Linux Audio

Check our new training course

Loading...
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "farch_regs.h"
  24#include "io.h"
  25#include "phy.h"
  26#include "workarounds.h"
  27#include "selftest.h"
  28#include "mdio_10g.h"
  29
  30/* Hardware control for SFC4000 (aka Falcon). */
  31
  32/**************************************************************************
  33 *
  34 * NIC stats
  35 *
  36 **************************************************************************
  37 */
  38
  39#define FALCON_MAC_STATS_SIZE 0x100
  40
  41#define XgRxOctets_offset 0x0
  42#define XgRxOctets_WIDTH 48
  43#define XgRxOctetsOK_offset 0x8
  44#define XgRxOctetsOK_WIDTH 48
  45#define XgRxPkts_offset 0x10
  46#define XgRxPkts_WIDTH 32
  47#define XgRxPktsOK_offset 0x14
  48#define XgRxPktsOK_WIDTH 32
  49#define XgRxBroadcastPkts_offset 0x18
  50#define XgRxBroadcastPkts_WIDTH 32
  51#define XgRxMulticastPkts_offset 0x1C
  52#define XgRxMulticastPkts_WIDTH 32
  53#define XgRxUnicastPkts_offset 0x20
  54#define XgRxUnicastPkts_WIDTH 32
  55#define XgRxUndersizePkts_offset 0x24
  56#define XgRxUndersizePkts_WIDTH 32
  57#define XgRxOversizePkts_offset 0x28
  58#define XgRxOversizePkts_WIDTH 32
  59#define XgRxJabberPkts_offset 0x2C
  60#define XgRxJabberPkts_WIDTH 32
  61#define XgRxUndersizeFCSerrorPkts_offset 0x30
  62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  63#define XgRxDropEvents_offset 0x34
  64#define XgRxDropEvents_WIDTH 32
  65#define XgRxFCSerrorPkts_offset 0x38
  66#define XgRxFCSerrorPkts_WIDTH 32
  67#define XgRxAlignError_offset 0x3C
  68#define XgRxAlignError_WIDTH 32
  69#define XgRxSymbolError_offset 0x40
  70#define XgRxSymbolError_WIDTH 32
  71#define XgRxInternalMACError_offset 0x44
  72#define XgRxInternalMACError_WIDTH 32
  73#define XgRxControlPkts_offset 0x48
  74#define XgRxControlPkts_WIDTH 32
  75#define XgRxPausePkts_offset 0x4C
  76#define XgRxPausePkts_WIDTH 32
  77#define XgRxPkts64Octets_offset 0x50
  78#define XgRxPkts64Octets_WIDTH 32
  79#define XgRxPkts65to127Octets_offset 0x54
  80#define XgRxPkts65to127Octets_WIDTH 32
  81#define XgRxPkts128to255Octets_offset 0x58
  82#define XgRxPkts128to255Octets_WIDTH 32
  83#define XgRxPkts256to511Octets_offset 0x5C
  84#define XgRxPkts256to511Octets_WIDTH 32
  85#define XgRxPkts512to1023Octets_offset 0x60
  86#define XgRxPkts512to1023Octets_WIDTH 32
  87#define XgRxPkts1024to15xxOctets_offset 0x64
  88#define XgRxPkts1024to15xxOctets_WIDTH 32
  89#define XgRxPkts15xxtoMaxOctets_offset 0x68
  90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  91#define XgRxLengthError_offset 0x6C
  92#define XgRxLengthError_WIDTH 32
  93#define XgTxPkts_offset 0x80
  94#define XgTxPkts_WIDTH 32
  95#define XgTxOctets_offset 0x88
  96#define XgTxOctets_WIDTH 48
  97#define XgTxMulticastPkts_offset 0x90
  98#define XgTxMulticastPkts_WIDTH 32
  99#define XgTxBroadcastPkts_offset 0x94
 100#define XgTxBroadcastPkts_WIDTH 32
 101#define XgTxUnicastPkts_offset 0x98
 102#define XgTxUnicastPkts_WIDTH 32
 103#define XgTxControlPkts_offset 0x9C
 104#define XgTxControlPkts_WIDTH 32
 105#define XgTxPausePkts_offset 0xA0
 106#define XgTxPausePkts_WIDTH 32
 107#define XgTxPkts64Octets_offset 0xA4
 108#define XgTxPkts64Octets_WIDTH 32
 109#define XgTxPkts65to127Octets_offset 0xA8
 110#define XgTxPkts65to127Octets_WIDTH 32
 111#define XgTxPkts128to255Octets_offset 0xAC
 112#define XgTxPkts128to255Octets_WIDTH 32
 113#define XgTxPkts256to511Octets_offset 0xB0
 114#define XgTxPkts256to511Octets_WIDTH 32
 115#define XgTxPkts512to1023Octets_offset 0xB4
 116#define XgTxPkts512to1023Octets_WIDTH 32
 117#define XgTxPkts1024to15xxOctets_offset 0xB8
 118#define XgTxPkts1024to15xxOctets_WIDTH 32
 119#define XgTxPkts1519toMaxOctets_offset 0xBC
 120#define XgTxPkts1519toMaxOctets_WIDTH 32
 121#define XgTxUndersizePkts_offset 0xC0
 122#define XgTxUndersizePkts_WIDTH 32
 123#define XgTxOversizePkts_offset 0xC4
 124#define XgTxOversizePkts_WIDTH 32
 125#define XgTxNonTcpUdpPkt_offset 0xC8
 126#define XgTxNonTcpUdpPkt_WIDTH 16
 127#define XgTxMacSrcErrPkt_offset 0xCC
 128#define XgTxMacSrcErrPkt_WIDTH 16
 129#define XgTxIpSrcErrPkt_offset 0xD0
 130#define XgTxIpSrcErrPkt_WIDTH 16
 131#define XgDmaDone_offset 0xD4
 132#define XgDmaDone_WIDTH 32
 133
 134#define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
 135	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 136
 137#define FALCON_DMA_STAT(ext_name, hw_name)				\
 138	[FALCON_STAT_ ## ext_name] =					\
 139	{ #ext_name,							\
 140	  /* 48-bit stats are zero-padded to 64 on DMA */		\
 141	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
 142	  hw_name ## _ ## offset }
 143#define FALCON_OTHER_STAT(ext_name)					\
 144	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 145
 146static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 147	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 148	FALCON_DMA_STAT(tx_packets, XgTxPkts),
 149	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 150	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 151	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 152	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 153	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 154	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 155	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 156	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 157	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 158	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 159	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 160	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 161	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 162	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 163	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 164	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 165	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 166	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 167	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 168	FALCON_OTHER_STAT(rx_bad_bytes),
 169	FALCON_DMA_STAT(rx_packets, XgRxPkts),
 170	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 171	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 172	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 173	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 174	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 175	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 176	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 177	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 178	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 179	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 180	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 181	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 182	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 183	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 184	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 185	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 186	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 187	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 188	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 189	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 190	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 191	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 192	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 193	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 194};
 195static const unsigned long falcon_stat_mask[] = {
 196	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 197};
 198
 199/**************************************************************************
 200 *
 201 * Basic SPI command set and bit definitions
 202 *
 203 *************************************************************************/
 204
 205#define SPI_WRSR 0x01		/* Write status register */
 206#define SPI_WRITE 0x02		/* Write data to memory array */
 207#define SPI_READ 0x03		/* Read data from memory array */
 208#define SPI_WRDI 0x04		/* Reset write enable latch */
 209#define SPI_RDSR 0x05		/* Read status register */
 210#define SPI_WREN 0x06		/* Set write enable latch */
 211#define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
 212
 213#define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
 214#define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
 215#define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
 216#define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
 217#define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
 218#define SPI_STATUS_NRDY 0x01	/* Device busy flag */
 219
 220/**************************************************************************
 221 *
 222 * Non-volatile memory layout
 223 *
 224 **************************************************************************
 225 */
 226
 227/* SFC4000 flash is partitioned into:
 228 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 229 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 230 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 231 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 232 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 233 *     0-0x400       chip and board config
 234 *     configurable  VPD
 235 *     0x800-0x1800  boot config
 236 * Aside from the chip and board config, all of these are optional and may
 237 * be absent or truncated depending on the devices used.
 238 */
 239#define FALCON_NVCONFIG_END 0x400U
 240#define FALCON_FLASH_BOOTCODE_START 0x8000U
 241#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 242#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 243
 244/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 245struct falcon_nvconfig_board_v2 {
 246	__le16 nports;
 247	u8 port0_phy_addr;
 248	u8 port0_phy_type;
 249	u8 port1_phy_addr;
 250	u8 port1_phy_type;
 251	__le16 asic_sub_revision;
 252	__le16 board_revision;
 253} __packed;
 254
 255/* Board configuration v3 extra information */
 256struct falcon_nvconfig_board_v3 {
 257	__le32 spi_device_type[2];
 258} __packed;
 259
 260/* Bit numbers for spi_device_type */
 261#define SPI_DEV_TYPE_SIZE_LBN 0
 262#define SPI_DEV_TYPE_SIZE_WIDTH 5
 263#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 264#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 265#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 266#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 267#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 268#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 269#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 270#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 271#define SPI_DEV_TYPE_FIELD(type, field)					\
 272	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
 273
 274#define FALCON_NVCONFIG_OFFSET 0x300
 275
 276#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 277struct falcon_nvconfig {
 278	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
 279	u8 mac_address[2][8];			/* 0x310 */
 280	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
 281	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
 282	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
 283	efx_oword_t hw_init_reg;			/* 0x350 */
 284	efx_oword_t nic_stat_reg;			/* 0x360 */
 285	efx_oword_t glb_ctl_reg;			/* 0x370 */
 286	efx_oword_t srm_cfg_reg;			/* 0x380 */
 287	efx_oword_t spare_reg;				/* 0x390 */
 288	__le16 board_magic_num;			/* 0x3A0 */
 289	__le16 board_struct_ver;
 290	__le16 board_checksum;
 291	struct falcon_nvconfig_board_v2 board_v2;
 292	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
 293	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
 294} __packed;
 295
 296/*************************************************************************/
 297
 298static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
 299static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
 300
 301static const unsigned int
 302/* "Large" EEPROM device: Atmel AT25640 or similar
 303 * 8 KB, 16-bit address, 32 B write block */
 304large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 305		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 306		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 307/* Default flash device: Atmel AT25F1024
 308 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 309default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 310		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 311		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 312		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 313		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 314
 315/**************************************************************************
 316 *
 317 * I2C bus - this is a bit-bashing interface using GPIO pins
 318 * Note that it uses the output enables to tristate the outputs
 319 * SDA is the data pin and SCL is the clock
 320 *
 321 **************************************************************************
 322 */
 323static void falcon_setsda(void *data, int state)
 324{
 325	struct efx_nic *efx = (struct efx_nic *)data;
 326	efx_oword_t reg;
 327
 328	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 329	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 330	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 331}
 332
 333static void falcon_setscl(void *data, int state)
 334{
 335	struct efx_nic *efx = (struct efx_nic *)data;
 336	efx_oword_t reg;
 337
 338	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 339	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 340	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 341}
 342
 343static int falcon_getsda(void *data)
 344{
 345	struct efx_nic *efx = (struct efx_nic *)data;
 346	efx_oword_t reg;
 347
 348	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 349	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 350}
 351
 352static int falcon_getscl(void *data)
 353{
 354	struct efx_nic *efx = (struct efx_nic *)data;
 355	efx_oword_t reg;
 356
 357	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 358	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 359}
 360
 361static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 362	.setsda		= falcon_setsda,
 363	.setscl		= falcon_setscl,
 364	.getsda		= falcon_getsda,
 365	.getscl		= falcon_getscl,
 366	.udelay		= 5,
 367	/* Wait up to 50 ms for slave to let us pull SCL high */
 368	.timeout	= DIV_ROUND_UP(HZ, 20),
 369};
 370
 371static void falcon_push_irq_moderation(struct efx_channel *channel)
 372{
 373	efx_dword_t timer_cmd;
 374	struct efx_nic *efx = channel->efx;
 375
 376	/* Set timer register */
 377	if (channel->irq_moderation) {
 378		EFX_POPULATE_DWORD_2(timer_cmd,
 379				     FRF_AB_TC_TIMER_MODE,
 380				     FFE_BB_TIMER_MODE_INT_HLDOFF,
 381				     FRF_AB_TC_TIMER_VAL,
 382				     channel->irq_moderation - 1);
 383	} else {
 384		EFX_POPULATE_DWORD_2(timer_cmd,
 385				     FRF_AB_TC_TIMER_MODE,
 386				     FFE_BB_TIMER_MODE_DIS,
 387				     FRF_AB_TC_TIMER_VAL, 0);
 388	}
 389	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 390	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 391			       channel->channel);
 392}
 393
 394static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 395
 396static void falcon_prepare_flush(struct efx_nic *efx)
 397{
 398	falcon_deconfigure_mac_wrapper(efx);
 399
 400	/* Wait for the tx and rx fifo's to get to the next packet boundary
 401	 * (~1ms without back-pressure), then to drain the remainder of the
 402	 * fifo's at data path speeds (negligible), with a healthy margin. */
 403	msleep(10);
 404}
 405
 406/* Acknowledge a legacy interrupt from Falcon
 407 *
 408 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 409 *
 410 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 411 * BIU. Interrupt acknowledge is read sensitive so must write instead
 412 * (then read to ensure the BIU collector is flushed)
 413 *
 414 * NB most hardware supports MSI interrupts
 415 */
 416static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 417{
 418	efx_dword_t reg;
 419
 420	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 421	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
 422	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 423}
 424
 425static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 426{
 427	struct efx_nic *efx = dev_id;
 428	efx_oword_t *int_ker = efx->irq_status.addr;
 429	int syserr;
 430	int queues;
 431
 432	/* Check to see if this is our interrupt.  If it isn't, we
 433	 * exit without having touched the hardware.
 434	 */
 435	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 436		netif_vdbg(efx, intr, efx->net_dev,
 437			   "IRQ %d on CPU %d not for me\n", irq,
 438			   raw_smp_processor_id());
 439		return IRQ_NONE;
 440	}
 441	efx->last_irq_cpu = raw_smp_processor_id();
 442	netif_vdbg(efx, intr, efx->net_dev,
 443		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 444		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 445
 446	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 447		return IRQ_HANDLED;
 448
 449	/* Check to see if we have a serious error condition */
 450	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 451	if (unlikely(syserr))
 452		return efx_farch_fatal_interrupt(efx);
 453
 454	/* Determine interrupting queues, clear interrupt status
 455	 * register and acknowledge the device interrupt.
 456	 */
 457	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 458	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 459	EFX_ZERO_OWORD(*int_ker);
 460	wmb(); /* Ensure the vector is cleared before interrupt ack */
 461	falcon_irq_ack_a1(efx);
 462
 463	if (queues & 1)
 464		efx_schedule_channel_irq(efx_get_channel(efx, 0));
 465	if (queues & 2)
 466		efx_schedule_channel_irq(efx_get_channel(efx, 1));
 467	return IRQ_HANDLED;
 468}
 469
 470/**************************************************************************
 471 *
 472 * RSS
 473 *
 474 **************************************************************************
 475 */
 476
 477static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
 478{
 479	efx_oword_t temp;
 480
 481	/* Set hash key for IPv4 */
 482	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 483	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 484
 485	efx_farch_rx_push_indir_table(efx);
 486}
 487
 488/**************************************************************************
 489 *
 490 * EEPROM/flash
 491 *
 492 **************************************************************************
 493 */
 494
 495#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 496
 497static int falcon_spi_poll(struct efx_nic *efx)
 498{
 499	efx_oword_t reg;
 500	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 501	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 502}
 503
 504/* Wait for SPI command completion */
 505static int falcon_spi_wait(struct efx_nic *efx)
 506{
 507	/* Most commands will finish quickly, so we start polling at
 508	 * very short intervals.  Sometimes the command may have to
 509	 * wait for VPD or expansion ROM access outside of our
 510	 * control, so we allow up to 100 ms. */
 511	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 512	int i;
 513
 514	for (i = 0; i < 10; i++) {
 515		if (!falcon_spi_poll(efx))
 516			return 0;
 517		udelay(10);
 518	}
 519
 520	for (;;) {
 521		if (!falcon_spi_poll(efx))
 522			return 0;
 523		if (time_after_eq(jiffies, timeout)) {
 524			netif_err(efx, hw, efx->net_dev,
 525				  "timed out waiting for SPI\n");
 526			return -ETIMEDOUT;
 527		}
 528		schedule_timeout_uninterruptible(1);
 529	}
 530}
 531
 532static int
 533falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
 534	       unsigned int command, int address,
 535	       const void *in, void *out, size_t len)
 536{
 537	bool addressed = (address >= 0);
 538	bool reading = (out != NULL);
 539	efx_oword_t reg;
 540	int rc;
 541
 542	/* Input validation */
 543	if (len > FALCON_SPI_MAX_LEN)
 544		return -EINVAL;
 545
 546	/* Check that previous command is not still running */
 547	rc = falcon_spi_poll(efx);
 548	if (rc)
 549		return rc;
 550
 551	/* Program address register, if we have an address */
 552	if (addressed) {
 553		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 554		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 555	}
 556
 557	/* Program data register, if we have data */
 558	if (in != NULL) {
 559		memcpy(&reg, in, len);
 560		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 561	}
 562
 563	/* Issue read/write command */
 564	EFX_POPULATE_OWORD_7(reg,
 565			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 566			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 567			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
 568			     FRF_AB_EE_SPI_HCMD_READ, reading,
 569			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 570			     FRF_AB_EE_SPI_HCMD_ADBCNT,
 571			     (addressed ? spi->addr_len : 0),
 572			     FRF_AB_EE_SPI_HCMD_ENC, command);
 573	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 574
 575	/* Wait for read/write to complete */
 576	rc = falcon_spi_wait(efx);
 577	if (rc)
 578		return rc;
 579
 580	/* Read data */
 581	if (out != NULL) {
 582		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 583		memcpy(out, &reg, len);
 584	}
 585
 586	return 0;
 587}
 588
 589static inline u8
 590falcon_spi_munge_command(const struct falcon_spi_device *spi,
 591			 const u8 command, const unsigned int address)
 592{
 593	return command | (((address >> 8) & spi->munge_address) << 3);
 594}
 595
 596static int
 597falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
 598		loff_t start, size_t len, size_t *retlen, u8 *buffer)
 599{
 600	size_t block_len, pos = 0;
 601	unsigned int command;
 602	int rc = 0;
 603
 604	while (pos < len) {
 605		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 606
 607		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 608		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 609				    buffer + pos, block_len);
 610		if (rc)
 611			break;
 612		pos += block_len;
 613
 614		/* Avoid locking up the system */
 615		cond_resched();
 616		if (signal_pending(current)) {
 617			rc = -EINTR;
 618			break;
 619		}
 620	}
 621
 622	if (retlen)
 623		*retlen = pos;
 624	return rc;
 625}
 626
 627#ifdef CONFIG_SFC_MTD
 628
 629struct falcon_mtd_partition {
 630	struct efx_mtd_partition common;
 631	const struct falcon_spi_device *spi;
 632	size_t offset;
 633};
 634
 635#define to_falcon_mtd_partition(mtd)				\
 636	container_of(mtd, struct falcon_mtd_partition, common.mtd)
 637
 638static size_t
 639falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 640{
 641	return min(FALCON_SPI_MAX_LEN,
 642		   (spi->block_size - (start & (spi->block_size - 1))));
 643}
 644
 645/* Wait up to 10 ms for buffered write completion */
 646static int
 647falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
 648{
 649	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 650	u8 status;
 651	int rc;
 652
 653	for (;;) {
 654		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 655				    &status, sizeof(status));
 656		if (rc)
 657			return rc;
 658		if (!(status & SPI_STATUS_NRDY))
 659			return 0;
 660		if (time_after_eq(jiffies, timeout)) {
 661			netif_err(efx, hw, efx->net_dev,
 662				  "SPI write timeout on device %d"
 663				  " last status=0x%02x\n",
 664				  spi->device_id, status);
 665			return -ETIMEDOUT;
 666		}
 667		schedule_timeout_uninterruptible(1);
 668	}
 669}
 670
 671static int
 672falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
 673		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 674{
 675	u8 verify_buffer[FALCON_SPI_MAX_LEN];
 676	size_t block_len, pos = 0;
 677	unsigned int command;
 678	int rc = 0;
 679
 680	while (pos < len) {
 681		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 682		if (rc)
 683			break;
 684
 685		block_len = min(len - pos,
 686				falcon_spi_write_limit(spi, start + pos));
 687		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 688		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 689				    buffer + pos, NULL, block_len);
 690		if (rc)
 691			break;
 692
 693		rc = falcon_spi_wait_write(efx, spi);
 694		if (rc)
 695			break;
 696
 697		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 698		rc = falcon_spi_cmd(efx, spi, command, start + pos,
 699				    NULL, verify_buffer, block_len);
 700		if (memcmp(verify_buffer, buffer + pos, block_len)) {
 701			rc = -EIO;
 702			break;
 703		}
 704
 705		pos += block_len;
 706
 707		/* Avoid locking up the system */
 708		cond_resched();
 709		if (signal_pending(current)) {
 710			rc = -EINTR;
 711			break;
 712		}
 713	}
 714
 715	if (retlen)
 716		*retlen = pos;
 717	return rc;
 718}
 719
 720static int
 721falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 722{
 723	const struct falcon_spi_device *spi = part->spi;
 724	struct efx_nic *efx = part->common.mtd.priv;
 725	u8 status;
 726	int rc, i;
 727
 728	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 729	for (i = 0; i < 40; i++) {
 730		__set_current_state(uninterruptible ?
 731				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 732		schedule_timeout(HZ / 10);
 733		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 734				    &status, sizeof(status));
 735		if (rc)
 736			return rc;
 737		if (!(status & SPI_STATUS_NRDY))
 738			return 0;
 739		if (signal_pending(current))
 740			return -EINTR;
 741	}
 742	pr_err("%s: timed out waiting for %s\n",
 743	       part->common.name, part->common.dev_type_name);
 744	return -ETIMEDOUT;
 745}
 746
 747static int
 748falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
 749{
 750	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 751				SPI_STATUS_BP0);
 752	u8 status;
 753	int rc;
 754
 755	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 756			    &status, sizeof(status));
 757	if (rc)
 758		return rc;
 759
 760	if (!(status & unlock_mask))
 761		return 0; /* already unlocked */
 762
 763	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 764	if (rc)
 765		return rc;
 766	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 767	if (rc)
 768		return rc;
 769
 770	status &= ~unlock_mask;
 771	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 772			    NULL, sizeof(status));
 773	if (rc)
 774		return rc;
 775	rc = falcon_spi_wait_write(efx, spi);
 776	if (rc)
 777		return rc;
 778
 779	return 0;
 780}
 781
 782#define FALCON_SPI_VERIFY_BUF_LEN 16
 783
 784static int
 785falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 786{
 787	const struct falcon_spi_device *spi = part->spi;
 788	struct efx_nic *efx = part->common.mtd.priv;
 789	unsigned pos, block_len;
 790	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 791	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 792	int rc;
 793
 794	if (len != spi->erase_size)
 795		return -EINVAL;
 796
 797	if (spi->erase_command == 0)
 798		return -EOPNOTSUPP;
 799
 800	rc = falcon_spi_unlock(efx, spi);
 801	if (rc)
 802		return rc;
 803	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 804	if (rc)
 805		return rc;
 806	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 807			    NULL, 0);
 808	if (rc)
 809		return rc;
 810	rc = falcon_spi_slow_wait(part, false);
 811
 812	/* Verify the entire region has been wiped */
 813	memset(empty, 0xff, sizeof(empty));
 814	for (pos = 0; pos < len; pos += block_len) {
 815		block_len = min(len - pos, sizeof(buffer));
 816		rc = falcon_spi_read(efx, spi, start + pos, block_len,
 817				     NULL, buffer);
 818		if (rc)
 819			return rc;
 820		if (memcmp(empty, buffer, block_len))
 821			return -EIO;
 822
 823		/* Avoid locking up the system */
 824		cond_resched();
 825		if (signal_pending(current))
 826			return -EINTR;
 827	}
 828
 829	return rc;
 830}
 831
 832static void falcon_mtd_rename(struct efx_mtd_partition *part)
 833{
 834	struct efx_nic *efx = part->mtd.priv;
 835
 836	snprintf(part->name, sizeof(part->name), "%s %s",
 837		 efx->name, part->type_name);
 838}
 839
 840static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 841			   size_t len, size_t *retlen, u8 *buffer)
 842{
 843	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 844	struct efx_nic *efx = mtd->priv;
 845	struct falcon_nic_data *nic_data = efx->nic_data;
 846	int rc;
 847
 848	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 849	if (rc)
 850		return rc;
 851	rc = falcon_spi_read(efx, part->spi, part->offset + start,
 852			     len, retlen, buffer);
 853	mutex_unlock(&nic_data->spi_lock);
 854	return rc;
 855}
 856
 857static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 858{
 859	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 860	struct efx_nic *efx = mtd->priv;
 861	struct falcon_nic_data *nic_data = efx->nic_data;
 862	int rc;
 863
 864	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 865	if (rc)
 866		return rc;
 867	rc = falcon_spi_erase(part, part->offset + start, len);
 868	mutex_unlock(&nic_data->spi_lock);
 869	return rc;
 870}
 871
 872static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 873			    size_t len, size_t *retlen, const u8 *buffer)
 874{
 875	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 876	struct efx_nic *efx = mtd->priv;
 877	struct falcon_nic_data *nic_data = efx->nic_data;
 878	int rc;
 879
 880	rc = mutex_lock_interruptible(&nic_data->spi_lock);
 881	if (rc)
 882		return rc;
 883	rc = falcon_spi_write(efx, part->spi, part->offset + start,
 884			      len, retlen, buffer);
 885	mutex_unlock(&nic_data->spi_lock);
 886	return rc;
 887}
 888
 889static int falcon_mtd_sync(struct mtd_info *mtd)
 890{
 891	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 892	struct efx_nic *efx = mtd->priv;
 893	struct falcon_nic_data *nic_data = efx->nic_data;
 894	int rc;
 895
 896	mutex_lock(&nic_data->spi_lock);
 897	rc = falcon_spi_slow_wait(part, true);
 898	mutex_unlock(&nic_data->spi_lock);
 899	return rc;
 900}
 901
 902static int falcon_mtd_probe(struct efx_nic *efx)
 903{
 904	struct falcon_nic_data *nic_data = efx->nic_data;
 905	struct falcon_mtd_partition *parts;
 906	struct falcon_spi_device *spi;
 907	size_t n_parts;
 908	int rc = -ENODEV;
 909
 910	ASSERT_RTNL();
 911
 912	/* Allocate space for maximum number of partitions */
 913	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 914	if (!parts)
 915		return -ENOMEM;
 916	n_parts = 0;
 917
 918	spi = &nic_data->spi_flash;
 919	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 920		parts[n_parts].spi = spi;
 921		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 922		parts[n_parts].common.dev_type_name = "flash";
 923		parts[n_parts].common.type_name = "sfc_flash_bootrom";
 924		parts[n_parts].common.mtd.type = MTD_NORFLASH;
 925		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 926		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 927		parts[n_parts].common.mtd.erasesize = spi->erase_size;
 928		n_parts++;
 929	}
 930
 931	spi = &nic_data->spi_eeprom;
 932	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 933		parts[n_parts].spi = spi;
 934		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 935		parts[n_parts].common.dev_type_name = "EEPROM";
 936		parts[n_parts].common.type_name = "sfc_bootconfig";
 937		parts[n_parts].common.mtd.type = MTD_RAM;
 938		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 939		parts[n_parts].common.mtd.size =
 940			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 941			FALCON_EEPROM_BOOTCONFIG_START;
 942		parts[n_parts].common.mtd.erasesize = spi->erase_size;
 943		n_parts++;
 944	}
 945
 946	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 947	if (rc)
 948		kfree(parts);
 949	return rc;
 950}
 951
 952#endif /* CONFIG_SFC_MTD */
 953
 954/**************************************************************************
 955 *
 956 * XMAC operations
 957 *
 958 **************************************************************************
 959 */
 960
 961/* Configure the XAUI driver that is an output from Falcon */
 962static void falcon_setup_xaui(struct efx_nic *efx)
 963{
 964	efx_oword_t sdctl, txdrv;
 965
 966	/* Move the XAUI into low power, unless there is no PHY, in
 967	 * which case the XAUI will have to drive a cable. */
 968	if (efx->phy_type == PHY_TYPE_NONE)
 969		return;
 970
 971	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 972	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 973	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 974	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 975	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 976	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 977	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 978	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 979	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 980	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
 981
 982	EFX_POPULATE_OWORD_8(txdrv,
 983			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
 984			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
 985			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
 986			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
 987			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
 988			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
 989			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
 990			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
 991	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
 992}
 993
 994int falcon_reset_xaui(struct efx_nic *efx)
 995{
 996	struct falcon_nic_data *nic_data = efx->nic_data;
 997	efx_oword_t reg;
 998	int count;
 999
1000	/* Don't fetch MAC statistics over an XMAC reset */
1001	WARN_ON(nic_data->stats_disable_count == 0);
1002
1003	/* Start reset sequence */
1004	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1005	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1006
1007	/* Wait up to 10 ms for completion, then reinitialise */
1008	for (count = 0; count < 1000; count++) {
1009		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1010		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1011		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1012			falcon_setup_xaui(efx);
1013			return 0;
1014		}
1015		udelay(10);
1016	}
1017	netif_err(efx, hw, efx->net_dev,
1018		  "timed out waiting for XAUI/XGXS reset\n");
1019	return -ETIMEDOUT;
1020}
1021
1022static void falcon_ack_status_intr(struct efx_nic *efx)
1023{
1024	struct falcon_nic_data *nic_data = efx->nic_data;
1025	efx_oword_t reg;
1026
1027	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1028		return;
1029
1030	/* We expect xgmii faults if the wireside link is down */
1031	if (!efx->link_state.up)
1032		return;
1033
1034	/* We can only use this interrupt to signal the negative edge of
1035	 * xaui_align [we have to poll the positive edge]. */
1036	if (nic_data->xmac_poll_required)
1037		return;
1038
1039	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1040}
1041
1042static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1043{
1044	efx_oword_t reg;
1045	bool align_done, link_ok = false;
1046	int sync_status;
1047
1048	/* Read link status */
1049	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1050
1051	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1052	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1053	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1054		link_ok = true;
1055
1056	/* Clear link status ready for next read */
1057	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1058	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1059	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1060	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1061
1062	return link_ok;
1063}
1064
1065static bool falcon_xmac_link_ok(struct efx_nic *efx)
1066{
1067	/*
1068	 * Check MAC's XGXS link status except when using XGMII loopback
1069	 * which bypasses the XGXS block.
1070	 * If possible, check PHY's XGXS link status except when using
1071	 * MAC loopback.
1072	 */
1073	return (efx->loopback_mode == LOOPBACK_XGMII ||
1074		falcon_xgxs_link_ok(efx)) &&
1075		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1076		 LOOPBACK_INTERNAL(efx) ||
1077		 efx_mdio_phyxgxs_lane_sync(efx));
1078}
1079
1080static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1081{
1082	unsigned int max_frame_len;
1083	efx_oword_t reg;
1084	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1085	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1086
1087	/* Configure MAC  - cut-thru mode is hard wired on */
1088	EFX_POPULATE_OWORD_3(reg,
1089			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1090			     FRF_AB_XM_TX_STAT_EN, 1,
1091			     FRF_AB_XM_RX_STAT_EN, 1);
1092	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1093
1094	/* Configure TX */
1095	EFX_POPULATE_OWORD_6(reg,
1096			     FRF_AB_XM_TXEN, 1,
1097			     FRF_AB_XM_TX_PRMBL, 1,
1098			     FRF_AB_XM_AUTO_PAD, 1,
1099			     FRF_AB_XM_TXCRC, 1,
1100			     FRF_AB_XM_FCNTL, tx_fc,
1101			     FRF_AB_XM_IPG, 0x3);
1102	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1103
1104	/* Configure RX */
1105	EFX_POPULATE_OWORD_5(reg,
1106			     FRF_AB_XM_RXEN, 1,
1107			     FRF_AB_XM_AUTO_DEPAD, 0,
1108			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1109			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1110			     FRF_AB_XM_PASS_CRC_ERR, 1);
1111	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1112
1113	/* Set frame length */
1114	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1115	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1116	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1117	EFX_POPULATE_OWORD_2(reg,
1118			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1119			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1120	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1121
1122	EFX_POPULATE_OWORD_2(reg,
1123			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1124			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1125	efx_writeo(efx, &reg, FR_AB_XM_FC);
1126
1127	/* Set MAC address */
1128	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1129	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1130	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1131	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1132}
1133
1134static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1135{
1136	efx_oword_t reg;
1137	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1138	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1139	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1140	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1141
1142	/* XGXS block is flaky and will need to be reset if moving
1143	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1144	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1145	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1146	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1147
1148	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1149	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1150
1151	/* The PHY driver may have turned XAUI off */
1152	if ((xgxs_loopback != old_xgxs_loopback) ||
1153	    (xaui_loopback != old_xaui_loopback) ||
1154	    (xgmii_loopback != old_xgmii_loopback))
1155		falcon_reset_xaui(efx);
1156
1157	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1158	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1159			    (xgxs_loopback || xaui_loopback) ?
1160			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1161	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1162	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1163	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1164
1165	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1167	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1168	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1169	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1170	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1171}
1172
1173
1174/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1175static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1176{
1177	bool mac_up = falcon_xmac_link_ok(efx);
1178
1179	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1180	    efx_phy_mode_disabled(efx->phy_mode))
1181		/* XAUI link is expected to be down */
1182		return mac_up;
1183
1184	falcon_stop_nic_stats(efx);
1185
1186	while (!mac_up && tries) {
1187		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1188		falcon_reset_xaui(efx);
1189		udelay(200);
1190
1191		mac_up = falcon_xmac_link_ok(efx);
1192		--tries;
1193	}
1194
1195	falcon_start_nic_stats(efx);
1196
1197	return mac_up;
1198}
1199
1200static bool falcon_xmac_check_fault(struct efx_nic *efx)
1201{
1202	return !falcon_xmac_link_ok_retry(efx, 5);
1203}
1204
1205static int falcon_reconfigure_xmac(struct efx_nic *efx)
1206{
1207	struct falcon_nic_data *nic_data = efx->nic_data;
1208
1209	efx_farch_filter_sync_rx_mode(efx);
1210
1211	falcon_reconfigure_xgxs_core(efx);
1212	falcon_reconfigure_xmac_core(efx);
1213
1214	falcon_reconfigure_mac_wrapper(efx);
1215
1216	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1217	falcon_ack_status_intr(efx);
1218
1219	return 0;
1220}
1221
1222static void falcon_poll_xmac(struct efx_nic *efx)
1223{
1224	struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226	/* We expect xgmii faults if the wireside link is down */
1227	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1228		return;
1229
1230	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1231	falcon_ack_status_intr(efx);
1232}
1233
1234/**************************************************************************
1235 *
1236 * MAC wrapper
1237 *
1238 **************************************************************************
1239 */
1240
1241static void falcon_push_multicast_hash(struct efx_nic *efx)
1242{
1243	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1244
1245	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1246
1247	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1248	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1249}
1250
1251static void falcon_reset_macs(struct efx_nic *efx)
1252{
1253	struct falcon_nic_data *nic_data = efx->nic_data;
1254	efx_oword_t reg, mac_ctrl;
1255	int count;
1256
1257	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1258		/* It's not safe to use GLB_CTL_REG to reset the
1259		 * macs, so instead use the internal MAC resets
1260		 */
1261		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1262		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1263
1264		for (count = 0; count < 10000; count++) {
1265			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1266			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1267			    0)
1268				return;
1269			udelay(10);
1270		}
1271
1272		netif_err(efx, hw, efx->net_dev,
1273			  "timed out waiting for XMAC core reset\n");
1274	}
1275
1276	/* Mac stats will fail whist the TX fifo is draining */
1277	WARN_ON(nic_data->stats_disable_count == 0);
1278
1279	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1280	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1281	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1282
1283	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1284	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1285	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1286	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1287	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1288
1289	count = 0;
1290	while (1) {
1291		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1292		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1293		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1294		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1295			netif_dbg(efx, hw, efx->net_dev,
1296				  "Completed MAC reset after %d loops\n",
1297				  count);
1298			break;
1299		}
1300		if (count > 20) {
1301			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1302			break;
1303		}
1304		count++;
1305		udelay(10);
1306	}
1307
1308	/* Ensure the correct MAC is selected before statistics
1309	 * are re-enabled by the caller */
1310	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1311
1312	falcon_setup_xaui(efx);
1313}
1314
1315static void falcon_drain_tx_fifo(struct efx_nic *efx)
1316{
1317	efx_oword_t reg;
1318
1319	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1320	    (efx->loopback_mode != LOOPBACK_NONE))
1321		return;
1322
1323	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1324	/* There is no point in draining more than once */
1325	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1326		return;
1327
1328	falcon_reset_macs(efx);
1329}
1330
1331static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1332{
1333	efx_oword_t reg;
1334
1335	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1336		return;
1337
1338	/* Isolate the MAC -> RX */
1339	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1340	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1341	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1342
1343	/* Isolate TX -> MAC */
1344	falcon_drain_tx_fifo(efx);
1345}
1346
1347static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1348{
1349	struct efx_link_state *link_state = &efx->link_state;
1350	efx_oword_t reg;
1351	int link_speed, isolate;
1352
1353	isolate = !!ACCESS_ONCE(efx->reset_pending);
1354
1355	switch (link_state->speed) {
1356	case 10000: link_speed = 3; break;
1357	case 1000:  link_speed = 2; break;
1358	case 100:   link_speed = 1; break;
1359	default:    link_speed = 0; break;
1360	}
1361
1362	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1363	 * as advertised.  Disable to ensure packets are not
1364	 * indefinitely held and TX queue can be flushed at any point
1365	 * while the link is down. */
1366	EFX_POPULATE_OWORD_5(reg,
1367			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1368			     FRF_AB_MAC_BCAD_ACPT, 1,
1369			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1370			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1371			     FRF_AB_MAC_SPEED, link_speed);
1372	/* On B0, MAC backpressure can be disabled and packets get
1373	 * discarded. */
1374	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1375		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1376				    !link_state->up || isolate);
1377	}
1378
1379	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1380
1381	/* Restore the multicast hash registers. */
1382	falcon_push_multicast_hash(efx);
1383
1384	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1385	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1386	 * initialisation but it may read back as 0) */
1387	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1388	/* Unisolate the MAC -> RX */
1389	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1390		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1391	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1392}
1393
1394static void falcon_stats_request(struct efx_nic *efx)
1395{
1396	struct falcon_nic_data *nic_data = efx->nic_data;
1397	efx_oword_t reg;
1398
1399	WARN_ON(nic_data->stats_pending);
1400	WARN_ON(nic_data->stats_disable_count);
1401
1402	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1403	nic_data->stats_pending = true;
1404	wmb(); /* ensure done flag is clear */
1405
1406	/* Initiate DMA transfer of stats */
1407	EFX_POPULATE_OWORD_2(reg,
1408			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1409			     FRF_AB_MAC_STAT_DMA_ADR,
1410			     efx->stats_buffer.dma_addr);
1411	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1412
1413	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1414}
1415
1416static void falcon_stats_complete(struct efx_nic *efx)
1417{
1418	struct falcon_nic_data *nic_data = efx->nic_data;
1419
1420	if (!nic_data->stats_pending)
1421		return;
1422
1423	nic_data->stats_pending = false;
1424	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1425		rmb(); /* read the done flag before the stats */
1426		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1427				     falcon_stat_mask, nic_data->stats,
1428				     efx->stats_buffer.addr, true);
1429	} else {
1430		netif_err(efx, hw, efx->net_dev,
1431			  "timed out waiting for statistics\n");
1432	}
1433}
1434
1435static void falcon_stats_timer_func(unsigned long context)
1436{
1437	struct efx_nic *efx = (struct efx_nic *)context;
1438	struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440	spin_lock(&efx->stats_lock);
1441
1442	falcon_stats_complete(efx);
1443	if (nic_data->stats_disable_count == 0)
1444		falcon_stats_request(efx);
1445
1446	spin_unlock(&efx->stats_lock);
1447}
1448
1449static bool falcon_loopback_link_poll(struct efx_nic *efx)
1450{
1451	struct efx_link_state old_state = efx->link_state;
1452
1453	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1454	WARN_ON(!LOOPBACK_INTERNAL(efx));
1455
1456	efx->link_state.fd = true;
1457	efx->link_state.fc = efx->wanted_fc;
1458	efx->link_state.up = true;
1459	efx->link_state.speed = 10000;
1460
1461	return !efx_link_state_equal(&efx->link_state, &old_state);
1462}
1463
1464static int falcon_reconfigure_port(struct efx_nic *efx)
1465{
1466	int rc;
1467
1468	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1469
1470	/* Poll the PHY link state *before* reconfiguring it. This means we
1471	 * will pick up the correct speed (in loopback) to select the correct
1472	 * MAC.
1473	 */
1474	if (LOOPBACK_INTERNAL(efx))
1475		falcon_loopback_link_poll(efx);
1476	else
1477		efx->phy_op->poll(efx);
1478
1479	falcon_stop_nic_stats(efx);
1480	falcon_deconfigure_mac_wrapper(efx);
1481
1482	falcon_reset_macs(efx);
1483
1484	efx->phy_op->reconfigure(efx);
1485	rc = falcon_reconfigure_xmac(efx);
1486	BUG_ON(rc);
1487
1488	falcon_start_nic_stats(efx);
1489
1490	/* Synchronise efx->link_state with the kernel */
1491	efx_link_status_changed(efx);
1492
1493	return 0;
1494}
1495
1496/* TX flow control may automatically turn itself off if the link
1497 * partner (intermittently) stops responding to pause frames. There
1498 * isn't any indication that this has happened, so the best we do is
1499 * leave it up to the user to spot this and fix it by cycling transmit
1500 * flow control on this end.
1501 */
1502
1503static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1504{
1505	/* Schedule a reset to recover */
1506	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1507}
1508
1509static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1510{
1511	/* Recover by resetting the EM block */
1512	falcon_stop_nic_stats(efx);
1513	falcon_drain_tx_fifo(efx);
1514	falcon_reconfigure_xmac(efx);
1515	falcon_start_nic_stats(efx);
1516}
1517
1518/**************************************************************************
1519 *
1520 * PHY access via GMII
1521 *
1522 **************************************************************************
1523 */
1524
1525/* Wait for GMII access to complete */
1526static int falcon_gmii_wait(struct efx_nic *efx)
1527{
1528	efx_oword_t md_stat;
1529	int count;
1530
1531	/* wait up to 50ms - taken max from datasheet */
1532	for (count = 0; count < 5000; count++) {
1533		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1534		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1535			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1536			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1537				netif_err(efx, hw, efx->net_dev,
1538					  "error from GMII access "
1539					  EFX_OWORD_FMT"\n",
1540					  EFX_OWORD_VAL(md_stat));
1541				return -EIO;
1542			}
1543			return 0;
1544		}
1545		udelay(10);
1546	}
1547	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1548	return -ETIMEDOUT;
1549}
1550
1551/* Write an MDIO register of a PHY connected to Falcon. */
1552static int falcon_mdio_write(struct net_device *net_dev,
1553			     int prtad, int devad, u16 addr, u16 value)
1554{
1555	struct efx_nic *efx = netdev_priv(net_dev);
1556	struct falcon_nic_data *nic_data = efx->nic_data;
1557	efx_oword_t reg;
1558	int rc;
1559
1560	netif_vdbg(efx, hw, efx->net_dev,
1561		   "writing MDIO %d register %d.%d with 0x%04x\n",
1562		    prtad, devad, addr, value);
1563
1564	mutex_lock(&nic_data->mdio_lock);
1565
1566	/* Check MDIO not currently being accessed */
1567	rc = falcon_gmii_wait(efx);
1568	if (rc)
1569		goto out;
1570
1571	/* Write the address/ID register */
1572	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1573	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1574
1575	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1576			     FRF_AB_MD_DEV_ADR, devad);
1577	efx_writeo(efx, &reg, FR_AB_MD_ID);
1578
1579	/* Write data */
1580	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1581	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1582
1583	EFX_POPULATE_OWORD_2(reg,
1584			     FRF_AB_MD_WRC, 1,
1585			     FRF_AB_MD_GC, 0);
1586	efx_writeo(efx, &reg, FR_AB_MD_CS);
1587
1588	/* Wait for data to be written */
1589	rc = falcon_gmii_wait(efx);
1590	if (rc) {
1591		/* Abort the write operation */
1592		EFX_POPULATE_OWORD_2(reg,
1593				     FRF_AB_MD_WRC, 0,
1594				     FRF_AB_MD_GC, 1);
1595		efx_writeo(efx, &reg, FR_AB_MD_CS);
1596		udelay(10);
1597	}
1598
1599out:
1600	mutex_unlock(&nic_data->mdio_lock);
1601	return rc;
1602}
1603
1604/* Read an MDIO register of a PHY connected to Falcon. */
1605static int falcon_mdio_read(struct net_device *net_dev,
1606			    int prtad, int devad, u16 addr)
1607{
1608	struct efx_nic *efx = netdev_priv(net_dev);
1609	struct falcon_nic_data *nic_data = efx->nic_data;
1610	efx_oword_t reg;
1611	int rc;
1612
1613	mutex_lock(&nic_data->mdio_lock);
1614
1615	/* Check MDIO not currently being accessed */
1616	rc = falcon_gmii_wait(efx);
1617	if (rc)
1618		goto out;
1619
1620	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1621	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1622
1623	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1624			     FRF_AB_MD_DEV_ADR, devad);
1625	efx_writeo(efx, &reg, FR_AB_MD_ID);
1626
1627	/* Request data to be read */
1628	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1629	efx_writeo(efx, &reg, FR_AB_MD_CS);
1630
1631	/* Wait for data to become available */
1632	rc = falcon_gmii_wait(efx);
1633	if (rc == 0) {
1634		efx_reado(efx, &reg, FR_AB_MD_RXD);
1635		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1636		netif_vdbg(efx, hw, efx->net_dev,
1637			   "read from MDIO %d register %d.%d, got %04x\n",
1638			   prtad, devad, addr, rc);
1639	} else {
1640		/* Abort the read operation */
1641		EFX_POPULATE_OWORD_2(reg,
1642				     FRF_AB_MD_RIC, 0,
1643				     FRF_AB_MD_GC, 1);
1644		efx_writeo(efx, &reg, FR_AB_MD_CS);
1645
1646		netif_dbg(efx, hw, efx->net_dev,
1647			  "read from MDIO %d register %d.%d, got error %d\n",
1648			  prtad, devad, addr, rc);
1649	}
1650
1651out:
1652	mutex_unlock(&nic_data->mdio_lock);
1653	return rc;
1654}
1655
1656/* This call is responsible for hooking in the MAC and PHY operations */
1657static int falcon_probe_port(struct efx_nic *efx)
1658{
1659	struct falcon_nic_data *nic_data = efx->nic_data;
1660	int rc;
1661
1662	switch (efx->phy_type) {
1663	case PHY_TYPE_SFX7101:
1664		efx->phy_op = &falcon_sfx7101_phy_ops;
1665		break;
1666	case PHY_TYPE_QT2022C2:
1667	case PHY_TYPE_QT2025C:
1668		efx->phy_op = &falcon_qt202x_phy_ops;
1669		break;
1670	case PHY_TYPE_TXC43128:
1671		efx->phy_op = &falcon_txc_phy_ops;
1672		break;
1673	default:
1674		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1675			  efx->phy_type);
1676		return -ENODEV;
1677	}
1678
1679	/* Fill out MDIO structure and loopback modes */
1680	mutex_init(&nic_data->mdio_lock);
1681	efx->mdio.mdio_read = falcon_mdio_read;
1682	efx->mdio.mdio_write = falcon_mdio_write;
1683	rc = efx->phy_op->probe(efx);
1684	if (rc != 0)
1685		return rc;
1686
1687	/* Initial assumption */
1688	efx->link_state.speed = 10000;
1689	efx->link_state.fd = true;
1690
1691	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1692	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1693		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1694	else
1695		efx->wanted_fc = EFX_FC_RX;
1696	if (efx->mdio.mmds & MDIO_DEVS_AN)
1697		efx->wanted_fc |= EFX_FC_AUTO;
1698
1699	/* Allocate buffer for stats */
1700	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1701				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1702	if (rc)
1703		return rc;
1704	netif_dbg(efx, probe, efx->net_dev,
1705		  "stats buffer at %llx (virt %p phys %llx)\n",
1706		  (u64)efx->stats_buffer.dma_addr,
1707		  efx->stats_buffer.addr,
1708		  (u64)virt_to_phys(efx->stats_buffer.addr));
1709
1710	return 0;
1711}
1712
1713static void falcon_remove_port(struct efx_nic *efx)
1714{
1715	efx->phy_op->remove(efx);
1716	efx_nic_free_buffer(efx, &efx->stats_buffer);
1717}
1718
1719/* Global events are basically PHY events */
1720static bool
1721falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1722{
1723	struct efx_nic *efx = channel->efx;
1724	struct falcon_nic_data *nic_data = efx->nic_data;
1725
1726	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1727	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1728	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1729		/* Ignored */
1730		return true;
1731
1732	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1733	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1734		nic_data->xmac_poll_required = true;
1735		return true;
1736	}
1737
1738	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1739	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1740	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1741		netif_err(efx, rx_err, efx->net_dev,
1742			  "channel %d seen global RX_RESET event. Resetting.\n",
1743			  channel->channel);
1744
1745		atomic_inc(&efx->rx_reset);
1746		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1747				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1748		return true;
1749	}
1750
1751	return false;
1752}
1753
1754/**************************************************************************
1755 *
1756 * Falcon test code
1757 *
1758 **************************************************************************/
1759
1760static int
1761falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1762{
1763	struct falcon_nic_data *nic_data = efx->nic_data;
1764	struct falcon_nvconfig *nvconfig;
1765	struct falcon_spi_device *spi;
1766	void *region;
1767	int rc, magic_num, struct_ver;
1768	__le16 *word, *limit;
1769	u32 csum;
1770
1771	if (falcon_spi_present(&nic_data->spi_flash))
1772		spi = &nic_data->spi_flash;
1773	else if (falcon_spi_present(&nic_data->spi_eeprom))
1774		spi = &nic_data->spi_eeprom;
1775	else
1776		return -EINVAL;
1777
1778	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1779	if (!region)
1780		return -ENOMEM;
1781	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1782
1783	mutex_lock(&nic_data->spi_lock);
1784	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1785	mutex_unlock(&nic_data->spi_lock);
1786	if (rc) {
1787		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1788			  falcon_spi_present(&nic_data->spi_flash) ?
1789			  "flash" : "EEPROM");
1790		rc = -EIO;
1791		goto out;
1792	}
1793
1794	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1795	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1796
1797	rc = -EINVAL;
1798	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1799		netif_err(efx, hw, efx->net_dev,
1800			  "NVRAM bad magic 0x%x\n", magic_num);
1801		goto out;
1802	}
1803	if (struct_ver < 2) {
1804		netif_err(efx, hw, efx->net_dev,
1805			  "NVRAM has ancient version 0x%x\n", struct_ver);
1806		goto out;
1807	} else if (struct_ver < 4) {
1808		word = &nvconfig->board_magic_num;
1809		limit = (__le16 *) (nvconfig + 1);
1810	} else {
1811		word = region;
1812		limit = region + FALCON_NVCONFIG_END;
1813	}
1814	for (csum = 0; word < limit; ++word)
1815		csum += le16_to_cpu(*word);
1816
1817	if (~csum & 0xffff) {
1818		netif_err(efx, hw, efx->net_dev,
1819			  "NVRAM has incorrect checksum\n");
1820		goto out;
1821	}
1822
1823	rc = 0;
1824	if (nvconfig_out)
1825		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1826
1827 out:
1828	kfree(region);
1829	return rc;
1830}
1831
1832static int falcon_test_nvram(struct efx_nic *efx)
1833{
1834	return falcon_read_nvram(efx, NULL);
1835}
1836
1837static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1838	{ FR_AZ_ADR_REGION,
1839	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1840	{ FR_AZ_RX_CFG,
1841	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1842	{ FR_AZ_TX_CFG,
1843	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1844	{ FR_AZ_TX_RESERVED,
1845	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1846	{ FR_AB_MAC_CTRL,
1847	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1848	{ FR_AZ_SRM_TX_DC_CFG,
1849	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1850	{ FR_AZ_RX_DC_CFG,
1851	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1852	{ FR_AZ_RX_DC_PF_WM,
1853	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1854	{ FR_BZ_DP_CTRL,
1855	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1856	{ FR_AB_GM_CFG2,
1857	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1858	{ FR_AB_GMF_CFG0,
1859	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1860	{ FR_AB_XM_GLB_CFG,
1861	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1862	{ FR_AB_XM_TX_CFG,
1863	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1864	{ FR_AB_XM_RX_CFG,
1865	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1866	{ FR_AB_XM_RX_PARAM,
1867	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1868	{ FR_AB_XM_FC,
1869	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1870	{ FR_AB_XM_ADR_LO,
1871	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1872	{ FR_AB_XX_SD_CTL,
1873	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1874};
1875
1876static int
1877falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1878{
1879	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1880	int rc, rc2;
1881
1882	mutex_lock(&efx->mac_lock);
1883	if (efx->loopback_modes) {
1884		/* We need the 312 clock from the PHY to test the XMAC
1885		 * registers, so move into XGMII loopback if available */
1886		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1887			efx->loopback_mode = LOOPBACK_XGMII;
1888		else
1889			efx->loopback_mode = __ffs(efx->loopback_modes);
1890	}
1891	__efx_reconfigure_port(efx);
1892	mutex_unlock(&efx->mac_lock);
1893
1894	efx_reset_down(efx, reset_method);
1895
1896	tests->registers =
1897		efx_farch_test_registers(efx, falcon_b0_register_tests,
1898					 ARRAY_SIZE(falcon_b0_register_tests))
1899		? -1 : 1;
1900
1901	rc = falcon_reset_hw(efx, reset_method);
1902	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1903	return rc ? rc : rc2;
1904}
1905
1906/**************************************************************************
1907 *
1908 * Device reset
1909 *
1910 **************************************************************************
1911 */
1912
1913static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1914{
1915	switch (reason) {
1916	case RESET_TYPE_RX_RECOVERY:
1917	case RESET_TYPE_DMA_ERROR:
1918	case RESET_TYPE_TX_SKIP:
1919		/* These can occasionally occur due to hardware bugs.
1920		 * We try to reset without disrupting the link.
1921		 */
1922		return RESET_TYPE_INVISIBLE;
1923	default:
1924		return RESET_TYPE_ALL;
1925	}
1926}
1927
1928static int falcon_map_reset_flags(u32 *flags)
1929{
1930	enum {
1931		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1932					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1933		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1934		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1935	};
1936
1937	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1938		*flags &= ~FALCON_RESET_WORLD;
1939		return RESET_TYPE_WORLD;
1940	}
1941
1942	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1943		*flags &= ~FALCON_RESET_ALL;
1944		return RESET_TYPE_ALL;
1945	}
1946
1947	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1948		*flags &= ~FALCON_RESET_INVISIBLE;
1949		return RESET_TYPE_INVISIBLE;
1950	}
1951
1952	return -EINVAL;
1953}
1954
1955/* Resets NIC to known state.  This routine must be called in process
1956 * context and is allowed to sleep. */
1957static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1958{
1959	struct falcon_nic_data *nic_data = efx->nic_data;
1960	efx_oword_t glb_ctl_reg_ker;
1961	int rc;
1962
1963	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1964		  RESET_TYPE(method));
1965
1966	/* Initiate device reset */
1967	if (method == RESET_TYPE_WORLD) {
1968		rc = pci_save_state(efx->pci_dev);
1969		if (rc) {
1970			netif_err(efx, drv, efx->net_dev,
1971				  "failed to backup PCI state of primary "
1972				  "function prior to hardware reset\n");
1973			goto fail1;
1974		}
1975		if (efx_nic_is_dual_func(efx)) {
1976			rc = pci_save_state(nic_data->pci_dev2);
1977			if (rc) {
1978				netif_err(efx, drv, efx->net_dev,
1979					  "failed to backup PCI state of "
1980					  "secondary function prior to "
1981					  "hardware reset\n");
1982				goto fail2;
1983			}
1984		}
1985
1986		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1987				     FRF_AB_EXT_PHY_RST_DUR,
1988				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1989				     FRF_AB_SWRST, 1);
1990	} else {
1991		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1992				     /* exclude PHY from "invisible" reset */
1993				     FRF_AB_EXT_PHY_RST_CTL,
1994				     method == RESET_TYPE_INVISIBLE,
1995				     /* exclude EEPROM/flash and PCIe */
1996				     FRF_AB_PCIE_CORE_RST_CTL, 1,
1997				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1998				     FRF_AB_PCIE_SD_RST_CTL, 1,
1999				     FRF_AB_EE_RST_CTL, 1,
2000				     FRF_AB_EXT_PHY_RST_DUR,
2001				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2002				     FRF_AB_SWRST, 1);
2003	}
2004	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2005
2006	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2007	schedule_timeout_uninterruptible(HZ / 20);
2008
2009	/* Restore PCI configuration if needed */
2010	if (method == RESET_TYPE_WORLD) {
2011		if (efx_nic_is_dual_func(efx))
2012			pci_restore_state(nic_data->pci_dev2);
2013		pci_restore_state(efx->pci_dev);
2014		netif_dbg(efx, drv, efx->net_dev,
2015			  "successfully restored PCI config\n");
2016	}
2017
2018	/* Assert that reset complete */
2019	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2020	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2021		rc = -ETIMEDOUT;
2022		netif_err(efx, hw, efx->net_dev,
2023			  "timed out waiting for hardware reset\n");
2024		goto fail3;
2025	}
2026	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2027
2028	return 0;
2029
2030	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2031fail2:
2032	pci_restore_state(efx->pci_dev);
2033fail1:
2034fail3:
2035	return rc;
2036}
2037
2038static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2039{
2040	struct falcon_nic_data *nic_data = efx->nic_data;
2041	int rc;
2042
2043	mutex_lock(&nic_data->spi_lock);
2044	rc = __falcon_reset_hw(efx, method);
2045	mutex_unlock(&nic_data->spi_lock);
2046
2047	return rc;
2048}
2049
2050static void falcon_monitor(struct efx_nic *efx)
2051{
2052	bool link_changed;
2053	int rc;
2054
2055	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2056
2057	rc = falcon_board(efx)->type->monitor(efx);
2058	if (rc) {
2059		netif_err(efx, hw, efx->net_dev,
2060			  "Board sensor %s; shutting down PHY\n",
2061			  (rc == -ERANGE) ? "reported fault" : "failed");
2062		efx->phy_mode |= PHY_MODE_LOW_POWER;
2063		rc = __efx_reconfigure_port(efx);
2064		WARN_ON(rc);
2065	}
2066
2067	if (LOOPBACK_INTERNAL(efx))
2068		link_changed = falcon_loopback_link_poll(efx);
2069	else
2070		link_changed = efx->phy_op->poll(efx);
2071
2072	if (link_changed) {
2073		falcon_stop_nic_stats(efx);
2074		falcon_deconfigure_mac_wrapper(efx);
2075
2076		falcon_reset_macs(efx);
2077		rc = falcon_reconfigure_xmac(efx);
2078		BUG_ON(rc);
2079
2080		falcon_start_nic_stats(efx);
2081
2082		efx_link_status_changed(efx);
2083	}
2084
2085	falcon_poll_xmac(efx);
2086}
2087
2088/* Zeroes out the SRAM contents.  This routine must be called in
2089 * process context and is allowed to sleep.
2090 */
2091static int falcon_reset_sram(struct efx_nic *efx)
2092{
2093	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2094	int count;
2095
2096	/* Set the SRAM wake/sleep GPIO appropriately. */
2097	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2098	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2099	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2100	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2101
2102	/* Initiate SRAM reset */
2103	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2104			     FRF_AZ_SRM_INIT_EN, 1,
2105			     FRF_AZ_SRM_NB_SZ, 0);
2106	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2107
2108	/* Wait for SRAM reset to complete */
2109	count = 0;
2110	do {
2111		netif_dbg(efx, hw, efx->net_dev,
2112			  "waiting for SRAM reset (attempt %d)...\n", count);
2113
2114		/* SRAM reset is slow; expect around 16ms */
2115		schedule_timeout_uninterruptible(HZ / 50);
2116
2117		/* Check for reset complete */
2118		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2119		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2120			netif_dbg(efx, hw, efx->net_dev,
2121				  "SRAM reset complete\n");
2122
2123			return 0;
2124		}
2125	} while (++count < 20);	/* wait up to 0.4 sec */
2126
2127	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2128	return -ETIMEDOUT;
2129}
2130
2131static void falcon_spi_device_init(struct efx_nic *efx,
2132				  struct falcon_spi_device *spi_device,
2133				  unsigned int device_id, u32 device_type)
2134{
2135	if (device_type != 0) {
2136		spi_device->device_id = device_id;
2137		spi_device->size =
2138			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2139		spi_device->addr_len =
2140			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2141		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2142					     spi_device->addr_len == 1);
2143		spi_device->erase_command =
2144			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2145		spi_device->erase_size =
2146			1 << SPI_DEV_TYPE_FIELD(device_type,
2147						SPI_DEV_TYPE_ERASE_SIZE);
2148		spi_device->block_size =
2149			1 << SPI_DEV_TYPE_FIELD(device_type,
2150						SPI_DEV_TYPE_BLOCK_SIZE);
2151	} else {
2152		spi_device->size = 0;
2153	}
2154}
2155
2156/* Extract non-volatile configuration */
2157static int falcon_probe_nvconfig(struct efx_nic *efx)
2158{
2159	struct falcon_nic_data *nic_data = efx->nic_data;
2160	struct falcon_nvconfig *nvconfig;
2161	int rc;
2162
2163	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2164	if (!nvconfig)
2165		return -ENOMEM;
2166
2167	rc = falcon_read_nvram(efx, nvconfig);
2168	if (rc)
2169		goto out;
2170
2171	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2172	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2173
2174	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2175		falcon_spi_device_init(
2176			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2177			le32_to_cpu(nvconfig->board_v3
2178				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2179		falcon_spi_device_init(
2180			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2181			le32_to_cpu(nvconfig->board_v3
2182				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2183	}
2184
2185	/* Read the MAC addresses */
2186	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2187
2188	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2189		  efx->phy_type, efx->mdio.prtad);
2190
2191	rc = falcon_probe_board(efx,
2192				le16_to_cpu(nvconfig->board_v2.board_revision));
2193out:
2194	kfree(nvconfig);
2195	return rc;
2196}
2197
2198static int falcon_dimension_resources(struct efx_nic *efx)
2199{
2200	efx->rx_dc_base = 0x20000;
2201	efx->tx_dc_base = 0x26000;
2202	return 0;
2203}
2204
2205/* Probe all SPI devices on the NIC */
2206static void falcon_probe_spi_devices(struct efx_nic *efx)
2207{
2208	struct falcon_nic_data *nic_data = efx->nic_data;
2209	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2210	int boot_dev;
2211
2212	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2213	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2214	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2215
2216	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2217		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2218			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2219		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2220			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2221			  "flash" : "EEPROM");
2222	} else {
2223		/* Disable VPD and set clock dividers to safe
2224		 * values for initial programming. */
2225		boot_dev = -1;
2226		netif_dbg(efx, probe, efx->net_dev,
2227			  "Booted from internal ASIC settings;"
2228			  " setting SPI config\n");
2229		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2230				     /* 125 MHz / 7 ~= 20 MHz */
2231				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2232				     /* 125 MHz / 63 ~= 2 MHz */
2233				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2234		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235	}
2236
2237	mutex_init(&nic_data->spi_lock);
2238
2239	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2240		falcon_spi_device_init(efx, &nic_data->spi_flash,
2241				       FFE_AB_SPI_DEVICE_FLASH,
2242				       default_flash_type);
2243	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2244		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2245				       FFE_AB_SPI_DEVICE_EEPROM,
2246				       large_eeprom_type);
2247}
2248
2249static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2250{
2251	return 0x20000;
2252}
2253
2254static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2255{
2256	/* Map everything up to and including the RSS indirection table.
2257	 * The PCI core takes care of mapping the MSI-X tables.
2258	 */
2259	return FR_BZ_RX_INDIRECTION_TBL +
2260		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2261}
2262
2263static int falcon_probe_nic(struct efx_nic *efx)
2264{
2265	struct falcon_nic_data *nic_data;
2266	struct falcon_board *board;
2267	int rc;
2268
2269	efx->primary = efx; /* only one usable function per controller */
2270
2271	/* Allocate storage for hardware specific data */
2272	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2273	if (!nic_data)
2274		return -ENOMEM;
2275	efx->nic_data = nic_data;
2276
2277	rc = -ENODEV;
2278
2279	if (efx_farch_fpga_ver(efx) != 0) {
2280		netif_err(efx, probe, efx->net_dev,
2281			  "Falcon FPGA not supported\n");
2282		goto fail1;
2283	}
2284
2285	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2286		efx_oword_t nic_stat;
2287		struct pci_dev *dev;
2288		u8 pci_rev = efx->pci_dev->revision;
2289
2290		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2291			netif_err(efx, probe, efx->net_dev,
2292				  "Falcon rev A0 not supported\n");
2293			goto fail1;
2294		}
2295		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2296		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2297			netif_err(efx, probe, efx->net_dev,
2298				  "Falcon rev A1 1G not supported\n");
2299			goto fail1;
2300		}
2301		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2302			netif_err(efx, probe, efx->net_dev,
2303				  "Falcon rev A1 PCI-X not supported\n");
2304			goto fail1;
2305		}
2306
2307		dev = pci_dev_get(efx->pci_dev);
2308		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2309					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2310					     dev))) {
2311			if (dev->bus == efx->pci_dev->bus &&
2312			    dev->devfn == efx->pci_dev->devfn + 1) {
2313				nic_data->pci_dev2 = dev;
2314				break;
2315			}
2316		}
2317		if (!nic_data->pci_dev2) {
2318			netif_err(efx, probe, efx->net_dev,
2319				  "failed to find secondary function\n");
2320			rc = -ENODEV;
2321			goto fail2;
2322		}
2323	}
2324
2325	/* Now we can reset the NIC */
2326	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2327	if (rc) {
2328		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2329		goto fail3;
2330	}
2331
2332	/* Allocate memory for INT_KER */
2333	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2334				  GFP_KERNEL);
2335	if (rc)
2336		goto fail4;
2337	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2338
2339	netif_dbg(efx, probe, efx->net_dev,
2340		  "INT_KER at %llx (virt %p phys %llx)\n",
2341		  (u64)efx->irq_status.dma_addr,
2342		  efx->irq_status.addr,
2343		  (u64)virt_to_phys(efx->irq_status.addr));
2344
2345	falcon_probe_spi_devices(efx);
2346
2347	/* Read in the non-volatile configuration */
2348	rc = falcon_probe_nvconfig(efx);
2349	if (rc) {
2350		if (rc == -EINVAL)
2351			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2352		goto fail5;
2353	}
2354
2355	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2356			     EFX_MAX_CHANNELS);
2357	efx->timer_quantum_ns = 4968; /* 621 cycles */
2358
2359	/* Initialise I2C adapter */
2360	board = falcon_board(efx);
2361	board->i2c_adap.owner = THIS_MODULE;
2362	board->i2c_data = falcon_i2c_bit_operations;
2363	board->i2c_data.data = efx;
2364	board->i2c_adap.algo_data = &board->i2c_data;
2365	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2366	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2367		sizeof(board->i2c_adap.name));
2368	rc = i2c_bit_add_bus(&board->i2c_adap);
2369	if (rc)
2370		goto fail5;
2371
2372	rc = falcon_board(efx)->type->init(efx);
2373	if (rc) {
2374		netif_err(efx, probe, efx->net_dev,
2375			  "failed to initialise board\n");
2376		goto fail6;
2377	}
2378
2379	nic_data->stats_disable_count = 1;
2380	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2381		    (unsigned long)efx);
2382
2383	return 0;
2384
2385 fail6:
2386	i2c_del_adapter(&board->i2c_adap);
2387	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2388 fail5:
2389	efx_nic_free_buffer(efx, &efx->irq_status);
2390 fail4:
2391 fail3:
2392	if (nic_data->pci_dev2) {
2393		pci_dev_put(nic_data->pci_dev2);
2394		nic_data->pci_dev2 = NULL;
2395	}
2396 fail2:
2397 fail1:
2398	kfree(efx->nic_data);
2399	return rc;
2400}
2401
2402static void falcon_init_rx_cfg(struct efx_nic *efx)
2403{
2404	/* RX control FIFO thresholds (32 entries) */
2405	const unsigned ctrl_xon_thr = 20;
2406	const unsigned ctrl_xoff_thr = 25;
2407	efx_oword_t reg;
2408
2409	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2410	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2411		/* Data FIFO size is 5.5K.  The RX DMA engine only
2412		 * supports scattering for user-mode queues, but will
2413		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2414		 * (32-byte units) even for kernel-mode queues.  We
2415		 * set it to be so large that that never happens.
2416		 */
2417		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2418		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2419				    (3 * 4096) >> 5);
2420		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2421		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2422		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2423		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2424	} else {
2425		/* Data FIFO size is 80K; register fields moved */
2426		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2427		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2428				    EFX_RX_USR_BUF_SIZE >> 5);
2429		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2430		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2431		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2432		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2433		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2434		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2435
2436		/* Enable hash insertion. This is broken for the
2437		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2438		 * IPv4 hashes. */
2439		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2440		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2441		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2442	}
2443	/* Always enable XOFF signal from RX FIFO.  We enable
2444	 * or disable transmission of pause frames at the MAC. */
2445	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2446	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2447}
2448
2449/* This call performs hardware-specific global initialisation, such as
2450 * defining the descriptor cache sizes and number of RSS channels.
2451 * It does not set up any buffers, descriptor rings or event queues.
2452 */
2453static int falcon_init_nic(struct efx_nic *efx)
2454{
2455	efx_oword_t temp;
2456	int rc;
2457
2458	/* Use on-chip SRAM */
2459	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2460	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2461	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2462
2463	rc = falcon_reset_sram(efx);
2464	if (rc)
2465		return rc;
2466
2467	/* Clear the parity enables on the TX data fifos as
2468	 * they produce false parity errors because of timing issues
2469	 */
2470	if (EFX_WORKAROUND_5129(efx)) {
2471		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2472		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2473		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2474	}
2475
2476	if (EFX_WORKAROUND_7244(efx)) {
2477		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2478		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2479		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2480		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2481		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2482		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2483	}
2484
2485	/* XXX This is documented only for Falcon A0/A1 */
2486	/* Setup RX.  Wait for descriptor is broken and must
2487	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2488	 */
2489	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2490	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2491	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2492	if (EFX_WORKAROUND_5583(efx))
2493		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2494	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2495
2496	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2497	 * descriptors (which is bad).
2498	 */
2499	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2500	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2501	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2502
2503	falcon_init_rx_cfg(efx);
2504
2505	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2506		falcon_b0_rx_push_rss_config(efx);
2507
2508		/* Set destination of both TX and RX Flush events */
2509		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2510		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2511	}
2512
2513	efx_farch_init_common(efx);
2514
2515	return 0;
2516}
2517
2518static void falcon_remove_nic(struct efx_nic *efx)
2519{
2520	struct falcon_nic_data *nic_data = efx->nic_data;
2521	struct falcon_board *board = falcon_board(efx);
2522
2523	board->type->fini(efx);
2524
2525	/* Remove I2C adapter and clear it in preparation for a retry */
2526	i2c_del_adapter(&board->i2c_adap);
2527	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2528
2529	efx_nic_free_buffer(efx, &efx->irq_status);
2530
2531	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2532
2533	/* Release the second function after the reset */
2534	if (nic_data->pci_dev2) {
2535		pci_dev_put(nic_data->pci_dev2);
2536		nic_data->pci_dev2 = NULL;
2537	}
2538
2539	/* Tear down the private nic state */
2540	kfree(efx->nic_data);
2541	efx->nic_data = NULL;
2542}
2543
2544static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2545{
2546	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2547				      falcon_stat_mask, names);
2548}
2549
2550static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2551				      struct rtnl_link_stats64 *core_stats)
2552{
2553	struct falcon_nic_data *nic_data = efx->nic_data;
2554	u64 *stats = nic_data->stats;
2555	efx_oword_t cnt;
2556
2557	if (!nic_data->stats_disable_count) {
2558		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2559		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2560			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2561
2562		if (nic_data->stats_pending &&
2563		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2564			nic_data->stats_pending = false;
2565			rmb(); /* read the done flag before the stats */
2566			efx_nic_update_stats(
2567				falcon_stat_desc, FALCON_STAT_COUNT,
2568				falcon_stat_mask,
2569				stats, efx->stats_buffer.addr, true);
2570		}
2571
2572		/* Update derived statistic */
2573		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2574				     stats[FALCON_STAT_rx_bytes] -
2575				     stats[FALCON_STAT_rx_good_bytes] -
2576				     stats[FALCON_STAT_rx_control] * 64);
2577	}
2578
2579	if (full_stats)
2580		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2581
2582	if (core_stats) {
2583		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2584		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2585		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2586		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2587		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
2588		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2589		core_stats->rx_length_errors =
2590			stats[FALCON_STAT_rx_gtjumbo] +
2591			stats[FALCON_STAT_rx_length_error];
2592		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2593		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2594		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2595
2596		core_stats->rx_errors = (core_stats->rx_length_errors +
2597					 core_stats->rx_crc_errors +
2598					 core_stats->rx_frame_errors +
2599					 stats[FALCON_STAT_rx_symbol_error]);
2600	}
2601
2602	return FALCON_STAT_COUNT;
2603}
2604
2605void falcon_start_nic_stats(struct efx_nic *efx)
2606{
2607	struct falcon_nic_data *nic_data = efx->nic_data;
2608
2609	spin_lock_bh(&efx->stats_lock);
2610	if (--nic_data->stats_disable_count == 0)
2611		falcon_stats_request(efx);
2612	spin_unlock_bh(&efx->stats_lock);
2613}
2614
2615/* We don't acutally pull stats on falcon. Wait 10ms so that
2616 * they arrive when we call this just after start_stats
2617 */
2618static void falcon_pull_nic_stats(struct efx_nic *efx)
2619{
2620	msleep(10);
2621}
2622
2623void falcon_stop_nic_stats(struct efx_nic *efx)
2624{
2625	struct falcon_nic_data *nic_data = efx->nic_data;
2626	int i;
2627
2628	might_sleep();
2629
2630	spin_lock_bh(&efx->stats_lock);
2631	++nic_data->stats_disable_count;
2632	spin_unlock_bh(&efx->stats_lock);
2633
2634	del_timer_sync(&nic_data->stats_timer);
2635
2636	/* Wait enough time for the most recent transfer to
2637	 * complete. */
2638	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2639		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2640			break;
2641		msleep(1);
2642	}
2643
2644	spin_lock_bh(&efx->stats_lock);
2645	falcon_stats_complete(efx);
2646	spin_unlock_bh(&efx->stats_lock);
2647}
2648
2649static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2650{
2651	falcon_board(efx)->type->set_id_led(efx, mode);
2652}
2653
2654/**************************************************************************
2655 *
2656 * Wake on LAN
2657 *
2658 **************************************************************************
2659 */
2660
2661static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2662{
2663	wol->supported = 0;
2664	wol->wolopts = 0;
2665	memset(&wol->sopass, 0, sizeof(wol->sopass));
2666}
2667
2668static int falcon_set_wol(struct efx_nic *efx, u32 type)
2669{
2670	if (type != 0)
2671		return -EINVAL;
2672	return 0;
2673}
2674
2675/**************************************************************************
2676 *
2677 * Revision-dependent attributes used by efx.c and nic.c
2678 *
2679 **************************************************************************
2680 */
2681
2682const struct efx_nic_type falcon_a1_nic_type = {
2683	.mem_map_size = falcon_a1_mem_map_size,
2684	.probe = falcon_probe_nic,
2685	.remove = falcon_remove_nic,
2686	.init = falcon_init_nic,
2687	.dimension_resources = falcon_dimension_resources,
2688	.fini = falcon_irq_ack_a1,
2689	.monitor = falcon_monitor,
2690	.map_reset_reason = falcon_map_reset_reason,
2691	.map_reset_flags = falcon_map_reset_flags,
2692	.reset = falcon_reset_hw,
2693	.probe_port = falcon_probe_port,
2694	.remove_port = falcon_remove_port,
2695	.handle_global_event = falcon_handle_global_event,
2696	.fini_dmaq = efx_farch_fini_dmaq,
2697	.prepare_flush = falcon_prepare_flush,
2698	.finish_flush = efx_port_dummy_op_void,
2699	.prepare_flr = efx_port_dummy_op_void,
2700	.finish_flr = efx_farch_finish_flr,
2701	.describe_stats = falcon_describe_nic_stats,
2702	.update_stats = falcon_update_nic_stats,
2703	.start_stats = falcon_start_nic_stats,
2704	.pull_stats = falcon_pull_nic_stats,
2705	.stop_stats = falcon_stop_nic_stats,
2706	.set_id_led = falcon_set_id_led,
2707	.push_irq_moderation = falcon_push_irq_moderation,
2708	.reconfigure_port = falcon_reconfigure_port,
2709	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2710	.reconfigure_mac = falcon_reconfigure_xmac,
2711	.check_mac_fault = falcon_xmac_check_fault,
2712	.get_wol = falcon_get_wol,
2713	.set_wol = falcon_set_wol,
2714	.resume_wol = efx_port_dummy_op_void,
2715	.test_nvram = falcon_test_nvram,
2716	.irq_enable_master = efx_farch_irq_enable_master,
2717	.irq_test_generate = efx_farch_irq_test_generate,
2718	.irq_disable_non_ev = efx_farch_irq_disable_master,
2719	.irq_handle_msi = efx_farch_msi_interrupt,
2720	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2721	.tx_probe = efx_farch_tx_probe,
2722	.tx_init = efx_farch_tx_init,
2723	.tx_remove = efx_farch_tx_remove,
2724	.tx_write = efx_farch_tx_write,
2725	.rx_push_rss_config = efx_port_dummy_op_void,
2726	.rx_probe = efx_farch_rx_probe,
2727	.rx_init = efx_farch_rx_init,
2728	.rx_remove = efx_farch_rx_remove,
2729	.rx_write = efx_farch_rx_write,
2730	.rx_defer_refill = efx_farch_rx_defer_refill,
2731	.ev_probe = efx_farch_ev_probe,
2732	.ev_init = efx_farch_ev_init,
2733	.ev_fini = efx_farch_ev_fini,
2734	.ev_remove = efx_farch_ev_remove,
2735	.ev_process = efx_farch_ev_process,
2736	.ev_read_ack = efx_farch_ev_read_ack,
2737	.ev_test_generate = efx_farch_ev_test_generate,
2738
2739	/* We don't expose the filter table on Falcon A1 as it is not
2740	 * mapped into function 0, but these implementations still
2741	 * work with a degenerate case of all tables set to size 0.
2742	 */
2743	.filter_table_probe = efx_farch_filter_table_probe,
2744	.filter_table_restore = efx_farch_filter_table_restore,
2745	.filter_table_remove = efx_farch_filter_table_remove,
2746	.filter_insert = efx_farch_filter_insert,
2747	.filter_remove_safe = efx_farch_filter_remove_safe,
2748	.filter_get_safe = efx_farch_filter_get_safe,
2749	.filter_clear_rx = efx_farch_filter_clear_rx,
2750	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2751	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2752	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2753
2754#ifdef CONFIG_SFC_MTD
2755	.mtd_probe = falcon_mtd_probe,
2756	.mtd_rename = falcon_mtd_rename,
2757	.mtd_read = falcon_mtd_read,
2758	.mtd_erase = falcon_mtd_erase,
2759	.mtd_write = falcon_mtd_write,
2760	.mtd_sync = falcon_mtd_sync,
2761#endif
2762
2763	.revision = EFX_REV_FALCON_A1,
2764	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2765	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2766	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2767	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2768	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2769	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2770	.rx_buffer_padding = 0x24,
2771	.can_rx_scatter = false,
2772	.max_interrupt_mode = EFX_INT_MODE_MSI,
2773	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2774	.offload_features = NETIF_F_IP_CSUM,
2775	.mcdi_max_ver = -1,
2776};
2777
2778const struct efx_nic_type falcon_b0_nic_type = {
2779	.mem_map_size = falcon_b0_mem_map_size,
2780	.probe = falcon_probe_nic,
2781	.remove = falcon_remove_nic,
2782	.init = falcon_init_nic,
2783	.dimension_resources = falcon_dimension_resources,
2784	.fini = efx_port_dummy_op_void,
2785	.monitor = falcon_monitor,
2786	.map_reset_reason = falcon_map_reset_reason,
2787	.map_reset_flags = falcon_map_reset_flags,
2788	.reset = falcon_reset_hw,
2789	.probe_port = falcon_probe_port,
2790	.remove_port = falcon_remove_port,
2791	.handle_global_event = falcon_handle_global_event,
2792	.fini_dmaq = efx_farch_fini_dmaq,
2793	.prepare_flush = falcon_prepare_flush,
2794	.finish_flush = efx_port_dummy_op_void,
2795	.prepare_flr = efx_port_dummy_op_void,
2796	.finish_flr = efx_farch_finish_flr,
2797	.describe_stats = falcon_describe_nic_stats,
2798	.update_stats = falcon_update_nic_stats,
2799	.start_stats = falcon_start_nic_stats,
2800	.pull_stats = falcon_pull_nic_stats,
2801	.stop_stats = falcon_stop_nic_stats,
2802	.set_id_led = falcon_set_id_led,
2803	.push_irq_moderation = falcon_push_irq_moderation,
2804	.reconfigure_port = falcon_reconfigure_port,
2805	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2806	.reconfigure_mac = falcon_reconfigure_xmac,
2807	.check_mac_fault = falcon_xmac_check_fault,
2808	.get_wol = falcon_get_wol,
2809	.set_wol = falcon_set_wol,
2810	.resume_wol = efx_port_dummy_op_void,
2811	.test_chip = falcon_b0_test_chip,
2812	.test_nvram = falcon_test_nvram,
2813	.irq_enable_master = efx_farch_irq_enable_master,
2814	.irq_test_generate = efx_farch_irq_test_generate,
2815	.irq_disable_non_ev = efx_farch_irq_disable_master,
2816	.irq_handle_msi = efx_farch_msi_interrupt,
2817	.irq_handle_legacy = efx_farch_legacy_interrupt,
2818	.tx_probe = efx_farch_tx_probe,
2819	.tx_init = efx_farch_tx_init,
2820	.tx_remove = efx_farch_tx_remove,
2821	.tx_write = efx_farch_tx_write,
2822	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2823	.rx_probe = efx_farch_rx_probe,
2824	.rx_init = efx_farch_rx_init,
2825	.rx_remove = efx_farch_rx_remove,
2826	.rx_write = efx_farch_rx_write,
2827	.rx_defer_refill = efx_farch_rx_defer_refill,
2828	.ev_probe = efx_farch_ev_probe,
2829	.ev_init = efx_farch_ev_init,
2830	.ev_fini = efx_farch_ev_fini,
2831	.ev_remove = efx_farch_ev_remove,
2832	.ev_process = efx_farch_ev_process,
2833	.ev_read_ack = efx_farch_ev_read_ack,
2834	.ev_test_generate = efx_farch_ev_test_generate,
2835	.filter_table_probe = efx_farch_filter_table_probe,
2836	.filter_table_restore = efx_farch_filter_table_restore,
2837	.filter_table_remove = efx_farch_filter_table_remove,
2838	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2839	.filter_insert = efx_farch_filter_insert,
2840	.filter_remove_safe = efx_farch_filter_remove_safe,
2841	.filter_get_safe = efx_farch_filter_get_safe,
2842	.filter_clear_rx = efx_farch_filter_clear_rx,
2843	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2844	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2845	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2846#ifdef CONFIG_RFS_ACCEL
2847	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2848	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2849#endif
2850#ifdef CONFIG_SFC_MTD
2851	.mtd_probe = falcon_mtd_probe,
2852	.mtd_rename = falcon_mtd_rename,
2853	.mtd_read = falcon_mtd_read,
2854	.mtd_erase = falcon_mtd_erase,
2855	.mtd_write = falcon_mtd_write,
2856	.mtd_sync = falcon_mtd_sync,
2857#endif
2858
2859	.revision = EFX_REV_FALCON_B0,
2860	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2861	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2862	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2863	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2864	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2865	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2866	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2867	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2868	.rx_buffer_padding = 0,
2869	.can_rx_scatter = true,
2870	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2871	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2872	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2873	.mcdi_max_ver = -1,
2874	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2875};