPI_READ 0x03		/* Read data from memory array */
 212#define SPI_WRDI 0x04		/* Reset write enable latch */
 213#define SPI_RDSR 0x05		/* Read status register */
 214#define SPI_WREN 0x06		/* Set write enable latch */
 215#define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
 216
 217#define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
 218#define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
 219#define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
 220#define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
 221#define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
 222#define SPI_STATUS_NRDY 0x01	/* Device busy flag */
 223
 224/**************************************************************************
 225 *
 226 * Non-volatile memory layout
 227 *
 228 **************************************************************************
 229 */
 230
 231/* SFC4000 flash is partitioned into:
 232 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 233 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 234 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 237 *     0-0x400       chip and board config
 238 *     configurable  VPD
 239 *     0x800-0x1800  boot config
 240 * Aside from the chip and board config, all of these are optional and may
 241 * be absent or truncated depending on the devices used.
 242 */
 243#define FALCON_NVCONFIG_END 0x400U
 244#define FALCON_FLASH_BOOTCODE_START 0x8000U
 245#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 246#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 247
 248/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 249struct falcon_nvconfig_board_v2 {
 250	__le16 nports;
 251	u8 port0_phy_addr;
 252	u8 port0_phy_type;
 253	u8 port1_phy_addr;
 254	u8 port1_phy_type;
 255	__le16 asic_sub_revision;
 256	__le16 board_revision;
 257} __packed;
 258
 259/* Board configuration v3 extra information */
 260struct falcon_nvconfig_board_v3 {
 261	__le32 spi_device_type[2];
 262} __packed;
 263
 264/* Bit numbers for spi_device_type */
 265#define SPI_DEV_TYPE_SIZE_LBN 0
 266#define SPI_DEV_TYPE_SIZE_WIDTH 5
 267#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 268#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 269#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 270#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 271#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 272#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 273#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 274#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 275#define SPI_DEV_TYPE_FIELD(type, field)					\
 276	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
 277
 278#define FALCON_NVCONFIG_OFFSET 0x300
 279
 280#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 281struct falcon_nvconfig {
 282	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
 283	u8 mac_address[2][8];			/* 0x310 */
 284	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
 285	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
 286	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
 287	efx_oword_t hw_init_reg;			/* 0x350 */
 288	efx_oword_t nic_stat_reg;			/* 0x360 */
 289	efx_oword_t glb_ctl_reg;			/* 0x370 */
 290	efx_oword_t srm_cfg_reg;			/* 0x380 */
 291	efx_oword_t spare_reg;				/* 0x390 */
 292	__le16 board_magic_num;			/* 0x3A0 */
 293	__le16 board_struct_ver;
 294	__le16 board_checksum;
 295	struct falcon_nvconfig_board_v2 board_v2;
 296	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
 297	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
 298} __packed;
 299
 300/*************************************************************************/
 301
 302static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
 303static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
 304
 305static const unsigned int
 306/* "Large" EEPROM device: Atmel AT25640 or similar
 307 * 8 KB, 16-bit address, 32 B write block */
 308large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 309		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 310		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 311/* Default flash device: Atmel AT25F1024
 312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 313default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 314		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 315		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 316		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 317		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 318
 319/**************************************************************************
 320 *
 321 * I2C bus - this is a bit-bashing interface using GPIO pins
 322 * Note that it uses the output enables to tristate the outputs
 323 * SDA is the data pin and SCL is the clock
 324 *
 325 **************************************************************************
 326 */
 327static void falcon_setsda(void *data, int state)
 328{
 329	struct efx_nic *efx = (struct efx_nic *)data;
 330	efx_oword_t reg;
 331
 332	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 333	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 334	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 335}
 336
 337static void falcon_setscl(void *data, int state)
 338{
 339	struct efx_nic *efx = (struct efx_nic *)data;
 340	efx_oword_t reg;
 341
 342	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 343	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 344	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 345}
 346
 347static int falcon_getsda(void *data)
 348{
 349	struct efx_nic *efx = (struct efx_nic *)data;
 350	efx_oword_t reg;
 351
 352	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 353	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 354}
 355
 356static int falcon_getscl(void *data)
 357{
 358	struct efx_nic *efx = (struct efx_nic *)data;
 359	efx_oword_t reg;
 360
 361	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 362	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 363}
 364
 365static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 366	.setsda		= falcon_setsda,
 367	.setscl		= falcon_setscl,
 368	.getsda		= falcon_getsda,
 369	.getscl		= falcon_getscl,
 370	.udelay		= 5,
 371	/* Wait up to 50 ms for slave to let us pull SCL high */
 372	.timeout	= DIV_ROUND_UP(HZ, 20),
 373};
 374
 375static void falcon_push_irq_moderation(struct efx_channel *channel)
 376{
 377	efx_dword_t timer_cmd;
 378	struct efx_nic *efx = channel->efx;
 379
 380	/* Set timer register */
 381	if (channel->irq_moderation) {
 382		EFX_POPULATE_DWORD_2(timer_cmd,
 383				     FRF_AB_TC_TIMER_MODE,
 384				     FFE_BB_TIMER_MODE_INT_HLDOFF,
 385				     FRF_AB_TC_TIMER_VAL,
 386				     channel->irq_moderation - 1);
 387	} else {
 388		EFX_POPULATE_DWORD_2(timer_cmd,
 389				     FRF_AB_TC_TIMER_MODE,
 390				     FFE_BB_TIMER_MODE_DIS,
 391				     FRF_AB_TC_TIMER_VAL, 0);
 392	}
 393	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 394	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 395			       channel->channel);
 396}
 397
 398static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 399
 400static void falcon_prepare_flush(struct efx_nic *efx)
 401{
 402	falcon_deconfigure_mac_wrapper(efx);
 403
 404	/* Wait for the tx and rx fifo's to get to the next packet boundary
 405	 * (~1ms without back-pressure), then to drain the remainder of the
 406	 * fifo's at data path speeds (negligible), with a healthy margin. */
 407	msleep(10);
 408}
 409
 410/* Acknowledge a legacy interrupt from Falcon
 411 *
 412 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 413 *
 414 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 415 * BIU. Interrupt acknowledge is read sensitive so must write instead
 416 * (then read to ensure the BIU collector is flushed)
 417 *
 418 * NB most hardware supports MSI interrupts
 419 */
 420static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 421{
 422	efx_dword_t reg;
 423
 424	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 425	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
 426	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 427}
 428
 429static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 430{
 431	struct efx_nic *efx = dev_id;
 432	efx_oword_t *int_ker = efx->irq_status.addr;
 433	int syserr;
 434	int queues;
 435
 436	/* Check to see if this is our interrupt.  If it isn't, we
 437	 * exit without having touched the hardware.
 438	 */
 439	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 440		netif_vdbg(efx, intr, efx->net_dev,
 441			   "IRQ %d on CPU %d not for me\n", irq,
 442			   raw_smp_processor_id());
 443		return IRQ_NONE;
 444	}
 445	efx->last_irq_cpu = raw_smp_processor_id();
 446	netif_vdbg(efx, intr, efx->net_dev,
 447		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 448		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 449
 450	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 451		return IRQ_HANDLED;
 452
 453	/* Check to see if we have a serious error condition */
 454	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 455	if (unlikely(syserr))
 456		return efx_farch_fatal_interrupt(efx);
 457
 458	/* Determine interrupting queues, clear interrupt status
 459	 * register and acknowledge the device interrupt.
 460	 */
 461	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 462	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 463	EFX_ZERO_OWORD(*int_ker);
 464	wmb(); /* Ensure the vector is cleared before interrupt ack */
 465	falcon_irq_ack_a1(efx);
 466
 467	if (queues & 1)
 468		efx_schedule_channel_irq(efx_get_channel(efx, 0));
 469	if (queues & 2)
 470		efx_schedule_channel_irq(efx_get_channel(efx, 1));
 471	return IRQ_HANDLED;
 472}
 473
 474/**************************************************************************
 475 *
 476 * RSS
 477 *
 478 **************************************************************************
 479 */
 480static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
 481				    const u32 *rx_indir_table)
 482{
 483	(void) efx;
 484	(void) user;
 485	(void) rx_indir_table;
 486	return -ENOSYS;
 487}
 488
 489static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
 490					const u32 *rx_indir_table)
 491{
 492	efx_oword_t temp;
 493
 494	(void) user;
 495	/* Set hash key for IPv4 */
 496	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 497	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 498
 499	memcpy(efx->rx_indir_table, rx_indir_table,
 500	       sizeof(efx->rx_indir_table));
 501	efx_farch_rx_push_indir_table(efx);
 502	return 0;
 503}
 504
 505/**************************************************************************
 506 *
 507 * EEPROM/flash
 508 *
 509 **************************************************************************
 510 */
 511
 512#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 513
 514static int falcon_spi_poll(struct efx_nic *efx)
 515{
 516	efx_oword_t reg;
 517	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 518	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 519}
 520
 521/* Wait for SPI command completion */
 522static int falcon_spi_wait(struct efx_nic *efx)
 523{
 524	/* Most commands will finish quickly, so we start polling at
 525	 * very short intervals.  Sometimes the command may have to
 526	 * wait for VPD or expansion ROM access outside of our
 527	 * control, so we allow up to 100 ms. */
 528	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 529	int i;
 530
 531	for (i = 0; i < 10; i++) {
 532		if (!falcon_spi_poll(efx))
 533			return 0;
 534		udelay(10);
 535	}
 536
 537	for (;;) {
 538		if (!falcon_spi_poll(efx))
 539			return 0;
 540		if (time_after_eq(jiffies, timeout)) {
 541			netif_err(efx, hw, efx->net_dev,
 542				  "timed out waiting for SPI\n");
 543			return -ETIMEDOUT;
 544		}
 545		schedule_timeout_uninterruptible(1);
 546	}
 547}
 548
 549static int
 550falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
 551	       unsigned int command, int address,
 552	       const void *in, void *out, size_t len)
 553{
 554	bool addressed = (address >= 0);
 555	bool reading = (out != NULL);
 556	efx_oword_t reg;
 557	int rc;
 558
 559	/* Input validation */
 560	if (len > FALCON_SPI_MAX_LEN)
 561		return -EINVAL;
 562
 563	/* Check that previous command is not still running */
 564	rc = falcon_spi_poll(efx);
 565	if (rc)
 566		return rc;
 567
 568	/* Program address register, if we have an address */
 569	if (addressed) {
 570		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 571		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 572	}
 573
 574	/* Program data register, if we have data */
 575	if (in != NULL) {
 576		memcpy(&reg, in, len);
 577		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 578	}
 579
 580	/* Issue read/write command */
 581	EFX_POPULATE_OWORD_7(reg,
 582			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 583			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 584			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
 585			     FRF_AB_EE_SPI_HCMD_READ, reading,
 586			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 587			     FRF_AB_EE_SPI_HCMD_ADBCNT,
 588			     (addressed ? spi->addr_len : 0),
 589			     FRF_AB_EE_SPI_HCMD_ENC, command);
 590	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 591
 592	/* Wait for read/write to complete */
 593	rc = falcon_spi_wait(efx);
 594	if (rc)
 595		return rc;
 596
 597	/* Read data */
 598	if (out != NULL) {
 599		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 600		memcpy(out, &reg, len);
 601	}
 602
 603	return 0;
 604}
 605
 606static inline u8
 607falcon_spi_munge_command(const struct falcon_spi_device *spi,
 608			 const u8 command, const unsigned int address)
 609{
 610	return command | (((address >> 8) & spi->munge_address) << 3);
 611}
 612
 613static int
 614falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
 615		loff_t start, size_t len, size_t *retlen, u8 *buffer)
 616{
 617	size_t block_len, pos = 0;
 618	unsigned int command;
 619	int rc = 0;
 620
 621	while (pos < len) {
 622		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 623
 624		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 625		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 626				    buffer + pos, block_len);
 627		if (rc)
 628			break;
 629		pos += block_len;
 630
 631		/* Avoid locking up the system */
 632		cond_resched();
 633		if (signal_pending(current)) {
 634			rc = -EINTR;
 635			break;
 636		}
 637	}
 638
 639	if (retlen)
 640		*retlen = pos;
 641	return rc;
 642}
 643
 644#ifdef CONFIG_SFC_MTD
 645
 646struct falcon_mtd_partition {
 647	struct efx_mtd_partition common;
 648	const struct falcon_spi_device *spi;
 649	size_t offset;
 650};
 651
 652#define to_falcon_mtd_partition(mtd)				\
 653	container_of(mtd, struct falcon_mtd_partition, common.mtd)
 654
 655static size_t
 656falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 657{
 658	return min(FALCON_SPI_MAX_LEN,
 659		   (spi->block_size - (start & (spi->block_size - 1))));
 660}
 661
 662/* Wait up to 10 ms for buffered write completion */
 663static int
 664falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
 665{
 666	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 667	u8 status;
 668	int rc;
 669
 670	for (;;) {
 671		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 672				    &status, sizeof(status));
 673		if (rc)
 674			return rc;
 675		if (!(status & SPI_STATUS_NRDY))
 676			return 0;
 677		if (time_after_eq(jiffies, timeout)) {
 678			netif_err(efx, hw, efx->net_dev,
 679				  "SPI write timeout on device %d"
 680				  " last status=0x%02x\n",
 681				  spi->device_id, status);
 682			return -ETIMEDOUT;
 683		}
 684		schedule_timeout_uninterruptible(1);
 685	}
 686}
 687
 688static int
 689falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
 690		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 691{
 692	u8 verify_buffer[FALCON_SPI_MAX_LEN];
 693	size_t block_len, pos = 0;
 694	unsigned int command;
 695	int rc = 0;
 696
 697	while (pos < len) {
 698		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 699		if (rc)
 700			break;
 701
 702		block_len = min(len - pos,
 703				falcon_spi_write_limit(spi, start + pos));
 704		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 705		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 706				    buffer + pos, NULL, block_len);
 707		if (rc)
 708			break;
 709
 710		rc = falcon_spi_wait_write(efx, spi);
 711		if (rc)
 712			break;
 713
 714		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 715		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 716				    NULL, verify_buffer, block_len);
 717		if (memcmp(verify_buffer, buffer + pos, block_len)) {
 718			rc = -EIO;
 719			break;
 720		}
 721
 722		pos += block_len;
 723
 724		/* Avoid locking up the system */
 725		cond_resched();
 726		if (signal_pending(current)) {
 727			rc = -EINTR;
 728			break;
 729		}
 730	}
 731
 732	if (retlen)
 733		*retlen = pos;
 734	return rc;
 735}
 736
 737static int
 738falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 739{
 740	const struct falcon_spi_device *spi = part->spi;
 741	struct efx_nic *efx = part->common.mtd.priv;
 742	u8 status;
 743	int rc, i;
 744
 745	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 746	for (i = 0; i < 40; i++) {
 747		__set_current_state(uninterruptible ?
 748				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 749		schedule_timeout(HZ / 10);
 750		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 751				    &status, sizeof(status));
 752		if (rc)
 753			return rc;
 754		if (!(status & SPI_STATUS_NRDY))
 755			return 0;
 756		if (signal_pending(current))
 757			return -EINTR;
 758	}
 759	pr_err("%s: timed out waiting for %s\n",
 760	       part->common.name, part->common.dev_type_name);
 761	return -ETIMEDOUT;
 762}
 763
 764static int
 765falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
 766{
 767	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 768				SPI_STATUS_BP0);
 769	u8 status;
 770	int rc;
 771
 772	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 773			    &status, sizeof(status));
 774	if (rc)
 775		return rc;
 776
 777	if (!(status & unlock_mask))
 778		return 0; /* already unlocked */
 779
 780	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 781	if (rc)
 782		return rc;
 783	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 784	if (rc)
 785		return rc;
 786
 787	status &= ~unlock_mask;
 788	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 789			    NULL, sizeof(status));
 790	if (rc)
 791		return rc;
 792	rc = falcon_spi_wait_write(efx, spi);
 793	if (rc)
 794		return rc;
 795
 796	return 0;
 797}
 798
 799#define FALCON_SPI_VERIFY_BUF_LEN 16
 800
 801static int
 802falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 803{
 804	const struct falcon_spi_device *spi = part->spi;
 805	struct efx_nic *efx = part->common.mtd.priv;
 806	unsigned pos, block_len;
 807	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 808	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 809	int rc;
 810
 811	if (len != spi->erase_size)
 812		return -EINVAL;
 813
 814	if (spi->erase_command == 0)
 815		return -EOPNOTSUPP;
 816
 817	rc = falcon_spi_unlock(efx, spi);
 818	if (rc)
 819		return rc;
 820	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 821	if (rc)
 822		return rc;
 823	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 824			    NULL, 0);
 825	if (rc)
 826		return rc;
 827	rc = falcon_spi_slow_wait(part, false);
 828
 829	/* Verify the entire region has been wiped */
 830	memset(empty, 0xff, sizeof(empty));
 831	for (pos = 0; pos < len; pos += block_len) {
 832		block_len = min(len - pos, sizeof(buffer));
 833		rc = falcon_spi_read(efx, spi, start + pos, block_len,
 834				     NULL, buffer);
 835		if (rc)
 836			return rc;
 837		if (memcmp(empty, buffer, block_len))
 838			return -EIO;
 839
 840		/* Avoid locking up the system */
 841		cond_resched();
 842		if (signal_pending(current))
 843			return -EINTR;
 844	}
 845
 846	return rc;
 847}
 848
 849static void falcon_mtd_rename(struct efx_mtd_partition *part)
 850{
 851	struct efx_nic *efx = part->mtd.priv;
 852
 853	snprintf(part->name, sizeof(part->name), "%s %s",
 854		 efx->name, part->type_name);
 855}
 856
 857static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 858			   size_t len, size_t *retlen, u8 *buffer)
 859{
 860	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 861	struct efx_nic *efx = mtd->priv;
 862	struct falcon_nic_data *nic_data = efx->nic_data;
 863	int rc;
 864
 865	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 866	if (rc)
 867		return rc;
 868	rc = falcon_spi_read(efx, part->spi, part->offset + start,
 869			     len, retlen, buffer);
 870	mutex_unlock(&nic_data->spi_lock);
 871	return rc;
 872}
 873
 874static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 875{
 876	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 877	struct efx_nic *efx = mtd->priv;
 878	struct falcon_nic_data *nic_data = efx->nic_data;
 879	int rc;
 880
 881	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 882	if (rc)
 883		return rc;
 884	rc = falcon_spi_erase(part, part->offset + start, len);
 885	mutex_unlock(&nic_data->spi_lock);
 886	return rc;
 887}
 888
 889static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 890			    size_t len, size_t *retlen, const u8 *buffer)
 891{
 892	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 893	struct efx_nic *efx = mtd->priv;
 894	struct falcon_nic_data *nic_data = efx->nic_data;
 895	int rc;
 896
 897	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 898	if (rc)
 899		return rc;
 900	rc = falcon_spi_write(efx, part->spi, part->offset + start,
 901			      len, retlen, buffer);
 902	mutex_unlock(&nic_data->spi_lock);
 903	return rc;
 904}
 905
 906static int falcon_mtd_sync(struct mtd_info *mtd)
 907{
 908	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 909	struct efx_nic *efx = mtd->priv;
 910	struct falcon_nic_data *nic_data = efx->nic_data;
 911	int rc;
 912
 913	mutex_lock(&nic_data->spi_lock);
 914	rc = falcon_spi_slow_wait(part, true);
 915	mutex_unlock(&nic_data->spi_lock);
 916	return rc;
 917}
 918
 919static int falcon_mtd_probe(struct efx_nic *efx)
 920{
 921	struct falcon_nic_data *nic_data = efx->nic_data;
 922	struct falcon_mtd_partition *parts;
 923	struct falcon_spi_device *spi;
 924	size_t n_parts;
 925	int rc = -ENODEV;
 926
 927	ASSERT_RTNL();
 928
 929	/* Allocate space for maximum number of partitions */
 930	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 931	if (!parts)
 932		return -ENOMEM;
 933	n_parts = 0;
 934
 935	spi = &nic_data->spi_flash;
 936	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 937		parts[n_parts].spi = spi;
 938		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 939		parts[n_parts].common.dev_type_name = "flash";
 940		parts[n_parts].common.type_name = "sfc_flash_bootrom";
 941		parts[n_parts].common.mtd.type = MTD_NORFLASH;
 942		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 943		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 944		parts[n_parts].common.mtd.erasesize = spi->erase_size;
 945		n_parts++;
 946	}
 947
 948	spi = &nic_data->spi_eeprom;
 949	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 950		parts[n_parts].spi = spi;
 951		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 952		parts[n_parts].common.dev_type_name = "EEPROM";
 953		parts[n_parts].common.type_name = "sfc_bootconfig";
 954		parts[n_parts].common.mtd.type = MTD_RAM;
 955		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 956		parts[n_parts].common.mtd.size =
 957			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 958			FALCON_EEPROM_BOOTCONFIG_START;
 959		parts[n_parts].common.mtd.erasesize = spi->erase_size;
 960		n_parts++;
 961	}
 962
 963	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 964	if (rc)
 965		kfree(parts);
 966	return rc;
 967}
 968
 969#endif /* CONFIG_SFC_MTD */
 970
 971/**************************************************************************
 972 *
 973 * XMAC operations
 974 *
 975 **************************************************************************
 976 */
 977
 978/* Configure the XAUI driver that is an output from Falcon */
 979static void falcon_setup_xaui(struct efx_nic *efx)
 980{
 981	efx_oword_t sdctl, txdrv;
 982
 983	/* Move the XAUI into low power, unless there is no PHY, in
 984	 * which case the XAUI will have to drive a cable. */
 985	if (efx->phy_type == PHY_TYPE_NONE)
 986		return;
 987
 988	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 989	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 990	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 991	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 992	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 993	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 994	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 995	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 996	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 997	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
 998
 999	EFX_POPULATE_OWORD_8(txdrv,
1000			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1001			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1002			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1003			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1004			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1005			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1006			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1007			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1008	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1009}
1010
1011int falcon_reset_xaui(struct efx_nic *efx)
1012{
1013	struct falcon_nic_data *nic_data = efx->nic_data;
1014	efx_oword_t reg;
1015	int count;
1016
1017	/* Don't fetch MAC statistics over an XMAC reset */
1018	WARN_ON(nic_data->stats_disable_count == 0);
1019
1020	/* Start reset sequence */
1021	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1022	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1023
1024	/* Wait up to 10 ms for completion, then reinitialise */
1025	for (count = 0; count < 1000; count++) {
1026		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1027		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1028		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1029			falcon_setup_xaui(efx);
1030			return 0;
1031		}
1032		udelay(10);
1033	}
1034	netif_err(efx, hw, efx->net_dev,
1035		  "timed out waiting for XAUI/XGXS reset\n");
1036	return -ETIMEDOUT;
1037}
1038
1039static void falcon_ack_status_intr(struct efx_nic *efx)
1040{
1041	struct falcon_nic_data *nic_data = efx->nic_data;
1042	efx_oword_t reg;
1043
1044	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1045		return;
1046
1047	/* We expect xgmii faults if the wireside link is down */
1048	if (!efx->link_state.up)
1049		return;
1050
1051	/* We can only use this interrupt to signal the negative edge of
1052	 * xaui_align [we have to poll the positive edge]. */
1053	if (nic_data->xmac_poll_required)
1054		return;
1055
1056	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1057}
1058
1059static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1060{
1061	efx_oword_t reg;
1062	bool align_done, link_ok = false;
1063	int sync_status;
1064
1065	/* Read link status */
1066	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1067
1068	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1069	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1070	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1071		link_ok = true;
1072
1073	/* Clear link status ready for next read */
1074	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1075	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1076	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1077	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1078
1079	return link_ok;
1080}
1081
1082static bool falcon_xmac_link_ok(struct efx_nic *efx)
1083{
1084	/*
1085	 * Check MAC's XGXS link status except when using XGMII loopback
1086	 * which bypasses the XGXS block.
1087	 * If possible, check PHY's XGXS link status except when using
1088	 * MAC loopback.
1089	 */
1090	return (efx->loopback_mode == LOOPBACK_XGMII ||
1091		falcon_xgxs_link_ok(efx)) &&
1092		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1093		 LOOPBACK_INTERNAL(efx) ||
1094		 efx_mdio_phyxgxs_lane_sync(efx));
1095}
1096
1097static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1098{
1099	unsigned int max_frame_len;
1100	efx_oword_t reg;
1101	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1102	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1103
1104	/* Configure MAC  - cut-thru mode is hard wired on */
1105	EFX_POPULATE_OWORD_3(reg,
1106			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1107			     FRF_AB_XM_TX_STAT_EN, 1,
1108			     FRF_AB_XM_RX_STAT_EN, 1);
1109	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1110
1111	/* Configure TX */
1112	EFX_POPULATE_OWORD_6(reg,
1113			     FRF_AB_XM_TXEN, 1,
1114			     FRF_AB_XM_TX_PRMBL, 1,
1115			     FRF_AB_XM_AUTO_PAD, 1,
1116			     FRF_AB_XM_TXCRC, 1,
1117			     FRF_AB_XM_FCNTL, tx_fc,
1118			     FRF_AB_XM_IPG, 0x3);
1119	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1120
1121	/* Configure RX */
1122	EFX_POPULATE_OWORD_5(reg,
1123			     FRF_AB_XM_RXEN, 1,
1124			     FRF_AB_XM_AUTO_DEPAD, 0,
1125			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1126			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1127			     FRF_AB_XM_PASS_CRC_ERR, 1);
1128	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1129
1130	/* Set frame length */
1131	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1132	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1133	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1134	EFX_POPULATE_OWORD_2(reg,
1135			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1136			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1137	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1138
1139	EFX_POPULATE_OWORD_2(reg,
1140			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1141			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1142	efx_writeo(efx, &reg, FR_AB_XM_FC);
1143
1144	/* Set MAC address */
1145	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1146	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1147	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1148	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1149}
1150
1151static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1152{
1153	efx_oword_t reg;
1154	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1155	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1156	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1157	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1158
1159	/* XGXS block is flaky and will need to be reset if moving
1160	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1161	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1163	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1164
1165	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1167
1168	/* The PHY driver may have turned XAUI off */
1169	if ((xgxs_loopback != old_xgxs_loopback) ||
1170	    (xaui_loopback != old_xaui_loopback) ||
1171	    (xgmii_loopback != old_xgmii_loopback))
1172		falcon_reset_xaui(efx);
1173
1174	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1175	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1176			    (xgxs_loopback || xaui_loopback) ?
1177			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1178	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1179	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1180	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1181
1182	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1183	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1184	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1185	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1186	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1187	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1188}
1189
1190
1191/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1192static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1193{
1194	bool mac_up = falcon_xmac_link_ok(efx);
1195
1196	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1197	    efx_phy_mode_disabled(efx->phy_mode))
1198		/* XAUI link is expected to be down */
1199		return mac_up;
1200
1201	falcon_stop_nic_stats(efx);
1202
1203	while (!mac_up && tries) {
1204		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1205		falcon_reset_xaui(efx);
1206		udelay(200);
1207
1208		mac_up = falcon_xmac_link_ok(efx);
1209		--tries;
1210	}
1211
1212	falcon_start_nic_stats(efx);
1213
1214	return mac_up;
1215}
1216
1217static bool falcon_xmac_check_fault(struct efx_nic *efx)
1218{
1219	return !falcon_xmac_link_ok_retry(efx, 5);
1220}
1221
1222static int falcon_reconfigure_xmac(struct efx_nic *efx)
1223{
1224	struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226	efx_farch_filter_sync_rx_mode(efx);
1227
1228	falcon_reconfigure_xgxs_core(efx);
1229	falcon_reconfigure_xmac_core(efx);
1230
1231	falcon_reconfigure_mac_wrapper(efx);
1232
1233	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1234	falcon_ack_status_intr(efx);
1235
1236	return 0;
1237}
1238
1239static void falcon_poll_xmac(struct efx_nic *efx)
1240{
1241	struct falcon_nic_data *nic_data = efx->nic_data;
1242
1243	/* We expect xgmii faults if the wireside link is down */
1244	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1245		return;
1246
1247	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1248	falcon_ack_status_intr(efx);
1249}
1250
1251/**************************************************************************
1252 *
1253 * MAC wrapper
1254 *
1255 **************************************************************************
1256 */
1257
1258static void falcon_push_multicast_hash(struct efx_nic *efx)
1259{
1260	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1261
1262	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1263
1264	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1265	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1266}
1267
1268static void falcon_reset_macs(struct efx_nic *efx)
1269{
1270	struct falcon_nic_data *nic_data = efx->nic_data;
1271	efx_oword_t reg, mac_ctrl;
1272	int count;
1273
1274	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1275		/* It's not safe to use GLB_CTL_REG to reset the
1276		 * macs, so instead use the internal MAC resets
1277		 */
1278		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1279		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1280
1281		for (count = 0; count < 10000; count++) {
1282			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1283			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1284			    0)
1285				return;
1286			udelay(10);
1287		}
1288
1289		netif_err(efx, hw, efx->net_dev,
1290			  "timed out waiting for XMAC core reset\n");
1291	}
1292
1293	/* Mac stats will fail whist the TX fifo is draining */
1294	WARN_ON(nic_data->stats_disable_count == 0);
1295
1296	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1297	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1298	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299
1300	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1301	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1302	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1303	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1304	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1305
1306	count = 0;
1307	while (1) {
1308		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1309		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1310		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1311		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1312			netif_dbg(efx, hw, efx->net_dev,
1313				  "Completed MAC reset after %d loops\n",
1314				  count);
1315			break;
1316		}
1317		if (count > 20) {
1318			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1319			break;
1320		}
1321		count++;
1322		udelay(10);
1323	}
1324
1325	/* Ensure the correct MAC is selected before statistics
1326	 * are re-enabled by the caller */
1327	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1328
1329	falcon_setup_xaui(efx);
1330}
1331
1332static void falcon_drain_tx_fifo(struct efx_nic *efx)
1333{
1334	efx_oword_t reg;
1335
1336	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1337	    (efx->loopback_mode != LOOPBACK_NONE))
1338		return;
1339
1340	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1341	/* There is no point in draining more than once */
1342	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1343		return;
1344
1345	falcon_reset_macs(efx);
1346}
1347
1348static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1349{
1350	efx_oword_t reg;
1351
1352	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1353		return;
1354
1355	/* Isolate the MAC -> RX */
1356	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1357	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1358	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1359
1360	/* Isolate TX -> MAC */
1361	falcon_drain_tx_fifo(efx);
1362}
1363
1364static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1365{
1366	struct efx_link_state *link_state = &efx->link_state;
1367	efx_oword_t reg;
1368	int link_speed, isolate;
1369
1370	isolate = !!ACCESS_ONCE(efx->reset_pending);
1371
1372	switch (link_state->speed) {
1373	case 10000: link_speed = 3; break;
1374	case 1000:  link_speed = 2; break;
1375	case 100:   link_speed = 1; break;
1376	default:    link_speed = 0; break;
1377	}
1378
1379	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1380	 * as advertised.  Disable to ensure packets are not
1381	 * indefinitely held and TX queue can be flushed at any point
1382	 * while the link is down. */
1383	EFX_POPULATE_OWORD_5(reg,
1384			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1385			     FRF_AB_MAC_BCAD_ACPT, 1,
1386			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1387			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1388			     FRF_AB_MAC_SPEED, link_speed);
1389	/* On B0, MAC backpressure can be disabled and packets get
1390	 * discarded. */
1391	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1392		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1393				    !link_state->up || isolate);
1394	}
1395
1396	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1397
1398	/* Restore the multicast hash registers. */
1399	falcon_push_multicast_hash(efx);
1400
1401	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1402	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1403	 * initialisation but it may read back as 0) */
1404	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1405	/* Unisolate the MAC -> RX */
1406	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1407		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1408	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1409}
1410
1411static void falcon_stats_request(struct efx_nic *efx)
1412{
1413	struct falcon_nic_data *nic_data = efx->nic_data;
1414	efx_oword_t reg;
1415
1416	WARN_ON(nic_data->stats_pending);
1417	WARN_ON(nic_data->stats_disable_count);
1418
1419	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1420	nic_data->stats_pending = true;
1421	wmb(); /* ensure done flag is clear */
1422
1423	/* Initiate DMA transfer of stats */
1424	EFX_POPULATE_OWORD_2(reg,
1425			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1426			     FRF_AB_MAC_STAT_DMA_ADR,
1427			     efx->stats_buffer.dma_addr);
1428	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1429
1430	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1431}
1432
1433static void falcon_stats_complete(struct efx_nic *efx)
1434{
1435	struct falcon_nic_data *nic_data = efx->nic_data;
1436
1437	if (!nic_data->stats_pending)
1438		return;
1439
1440	nic_data->stats_pending = false;
1441	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1442		rmb(); /* read the done flag before the stats */
1443		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1444				     falcon_stat_mask, nic_data->stats,
1445				     efx->stats_buffer.addr, true);
1446	} else {
1447		netif_err(efx, hw, efx->net_dev,
1448			  "timed out waiting for statistics\n");
1449	}
1450}
1451
1452static void falcon_stats_timer_func(unsigned long context)
1453{
1454	struct efx_nic *efx = (struct efx_nic *)context;
1455	struct falcon_nic_data *nic_data = efx->nic_data;
1456
1457	spin_lock(&efx->stats_lock);
1458
1459	falcon_stats_complete(efx);
1460	if (nic_data->stats_disable_count == 0)
1461		falcon_stats_request(efx);
1462
1463	spin_unlock(&efx->stats_lock);
1464}
1465
1466static bool falcon_loopback_link_poll(struct efx_nic *efx)
1467{
1468	struct efx_link_state old_state = efx->link_state;
1469
1470	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1471	WARN_ON(!LOOPBACK_INTERNAL(efx));
1472
1473	efx->link_state.fd = true;
1474	efx->link_state.fc = efx->wanted_fc;
1475	efx->link_state.up = true;
1476	efx->link_state.speed = 10000;
1477
1478	return !efx_link_state_equal(&efx->link_state, &old_state);
1479}
1480
1481static int falcon_reconfigure_port(struct efx_nic *efx)
1482{
1483	int rc;
1484
1485	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1486
1487	/* Poll the PHY link state *before* reconfiguring it. This means we
1488	 * will pick up the correct speed (in loopback) to select the correct
1489	 * MAC.
1490	 */
1491	if (LOOPBACK_INTERNAL(efx))
1492		falcon_loopback_link_poll(efx);
1493	else
1494		efx->phy_op->poll(efx);
1495
1496	falcon_stop_nic_stats(efx);
1497	falcon_deconfigure_mac_wrapper(efx);
1498
1499	falcon_reset_macs(efx);
1500
1501	efx->phy_op->reconfigure(efx);
1502	rc = falcon_reconfigure_xmac(efx);
1503	BUG_ON(rc);
1504
1505	falcon_start_nic_stats(efx);
1506
1507	/* Synchronise efx->link_state with the kernel */
1508	efx_link_status_changed(efx);
1509
1510	return 0;
1511}
1512
1513/* TX flow control may automatically turn itself off if the link
1514 * partner (intermittently) stops responding to pause frames. There
1515 * isn't any indication that this has happened, so the best we do is
1516 * leave it up to the user to spot this and fix it by cycling transmit
1517 * flow control on this end.
1518 */
1519
1520static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1521{
1522	/* Schedule a reset to recover */
1523	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1524}
1525
1526static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1527{
1528	/* Recover by resetting the EM block */
1529	falcon_stop_nic_stats(efx);
1530	falcon_drain_tx_fifo(efx);
1531	falcon_reconfigure_xmac(efx);
1532	falcon_start_nic_stats(efx);
1533}
1534
1535/**************************************************************************
1536 *
1537 * PHY access via GMII
1538 *
1539 **************************************************************************
1540 */
1541
1542/* Wait for GMII access to complete */
1543static int falcon_gmii_wait(struct efx_nic *efx)
1544{
1545	efx_oword_t md_stat;
1546	int count;
1547
1548	/* wait up to 50ms - taken max from datasheet */
1549	for (count = 0; count < 5000; count++) {
1550		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1551		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1552			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1553			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1554				netif_err(efx, hw, efx->net_dev,
1555					  "error from GMII access "
1556					  EFX_OWORD_FMT"\n",
1557					  EFX_OWORD_VAL(md_stat));
1558				return -EIO;
1559			}
1560			return 0;
1561		}
1562		udelay(10);
1563	}
1564	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1565	return -ETIMEDOUT;
1566}
1567
1568/* Write an MDIO register of a PHY connected to Falcon. */
1569static int falcon_mdio_write(struct net_device *net_dev,
1570			     int prtad, int devad, u16 addr, u16 value)
1571{
1572	struct efx_nic *efx = netdev_priv(net_dev);
1573	struct falcon_nic_data *nic_data = efx->nic_data;
1574	efx_oword_t reg;
1575	int rc;
1576
1577	netif_vdbg(efx, hw, efx->net_dev,
1578		   "writing MDIO %d register %d.%d with 0x%04x\n",
1579		    prtad, devad, addr, value);
1580
1581	mutex_lock(&nic_data->mdio_lock);
1582
1583	/* Check MDIO not currently being accessed */
1584	rc = falcon_gmii_wait(efx);
1585	if (rc)
1586		goto out;
1587
1588	/* Write the address/ID register */
1589	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1590	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1591
1592	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1593			     FRF_AB_MD_DEV_ADR, devad);
1594	efx_writeo(efx, &reg, FR_AB_MD_ID);
1595
1596	/* Write data */
1597	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1598	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1599
1600	EFX_POPULATE_OWORD_2(reg,
1601			     FRF_AB_MD_WRC, 1,
1602			     FRF_AB_MD_GC, 0);
1603	efx_writeo(efx, &reg, FR_AB_MD_CS);
1604
1605	/* Wait for data to be written */
1606	rc = falcon_gmii_wait(efx);
1607	if (rc) {
1608		/* Abort the write operation */
1609		EFX_POPULATE_OWORD_2(reg,
1610				     FRF_AB_MD_WRC, 0,
1611				     FRF_AB_MD_GC, 1);
1612		efx_writeo(efx, &reg, FR_AB_MD_CS);
1613		udelay(10);
1614	}
1615
1616out:
1617	mutex_unlock(&nic_data->mdio_lock);
1618	return rc;
1619}
1620
1621/* Read an MDIO register of a PHY connected to Falcon. */
1622static int falcon_mdio_read(struct net_device *net_dev,
1623			    int prtad, int devad, u16 addr)
1624{
1625	struct efx_nic *efx = netdev_priv(net_dev);
1626	struct falcon_nic_data *nic_data = efx->nic_data;
1627	efx_oword_t reg;
1628	int rc;
1629
1630	mutex_lock(&nic_data->mdio_lock);
1631
1632	/* Check MDIO not currently being accessed */
1633	rc = falcon_gmii_wait(efx);
1634	if (rc)
1635		goto out;
1636
1637	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1638	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1639
1640	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1641			     FRF_AB_MD_DEV_ADR, devad);
1642	efx_writeo(efx, &reg, FR_AB_MD_ID);
1643
1644	/* Request data to be read */
1645	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1646	efx_writeo(efx, &reg, FR_AB_MD_CS);
1647
1648	/* Wait for data to become available */
1649	rc = falcon_gmii_wait(efx);
1650	if (rc == 0) {
1651		efx_reado(efx, &reg, FR_AB_MD_RXD);
1652		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1653		netif_vdbg(efx, hw, efx->net_dev,
1654			   "read from MDIO %d register %d.%d, got %04x\n",
1655			   prtad, devad, addr, rc);
1656	} else {
1657		/* Abort the read operation */
1658		EFX_POPULATE_OWORD_2(reg,
1659				     FRF_AB_MD_RIC, 0,
1660				     FRF_AB_MD_GC, 1);
1661		efx_writeo(efx, &reg, FR_AB_MD_CS);
1662
1663		netif_dbg(efx, hw, efx->net_dev,
1664			  "read from MDIO %d register %d.%d, got error %d\n",
1665			  prtad, devad, addr, rc);
1666	}
1667
1668out:
1669	mutex_unlock(&nic_data->mdio_lock);
1670	return rc;
1671}
1672
1673/* This call is responsible for hooking in the MAC and PHY operations */
1674static int falcon_probe_port(struct efx_nic *efx)
1675{
1676	struct falcon_nic_data *nic_data = efx->nic_data;
1677	int rc;
1678
1679	switch (efx->phy_type) {
1680	case PHY_TYPE_SFX7101:
1681		efx->phy_op = &falcon_sfx7101_phy_ops;
1682		break;
1683	case PHY_TYPE_QT2022C2:
1684	case PHY_TYPE_QT2025C:
1685		efx->phy_op = &falcon_qt202x_phy_ops;
1686		break;
1687	case PHY_TYPE_TXC43128:
1688		efx->phy_op = &falcon_txc_phy_ops;
1689		break;
1690	default:
1691		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1692			  efx->phy_type);
1693		return -ENODEV;
1694	}
1695
1696	/* Fill out MDIO structure and loopback modes */
1697	mutex_init(&nic_data->mdio_lock);
1698	efx->mdio.mdio_read = falcon_mdio_read;
1699	efx->mdio.mdio_write = falcon_mdio_write;
1700	rc = efx->phy_op->probe(efx);
1701	if (rc != 0)
1702		return rc;
1703
1704	/* Initial assumption */
1705	efx->link_state.speed = 10000;
1706	efx->link_state.fd = true;
1707
1708	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1709	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1710		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1711	else
1712		efx->wanted_fc = EFX_FC_RX;
1713	if (efx->mdio.mmds & MDIO_DEVS_AN)
1714		efx->wanted_fc |= EFX_FC_AUTO;
1715
1716	/* Allocate buffer for stats */
1717	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1718				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1719	if (rc)
1720		return rc;
1721	netif_dbg(efx, probe, efx->net_dev,
1722		  "stats buffer at %llx (virt %p phys %llx)\n",
1723		  (u64)efx->stats_buffer.dma_addr,
1724		  efx->stats_buffer.addr,
1725		  (u64)virt_to_phys(efx->stats_buffer.addr));
1726
1727	return 0;
1728}
1729
1730static void falcon_remove_port(struct efx_nic *efx)
1731{
1732	efx->phy_op->remove(efx);
1733	efx_nic_free_buffer(efx, &efx->stats_buffer);
1734}
1735
1736/* Global events are basically PHY events */
1737static bool
1738falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1739{
1740	struct efx_nic *efx = channel->efx;
1741	struct falcon_nic_data *nic_data = efx->nic_data;
1742
1743	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1744	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1745	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1746		/* Ignored */
1747		return true;
1748
1749	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1750	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1751		nic_data->xmac_poll_required = true;
1752		return true;
1753	}
1754
1755	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1756	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1757	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1758		netif_err(efx, rx_err, efx->net_dev,
1759			  "channel %d seen global RX_RESET event. Resetting.\n",
1760			  channel->channel);
1761
1762		atomic_inc(&efx->rx_reset);
1763		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1764				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1765		return true;
1766	}
1767
1768	return false;
1769}
1770
1771/**************************************************************************
1772 *
1773 * Falcon test code
1774 *
1775 **************************************************************************/
1776
1777static int
1778falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1779{
1780	struct falcon_nic_data *nic_data = efx->nic_data;
1781	struct falcon_nvconfig *nvconfig;
1782	struct falcon_spi_device *spi;
1783	void *region;
1784	int rc, magic_num, struct_ver;
1785	__le16 *word, *limit;
1786	u32 csum;
1787
1788	if (falcon_spi_present(&nic_data->spi_flash))
1789		spi = &nic_data->spi_flash;
1790	else if (falcon_spi_present(&nic_data->spi_eeprom))
1791		spi = &nic_data->spi_eeprom;
1792	else
1793		return -EINVAL;
1794
1795	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1796	if (!region)
1797		return -ENOMEM;
1798	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1799
1800	mutex_lock(&nic_data->spi_lock);
1801	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1802	mutex_unlock(&nic_data->spi_lock);
1803	if (rc) {
1804		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1805			  falcon_spi_present(&nic_data->spi_flash) ?
1806			  "flash" : "EEPROM");
1807		rc = -EIO;
1808		goto out;
1809	}
1810
1811	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1812	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1813
1814	rc = -EINVAL;
1815	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1816		netif_err(efx, hw, efx->net_dev,
1817			  "NVRAM bad magic 0x%x\n", magic_num);
1818		goto out;
1819	}
1820	if (struct_ver < 2) {
1821		netif_err(efx, hw, efx->net_dev,
1822			  "NVRAM has ancient version 0x%x\n", struct_ver);
1823		goto out;
1824	} else if (struct_ver < 4) {
1825		word = &nvconfig->board_magic_num;
1826		limit = (__le16 *) (nvconfig + 1);
1827	} else {
1828		word = region;
1829		limit = region + FALCON_NVCONFIG_END;
1830	}
1831	for (csum = 0; word < limit; ++word)
1832		csum += le16_to_cpu(*word);
1833
1834	if (~csum & 0xffff) {
1835		netif_err(efx, hw, efx->net_dev,
1836			  "NVRAM has incorrect checksum\n");
1837		goto out;
1838	}
1839
1840	rc = 0;
1841	if (nvconfig_out)
1842		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1843
1844 out:
1845	kfree(region);
1846	return rc;
1847}
1848
1849static int falcon_test_nvram(struct efx_nic *efx)
1850{
1851	return falcon_read_nvram(efx, NULL);
1852}
1853
1854static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1855	{ FR_AZ_ADR_REGION,
1856	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1857	{ FR_AZ_RX_CFG,
1858	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1859	{ FR_AZ_TX_CFG,
1860	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1861	{ FR_AZ_TX_RESERVED,
1862	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1863	{ FR_AB_MAC_CTRL,
1864	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1865	{ FR_AZ_SRM_TX_DC_CFG,
1866	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1867	{ FR_AZ_RX_DC_CFG,
1868	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1869	{ FR_AZ_RX_DC_PF_WM,
1870	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1871	{ FR_BZ_DP_CTRL,
1872	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1873	{ FR_AB_GM_CFG2,
1874	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1875	{ FR_AB_GMF_CFG0,
1876	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1877	{ FR_AB_XM_GLB_CFG,
1878	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1879	{ FR_AB_XM_TX_CFG,
1880	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1881	{ FR_AB_XM_RX_CFG,
1882	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1883	{ FR_AB_XM_RX_PARAM,
1884	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1885	{ FR_AB_XM_FC,
1886	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1887	{ FR_AB_XM_ADR_LO,
1888	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1889	{ FR_AB_XX_SD_CTL,
1890	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1891};
1892
1893static int
1894falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1895{
1896	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1897	int rc, rc2;
1898
1899	mutex_lock(&efx->mac_lock);
1900	if (efx->loopback_modes) {
1901		/* We need the 312 clock from the PHY to test the XMAC
1902		 * registers, so move into XGMII loopback if available */
1903		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1904			efx->loopback_mode = LOOPBACK_XGMII;
1905		else
1906			efx->loopback_mode = __ffs(efx->loopback_modes);
1907	}
1908	__efx_reconfigure_port(efx);
1909	mutex_unlock(&efx->mac_lock);
1910
1911	efx_reset_down(efx, reset_method);
1912
1913	tests->registers =
1914		efx_farch_test_registers(efx, falcon_b0_register_tests,
1915					 ARRAY_SIZE(falcon_b0_register_tests))
1916		? -1 : 1;
1917
1918	rc = falcon_reset_hw(efx, reset_method);
1919	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1920	return rc ? rc : rc2;
1921}
1922
1923/**************************************************************************
1924 *
1925 * Device reset
1926 *
1927 **************************************************************************
1928 */
1929
1930static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1931{
1932	switch (reason) {
1933	case RESET_TYPE_RX_RECOVERY:
1934	case RESET_TYPE_DMA_ERROR:
1935	case RESET_TYPE_TX_SKIP:
1936		/* These can occasionally occur due to hardware bugs.
1937		 * We try to reset without disrupting the link.
1938		 */
1939		return RESET_TYPE_INVISIBLE;
1940	default:
1941		return RESET_TYPE_ALL;
1942	}
1943}
1944
1945static int falcon_map_reset_flags(u32 *flags)
1946{
1947	enum {
1948		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1949					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1950		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1951		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1952	};
1953
1954	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1955		*flags &= ~FALCON_RESET_WORLD;
1956		return RESET_TYPE_WORLD;
1957	}
1958
1959	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1960		*flags &= ~FALCON_RESET_ALL;
1961		return RESET_TYPE_ALL;
1962	}
1963
1964	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1965		*flags &= ~FALCON_RESET_INVISIBLE;
1966		return RESET_TYPE_INVISIBLE;
1967	}
1968
1969	return -EINVAL;
1970}
1971
1972/* Resets NIC to known state.  This routine must be called in process
1973 * context and is allowed to sleep. */
1974static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1975{
1976	struct falcon_nic_data *nic_data = efx->nic_data;
1977	efx_oword_t glb_ctl_reg_ker;
1978	int rc;
1979
1980	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1981		  RESET_TYPE(method));
1982
1983	/* Initiate device reset */
1984	if (method == RESET_TYPE_WORLD) {
1985		rc = pci_save_state(efx->pci_dev);
1986		if (rc) {
1987			netif_err(efx, drv, efx->net_dev,
1988				  "failed to backup PCI state of primary "
1989				  "function prior to hardware reset\n");
1990			goto fail1;
1991		}
1992		if (efx_nic_is_dual_func(efx)) {
1993			rc = pci_save_state(nic_data->pci_dev2);
1994			if (rc) {
1995				netif_err(efx, drv, efx->net_dev,
1996					  "failed to backup PCI state of "
1997					  "secondary function prior to "
1998					  "hardware reset\n");
1999				goto fail2;
2000			}
2001		}
2002
2003		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2004				     FRF_AB_EXT_PHY_RST_DUR,
2005				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2006				     FRF_AB_SWRST, 1);
2007	} else {
2008		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2009				     /* exclude PHY from "invisible" reset */
2010				     FRF_AB_EXT_PHY_RST_CTL,
2011				     method == RESET_TYPE_INVISIBLE,
2012				     /* exclude EEPROM/flash and PCIe */
2013				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2014				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2015				     FRF_AB_PCIE_SD_RST_CTL, 1,
2016				     FRF_AB_EE_RST_CTL, 1,
2017				     FRF_AB_EXT_PHY_RST_DUR,
2018				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2019				     FRF_AB_SWRST, 1);
2020	}
2021	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2022
2023	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2024	schedule_timeout_uninterruptible(HZ / 20);
2025
2026	/* Restore PCI configuration if needed */
2027	if (method == RESET_TYPE_WORLD) {
2028		if (efx_nic_is_dual_func(efx))
2029			pci_restore_state(nic_data->pci_dev2);
2030		pci_restore_state(efx->pci_dev);
2031		netif_dbg(efx, drv, efx->net_dev,
2032			  "successfully restored PCI config\n");
2033	}
2034
2035	/* Assert that reset complete */
2036	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2037	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2038		rc = -ETIMEDOUT;
2039		netif_err(efx, hw, efx->net_dev,
2040			  "timed out waiting for hardware reset\n");
2041		goto fail3;
2042	}
2043	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2044
2045	return 0;
2046
2047	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2048fail2:
2049	pci_restore_state(efx->pci_dev);
2050fail1:
2051fail3:
2052	return rc;
2053}
2054
2055static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2056{
2057	struct falcon_nic_data *nic_data = efx->nic_data;
2058	int rc;
2059
2060	mutex_lock(&nic_data->spi_lock);
2061	rc = __falcon_reset_hw(efx, method);
2062	mutex_unlock(&nic_data->spi_lock);
2063
2064	return rc;
2065}
2066
2067static void falcon_monitor(struct efx_nic *efx)
2068{
2069	bool link_changed;
2070	int rc;
2071
2072	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2073
2074	rc = falcon_board(efx)->type->monitor(efx);
2075	if (rc) {
2076		netif_err(efx, hw, efx->net_dev,
2077			  "Board sensor %s; shutting down PHY\n",
2078			  (rc == -ERANGE) ? "reported fault" : "failed");
2079		efx->phy_mode |= PHY_MODE_LOW_POWER;
2080		rc = __efx_reconfigure_port(efx);
2081		WARN_ON(rc);
2082	}
2083
2084	if (LOOPBACK_INTERNAL(efx))
2085		link_changed = falcon_loopback_link_poll(efx);
2086	else
2087		link_changed = efx->phy_op->poll(efx);
2088
2089	if (link_changed) {
2090		falcon_stop_nic_stats(efx);
2091		falcon_deconfigure_mac_wrapper(efx);
2092
2093		falcon_reset_macs(efx);
2094		rc = falcon_reconfigure_xmac(efx);
2095		BUG_ON(rc);
2096
2097		falcon_start_nic_stats(efx);
2098
2099		efx_link_status_changed(efx);
2100	}
2101
2102	falcon_poll_xmac(efx);
2103}
2104
2105/* Zeroes out the SRAM contents.  This routine must be called in
2106 * process context and is allowed to sleep.
2107 */
2108static int falcon_reset_sram(struct efx_nic *efx)
2109{
2110	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2111	int count;
2112
2113	/* Set the SRAM wake/sleep GPIO appropriately. */
2114	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2115	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2116	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2117	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118
2119	/* Initiate SRAM reset */
2120	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2121			     FRF_AZ_SRM_INIT_EN, 1,
2122			     FRF_AZ_SRM_NB_SZ, 0);
2123	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2124
2125	/* Wait for SRAM reset to complete */
2126	count = 0;
2127	do {
2128		netif_dbg(efx, hw, efx->net_dev,
2129			  "waiting for SRAM reset (attempt %d)...\n", count);
2130
2131		/* SRAM reset is slow; expect around 16ms */
2132		schedule_timeout_uninterruptible(HZ / 50);
2133
2134		/* Check for reset complete */
2135		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2136		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2137			netif_dbg(efx, hw, efx->net_dev,
2138				  "SRAM reset complete\n");
2139
2140			return 0;
2141		}
2142	} while (++count < 20);	/* wait up to 0.4 sec */
2143
2144	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2145	return -ETIMEDOUT;
2146}
2147
2148static void falcon_spi_device_init(struct efx_nic *efx,
2149				  struct falcon_spi_device *spi_device,
2150				  unsigned int device_id, u32 device_type)
2151{
2152	if (device_type != 0) {
2153		spi_device->device_id = device_id;
2154		spi_device->size =
2155			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2156		spi_device->addr_len =
2157			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2158		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2159					     spi_device->addr_len == 1);
2160		spi_device->erase_command =
2161			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2162		spi_device->erase_size =
2163			1 << SPI_DEV_TYPE_FIELD(device_type,
2164						SPI_DEV_TYPE_ERASE_SIZE);
2165		spi_device->block_size =
2166			1 << SPI_DEV_TYPE_FIELD(device_type,
2167						SPI_DEV_TYPE_BLOCK_SIZE);
2168	} else {
2169		spi_device->size = 0;
2170	}
2171}
2172
2173/* Extract non-volatile configuration */
2174static int falcon_probe_nvconfig(struct efx_nic *efx)
2175{
2176	struct falcon_nic_data *nic_data = efx->nic_data;
2177	struct falcon_nvconfig *nvconfig;
2178	int rc;
2179
2180	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2181	if (!nvconfig)
2182		return -ENOMEM;
2183
2184	rc = falcon_read_nvram(efx, nvconfig);
2185	if (rc)
2186		goto out;
2187
2188	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2189	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2190
2191	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2192		falcon_spi_device_init(
2193			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2194			le32_to_cpu(nvconfig->board_v3
2195				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2196		falcon_spi_device_init(
2197			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2198			le32_to_cpu(nvconfig->board_v3
2199				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2200	}
2201
2202	/* Read the MAC addresses */
2203	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2204
2205	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2206		  efx->phy_type, efx->mdio.prtad);
2207
2208	rc = falcon_probe_board(efx,
2209				le16_to_cpu(nvconfig->board_v2.board_revision));
2210out:
2211	kfree(nvconfig);
2212	return rc;
2213}
2214
2215static int falcon_dimension_resources(struct efx_nic *efx)
2216{
2217	efx->rx_dc_base = 0x20000;
2218	efx->tx_dc_base = 0x26000;
2219	return 0;
2220}
2221
2222/* Probe all SPI devices on the NIC */
2223static void falcon_probe_spi_devices(struct efx_nic *efx)
2224{
2225	struct falcon_nic_data *nic_data = efx->nic_data;
2226	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2227	int boot_dev;
2228
2229	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2230	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2231	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2232
2233	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2234		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2235			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2236		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2237			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2238			  "flash" : "EEPROM");
2239	} else {
2240		/* Disable VPD and set clock dividers to safe
2241		 * values for initial programming. */
2242		boot_dev = -1;
2243		netif_dbg(efx, probe, efx->net_dev,
2244			  "Booted from internal ASIC settings;"
2245			  " setting SPI config\n");
2246		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2247				     /* 125 MHz / 7 ~= 20 MHz */
2248				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2249				     /* 125 MHz / 63 ~= 2 MHz */
2250				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2251		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2252	}
2253
2254	mutex_init(&nic_data->spi_lock);
2255
2256	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2257		falcon_spi_device_init(efx, &nic_data->spi_flash,
2258				       FFE_AB_SPI_DEVICE_FLASH,
2259				       default_flash_type);
2260	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2261		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2262				       FFE_AB_SPI_DEVICE_EEPROM,
2263				       large_eeprom_type);
2264}
2265
2266static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2267{
2268	return 0x20000;
2269}
2270
2271static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2272{
2273	/* Map everything up to and including the RSS indirection table.
2274	 * The PCI core takes care of mapping the MSI-X tables.
2275	 */
2276	return FR_BZ_RX_INDIRECTION_TBL +
2277		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2278}
2279
2280static int falcon_probe_nic(struct efx_nic *efx)
2281{
2282	struct falcon_nic_data *nic_data;
2283	struct falcon_board *board;
2284	int rc;
2285
2286	efx->primary = efx; /* only one usable function per controller */
2287
2288	/* Allocate storage for hardware specific data */
2289	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2290	if (!nic_data)
2291		return -ENOMEM;
2292	efx->nic_data = nic_data;
2293
2294	rc = -ENODEV;
2295
2296	if (efx_farch_fpga_ver(efx) != 0) {
2297		netif_err(efx, probe, efx->net_dev,
2298			  "Falcon FPGA not supported\n");
2299		goto fail1;
2300	}
2301
2302	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2303		efx_oword_t nic_stat;
2304		struct pci_dev *dev;
2305		u8 pci_rev = efx->pci_dev->revision;
2306
2307		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2308			netif_err(efx, probe, efx->net_dev,
2309				  "Falcon rev A0 not supported\n");
2310			goto fail1;
2311		}
2312		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2313		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2314			netif_err(efx, probe, efx->net_dev,
2315				  "Falcon rev A1 1G not supported\n");
2316			goto fail1;
2317		}
2318		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2319			netif_err(efx, probe, efx->net_dev,
2320				  "Falcon rev A1 PCI-X not supported\n");
2321			goto fail1;
2322		}
2323
2324		dev = pci_dev_get(efx->pci_dev);
2325		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2326					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2327					     dev))) {
2328			if (dev->bus == efx->pci_dev->bus &&
2329			    dev->devfn == efx->pci_dev->devfn + 1) {
2330				nic_data->pci_dev2 = dev;
2331				break;
2332			}
2333		}
2334		if (!nic_data->pci_dev2) {
2335			netif_err(efx, probe, efx->net_dev,
2336				  "failed to find secondary function\n");
2337			rc = -ENODEV;
2338			goto fail2;
2339		}
2340	}
2341
2342	/* Now we can reset the NIC */
2343	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2344	if (rc) {
2345		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2346		goto fail3;
2347	}
2348
2349	/* Allocate memory for INT_KER */
2350	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2351				  GFP_KERNEL);
2352	if (rc)
2353		goto fail4;
2354	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2355
2356	netif_dbg(efx, probe, efx->net_dev,
2357		  "INT_KER at %llx (virt %p phys %llx)\n",
2358		  (u64)efx->irq_status.dma_addr,
2359		  efx->irq_status.addr,
2360		  (u64)virt_to_phys(efx->irq_status.addr));
2361
2362	falcon_probe_spi_devices(efx);
2363
2364	/* Read in the non-volatile configuration */
2365	rc = falcon_probe_nvconfig(efx);
2366	if (rc) {
2367		if (rc == -EINVAL)
2368			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2369		goto fail5;
2370	}
2371
2372	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2373			     EFX_MAX_CHANNELS);
2374	efx->max_tx_channels = efx->max_channels;
2375	efx->timer_quantum_ns = 4968; /* 621 cycles */
2376
2377	/* Initialise I2C adapter */
2378	board = falcon_board(efx);
2379	board->i2c_adap.owner = THIS_MODULE;
2380	board->i2c_data = falcon_i2c_bit_operations;
2381	board->i2c_data.data = efx;
2382	board->i2c_adap.algo_data = &board->i2c_data;
2383	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2384	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2385		sizeof(board->i2c_adap.name));
2386	rc = i2c_bit_add_bus(&board->i2c_adap);
2387	if (rc)
2388		goto fail5;
2389
2390	rc = falcon_board(efx)->type->init(efx);
2391	if (rc) {
2392		netif_err(efx, probe, efx->net_dev,
2393			  "failed to initialise board\n");
2394		goto fail6;
2395	}
2396
2397	nic_data->stats_disable_count = 1;
2398	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2399		    (unsigned long)efx);
2400
2401	return 0;
2402
2403 fail6:
2404	i2c_del_adapter(&board->i2c_adap);
2405	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2406 fail5:
2407	efx_nic_free_buffer(efx, &efx->irq_status);
2408 fail4:
2409 fail3:
2410	if (nic_data->pci_dev2) {
2411		pci_dev_put(nic_data->pci_dev2);
2412		nic_data->pci_dev2 = NULL;
2413	}
2414 fail2:
2415 fail1:
2416	kfree(efx->nic_data);
2417	return rc;
2418}
2419
2420static void falcon_init_rx_cfg(struct efx_nic *efx)
2421{
2422	/* RX control FIFO thresholds (32 entries) */
2423	const unsigned ctrl_xon_thr = 20;
2424	const unsigned ctrl_xoff_thr = 25;
2425	efx_oword_t reg;
2426
2427	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2428	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2429		/* Data FIFO size is 5.5K.  The RX DMA engine only
2430		 * supports scattering for user-mode queues, but will
2431		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2432		 * (32-byte units) even for kernel-mode queues.  We
2433		 * set it to be so large that that never happens.
2434		 */
2435		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2436		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2437				    (3 * 4096) >> 5);
2438		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2439		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2440		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2441		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2442	} else {
2443		/* Data FIFO size is 80K; register fields moved */
2444		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2445		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2446				    EFX_RX_USR_BUF_SIZE >> 5);
2447		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2448		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2449		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2450		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2451		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2452		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2453
2454		/* Enable hash insertion. This is broken for the
2455		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2456		 * IPv4 hashes. */
2457		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2458		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2459		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2460	}
2461	/* Always enable XOFF signal from RX FIFO.  We enable
2462	 * or disable transmission of pause frames at the MAC. */
2463	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2464	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2465}
2466
2467/* This call performs hardware-specific global initialisation, such as
2468 * defining the descriptor cache sizes and number of RSS channels.
2469 * It does not set up any buffers, descriptor rings or event queues.
2470 */
2471static int falcon_init_nic(struct efx_nic *efx)
2472{
2473	efx_oword_t temp;
2474	int rc;
2475
2476	/* Use on-chip SRAM */
2477	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2478	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2479	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2480
2481	rc = falcon_reset_sram(efx);
2482	if (rc)
2483		return rc;
2484
2485	/* Clear the parity enables on the TX data fifos as
2486	 * they produce false parity errors because of timing issues
2487	 */
2488	if (EFX_WORKAROUND_5129(efx)) {
2489		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2490		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2491		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2492	}
2493
2494	if (EFX_WORKAROUND_7244(efx)) {
2495		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2496		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2497		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2498		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2499		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2500		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501	}
2502
2503	/* XXX This is documented only for Falcon A0/A1 */
2504	/* Setup RX.  Wait for descriptor is broken and must
2505	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2506	 */
2507	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2508	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2509	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2510	if (EFX_WORKAROUND_5583(efx))
2511		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2512	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2513
2514	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2515	 * descriptors (which is bad).
2516	 */
2517	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2518	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2519	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2520
2521	falcon_init_rx_cfg(efx);
2522
2523	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2524		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2525
2526		/* Set destination of both TX and RX Flush events */
2527		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2528		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2529	}
2530
2531	efx_farch_init_common(efx);
2532
2533	return 0;
2534}
2535
2536static void falcon_remove_nic(struct efx_nic *efx)
2537{
2538	struct falcon_nic_data *nic_data = efx->nic_data;
2539	struct falcon_board *board = falcon_board(efx);
2540
2541	board->type->fini(efx);
2542
2543	/* Remove I2C adapter and clear it in preparation for a retry */
2544	i2c_del_adapter(&board->i2c_adap);
2545	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2546
2547	efx_nic_free_buffer(efx, &efx->irq_status);
2548
2549	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2550
2551	/* Release the second function after the reset */
2552	if (nic_data->pci_dev2) {
2553		pci_dev_put(nic_data->pci_dev2);
2554		nic_data->pci_dev2 = NULL;
2555	}
2556
2557	/* Tear down the private nic state */
2558	kfree(efx->nic_data);
2559	efx->nic_data = NULL;
2560}
2561
2562static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2563{
2564	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2565				      falcon_stat_mask, names);
2566}
2567
2568static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2569				      struct rtnl_link_stats64 *core_stats)
2570{
2571	struct falcon_nic_data *nic_data = efx->nic_data;
2572	u64 *stats = nic_data->stats;
2573	efx_oword_t cnt;
2574
2575	if (!nic_data->stats_disable_count) {
2576		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2577		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2578			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2579
2580		if (nic_data->stats_pending &&
2581		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2582			nic_data->stats_pending = false;
2583			rmb(); /* read the done flag before the stats */
2584			efx_nic_update_stats(
2585				falcon_stat_desc, FALCON_STAT_COUNT,
2586				falcon_stat_mask,
2587				stats, efx->stats_buffer.addr, true);
2588		}
2589
2590		/* Update derived statistic */
2591		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2592				     stats[FALCON_STAT_rx_bytes] -
2593				     stats[FALCON_STAT_rx_good_bytes] -
2594				     stats[FALCON_STAT_rx_control] * 64);
2595		efx_update_sw_stats(efx, stats);
2596	}
2597
2598	if (full_stats)
2599		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2600
2601	if (core_stats) {
2602		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2603		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2604		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2605		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2606		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2607					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2608					 stats[GENERIC_STAT_rx_noskb_drops];
2609		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2610		core_stats->rx_length_errors =
2611			stats[FALCON_STAT_rx_gtjumbo] +
2612			stats[FALCON_STAT_rx_length_error];
2613		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2614		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2615		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2616
2617		core_stats->rx_errors = (core_stats->rx_length_errors +
2618					 core_stats->rx_crc_errors +
2619					 core_stats->rx_frame_errors +
2620					 stats[FALCON_STAT_rx_symbol_error]);
2621	}
2622
2623	return FALCON_STAT_COUNT;
2624}
2625
2626void falcon_start_nic_stats(struct efx_nic *efx)
2627{
2628	struct falcon_nic_data *nic_data = efx->nic_data;
2629
2630	spin_lock_bh(&efx->stats_lock);
2631	if (--nic_data->stats_disable_count == 0)
2632		falcon_stats_request(efx);
2633	spin_unlock_bh(&efx->stats_lock);
2634}
2635
2636/* We don't acutally pull stats on falcon. Wait 10ms so that
2637 * they arrive when we call this just after start_stats
2638 */
2639static void falcon_pull_nic_stats(struct efx_nic *efx)
2640{
2641	msleep(10);
2642}
2643
2644void falcon_stop_nic_stats(struct efx_nic *efx)
2645{
2646	struct falcon_nic_data *nic_data = efx->nic_data;
2647	int i;
2648
2649	might_sleep();
2650
2651	spin_lock_bh(&efx->stats_lock);
2652	++nic_data->stats_disable_count;
2653	spin_unlock_bh(&efx->stats_lock);
2654
2655	del_timer_sync(&nic_data->stats_timer);
2656
2657	/* Wait enough time for the most recent transfer to
2658	 * complete. */
2659	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2660		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2661			break;
2662		msleep(1);
2663	}
2664
2665	spin_lock_bh(&efx->stats_lock);
2666	falcon_stats_complete(efx);
2667	spin_unlock_bh(&efx->stats_lock);
2668}
2669
2670static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2671{
2672	falcon_board(efx)->type->set_id_led(efx, mode);
2673}
2674
2675/**************************************************************************
2676 *
2677 * Wake on LAN
2678 *
2679 **************************************************************************
2680 */
2681
2682static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2683{
2684	wol->supported = 0;
2685	wol->wolopts = 0;
2686	memset(&wol->sopass, 0, sizeof(wol->sopass));
2687}
2688
2689static int falcon_set_wol(struct efx_nic *efx, u32 type)
2690{
2691	if (type != 0)
2692		return -EINVAL;
2693	return 0;
2694}
2695
2696/**************************************************************************
2697 *
2698 * Revision-dependent attributes used by efx.c and nic.c
2699 *
2700 **************************************************************************
2701 */
2702
2703const struct efx_nic_type falcon_a1_nic_type = {
2704	.is_vf = false,
2705	.mem_bar = EFX_MEM_BAR,
2706	.mem_map_size = falcon_a1_mem_map_size,
2707	.probe = falcon_probe_nic,
2708	.remove = falcon_remove_nic,
2709	.init = falcon_init_nic,
2710	.dimension_resources = falcon_dimension_resources,
2711	.fini = falcon_irq_ack_a1,
2712	.monitor = falcon_monitor,
2713	.map_reset_reason = falcon_map_reset_reason,
2714	.map_reset_flags = falcon_map_reset_flags,
2715	.reset = falcon_reset_hw,
2716	.probe_port = falcon_probe_port,
2717	.remove_port = falcon_remove_port,
2718	.handle_global_event = falcon_handle_global_event,
2719	.fini_dmaq = efx_farch_fini_dmaq,
2720	.prepare_flush = falcon_prepare_flush,
2721	.finish_flush = efx_port_dummy_op_void,
2722	.prepare_flr = efx_port_dummy_op_void,
2723	.finish_flr = efx_farch_finish_flr,
2724	.describe_stats = falcon_describe_nic_stats,
2725	.update_stats = falcon_update_nic_stats,
2726	.start_stats = falcon_start_nic_stats,
2727	.pull_stats = falcon_pull_nic_stats,
2728	.stop_stats = falcon_stop_nic_stats,
2729	.set_id_led = falcon_set_id_led,
2730	.push_irq_moderation = falcon_push_irq_moderation,
2731	.reconfigure_port = falcon_reconfigure_port,
2732	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2733	.reconfigure_mac = falcon_reconfigure_xmac,
2734	.check_mac_fault = falcon_xmac_check_fault,
2735	.get_wol = falcon_get_wol,
2736	.set_wol = falcon_set_wol,
2737	.resume_wol = efx_port_dummy_op_void,
2738	.test_nvram = falcon_test_nvram,
2739	.irq_enable_master = efx_farch_irq_enable_master,
2740	.irq_test_generate = efx_farch_irq_test_generate,
2741	.irq_disable_non_ev = efx_farch_irq_disable_master,
2742	.irq_handle_msi = efx_farch_msi_interrupt,
2743	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2744	.tx_probe = efx_farch_tx_probe,
2745	.tx_init = efx_farch_tx_init,
2746	.tx_remove = efx_farch_tx_remove,
2747	.tx_write = efx_farch_tx_write,
2748	.rx_push_rss_config = dummy_rx_push_rss_config,
2749	.rx_probe = efx_farch_rx_probe,
2750	.rx_init = efx_farch_rx_init,
2751	.rx_remove = efx_farch_rx_remove,
2752	.rx_write = efx_farch_rx_write,
2753	.rx_defer_refill = efx_farch_rx_defer_refill,
2754	.ev_probe = efx_farch_ev_probe,
2755	.ev_init = efx_farch_ev_init,
2756	.ev_fini = efx_farch_ev_fini,
2757	.ev_remove = efx_farch_ev_remove,
2758	.ev_process = efx_farch_ev_process,
2759	.ev_read_ack = efx_farch_ev_read_ack,
2760	.ev_test_generate = efx_farch_ev_test_generate,
2761
2762	/* We don't expose the filter table on Falcon A1 as it is not
2763	 * mapped into function 0, but these implementations still
2764	 * work with a degenerate case of all tables set to size 0.
2765	 */
2766	.filter_table_probe = efx_farch_filter_table_probe,
2767	.filter_table_restore = efx_farch_filter_table_restore,
2768	.filter_table_remove = efx_farch_filter_table_remove,
2769	.filter_insert = efx_farch_filter_insert,
2770	.filter_remove_safe = efx_farch_filter_remove_safe,
2771	.filter_get_safe = efx_farch_filter_get_safe,
2772	.filter_clear_rx = efx_farch_filter_clear_rx,
2773	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2774	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2775	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2776
2777#ifdef CONFIG_SFC_MTD
2778	.mtd_probe = falcon_mtd_probe,
2779	.mtd_rename = falcon_mtd_rename,
2780	.mtd_read = falcon_mtd_read,
2781	.mtd_erase = falcon_mtd_erase,
2782	.mtd_write = falcon_mtd_write,
2783	.mtd_sync = falcon_mtd_sync,
2784#endif
2785
2786	.revision = EFX_REV_FALCON_A1,
2787	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2788	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2789	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2790	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2791	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2792	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2793	.rx_buffer_padding = 0x24,
2794	.can_rx_scatter = false,
2795	.max_interrupt_mode = EFX_INT_MODE_MSI,
2796	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2797	.offload_features = NETIF_F_IP_CSUM,
2798	.mcdi_max_ver = -1,
2799};
2800
2801const struct efx_nic_type falcon_b0_nic_type = {
2802	.is_vf = false,
2803	.mem_bar = EFX_MEM_BAR,
2804	.mem_map_size = falcon_b0_mem_map_size,
2805	.probe = falcon_probe_nic,
2806	.remove = falcon_remove_nic,
2807	.init = falcon_init_nic,
2808	.dimension_resources = falcon_dimension_resources,
2809	.fini = efx_port_dummy_op_void,
2810	.monitor = falcon_monitor,
2811	.map_reset_reason = falcon_map_reset_reason,
2812	.map_reset_flags = falcon_map_reset_flags,
2813	.reset = falcon_reset_hw,
2814	.probe_port = falcon_probe_port,
2815	.remove_port = falcon_remove_port,
2816	.handle_global_event = falcon_handle_global_event,
2817	.fini_dmaq = efx_farch_fini_dmaq,
2818	.prepare_flush = falcon_prepare_flush,
2819	.finish_flush = efx_port_dummy_op_void,
2820	.prepare_flr = efx_port_dummy_op_void,
2821	.finish_flr = efx_farch_finish_flr,
2822	.describe_stats = falcon_describe_nic_stats,
2823	.update_stats = falcon_update_nic_stats,
2824	.start_stats = falcon_start_nic_stats,
2825	.pull_stats = falcon_pull_nic_stats,
2826	.stop_stats = falcon_stop_nic_stats,
2827	.set_id_led = falcon_set_id_led,
2828	.push_irq_moderation = falcon_push_irq_moderation,
2829	.reconfigure_port = falcon_reconfigure_port,
2830	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2831	.reconfigure_mac = falcon_reconfigure_xmac,
2832	.check_mac_fault = falcon_xmac_check_fault,
2833	.get_wol = falcon_get_wol,
2834	.set_wol = falcon_set_wol,
2835	.resume_wol = efx_port_dummy_op_void,
2836	.test_chip = falcon_b0_test_chip,
2837	.test_nvram = falcon_test_nvram,
2838	.irq_enable_master = efx_farch_irq_enable_master,
2839	.irq_test_generate = efx_farch_irq_test_generate,
2840	.irq_disable_non_ev = efx_farch_irq_disable_master,
2841	.irq_handle_msi = efx_farch_msi_interrupt,
2842	.irq_handle_legacy = efx_farch_legacy_interrupt,
2843	.tx_probe = efx_farch_tx_probe,
2844	.tx_init = efx_farch_tx_init,
2845	.tx_remove = efx_farch_tx_remove,
2846	.tx_write = efx_farch_tx_write,
2847	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2848	.rx_probe = efx_farch_rx_probe,
2849	.rx_init = efx_farch_rx_init,
2850	.rx_remove = efx_farch_rx_remove,
2851	.rx_write = efx_farch_rx_write,
2852	.rx_defer_refill = efx_farch_rx_defer_refill,
2853	.ev_probe = efx_farch_ev_probe,
2854	.ev_init = efx_farch_ev_init,
2855	.ev_fini = efx_farch_ev_fini,
2856	.ev_remove = efx_farch_ev_remove,
2857	.ev_process = efx_farch_ev_process,
2858	.ev_read_ack = efx_farch_ev_read_ack,
2859	.ev_test_generate = efx_farch_ev_test_generate,
2860	.filter_table_probe = efx_farch_filter_table_probe,
2861	.filter_table_restore = efx_farch_filter_table_restore,
2862	.filter_table_remove = efx_farch_filter_table_remove,
2863	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2864	.filter_insert = efx_farch_filter_insert,
2865	.filter_remove_safe = efx_farch_filter_remove_safe,
2866	.filter_get_safe = efx_farch_filter_get_safe,
2867	.filter_clear_rx = efx_farch_filter_clear_rx,
2868	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2869	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2870	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2871#ifdef CONFIG_RFS_ACCEL
2872	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2873	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2874#endif
2875#ifdef CONFIG_SFC_MTD
2876	.mtd_probe = falcon_mtd_probe,
2877	.mtd_rename = falcon_mtd_rename,
2878	.mtd_read = falcon_mtd_read,
2879	.mtd_erase = falcon_mtd_erase,
2880	.mtd_write = falcon_mtd_write,
2881	.mtd_sync = falcon_mtd_sync,
2882#endif
2883
2884	.revision = EFX_REV_FALCON_B0,
2885	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2886	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2887	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2888	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2889	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2890	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2891	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2892	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2893	.rx_buffer_padding = 0,
2894	.can_rx_scatter = true,
2895	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2896	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2897	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2898	.mcdi_max_ver = -1,
2899	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2900};