Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat UK.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "dm-bio-prison-v1.h"
  10#include "dm.h"
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/log2.h>
  17#include <linux/list.h>
  18#include <linux/rculist.h>
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sort.h>
  24#include <linux/rbtree.h>
  25
  26#define	DM_MSG_PREFIX	"thin"
  27
  28/*
  29 * Tunable constants
  30 */
  31#define ENDIO_HOOK_POOL_SIZE 1024
  32#define MAPPING_POOL_SIZE 1024
  33#define COMMIT_PERIOD HZ
  34#define NO_SPACE_TIMEOUT_SECS 60
  35
  36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  37
  38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  39		"A percentage of time allocated for copy on write");
  40
  41/*
  42 * The block size of the device holding pool data must be
  43 * between 64KB and 1GB.
  44 */
  45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  47
  48/*
  49 * Device id is restricted to 24 bits.
  50 */
  51#define MAX_DEV_ID ((1 << 24) - 1)
  52
  53/*
  54 * How do we handle breaking sharing of data blocks?
  55 * =================================================
  56 *
  57 * We use a standard copy-on-write btree to store the mappings for the
  58 * devices (note I'm talking about copy-on-write of the metadata here, not
  59 * the data).  When you take an internal snapshot you clone the root node
  60 * of the origin btree.  After this there is no concept of an origin or a
  61 * snapshot.  They are just two device trees that happen to point to the
  62 * same data blocks.
  63 *
  64 * When we get a write in we decide if it's to a shared data block using
  65 * some timestamp magic.  If it is, we have to break sharing.
  66 *
  67 * Let's say we write to a shared block in what was the origin.  The
  68 * steps are:
  69 *
  70 * i) plug io further to this physical block. (see bio_prison code).
  71 *
  72 * ii) quiesce any read io to that shared data block.  Obviously
  73 * including all devices that share this block.  (see dm_deferred_set code)
  74 *
  75 * iii) copy the data block to a newly allocate block.  This step can be
  76 * missed out if the io covers the block. (schedule_copy).
  77 *
  78 * iv) insert the new mapping into the origin's btree
  79 * (process_prepared_mapping).  This act of inserting breaks some
  80 * sharing of btree nodes between the two devices.  Breaking sharing only
  81 * effects the btree of that specific device.  Btrees for the other
  82 * devices that share the block never change.  The btree for the origin
  83 * device as it was after the last commit is untouched, ie. we're using
  84 * persistent data structures in the functional programming sense.
  85 *
  86 * v) unplug io to this physical block, including the io that triggered
  87 * the breaking of sharing.
  88 *
  89 * Steps (ii) and (iii) occur in parallel.
  90 *
  91 * The metadata _doesn't_ need to be committed before the io continues.  We
  92 * get away with this because the io is always written to a _new_ block.
  93 * If there's a crash, then:
  94 *
  95 * - The origin mapping will point to the old origin block (the shared
  96 * one).  This will contain the data as it was before the io that triggered
  97 * the breaking of sharing came in.
  98 *
  99 * - The snap mapping still points to the old block.  As it would after
 100 * the commit.
 101 *
 102 * The downside of this scheme is the timestamp magic isn't perfect, and
 103 * will continue to think that data block in the snapshot device is shared
 104 * even after the write to the origin has broken sharing.  I suspect data
 105 * blocks will typically be shared by many different devices, so we're
 106 * breaking sharing n + 1 times, rather than n, where n is the number of
 107 * devices that reference this data block.  At the moment I think the
 108 * benefits far, far outweigh the disadvantages.
 109 */
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Key building.
 115 */
 116enum lock_space {
 117	VIRTUAL,
 118	PHYSICAL
 119};
 120
 121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
 122		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 123{
 124	key->virtual = (ls == VIRTUAL);
 125	key->dev = dm_thin_dev_id(td);
 126	key->block_begin = b;
 127	key->block_end = e;
 128
 129	return dm_cell_key_has_valid_range(key);
 130}
 131
 132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 133			   struct dm_cell_key *key)
 134{
 135	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
 136}
 137
 138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 139			      struct dm_cell_key *key)
 140{
 141	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
 142}
 143
 144/*----------------------------------------------------------------*/
 145
 146#define THROTTLE_THRESHOLD (1 * HZ)
 147
 148struct throttle {
 149	struct rw_semaphore lock;
 150	unsigned long threshold;
 151	bool throttle_applied;
 152};
 153
 154static void throttle_init(struct throttle *t)
 155{
 156	init_rwsem(&t->lock);
 157	t->throttle_applied = false;
 158}
 159
 160static void throttle_work_start(struct throttle *t)
 161{
 162	t->threshold = jiffies + THROTTLE_THRESHOLD;
 163}
 164
 165static void throttle_work_update(struct throttle *t)
 166{
 167	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 168		down_write(&t->lock);
 169		t->throttle_applied = true;
 170	}
 171}
 172
 173static void throttle_work_complete(struct throttle *t)
 174{
 175	if (t->throttle_applied) {
 176		t->throttle_applied = false;
 177		up_write(&t->lock);
 178	}
 179}
 180
 181static void throttle_lock(struct throttle *t)
 182{
 183	down_read(&t->lock);
 184}
 185
 186static void throttle_unlock(struct throttle *t)
 187{
 188	up_read(&t->lock);
 189}
 190
 191/*----------------------------------------------------------------*/
 192
 193/*
 194 * A pool device ties together a metadata device and a data device.  It
 195 * also provides the interface for creating and destroying internal
 196 * devices.
 197 */
 198struct dm_thin_new_mapping;
 199
 200/*
 201 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 202 */
 203enum pool_mode {
 204	PM_WRITE,		/* metadata may be changed */
 205	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 206
 207	/*
 208	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 209	 */
 210	PM_OUT_OF_METADATA_SPACE,
 211	PM_READ_ONLY,		/* metadata may not be changed */
 212
 213	PM_FAIL,		/* all I/O fails */
 214};
 215
 216struct pool_features {
 217	enum pool_mode mode;
 218
 219	bool zero_new_blocks:1;
 220	bool discard_enabled:1;
 221	bool discard_passdown:1;
 222	bool error_if_no_space:1;
 223};
 224
 225struct thin_c;
 226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 229
 230#define CELL_SORT_ARRAY_SIZE 8192
 231
 232struct pool {
 233	struct list_head list;
 234	struct dm_target *ti;	/* Only set if a pool target is bound */
 235
 236	struct mapped_device *pool_md;
 237	struct block_device *data_dev;
 238	struct block_device *md_dev;
 239	struct dm_pool_metadata *pmd;
 240
 241	dm_block_t low_water_blocks;
 242	uint32_t sectors_per_block;
 243	int sectors_per_block_shift;
 244
 245	struct pool_features pf;
 246	bool low_water_triggered:1;	/* A dm event has been sent */
 247	bool suspended:1;
 248	bool out_of_data_space:1;
 249
 250	struct dm_bio_prison *prison;
 251	struct dm_kcopyd_client *copier;
 252
 253	struct work_struct worker;
 254	struct workqueue_struct *wq;
 255	struct throttle throttle;
 
 256	struct delayed_work waker;
 257	struct delayed_work no_space_timeout;
 258
 259	unsigned long last_commit_jiffies;
 260	unsigned int ref_count;
 261
 262	spinlock_t lock;
 263	struct bio_list deferred_flush_bios;
 264	struct bio_list deferred_flush_completions;
 265	struct list_head prepared_mappings;
 266	struct list_head prepared_discards;
 267	struct list_head prepared_discards_pt2;
 268	struct list_head active_thins;
 269
 270	struct dm_deferred_set *shared_read_ds;
 271	struct dm_deferred_set *all_io_ds;
 272
 273	struct dm_thin_new_mapping *next_mapping;
 
 274
 275	process_bio_fn process_bio;
 276	process_bio_fn process_discard;
 277
 278	process_cell_fn process_cell;
 279	process_cell_fn process_discard_cell;
 280
 281	process_mapping_fn process_prepared_mapping;
 282	process_mapping_fn process_prepared_discard;
 283	process_mapping_fn process_prepared_discard_pt2;
 284
 285	struct dm_bio_prison_cell **cell_sort_array;
 286
 287	mempool_t mapping_pool;
 288};
 289
 
 290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 291
 292static enum pool_mode get_pool_mode(struct pool *pool)
 293{
 294	return pool->pf.mode;
 295}
 296
 297static void notify_of_pool_mode_change(struct pool *pool)
 298{
 299	static const char *descs[] = {
 300		"write",
 301		"out-of-data-space",
 302		"read-only",
 303		"read-only",
 304		"fail"
 305	};
 306	const char *extra_desc = NULL;
 307	enum pool_mode mode = get_pool_mode(pool);
 308
 309	if (mode == PM_OUT_OF_DATA_SPACE) {
 310		if (!pool->pf.error_if_no_space)
 311			extra_desc = " (queue IO)";
 312		else
 313			extra_desc = " (error IO)";
 314	}
 315
 316	dm_table_event(pool->ti->table);
 317	DMINFO("%s: switching pool to %s%s mode",
 318	       dm_device_name(pool->pool_md),
 319	       descs[(int)mode], extra_desc ? : "");
 320}
 321
 322/*
 323 * Target context for a pool.
 324 */
 325struct pool_c {
 326	struct dm_target *ti;
 327	struct pool *pool;
 328	struct dm_dev *data_dev;
 329	struct dm_dev *metadata_dev;
 
 330
 331	dm_block_t low_water_blocks;
 332	struct pool_features requested_pf; /* Features requested during table load */
 333	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 334};
 335
 336/*
 337 * Target context for a thin.
 338 */
 339struct thin_c {
 340	struct list_head list;
 341	struct dm_dev *pool_dev;
 342	struct dm_dev *origin_dev;
 343	sector_t origin_size;
 344	dm_thin_id dev_id;
 345
 346	struct pool *pool;
 347	struct dm_thin_device *td;
 348	struct mapped_device *thin_md;
 349
 350	bool requeue_mode:1;
 351	spinlock_t lock;
 352	struct list_head deferred_cells;
 353	struct bio_list deferred_bio_list;
 354	struct bio_list retry_on_resume_list;
 355	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 356
 357	/*
 358	 * Ensures the thin is not destroyed until the worker has finished
 359	 * iterating the active_thins list.
 360	 */
 361	refcount_t refcount;
 362	struct completion can_destroy;
 363};
 364
 365/*----------------------------------------------------------------*/
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static bool block_size_is_power_of_two(struct pool *pool)
 368{
 369	return pool->sectors_per_block_shift >= 0;
 370}
 371
 372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 373{
 374	return block_size_is_power_of_two(pool) ?
 375		(b << pool->sectors_per_block_shift) :
 376		(b * pool->sectors_per_block);
 377}
 378
 379/*----------------------------------------------------------------*/
 380
 381struct discard_op {
 382	struct thin_c *tc;
 383	struct blk_plug plug;
 384	struct bio *parent_bio;
 385	struct bio *bio;
 386};
 387
 388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 389{
 390	BUG_ON(!parent);
 391
 392	op->tc = tc;
 393	blk_start_plug(&op->plug);
 394	op->parent_bio = parent;
 395	op->bio = NULL;
 396}
 397
 398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 399{
 400	struct thin_c *tc = op->tc;
 401	sector_t s = block_to_sectors(tc->pool, data_b);
 402	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 403
 404	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		op->bio->bi_opf = REQ_OP_DISCARD;
 416		submit_bio(op->bio);
 417	}
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 437{
 438	queue_work(pool->wq, &pool->worker);
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r)
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462
 463	return r;
 464}
 465
 466static void cell_release(struct pool *pool,
 467			 struct dm_bio_prison_cell *cell,
 468			 struct bio_list *bios)
 469{
 470	dm_cell_release(pool->prison, cell, bios);
 471	dm_bio_prison_free_cell(pool->prison, cell);
 472}
 473
 474static void cell_visit_release(struct pool *pool,
 475			       void (*fn)(void *, struct dm_bio_prison_cell *),
 476			       void *context,
 477			       struct dm_bio_prison_cell *cell)
 478{
 479	dm_cell_visit_release(pool->prison, fn, context, cell);
 480	dm_bio_prison_free_cell(pool->prison, cell);
 481}
 482
 483static void cell_release_no_holder(struct pool *pool,
 484				   struct dm_bio_prison_cell *cell,
 485				   struct bio_list *bios)
 486{
 487	dm_cell_release_no_holder(pool->prison, cell, bios);
 488	dm_bio_prison_free_cell(pool->prison, cell);
 489}
 490
 491static void cell_error_with_code(struct pool *pool,
 492		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 493{
 494	dm_cell_error(pool->prison, cell, error_code);
 495	dm_bio_prison_free_cell(pool->prison, cell);
 496}
 497
 498static blk_status_t get_pool_io_error_code(struct pool *pool)
 499{
 500	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 501}
 502
 503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 504{
 505	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 
 
 506}
 507
 508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 509{
 510	cell_error_with_code(pool, cell, 0);
 511}
 512
 513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 514{
 515	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 516}
 517
 518/*----------------------------------------------------------------*/
 519
 520/*
 521 * A global list of pools that uses a struct mapped_device as a key.
 522 */
 523static struct dm_thin_pool_table {
 524	struct mutex mutex;
 525	struct list_head pools;
 526} dm_thin_pool_table;
 527
 528static void pool_table_init(void)
 529{
 530	mutex_init(&dm_thin_pool_table.mutex);
 531	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 532}
 533
 534static void pool_table_exit(void)
 535{
 536	mutex_destroy(&dm_thin_pool_table.mutex);
 537}
 538
 539static void __pool_table_insert(struct pool *pool)
 540{
 541	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 542	list_add(&pool->list, &dm_thin_pool_table.pools);
 543}
 544
 545static void __pool_table_remove(struct pool *pool)
 546{
 547	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 548	list_del(&pool->list);
 549}
 550
 551static struct pool *__pool_table_lookup(struct mapped_device *md)
 552{
 553	struct pool *pool = NULL, *tmp;
 554
 555	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 556
 557	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 558		if (tmp->pool_md == md) {
 559			pool = tmp;
 560			break;
 561		}
 562	}
 563
 564	return pool;
 565}
 566
 567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 568{
 569	struct pool *pool = NULL, *tmp;
 570
 571	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 572
 573	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 574		if (tmp->md_dev == md_dev) {
 575			pool = tmp;
 576			break;
 577		}
 578	}
 579
 580	return pool;
 581}
 582
 583/*----------------------------------------------------------------*/
 584
 585struct dm_thin_endio_hook {
 586	struct thin_c *tc;
 587	struct dm_deferred_entry *shared_read_entry;
 588	struct dm_deferred_entry *all_io_entry;
 589	struct dm_thin_new_mapping *overwrite_mapping;
 590	struct rb_node rb_node;
 591	struct dm_bio_prison_cell *cell;
 592};
 593
 594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 595{
 596	bio_list_merge(bios, master);
 597	bio_list_init(master);
 598}
 599
 600static void error_bio_list(struct bio_list *bios, blk_status_t error)
 601{
 602	struct bio *bio;
 603
 604	while ((bio = bio_list_pop(bios))) {
 605		bio->bi_status = error;
 606		bio_endio(bio);
 607	}
 608}
 609
 610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 611		blk_status_t error)
 612{
 613	struct bio_list bios;
 
 614
 615	bio_list_init(&bios);
 616
 617	spin_lock_irq(&tc->lock);
 618	__merge_bio_list(&bios, master);
 619	spin_unlock_irq(&tc->lock);
 620
 621	error_bio_list(&bios, error);
 622}
 623
 624static void requeue_deferred_cells(struct thin_c *tc)
 625{
 626	struct pool *pool = tc->pool;
 
 627	struct list_head cells;
 628	struct dm_bio_prison_cell *cell, *tmp;
 629
 630	INIT_LIST_HEAD(&cells);
 631
 632	spin_lock_irq(&tc->lock);
 633	list_splice_init(&tc->deferred_cells, &cells);
 634	spin_unlock_irq(&tc->lock);
 635
 636	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 637		cell_requeue(pool, cell);
 638}
 639
 640static void requeue_io(struct thin_c *tc)
 641{
 642	struct bio_list bios;
 
 643
 644	bio_list_init(&bios);
 645
 646	spin_lock_irq(&tc->lock);
 647	__merge_bio_list(&bios, &tc->deferred_bio_list);
 648	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 649	spin_unlock_irq(&tc->lock);
 650
 651	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 652	requeue_deferred_cells(tc);
 653}
 654
 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 656{
 657	struct thin_c *tc;
 658
 659	rcu_read_lock();
 660	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 661		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 662	rcu_read_unlock();
 663}
 664
 665static void error_retry_list(struct pool *pool)
 666{
 667	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 
 
 668}
 669
 670/*
 671 * This section of code contains the logic for processing a thin device's IO.
 672 * Much of the code depends on pool object resources (lists, workqueues, etc)
 673 * but most is exclusively called from the thin target rather than the thin-pool
 674 * target.
 675 */
 676
 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 678{
 679	struct pool *pool = tc->pool;
 680	sector_t block_nr = bio->bi_iter.bi_sector;
 681
 682	if (block_size_is_power_of_two(pool))
 683		block_nr >>= pool->sectors_per_block_shift;
 684	else
 685		(void) sector_div(block_nr, pool->sectors_per_block);
 686
 687	return block_nr;
 688}
 689
 690/*
 691 * Returns the _complete_ blocks that this bio covers.
 692 */
 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 694				dm_block_t *begin, dm_block_t *end)
 695{
 696	struct pool *pool = tc->pool;
 697	sector_t b = bio->bi_iter.bi_sector;
 698	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 699
 700	b += pool->sectors_per_block - 1ull; /* so we round up */
 701
 702	if (block_size_is_power_of_two(pool)) {
 703		b >>= pool->sectors_per_block_shift;
 704		e >>= pool->sectors_per_block_shift;
 705	} else {
 706		(void) sector_div(b, pool->sectors_per_block);
 707		(void) sector_div(e, pool->sectors_per_block);
 708	}
 709
 710	if (e < b)
 711		/* Can happen if the bio is within a single block. */
 712		e = b;
 713
 714	*begin = b;
 715	*end = e;
 716}
 717
 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 719{
 720	struct pool *pool = tc->pool;
 721	sector_t bi_sector = bio->bi_iter.bi_sector;
 722
 723	bio_set_dev(bio, tc->pool_dev->bdev);
 724	if (block_size_is_power_of_two(pool))
 725		bio->bi_iter.bi_sector =
 726			(block << pool->sectors_per_block_shift) |
 727			(bi_sector & (pool->sectors_per_block - 1));
 728	else
 729		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 730				 sector_div(bi_sector, pool->sectors_per_block);
 731}
 732
 733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 734{
 735	bio_set_dev(bio, tc->origin_dev->bdev);
 736}
 737
 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 739{
 740	return op_is_flush(bio->bi_opf) &&
 741		dm_thin_changed_this_transaction(tc->td);
 742}
 743
 744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 745{
 746	struct dm_thin_endio_hook *h;
 747
 748	if (bio_op(bio) == REQ_OP_DISCARD)
 749		return;
 750
 751	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 752	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 753}
 754
 755static void issue(struct thin_c *tc, struct bio *bio)
 756{
 757	struct pool *pool = tc->pool;
 
 758
 759	if (!bio_triggers_commit(tc, bio)) {
 760		dm_submit_bio_remap(bio, NULL);
 761		return;
 762	}
 763
 764	/*
 765	 * Complete bio with an error if earlier I/O caused changes to
 766	 * the metadata that can't be committed e.g, due to I/O errors
 767	 * on the metadata device.
 768	 */
 769	if (dm_thin_aborted_changes(tc->td)) {
 770		bio_io_error(bio);
 771		return;
 772	}
 773
 774	/*
 775	 * Batch together any bios that trigger commits and then issue a
 776	 * single commit for them in process_deferred_bios().
 777	 */
 778	spin_lock_irq(&pool->lock);
 779	bio_list_add(&pool->deferred_flush_bios, bio);
 780	spin_unlock_irq(&pool->lock);
 781}
 782
 783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 784{
 785	remap_to_origin(tc, bio);
 786	issue(tc, bio);
 787}
 788
 789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 790			    dm_block_t block)
 791{
 792	remap(tc, bio, block);
 793	issue(tc, bio);
 794}
 795
 796/*----------------------------------------------------------------*/
 797
 798/*
 799 * Bio endio functions.
 800 */
 801struct dm_thin_new_mapping {
 802	struct list_head list;
 803
 804	bool pass_discard:1;
 805	bool maybe_shared:1;
 806
 807	/*
 808	 * Track quiescing, copying and zeroing preparation actions.  When this
 809	 * counter hits zero the block is prepared and can be inserted into the
 810	 * btree.
 811	 */
 812	atomic_t prepare_actions;
 813
 814	blk_status_t status;
 815	struct thin_c *tc;
 816	dm_block_t virt_begin, virt_end;
 817	dm_block_t data_block;
 818	struct dm_bio_prison_cell *cell;
 819
 820	/*
 821	 * If the bio covers the whole area of a block then we can avoid
 822	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 823	 * still be in the cell, so care has to be taken to avoid issuing
 824	 * the bio twice.
 825	 */
 826	struct bio *bio;
 827	bio_end_io_t *saved_bi_end_io;
 828};
 829
 830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 831{
 832	struct pool *pool = m->tc->pool;
 833
 834	if (atomic_dec_and_test(&m->prepare_actions)) {
 835		list_add_tail(&m->list, &pool->prepared_mappings);
 836		wake_worker(pool);
 837	}
 838}
 839
 840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 841{
 842	unsigned long flags;
 843	struct pool *pool = m->tc->pool;
 844
 845	spin_lock_irqsave(&pool->lock, flags);
 846	__complete_mapping_preparation(m);
 847	spin_unlock_irqrestore(&pool->lock, flags);
 848}
 849
 850static void copy_complete(int read_err, unsigned long write_err, void *context)
 851{
 852	struct dm_thin_new_mapping *m = context;
 853
 854	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 855	complete_mapping_preparation(m);
 856}
 857
 858static void overwrite_endio(struct bio *bio)
 859{
 860	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 861	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 862
 863	bio->bi_end_io = m->saved_bi_end_io;
 864
 865	m->status = bio->bi_status;
 866	complete_mapping_preparation(m);
 867}
 868
 869/*----------------------------------------------------------------*/
 870
 871/*
 872 * Workqueue.
 873 */
 874
 875/*
 876 * Prepared mapping jobs.
 877 */
 878
 879/*
 880 * This sends the bios in the cell, except the original holder, back
 881 * to the deferred_bios list.
 882 */
 883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 884{
 885	struct pool *pool = tc->pool;
 886	unsigned long flags;
 887	struct bio_list bios;
 888
 889	bio_list_init(&bios);
 890	cell_release_no_holder(pool, cell, &bios);
 
 891
 892	if (!bio_list_empty(&bios)) {
 893		spin_lock_irqsave(&tc->lock, flags);
 894		bio_list_merge(&tc->deferred_bio_list, &bios);
 895		spin_unlock_irqrestore(&tc->lock, flags);
 896		wake_worker(pool);
 897	}
 898}
 899
 900static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 901
 902struct remap_info {
 903	struct thin_c *tc;
 904	struct bio_list defer_bios;
 905	struct bio_list issue_bios;
 906};
 907
 908static void __inc_remap_and_issue_cell(void *context,
 909				       struct dm_bio_prison_cell *cell)
 910{
 911	struct remap_info *info = context;
 912	struct bio *bio;
 913
 914	while ((bio = bio_list_pop(&cell->bios))) {
 915		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 916			bio_list_add(&info->defer_bios, bio);
 917		else {
 918			inc_all_io_entry(info->tc->pool, bio);
 919
 920			/*
 921			 * We can't issue the bios with the bio prison lock
 922			 * held, so we add them to a list to issue on
 923			 * return from this function.
 924			 */
 925			bio_list_add(&info->issue_bios, bio);
 926		}
 927	}
 928}
 929
 930static void inc_remap_and_issue_cell(struct thin_c *tc,
 931				     struct dm_bio_prison_cell *cell,
 932				     dm_block_t block)
 933{
 934	struct bio *bio;
 935	struct remap_info info;
 936
 937	info.tc = tc;
 938	bio_list_init(&info.defer_bios);
 939	bio_list_init(&info.issue_bios);
 940
 941	/*
 942	 * We have to be careful to inc any bios we're about to issue
 943	 * before the cell is released, and avoid a race with new bios
 944	 * being added to the cell.
 945	 */
 946	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 947			   &info, cell);
 948
 949	while ((bio = bio_list_pop(&info.defer_bios)))
 950		thin_defer_bio(tc, bio);
 951
 952	while ((bio = bio_list_pop(&info.issue_bios)))
 953		remap_and_issue(info.tc, bio, block);
 954}
 955
 956static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 957{
 958	cell_error(m->tc->pool, m->cell);
 959	list_del(&m->list);
 960	mempool_free(m, &m->tc->pool->mapping_pool);
 961}
 962
 963static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 964{
 965	struct pool *pool = tc->pool;
 966
 967	/*
 968	 * If the bio has the REQ_FUA flag set we must commit the metadata
 969	 * before signaling its completion.
 970	 */
 971	if (!bio_triggers_commit(tc, bio)) {
 972		bio_endio(bio);
 973		return;
 974	}
 975
 976	/*
 977	 * Complete bio with an error if earlier I/O caused changes to the
 978	 * metadata that can't be committed, e.g, due to I/O errors on the
 979	 * metadata device.
 980	 */
 981	if (dm_thin_aborted_changes(tc->td)) {
 982		bio_io_error(bio);
 983		return;
 984	}
 985
 986	/*
 987	 * Batch together any bios that trigger commits and then issue a
 988	 * single commit for them in process_deferred_bios().
 989	 */
 990	spin_lock_irq(&pool->lock);
 991	bio_list_add(&pool->deferred_flush_completions, bio);
 992	spin_unlock_irq(&pool->lock);
 993}
 994
 995static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 996{
 997	struct thin_c *tc = m->tc;
 998	struct pool *pool = tc->pool;
 999	struct bio *bio = m->bio;
1000	int r;
1001
1002	if (m->status) {
1003		cell_error(pool, m->cell);
1004		goto out;
1005	}
1006
1007	/*
1008	 * Commit the prepared block into the mapping btree.
1009	 * Any I/O for this block arriving after this point will get
1010	 * remapped to it directly.
1011	 */
1012	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013	if (r) {
1014		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015		cell_error(pool, m->cell);
1016		goto out;
1017	}
1018
1019	/*
1020	 * Release any bios held while the block was being provisioned.
1021	 * If we are processing a write bio that completely covers the block,
1022	 * we already processed it so can ignore it now when processing
1023	 * the bios in the cell.
1024	 */
1025	if (bio) {
1026		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027		complete_overwrite_bio(tc, bio);
1028	} else {
1029		inc_all_io_entry(tc->pool, m->cell->holder);
1030		remap_and_issue(tc, m->cell->holder, m->data_block);
1031		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032	}
1033
1034out:
1035	list_del(&m->list);
1036	mempool_free(m, &pool->mapping_pool);
1037}
1038
1039/*----------------------------------------------------------------*/
1040
1041static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042{
1043	struct thin_c *tc = m->tc;
1044
1045	if (m->cell)
1046		cell_defer_no_holder(tc, m->cell);
1047	mempool_free(m, &tc->pool->mapping_pool);
1048}
1049
1050static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1051{
1052	bio_io_error(m->bio);
1053	free_discard_mapping(m);
1054}
1055
1056static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1057{
1058	bio_endio(m->bio);
1059	free_discard_mapping(m);
1060}
1061
1062static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1063{
1064	int r;
1065	struct thin_c *tc = m->tc;
1066
1067	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1068	if (r) {
1069		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1070		bio_io_error(m->bio);
1071	} else
1072		bio_endio(m->bio);
1073
1074	cell_defer_no_holder(tc, m->cell);
1075	mempool_free(m, &tc->pool->mapping_pool);
1076}
1077
1078/*----------------------------------------------------------------*/
1079
1080static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1081						   struct bio *discard_parent)
1082{
1083	/*
1084	 * We've already unmapped this range of blocks, but before we
1085	 * passdown we have to check that these blocks are now unused.
1086	 */
1087	int r = 0;
1088	bool shared = true;
1089	struct thin_c *tc = m->tc;
1090	struct pool *pool = tc->pool;
1091	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1092	struct discard_op op;
1093
1094	begin_discard(&op, tc, discard_parent);
1095	while (b != end) {
1096		/* find start of unmapped run */
1097		for (; b < end; b++) {
1098			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1099			if (r)
1100				goto out;
1101
1102			if (!shared)
1103				break;
1104		}
1105
1106		if (b == end)
1107			break;
1108
1109		/* find end of run */
1110		for (e = b + 1; e != end; e++) {
1111			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1112			if (r)
1113				goto out;
1114
1115			if (shared)
1116				break;
1117		}
1118
1119		r = issue_discard(&op, b, e);
1120		if (r)
1121			goto out;
1122
1123		b = e;
1124	}
1125out:
1126	end_discard(&op, r);
1127}
1128
1129static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1130{
1131	unsigned long flags;
1132	struct pool *pool = m->tc->pool;
1133
1134	spin_lock_irqsave(&pool->lock, flags);
1135	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1136	spin_unlock_irqrestore(&pool->lock, flags);
1137	wake_worker(pool);
1138}
1139
1140static void passdown_endio(struct bio *bio)
1141{
1142	/*
1143	 * It doesn't matter if the passdown discard failed, we still want
1144	 * to unmap (we ignore err).
1145	 */
1146	queue_passdown_pt2(bio->bi_private);
1147	bio_put(bio);
1148}
1149
1150static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1151{
1152	int r;
1153	struct thin_c *tc = m->tc;
1154	struct pool *pool = tc->pool;
1155	struct bio *discard_parent;
1156	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1157
1158	/*
1159	 * Only this thread allocates blocks, so we can be sure that the
1160	 * newly unmapped blocks will not be allocated before the end of
1161	 * the function.
1162	 */
1163	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1164	if (r) {
1165		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1166		bio_io_error(m->bio);
1167		cell_defer_no_holder(tc, m->cell);
1168		mempool_free(m, &pool->mapping_pool);
1169		return;
1170	}
1171
1172	/*
1173	 * Increment the unmapped blocks.  This prevents a race between the
1174	 * passdown io and reallocation of freed blocks.
1175	 */
1176	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1177	if (r) {
1178		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1179		bio_io_error(m->bio);
1180		cell_defer_no_holder(tc, m->cell);
1181		mempool_free(m, &pool->mapping_pool);
1182		return;
1183	}
1184
1185	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1186	discard_parent->bi_end_io = passdown_endio;
1187	discard_parent->bi_private = m;
1188	if (m->maybe_shared)
1189		passdown_double_checking_shared_status(m, discard_parent);
1190	else {
1191		struct discard_op op;
1192
1193		begin_discard(&op, tc, discard_parent);
1194		r = issue_discard(&op, m->data_block, data_end);
1195		end_discard(&op, r);
1196	}
1197}
1198
1199static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1200{
1201	int r;
1202	struct thin_c *tc = m->tc;
1203	struct pool *pool = tc->pool;
1204
1205	/*
1206	 * The passdown has completed, so now we can decrement all those
1207	 * unmapped blocks.
1208	 */
1209	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1210				   m->data_block + (m->virt_end - m->virt_begin));
1211	if (r) {
1212		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1213		bio_io_error(m->bio);
1214	} else
1215		bio_endio(m->bio);
1216
1217	cell_defer_no_holder(tc, m->cell);
1218	mempool_free(m, &pool->mapping_pool);
1219}
1220
1221static void process_prepared(struct pool *pool, struct list_head *head,
1222			     process_mapping_fn *fn)
1223{
 
1224	struct list_head maps;
1225	struct dm_thin_new_mapping *m, *tmp;
1226
1227	INIT_LIST_HEAD(&maps);
1228	spin_lock_irq(&pool->lock);
1229	list_splice_init(head, &maps);
1230	spin_unlock_irq(&pool->lock);
1231
1232	list_for_each_entry_safe(m, tmp, &maps, list)
1233		(*fn)(m);
1234}
1235
1236/*
1237 * Deferred bio jobs.
1238 */
1239static int io_overlaps_block(struct pool *pool, struct bio *bio)
1240{
1241	return bio->bi_iter.bi_size ==
1242		(pool->sectors_per_block << SECTOR_SHIFT);
1243}
1244
1245static int io_overwrites_block(struct pool *pool, struct bio *bio)
1246{
1247	return (bio_data_dir(bio) == WRITE) &&
1248		io_overlaps_block(pool, bio);
1249}
1250
1251static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1252			       bio_end_io_t *fn)
1253{
1254	*save = bio->bi_end_io;
1255	bio->bi_end_io = fn;
1256}
1257
1258static int ensure_next_mapping(struct pool *pool)
1259{
1260	if (pool->next_mapping)
1261		return 0;
1262
1263	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1264
1265	return pool->next_mapping ? 0 : -ENOMEM;
1266}
1267
1268static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1269{
1270	struct dm_thin_new_mapping *m = pool->next_mapping;
1271
1272	BUG_ON(!pool->next_mapping);
1273
1274	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1275	INIT_LIST_HEAD(&m->list);
1276	m->bio = NULL;
1277
1278	pool->next_mapping = NULL;
1279
1280	return m;
1281}
1282
1283static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1284		    sector_t begin, sector_t end)
1285{
 
1286	struct dm_io_region to;
1287
1288	to.bdev = tc->pool_dev->bdev;
1289	to.sector = begin;
1290	to.count = end - begin;
1291
1292	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 
 
 
 
1293}
1294
1295static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1296				      dm_block_t data_begin,
1297				      struct dm_thin_new_mapping *m)
1298{
1299	struct pool *pool = tc->pool;
1300	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1301
1302	h->overwrite_mapping = m;
1303	m->bio = bio;
1304	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1305	inc_all_io_entry(pool, bio);
1306	remap_and_issue(tc, bio, data_begin);
1307}
1308
1309/*
1310 * A partial copy also needs to zero the uncopied region.
1311 */
1312static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1313			  struct dm_dev *origin, dm_block_t data_origin,
1314			  dm_block_t data_dest,
1315			  struct dm_bio_prison_cell *cell, struct bio *bio,
1316			  sector_t len)
1317{
 
1318	struct pool *pool = tc->pool;
1319	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1320
1321	m->tc = tc;
1322	m->virt_begin = virt_block;
1323	m->virt_end = virt_block + 1u;
1324	m->data_block = data_dest;
1325	m->cell = cell;
1326
1327	/*
1328	 * quiesce action + copy action + an extra reference held for the
1329	 * duration of this function (we may need to inc later for a
1330	 * partial zero).
1331	 */
1332	atomic_set(&m->prepare_actions, 3);
1333
1334	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1335		complete_mapping_preparation(m); /* already quiesced */
1336
1337	/*
1338	 * IO to pool_dev remaps to the pool target's data_dev.
1339	 *
1340	 * If the whole block of data is being overwritten, we can issue the
1341	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1342	 */
1343	if (io_overwrites_block(pool, bio))
1344		remap_and_issue_overwrite(tc, bio, data_dest, m);
1345	else {
1346		struct dm_io_region from, to;
1347
1348		from.bdev = origin->bdev;
1349		from.sector = data_origin * pool->sectors_per_block;
1350		from.count = len;
1351
1352		to.bdev = tc->pool_dev->bdev;
1353		to.sector = data_dest * pool->sectors_per_block;
1354		to.count = len;
1355
1356		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1357			       0, copy_complete, m);
 
 
 
 
 
 
 
 
 
 
 
1358
1359		/*
1360		 * Do we need to zero a tail region?
1361		 */
1362		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1363			atomic_inc(&m->prepare_actions);
1364			ll_zero(tc, m,
1365				data_dest * pool->sectors_per_block + len,
1366				(data_dest + 1) * pool->sectors_per_block);
1367		}
1368	}
1369
1370	complete_mapping_preparation(m); /* drop our ref */
1371}
1372
1373static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1374				   dm_block_t data_origin, dm_block_t data_dest,
1375				   struct dm_bio_prison_cell *cell, struct bio *bio)
1376{
1377	schedule_copy(tc, virt_block, tc->pool_dev,
1378		      data_origin, data_dest, cell, bio,
1379		      tc->pool->sectors_per_block);
1380}
1381
1382static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1383			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1384			  struct bio *bio)
1385{
1386	struct pool *pool = tc->pool;
1387	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1388
1389	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1390	m->tc = tc;
1391	m->virt_begin = virt_block;
1392	m->virt_end = virt_block + 1u;
1393	m->data_block = data_block;
1394	m->cell = cell;
1395
1396	/*
1397	 * If the whole block of data is being overwritten or we are not
1398	 * zeroing pre-existing data, we can issue the bio immediately.
1399	 * Otherwise we use kcopyd to zero the data first.
1400	 */
1401	if (pool->pf.zero_new_blocks) {
1402		if (io_overwrites_block(pool, bio))
1403			remap_and_issue_overwrite(tc, bio, data_block, m);
1404		else
1405			ll_zero(tc, m, data_block * pool->sectors_per_block,
1406				(data_block + 1) * pool->sectors_per_block);
1407	} else
1408		process_prepared_mapping(m);
1409}
1410
1411static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1412				   dm_block_t data_dest,
1413				   struct dm_bio_prison_cell *cell, struct bio *bio)
1414{
1415	struct pool *pool = tc->pool;
1416	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1417	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1418
1419	if (virt_block_end <= tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      pool->sectors_per_block);
1423
1424	else if (virt_block_begin < tc->origin_size)
1425		schedule_copy(tc, virt_block, tc->origin_dev,
1426			      virt_block, data_dest, cell, bio,
1427			      tc->origin_size - virt_block_begin);
1428
1429	else
1430		schedule_zero(tc, virt_block, data_dest, cell, bio);
1431}
1432
1433static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1434
1435static void requeue_bios(struct pool *pool);
1436
1437static bool is_read_only_pool_mode(enum pool_mode mode)
1438{
1439	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1440}
1441
1442static bool is_read_only(struct pool *pool)
1443{
1444	return is_read_only_pool_mode(get_pool_mode(pool));
1445}
1446
1447static void check_for_metadata_space(struct pool *pool)
1448{
1449	int r;
1450	const char *ooms_reason = NULL;
1451	dm_block_t nr_free;
1452
1453	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1454	if (r)
1455		ooms_reason = "Could not get free metadata blocks";
1456	else if (!nr_free)
1457		ooms_reason = "No free metadata blocks";
1458
1459	if (ooms_reason && !is_read_only(pool)) {
1460		DMERR("%s", ooms_reason);
1461		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1462	}
1463}
1464
1465static void check_for_data_space(struct pool *pool)
1466{
1467	int r;
1468	dm_block_t nr_free;
1469
1470	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1471		return;
1472
1473	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1474	if (r)
1475		return;
1476
1477	if (nr_free) {
1478		set_pool_mode(pool, PM_WRITE);
1479		requeue_bios(pool);
1480	}
1481}
1482
1483/*
1484 * A non-zero return indicates read_only or fail_io mode.
1485 * Many callers don't care about the return value.
1486 */
1487static int commit(struct pool *pool)
1488{
1489	int r;
1490
1491	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1492		return -EINVAL;
1493
1494	r = dm_pool_commit_metadata(pool->pmd);
1495	if (r)
1496		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1497	else {
1498		check_for_metadata_space(pool);
1499		check_for_data_space(pool);
1500	}
1501
1502	return r;
1503}
1504
1505static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1506{
 
 
1507	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1508		DMWARN("%s: reached low water mark for data device: sending event.",
1509		       dm_device_name(pool->pool_md));
1510		spin_lock_irq(&pool->lock);
1511		pool->low_water_triggered = true;
1512		spin_unlock_irq(&pool->lock);
1513		dm_table_event(pool->ti->table);
1514	}
1515}
1516
1517static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1518{
1519	int r;
1520	dm_block_t free_blocks;
1521	struct pool *pool = tc->pool;
1522
1523	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1524		return -EINVAL;
1525
1526	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1527	if (r) {
1528		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1529		return r;
1530	}
1531
1532	check_low_water_mark(pool, free_blocks);
1533
1534	if (!free_blocks) {
1535		/*
1536		 * Try to commit to see if that will free up some
1537		 * more space.
1538		 */
1539		r = commit(pool);
1540		if (r)
1541			return r;
1542
1543		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1544		if (r) {
1545			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1546			return r;
1547		}
1548
1549		if (!free_blocks) {
1550			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1551			return -ENOSPC;
1552		}
1553	}
1554
1555	r = dm_pool_alloc_data_block(pool->pmd, result);
1556	if (r) {
1557		if (r == -ENOSPC)
1558			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559		else
1560			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1561		return r;
1562	}
1563
1564	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1565	if (r) {
1566		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1567		return r;
1568	}
1569
1570	if (!free_blocks) {
1571		/* Let's commit before we use up the metadata reserve. */
1572		r = commit(pool);
1573		if (r)
1574			return r;
1575	}
1576
1577	return 0;
1578}
1579
1580/*
1581 * If we have run out of space, queue bios until the device is
1582 * resumed, presumably after having been reloaded with more space.
1583 */
1584static void retry_on_resume(struct bio *bio)
1585{
1586	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1587	struct thin_c *tc = h->tc;
 
1588
1589	spin_lock_irq(&tc->lock);
1590	bio_list_add(&tc->retry_on_resume_list, bio);
1591	spin_unlock_irq(&tc->lock);
1592}
1593
1594static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1595{
1596	enum pool_mode m = get_pool_mode(pool);
1597
1598	switch (m) {
1599	case PM_WRITE:
1600		/* Shouldn't get here */
1601		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1602		return BLK_STS_IOERR;
1603
1604	case PM_OUT_OF_DATA_SPACE:
1605		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1606
1607	case PM_OUT_OF_METADATA_SPACE:
1608	case PM_READ_ONLY:
1609	case PM_FAIL:
1610		return BLK_STS_IOERR;
1611	default:
1612		/* Shouldn't get here */
1613		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1614		return BLK_STS_IOERR;
1615	}
1616}
1617
1618static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1619{
1620	blk_status_t error = should_error_unserviceable_bio(pool);
1621
1622	if (error) {
1623		bio->bi_status = error;
1624		bio_endio(bio);
1625	} else
1626		retry_on_resume(bio);
1627}
1628
1629static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1630{
1631	struct bio *bio;
1632	struct bio_list bios;
1633	blk_status_t error;
1634
1635	error = should_error_unserviceable_bio(pool);
1636	if (error) {
1637		cell_error_with_code(pool, cell, error);
1638		return;
1639	}
1640
1641	bio_list_init(&bios);
1642	cell_release(pool, cell, &bios);
1643
1644	while ((bio = bio_list_pop(&bios)))
1645		retry_on_resume(bio);
1646}
1647
1648static void process_discard_cell_no_passdown(struct thin_c *tc,
1649					     struct dm_bio_prison_cell *virt_cell)
1650{
1651	struct pool *pool = tc->pool;
1652	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1653
1654	/*
1655	 * We don't need to lock the data blocks, since there's no
1656	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1657	 */
1658	m->tc = tc;
1659	m->virt_begin = virt_cell->key.block_begin;
1660	m->virt_end = virt_cell->key.block_end;
1661	m->cell = virt_cell;
1662	m->bio = virt_cell->holder;
1663
1664	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1665		pool->process_prepared_discard(m);
1666}
1667
 
 
 
 
 
 
 
 
 
 
 
1668static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1669				 struct bio *bio)
1670{
1671	struct pool *pool = tc->pool;
1672
1673	int r;
1674	bool maybe_shared;
1675	struct dm_cell_key data_key;
1676	struct dm_bio_prison_cell *data_cell;
1677	struct dm_thin_new_mapping *m;
1678	dm_block_t virt_begin, virt_end, data_begin, data_end;
1679	dm_block_t len, next_boundary;
1680
1681	while (begin != end) {
 
 
 
 
 
1682		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1683					      &data_begin, &maybe_shared);
1684		if (r) {
1685			/*
1686			 * Silently fail, letting any mappings we've
1687			 * created complete.
1688			 */
1689			break;
1690		}
1691
1692		data_end = data_begin + (virt_end - virt_begin);
 
 
 
 
 
1693
1694		/*
1695		 * Make sure the data region obeys the bio prison restrictions.
 
1696		 */
1697		while (data_begin < data_end) {
1698			r = ensure_next_mapping(pool);
1699			if (r)
1700				return; /* we did our best */
1701
1702			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1703				<< BIO_PRISON_MAX_RANGE_SHIFT;
1704			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1705
1706			/* This key is certainly within range given the above splitting */
1707			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1708			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1709				/* contention, we'll give up with this range */
1710				data_begin += len;
1711				continue;
1712			}
1713
1714			/*
1715			 * IO may still be going to the destination block.  We must
1716			 * quiesce before we can do the removal.
1717			 */
1718			m = get_next_mapping(pool);
1719			m->tc = tc;
1720			m->maybe_shared = maybe_shared;
1721			m->virt_begin = virt_begin;
1722			m->virt_end = virt_begin + len;
1723			m->data_block = data_begin;
1724			m->cell = data_cell;
1725			m->bio = bio;
1726
1727			/*
1728			 * The parent bio must not complete before sub discard bios are
1729			 * chained to it (see end_discard's bio_chain)!
1730			 *
1731			 * This per-mapping bi_remaining increment is paired with
1732			 * the implicit decrement that occurs via bio_endio() in
1733			 * end_discard().
1734			 */
1735			bio_inc_remaining(bio);
1736			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1737				pool->process_prepared_discard(m);
1738
1739			virt_begin += len;
1740			data_begin += len;
1741		}
1742
1743		begin = virt_end;
1744	}
1745}
1746
1747static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1748{
1749	struct bio *bio = virt_cell->holder;
1750	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1751
1752	/*
1753	 * The virt_cell will only get freed once the origin bio completes.
1754	 * This means it will remain locked while all the individual
1755	 * passdown bios are in flight.
1756	 */
1757	h->cell = virt_cell;
1758	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1759
1760	/*
1761	 * We complete the bio now, knowing that the bi_remaining field
1762	 * will prevent completion until the sub range discards have
1763	 * completed.
1764	 */
1765	bio_endio(bio);
1766}
1767
1768static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1769{
1770	dm_block_t begin, end;
1771	struct dm_cell_key virt_key;
1772	struct dm_bio_prison_cell *virt_cell;
1773
1774	get_bio_block_range(tc, bio, &begin, &end);
1775	if (begin == end) {
1776		/*
1777		 * The discard covers less than a block.
1778		 */
1779		bio_endio(bio);
1780		return;
1781	}
1782
1783	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1784		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1785		bio_endio(bio);
1786		return;
1787	}
1788
1789	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1790		/*
1791		 * Potential starvation issue: We're relying on the
1792		 * fs/application being well behaved, and not trying to
1793		 * send IO to a region at the same time as discarding it.
1794		 * If they do this persistently then it's possible this
1795		 * cell will never be granted.
1796		 */
1797		return;
1798	}
1799
1800	tc->pool->process_discard_cell(tc, virt_cell);
1801}
1802
1803static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1804			  struct dm_cell_key *key,
1805			  struct dm_thin_lookup_result *lookup_result,
1806			  struct dm_bio_prison_cell *cell)
1807{
1808	int r;
1809	dm_block_t data_block;
1810	struct pool *pool = tc->pool;
1811
1812	r = alloc_data_block(tc, &data_block);
1813	switch (r) {
1814	case 0:
1815		schedule_internal_copy(tc, block, lookup_result->block,
1816				       data_block, cell, bio);
1817		break;
1818
1819	case -ENOSPC:
1820		retry_bios_on_resume(pool, cell);
1821		break;
1822
1823	default:
1824		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1825			    __func__, r);
1826		cell_error(pool, cell);
1827		break;
1828	}
1829}
1830
1831static void __remap_and_issue_shared_cell(void *context,
1832					  struct dm_bio_prison_cell *cell)
1833{
1834	struct remap_info *info = context;
1835	struct bio *bio;
1836
1837	while ((bio = bio_list_pop(&cell->bios))) {
1838		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1839		    bio_op(bio) == REQ_OP_DISCARD)
1840			bio_list_add(&info->defer_bios, bio);
1841		else {
1842			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1843
1844			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1845			inc_all_io_entry(info->tc->pool, bio);
1846			bio_list_add(&info->issue_bios, bio);
1847		}
1848	}
1849}
1850
1851static void remap_and_issue_shared_cell(struct thin_c *tc,
1852					struct dm_bio_prison_cell *cell,
1853					dm_block_t block)
1854{
1855	struct bio *bio;
1856	struct remap_info info;
1857
1858	info.tc = tc;
1859	bio_list_init(&info.defer_bios);
1860	bio_list_init(&info.issue_bios);
1861
1862	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1863			   &info, cell);
1864
1865	while ((bio = bio_list_pop(&info.defer_bios)))
1866		thin_defer_bio(tc, bio);
1867
1868	while ((bio = bio_list_pop(&info.issue_bios)))
1869		remap_and_issue(tc, bio, block);
1870}
1871
1872static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1873			       dm_block_t block,
1874			       struct dm_thin_lookup_result *lookup_result,
1875			       struct dm_bio_prison_cell *virt_cell)
1876{
1877	struct dm_bio_prison_cell *data_cell;
1878	struct pool *pool = tc->pool;
1879	struct dm_cell_key key;
1880
1881	/*
1882	 * If cell is already occupied, then sharing is already in the process
1883	 * of being broken so we have nothing further to do here.
1884	 */
1885	build_data_key(tc->td, lookup_result->block, &key);
1886	if (bio_detain(pool, &key, bio, &data_cell)) {
1887		cell_defer_no_holder(tc, virt_cell);
1888		return;
1889	}
1890
1891	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1892		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1893		cell_defer_no_holder(tc, virt_cell);
1894	} else {
1895		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1896
1897		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1898		inc_all_io_entry(pool, bio);
1899		remap_and_issue(tc, bio, lookup_result->block);
1900
1901		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1902		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1903	}
1904}
1905
1906static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1907			    struct dm_bio_prison_cell *cell)
1908{
1909	int r;
1910	dm_block_t data_block;
1911	struct pool *pool = tc->pool;
1912
1913	/*
1914	 * Remap empty bios (flushes) immediately, without provisioning.
1915	 */
1916	if (!bio->bi_iter.bi_size) {
1917		inc_all_io_entry(pool, bio);
1918		cell_defer_no_holder(tc, cell);
1919
1920		remap_and_issue(tc, bio, 0);
1921		return;
1922	}
1923
1924	/*
1925	 * Fill read bios with zeroes and complete them immediately.
1926	 */
1927	if (bio_data_dir(bio) == READ) {
1928		zero_fill_bio(bio);
1929		cell_defer_no_holder(tc, cell);
1930		bio_endio(bio);
1931		return;
1932	}
1933
1934	r = alloc_data_block(tc, &data_block);
1935	switch (r) {
1936	case 0:
1937		if (tc->origin_dev)
1938			schedule_external_copy(tc, block, data_block, cell, bio);
1939		else
1940			schedule_zero(tc, block, data_block, cell, bio);
1941		break;
1942
1943	case -ENOSPC:
1944		retry_bios_on_resume(pool, cell);
1945		break;
1946
1947	default:
1948		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1949			    __func__, r);
1950		cell_error(pool, cell);
1951		break;
1952	}
1953}
1954
1955static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1956{
1957	int r;
1958	struct pool *pool = tc->pool;
1959	struct bio *bio = cell->holder;
1960	dm_block_t block = get_bio_block(tc, bio);
1961	struct dm_thin_lookup_result lookup_result;
1962
1963	if (tc->requeue_mode) {
1964		cell_requeue(pool, cell);
1965		return;
1966	}
1967
1968	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1969	switch (r) {
1970	case 0:
1971		if (lookup_result.shared)
1972			process_shared_bio(tc, bio, block, &lookup_result, cell);
1973		else {
1974			inc_all_io_entry(pool, bio);
1975			remap_and_issue(tc, bio, lookup_result.block);
1976			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1977		}
1978		break;
1979
1980	case -ENODATA:
1981		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1982			inc_all_io_entry(pool, bio);
1983			cell_defer_no_holder(tc, cell);
1984
1985			if (bio_end_sector(bio) <= tc->origin_size)
1986				remap_to_origin_and_issue(tc, bio);
1987
1988			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1989				zero_fill_bio(bio);
1990				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1991				remap_to_origin_and_issue(tc, bio);
1992
1993			} else {
1994				zero_fill_bio(bio);
1995				bio_endio(bio);
1996			}
1997		} else
1998			provision_block(tc, bio, block, cell);
1999		break;
2000
2001	default:
2002		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2003			    __func__, r);
2004		cell_defer_no_holder(tc, cell);
2005		bio_io_error(bio);
2006		break;
2007	}
2008}
2009
2010static void process_bio(struct thin_c *tc, struct bio *bio)
2011{
2012	struct pool *pool = tc->pool;
2013	dm_block_t block = get_bio_block(tc, bio);
2014	struct dm_bio_prison_cell *cell;
2015	struct dm_cell_key key;
2016
2017	/*
2018	 * If cell is already occupied, then the block is already
2019	 * being provisioned so we have nothing further to do here.
2020	 */
2021	build_virtual_key(tc->td, block, &key);
2022	if (bio_detain(pool, &key, bio, &cell))
2023		return;
2024
2025	process_cell(tc, cell);
2026}
2027
2028static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2029				    struct dm_bio_prison_cell *cell)
2030{
2031	int r;
2032	int rw = bio_data_dir(bio);
2033	dm_block_t block = get_bio_block(tc, bio);
2034	struct dm_thin_lookup_result lookup_result;
2035
2036	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2037	switch (r) {
2038	case 0:
2039		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2040			handle_unserviceable_bio(tc->pool, bio);
2041			if (cell)
2042				cell_defer_no_holder(tc, cell);
2043		} else {
2044			inc_all_io_entry(tc->pool, bio);
2045			remap_and_issue(tc, bio, lookup_result.block);
2046			if (cell)
2047				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2048		}
2049		break;
2050
2051	case -ENODATA:
2052		if (cell)
2053			cell_defer_no_holder(tc, cell);
2054		if (rw != READ) {
2055			handle_unserviceable_bio(tc->pool, bio);
2056			break;
2057		}
2058
2059		if (tc->origin_dev) {
2060			inc_all_io_entry(tc->pool, bio);
2061			remap_to_origin_and_issue(tc, bio);
2062			break;
2063		}
2064
2065		zero_fill_bio(bio);
2066		bio_endio(bio);
2067		break;
2068
2069	default:
2070		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2071			    __func__, r);
2072		if (cell)
2073			cell_defer_no_holder(tc, cell);
2074		bio_io_error(bio);
2075		break;
2076	}
2077}
2078
2079static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2080{
2081	__process_bio_read_only(tc, bio, NULL);
2082}
2083
2084static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2085{
2086	__process_bio_read_only(tc, cell->holder, cell);
2087}
2088
2089static void process_bio_success(struct thin_c *tc, struct bio *bio)
2090{
2091	bio_endio(bio);
2092}
2093
2094static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2095{
2096	bio_io_error(bio);
2097}
2098
2099static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2100{
2101	cell_success(tc->pool, cell);
2102}
2103
2104static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2105{
2106	cell_error(tc->pool, cell);
2107}
2108
2109/*
2110 * FIXME: should we also commit due to size of transaction, measured in
2111 * metadata blocks?
2112 */
2113static int need_commit_due_to_time(struct pool *pool)
2114{
2115	return !time_in_range(jiffies, pool->last_commit_jiffies,
2116			      pool->last_commit_jiffies + COMMIT_PERIOD);
2117}
2118
2119#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2120#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2121
2122static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2123{
2124	struct rb_node **rbp, *parent;
2125	struct dm_thin_endio_hook *pbd;
2126	sector_t bi_sector = bio->bi_iter.bi_sector;
2127
2128	rbp = &tc->sort_bio_list.rb_node;
2129	parent = NULL;
2130	while (*rbp) {
2131		parent = *rbp;
2132		pbd = thin_pbd(parent);
2133
2134		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2135			rbp = &(*rbp)->rb_left;
2136		else
2137			rbp = &(*rbp)->rb_right;
2138	}
2139
2140	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2141	rb_link_node(&pbd->rb_node, parent, rbp);
2142	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2143}
2144
2145static void __extract_sorted_bios(struct thin_c *tc)
2146{
2147	struct rb_node *node;
2148	struct dm_thin_endio_hook *pbd;
2149	struct bio *bio;
2150
2151	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2152		pbd = thin_pbd(node);
2153		bio = thin_bio(pbd);
2154
2155		bio_list_add(&tc->deferred_bio_list, bio);
2156		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2157	}
2158
2159	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2160}
2161
2162static void __sort_thin_deferred_bios(struct thin_c *tc)
2163{
2164	struct bio *bio;
2165	struct bio_list bios;
2166
2167	bio_list_init(&bios);
2168	bio_list_merge(&bios, &tc->deferred_bio_list);
2169	bio_list_init(&tc->deferred_bio_list);
2170
2171	/* Sort deferred_bio_list using rb-tree */
2172	while ((bio = bio_list_pop(&bios)))
2173		__thin_bio_rb_add(tc, bio);
2174
2175	/*
2176	 * Transfer the sorted bios in sort_bio_list back to
2177	 * deferred_bio_list to allow lockless submission of
2178	 * all bios.
2179	 */
2180	__extract_sorted_bios(tc);
2181}
2182
2183static void process_thin_deferred_bios(struct thin_c *tc)
2184{
2185	struct pool *pool = tc->pool;
 
2186	struct bio *bio;
2187	struct bio_list bios;
2188	struct blk_plug plug;
2189	unsigned int count = 0;
2190
2191	if (tc->requeue_mode) {
2192		error_thin_bio_list(tc, &tc->deferred_bio_list,
2193				BLK_STS_DM_REQUEUE);
2194		return;
2195	}
2196
2197	bio_list_init(&bios);
2198
2199	spin_lock_irq(&tc->lock);
2200
2201	if (bio_list_empty(&tc->deferred_bio_list)) {
2202		spin_unlock_irq(&tc->lock);
2203		return;
2204	}
2205
2206	__sort_thin_deferred_bios(tc);
2207
2208	bio_list_merge(&bios, &tc->deferred_bio_list);
2209	bio_list_init(&tc->deferred_bio_list);
2210
2211	spin_unlock_irq(&tc->lock);
2212
2213	blk_start_plug(&plug);
2214	while ((bio = bio_list_pop(&bios))) {
2215		/*
2216		 * If we've got no free new_mapping structs, and processing
2217		 * this bio might require one, we pause until there are some
2218		 * prepared mappings to process.
2219		 */
2220		if (ensure_next_mapping(pool)) {
2221			spin_lock_irq(&tc->lock);
2222			bio_list_add(&tc->deferred_bio_list, bio);
2223			bio_list_merge(&tc->deferred_bio_list, &bios);
2224			spin_unlock_irq(&tc->lock);
2225			break;
2226		}
2227
2228		if (bio_op(bio) == REQ_OP_DISCARD)
2229			pool->process_discard(tc, bio);
2230		else
2231			pool->process_bio(tc, bio);
2232
2233		if ((count++ & 127) == 0) {
2234			throttle_work_update(&pool->throttle);
2235			dm_pool_issue_prefetches(pool->pmd);
2236		}
2237		cond_resched();
2238	}
2239	blk_finish_plug(&plug);
2240}
2241
2242static int cmp_cells(const void *lhs, const void *rhs)
2243{
2244	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2245	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2246
2247	BUG_ON(!lhs_cell->holder);
2248	BUG_ON(!rhs_cell->holder);
2249
2250	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2251		return -1;
2252
2253	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2254		return 1;
2255
2256	return 0;
2257}
2258
2259static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2260{
2261	unsigned int count = 0;
2262	struct dm_bio_prison_cell *cell, *tmp;
2263
2264	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2265		if (count >= CELL_SORT_ARRAY_SIZE)
2266			break;
2267
2268		pool->cell_sort_array[count++] = cell;
2269		list_del(&cell->user_list);
2270	}
2271
2272	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2273
2274	return count;
2275}
2276
2277static void process_thin_deferred_cells(struct thin_c *tc)
2278{
2279	struct pool *pool = tc->pool;
 
2280	struct list_head cells;
2281	struct dm_bio_prison_cell *cell;
2282	unsigned int i, j, count;
2283
2284	INIT_LIST_HEAD(&cells);
2285
2286	spin_lock_irq(&tc->lock);
2287	list_splice_init(&tc->deferred_cells, &cells);
2288	spin_unlock_irq(&tc->lock);
2289
2290	if (list_empty(&cells))
2291		return;
2292
2293	do {
2294		count = sort_cells(tc->pool, &cells);
2295
2296		for (i = 0; i < count; i++) {
2297			cell = pool->cell_sort_array[i];
2298			BUG_ON(!cell->holder);
2299
2300			/*
2301			 * If we've got no free new_mapping structs, and processing
2302			 * this bio might require one, we pause until there are some
2303			 * prepared mappings to process.
2304			 */
2305			if (ensure_next_mapping(pool)) {
2306				for (j = i; j < count; j++)
2307					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2308
2309				spin_lock_irq(&tc->lock);
2310				list_splice(&cells, &tc->deferred_cells);
2311				spin_unlock_irq(&tc->lock);
2312				return;
2313			}
2314
2315			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2316				pool->process_discard_cell(tc, cell);
2317			else
2318				pool->process_cell(tc, cell);
2319		}
2320		cond_resched();
2321	} while (!list_empty(&cells));
2322}
2323
2324static void thin_get(struct thin_c *tc);
2325static void thin_put(struct thin_c *tc);
2326
2327/*
2328 * We can't hold rcu_read_lock() around code that can block.  So we
2329 * find a thin with the rcu lock held; bump a refcount; then drop
2330 * the lock.
2331 */
2332static struct thin_c *get_first_thin(struct pool *pool)
2333{
2334	struct thin_c *tc = NULL;
2335
2336	rcu_read_lock();
2337	if (!list_empty(&pool->active_thins)) {
2338		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2339		thin_get(tc);
2340	}
2341	rcu_read_unlock();
2342
2343	return tc;
2344}
2345
2346static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2347{
2348	struct thin_c *old_tc = tc;
2349
2350	rcu_read_lock();
2351	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352		thin_get(tc);
2353		thin_put(old_tc);
2354		rcu_read_unlock();
2355		return tc;
2356	}
2357	thin_put(old_tc);
2358	rcu_read_unlock();
2359
2360	return NULL;
2361}
2362
2363static void process_deferred_bios(struct pool *pool)
2364{
 
2365	struct bio *bio;
2366	struct bio_list bios, bio_completions;
2367	struct thin_c *tc;
2368
2369	tc = get_first_thin(pool);
2370	while (tc) {
2371		process_thin_deferred_cells(tc);
2372		process_thin_deferred_bios(tc);
2373		tc = get_next_thin(pool, tc);
2374	}
2375
2376	/*
2377	 * If there are any deferred flush bios, we must commit the metadata
2378	 * before issuing them or signaling their completion.
2379	 */
2380	bio_list_init(&bios);
2381	bio_list_init(&bio_completions);
2382
2383	spin_lock_irq(&pool->lock);
2384	bio_list_merge(&bios, &pool->deferred_flush_bios);
2385	bio_list_init(&pool->deferred_flush_bios);
 
2386
2387	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2388	bio_list_init(&pool->deferred_flush_completions);
2389	spin_unlock_irq(&pool->lock);
2390
2391	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2392	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2393		return;
2394
2395	if (commit(pool)) {
2396		bio_list_merge(&bios, &bio_completions);
2397
2398		while ((bio = bio_list_pop(&bios)))
2399			bio_io_error(bio);
2400		return;
2401	}
2402	pool->last_commit_jiffies = jiffies;
2403
2404	while ((bio = bio_list_pop(&bio_completions)))
2405		bio_endio(bio);
2406
2407	while ((bio = bio_list_pop(&bios))) {
2408		/*
2409		 * The data device was flushed as part of metadata commit,
2410		 * so complete redundant flushes immediately.
2411		 */
2412		if (bio->bi_opf & REQ_PREFLUSH)
2413			bio_endio(bio);
2414		else
2415			dm_submit_bio_remap(bio, NULL);
2416	}
2417}
2418
2419static void do_worker(struct work_struct *ws)
2420{
2421	struct pool *pool = container_of(ws, struct pool, worker);
2422
2423	throttle_work_start(&pool->throttle);
2424	dm_pool_issue_prefetches(pool->pmd);
2425	throttle_work_update(&pool->throttle);
2426	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2427	throttle_work_update(&pool->throttle);
2428	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2429	throttle_work_update(&pool->throttle);
2430	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2431	throttle_work_update(&pool->throttle);
2432	process_deferred_bios(pool);
2433	throttle_work_complete(&pool->throttle);
2434}
2435
2436/*
2437 * We want to commit periodically so that not too much
2438 * unwritten data builds up.
2439 */
2440static void do_waker(struct work_struct *ws)
2441{
2442	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2443
2444	wake_worker(pool);
2445	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2446}
2447
 
 
2448/*
2449 * We're holding onto IO to allow userland time to react.  After the
2450 * timeout either the pool will have been resized (and thus back in
2451 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2452 */
2453static void do_no_space_timeout(struct work_struct *ws)
2454{
2455	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2456					 no_space_timeout);
2457
2458	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2459		pool->pf.error_if_no_space = true;
2460		notify_of_pool_mode_change(pool);
2461		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2462	}
2463}
2464
2465/*----------------------------------------------------------------*/
2466
2467struct pool_work {
2468	struct work_struct worker;
2469	struct completion complete;
2470};
2471
2472static struct pool_work *to_pool_work(struct work_struct *ws)
2473{
2474	return container_of(ws, struct pool_work, worker);
2475}
2476
2477static void pool_work_complete(struct pool_work *pw)
2478{
2479	complete(&pw->complete);
2480}
2481
2482static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2483			   void (*fn)(struct work_struct *))
2484{
2485	INIT_WORK_ONSTACK(&pw->worker, fn);
2486	init_completion(&pw->complete);
2487	queue_work(pool->wq, &pw->worker);
2488	wait_for_completion(&pw->complete);
2489}
2490
2491/*----------------------------------------------------------------*/
2492
2493struct noflush_work {
2494	struct pool_work pw;
2495	struct thin_c *tc;
2496};
2497
2498static struct noflush_work *to_noflush(struct work_struct *ws)
2499{
2500	return container_of(to_pool_work(ws), struct noflush_work, pw);
2501}
2502
2503static void do_noflush_start(struct work_struct *ws)
2504{
2505	struct noflush_work *w = to_noflush(ws);
2506
2507	w->tc->requeue_mode = true;
2508	requeue_io(w->tc);
2509	pool_work_complete(&w->pw);
2510}
2511
2512static void do_noflush_stop(struct work_struct *ws)
2513{
2514	struct noflush_work *w = to_noflush(ws);
2515
2516	w->tc->requeue_mode = false;
2517	pool_work_complete(&w->pw);
2518}
2519
2520static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2521{
2522	struct noflush_work w;
2523
2524	w.tc = tc;
2525	pool_work_wait(&w.pw, tc->pool, fn);
2526}
2527
2528/*----------------------------------------------------------------*/
2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530static void set_discard_callbacks(struct pool *pool)
2531{
2532	struct pool_c *pt = pool->ti->private;
2533
2534	if (pt->adjusted_pf.discard_passdown) {
2535		pool->process_discard_cell = process_discard_cell_passdown;
2536		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2537		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2538	} else {
2539		pool->process_discard_cell = process_discard_cell_no_passdown;
2540		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2541	}
2542}
2543
2544static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2545{
2546	struct pool_c *pt = pool->ti->private;
2547	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2548	enum pool_mode old_mode = get_pool_mode(pool);
2549	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2550
2551	/*
2552	 * Never allow the pool to transition to PM_WRITE mode if user
2553	 * intervention is required to verify metadata and data consistency.
2554	 */
2555	if (new_mode == PM_WRITE && needs_check) {
2556		DMERR("%s: unable to switch pool to write mode until repaired.",
2557		      dm_device_name(pool->pool_md));
2558		if (old_mode != new_mode)
2559			new_mode = old_mode;
2560		else
2561			new_mode = PM_READ_ONLY;
2562	}
2563	/*
2564	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2565	 * not going to recover without a thin_repair.	So we never let the
2566	 * pool move out of the old mode.
2567	 */
2568	if (old_mode == PM_FAIL)
2569		new_mode = old_mode;
2570
2571	switch (new_mode) {
2572	case PM_FAIL:
 
 
2573		dm_pool_metadata_read_only(pool->pmd);
2574		pool->process_bio = process_bio_fail;
2575		pool->process_discard = process_bio_fail;
2576		pool->process_cell = process_cell_fail;
2577		pool->process_discard_cell = process_cell_fail;
2578		pool->process_prepared_mapping = process_prepared_mapping_fail;
2579		pool->process_prepared_discard = process_prepared_discard_fail;
2580
2581		error_retry_list(pool);
2582		break;
2583
2584	case PM_OUT_OF_METADATA_SPACE:
2585	case PM_READ_ONLY:
 
 
2586		dm_pool_metadata_read_only(pool->pmd);
2587		pool->process_bio = process_bio_read_only;
2588		pool->process_discard = process_bio_success;
2589		pool->process_cell = process_cell_read_only;
2590		pool->process_discard_cell = process_cell_success;
2591		pool->process_prepared_mapping = process_prepared_mapping_fail;
2592		pool->process_prepared_discard = process_prepared_discard_success;
2593
2594		error_retry_list(pool);
2595		break;
2596
2597	case PM_OUT_OF_DATA_SPACE:
2598		/*
2599		 * Ideally we'd never hit this state; the low water mark
2600		 * would trigger userland to extend the pool before we
2601		 * completely run out of data space.  However, many small
2602		 * IOs to unprovisioned space can consume data space at an
2603		 * alarming rate.  Adjust your low water mark if you're
2604		 * frequently seeing this mode.
2605		 */
 
 
2606		pool->out_of_data_space = true;
2607		pool->process_bio = process_bio_read_only;
2608		pool->process_discard = process_discard_bio;
2609		pool->process_cell = process_cell_read_only;
2610		pool->process_prepared_mapping = process_prepared_mapping;
2611		set_discard_callbacks(pool);
2612
2613		if (!pool->pf.error_if_no_space && no_space_timeout)
2614			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2615		break;
2616
2617	case PM_WRITE:
2618		if (old_mode == PM_OUT_OF_DATA_SPACE)
2619			cancel_delayed_work_sync(&pool->no_space_timeout);
2620		pool->out_of_data_space = false;
2621		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2622		dm_pool_metadata_read_write(pool->pmd);
2623		pool->process_bio = process_bio;
2624		pool->process_discard = process_discard_bio;
2625		pool->process_cell = process_cell;
2626		pool->process_prepared_mapping = process_prepared_mapping;
2627		set_discard_callbacks(pool);
2628		break;
2629	}
2630
2631	pool->pf.mode = new_mode;
2632	/*
2633	 * The pool mode may have changed, sync it so bind_control_target()
2634	 * doesn't cause an unexpected mode transition on resume.
2635	 */
2636	pt->adjusted_pf.mode = new_mode;
2637
2638	if (old_mode != new_mode)
2639		notify_of_pool_mode_change(pool);
2640}
2641
2642static void abort_transaction(struct pool *pool)
2643{
2644	const char *dev_name = dm_device_name(pool->pool_md);
2645
2646	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2647	if (dm_pool_abort_metadata(pool->pmd)) {
2648		DMERR("%s: failed to abort metadata transaction", dev_name);
2649		set_pool_mode(pool, PM_FAIL);
2650	}
2651
2652	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2653		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2654		set_pool_mode(pool, PM_FAIL);
2655	}
2656}
2657
2658static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2659{
2660	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2661		    dm_device_name(pool->pool_md), op, r);
2662
2663	abort_transaction(pool);
2664	set_pool_mode(pool, PM_READ_ONLY);
2665}
2666
2667/*----------------------------------------------------------------*/
2668
2669/*
2670 * Mapping functions.
2671 */
2672
2673/*
2674 * Called only while mapping a thin bio to hand it over to the workqueue.
2675 */
2676static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2677{
 
2678	struct pool *pool = tc->pool;
2679
2680	spin_lock_irq(&tc->lock);
2681	bio_list_add(&tc->deferred_bio_list, bio);
2682	spin_unlock_irq(&tc->lock);
2683
2684	wake_worker(pool);
2685}
2686
2687static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2688{
2689	struct pool *pool = tc->pool;
2690
2691	throttle_lock(&pool->throttle);
2692	thin_defer_bio(tc, bio);
2693	throttle_unlock(&pool->throttle);
2694}
2695
2696static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2697{
 
2698	struct pool *pool = tc->pool;
2699
2700	throttle_lock(&pool->throttle);
2701	spin_lock_irq(&tc->lock);
2702	list_add_tail(&cell->user_list, &tc->deferred_cells);
2703	spin_unlock_irq(&tc->lock);
2704	throttle_unlock(&pool->throttle);
2705
2706	wake_worker(pool);
2707}
2708
2709static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2710{
2711	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2712
2713	h->tc = tc;
2714	h->shared_read_entry = NULL;
2715	h->all_io_entry = NULL;
2716	h->overwrite_mapping = NULL;
2717	h->cell = NULL;
2718}
2719
2720/*
2721 * Non-blocking function called from the thin target's map function.
2722 */
2723static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2724{
2725	int r;
2726	struct thin_c *tc = ti->private;
2727	dm_block_t block = get_bio_block(tc, bio);
2728	struct dm_thin_device *td = tc->td;
2729	struct dm_thin_lookup_result result;
2730	struct dm_bio_prison_cell *virt_cell, *data_cell;
2731	struct dm_cell_key key;
2732
2733	thin_hook_bio(tc, bio);
2734
2735	if (tc->requeue_mode) {
2736		bio->bi_status = BLK_STS_DM_REQUEUE;
2737		bio_endio(bio);
2738		return DM_MAPIO_SUBMITTED;
2739	}
2740
2741	if (get_pool_mode(tc->pool) == PM_FAIL) {
2742		bio_io_error(bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2747		thin_defer_bio_with_throttle(tc, bio);
2748		return DM_MAPIO_SUBMITTED;
2749	}
2750
2751	/*
2752	 * We must hold the virtual cell before doing the lookup, otherwise
2753	 * there's a race with discard.
2754	 */
2755	build_virtual_key(tc->td, block, &key);
2756	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2757		return DM_MAPIO_SUBMITTED;
2758
2759	r = dm_thin_find_block(td, block, 0, &result);
2760
2761	/*
2762	 * Note that we defer readahead too.
2763	 */
2764	switch (r) {
2765	case 0:
2766		if (unlikely(result.shared)) {
2767			/*
2768			 * We have a race condition here between the
2769			 * result.shared value returned by the lookup and
2770			 * snapshot creation, which may cause new
2771			 * sharing.
2772			 *
2773			 * To avoid this always quiesce the origin before
2774			 * taking the snap.  You want to do this anyway to
2775			 * ensure a consistent application view
2776			 * (i.e. lockfs).
2777			 *
2778			 * More distant ancestors are irrelevant. The
2779			 * shared flag will be set in their case.
2780			 */
2781			thin_defer_cell(tc, virt_cell);
2782			return DM_MAPIO_SUBMITTED;
2783		}
2784
2785		build_data_key(tc->td, result.block, &key);
2786		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2787			cell_defer_no_holder(tc, virt_cell);
2788			return DM_MAPIO_SUBMITTED;
2789		}
2790
2791		inc_all_io_entry(tc->pool, bio);
2792		cell_defer_no_holder(tc, data_cell);
2793		cell_defer_no_holder(tc, virt_cell);
2794
2795		remap(tc, bio, result.block);
2796		return DM_MAPIO_REMAPPED;
2797
2798	case -ENODATA:
2799	case -EWOULDBLOCK:
2800		thin_defer_cell(tc, virt_cell);
2801		return DM_MAPIO_SUBMITTED;
2802
2803	default:
2804		/*
2805		 * Must always call bio_io_error on failure.
2806		 * dm_thin_find_block can fail with -EINVAL if the
2807		 * pool is switched to fail-io mode.
2808		 */
2809		bio_io_error(bio);
2810		cell_defer_no_holder(tc, virt_cell);
2811		return DM_MAPIO_SUBMITTED;
2812	}
2813}
2814
 
 
 
 
 
 
 
 
 
 
 
 
2815static void requeue_bios(struct pool *pool)
2816{
 
2817	struct thin_c *tc;
2818
2819	rcu_read_lock();
2820	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2821		spin_lock_irq(&tc->lock);
2822		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2823		bio_list_init(&tc->retry_on_resume_list);
2824		spin_unlock_irq(&tc->lock);
2825	}
2826	rcu_read_unlock();
2827}
2828
2829/*
2830 *--------------------------------------------------------------
2831 * Binding of control targets to a pool object
2832 *--------------------------------------------------------------
2833 */
 
 
 
 
 
 
2834static bool is_factor(sector_t block_size, uint32_t n)
2835{
2836	return !sector_div(block_size, n);
2837}
2838
2839/*
2840 * If discard_passdown was enabled verify that the data device
2841 * supports discards.  Disable discard_passdown if not.
2842 */
2843static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2844{
2845	struct pool *pool = pt->pool;
2846	struct block_device *data_bdev = pt->data_dev->bdev;
2847	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2848	const char *reason = NULL;
 
2849
2850	if (!pt->adjusted_pf.discard_passdown)
2851		return;
2852
2853	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2854		reason = "discard unsupported";
2855
2856	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2857		reason = "max discard sectors smaller than a block";
2858
2859	if (reason) {
2860		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2861		pt->adjusted_pf.discard_passdown = false;
2862	}
2863}
2864
2865static int bind_control_target(struct pool *pool, struct dm_target *ti)
2866{
2867	struct pool_c *pt = ti->private;
2868
2869	/*
2870	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2871	 */
2872	enum pool_mode old_mode = get_pool_mode(pool);
2873	enum pool_mode new_mode = pt->adjusted_pf.mode;
2874
2875	/*
2876	 * Don't change the pool's mode until set_pool_mode() below.
2877	 * Otherwise the pool's process_* function pointers may
2878	 * not match the desired pool mode.
2879	 */
2880	pt->adjusted_pf.mode = old_mode;
2881
2882	pool->ti = ti;
2883	pool->pf = pt->adjusted_pf;
2884	pool->low_water_blocks = pt->low_water_blocks;
2885
2886	set_pool_mode(pool, new_mode);
2887
2888	return 0;
2889}
2890
2891static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2892{
2893	if (pool->ti == ti)
2894		pool->ti = NULL;
2895}
2896
2897/*
2898 *--------------------------------------------------------------
2899 * Pool creation
2900 *--------------------------------------------------------------
2901 */
2902/* Initialize pool features. */
2903static void pool_features_init(struct pool_features *pf)
2904{
2905	pf->mode = PM_WRITE;
2906	pf->zero_new_blocks = true;
2907	pf->discard_enabled = true;
2908	pf->discard_passdown = true;
2909	pf->error_if_no_space = false;
2910}
2911
2912static void __pool_destroy(struct pool *pool)
2913{
2914	__pool_table_remove(pool);
2915
2916	vfree(pool->cell_sort_array);
2917	if (dm_pool_metadata_close(pool->pmd) < 0)
2918		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2919
2920	dm_bio_prison_destroy(pool->prison);
2921	dm_kcopyd_client_destroy(pool->copier);
2922
2923	cancel_delayed_work_sync(&pool->waker);
2924	cancel_delayed_work_sync(&pool->no_space_timeout);
2925	if (pool->wq)
2926		destroy_workqueue(pool->wq);
2927
2928	if (pool->next_mapping)
2929		mempool_free(pool->next_mapping, &pool->mapping_pool);
2930	mempool_exit(&pool->mapping_pool);
2931	dm_deferred_set_destroy(pool->shared_read_ds);
2932	dm_deferred_set_destroy(pool->all_io_ds);
2933	kfree(pool);
2934}
2935
2936static struct kmem_cache *_new_mapping_cache;
2937
2938static struct pool *pool_create(struct mapped_device *pool_md,
2939				struct block_device *metadata_dev,
2940				struct block_device *data_dev,
2941				unsigned long block_size,
2942				int read_only, char **error)
2943{
2944	int r;
2945	void *err_p;
2946	struct pool *pool;
2947	struct dm_pool_metadata *pmd;
2948	bool format_device = read_only ? false : true;
2949
2950	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2951	if (IS_ERR(pmd)) {
2952		*error = "Error creating metadata object";
2953		return (struct pool *)pmd;
2954	}
2955
2956	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2957	if (!pool) {
2958		*error = "Error allocating memory for pool";
2959		err_p = ERR_PTR(-ENOMEM);
2960		goto bad_pool;
2961	}
2962
2963	pool->pmd = pmd;
2964	pool->sectors_per_block = block_size;
2965	if (block_size & (block_size - 1))
2966		pool->sectors_per_block_shift = -1;
2967	else
2968		pool->sectors_per_block_shift = __ffs(block_size);
2969	pool->low_water_blocks = 0;
2970	pool_features_init(&pool->pf);
2971	pool->prison = dm_bio_prison_create();
2972	if (!pool->prison) {
2973		*error = "Error creating pool's bio prison";
2974		err_p = ERR_PTR(-ENOMEM);
2975		goto bad_prison;
2976	}
2977
2978	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2979	if (IS_ERR(pool->copier)) {
2980		r = PTR_ERR(pool->copier);
2981		*error = "Error creating pool's kcopyd client";
2982		err_p = ERR_PTR(r);
2983		goto bad_kcopyd_client;
2984	}
2985
2986	/*
2987	 * Create singlethreaded workqueue that will service all devices
2988	 * that use this metadata.
2989	 */
2990	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2991	if (!pool->wq) {
2992		*error = "Error creating pool's workqueue";
2993		err_p = ERR_PTR(-ENOMEM);
2994		goto bad_wq;
2995	}
2996
2997	throttle_init(&pool->throttle);
2998	INIT_WORK(&pool->worker, do_worker);
2999	INIT_DELAYED_WORK(&pool->waker, do_waker);
3000	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3001	spin_lock_init(&pool->lock);
3002	bio_list_init(&pool->deferred_flush_bios);
3003	bio_list_init(&pool->deferred_flush_completions);
3004	INIT_LIST_HEAD(&pool->prepared_mappings);
3005	INIT_LIST_HEAD(&pool->prepared_discards);
3006	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3007	INIT_LIST_HEAD(&pool->active_thins);
3008	pool->low_water_triggered = false;
3009	pool->suspended = true;
3010	pool->out_of_data_space = false;
3011
3012	pool->shared_read_ds = dm_deferred_set_create();
3013	if (!pool->shared_read_ds) {
3014		*error = "Error creating pool's shared read deferred set";
3015		err_p = ERR_PTR(-ENOMEM);
3016		goto bad_shared_read_ds;
3017	}
3018
3019	pool->all_io_ds = dm_deferred_set_create();
3020	if (!pool->all_io_ds) {
3021		*error = "Error creating pool's all io deferred set";
3022		err_p = ERR_PTR(-ENOMEM);
3023		goto bad_all_io_ds;
3024	}
3025
3026	pool->next_mapping = NULL;
3027	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3028				   _new_mapping_cache);
3029	if (r) {
3030		*error = "Error creating pool's mapping mempool";
3031		err_p = ERR_PTR(r);
3032		goto bad_mapping_pool;
3033	}
3034
3035	pool->cell_sort_array =
3036		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3037				   sizeof(*pool->cell_sort_array)));
3038	if (!pool->cell_sort_array) {
3039		*error = "Error allocating cell sort array";
3040		err_p = ERR_PTR(-ENOMEM);
3041		goto bad_sort_array;
3042	}
3043
3044	pool->ref_count = 1;
3045	pool->last_commit_jiffies = jiffies;
3046	pool->pool_md = pool_md;
3047	pool->md_dev = metadata_dev;
3048	pool->data_dev = data_dev;
3049	__pool_table_insert(pool);
3050
3051	return pool;
3052
3053bad_sort_array:
3054	mempool_exit(&pool->mapping_pool);
3055bad_mapping_pool:
3056	dm_deferred_set_destroy(pool->all_io_ds);
3057bad_all_io_ds:
3058	dm_deferred_set_destroy(pool->shared_read_ds);
3059bad_shared_read_ds:
3060	destroy_workqueue(pool->wq);
3061bad_wq:
3062	dm_kcopyd_client_destroy(pool->copier);
3063bad_kcopyd_client:
3064	dm_bio_prison_destroy(pool->prison);
3065bad_prison:
3066	kfree(pool);
3067bad_pool:
3068	if (dm_pool_metadata_close(pmd))
3069		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3070
3071	return err_p;
3072}
3073
3074static void __pool_inc(struct pool *pool)
3075{
3076	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077	pool->ref_count++;
3078}
3079
3080static void __pool_dec(struct pool *pool)
3081{
3082	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083	BUG_ON(!pool->ref_count);
3084	if (!--pool->ref_count)
3085		__pool_destroy(pool);
3086}
3087
3088static struct pool *__pool_find(struct mapped_device *pool_md,
3089				struct block_device *metadata_dev,
3090				struct block_device *data_dev,
3091				unsigned long block_size, int read_only,
3092				char **error, int *created)
3093{
3094	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095
3096	if (pool) {
3097		if (pool->pool_md != pool_md) {
3098			*error = "metadata device already in use by a pool";
3099			return ERR_PTR(-EBUSY);
3100		}
3101		if (pool->data_dev != data_dev) {
3102			*error = "data device already in use by a pool";
3103			return ERR_PTR(-EBUSY);
3104		}
3105		__pool_inc(pool);
3106
3107	} else {
3108		pool = __pool_table_lookup(pool_md);
3109		if (pool) {
3110			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3111				*error = "different pool cannot replace a pool";
3112				return ERR_PTR(-EINVAL);
3113			}
3114			__pool_inc(pool);
3115
3116		} else {
3117			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3118			*created = 1;
3119		}
3120	}
3121
3122	return pool;
3123}
3124
3125/*
3126 *--------------------------------------------------------------
3127 * Pool target methods
3128 *--------------------------------------------------------------
3129 */
3130static void pool_dtr(struct dm_target *ti)
3131{
3132	struct pool_c *pt = ti->private;
3133
3134	mutex_lock(&dm_thin_pool_table.mutex);
3135
3136	unbind_control_target(pt->pool, ti);
3137	__pool_dec(pt->pool);
3138	dm_put_device(ti, pt->metadata_dev);
3139	dm_put_device(ti, pt->data_dev);
3140	kfree(pt);
3141
3142	mutex_unlock(&dm_thin_pool_table.mutex);
3143}
3144
3145static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3146			       struct dm_target *ti)
3147{
3148	int r;
3149	unsigned int argc;
3150	const char *arg_name;
3151
3152	static const struct dm_arg _args[] = {
3153		{0, 4, "Invalid number of pool feature arguments"},
3154	};
3155
3156	/*
3157	 * No feature arguments supplied.
3158	 */
3159	if (!as->argc)
3160		return 0;
3161
3162	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3163	if (r)
3164		return -EINVAL;
3165
3166	while (argc && !r) {
3167		arg_name = dm_shift_arg(as);
3168		argc--;
3169
3170		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3171			pf->zero_new_blocks = false;
3172
3173		else if (!strcasecmp(arg_name, "ignore_discard"))
3174			pf->discard_enabled = false;
3175
3176		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3177			pf->discard_passdown = false;
3178
3179		else if (!strcasecmp(arg_name, "read_only"))
3180			pf->mode = PM_READ_ONLY;
3181
3182		else if (!strcasecmp(arg_name, "error_if_no_space"))
3183			pf->error_if_no_space = true;
3184
3185		else {
3186			ti->error = "Unrecognised pool feature requested";
3187			r = -EINVAL;
3188			break;
3189		}
3190	}
3191
3192	return r;
3193}
3194
3195static void metadata_low_callback(void *context)
3196{
3197	struct pool *pool = context;
3198
3199	DMWARN("%s: reached low water mark for metadata device: sending event.",
3200	       dm_device_name(pool->pool_md));
3201
3202	dm_table_event(pool->ti->table);
3203}
3204
3205/*
3206 * We need to flush the data device **before** committing the metadata.
3207 *
3208 * This ensures that the data blocks of any newly inserted mappings are
3209 * properly written to non-volatile storage and won't be lost in case of a
3210 * crash.
3211 *
3212 * Failure to do so can result in data corruption in the case of internal or
3213 * external snapshots and in the case of newly provisioned blocks, when block
3214 * zeroing is enabled.
3215 */
3216static int metadata_pre_commit_callback(void *context)
3217{
3218	struct pool *pool = context;
3219
3220	return blkdev_issue_flush(pool->data_dev);
3221}
3222
3223static sector_t get_dev_size(struct block_device *bdev)
3224{
3225	return bdev_nr_sectors(bdev);
3226}
3227
3228static void warn_if_metadata_device_too_big(struct block_device *bdev)
3229{
3230	sector_t metadata_dev_size = get_dev_size(bdev);
 
3231
3232	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3233		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3234		       bdev, THIN_METADATA_MAX_SECTORS);
3235}
3236
3237static sector_t get_metadata_dev_size(struct block_device *bdev)
3238{
3239	sector_t metadata_dev_size = get_dev_size(bdev);
3240
3241	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3242		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3243
3244	return metadata_dev_size;
3245}
3246
3247static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3248{
3249	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3250
3251	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3252
3253	return metadata_dev_size;
3254}
3255
3256/*
3257 * When a metadata threshold is crossed a dm event is triggered, and
3258 * userland should respond by growing the metadata device.  We could let
3259 * userland set the threshold, like we do with the data threshold, but I'm
3260 * not sure they know enough to do this well.
3261 */
3262static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3263{
3264	/*
3265	 * 4M is ample for all ops with the possible exception of thin
3266	 * device deletion which is harmless if it fails (just retry the
3267	 * delete after you've grown the device).
3268	 */
3269	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3270
3271	return min((dm_block_t)1024ULL /* 4M */, quarter);
3272}
3273
3274/*
3275 * thin-pool <metadata dev> <data dev>
3276 *	     <data block size (sectors)>
3277 *	     <low water mark (blocks)>
3278 *	     [<#feature args> [<arg>]*]
3279 *
3280 * Optional feature arguments are:
3281 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3282 *	     ignore_discard: disable discard
3283 *	     no_discard_passdown: don't pass discards down to the data device
3284 *	     read_only: Don't allow any changes to be made to the pool metadata.
3285 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3286 */
3287static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3288{
3289	int r, pool_created = 0;
3290	struct pool_c *pt;
3291	struct pool *pool;
3292	struct pool_features pf;
3293	struct dm_arg_set as;
3294	struct dm_dev *data_dev;
3295	unsigned long block_size;
3296	dm_block_t low_water_blocks;
3297	struct dm_dev *metadata_dev;
3298	blk_mode_t metadata_mode;
3299
3300	/*
3301	 * FIXME Remove validation from scope of lock.
3302	 */
3303	mutex_lock(&dm_thin_pool_table.mutex);
3304
3305	if (argc < 4) {
3306		ti->error = "Invalid argument count";
3307		r = -EINVAL;
3308		goto out_unlock;
3309	}
3310
3311	as.argc = argc;
3312	as.argv = argv;
3313
3314	/* make sure metadata and data are different devices */
3315	if (!strcmp(argv[0], argv[1])) {
3316		ti->error = "Error setting metadata or data device";
3317		r = -EINVAL;
3318		goto out_unlock;
3319	}
3320
3321	/*
3322	 * Set default pool features.
3323	 */
3324	pool_features_init(&pf);
3325
3326	dm_consume_args(&as, 4);
3327	r = parse_pool_features(&as, &pf, ti);
3328	if (r)
3329		goto out_unlock;
3330
3331	metadata_mode = BLK_OPEN_READ |
3332		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3333	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3334	if (r) {
3335		ti->error = "Error opening metadata block device";
3336		goto out_unlock;
3337	}
3338	warn_if_metadata_device_too_big(metadata_dev->bdev);
3339
3340	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3341	if (r) {
3342		ti->error = "Error getting data device";
3343		goto out_metadata;
3344	}
3345
3346	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3347	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3348	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3349	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3350		ti->error = "Invalid block size";
3351		r = -EINVAL;
3352		goto out;
3353	}
3354
3355	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3356		ti->error = "Invalid low water mark";
3357		r = -EINVAL;
3358		goto out;
3359	}
3360
3361	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3362	if (!pt) {
3363		r = -ENOMEM;
3364		goto out;
3365	}
3366
3367	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3368			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3369	if (IS_ERR(pool)) {
3370		r = PTR_ERR(pool);
3371		goto out_free_pt;
3372	}
3373
3374	/*
3375	 * 'pool_created' reflects whether this is the first table load.
3376	 * Top level discard support is not allowed to be changed after
3377	 * initial load.  This would require a pool reload to trigger thin
3378	 * device changes.
3379	 */
3380	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3381		ti->error = "Discard support cannot be disabled once enabled";
3382		r = -EINVAL;
3383		goto out_flags_changed;
3384	}
3385
3386	pt->pool = pool;
3387	pt->ti = ti;
3388	pt->metadata_dev = metadata_dev;
3389	pt->data_dev = data_dev;
3390	pt->low_water_blocks = low_water_blocks;
3391	pt->adjusted_pf = pt->requested_pf = pf;
3392	ti->num_flush_bios = 1;
3393	ti->limit_swap_bios = true;
3394
3395	/*
3396	 * Only need to enable discards if the pool should pass
3397	 * them down to the data device.  The thin device's discard
3398	 * processing will cause mappings to be removed from the btree.
3399	 */
 
3400	if (pf.discard_enabled && pf.discard_passdown) {
3401		ti->num_discard_bios = 1;
 
3402		/*
3403		 * Setting 'discards_supported' circumvents the normal
3404		 * stacking of discard limits (this keeps the pool and
3405		 * thin devices' discard limits consistent).
3406		 */
3407		ti->discards_supported = true;
3408		ti->max_discard_granularity = true;
3409	}
3410	ti->private = pt;
3411
3412	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3413						calc_metadata_threshold(pt),
3414						metadata_low_callback,
3415						pool);
3416	if (r) {
3417		ti->error = "Error registering metadata threshold";
3418		goto out_flags_changed;
3419	}
3420
3421	dm_pool_register_pre_commit_callback(pool->pmd,
3422					     metadata_pre_commit_callback, pool);
3423
3424	mutex_unlock(&dm_thin_pool_table.mutex);
3425
3426	return 0;
3427
3428out_flags_changed:
3429	__pool_dec(pool);
3430out_free_pt:
3431	kfree(pt);
3432out:
3433	dm_put_device(ti, data_dev);
3434out_metadata:
3435	dm_put_device(ti, metadata_dev);
3436out_unlock:
3437	mutex_unlock(&dm_thin_pool_table.mutex);
3438
3439	return r;
3440}
3441
3442static int pool_map(struct dm_target *ti, struct bio *bio)
3443{
 
3444	struct pool_c *pt = ti->private;
3445	struct pool *pool = pt->pool;
 
3446
3447	/*
3448	 * As this is a singleton target, ti->begin is always zero.
3449	 */
3450	spin_lock_irq(&pool->lock);
3451	bio_set_dev(bio, pt->data_dev->bdev);
3452	spin_unlock_irq(&pool->lock);
 
3453
3454	return DM_MAPIO_REMAPPED;
3455}
3456
3457static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3458{
3459	int r;
3460	struct pool_c *pt = ti->private;
3461	struct pool *pool = pt->pool;
3462	sector_t data_size = ti->len;
3463	dm_block_t sb_data_size;
3464
3465	*need_commit = false;
3466
3467	(void) sector_div(data_size, pool->sectors_per_block);
3468
3469	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3470	if (r) {
3471		DMERR("%s: failed to retrieve data device size",
3472		      dm_device_name(pool->pool_md));
3473		return r;
3474	}
3475
3476	if (data_size < sb_data_size) {
3477		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3478		      dm_device_name(pool->pool_md),
3479		      (unsigned long long)data_size, sb_data_size);
3480		return -EINVAL;
3481
3482	} else if (data_size > sb_data_size) {
3483		if (dm_pool_metadata_needs_check(pool->pmd)) {
3484			DMERR("%s: unable to grow the data device until repaired.",
3485			      dm_device_name(pool->pool_md));
3486			return 0;
3487		}
3488
3489		if (sb_data_size)
3490			DMINFO("%s: growing the data device from %llu to %llu blocks",
3491			       dm_device_name(pool->pool_md),
3492			       sb_data_size, (unsigned long long)data_size);
3493		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3494		if (r) {
3495			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3496			return r;
3497		}
3498
3499		*need_commit = true;
3500	}
3501
3502	return 0;
3503}
3504
3505static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3506{
3507	int r;
3508	struct pool_c *pt = ti->private;
3509	struct pool *pool = pt->pool;
3510	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3511
3512	*need_commit = false;
3513
3514	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3515
3516	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3517	if (r) {
3518		DMERR("%s: failed to retrieve metadata device size",
3519		      dm_device_name(pool->pool_md));
3520		return r;
3521	}
3522
3523	if (metadata_dev_size < sb_metadata_dev_size) {
3524		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3525		      dm_device_name(pool->pool_md),
3526		      metadata_dev_size, sb_metadata_dev_size);
3527		return -EINVAL;
3528
3529	} else if (metadata_dev_size > sb_metadata_dev_size) {
3530		if (dm_pool_metadata_needs_check(pool->pmd)) {
3531			DMERR("%s: unable to grow the metadata device until repaired.",
3532			      dm_device_name(pool->pool_md));
3533			return 0;
3534		}
3535
3536		warn_if_metadata_device_too_big(pool->md_dev);
3537		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3538		       dm_device_name(pool->pool_md),
3539		       sb_metadata_dev_size, metadata_dev_size);
3540
3541		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3542			set_pool_mode(pool, PM_WRITE);
3543
3544		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3545		if (r) {
3546			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3547			return r;
3548		}
3549
3550		*need_commit = true;
3551	}
3552
3553	return 0;
3554}
3555
3556/*
3557 * Retrieves the number of blocks of the data device from
3558 * the superblock and compares it to the actual device size,
3559 * thus resizing the data device in case it has grown.
3560 *
3561 * This both copes with opening preallocated data devices in the ctr
3562 * being followed by a resume
3563 * -and-
3564 * calling the resume method individually after userspace has
3565 * grown the data device in reaction to a table event.
3566 */
3567static int pool_preresume(struct dm_target *ti)
3568{
3569	int r;
3570	bool need_commit1, need_commit2;
3571	struct pool_c *pt = ti->private;
3572	struct pool *pool = pt->pool;
3573
3574	/*
3575	 * Take control of the pool object.
3576	 */
3577	r = bind_control_target(pool, ti);
3578	if (r)
3579		goto out;
3580
3581	r = maybe_resize_data_dev(ti, &need_commit1);
3582	if (r)
3583		goto out;
3584
3585	r = maybe_resize_metadata_dev(ti, &need_commit2);
3586	if (r)
3587		goto out;
3588
3589	if (need_commit1 || need_commit2)
3590		(void) commit(pool);
3591out:
3592	/*
3593	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3594	 * bio is in deferred list. Therefore need to return 0
3595	 * to allow pool_resume() to flush IO.
3596	 */
3597	if (r && get_pool_mode(pool) == PM_FAIL)
3598		r = 0;
3599
3600	return r;
3601}
3602
3603static void pool_suspend_active_thins(struct pool *pool)
3604{
3605	struct thin_c *tc;
3606
3607	/* Suspend all active thin devices */
3608	tc = get_first_thin(pool);
3609	while (tc) {
3610		dm_internal_suspend_noflush(tc->thin_md);
3611		tc = get_next_thin(pool, tc);
3612	}
3613}
3614
3615static void pool_resume_active_thins(struct pool *pool)
3616{
3617	struct thin_c *tc;
3618
3619	/* Resume all active thin devices */
3620	tc = get_first_thin(pool);
3621	while (tc) {
3622		dm_internal_resume(tc->thin_md);
3623		tc = get_next_thin(pool, tc);
3624	}
3625}
3626
3627static void pool_resume(struct dm_target *ti)
3628{
3629	struct pool_c *pt = ti->private;
3630	struct pool *pool = pt->pool;
 
3631
3632	/*
3633	 * Must requeue active_thins' bios and then resume
3634	 * active_thins _before_ clearing 'suspend' flag.
3635	 */
3636	requeue_bios(pool);
3637	pool_resume_active_thins(pool);
3638
3639	spin_lock_irq(&pool->lock);
3640	pool->low_water_triggered = false;
3641	pool->suspended = false;
3642	spin_unlock_irq(&pool->lock);
3643
3644	do_waker(&pool->waker.work);
3645}
3646
3647static void pool_presuspend(struct dm_target *ti)
3648{
3649	struct pool_c *pt = ti->private;
3650	struct pool *pool = pt->pool;
 
3651
3652	spin_lock_irq(&pool->lock);
3653	pool->suspended = true;
3654	spin_unlock_irq(&pool->lock);
3655
3656	pool_suspend_active_thins(pool);
3657}
3658
3659static void pool_presuspend_undo(struct dm_target *ti)
3660{
3661	struct pool_c *pt = ti->private;
3662	struct pool *pool = pt->pool;
 
3663
3664	pool_resume_active_thins(pool);
3665
3666	spin_lock_irq(&pool->lock);
3667	pool->suspended = false;
3668	spin_unlock_irq(&pool->lock);
3669}
3670
3671static void pool_postsuspend(struct dm_target *ti)
3672{
3673	struct pool_c *pt = ti->private;
3674	struct pool *pool = pt->pool;
3675
3676	cancel_delayed_work_sync(&pool->waker);
3677	cancel_delayed_work_sync(&pool->no_space_timeout);
3678	flush_workqueue(pool->wq);
3679	(void) commit(pool);
3680}
3681
3682static int check_arg_count(unsigned int argc, unsigned int args_required)
3683{
3684	if (argc != args_required) {
3685		DMWARN("Message received with %u arguments instead of %u.",
3686		       argc, args_required);
3687		return -EINVAL;
3688	}
3689
3690	return 0;
3691}
3692
3693static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3694{
3695	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3696	    *dev_id <= MAX_DEV_ID)
3697		return 0;
3698
3699	if (warning)
3700		DMWARN("Message received with invalid device id: %s", arg);
3701
3702	return -EINVAL;
3703}
3704
3705static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3706{
3707	dm_thin_id dev_id;
3708	int r;
3709
3710	r = check_arg_count(argc, 2);
3711	if (r)
3712		return r;
3713
3714	r = read_dev_id(argv[1], &dev_id, 1);
3715	if (r)
3716		return r;
3717
3718	r = dm_pool_create_thin(pool->pmd, dev_id);
3719	if (r) {
3720		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3721		       argv[1]);
3722		return r;
3723	}
3724
3725	return 0;
3726}
3727
3728static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3729{
3730	dm_thin_id dev_id;
3731	dm_thin_id origin_dev_id;
3732	int r;
3733
3734	r = check_arg_count(argc, 3);
3735	if (r)
3736		return r;
3737
3738	r = read_dev_id(argv[1], &dev_id, 1);
3739	if (r)
3740		return r;
3741
3742	r = read_dev_id(argv[2], &origin_dev_id, 1);
3743	if (r)
3744		return r;
3745
3746	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3747	if (r) {
3748		DMWARN("Creation of new snapshot %s of device %s failed.",
3749		       argv[1], argv[2]);
3750		return r;
3751	}
3752
3753	return 0;
3754}
3755
3756static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3757{
3758	dm_thin_id dev_id;
3759	int r;
3760
3761	r = check_arg_count(argc, 2);
3762	if (r)
3763		return r;
3764
3765	r = read_dev_id(argv[1], &dev_id, 1);
3766	if (r)
3767		return r;
3768
3769	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3770	if (r)
3771		DMWARN("Deletion of thin device %s failed.", argv[1]);
3772
3773	return r;
3774}
3775
3776static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3777{
3778	dm_thin_id old_id, new_id;
3779	int r;
3780
3781	r = check_arg_count(argc, 3);
3782	if (r)
3783		return r;
3784
3785	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3786		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3787		return -EINVAL;
3788	}
3789
3790	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3791		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3792		return -EINVAL;
3793	}
3794
3795	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3796	if (r) {
3797		DMWARN("Failed to change transaction id from %s to %s.",
3798		       argv[1], argv[2]);
3799		return r;
3800	}
3801
3802	return 0;
3803}
3804
3805static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3806{
3807	int r;
3808
3809	r = check_arg_count(argc, 1);
3810	if (r)
3811		return r;
3812
3813	(void) commit(pool);
3814
3815	r = dm_pool_reserve_metadata_snap(pool->pmd);
3816	if (r)
3817		DMWARN("reserve_metadata_snap message failed.");
3818
3819	return r;
3820}
3821
3822static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3823{
3824	int r;
3825
3826	r = check_arg_count(argc, 1);
3827	if (r)
3828		return r;
3829
3830	r = dm_pool_release_metadata_snap(pool->pmd);
3831	if (r)
3832		DMWARN("release_metadata_snap message failed.");
3833
3834	return r;
3835}
3836
3837/*
3838 * Messages supported:
3839 *   create_thin	<dev_id>
3840 *   create_snap	<dev_id> <origin_id>
3841 *   delete		<dev_id>
3842 *   set_transaction_id <current_trans_id> <new_trans_id>
3843 *   reserve_metadata_snap
3844 *   release_metadata_snap
3845 */
3846static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3847			char *result, unsigned int maxlen)
3848{
3849	int r = -EINVAL;
3850	struct pool_c *pt = ti->private;
3851	struct pool *pool = pt->pool;
3852
3853	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3854		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3855		      dm_device_name(pool->pool_md));
3856		return -EOPNOTSUPP;
3857	}
3858
3859	if (!strcasecmp(argv[0], "create_thin"))
3860		r = process_create_thin_mesg(argc, argv, pool);
3861
3862	else if (!strcasecmp(argv[0], "create_snap"))
3863		r = process_create_snap_mesg(argc, argv, pool);
3864
3865	else if (!strcasecmp(argv[0], "delete"))
3866		r = process_delete_mesg(argc, argv, pool);
3867
3868	else if (!strcasecmp(argv[0], "set_transaction_id"))
3869		r = process_set_transaction_id_mesg(argc, argv, pool);
3870
3871	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3872		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3873
3874	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3875		r = process_release_metadata_snap_mesg(argc, argv, pool);
3876
3877	else
3878		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3879
3880	if (!r)
3881		(void) commit(pool);
3882
3883	return r;
3884}
3885
3886static void emit_flags(struct pool_features *pf, char *result,
3887		       unsigned int sz, unsigned int maxlen)
3888{
3889	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3890		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3891		pf->error_if_no_space;
3892	DMEMIT("%u ", count);
3893
3894	if (!pf->zero_new_blocks)
3895		DMEMIT("skip_block_zeroing ");
3896
3897	if (!pf->discard_enabled)
3898		DMEMIT("ignore_discard ");
3899
3900	if (!pf->discard_passdown)
3901		DMEMIT("no_discard_passdown ");
3902
3903	if (pf->mode == PM_READ_ONLY)
3904		DMEMIT("read_only ");
3905
3906	if (pf->error_if_no_space)
3907		DMEMIT("error_if_no_space ");
3908}
3909
3910/*
3911 * Status line is:
3912 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3913 *    <used data sectors>/<total data sectors> <held metadata root>
3914 *    <pool mode> <discard config> <no space config> <needs_check>
3915 */
3916static void pool_status(struct dm_target *ti, status_type_t type,
3917			unsigned int status_flags, char *result, unsigned int maxlen)
3918{
3919	int r;
3920	unsigned int sz = 0;
3921	uint64_t transaction_id;
3922	dm_block_t nr_free_blocks_data;
3923	dm_block_t nr_free_blocks_metadata;
3924	dm_block_t nr_blocks_data;
3925	dm_block_t nr_blocks_metadata;
3926	dm_block_t held_root;
3927	enum pool_mode mode;
3928	char buf[BDEVNAME_SIZE];
3929	char buf2[BDEVNAME_SIZE];
3930	struct pool_c *pt = ti->private;
3931	struct pool *pool = pt->pool;
3932
3933	switch (type) {
3934	case STATUSTYPE_INFO:
3935		if (get_pool_mode(pool) == PM_FAIL) {
3936			DMEMIT("Fail");
3937			break;
3938		}
3939
3940		/* Commit to ensure statistics aren't out-of-date */
3941		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3942			(void) commit(pool);
3943
3944		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3945		if (r) {
3946			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3947			      dm_device_name(pool->pool_md), r);
3948			goto err;
3949		}
3950
3951		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3952		if (r) {
3953			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3954			      dm_device_name(pool->pool_md), r);
3955			goto err;
3956		}
3957
3958		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3959		if (r) {
3960			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3961			      dm_device_name(pool->pool_md), r);
3962			goto err;
3963		}
3964
3965		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3966		if (r) {
3967			DMERR("%s: dm_pool_get_free_block_count returned %d",
3968			      dm_device_name(pool->pool_md), r);
3969			goto err;
3970		}
3971
3972		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3973		if (r) {
3974			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3975			      dm_device_name(pool->pool_md), r);
3976			goto err;
3977		}
3978
3979		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3980		if (r) {
3981			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3982			      dm_device_name(pool->pool_md), r);
3983			goto err;
3984		}
3985
3986		DMEMIT("%llu %llu/%llu %llu/%llu ",
3987		       (unsigned long long)transaction_id,
3988		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3989		       (unsigned long long)nr_blocks_metadata,
3990		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3991		       (unsigned long long)nr_blocks_data);
3992
3993		if (held_root)
3994			DMEMIT("%llu ", held_root);
3995		else
3996			DMEMIT("- ");
3997
3998		mode = get_pool_mode(pool);
3999		if (mode == PM_OUT_OF_DATA_SPACE)
4000			DMEMIT("out_of_data_space ");
4001		else if (is_read_only_pool_mode(mode))
4002			DMEMIT("ro ");
4003		else
4004			DMEMIT("rw ");
4005
4006		if (!pool->pf.discard_enabled)
4007			DMEMIT("ignore_discard ");
4008		else if (pool->pf.discard_passdown)
4009			DMEMIT("discard_passdown ");
4010		else
4011			DMEMIT("no_discard_passdown ");
4012
4013		if (pool->pf.error_if_no_space)
4014			DMEMIT("error_if_no_space ");
4015		else
4016			DMEMIT("queue_if_no_space ");
4017
4018		if (dm_pool_metadata_needs_check(pool->pmd))
4019			DMEMIT("needs_check ");
4020		else
4021			DMEMIT("- ");
4022
4023		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4024
4025		break;
4026
4027	case STATUSTYPE_TABLE:
4028		DMEMIT("%s %s %lu %llu ",
4029		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4030		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4031		       (unsigned long)pool->sectors_per_block,
4032		       (unsigned long long)pt->low_water_blocks);
4033		emit_flags(&pt->requested_pf, result, sz, maxlen);
4034		break;
4035
4036	case STATUSTYPE_IMA:
4037		*result = '\0';
4038		break;
4039	}
4040	return;
4041
4042err:
4043	DMEMIT("Error");
4044}
4045
4046static int pool_iterate_devices(struct dm_target *ti,
4047				iterate_devices_callout_fn fn, void *data)
4048{
4049	struct pool_c *pt = ti->private;
4050
4051	return fn(ti, pt->data_dev, 0, ti->len, data);
4052}
4053
4054static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4055{
4056	struct pool_c *pt = ti->private;
4057	struct pool *pool = pt->pool;
4058	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4059
4060	/*
4061	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4062	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4063	 * This is especially beneficial when the pool's data device is a RAID
4064	 * device that has a full stripe width that matches pool->sectors_per_block
4065	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4066	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4067	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4068	 */
4069	if (limits->max_sectors < pool->sectors_per_block) {
4070		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4071			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4072				limits->max_sectors--;
4073			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4074		}
4075	}
4076
4077	/*
4078	 * If the system-determined stacked limits are compatible with the
4079	 * pool's blocksize (io_opt is a factor) do not override them.
4080	 */
4081	if (io_opt_sectors < pool->sectors_per_block ||
4082	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4083		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4084			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4085		else
4086			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4087		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4088	}
4089
4090	/*
4091	 * pt->adjusted_pf is a staging area for the actual features to use.
4092	 * They get transferred to the live pool in bind_control_target()
4093	 * called from pool_preresume().
4094	 */
4095
4096	if (pt->adjusted_pf.discard_enabled) {
4097		disable_discard_passdown_if_not_supported(pt);
4098		if (!pt->adjusted_pf.discard_passdown)
4099			limits->max_discard_sectors = 0;
4100		/*
4101		 * The pool uses the same discard limits as the underlying data
4102		 * device.  DM core has already set this up.
4103		 */
4104	} else {
4105		/*
4106		 * Must explicitly disallow stacking discard limits otherwise the
4107		 * block layer will stack them if pool's data device has support.
 
 
4108		 */
4109		limits->discard_granularity = 0;
 
4110	}
 
 
 
 
 
 
 
4111}
4112
4113static struct target_type pool_target = {
4114	.name = "thin-pool",
4115	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4116		    DM_TARGET_IMMUTABLE,
4117	.version = {1, 23, 0},
4118	.module = THIS_MODULE,
4119	.ctr = pool_ctr,
4120	.dtr = pool_dtr,
4121	.map = pool_map,
4122	.presuspend = pool_presuspend,
4123	.presuspend_undo = pool_presuspend_undo,
4124	.postsuspend = pool_postsuspend,
4125	.preresume = pool_preresume,
4126	.resume = pool_resume,
4127	.message = pool_message,
4128	.status = pool_status,
4129	.iterate_devices = pool_iterate_devices,
4130	.io_hints = pool_io_hints,
4131};
4132
4133/*
4134 *--------------------------------------------------------------
4135 * Thin target methods
4136 *--------------------------------------------------------------
4137 */
4138static void thin_get(struct thin_c *tc)
4139{
4140	refcount_inc(&tc->refcount);
4141}
4142
4143static void thin_put(struct thin_c *tc)
4144{
4145	if (refcount_dec_and_test(&tc->refcount))
4146		complete(&tc->can_destroy);
4147}
4148
4149static void thin_dtr(struct dm_target *ti)
4150{
4151	struct thin_c *tc = ti->private;
 
4152
4153	spin_lock_irq(&tc->pool->lock);
4154	list_del_rcu(&tc->list);
4155	spin_unlock_irq(&tc->pool->lock);
4156	synchronize_rcu();
4157
4158	thin_put(tc);
4159	wait_for_completion(&tc->can_destroy);
4160
4161	mutex_lock(&dm_thin_pool_table.mutex);
4162
4163	__pool_dec(tc->pool);
4164	dm_pool_close_thin_device(tc->td);
4165	dm_put_device(ti, tc->pool_dev);
4166	if (tc->origin_dev)
4167		dm_put_device(ti, tc->origin_dev);
4168	kfree(tc);
4169
4170	mutex_unlock(&dm_thin_pool_table.mutex);
4171}
4172
4173/*
4174 * Thin target parameters:
4175 *
4176 * <pool_dev> <dev_id> [origin_dev]
4177 *
4178 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4179 * dev_id: the internal device identifier
4180 * origin_dev: a device external to the pool that should act as the origin
4181 *
4182 * If the pool device has discards disabled, they get disabled for the thin
4183 * device as well.
4184 */
4185static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4186{
4187	int r;
4188	struct thin_c *tc;
4189	struct dm_dev *pool_dev, *origin_dev;
4190	struct mapped_device *pool_md;
 
4191
4192	mutex_lock(&dm_thin_pool_table.mutex);
4193
4194	if (argc != 2 && argc != 3) {
4195		ti->error = "Invalid argument count";
4196		r = -EINVAL;
4197		goto out_unlock;
4198	}
4199
4200	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4201	if (!tc) {
4202		ti->error = "Out of memory";
4203		r = -ENOMEM;
4204		goto out_unlock;
4205	}
4206	tc->thin_md = dm_table_get_md(ti->table);
4207	spin_lock_init(&tc->lock);
4208	INIT_LIST_HEAD(&tc->deferred_cells);
4209	bio_list_init(&tc->deferred_bio_list);
4210	bio_list_init(&tc->retry_on_resume_list);
4211	tc->sort_bio_list = RB_ROOT;
4212
4213	if (argc == 3) {
4214		if (!strcmp(argv[0], argv[2])) {
4215			ti->error = "Error setting origin device";
4216			r = -EINVAL;
4217			goto bad_origin_dev;
4218		}
4219
4220		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4221		if (r) {
4222			ti->error = "Error opening origin device";
4223			goto bad_origin_dev;
4224		}
4225		tc->origin_dev = origin_dev;
4226	}
4227
4228	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4229	if (r) {
4230		ti->error = "Error opening pool device";
4231		goto bad_pool_dev;
4232	}
4233	tc->pool_dev = pool_dev;
4234
4235	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4236		ti->error = "Invalid device id";
4237		r = -EINVAL;
4238		goto bad_common;
4239	}
4240
4241	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4242	if (!pool_md) {
4243		ti->error = "Couldn't get pool mapped device";
4244		r = -EINVAL;
4245		goto bad_common;
4246	}
4247
4248	tc->pool = __pool_table_lookup(pool_md);
4249	if (!tc->pool) {
4250		ti->error = "Couldn't find pool object";
4251		r = -EINVAL;
4252		goto bad_pool_lookup;
4253	}
4254	__pool_inc(tc->pool);
4255
4256	if (get_pool_mode(tc->pool) == PM_FAIL) {
4257		ti->error = "Couldn't open thin device, Pool is in fail mode";
4258		r = -EINVAL;
4259		goto bad_pool;
4260	}
4261
4262	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4263	if (r) {
4264		ti->error = "Couldn't open thin internal device";
4265		goto bad_pool;
4266	}
4267
4268	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4269	if (r)
4270		goto bad;
4271
4272	ti->num_flush_bios = 1;
4273	ti->limit_swap_bios = true;
4274	ti->flush_supported = true;
4275	ti->accounts_remapped_io = true;
4276	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4277
4278	/* In case the pool supports discards, pass them on. */
 
4279	if (tc->pool->pf.discard_enabled) {
4280		ti->discards_supported = true;
4281		ti->num_discard_bios = 1;
4282		ti->max_discard_granularity = true;
4283	}
4284
4285	mutex_unlock(&dm_thin_pool_table.mutex);
4286
4287	spin_lock_irq(&tc->pool->lock);
4288	if (tc->pool->suspended) {
4289		spin_unlock_irq(&tc->pool->lock);
4290		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4291		ti->error = "Unable to activate thin device while pool is suspended";
4292		r = -EINVAL;
4293		goto bad;
4294	}
4295	refcount_set(&tc->refcount, 1);
4296	init_completion(&tc->can_destroy);
4297	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4298	spin_unlock_irq(&tc->pool->lock);
4299	/*
4300	 * This synchronize_rcu() call is needed here otherwise we risk a
4301	 * wake_worker() call finding no bios to process (because the newly
4302	 * added tc isn't yet visible).  So this reduces latency since we
4303	 * aren't then dependent on the periodic commit to wake_worker().
4304	 */
4305	synchronize_rcu();
4306
4307	dm_put(pool_md);
4308
4309	return 0;
4310
4311bad:
4312	dm_pool_close_thin_device(tc->td);
4313bad_pool:
4314	__pool_dec(tc->pool);
4315bad_pool_lookup:
4316	dm_put(pool_md);
4317bad_common:
4318	dm_put_device(ti, tc->pool_dev);
4319bad_pool_dev:
4320	if (tc->origin_dev)
4321		dm_put_device(ti, tc->origin_dev);
4322bad_origin_dev:
4323	kfree(tc);
4324out_unlock:
4325	mutex_unlock(&dm_thin_pool_table.mutex);
4326
4327	return r;
4328}
4329
4330static int thin_map(struct dm_target *ti, struct bio *bio)
4331{
4332	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4333
4334	return thin_bio_map(ti, bio);
4335}
4336
4337static int thin_endio(struct dm_target *ti, struct bio *bio,
4338		blk_status_t *err)
4339{
4340	unsigned long flags;
4341	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4342	struct list_head work;
4343	struct dm_thin_new_mapping *m, *tmp;
4344	struct pool *pool = h->tc->pool;
4345
4346	if (h->shared_read_entry) {
4347		INIT_LIST_HEAD(&work);
4348		dm_deferred_entry_dec(h->shared_read_entry, &work);
4349
4350		spin_lock_irqsave(&pool->lock, flags);
4351		list_for_each_entry_safe(m, tmp, &work, list) {
4352			list_del(&m->list);
4353			__complete_mapping_preparation(m);
4354		}
4355		spin_unlock_irqrestore(&pool->lock, flags);
4356	}
4357
4358	if (h->all_io_entry) {
4359		INIT_LIST_HEAD(&work);
4360		dm_deferred_entry_dec(h->all_io_entry, &work);
4361		if (!list_empty(&work)) {
4362			spin_lock_irqsave(&pool->lock, flags);
4363			list_for_each_entry_safe(m, tmp, &work, list)
4364				list_add_tail(&m->list, &pool->prepared_discards);
4365			spin_unlock_irqrestore(&pool->lock, flags);
4366			wake_worker(pool);
4367		}
4368	}
4369
4370	if (h->cell)
4371		cell_defer_no_holder(h->tc, h->cell);
4372
4373	return DM_ENDIO_DONE;
4374}
4375
4376static void thin_presuspend(struct dm_target *ti)
4377{
4378	struct thin_c *tc = ti->private;
4379
4380	if (dm_noflush_suspending(ti))
4381		noflush_work(tc, do_noflush_start);
4382}
4383
4384static void thin_postsuspend(struct dm_target *ti)
4385{
4386	struct thin_c *tc = ti->private;
4387
4388	/*
4389	 * The dm_noflush_suspending flag has been cleared by now, so
4390	 * unfortunately we must always run this.
4391	 */
4392	noflush_work(tc, do_noflush_stop);
4393}
4394
4395static int thin_preresume(struct dm_target *ti)
4396{
4397	struct thin_c *tc = ti->private;
4398
4399	if (tc->origin_dev)
4400		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4401
4402	return 0;
4403}
4404
4405/*
4406 * <nr mapped sectors> <highest mapped sector>
4407 */
4408static void thin_status(struct dm_target *ti, status_type_t type,
4409			unsigned int status_flags, char *result, unsigned int maxlen)
4410{
4411	int r;
4412	ssize_t sz = 0;
4413	dm_block_t mapped, highest;
4414	char buf[BDEVNAME_SIZE];
4415	struct thin_c *tc = ti->private;
4416
4417	if (get_pool_mode(tc->pool) == PM_FAIL) {
4418		DMEMIT("Fail");
4419		return;
4420	}
4421
4422	if (!tc->td)
4423		DMEMIT("-");
4424	else {
4425		switch (type) {
4426		case STATUSTYPE_INFO:
4427			r = dm_thin_get_mapped_count(tc->td, &mapped);
4428			if (r) {
4429				DMERR("dm_thin_get_mapped_count returned %d", r);
4430				goto err;
4431			}
4432
4433			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4434			if (r < 0) {
4435				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4436				goto err;
4437			}
4438
4439			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4440			if (r)
4441				DMEMIT("%llu", ((highest + 1) *
4442						tc->pool->sectors_per_block) - 1);
4443			else
4444				DMEMIT("-");
4445			break;
4446
4447		case STATUSTYPE_TABLE:
4448			DMEMIT("%s %lu",
4449			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4450			       (unsigned long) tc->dev_id);
4451			if (tc->origin_dev)
4452				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4453			break;
4454
4455		case STATUSTYPE_IMA:
4456			*result = '\0';
4457			break;
4458		}
4459	}
4460
4461	return;
4462
4463err:
4464	DMEMIT("Error");
4465}
4466
4467static int thin_iterate_devices(struct dm_target *ti,
4468				iterate_devices_callout_fn fn, void *data)
4469{
4470	sector_t blocks;
4471	struct thin_c *tc = ti->private;
4472	struct pool *pool = tc->pool;
4473
4474	/*
4475	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4476	 * we follow a more convoluted path through to the pool's target.
4477	 */
4478	if (!pool->ti)
4479		return 0;	/* nothing is bound */
4480
4481	blocks = pool->ti->len;
4482	(void) sector_div(blocks, pool->sectors_per_block);
4483	if (blocks)
4484		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4485
4486	return 0;
4487}
4488
4489static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4490{
4491	struct thin_c *tc = ti->private;
4492	struct pool *pool = tc->pool;
4493
4494	if (pool->pf.discard_enabled) {
4495		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4496		limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4497	}
 
4498}
4499
4500static struct target_type thin_target = {
4501	.name = "thin",
4502	.version = {1, 23, 0},
4503	.module	= THIS_MODULE,
4504	.ctr = thin_ctr,
4505	.dtr = thin_dtr,
4506	.map = thin_map,
4507	.end_io = thin_endio,
4508	.preresume = thin_preresume,
4509	.presuspend = thin_presuspend,
4510	.postsuspend = thin_postsuspend,
4511	.status = thin_status,
4512	.iterate_devices = thin_iterate_devices,
4513	.io_hints = thin_io_hints,
4514};
4515
4516/*----------------------------------------------------------------*/
4517
4518static int __init dm_thin_init(void)
4519{
4520	int r = -ENOMEM;
4521
4522	pool_table_init();
4523
4524	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4525	if (!_new_mapping_cache)
4526		return r;
4527
4528	r = dm_register_target(&thin_target);
4529	if (r)
4530		goto bad_new_mapping_cache;
4531
4532	r = dm_register_target(&pool_target);
4533	if (r)
4534		goto bad_thin_target;
 
 
 
 
 
 
4535
4536	return 0;
4537
4538bad_thin_target:
4539	dm_unregister_target(&thin_target);
4540bad_new_mapping_cache:
4541	kmem_cache_destroy(_new_mapping_cache);
 
 
4542
4543	return r;
4544}
4545
4546static void dm_thin_exit(void)
4547{
4548	dm_unregister_target(&thin_target);
4549	dm_unregister_target(&pool_target);
4550
4551	kmem_cache_destroy(_new_mapping_cache);
4552
4553	pool_table_exit();
4554}
4555
4556module_init(dm_thin_init);
4557module_exit(dm_thin_exit);
4558
4559module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4560MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4561
4562MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4563MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4564MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 
 
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 203	PM_READ_ONLY,		/* metadata may not be changed */
 
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 
 256	struct list_head active_thins;
 257
 258	struct dm_deferred_set *shared_read_ds;
 259	struct dm_deferred_set *all_io_ds;
 260
 261	struct dm_thin_new_mapping *next_mapping;
 262	mempool_t *mapping_pool;
 263
 264	process_bio_fn process_bio;
 265	process_bio_fn process_discard;
 266
 267	process_cell_fn process_cell;
 268	process_cell_fn process_discard_cell;
 269
 270	process_mapping_fn process_prepared_mapping;
 271	process_mapping_fn process_prepared_discard;
 
 272
 273	struct dm_bio_prison_cell **cell_sort_array;
 
 
 274};
 275
 276static enum pool_mode get_pool_mode(struct pool *pool);
 277static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279/*
 280 * Target context for a pool.
 281 */
 282struct pool_c {
 283	struct dm_target *ti;
 284	struct pool *pool;
 285	struct dm_dev *data_dev;
 286	struct dm_dev *metadata_dev;
 287	struct dm_target_callbacks callbacks;
 288
 289	dm_block_t low_water_blocks;
 290	struct pool_features requested_pf; /* Features requested during table load */
 291	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 292};
 293
 294/*
 295 * Target context for a thin.
 296 */
 297struct thin_c {
 298	struct list_head list;
 299	struct dm_dev *pool_dev;
 300	struct dm_dev *origin_dev;
 301	sector_t origin_size;
 302	dm_thin_id dev_id;
 303
 304	struct pool *pool;
 305	struct dm_thin_device *td;
 306	struct mapped_device *thin_md;
 307
 308	bool requeue_mode:1;
 309	spinlock_t lock;
 310	struct list_head deferred_cells;
 311	struct bio_list deferred_bio_list;
 312	struct bio_list retry_on_resume_list;
 313	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 314
 315	/*
 316	 * Ensures the thin is not destroyed until the worker has finished
 317	 * iterating the active_thins list.
 318	 */
 319	atomic_t refcount;
 320	struct completion can_destroy;
 321};
 322
 323/*----------------------------------------------------------------*/
 324
 325/**
 326 * __blkdev_issue_discard_async - queue a discard with async completion
 327 * @bdev:	blockdev to issue discard for
 328 * @sector:	start sector
 329 * @nr_sects:	number of sectors to discard
 330 * @gfp_mask:	memory allocation flags (for bio_alloc)
 331 * @flags:	BLKDEV_IFL_* flags to control behaviour
 332 * @parent_bio: parent discard bio that all sub discards get chained to
 333 *
 334 * Description:
 335 *    Asynchronously issue a discard request for the sectors in question.
 336 */
 337static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
 338					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
 339					struct bio *parent_bio)
 340{
 341	struct request_queue *q = bdev_get_queue(bdev);
 342	int type = REQ_WRITE | REQ_DISCARD;
 343	struct bio *bio;
 344
 345	if (!q || !nr_sects)
 346		return -ENXIO;
 347
 348	if (!blk_queue_discard(q))
 349		return -EOPNOTSUPP;
 350
 351	if (flags & BLKDEV_DISCARD_SECURE) {
 352		if (!blk_queue_secdiscard(q))
 353			return -EOPNOTSUPP;
 354		type |= REQ_SECURE;
 355	}
 356
 357	/*
 358	 * Required bio_put occurs in bio_endio thanks to bio_chain below
 359	 */
 360	bio = bio_alloc(gfp_mask, 1);
 361	if (!bio)
 362		return -ENOMEM;
 363
 364	bio_chain(bio, parent_bio);
 365
 366	bio->bi_iter.bi_sector = sector;
 367	bio->bi_bdev = bdev;
 368	bio->bi_iter.bi_size = nr_sects << 9;
 369
 370	submit_bio(type, bio);
 371
 372	return 0;
 373}
 374
 375static bool block_size_is_power_of_two(struct pool *pool)
 376{
 377	return pool->sectors_per_block_shift >= 0;
 378}
 379
 380static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 381{
 382	return block_size_is_power_of_two(pool) ?
 383		(b << pool->sectors_per_block_shift) :
 384		(b * pool->sectors_per_block);
 385}
 386
 387static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
 388			 struct bio *parent_bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389{
 
 390	sector_t s = block_to_sectors(tc->pool, data_b);
 391	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 392
 393	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
 394					    GFP_NOWAIT, 0, parent_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397/*----------------------------------------------------------------*/
 398
 399/*
 400 * wake_worker() is used when new work is queued and when pool_resume is
 401 * ready to continue deferred IO processing.
 402 */
 403static void wake_worker(struct pool *pool)
 404{
 405	queue_work(pool->wq, &pool->worker);
 406}
 407
 408/*----------------------------------------------------------------*/
 409
 410static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 411		      struct dm_bio_prison_cell **cell_result)
 412{
 413	int r;
 414	struct dm_bio_prison_cell *cell_prealloc;
 415
 416	/*
 417	 * Allocate a cell from the prison's mempool.
 418	 * This might block but it can't fail.
 419	 */
 420	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 421
 422	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 423	if (r)
 424		/*
 425		 * We reused an old cell; we can get rid of
 426		 * the new one.
 427		 */
 428		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 429
 430	return r;
 431}
 432
 433static void cell_release(struct pool *pool,
 434			 struct dm_bio_prison_cell *cell,
 435			 struct bio_list *bios)
 436{
 437	dm_cell_release(pool->prison, cell, bios);
 438	dm_bio_prison_free_cell(pool->prison, cell);
 439}
 440
 441static void cell_visit_release(struct pool *pool,
 442			       void (*fn)(void *, struct dm_bio_prison_cell *),
 443			       void *context,
 444			       struct dm_bio_prison_cell *cell)
 445{
 446	dm_cell_visit_release(pool->prison, fn, context, cell);
 447	dm_bio_prison_free_cell(pool->prison, cell);
 448}
 449
 450static void cell_release_no_holder(struct pool *pool,
 451				   struct dm_bio_prison_cell *cell,
 452				   struct bio_list *bios)
 453{
 454	dm_cell_release_no_holder(pool->prison, cell, bios);
 455	dm_bio_prison_free_cell(pool->prison, cell);
 456}
 457
 458static void cell_error_with_code(struct pool *pool,
 459				 struct dm_bio_prison_cell *cell, int error_code)
 460{
 461	dm_cell_error(pool->prison, cell, error_code);
 462	dm_bio_prison_free_cell(pool->prison, cell);
 463}
 464
 465static int get_pool_io_error_code(struct pool *pool)
 466{
 467	return pool->out_of_data_space ? -ENOSPC : -EIO;
 468}
 469
 470static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 471{
 472	int error = get_pool_io_error_code(pool);
 473
 474	cell_error_with_code(pool, cell, error);
 475}
 476
 477static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 478{
 479	cell_error_with_code(pool, cell, 0);
 480}
 481
 482static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 483{
 484	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 485}
 486
 487/*----------------------------------------------------------------*/
 488
 489/*
 490 * A global list of pools that uses a struct mapped_device as a key.
 491 */
 492static struct dm_thin_pool_table {
 493	struct mutex mutex;
 494	struct list_head pools;
 495} dm_thin_pool_table;
 496
 497static void pool_table_init(void)
 498{
 499	mutex_init(&dm_thin_pool_table.mutex);
 500	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 501}
 502
 
 
 
 
 
 503static void __pool_table_insert(struct pool *pool)
 504{
 505	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506	list_add(&pool->list, &dm_thin_pool_table.pools);
 507}
 508
 509static void __pool_table_remove(struct pool *pool)
 510{
 511	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 512	list_del(&pool->list);
 513}
 514
 515static struct pool *__pool_table_lookup(struct mapped_device *md)
 516{
 517	struct pool *pool = NULL, *tmp;
 518
 519	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 520
 521	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 522		if (tmp->pool_md == md) {
 523			pool = tmp;
 524			break;
 525		}
 526	}
 527
 528	return pool;
 529}
 530
 531static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 532{
 533	struct pool *pool = NULL, *tmp;
 534
 535	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 536
 537	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 538		if (tmp->md_dev == md_dev) {
 539			pool = tmp;
 540			break;
 541		}
 542	}
 543
 544	return pool;
 545}
 546
 547/*----------------------------------------------------------------*/
 548
 549struct dm_thin_endio_hook {
 550	struct thin_c *tc;
 551	struct dm_deferred_entry *shared_read_entry;
 552	struct dm_deferred_entry *all_io_entry;
 553	struct dm_thin_new_mapping *overwrite_mapping;
 554	struct rb_node rb_node;
 555	struct dm_bio_prison_cell *cell;
 556};
 557
 558static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 559{
 560	bio_list_merge(bios, master);
 561	bio_list_init(master);
 562}
 563
 564static void error_bio_list(struct bio_list *bios, int error)
 565{
 566	struct bio *bio;
 567
 568	while ((bio = bio_list_pop(bios))) {
 569		bio->bi_error = error;
 570		bio_endio(bio);
 571	}
 572}
 573
 574static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 
 575{
 576	struct bio_list bios;
 577	unsigned long flags;
 578
 579	bio_list_init(&bios);
 580
 581	spin_lock_irqsave(&tc->lock, flags);
 582	__merge_bio_list(&bios, master);
 583	spin_unlock_irqrestore(&tc->lock, flags);
 584
 585	error_bio_list(&bios, error);
 586}
 587
 588static void requeue_deferred_cells(struct thin_c *tc)
 589{
 590	struct pool *pool = tc->pool;
 591	unsigned long flags;
 592	struct list_head cells;
 593	struct dm_bio_prison_cell *cell, *tmp;
 594
 595	INIT_LIST_HEAD(&cells);
 596
 597	spin_lock_irqsave(&tc->lock, flags);
 598	list_splice_init(&tc->deferred_cells, &cells);
 599	spin_unlock_irqrestore(&tc->lock, flags);
 600
 601	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 602		cell_requeue(pool, cell);
 603}
 604
 605static void requeue_io(struct thin_c *tc)
 606{
 607	struct bio_list bios;
 608	unsigned long flags;
 609
 610	bio_list_init(&bios);
 611
 612	spin_lock_irqsave(&tc->lock, flags);
 613	__merge_bio_list(&bios, &tc->deferred_bio_list);
 614	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 615	spin_unlock_irqrestore(&tc->lock, flags);
 616
 617	error_bio_list(&bios, DM_ENDIO_REQUEUE);
 618	requeue_deferred_cells(tc);
 619}
 620
 621static void error_retry_list_with_code(struct pool *pool, int error)
 622{
 623	struct thin_c *tc;
 624
 625	rcu_read_lock();
 626	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 627		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 628	rcu_read_unlock();
 629}
 630
 631static void error_retry_list(struct pool *pool)
 632{
 633	int error = get_pool_io_error_code(pool);
 634
 635	return error_retry_list_with_code(pool, error);
 636}
 637
 638/*
 639 * This section of code contains the logic for processing a thin device's IO.
 640 * Much of the code depends on pool object resources (lists, workqueues, etc)
 641 * but most is exclusively called from the thin target rather than the thin-pool
 642 * target.
 643 */
 644
 645static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 646{
 647	struct pool *pool = tc->pool;
 648	sector_t block_nr = bio->bi_iter.bi_sector;
 649
 650	if (block_size_is_power_of_two(pool))
 651		block_nr >>= pool->sectors_per_block_shift;
 652	else
 653		(void) sector_div(block_nr, pool->sectors_per_block);
 654
 655	return block_nr;
 656}
 657
 658/*
 659 * Returns the _complete_ blocks that this bio covers.
 660 */
 661static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 662				dm_block_t *begin, dm_block_t *end)
 663{
 664	struct pool *pool = tc->pool;
 665	sector_t b = bio->bi_iter.bi_sector;
 666	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 667
 668	b += pool->sectors_per_block - 1ull; /* so we round up */
 669
 670	if (block_size_is_power_of_two(pool)) {
 671		b >>= pool->sectors_per_block_shift;
 672		e >>= pool->sectors_per_block_shift;
 673	} else {
 674		(void) sector_div(b, pool->sectors_per_block);
 675		(void) sector_div(e, pool->sectors_per_block);
 676	}
 677
 678	if (e < b)
 679		/* Can happen if the bio is within a single block. */
 680		e = b;
 681
 682	*begin = b;
 683	*end = e;
 684}
 685
 686static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 687{
 688	struct pool *pool = tc->pool;
 689	sector_t bi_sector = bio->bi_iter.bi_sector;
 690
 691	bio->bi_bdev = tc->pool_dev->bdev;
 692	if (block_size_is_power_of_two(pool))
 693		bio->bi_iter.bi_sector =
 694			(block << pool->sectors_per_block_shift) |
 695			(bi_sector & (pool->sectors_per_block - 1));
 696	else
 697		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 698				 sector_div(bi_sector, pool->sectors_per_block);
 699}
 700
 701static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 702{
 703	bio->bi_bdev = tc->origin_dev->bdev;
 704}
 705
 706static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 707{
 708	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 709		dm_thin_changed_this_transaction(tc->td);
 710}
 711
 712static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 713{
 714	struct dm_thin_endio_hook *h;
 715
 716	if (bio->bi_rw & REQ_DISCARD)
 717		return;
 718
 719	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 720	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 721}
 722
 723static void issue(struct thin_c *tc, struct bio *bio)
 724{
 725	struct pool *pool = tc->pool;
 726	unsigned long flags;
 727
 728	if (!bio_triggers_commit(tc, bio)) {
 729		generic_make_request(bio);
 730		return;
 731	}
 732
 733	/*
 734	 * Complete bio with an error if earlier I/O caused changes to
 735	 * the metadata that can't be committed e.g, due to I/O errors
 736	 * on the metadata device.
 737	 */
 738	if (dm_thin_aborted_changes(tc->td)) {
 739		bio_io_error(bio);
 740		return;
 741	}
 742
 743	/*
 744	 * Batch together any bios that trigger commits and then issue a
 745	 * single commit for them in process_deferred_bios().
 746	 */
 747	spin_lock_irqsave(&pool->lock, flags);
 748	bio_list_add(&pool->deferred_flush_bios, bio);
 749	spin_unlock_irqrestore(&pool->lock, flags);
 750}
 751
 752static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 753{
 754	remap_to_origin(tc, bio);
 755	issue(tc, bio);
 756}
 757
 758static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 759			    dm_block_t block)
 760{
 761	remap(tc, bio, block);
 762	issue(tc, bio);
 763}
 764
 765/*----------------------------------------------------------------*/
 766
 767/*
 768 * Bio endio functions.
 769 */
 770struct dm_thin_new_mapping {
 771	struct list_head list;
 772
 773	bool pass_discard:1;
 774	bool maybe_shared:1;
 775
 776	/*
 777	 * Track quiescing, copying and zeroing preparation actions.  When this
 778	 * counter hits zero the block is prepared and can be inserted into the
 779	 * btree.
 780	 */
 781	atomic_t prepare_actions;
 782
 783	int err;
 784	struct thin_c *tc;
 785	dm_block_t virt_begin, virt_end;
 786	dm_block_t data_block;
 787	struct dm_bio_prison_cell *cell;
 788
 789	/*
 790	 * If the bio covers the whole area of a block then we can avoid
 791	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 792	 * still be in the cell, so care has to be taken to avoid issuing
 793	 * the bio twice.
 794	 */
 795	struct bio *bio;
 796	bio_end_io_t *saved_bi_end_io;
 797};
 798
 799static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 800{
 801	struct pool *pool = m->tc->pool;
 802
 803	if (atomic_dec_and_test(&m->prepare_actions)) {
 804		list_add_tail(&m->list, &pool->prepared_mappings);
 805		wake_worker(pool);
 806	}
 807}
 808
 809static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 810{
 811	unsigned long flags;
 812	struct pool *pool = m->tc->pool;
 813
 814	spin_lock_irqsave(&pool->lock, flags);
 815	__complete_mapping_preparation(m);
 816	spin_unlock_irqrestore(&pool->lock, flags);
 817}
 818
 819static void copy_complete(int read_err, unsigned long write_err, void *context)
 820{
 821	struct dm_thin_new_mapping *m = context;
 822
 823	m->err = read_err || write_err ? -EIO : 0;
 824	complete_mapping_preparation(m);
 825}
 826
 827static void overwrite_endio(struct bio *bio)
 828{
 829	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 830	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 831
 832	bio->bi_end_io = m->saved_bi_end_io;
 833
 834	m->err = bio->bi_error;
 835	complete_mapping_preparation(m);
 836}
 837
 838/*----------------------------------------------------------------*/
 839
 840/*
 841 * Workqueue.
 842 */
 843
 844/*
 845 * Prepared mapping jobs.
 846 */
 847
 848/*
 849 * This sends the bios in the cell, except the original holder, back
 850 * to the deferred_bios list.
 851 */
 852static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 853{
 854	struct pool *pool = tc->pool;
 855	unsigned long flags;
 
 856
 857	spin_lock_irqsave(&tc->lock, flags);
 858	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 859	spin_unlock_irqrestore(&tc->lock, flags);
 860
 861	wake_worker(pool);
 
 
 
 
 
 862}
 863
 864static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 865
 866struct remap_info {
 867	struct thin_c *tc;
 868	struct bio_list defer_bios;
 869	struct bio_list issue_bios;
 870};
 871
 872static void __inc_remap_and_issue_cell(void *context,
 873				       struct dm_bio_prison_cell *cell)
 874{
 875	struct remap_info *info = context;
 876	struct bio *bio;
 877
 878	while ((bio = bio_list_pop(&cell->bios))) {
 879		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
 880			bio_list_add(&info->defer_bios, bio);
 881		else {
 882			inc_all_io_entry(info->tc->pool, bio);
 883
 884			/*
 885			 * We can't issue the bios with the bio prison lock
 886			 * held, so we add them to a list to issue on
 887			 * return from this function.
 888			 */
 889			bio_list_add(&info->issue_bios, bio);
 890		}
 891	}
 892}
 893
 894static void inc_remap_and_issue_cell(struct thin_c *tc,
 895				     struct dm_bio_prison_cell *cell,
 896				     dm_block_t block)
 897{
 898	struct bio *bio;
 899	struct remap_info info;
 900
 901	info.tc = tc;
 902	bio_list_init(&info.defer_bios);
 903	bio_list_init(&info.issue_bios);
 904
 905	/*
 906	 * We have to be careful to inc any bios we're about to issue
 907	 * before the cell is released, and avoid a race with new bios
 908	 * being added to the cell.
 909	 */
 910	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 911			   &info, cell);
 912
 913	while ((bio = bio_list_pop(&info.defer_bios)))
 914		thin_defer_bio(tc, bio);
 915
 916	while ((bio = bio_list_pop(&info.issue_bios)))
 917		remap_and_issue(info.tc, bio, block);
 918}
 919
 920static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 921{
 922	cell_error(m->tc->pool, m->cell);
 923	list_del(&m->list);
 924	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926
 927static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 928{
 929	struct thin_c *tc = m->tc;
 930	struct pool *pool = tc->pool;
 931	struct bio *bio = m->bio;
 932	int r;
 933
 934	if (m->err) {
 935		cell_error(pool, m->cell);
 936		goto out;
 937	}
 938
 939	/*
 940	 * Commit the prepared block into the mapping btree.
 941	 * Any I/O for this block arriving after this point will get
 942	 * remapped to it directly.
 943	 */
 944	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 945	if (r) {
 946		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 947		cell_error(pool, m->cell);
 948		goto out;
 949	}
 950
 951	/*
 952	 * Release any bios held while the block was being provisioned.
 953	 * If we are processing a write bio that completely covers the block,
 954	 * we already processed it so can ignore it now when processing
 955	 * the bios in the cell.
 956	 */
 957	if (bio) {
 958		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 959		bio_endio(bio);
 960	} else {
 961		inc_all_io_entry(tc->pool, m->cell->holder);
 962		remap_and_issue(tc, m->cell->holder, m->data_block);
 963		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 964	}
 965
 966out:
 967	list_del(&m->list);
 968	mempool_free(m, pool->mapping_pool);
 969}
 970
 971/*----------------------------------------------------------------*/
 972
 973static void free_discard_mapping(struct dm_thin_new_mapping *m)
 974{
 975	struct thin_c *tc = m->tc;
 
 976	if (m->cell)
 977		cell_defer_no_holder(tc, m->cell);
 978	mempool_free(m, tc->pool->mapping_pool);
 979}
 980
 981static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 982{
 983	bio_io_error(m->bio);
 984	free_discard_mapping(m);
 985}
 986
 987static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 988{
 989	bio_endio(m->bio);
 990	free_discard_mapping(m);
 991}
 992
 993static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 994{
 995	int r;
 996	struct thin_c *tc = m->tc;
 997
 998	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 999	if (r) {
1000		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1001		bio_io_error(m->bio);
1002	} else
1003		bio_endio(m->bio);
1004
1005	cell_defer_no_holder(tc, m->cell);
1006	mempool_free(m, tc->pool->mapping_pool);
1007}
1008
1009static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
 
 
 
1010{
1011	/*
1012	 * We've already unmapped this range of blocks, but before we
1013	 * passdown we have to check that these blocks are now unused.
1014	 */
1015	int r;
1016	bool used = true;
1017	struct thin_c *tc = m->tc;
1018	struct pool *pool = tc->pool;
1019	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
 
1020
 
1021	while (b != end) {
1022		/* find start of unmapped run */
1023		for (; b < end; b++) {
1024			r = dm_pool_block_is_used(pool->pmd, b, &used);
1025			if (r)
1026				return r;
1027
1028			if (!used)
1029				break;
1030		}
1031
1032		if (b == end)
1033			break;
1034
1035		/* find end of run */
1036		for (e = b + 1; e != end; e++) {
1037			r = dm_pool_block_is_used(pool->pmd, e, &used);
1038			if (r)
1039				return r;
1040
1041			if (used)
1042				break;
1043		}
1044
1045		r = issue_discard(tc, b, e, m->bio);
1046		if (r)
1047			return r;
1048
1049		b = e;
1050	}
 
 
 
1051
1052	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056{
1057	int r;
1058	struct thin_c *tc = m->tc;
1059	struct pool *pool = tc->pool;
 
 
1060
 
 
 
 
 
1061	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062	if (r)
1063		metadata_operation_failed(pool, "dm_thin_remove_range", r);
 
 
 
 
 
1064
1065	else if (m->maybe_shared)
1066		r = passdown_double_checking_shared_status(m);
1067	else
1068		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069
1070	/*
1071	 * Even if r is set, there could be sub discards in flight that we
1072	 * need to wait for.
1073	 */
1074	m->bio->bi_error = r;
1075	bio_endio(m->bio);
 
 
 
 
 
 
1076	cell_defer_no_holder(tc, m->cell);
1077	mempool_free(m, pool->mapping_pool);
1078}
1079
1080static void process_prepared(struct pool *pool, struct list_head *head,
1081			     process_mapping_fn *fn)
1082{
1083	unsigned long flags;
1084	struct list_head maps;
1085	struct dm_thin_new_mapping *m, *tmp;
1086
1087	INIT_LIST_HEAD(&maps);
1088	spin_lock_irqsave(&pool->lock, flags);
1089	list_splice_init(head, &maps);
1090	spin_unlock_irqrestore(&pool->lock, flags);
1091
1092	list_for_each_entry_safe(m, tmp, &maps, list)
1093		(*fn)(m);
1094}
1095
1096/*
1097 * Deferred bio jobs.
1098 */
1099static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100{
1101	return bio->bi_iter.bi_size ==
1102		(pool->sectors_per_block << SECTOR_SHIFT);
1103}
1104
1105static int io_overwrites_block(struct pool *pool, struct bio *bio)
1106{
1107	return (bio_data_dir(bio) == WRITE) &&
1108		io_overlaps_block(pool, bio);
1109}
1110
1111static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1112			       bio_end_io_t *fn)
1113{
1114	*save = bio->bi_end_io;
1115	bio->bi_end_io = fn;
1116}
1117
1118static int ensure_next_mapping(struct pool *pool)
1119{
1120	if (pool->next_mapping)
1121		return 0;
1122
1123	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1124
1125	return pool->next_mapping ? 0 : -ENOMEM;
1126}
1127
1128static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129{
1130	struct dm_thin_new_mapping *m = pool->next_mapping;
1131
1132	BUG_ON(!pool->next_mapping);
1133
1134	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1135	INIT_LIST_HEAD(&m->list);
1136	m->bio = NULL;
1137
1138	pool->next_mapping = NULL;
1139
1140	return m;
1141}
1142
1143static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1144		    sector_t begin, sector_t end)
1145{
1146	int r;
1147	struct dm_io_region to;
1148
1149	to.bdev = tc->pool_dev->bdev;
1150	to.sector = begin;
1151	to.count = end - begin;
1152
1153	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1154	if (r < 0) {
1155		DMERR_LIMIT("dm_kcopyd_zero() failed");
1156		copy_complete(1, 1, m);
1157	}
1158}
1159
1160static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1161				      dm_block_t data_begin,
1162				      struct dm_thin_new_mapping *m)
1163{
1164	struct pool *pool = tc->pool;
1165	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1166
1167	h->overwrite_mapping = m;
1168	m->bio = bio;
1169	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1170	inc_all_io_entry(pool, bio);
1171	remap_and_issue(tc, bio, data_begin);
1172}
1173
1174/*
1175 * A partial copy also needs to zero the uncopied region.
1176 */
1177static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178			  struct dm_dev *origin, dm_block_t data_origin,
1179			  dm_block_t data_dest,
1180			  struct dm_bio_prison_cell *cell, struct bio *bio,
1181			  sector_t len)
1182{
1183	int r;
1184	struct pool *pool = tc->pool;
1185	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186
1187	m->tc = tc;
1188	m->virt_begin = virt_block;
1189	m->virt_end = virt_block + 1u;
1190	m->data_block = data_dest;
1191	m->cell = cell;
1192
1193	/*
1194	 * quiesce action + copy action + an extra reference held for the
1195	 * duration of this function (we may need to inc later for a
1196	 * partial zero).
1197	 */
1198	atomic_set(&m->prepare_actions, 3);
1199
1200	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201		complete_mapping_preparation(m); /* already quiesced */
1202
1203	/*
1204	 * IO to pool_dev remaps to the pool target's data_dev.
1205	 *
1206	 * If the whole block of data is being overwritten, we can issue the
1207	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1208	 */
1209	if (io_overwrites_block(pool, bio))
1210		remap_and_issue_overwrite(tc, bio, data_dest, m);
1211	else {
1212		struct dm_io_region from, to;
1213
1214		from.bdev = origin->bdev;
1215		from.sector = data_origin * pool->sectors_per_block;
1216		from.count = len;
1217
1218		to.bdev = tc->pool_dev->bdev;
1219		to.sector = data_dest * pool->sectors_per_block;
1220		to.count = len;
1221
1222		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1223				   0, copy_complete, m);
1224		if (r < 0) {
1225			DMERR_LIMIT("dm_kcopyd_copy() failed");
1226			copy_complete(1, 1, m);
1227
1228			/*
1229			 * We allow the zero to be issued, to simplify the
1230			 * error path.  Otherwise we'd need to start
1231			 * worrying about decrementing the prepare_actions
1232			 * counter.
1233			 */
1234		}
1235
1236		/*
1237		 * Do we need to zero a tail region?
1238		 */
1239		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1240			atomic_inc(&m->prepare_actions);
1241			ll_zero(tc, m,
1242				data_dest * pool->sectors_per_block + len,
1243				(data_dest + 1) * pool->sectors_per_block);
1244		}
1245	}
1246
1247	complete_mapping_preparation(m); /* drop our ref */
1248}
1249
1250static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1251				   dm_block_t data_origin, dm_block_t data_dest,
1252				   struct dm_bio_prison_cell *cell, struct bio *bio)
1253{
1254	schedule_copy(tc, virt_block, tc->pool_dev,
1255		      data_origin, data_dest, cell, bio,
1256		      tc->pool->sectors_per_block);
1257}
1258
1259static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1260			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261			  struct bio *bio)
1262{
1263	struct pool *pool = tc->pool;
1264	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265
1266	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267	m->tc = tc;
1268	m->virt_begin = virt_block;
1269	m->virt_end = virt_block + 1u;
1270	m->data_block = data_block;
1271	m->cell = cell;
1272
1273	/*
1274	 * If the whole block of data is being overwritten or we are not
1275	 * zeroing pre-existing data, we can issue the bio immediately.
1276	 * Otherwise we use kcopyd to zero the data first.
1277	 */
1278	if (pool->pf.zero_new_blocks) {
1279		if (io_overwrites_block(pool, bio))
1280			remap_and_issue_overwrite(tc, bio, data_block, m);
1281		else
1282			ll_zero(tc, m, data_block * pool->sectors_per_block,
1283				(data_block + 1) * pool->sectors_per_block);
1284	} else
1285		process_prepared_mapping(m);
1286}
1287
1288static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1289				   dm_block_t data_dest,
1290				   struct dm_bio_prison_cell *cell, struct bio *bio)
1291{
1292	struct pool *pool = tc->pool;
1293	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1294	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1295
1296	if (virt_block_end <= tc->origin_size)
1297		schedule_copy(tc, virt_block, tc->origin_dev,
1298			      virt_block, data_dest, cell, bio,
1299			      pool->sectors_per_block);
1300
1301	else if (virt_block_begin < tc->origin_size)
1302		schedule_copy(tc, virt_block, tc->origin_dev,
1303			      virt_block, data_dest, cell, bio,
1304			      tc->origin_size - virt_block_begin);
1305
1306	else
1307		schedule_zero(tc, virt_block, data_dest, cell, bio);
1308}
1309
1310static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1311
1312static void check_for_space(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313{
1314	int r;
1315	dm_block_t nr_free;
1316
1317	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1318		return;
1319
1320	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1321	if (r)
1322		return;
1323
1324	if (nr_free)
1325		set_pool_mode(pool, PM_WRITE);
 
 
1326}
1327
1328/*
1329 * A non-zero return indicates read_only or fail_io mode.
1330 * Many callers don't care about the return value.
1331 */
1332static int commit(struct pool *pool)
1333{
1334	int r;
1335
1336	if (get_pool_mode(pool) >= PM_READ_ONLY)
1337		return -EINVAL;
1338
1339	r = dm_pool_commit_metadata(pool->pmd);
1340	if (r)
1341		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1342	else
1343		check_for_space(pool);
 
 
1344
1345	return r;
1346}
1347
1348static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1349{
1350	unsigned long flags;
1351
1352	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1353		DMWARN("%s: reached low water mark for data device: sending event.",
1354		       dm_device_name(pool->pool_md));
1355		spin_lock_irqsave(&pool->lock, flags);
1356		pool->low_water_triggered = true;
1357		spin_unlock_irqrestore(&pool->lock, flags);
1358		dm_table_event(pool->ti->table);
1359	}
1360}
1361
1362static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1363{
1364	int r;
1365	dm_block_t free_blocks;
1366	struct pool *pool = tc->pool;
1367
1368	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1369		return -EINVAL;
1370
1371	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1372	if (r) {
1373		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1374		return r;
1375	}
1376
1377	check_low_water_mark(pool, free_blocks);
1378
1379	if (!free_blocks) {
1380		/*
1381		 * Try to commit to see if that will free up some
1382		 * more space.
1383		 */
1384		r = commit(pool);
1385		if (r)
1386			return r;
1387
1388		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1389		if (r) {
1390			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1391			return r;
1392		}
1393
1394		if (!free_blocks) {
1395			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1396			return -ENOSPC;
1397		}
1398	}
1399
1400	r = dm_pool_alloc_data_block(pool->pmd, result);
1401	if (r) {
1402		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
 
 
 
 
 
 
1403		return r;
1404	}
1405
 
 
 
 
 
 
 
1406	return 0;
1407}
1408
1409/*
1410 * If we have run out of space, queue bios until the device is
1411 * resumed, presumably after having been reloaded with more space.
1412 */
1413static void retry_on_resume(struct bio *bio)
1414{
1415	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1416	struct thin_c *tc = h->tc;
1417	unsigned long flags;
1418
1419	spin_lock_irqsave(&tc->lock, flags);
1420	bio_list_add(&tc->retry_on_resume_list, bio);
1421	spin_unlock_irqrestore(&tc->lock, flags);
1422}
1423
1424static int should_error_unserviceable_bio(struct pool *pool)
1425{
1426	enum pool_mode m = get_pool_mode(pool);
1427
1428	switch (m) {
1429	case PM_WRITE:
1430		/* Shouldn't get here */
1431		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1432		return -EIO;
1433
1434	case PM_OUT_OF_DATA_SPACE:
1435		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1436
 
1437	case PM_READ_ONLY:
1438	case PM_FAIL:
1439		return -EIO;
1440	default:
1441		/* Shouldn't get here */
1442		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443		return -EIO;
1444	}
1445}
1446
1447static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1448{
1449	int error = should_error_unserviceable_bio(pool);
1450
1451	if (error) {
1452		bio->bi_error = error;
1453		bio_endio(bio);
1454	} else
1455		retry_on_resume(bio);
1456}
1457
1458static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1459{
1460	struct bio *bio;
1461	struct bio_list bios;
1462	int error;
1463
1464	error = should_error_unserviceable_bio(pool);
1465	if (error) {
1466		cell_error_with_code(pool, cell, error);
1467		return;
1468	}
1469
1470	bio_list_init(&bios);
1471	cell_release(pool, cell, &bios);
1472
1473	while ((bio = bio_list_pop(&bios)))
1474		retry_on_resume(bio);
1475}
1476
1477static void process_discard_cell_no_passdown(struct thin_c *tc,
1478					     struct dm_bio_prison_cell *virt_cell)
1479{
1480	struct pool *pool = tc->pool;
1481	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1482
1483	/*
1484	 * We don't need to lock the data blocks, since there's no
1485	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1486	 */
1487	m->tc = tc;
1488	m->virt_begin = virt_cell->key.block_begin;
1489	m->virt_end = virt_cell->key.block_end;
1490	m->cell = virt_cell;
1491	m->bio = virt_cell->holder;
1492
1493	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1494		pool->process_prepared_discard(m);
1495}
1496
1497/*
1498 * __bio_inc_remaining() is used to defer parent bios's end_io until
1499 * we _know_ all chained sub range discard bios have completed.
1500 */
1501static inline void __bio_inc_remaining(struct bio *bio)
1502{
1503	bio->bi_flags |= (1 << BIO_CHAIN);
1504	smp_mb__before_atomic();
1505	atomic_inc(&bio->__bi_remaining);
1506}
1507
1508static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1509				 struct bio *bio)
1510{
1511	struct pool *pool = tc->pool;
1512
1513	int r;
1514	bool maybe_shared;
1515	struct dm_cell_key data_key;
1516	struct dm_bio_prison_cell *data_cell;
1517	struct dm_thin_new_mapping *m;
1518	dm_block_t virt_begin, virt_end, data_begin;
 
1519
1520	while (begin != end) {
1521		r = ensure_next_mapping(pool);
1522		if (r)
1523			/* we did our best */
1524			return;
1525
1526		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1527					      &data_begin, &maybe_shared);
1528		if (r)
1529			/*
1530			 * Silently fail, letting any mappings we've
1531			 * created complete.
1532			 */
1533			break;
 
1534
1535		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1536		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1537			/* contention, we'll give up with this range */
1538			begin = virt_end;
1539			continue;
1540		}
1541
1542		/*
1543		 * IO may still be going to the destination block.  We must
1544		 * quiesce before we can do the removal.
1545		 */
1546		m = get_next_mapping(pool);
1547		m->tc = tc;
1548		m->maybe_shared = maybe_shared;
1549		m->virt_begin = virt_begin;
1550		m->virt_end = virt_end;
1551		m->data_block = data_begin;
1552		m->cell = data_cell;
1553		m->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554
1555		/*
1556		 * The parent bio must not complete before sub discard bios are
1557		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1558		 *
1559		 * This per-mapping bi_remaining increment is paired with
1560		 * the implicit decrement that occurs via bio_endio() in
1561		 * process_prepared_discard_{passdown,no_passdown}.
1562		 */
1563		__bio_inc_remaining(bio);
1564		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565			pool->process_prepared_discard(m);
 
 
 
 
1566
1567		begin = virt_end;
1568	}
1569}
1570
1571static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1572{
1573	struct bio *bio = virt_cell->holder;
1574	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1575
1576	/*
1577	 * The virt_cell will only get freed once the origin bio completes.
1578	 * This means it will remain locked while all the individual
1579	 * passdown bios are in flight.
1580	 */
1581	h->cell = virt_cell;
1582	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1583
1584	/*
1585	 * We complete the bio now, knowing that the bi_remaining field
1586	 * will prevent completion until the sub range discards have
1587	 * completed.
1588	 */
1589	bio_endio(bio);
1590}
1591
1592static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1593{
1594	dm_block_t begin, end;
1595	struct dm_cell_key virt_key;
1596	struct dm_bio_prison_cell *virt_cell;
1597
1598	get_bio_block_range(tc, bio, &begin, &end);
1599	if (begin == end) {
1600		/*
1601		 * The discard covers less than a block.
1602		 */
1603		bio_endio(bio);
1604		return;
1605	}
1606
1607	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1608	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
 
 
 
 
 
1609		/*
1610		 * Potential starvation issue: We're relying on the
1611		 * fs/application being well behaved, and not trying to
1612		 * send IO to a region at the same time as discarding it.
1613		 * If they do this persistently then it's possible this
1614		 * cell will never be granted.
1615		 */
1616		return;
 
1617
1618	tc->pool->process_discard_cell(tc, virt_cell);
1619}
1620
1621static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1622			  struct dm_cell_key *key,
1623			  struct dm_thin_lookup_result *lookup_result,
1624			  struct dm_bio_prison_cell *cell)
1625{
1626	int r;
1627	dm_block_t data_block;
1628	struct pool *pool = tc->pool;
1629
1630	r = alloc_data_block(tc, &data_block);
1631	switch (r) {
1632	case 0:
1633		schedule_internal_copy(tc, block, lookup_result->block,
1634				       data_block, cell, bio);
1635		break;
1636
1637	case -ENOSPC:
1638		retry_bios_on_resume(pool, cell);
1639		break;
1640
1641	default:
1642		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1643			    __func__, r);
1644		cell_error(pool, cell);
1645		break;
1646	}
1647}
1648
1649static void __remap_and_issue_shared_cell(void *context,
1650					  struct dm_bio_prison_cell *cell)
1651{
1652	struct remap_info *info = context;
1653	struct bio *bio;
1654
1655	while ((bio = bio_list_pop(&cell->bios))) {
1656		if ((bio_data_dir(bio) == WRITE) ||
1657		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1658			bio_list_add(&info->defer_bios, bio);
1659		else {
1660			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1661
1662			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1663			inc_all_io_entry(info->tc->pool, bio);
1664			bio_list_add(&info->issue_bios, bio);
1665		}
1666	}
1667}
1668
1669static void remap_and_issue_shared_cell(struct thin_c *tc,
1670					struct dm_bio_prison_cell *cell,
1671					dm_block_t block)
1672{
1673	struct bio *bio;
1674	struct remap_info info;
1675
1676	info.tc = tc;
1677	bio_list_init(&info.defer_bios);
1678	bio_list_init(&info.issue_bios);
1679
1680	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1681			   &info, cell);
1682
1683	while ((bio = bio_list_pop(&info.defer_bios)))
1684		thin_defer_bio(tc, bio);
1685
1686	while ((bio = bio_list_pop(&info.issue_bios)))
1687		remap_and_issue(tc, bio, block);
1688}
1689
1690static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1691			       dm_block_t block,
1692			       struct dm_thin_lookup_result *lookup_result,
1693			       struct dm_bio_prison_cell *virt_cell)
1694{
1695	struct dm_bio_prison_cell *data_cell;
1696	struct pool *pool = tc->pool;
1697	struct dm_cell_key key;
1698
1699	/*
1700	 * If cell is already occupied, then sharing is already in the process
1701	 * of being broken so we have nothing further to do here.
1702	 */
1703	build_data_key(tc->td, lookup_result->block, &key);
1704	if (bio_detain(pool, &key, bio, &data_cell)) {
1705		cell_defer_no_holder(tc, virt_cell);
1706		return;
1707	}
1708
1709	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1710		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1711		cell_defer_no_holder(tc, virt_cell);
1712	} else {
1713		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1714
1715		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1716		inc_all_io_entry(pool, bio);
1717		remap_and_issue(tc, bio, lookup_result->block);
1718
1719		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1720		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1721	}
1722}
1723
1724static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1725			    struct dm_bio_prison_cell *cell)
1726{
1727	int r;
1728	dm_block_t data_block;
1729	struct pool *pool = tc->pool;
1730
1731	/*
1732	 * Remap empty bios (flushes) immediately, without provisioning.
1733	 */
1734	if (!bio->bi_iter.bi_size) {
1735		inc_all_io_entry(pool, bio);
1736		cell_defer_no_holder(tc, cell);
1737
1738		remap_and_issue(tc, bio, 0);
1739		return;
1740	}
1741
1742	/*
1743	 * Fill read bios with zeroes and complete them immediately.
1744	 */
1745	if (bio_data_dir(bio) == READ) {
1746		zero_fill_bio(bio);
1747		cell_defer_no_holder(tc, cell);
1748		bio_endio(bio);
1749		return;
1750	}
1751
1752	r = alloc_data_block(tc, &data_block);
1753	switch (r) {
1754	case 0:
1755		if (tc->origin_dev)
1756			schedule_external_copy(tc, block, data_block, cell, bio);
1757		else
1758			schedule_zero(tc, block, data_block, cell, bio);
1759		break;
1760
1761	case -ENOSPC:
1762		retry_bios_on_resume(pool, cell);
1763		break;
1764
1765	default:
1766		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1767			    __func__, r);
1768		cell_error(pool, cell);
1769		break;
1770	}
1771}
1772
1773static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1774{
1775	int r;
1776	struct pool *pool = tc->pool;
1777	struct bio *bio = cell->holder;
1778	dm_block_t block = get_bio_block(tc, bio);
1779	struct dm_thin_lookup_result lookup_result;
1780
1781	if (tc->requeue_mode) {
1782		cell_requeue(pool, cell);
1783		return;
1784	}
1785
1786	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1787	switch (r) {
1788	case 0:
1789		if (lookup_result.shared)
1790			process_shared_bio(tc, bio, block, &lookup_result, cell);
1791		else {
1792			inc_all_io_entry(pool, bio);
1793			remap_and_issue(tc, bio, lookup_result.block);
1794			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1795		}
1796		break;
1797
1798	case -ENODATA:
1799		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1800			inc_all_io_entry(pool, bio);
1801			cell_defer_no_holder(tc, cell);
1802
1803			if (bio_end_sector(bio) <= tc->origin_size)
1804				remap_to_origin_and_issue(tc, bio);
1805
1806			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1807				zero_fill_bio(bio);
1808				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1809				remap_to_origin_and_issue(tc, bio);
1810
1811			} else {
1812				zero_fill_bio(bio);
1813				bio_endio(bio);
1814			}
1815		} else
1816			provision_block(tc, bio, block, cell);
1817		break;
1818
1819	default:
1820		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1821			    __func__, r);
1822		cell_defer_no_holder(tc, cell);
1823		bio_io_error(bio);
1824		break;
1825	}
1826}
1827
1828static void process_bio(struct thin_c *tc, struct bio *bio)
1829{
1830	struct pool *pool = tc->pool;
1831	dm_block_t block = get_bio_block(tc, bio);
1832	struct dm_bio_prison_cell *cell;
1833	struct dm_cell_key key;
1834
1835	/*
1836	 * If cell is already occupied, then the block is already
1837	 * being provisioned so we have nothing further to do here.
1838	 */
1839	build_virtual_key(tc->td, block, &key);
1840	if (bio_detain(pool, &key, bio, &cell))
1841		return;
1842
1843	process_cell(tc, cell);
1844}
1845
1846static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1847				    struct dm_bio_prison_cell *cell)
1848{
1849	int r;
1850	int rw = bio_data_dir(bio);
1851	dm_block_t block = get_bio_block(tc, bio);
1852	struct dm_thin_lookup_result lookup_result;
1853
1854	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1855	switch (r) {
1856	case 0:
1857		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1858			handle_unserviceable_bio(tc->pool, bio);
1859			if (cell)
1860				cell_defer_no_holder(tc, cell);
1861		} else {
1862			inc_all_io_entry(tc->pool, bio);
1863			remap_and_issue(tc, bio, lookup_result.block);
1864			if (cell)
1865				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1866		}
1867		break;
1868
1869	case -ENODATA:
1870		if (cell)
1871			cell_defer_no_holder(tc, cell);
1872		if (rw != READ) {
1873			handle_unserviceable_bio(tc->pool, bio);
1874			break;
1875		}
1876
1877		if (tc->origin_dev) {
1878			inc_all_io_entry(tc->pool, bio);
1879			remap_to_origin_and_issue(tc, bio);
1880			break;
1881		}
1882
1883		zero_fill_bio(bio);
1884		bio_endio(bio);
1885		break;
1886
1887	default:
1888		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1889			    __func__, r);
1890		if (cell)
1891			cell_defer_no_holder(tc, cell);
1892		bio_io_error(bio);
1893		break;
1894	}
1895}
1896
1897static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1898{
1899	__process_bio_read_only(tc, bio, NULL);
1900}
1901
1902static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903{
1904	__process_bio_read_only(tc, cell->holder, cell);
1905}
1906
1907static void process_bio_success(struct thin_c *tc, struct bio *bio)
1908{
1909	bio_endio(bio);
1910}
1911
1912static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1913{
1914	bio_io_error(bio);
1915}
1916
1917static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1918{
1919	cell_success(tc->pool, cell);
1920}
1921
1922static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1923{
1924	cell_error(tc->pool, cell);
1925}
1926
1927/*
1928 * FIXME: should we also commit due to size of transaction, measured in
1929 * metadata blocks?
1930 */
1931static int need_commit_due_to_time(struct pool *pool)
1932{
1933	return !time_in_range(jiffies, pool->last_commit_jiffies,
1934			      pool->last_commit_jiffies + COMMIT_PERIOD);
1935}
1936
1937#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1939
1940static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1941{
1942	struct rb_node **rbp, *parent;
1943	struct dm_thin_endio_hook *pbd;
1944	sector_t bi_sector = bio->bi_iter.bi_sector;
1945
1946	rbp = &tc->sort_bio_list.rb_node;
1947	parent = NULL;
1948	while (*rbp) {
1949		parent = *rbp;
1950		pbd = thin_pbd(parent);
1951
1952		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1953			rbp = &(*rbp)->rb_left;
1954		else
1955			rbp = &(*rbp)->rb_right;
1956	}
1957
1958	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1959	rb_link_node(&pbd->rb_node, parent, rbp);
1960	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1961}
1962
1963static void __extract_sorted_bios(struct thin_c *tc)
1964{
1965	struct rb_node *node;
1966	struct dm_thin_endio_hook *pbd;
1967	struct bio *bio;
1968
1969	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1970		pbd = thin_pbd(node);
1971		bio = thin_bio(pbd);
1972
1973		bio_list_add(&tc->deferred_bio_list, bio);
1974		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1975	}
1976
1977	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1978}
1979
1980static void __sort_thin_deferred_bios(struct thin_c *tc)
1981{
1982	struct bio *bio;
1983	struct bio_list bios;
1984
1985	bio_list_init(&bios);
1986	bio_list_merge(&bios, &tc->deferred_bio_list);
1987	bio_list_init(&tc->deferred_bio_list);
1988
1989	/* Sort deferred_bio_list using rb-tree */
1990	while ((bio = bio_list_pop(&bios)))
1991		__thin_bio_rb_add(tc, bio);
1992
1993	/*
1994	 * Transfer the sorted bios in sort_bio_list back to
1995	 * deferred_bio_list to allow lockless submission of
1996	 * all bios.
1997	 */
1998	__extract_sorted_bios(tc);
1999}
2000
2001static void process_thin_deferred_bios(struct thin_c *tc)
2002{
2003	struct pool *pool = tc->pool;
2004	unsigned long flags;
2005	struct bio *bio;
2006	struct bio_list bios;
2007	struct blk_plug plug;
2008	unsigned count = 0;
2009
2010	if (tc->requeue_mode) {
2011		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
 
2012		return;
2013	}
2014
2015	bio_list_init(&bios);
2016
2017	spin_lock_irqsave(&tc->lock, flags);
2018
2019	if (bio_list_empty(&tc->deferred_bio_list)) {
2020		spin_unlock_irqrestore(&tc->lock, flags);
2021		return;
2022	}
2023
2024	__sort_thin_deferred_bios(tc);
2025
2026	bio_list_merge(&bios, &tc->deferred_bio_list);
2027	bio_list_init(&tc->deferred_bio_list);
2028
2029	spin_unlock_irqrestore(&tc->lock, flags);
2030
2031	blk_start_plug(&plug);
2032	while ((bio = bio_list_pop(&bios))) {
2033		/*
2034		 * If we've got no free new_mapping structs, and processing
2035		 * this bio might require one, we pause until there are some
2036		 * prepared mappings to process.
2037		 */
2038		if (ensure_next_mapping(pool)) {
2039			spin_lock_irqsave(&tc->lock, flags);
2040			bio_list_add(&tc->deferred_bio_list, bio);
2041			bio_list_merge(&tc->deferred_bio_list, &bios);
2042			spin_unlock_irqrestore(&tc->lock, flags);
2043			break;
2044		}
2045
2046		if (bio->bi_rw & REQ_DISCARD)
2047			pool->process_discard(tc, bio);
2048		else
2049			pool->process_bio(tc, bio);
2050
2051		if ((count++ & 127) == 0) {
2052			throttle_work_update(&pool->throttle);
2053			dm_pool_issue_prefetches(pool->pmd);
2054		}
 
2055	}
2056	blk_finish_plug(&plug);
2057}
2058
2059static int cmp_cells(const void *lhs, const void *rhs)
2060{
2061	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2062	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2063
2064	BUG_ON(!lhs_cell->holder);
2065	BUG_ON(!rhs_cell->holder);
2066
2067	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2068		return -1;
2069
2070	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2071		return 1;
2072
2073	return 0;
2074}
2075
2076static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2077{
2078	unsigned count = 0;
2079	struct dm_bio_prison_cell *cell, *tmp;
2080
2081	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2082		if (count >= CELL_SORT_ARRAY_SIZE)
2083			break;
2084
2085		pool->cell_sort_array[count++] = cell;
2086		list_del(&cell->user_list);
2087	}
2088
2089	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2090
2091	return count;
2092}
2093
2094static void process_thin_deferred_cells(struct thin_c *tc)
2095{
2096	struct pool *pool = tc->pool;
2097	unsigned long flags;
2098	struct list_head cells;
2099	struct dm_bio_prison_cell *cell;
2100	unsigned i, j, count;
2101
2102	INIT_LIST_HEAD(&cells);
2103
2104	spin_lock_irqsave(&tc->lock, flags);
2105	list_splice_init(&tc->deferred_cells, &cells);
2106	spin_unlock_irqrestore(&tc->lock, flags);
2107
2108	if (list_empty(&cells))
2109		return;
2110
2111	do {
2112		count = sort_cells(tc->pool, &cells);
2113
2114		for (i = 0; i < count; i++) {
2115			cell = pool->cell_sort_array[i];
2116			BUG_ON(!cell->holder);
2117
2118			/*
2119			 * If we've got no free new_mapping structs, and processing
2120			 * this bio might require one, we pause until there are some
2121			 * prepared mappings to process.
2122			 */
2123			if (ensure_next_mapping(pool)) {
2124				for (j = i; j < count; j++)
2125					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2126
2127				spin_lock_irqsave(&tc->lock, flags);
2128				list_splice(&cells, &tc->deferred_cells);
2129				spin_unlock_irqrestore(&tc->lock, flags);
2130				return;
2131			}
2132
2133			if (cell->holder->bi_rw & REQ_DISCARD)
2134				pool->process_discard_cell(tc, cell);
2135			else
2136				pool->process_cell(tc, cell);
2137		}
 
2138	} while (!list_empty(&cells));
2139}
2140
2141static void thin_get(struct thin_c *tc);
2142static void thin_put(struct thin_c *tc);
2143
2144/*
2145 * We can't hold rcu_read_lock() around code that can block.  So we
2146 * find a thin with the rcu lock held; bump a refcount; then drop
2147 * the lock.
2148 */
2149static struct thin_c *get_first_thin(struct pool *pool)
2150{
2151	struct thin_c *tc = NULL;
2152
2153	rcu_read_lock();
2154	if (!list_empty(&pool->active_thins)) {
2155		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2156		thin_get(tc);
2157	}
2158	rcu_read_unlock();
2159
2160	return tc;
2161}
2162
2163static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2164{
2165	struct thin_c *old_tc = tc;
2166
2167	rcu_read_lock();
2168	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2169		thin_get(tc);
2170		thin_put(old_tc);
2171		rcu_read_unlock();
2172		return tc;
2173	}
2174	thin_put(old_tc);
2175	rcu_read_unlock();
2176
2177	return NULL;
2178}
2179
2180static void process_deferred_bios(struct pool *pool)
2181{
2182	unsigned long flags;
2183	struct bio *bio;
2184	struct bio_list bios;
2185	struct thin_c *tc;
2186
2187	tc = get_first_thin(pool);
2188	while (tc) {
2189		process_thin_deferred_cells(tc);
2190		process_thin_deferred_bios(tc);
2191		tc = get_next_thin(pool, tc);
2192	}
2193
2194	/*
2195	 * If there are any deferred flush bios, we must commit
2196	 * the metadata before issuing them.
2197	 */
2198	bio_list_init(&bios);
2199	spin_lock_irqsave(&pool->lock, flags);
 
 
2200	bio_list_merge(&bios, &pool->deferred_flush_bios);
2201	bio_list_init(&pool->deferred_flush_bios);
2202	spin_unlock_irqrestore(&pool->lock, flags);
2203
2204	if (bio_list_empty(&bios) &&
 
 
 
 
2205	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2206		return;
2207
2208	if (commit(pool)) {
 
 
2209		while ((bio = bio_list_pop(&bios)))
2210			bio_io_error(bio);
2211		return;
2212	}
2213	pool->last_commit_jiffies = jiffies;
2214
2215	while ((bio = bio_list_pop(&bios)))
2216		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
2217}
2218
2219static void do_worker(struct work_struct *ws)
2220{
2221	struct pool *pool = container_of(ws, struct pool, worker);
2222
2223	throttle_work_start(&pool->throttle);
2224	dm_pool_issue_prefetches(pool->pmd);
2225	throttle_work_update(&pool->throttle);
2226	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2227	throttle_work_update(&pool->throttle);
2228	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2229	throttle_work_update(&pool->throttle);
 
 
2230	process_deferred_bios(pool);
2231	throttle_work_complete(&pool->throttle);
2232}
2233
2234/*
2235 * We want to commit periodically so that not too much
2236 * unwritten data builds up.
2237 */
2238static void do_waker(struct work_struct *ws)
2239{
2240	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 
2241	wake_worker(pool);
2242	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2243}
2244
2245static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2246
2247/*
2248 * We're holding onto IO to allow userland time to react.  After the
2249 * timeout either the pool will have been resized (and thus back in
2250 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2251 */
2252static void do_no_space_timeout(struct work_struct *ws)
2253{
2254	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2255					 no_space_timeout);
2256
2257	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2258		pool->pf.error_if_no_space = true;
2259		notify_of_pool_mode_change_to_oods(pool);
2260		error_retry_list_with_code(pool, -ENOSPC);
2261	}
2262}
2263
2264/*----------------------------------------------------------------*/
2265
2266struct pool_work {
2267	struct work_struct worker;
2268	struct completion complete;
2269};
2270
2271static struct pool_work *to_pool_work(struct work_struct *ws)
2272{
2273	return container_of(ws, struct pool_work, worker);
2274}
2275
2276static void pool_work_complete(struct pool_work *pw)
2277{
2278	complete(&pw->complete);
2279}
2280
2281static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2282			   void (*fn)(struct work_struct *))
2283{
2284	INIT_WORK_ONSTACK(&pw->worker, fn);
2285	init_completion(&pw->complete);
2286	queue_work(pool->wq, &pw->worker);
2287	wait_for_completion(&pw->complete);
2288}
2289
2290/*----------------------------------------------------------------*/
2291
2292struct noflush_work {
2293	struct pool_work pw;
2294	struct thin_c *tc;
2295};
2296
2297static struct noflush_work *to_noflush(struct work_struct *ws)
2298{
2299	return container_of(to_pool_work(ws), struct noflush_work, pw);
2300}
2301
2302static void do_noflush_start(struct work_struct *ws)
2303{
2304	struct noflush_work *w = to_noflush(ws);
 
2305	w->tc->requeue_mode = true;
2306	requeue_io(w->tc);
2307	pool_work_complete(&w->pw);
2308}
2309
2310static void do_noflush_stop(struct work_struct *ws)
2311{
2312	struct noflush_work *w = to_noflush(ws);
 
2313	w->tc->requeue_mode = false;
2314	pool_work_complete(&w->pw);
2315}
2316
2317static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2318{
2319	struct noflush_work w;
2320
2321	w.tc = tc;
2322	pool_work_wait(&w.pw, tc->pool, fn);
2323}
2324
2325/*----------------------------------------------------------------*/
2326
2327static enum pool_mode get_pool_mode(struct pool *pool)
2328{
2329	return pool->pf.mode;
2330}
2331
2332static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2333{
2334	dm_table_event(pool->ti->table);
2335	DMINFO("%s: switching pool to %s mode",
2336	       dm_device_name(pool->pool_md), new_mode);
2337}
2338
2339static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2340{
2341	if (!pool->pf.error_if_no_space)
2342		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2343	else
2344		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2345}
2346
2347static bool passdown_enabled(struct pool_c *pt)
2348{
2349	return pt->adjusted_pf.discard_passdown;
2350}
2351
2352static void set_discard_callbacks(struct pool *pool)
2353{
2354	struct pool_c *pt = pool->ti->private;
2355
2356	if (passdown_enabled(pt)) {
2357		pool->process_discard_cell = process_discard_cell_passdown;
2358		pool->process_prepared_discard = process_prepared_discard_passdown;
 
2359	} else {
2360		pool->process_discard_cell = process_discard_cell_no_passdown;
2361		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2362	}
2363}
2364
2365static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2366{
2367	struct pool_c *pt = pool->ti->private;
2368	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2369	enum pool_mode old_mode = get_pool_mode(pool);
2370	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2371
2372	/*
2373	 * Never allow the pool to transition to PM_WRITE mode if user
2374	 * intervention is required to verify metadata and data consistency.
2375	 */
2376	if (new_mode == PM_WRITE && needs_check) {
2377		DMERR("%s: unable to switch pool to write mode until repaired.",
2378		      dm_device_name(pool->pool_md));
2379		if (old_mode != new_mode)
2380			new_mode = old_mode;
2381		else
2382			new_mode = PM_READ_ONLY;
2383	}
2384	/*
2385	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2386	 * not going to recover without a thin_repair.	So we never let the
2387	 * pool move out of the old mode.
2388	 */
2389	if (old_mode == PM_FAIL)
2390		new_mode = old_mode;
2391
2392	switch (new_mode) {
2393	case PM_FAIL:
2394		if (old_mode != new_mode)
2395			notify_of_pool_mode_change(pool, "failure");
2396		dm_pool_metadata_read_only(pool->pmd);
2397		pool->process_bio = process_bio_fail;
2398		pool->process_discard = process_bio_fail;
2399		pool->process_cell = process_cell_fail;
2400		pool->process_discard_cell = process_cell_fail;
2401		pool->process_prepared_mapping = process_prepared_mapping_fail;
2402		pool->process_prepared_discard = process_prepared_discard_fail;
2403
2404		error_retry_list(pool);
2405		break;
2406
 
2407	case PM_READ_ONLY:
2408		if (old_mode != new_mode)
2409			notify_of_pool_mode_change(pool, "read-only");
2410		dm_pool_metadata_read_only(pool->pmd);
2411		pool->process_bio = process_bio_read_only;
2412		pool->process_discard = process_bio_success;
2413		pool->process_cell = process_cell_read_only;
2414		pool->process_discard_cell = process_cell_success;
2415		pool->process_prepared_mapping = process_prepared_mapping_fail;
2416		pool->process_prepared_discard = process_prepared_discard_success;
2417
2418		error_retry_list(pool);
2419		break;
2420
2421	case PM_OUT_OF_DATA_SPACE:
2422		/*
2423		 * Ideally we'd never hit this state; the low water mark
2424		 * would trigger userland to extend the pool before we
2425		 * completely run out of data space.  However, many small
2426		 * IOs to unprovisioned space can consume data space at an
2427		 * alarming rate.  Adjust your low water mark if you're
2428		 * frequently seeing this mode.
2429		 */
2430		if (old_mode != new_mode)
2431			notify_of_pool_mode_change_to_oods(pool);
2432		pool->out_of_data_space = true;
2433		pool->process_bio = process_bio_read_only;
2434		pool->process_discard = process_discard_bio;
2435		pool->process_cell = process_cell_read_only;
2436		pool->process_prepared_mapping = process_prepared_mapping;
2437		set_discard_callbacks(pool);
2438
2439		if (!pool->pf.error_if_no_space && no_space_timeout)
2440			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2441		break;
2442
2443	case PM_WRITE:
2444		if (old_mode != new_mode)
2445			notify_of_pool_mode_change(pool, "write");
2446		pool->out_of_data_space = false;
2447		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2448		dm_pool_metadata_read_write(pool->pmd);
2449		pool->process_bio = process_bio;
2450		pool->process_discard = process_discard_bio;
2451		pool->process_cell = process_cell;
2452		pool->process_prepared_mapping = process_prepared_mapping;
2453		set_discard_callbacks(pool);
2454		break;
2455	}
2456
2457	pool->pf.mode = new_mode;
2458	/*
2459	 * The pool mode may have changed, sync it so bind_control_target()
2460	 * doesn't cause an unexpected mode transition on resume.
2461	 */
2462	pt->adjusted_pf.mode = new_mode;
 
 
 
2463}
2464
2465static void abort_transaction(struct pool *pool)
2466{
2467	const char *dev_name = dm_device_name(pool->pool_md);
2468
2469	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2470	if (dm_pool_abort_metadata(pool->pmd)) {
2471		DMERR("%s: failed to abort metadata transaction", dev_name);
2472		set_pool_mode(pool, PM_FAIL);
2473	}
2474
2475	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2476		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2477		set_pool_mode(pool, PM_FAIL);
2478	}
2479}
2480
2481static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2482{
2483	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484		    dm_device_name(pool->pool_md), op, r);
2485
2486	abort_transaction(pool);
2487	set_pool_mode(pool, PM_READ_ONLY);
2488}
2489
2490/*----------------------------------------------------------------*/
2491
2492/*
2493 * Mapping functions.
2494 */
2495
2496/*
2497 * Called only while mapping a thin bio to hand it over to the workqueue.
2498 */
2499static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2500{
2501	unsigned long flags;
2502	struct pool *pool = tc->pool;
2503
2504	spin_lock_irqsave(&tc->lock, flags);
2505	bio_list_add(&tc->deferred_bio_list, bio);
2506	spin_unlock_irqrestore(&tc->lock, flags);
2507
2508	wake_worker(pool);
2509}
2510
2511static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2512{
2513	struct pool *pool = tc->pool;
2514
2515	throttle_lock(&pool->throttle);
2516	thin_defer_bio(tc, bio);
2517	throttle_unlock(&pool->throttle);
2518}
2519
2520static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2521{
2522	unsigned long flags;
2523	struct pool *pool = tc->pool;
2524
2525	throttle_lock(&pool->throttle);
2526	spin_lock_irqsave(&tc->lock, flags);
2527	list_add_tail(&cell->user_list, &tc->deferred_cells);
2528	spin_unlock_irqrestore(&tc->lock, flags);
2529	throttle_unlock(&pool->throttle);
2530
2531	wake_worker(pool);
2532}
2533
2534static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2535{
2536	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2537
2538	h->tc = tc;
2539	h->shared_read_entry = NULL;
2540	h->all_io_entry = NULL;
2541	h->overwrite_mapping = NULL;
2542	h->cell = NULL;
2543}
2544
2545/*
2546 * Non-blocking function called from the thin target's map function.
2547 */
2548static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2549{
2550	int r;
2551	struct thin_c *tc = ti->private;
2552	dm_block_t block = get_bio_block(tc, bio);
2553	struct dm_thin_device *td = tc->td;
2554	struct dm_thin_lookup_result result;
2555	struct dm_bio_prison_cell *virt_cell, *data_cell;
2556	struct dm_cell_key key;
2557
2558	thin_hook_bio(tc, bio);
2559
2560	if (tc->requeue_mode) {
2561		bio->bi_error = DM_ENDIO_REQUEUE;
2562		bio_endio(bio);
2563		return DM_MAPIO_SUBMITTED;
2564	}
2565
2566	if (get_pool_mode(tc->pool) == PM_FAIL) {
2567		bio_io_error(bio);
2568		return DM_MAPIO_SUBMITTED;
2569	}
2570
2571	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2572		thin_defer_bio_with_throttle(tc, bio);
2573		return DM_MAPIO_SUBMITTED;
2574	}
2575
2576	/*
2577	 * We must hold the virtual cell before doing the lookup, otherwise
2578	 * there's a race with discard.
2579	 */
2580	build_virtual_key(tc->td, block, &key);
2581	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2582		return DM_MAPIO_SUBMITTED;
2583
2584	r = dm_thin_find_block(td, block, 0, &result);
2585
2586	/*
2587	 * Note that we defer readahead too.
2588	 */
2589	switch (r) {
2590	case 0:
2591		if (unlikely(result.shared)) {
2592			/*
2593			 * We have a race condition here between the
2594			 * result.shared value returned by the lookup and
2595			 * snapshot creation, which may cause new
2596			 * sharing.
2597			 *
2598			 * To avoid this always quiesce the origin before
2599			 * taking the snap.  You want to do this anyway to
2600			 * ensure a consistent application view
2601			 * (i.e. lockfs).
2602			 *
2603			 * More distant ancestors are irrelevant. The
2604			 * shared flag will be set in their case.
2605			 */
2606			thin_defer_cell(tc, virt_cell);
2607			return DM_MAPIO_SUBMITTED;
2608		}
2609
2610		build_data_key(tc->td, result.block, &key);
2611		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2612			cell_defer_no_holder(tc, virt_cell);
2613			return DM_MAPIO_SUBMITTED;
2614		}
2615
2616		inc_all_io_entry(tc->pool, bio);
2617		cell_defer_no_holder(tc, data_cell);
2618		cell_defer_no_holder(tc, virt_cell);
2619
2620		remap(tc, bio, result.block);
2621		return DM_MAPIO_REMAPPED;
2622
2623	case -ENODATA:
2624	case -EWOULDBLOCK:
2625		thin_defer_cell(tc, virt_cell);
2626		return DM_MAPIO_SUBMITTED;
2627
2628	default:
2629		/*
2630		 * Must always call bio_io_error on failure.
2631		 * dm_thin_find_block can fail with -EINVAL if the
2632		 * pool is switched to fail-io mode.
2633		 */
2634		bio_io_error(bio);
2635		cell_defer_no_holder(tc, virt_cell);
2636		return DM_MAPIO_SUBMITTED;
2637	}
2638}
2639
2640static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2641{
2642	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2643	struct request_queue *q;
2644
2645	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2646		return 1;
2647
2648	q = bdev_get_queue(pt->data_dev->bdev);
2649	return bdi_congested(&q->backing_dev_info, bdi_bits);
2650}
2651
2652static void requeue_bios(struct pool *pool)
2653{
2654	unsigned long flags;
2655	struct thin_c *tc;
2656
2657	rcu_read_lock();
2658	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2659		spin_lock_irqsave(&tc->lock, flags);
2660		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2661		bio_list_init(&tc->retry_on_resume_list);
2662		spin_unlock_irqrestore(&tc->lock, flags);
2663	}
2664	rcu_read_unlock();
2665}
2666
2667/*----------------------------------------------------------------
 
2668 * Binding of control targets to a pool object
2669 *--------------------------------------------------------------*/
2670static bool data_dev_supports_discard(struct pool_c *pt)
2671{
2672	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2673
2674	return q && blk_queue_discard(q);
2675}
2676
2677static bool is_factor(sector_t block_size, uint32_t n)
2678{
2679	return !sector_div(block_size, n);
2680}
2681
2682/*
2683 * If discard_passdown was enabled verify that the data device
2684 * supports discards.  Disable discard_passdown if not.
2685 */
2686static void disable_passdown_if_not_supported(struct pool_c *pt)
2687{
2688	struct pool *pool = pt->pool;
2689	struct block_device *data_bdev = pt->data_dev->bdev;
2690	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2691	const char *reason = NULL;
2692	char buf[BDEVNAME_SIZE];
2693
2694	if (!pt->adjusted_pf.discard_passdown)
2695		return;
2696
2697	if (!data_dev_supports_discard(pt))
2698		reason = "discard unsupported";
2699
2700	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2701		reason = "max discard sectors smaller than a block";
2702
2703	if (reason) {
2704		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2705		pt->adjusted_pf.discard_passdown = false;
2706	}
2707}
2708
2709static int bind_control_target(struct pool *pool, struct dm_target *ti)
2710{
2711	struct pool_c *pt = ti->private;
2712
2713	/*
2714	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2715	 */
2716	enum pool_mode old_mode = get_pool_mode(pool);
2717	enum pool_mode new_mode = pt->adjusted_pf.mode;
2718
2719	/*
2720	 * Don't change the pool's mode until set_pool_mode() below.
2721	 * Otherwise the pool's process_* function pointers may
2722	 * not match the desired pool mode.
2723	 */
2724	pt->adjusted_pf.mode = old_mode;
2725
2726	pool->ti = ti;
2727	pool->pf = pt->adjusted_pf;
2728	pool->low_water_blocks = pt->low_water_blocks;
2729
2730	set_pool_mode(pool, new_mode);
2731
2732	return 0;
2733}
2734
2735static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2736{
2737	if (pool->ti == ti)
2738		pool->ti = NULL;
2739}
2740
2741/*----------------------------------------------------------------
 
2742 * Pool creation
2743 *--------------------------------------------------------------*/
 
2744/* Initialize pool features. */
2745static void pool_features_init(struct pool_features *pf)
2746{
2747	pf->mode = PM_WRITE;
2748	pf->zero_new_blocks = true;
2749	pf->discard_enabled = true;
2750	pf->discard_passdown = true;
2751	pf->error_if_no_space = false;
2752}
2753
2754static void __pool_destroy(struct pool *pool)
2755{
2756	__pool_table_remove(pool);
2757
2758	vfree(pool->cell_sort_array);
2759	if (dm_pool_metadata_close(pool->pmd) < 0)
2760		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2761
2762	dm_bio_prison_destroy(pool->prison);
2763	dm_kcopyd_client_destroy(pool->copier);
2764
 
 
2765	if (pool->wq)
2766		destroy_workqueue(pool->wq);
2767
2768	if (pool->next_mapping)
2769		mempool_free(pool->next_mapping, pool->mapping_pool);
2770	mempool_destroy(pool->mapping_pool);
2771	dm_deferred_set_destroy(pool->shared_read_ds);
2772	dm_deferred_set_destroy(pool->all_io_ds);
2773	kfree(pool);
2774}
2775
2776static struct kmem_cache *_new_mapping_cache;
2777
2778static struct pool *pool_create(struct mapped_device *pool_md,
2779				struct block_device *metadata_dev,
 
2780				unsigned long block_size,
2781				int read_only, char **error)
2782{
2783	int r;
2784	void *err_p;
2785	struct pool *pool;
2786	struct dm_pool_metadata *pmd;
2787	bool format_device = read_only ? false : true;
2788
2789	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2790	if (IS_ERR(pmd)) {
2791		*error = "Error creating metadata object";
2792		return (struct pool *)pmd;
2793	}
2794
2795	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2796	if (!pool) {
2797		*error = "Error allocating memory for pool";
2798		err_p = ERR_PTR(-ENOMEM);
2799		goto bad_pool;
2800	}
2801
2802	pool->pmd = pmd;
2803	pool->sectors_per_block = block_size;
2804	if (block_size & (block_size - 1))
2805		pool->sectors_per_block_shift = -1;
2806	else
2807		pool->sectors_per_block_shift = __ffs(block_size);
2808	pool->low_water_blocks = 0;
2809	pool_features_init(&pool->pf);
2810	pool->prison = dm_bio_prison_create();
2811	if (!pool->prison) {
2812		*error = "Error creating pool's bio prison";
2813		err_p = ERR_PTR(-ENOMEM);
2814		goto bad_prison;
2815	}
2816
2817	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2818	if (IS_ERR(pool->copier)) {
2819		r = PTR_ERR(pool->copier);
2820		*error = "Error creating pool's kcopyd client";
2821		err_p = ERR_PTR(r);
2822		goto bad_kcopyd_client;
2823	}
2824
2825	/*
2826	 * Create singlethreaded workqueue that will service all devices
2827	 * that use this metadata.
2828	 */
2829	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2830	if (!pool->wq) {
2831		*error = "Error creating pool's workqueue";
2832		err_p = ERR_PTR(-ENOMEM);
2833		goto bad_wq;
2834	}
2835
2836	throttle_init(&pool->throttle);
2837	INIT_WORK(&pool->worker, do_worker);
2838	INIT_DELAYED_WORK(&pool->waker, do_waker);
2839	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2840	spin_lock_init(&pool->lock);
2841	bio_list_init(&pool->deferred_flush_bios);
 
2842	INIT_LIST_HEAD(&pool->prepared_mappings);
2843	INIT_LIST_HEAD(&pool->prepared_discards);
 
2844	INIT_LIST_HEAD(&pool->active_thins);
2845	pool->low_water_triggered = false;
2846	pool->suspended = true;
2847	pool->out_of_data_space = false;
2848
2849	pool->shared_read_ds = dm_deferred_set_create();
2850	if (!pool->shared_read_ds) {
2851		*error = "Error creating pool's shared read deferred set";
2852		err_p = ERR_PTR(-ENOMEM);
2853		goto bad_shared_read_ds;
2854	}
2855
2856	pool->all_io_ds = dm_deferred_set_create();
2857	if (!pool->all_io_ds) {
2858		*error = "Error creating pool's all io deferred set";
2859		err_p = ERR_PTR(-ENOMEM);
2860		goto bad_all_io_ds;
2861	}
2862
2863	pool->next_mapping = NULL;
2864	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2865						      _new_mapping_cache);
2866	if (!pool->mapping_pool) {
2867		*error = "Error creating pool's mapping mempool";
2868		err_p = ERR_PTR(-ENOMEM);
2869		goto bad_mapping_pool;
2870	}
2871
2872	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
 
 
2873	if (!pool->cell_sort_array) {
2874		*error = "Error allocating cell sort array";
2875		err_p = ERR_PTR(-ENOMEM);
2876		goto bad_sort_array;
2877	}
2878
2879	pool->ref_count = 1;
2880	pool->last_commit_jiffies = jiffies;
2881	pool->pool_md = pool_md;
2882	pool->md_dev = metadata_dev;
 
2883	__pool_table_insert(pool);
2884
2885	return pool;
2886
2887bad_sort_array:
2888	mempool_destroy(pool->mapping_pool);
2889bad_mapping_pool:
2890	dm_deferred_set_destroy(pool->all_io_ds);
2891bad_all_io_ds:
2892	dm_deferred_set_destroy(pool->shared_read_ds);
2893bad_shared_read_ds:
2894	destroy_workqueue(pool->wq);
2895bad_wq:
2896	dm_kcopyd_client_destroy(pool->copier);
2897bad_kcopyd_client:
2898	dm_bio_prison_destroy(pool->prison);
2899bad_prison:
2900	kfree(pool);
2901bad_pool:
2902	if (dm_pool_metadata_close(pmd))
2903		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2904
2905	return err_p;
2906}
2907
2908static void __pool_inc(struct pool *pool)
2909{
2910	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2911	pool->ref_count++;
2912}
2913
2914static void __pool_dec(struct pool *pool)
2915{
2916	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2917	BUG_ON(!pool->ref_count);
2918	if (!--pool->ref_count)
2919		__pool_destroy(pool);
2920}
2921
2922static struct pool *__pool_find(struct mapped_device *pool_md,
2923				struct block_device *metadata_dev,
 
2924				unsigned long block_size, int read_only,
2925				char **error, int *created)
2926{
2927	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2928
2929	if (pool) {
2930		if (pool->pool_md != pool_md) {
2931			*error = "metadata device already in use by a pool";
2932			return ERR_PTR(-EBUSY);
2933		}
 
 
 
 
2934		__pool_inc(pool);
2935
2936	} else {
2937		pool = __pool_table_lookup(pool_md);
2938		if (pool) {
2939			if (pool->md_dev != metadata_dev) {
2940				*error = "different pool cannot replace a pool";
2941				return ERR_PTR(-EINVAL);
2942			}
2943			__pool_inc(pool);
2944
2945		} else {
2946			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2947			*created = 1;
2948		}
2949	}
2950
2951	return pool;
2952}
2953
2954/*----------------------------------------------------------------
 
2955 * Pool target methods
2956 *--------------------------------------------------------------*/
 
2957static void pool_dtr(struct dm_target *ti)
2958{
2959	struct pool_c *pt = ti->private;
2960
2961	mutex_lock(&dm_thin_pool_table.mutex);
2962
2963	unbind_control_target(pt->pool, ti);
2964	__pool_dec(pt->pool);
2965	dm_put_device(ti, pt->metadata_dev);
2966	dm_put_device(ti, pt->data_dev);
2967	kfree(pt);
2968
2969	mutex_unlock(&dm_thin_pool_table.mutex);
2970}
2971
2972static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2973			       struct dm_target *ti)
2974{
2975	int r;
2976	unsigned argc;
2977	const char *arg_name;
2978
2979	static struct dm_arg _args[] = {
2980		{0, 4, "Invalid number of pool feature arguments"},
2981	};
2982
2983	/*
2984	 * No feature arguments supplied.
2985	 */
2986	if (!as->argc)
2987		return 0;
2988
2989	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2990	if (r)
2991		return -EINVAL;
2992
2993	while (argc && !r) {
2994		arg_name = dm_shift_arg(as);
2995		argc--;
2996
2997		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2998			pf->zero_new_blocks = false;
2999
3000		else if (!strcasecmp(arg_name, "ignore_discard"))
3001			pf->discard_enabled = false;
3002
3003		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3004			pf->discard_passdown = false;
3005
3006		else if (!strcasecmp(arg_name, "read_only"))
3007			pf->mode = PM_READ_ONLY;
3008
3009		else if (!strcasecmp(arg_name, "error_if_no_space"))
3010			pf->error_if_no_space = true;
3011
3012		else {
3013			ti->error = "Unrecognised pool feature requested";
3014			r = -EINVAL;
3015			break;
3016		}
3017	}
3018
3019	return r;
3020}
3021
3022static void metadata_low_callback(void *context)
3023{
3024	struct pool *pool = context;
3025
3026	DMWARN("%s: reached low water mark for metadata device: sending event.",
3027	       dm_device_name(pool->pool_md));
3028
3029	dm_table_event(pool->ti->table);
3030}
3031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032static sector_t get_dev_size(struct block_device *bdev)
3033{
3034	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3035}
3036
3037static void warn_if_metadata_device_too_big(struct block_device *bdev)
3038{
3039	sector_t metadata_dev_size = get_dev_size(bdev);
3040	char buffer[BDEVNAME_SIZE];
3041
3042	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3043		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3045}
3046
3047static sector_t get_metadata_dev_size(struct block_device *bdev)
3048{
3049	sector_t metadata_dev_size = get_dev_size(bdev);
3050
3051	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3052		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3053
3054	return metadata_dev_size;
3055}
3056
3057static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3058{
3059	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3060
3061	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3062
3063	return metadata_dev_size;
3064}
3065
3066/*
3067 * When a metadata threshold is crossed a dm event is triggered, and
3068 * userland should respond by growing the metadata device.  We could let
3069 * userland set the threshold, like we do with the data threshold, but I'm
3070 * not sure they know enough to do this well.
3071 */
3072static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3073{
3074	/*
3075	 * 4M is ample for all ops with the possible exception of thin
3076	 * device deletion which is harmless if it fails (just retry the
3077	 * delete after you've grown the device).
3078	 */
3079	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
 
3080	return min((dm_block_t)1024ULL /* 4M */, quarter);
3081}
3082
3083/*
3084 * thin-pool <metadata dev> <data dev>
3085 *	     <data block size (sectors)>
3086 *	     <low water mark (blocks)>
3087 *	     [<#feature args> [<arg>]*]
3088 *
3089 * Optional feature arguments are:
3090 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091 *	     ignore_discard: disable discard
3092 *	     no_discard_passdown: don't pass discards down to the data device
3093 *	     read_only: Don't allow any changes to be made to the pool metadata.
3094 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3095 */
3096static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3097{
3098	int r, pool_created = 0;
3099	struct pool_c *pt;
3100	struct pool *pool;
3101	struct pool_features pf;
3102	struct dm_arg_set as;
3103	struct dm_dev *data_dev;
3104	unsigned long block_size;
3105	dm_block_t low_water_blocks;
3106	struct dm_dev *metadata_dev;
3107	fmode_t metadata_mode;
3108
3109	/*
3110	 * FIXME Remove validation from scope of lock.
3111	 */
3112	mutex_lock(&dm_thin_pool_table.mutex);
3113
3114	if (argc < 4) {
3115		ti->error = "Invalid argument count";
3116		r = -EINVAL;
3117		goto out_unlock;
3118	}
3119
3120	as.argc = argc;
3121	as.argv = argv;
3122
 
 
 
 
 
 
 
3123	/*
3124	 * Set default pool features.
3125	 */
3126	pool_features_init(&pf);
3127
3128	dm_consume_args(&as, 4);
3129	r = parse_pool_features(&as, &pf, ti);
3130	if (r)
3131		goto out_unlock;
3132
3133	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
 
3134	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3135	if (r) {
3136		ti->error = "Error opening metadata block device";
3137		goto out_unlock;
3138	}
3139	warn_if_metadata_device_too_big(metadata_dev->bdev);
3140
3141	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3142	if (r) {
3143		ti->error = "Error getting data device";
3144		goto out_metadata;
3145	}
3146
3147	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3148	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3149	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3150	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3151		ti->error = "Invalid block size";
3152		r = -EINVAL;
3153		goto out;
3154	}
3155
3156	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3157		ti->error = "Invalid low water mark";
3158		r = -EINVAL;
3159		goto out;
3160	}
3161
3162	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3163	if (!pt) {
3164		r = -ENOMEM;
3165		goto out;
3166	}
3167
3168	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3169			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3170	if (IS_ERR(pool)) {
3171		r = PTR_ERR(pool);
3172		goto out_free_pt;
3173	}
3174
3175	/*
3176	 * 'pool_created' reflects whether this is the first table load.
3177	 * Top level discard support is not allowed to be changed after
3178	 * initial load.  This would require a pool reload to trigger thin
3179	 * device changes.
3180	 */
3181	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3182		ti->error = "Discard support cannot be disabled once enabled";
3183		r = -EINVAL;
3184		goto out_flags_changed;
3185	}
3186
3187	pt->pool = pool;
3188	pt->ti = ti;
3189	pt->metadata_dev = metadata_dev;
3190	pt->data_dev = data_dev;
3191	pt->low_water_blocks = low_water_blocks;
3192	pt->adjusted_pf = pt->requested_pf = pf;
3193	ti->num_flush_bios = 1;
 
3194
3195	/*
3196	 * Only need to enable discards if the pool should pass
3197	 * them down to the data device.  The thin device's discard
3198	 * processing will cause mappings to be removed from the btree.
3199	 */
3200	ti->discard_zeroes_data_unsupported = true;
3201	if (pf.discard_enabled && pf.discard_passdown) {
3202		ti->num_discard_bios = 1;
3203
3204		/*
3205		 * Setting 'discards_supported' circumvents the normal
3206		 * stacking of discard limits (this keeps the pool and
3207		 * thin devices' discard limits consistent).
3208		 */
3209		ti->discards_supported = true;
 
3210	}
3211	ti->private = pt;
3212
3213	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3214						calc_metadata_threshold(pt),
3215						metadata_low_callback,
3216						pool);
3217	if (r)
 
3218		goto out_flags_changed;
 
3219
3220	pt->callbacks.congested_fn = pool_is_congested;
3221	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3222
3223	mutex_unlock(&dm_thin_pool_table.mutex);
3224
3225	return 0;
3226
3227out_flags_changed:
3228	__pool_dec(pool);
3229out_free_pt:
3230	kfree(pt);
3231out:
3232	dm_put_device(ti, data_dev);
3233out_metadata:
3234	dm_put_device(ti, metadata_dev);
3235out_unlock:
3236	mutex_unlock(&dm_thin_pool_table.mutex);
3237
3238	return r;
3239}
3240
3241static int pool_map(struct dm_target *ti, struct bio *bio)
3242{
3243	int r;
3244	struct pool_c *pt = ti->private;
3245	struct pool *pool = pt->pool;
3246	unsigned long flags;
3247
3248	/*
3249	 * As this is a singleton target, ti->begin is always zero.
3250	 */
3251	spin_lock_irqsave(&pool->lock, flags);
3252	bio->bi_bdev = pt->data_dev->bdev;
3253	r = DM_MAPIO_REMAPPED;
3254	spin_unlock_irqrestore(&pool->lock, flags);
3255
3256	return r;
3257}
3258
3259static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3260{
3261	int r;
3262	struct pool_c *pt = ti->private;
3263	struct pool *pool = pt->pool;
3264	sector_t data_size = ti->len;
3265	dm_block_t sb_data_size;
3266
3267	*need_commit = false;
3268
3269	(void) sector_div(data_size, pool->sectors_per_block);
3270
3271	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3272	if (r) {
3273		DMERR("%s: failed to retrieve data device size",
3274		      dm_device_name(pool->pool_md));
3275		return r;
3276	}
3277
3278	if (data_size < sb_data_size) {
3279		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280		      dm_device_name(pool->pool_md),
3281		      (unsigned long long)data_size, sb_data_size);
3282		return -EINVAL;
3283
3284	} else if (data_size > sb_data_size) {
3285		if (dm_pool_metadata_needs_check(pool->pmd)) {
3286			DMERR("%s: unable to grow the data device until repaired.",
3287			      dm_device_name(pool->pool_md));
3288			return 0;
3289		}
3290
3291		if (sb_data_size)
3292			DMINFO("%s: growing the data device from %llu to %llu blocks",
3293			       dm_device_name(pool->pool_md),
3294			       sb_data_size, (unsigned long long)data_size);
3295		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3296		if (r) {
3297			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3298			return r;
3299		}
3300
3301		*need_commit = true;
3302	}
3303
3304	return 0;
3305}
3306
3307static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3308{
3309	int r;
3310	struct pool_c *pt = ti->private;
3311	struct pool *pool = pt->pool;
3312	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3313
3314	*need_commit = false;
3315
3316	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3317
3318	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3319	if (r) {
3320		DMERR("%s: failed to retrieve metadata device size",
3321		      dm_device_name(pool->pool_md));
3322		return r;
3323	}
3324
3325	if (metadata_dev_size < sb_metadata_dev_size) {
3326		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327		      dm_device_name(pool->pool_md),
3328		      metadata_dev_size, sb_metadata_dev_size);
3329		return -EINVAL;
3330
3331	} else if (metadata_dev_size > sb_metadata_dev_size) {
3332		if (dm_pool_metadata_needs_check(pool->pmd)) {
3333			DMERR("%s: unable to grow the metadata device until repaired.",
3334			      dm_device_name(pool->pool_md));
3335			return 0;
3336		}
3337
3338		warn_if_metadata_device_too_big(pool->md_dev);
3339		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340		       dm_device_name(pool->pool_md),
3341		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
3342		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3343		if (r) {
3344			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3345			return r;
3346		}
3347
3348		*need_commit = true;
3349	}
3350
3351	return 0;
3352}
3353
3354/*
3355 * Retrieves the number of blocks of the data device from
3356 * the superblock and compares it to the actual device size,
3357 * thus resizing the data device in case it has grown.
3358 *
3359 * This both copes with opening preallocated data devices in the ctr
3360 * being followed by a resume
3361 * -and-
3362 * calling the resume method individually after userspace has
3363 * grown the data device in reaction to a table event.
3364 */
3365static int pool_preresume(struct dm_target *ti)
3366{
3367	int r;
3368	bool need_commit1, need_commit2;
3369	struct pool_c *pt = ti->private;
3370	struct pool *pool = pt->pool;
3371
3372	/*
3373	 * Take control of the pool object.
3374	 */
3375	r = bind_control_target(pool, ti);
3376	if (r)
3377		return r;
3378
3379	r = maybe_resize_data_dev(ti, &need_commit1);
3380	if (r)
3381		return r;
3382
3383	r = maybe_resize_metadata_dev(ti, &need_commit2);
3384	if (r)
3385		return r;
3386
3387	if (need_commit1 || need_commit2)
3388		(void) commit(pool);
 
 
 
 
 
 
 
 
3389
3390	return 0;
3391}
3392
3393static void pool_suspend_active_thins(struct pool *pool)
3394{
3395	struct thin_c *tc;
3396
3397	/* Suspend all active thin devices */
3398	tc = get_first_thin(pool);
3399	while (tc) {
3400		dm_internal_suspend_noflush(tc->thin_md);
3401		tc = get_next_thin(pool, tc);
3402	}
3403}
3404
3405static void pool_resume_active_thins(struct pool *pool)
3406{
3407	struct thin_c *tc;
3408
3409	/* Resume all active thin devices */
3410	tc = get_first_thin(pool);
3411	while (tc) {
3412		dm_internal_resume(tc->thin_md);
3413		tc = get_next_thin(pool, tc);
3414	}
3415}
3416
3417static void pool_resume(struct dm_target *ti)
3418{
3419	struct pool_c *pt = ti->private;
3420	struct pool *pool = pt->pool;
3421	unsigned long flags;
3422
3423	/*
3424	 * Must requeue active_thins' bios and then resume
3425	 * active_thins _before_ clearing 'suspend' flag.
3426	 */
3427	requeue_bios(pool);
3428	pool_resume_active_thins(pool);
3429
3430	spin_lock_irqsave(&pool->lock, flags);
3431	pool->low_water_triggered = false;
3432	pool->suspended = false;
3433	spin_unlock_irqrestore(&pool->lock, flags);
3434
3435	do_waker(&pool->waker.work);
3436}
3437
3438static void pool_presuspend(struct dm_target *ti)
3439{
3440	struct pool_c *pt = ti->private;
3441	struct pool *pool = pt->pool;
3442	unsigned long flags;
3443
3444	spin_lock_irqsave(&pool->lock, flags);
3445	pool->suspended = true;
3446	spin_unlock_irqrestore(&pool->lock, flags);
3447
3448	pool_suspend_active_thins(pool);
3449}
3450
3451static void pool_presuspend_undo(struct dm_target *ti)
3452{
3453	struct pool_c *pt = ti->private;
3454	struct pool *pool = pt->pool;
3455	unsigned long flags;
3456
3457	pool_resume_active_thins(pool);
3458
3459	spin_lock_irqsave(&pool->lock, flags);
3460	pool->suspended = false;
3461	spin_unlock_irqrestore(&pool->lock, flags);
3462}
3463
3464static void pool_postsuspend(struct dm_target *ti)
3465{
3466	struct pool_c *pt = ti->private;
3467	struct pool *pool = pt->pool;
3468
3469	cancel_delayed_work_sync(&pool->waker);
3470	cancel_delayed_work_sync(&pool->no_space_timeout);
3471	flush_workqueue(pool->wq);
3472	(void) commit(pool);
3473}
3474
3475static int check_arg_count(unsigned argc, unsigned args_required)
3476{
3477	if (argc != args_required) {
3478		DMWARN("Message received with %u arguments instead of %u.",
3479		       argc, args_required);
3480		return -EINVAL;
3481	}
3482
3483	return 0;
3484}
3485
3486static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3487{
3488	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3489	    *dev_id <= MAX_DEV_ID)
3490		return 0;
3491
3492	if (warning)
3493		DMWARN("Message received with invalid device id: %s", arg);
3494
3495	return -EINVAL;
3496}
3497
3498static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3499{
3500	dm_thin_id dev_id;
3501	int r;
3502
3503	r = check_arg_count(argc, 2);
3504	if (r)
3505		return r;
3506
3507	r = read_dev_id(argv[1], &dev_id, 1);
3508	if (r)
3509		return r;
3510
3511	r = dm_pool_create_thin(pool->pmd, dev_id);
3512	if (r) {
3513		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3514		       argv[1]);
3515		return r;
3516	}
3517
3518	return 0;
3519}
3520
3521static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3522{
3523	dm_thin_id dev_id;
3524	dm_thin_id origin_dev_id;
3525	int r;
3526
3527	r = check_arg_count(argc, 3);
3528	if (r)
3529		return r;
3530
3531	r = read_dev_id(argv[1], &dev_id, 1);
3532	if (r)
3533		return r;
3534
3535	r = read_dev_id(argv[2], &origin_dev_id, 1);
3536	if (r)
3537		return r;
3538
3539	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3540	if (r) {
3541		DMWARN("Creation of new snapshot %s of device %s failed.",
3542		       argv[1], argv[2]);
3543		return r;
3544	}
3545
3546	return 0;
3547}
3548
3549static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3550{
3551	dm_thin_id dev_id;
3552	int r;
3553
3554	r = check_arg_count(argc, 2);
3555	if (r)
3556		return r;
3557
3558	r = read_dev_id(argv[1], &dev_id, 1);
3559	if (r)
3560		return r;
3561
3562	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3563	if (r)
3564		DMWARN("Deletion of thin device %s failed.", argv[1]);
3565
3566	return r;
3567}
3568
3569static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3570{
3571	dm_thin_id old_id, new_id;
3572	int r;
3573
3574	r = check_arg_count(argc, 3);
3575	if (r)
3576		return r;
3577
3578	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3579		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3580		return -EINVAL;
3581	}
3582
3583	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3584		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3585		return -EINVAL;
3586	}
3587
3588	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3589	if (r) {
3590		DMWARN("Failed to change transaction id from %s to %s.",
3591		       argv[1], argv[2]);
3592		return r;
3593	}
3594
3595	return 0;
3596}
3597
3598static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3599{
3600	int r;
3601
3602	r = check_arg_count(argc, 1);
3603	if (r)
3604		return r;
3605
3606	(void) commit(pool);
3607
3608	r = dm_pool_reserve_metadata_snap(pool->pmd);
3609	if (r)
3610		DMWARN("reserve_metadata_snap message failed.");
3611
3612	return r;
3613}
3614
3615static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3616{
3617	int r;
3618
3619	r = check_arg_count(argc, 1);
3620	if (r)
3621		return r;
3622
3623	r = dm_pool_release_metadata_snap(pool->pmd);
3624	if (r)
3625		DMWARN("release_metadata_snap message failed.");
3626
3627	return r;
3628}
3629
3630/*
3631 * Messages supported:
3632 *   create_thin	<dev_id>
3633 *   create_snap	<dev_id> <origin_id>
3634 *   delete		<dev_id>
3635 *   set_transaction_id <current_trans_id> <new_trans_id>
3636 *   reserve_metadata_snap
3637 *   release_metadata_snap
3638 */
3639static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
3640{
3641	int r = -EINVAL;
3642	struct pool_c *pt = ti->private;
3643	struct pool *pool = pt->pool;
3644
3645	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3646		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647		      dm_device_name(pool->pool_md));
3648		return -EOPNOTSUPP;
3649	}
3650
3651	if (!strcasecmp(argv[0], "create_thin"))
3652		r = process_create_thin_mesg(argc, argv, pool);
3653
3654	else if (!strcasecmp(argv[0], "create_snap"))
3655		r = process_create_snap_mesg(argc, argv, pool);
3656
3657	else if (!strcasecmp(argv[0], "delete"))
3658		r = process_delete_mesg(argc, argv, pool);
3659
3660	else if (!strcasecmp(argv[0], "set_transaction_id"))
3661		r = process_set_transaction_id_mesg(argc, argv, pool);
3662
3663	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3664		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3665
3666	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3667		r = process_release_metadata_snap_mesg(argc, argv, pool);
3668
3669	else
3670		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3671
3672	if (!r)
3673		(void) commit(pool);
3674
3675	return r;
3676}
3677
3678static void emit_flags(struct pool_features *pf, char *result,
3679		       unsigned sz, unsigned maxlen)
3680{
3681	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3682		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3683		pf->error_if_no_space;
3684	DMEMIT("%u ", count);
3685
3686	if (!pf->zero_new_blocks)
3687		DMEMIT("skip_block_zeroing ");
3688
3689	if (!pf->discard_enabled)
3690		DMEMIT("ignore_discard ");
3691
3692	if (!pf->discard_passdown)
3693		DMEMIT("no_discard_passdown ");
3694
3695	if (pf->mode == PM_READ_ONLY)
3696		DMEMIT("read_only ");
3697
3698	if (pf->error_if_no_space)
3699		DMEMIT("error_if_no_space ");
3700}
3701
3702/*
3703 * Status line is:
3704 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3705 *    <used data sectors>/<total data sectors> <held metadata root>
3706 *    <pool mode> <discard config> <no space config> <needs_check>
3707 */
3708static void pool_status(struct dm_target *ti, status_type_t type,
3709			unsigned status_flags, char *result, unsigned maxlen)
3710{
3711	int r;
3712	unsigned sz = 0;
3713	uint64_t transaction_id;
3714	dm_block_t nr_free_blocks_data;
3715	dm_block_t nr_free_blocks_metadata;
3716	dm_block_t nr_blocks_data;
3717	dm_block_t nr_blocks_metadata;
3718	dm_block_t held_root;
 
3719	char buf[BDEVNAME_SIZE];
3720	char buf2[BDEVNAME_SIZE];
3721	struct pool_c *pt = ti->private;
3722	struct pool *pool = pt->pool;
3723
3724	switch (type) {
3725	case STATUSTYPE_INFO:
3726		if (get_pool_mode(pool) == PM_FAIL) {
3727			DMEMIT("Fail");
3728			break;
3729		}
3730
3731		/* Commit to ensure statistics aren't out-of-date */
3732		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3733			(void) commit(pool);
3734
3735		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3736		if (r) {
3737			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738			      dm_device_name(pool->pool_md), r);
3739			goto err;
3740		}
3741
3742		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3743		if (r) {
3744			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745			      dm_device_name(pool->pool_md), r);
3746			goto err;
3747		}
3748
3749		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3750		if (r) {
3751			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752			      dm_device_name(pool->pool_md), r);
3753			goto err;
3754		}
3755
3756		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3757		if (r) {
3758			DMERR("%s: dm_pool_get_free_block_count returned %d",
3759			      dm_device_name(pool->pool_md), r);
3760			goto err;
3761		}
3762
3763		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3764		if (r) {
3765			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766			      dm_device_name(pool->pool_md), r);
3767			goto err;
3768		}
3769
3770		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3771		if (r) {
3772			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773			      dm_device_name(pool->pool_md), r);
3774			goto err;
3775		}
3776
3777		DMEMIT("%llu %llu/%llu %llu/%llu ",
3778		       (unsigned long long)transaction_id,
3779		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3780		       (unsigned long long)nr_blocks_metadata,
3781		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3782		       (unsigned long long)nr_blocks_data);
3783
3784		if (held_root)
3785			DMEMIT("%llu ", held_root);
3786		else
3787			DMEMIT("- ");
3788
3789		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3790			DMEMIT("out_of_data_space ");
3791		else if (pool->pf.mode == PM_READ_ONLY)
3792			DMEMIT("ro ");
3793		else
3794			DMEMIT("rw ");
3795
3796		if (!pool->pf.discard_enabled)
3797			DMEMIT("ignore_discard ");
3798		else if (pool->pf.discard_passdown)
3799			DMEMIT("discard_passdown ");
3800		else
3801			DMEMIT("no_discard_passdown ");
3802
3803		if (pool->pf.error_if_no_space)
3804			DMEMIT("error_if_no_space ");
3805		else
3806			DMEMIT("queue_if_no_space ");
3807
3808		if (dm_pool_metadata_needs_check(pool->pmd))
3809			DMEMIT("needs_check ");
3810		else
3811			DMEMIT("- ");
3812
 
 
3813		break;
3814
3815	case STATUSTYPE_TABLE:
3816		DMEMIT("%s %s %lu %llu ",
3817		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3818		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3819		       (unsigned long)pool->sectors_per_block,
3820		       (unsigned long long)pt->low_water_blocks);
3821		emit_flags(&pt->requested_pf, result, sz, maxlen);
3822		break;
 
 
 
 
3823	}
3824	return;
3825
3826err:
3827	DMEMIT("Error");
3828}
3829
3830static int pool_iterate_devices(struct dm_target *ti,
3831				iterate_devices_callout_fn fn, void *data)
3832{
3833	struct pool_c *pt = ti->private;
3834
3835	return fn(ti, pt->data_dev, 0, ti->len, data);
3836}
3837
3838static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3839{
3840	struct pool_c *pt = ti->private;
3841	struct pool *pool = pt->pool;
3842	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3843
3844	/*
3845	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3846	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847	 * This is especially beneficial when the pool's data device is a RAID
3848	 * device that has a full stripe width that matches pool->sectors_per_block
3849	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3850	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3851	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3852	 */
3853	if (limits->max_sectors < pool->sectors_per_block) {
3854		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3855			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3856				limits->max_sectors--;
3857			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3858		}
3859	}
3860
3861	/*
3862	 * If the system-determined stacked limits are compatible with the
3863	 * pool's blocksize (io_opt is a factor) do not override them.
3864	 */
3865	if (io_opt_sectors < pool->sectors_per_block ||
3866	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3867		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3868			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3869		else
3870			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3871		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3872	}
3873
3874	/*
3875	 * pt->adjusted_pf is a staging area for the actual features to use.
3876	 * They get transferred to the live pool in bind_control_target()
3877	 * called from pool_preresume().
3878	 */
3879	if (!pt->adjusted_pf.discard_enabled) {
 
 
 
 
 
 
 
 
 
3880		/*
3881		 * Must explicitly disallow stacking discard limits otherwise the
3882		 * block layer will stack them if pool's data device has support.
3883		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884		 * user to see that, so make sure to set all discard limits to 0.
3885		 */
3886		limits->discard_granularity = 0;
3887		return;
3888	}
3889
3890	disable_passdown_if_not_supported(pt);
3891
3892	/*
3893	 * The pool uses the same discard limits as the underlying data
3894	 * device.  DM core has already set this up.
3895	 */
3896}
3897
3898static struct target_type pool_target = {
3899	.name = "thin-pool",
3900	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3901		    DM_TARGET_IMMUTABLE,
3902	.version = {1, 18, 0},
3903	.module = THIS_MODULE,
3904	.ctr = pool_ctr,
3905	.dtr = pool_dtr,
3906	.map = pool_map,
3907	.presuspend = pool_presuspend,
3908	.presuspend_undo = pool_presuspend_undo,
3909	.postsuspend = pool_postsuspend,
3910	.preresume = pool_preresume,
3911	.resume = pool_resume,
3912	.message = pool_message,
3913	.status = pool_status,
3914	.iterate_devices = pool_iterate_devices,
3915	.io_hints = pool_io_hints,
3916};
3917
3918/*----------------------------------------------------------------
 
3919 * Thin target methods
3920 *--------------------------------------------------------------*/
 
3921static void thin_get(struct thin_c *tc)
3922{
3923	atomic_inc(&tc->refcount);
3924}
3925
3926static void thin_put(struct thin_c *tc)
3927{
3928	if (atomic_dec_and_test(&tc->refcount))
3929		complete(&tc->can_destroy);
3930}
3931
3932static void thin_dtr(struct dm_target *ti)
3933{
3934	struct thin_c *tc = ti->private;
3935	unsigned long flags;
3936
3937	spin_lock_irqsave(&tc->pool->lock, flags);
3938	list_del_rcu(&tc->list);
3939	spin_unlock_irqrestore(&tc->pool->lock, flags);
3940	synchronize_rcu();
3941
3942	thin_put(tc);
3943	wait_for_completion(&tc->can_destroy);
3944
3945	mutex_lock(&dm_thin_pool_table.mutex);
3946
3947	__pool_dec(tc->pool);
3948	dm_pool_close_thin_device(tc->td);
3949	dm_put_device(ti, tc->pool_dev);
3950	if (tc->origin_dev)
3951		dm_put_device(ti, tc->origin_dev);
3952	kfree(tc);
3953
3954	mutex_unlock(&dm_thin_pool_table.mutex);
3955}
3956
3957/*
3958 * Thin target parameters:
3959 *
3960 * <pool_dev> <dev_id> [origin_dev]
3961 *
3962 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963 * dev_id: the internal device identifier
3964 * origin_dev: a device external to the pool that should act as the origin
3965 *
3966 * If the pool device has discards disabled, they get disabled for the thin
3967 * device as well.
3968 */
3969static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3970{
3971	int r;
3972	struct thin_c *tc;
3973	struct dm_dev *pool_dev, *origin_dev;
3974	struct mapped_device *pool_md;
3975	unsigned long flags;
3976
3977	mutex_lock(&dm_thin_pool_table.mutex);
3978
3979	if (argc != 2 && argc != 3) {
3980		ti->error = "Invalid argument count";
3981		r = -EINVAL;
3982		goto out_unlock;
3983	}
3984
3985	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3986	if (!tc) {
3987		ti->error = "Out of memory";
3988		r = -ENOMEM;
3989		goto out_unlock;
3990	}
3991	tc->thin_md = dm_table_get_md(ti->table);
3992	spin_lock_init(&tc->lock);
3993	INIT_LIST_HEAD(&tc->deferred_cells);
3994	bio_list_init(&tc->deferred_bio_list);
3995	bio_list_init(&tc->retry_on_resume_list);
3996	tc->sort_bio_list = RB_ROOT;
3997
3998	if (argc == 3) {
3999		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
 
 
 
 
 
 
4000		if (r) {
4001			ti->error = "Error opening origin device";
4002			goto bad_origin_dev;
4003		}
4004		tc->origin_dev = origin_dev;
4005	}
4006
4007	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4008	if (r) {
4009		ti->error = "Error opening pool device";
4010		goto bad_pool_dev;
4011	}
4012	tc->pool_dev = pool_dev;
4013
4014	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4015		ti->error = "Invalid device id";
4016		r = -EINVAL;
4017		goto bad_common;
4018	}
4019
4020	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4021	if (!pool_md) {
4022		ti->error = "Couldn't get pool mapped device";
4023		r = -EINVAL;
4024		goto bad_common;
4025	}
4026
4027	tc->pool = __pool_table_lookup(pool_md);
4028	if (!tc->pool) {
4029		ti->error = "Couldn't find pool object";
4030		r = -EINVAL;
4031		goto bad_pool_lookup;
4032	}
4033	__pool_inc(tc->pool);
4034
4035	if (get_pool_mode(tc->pool) == PM_FAIL) {
4036		ti->error = "Couldn't open thin device, Pool is in fail mode";
4037		r = -EINVAL;
4038		goto bad_pool;
4039	}
4040
4041	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4042	if (r) {
4043		ti->error = "Couldn't open thin internal device";
4044		goto bad_pool;
4045	}
4046
4047	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4048	if (r)
4049		goto bad;
4050
4051	ti->num_flush_bios = 1;
 
4052	ti->flush_supported = true;
 
4053	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4054
4055	/* In case the pool supports discards, pass them on. */
4056	ti->discard_zeroes_data_unsupported = true;
4057	if (tc->pool->pf.discard_enabled) {
4058		ti->discards_supported = true;
4059		ti->num_discard_bios = 1;
4060		ti->split_discard_bios = false;
4061	}
4062
4063	mutex_unlock(&dm_thin_pool_table.mutex);
4064
4065	spin_lock_irqsave(&tc->pool->lock, flags);
4066	if (tc->pool->suspended) {
4067		spin_unlock_irqrestore(&tc->pool->lock, flags);
4068		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4069		ti->error = "Unable to activate thin device while pool is suspended";
4070		r = -EINVAL;
4071		goto bad;
4072	}
4073	atomic_set(&tc->refcount, 1);
4074	init_completion(&tc->can_destroy);
4075	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4076	spin_unlock_irqrestore(&tc->pool->lock, flags);
4077	/*
4078	 * This synchronize_rcu() call is needed here otherwise we risk a
4079	 * wake_worker() call finding no bios to process (because the newly
4080	 * added tc isn't yet visible).  So this reduces latency since we
4081	 * aren't then dependent on the periodic commit to wake_worker().
4082	 */
4083	synchronize_rcu();
4084
4085	dm_put(pool_md);
4086
4087	return 0;
4088
4089bad:
4090	dm_pool_close_thin_device(tc->td);
4091bad_pool:
4092	__pool_dec(tc->pool);
4093bad_pool_lookup:
4094	dm_put(pool_md);
4095bad_common:
4096	dm_put_device(ti, tc->pool_dev);
4097bad_pool_dev:
4098	if (tc->origin_dev)
4099		dm_put_device(ti, tc->origin_dev);
4100bad_origin_dev:
4101	kfree(tc);
4102out_unlock:
4103	mutex_unlock(&dm_thin_pool_table.mutex);
4104
4105	return r;
4106}
4107
4108static int thin_map(struct dm_target *ti, struct bio *bio)
4109{
4110	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4111
4112	return thin_bio_map(ti, bio);
4113}
4114
4115static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
 
4116{
4117	unsigned long flags;
4118	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4119	struct list_head work;
4120	struct dm_thin_new_mapping *m, *tmp;
4121	struct pool *pool = h->tc->pool;
4122
4123	if (h->shared_read_entry) {
4124		INIT_LIST_HEAD(&work);
4125		dm_deferred_entry_dec(h->shared_read_entry, &work);
4126
4127		spin_lock_irqsave(&pool->lock, flags);
4128		list_for_each_entry_safe(m, tmp, &work, list) {
4129			list_del(&m->list);
4130			__complete_mapping_preparation(m);
4131		}
4132		spin_unlock_irqrestore(&pool->lock, flags);
4133	}
4134
4135	if (h->all_io_entry) {
4136		INIT_LIST_HEAD(&work);
4137		dm_deferred_entry_dec(h->all_io_entry, &work);
4138		if (!list_empty(&work)) {
4139			spin_lock_irqsave(&pool->lock, flags);
4140			list_for_each_entry_safe(m, tmp, &work, list)
4141				list_add_tail(&m->list, &pool->prepared_discards);
4142			spin_unlock_irqrestore(&pool->lock, flags);
4143			wake_worker(pool);
4144		}
4145	}
4146
4147	if (h->cell)
4148		cell_defer_no_holder(h->tc, h->cell);
4149
4150	return 0;
4151}
4152
4153static void thin_presuspend(struct dm_target *ti)
4154{
4155	struct thin_c *tc = ti->private;
4156
4157	if (dm_noflush_suspending(ti))
4158		noflush_work(tc, do_noflush_start);
4159}
4160
4161static void thin_postsuspend(struct dm_target *ti)
4162{
4163	struct thin_c *tc = ti->private;
4164
4165	/*
4166	 * The dm_noflush_suspending flag has been cleared by now, so
4167	 * unfortunately we must always run this.
4168	 */
4169	noflush_work(tc, do_noflush_stop);
4170}
4171
4172static int thin_preresume(struct dm_target *ti)
4173{
4174	struct thin_c *tc = ti->private;
4175
4176	if (tc->origin_dev)
4177		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4178
4179	return 0;
4180}
4181
4182/*
4183 * <nr mapped sectors> <highest mapped sector>
4184 */
4185static void thin_status(struct dm_target *ti, status_type_t type,
4186			unsigned status_flags, char *result, unsigned maxlen)
4187{
4188	int r;
4189	ssize_t sz = 0;
4190	dm_block_t mapped, highest;
4191	char buf[BDEVNAME_SIZE];
4192	struct thin_c *tc = ti->private;
4193
4194	if (get_pool_mode(tc->pool) == PM_FAIL) {
4195		DMEMIT("Fail");
4196		return;
4197	}
4198
4199	if (!tc->td)
4200		DMEMIT("-");
4201	else {
4202		switch (type) {
4203		case STATUSTYPE_INFO:
4204			r = dm_thin_get_mapped_count(tc->td, &mapped);
4205			if (r) {
4206				DMERR("dm_thin_get_mapped_count returned %d", r);
4207				goto err;
4208			}
4209
4210			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4211			if (r < 0) {
4212				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4213				goto err;
4214			}
4215
4216			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4217			if (r)
4218				DMEMIT("%llu", ((highest + 1) *
4219						tc->pool->sectors_per_block) - 1);
4220			else
4221				DMEMIT("-");
4222			break;
4223
4224		case STATUSTYPE_TABLE:
4225			DMEMIT("%s %lu",
4226			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4227			       (unsigned long) tc->dev_id);
4228			if (tc->origin_dev)
4229				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4230			break;
 
 
 
 
4231		}
4232	}
4233
4234	return;
4235
4236err:
4237	DMEMIT("Error");
4238}
4239
4240static int thin_iterate_devices(struct dm_target *ti,
4241				iterate_devices_callout_fn fn, void *data)
4242{
4243	sector_t blocks;
4244	struct thin_c *tc = ti->private;
4245	struct pool *pool = tc->pool;
4246
4247	/*
4248	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4249	 * we follow a more convoluted path through to the pool's target.
4250	 */
4251	if (!pool->ti)
4252		return 0;	/* nothing is bound */
4253
4254	blocks = pool->ti->len;
4255	(void) sector_div(blocks, pool->sectors_per_block);
4256	if (blocks)
4257		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4258
4259	return 0;
4260}
4261
4262static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4263{
4264	struct thin_c *tc = ti->private;
4265	struct pool *pool = tc->pool;
4266
4267	if (!pool->pf.discard_enabled)
4268		return;
4269
4270	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4271	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4272}
4273
4274static struct target_type thin_target = {
4275	.name = "thin",
4276	.version = {1, 18, 0},
4277	.module	= THIS_MODULE,
4278	.ctr = thin_ctr,
4279	.dtr = thin_dtr,
4280	.map = thin_map,
4281	.end_io = thin_endio,
4282	.preresume = thin_preresume,
4283	.presuspend = thin_presuspend,
4284	.postsuspend = thin_postsuspend,
4285	.status = thin_status,
4286	.iterate_devices = thin_iterate_devices,
4287	.io_hints = thin_io_hints,
4288};
4289
4290/*----------------------------------------------------------------*/
4291
4292static int __init dm_thin_init(void)
4293{
4294	int r;
4295
4296	pool_table_init();
4297
 
 
 
 
4298	r = dm_register_target(&thin_target);
4299	if (r)
4300		return r;
4301
4302	r = dm_register_target(&pool_target);
4303	if (r)
4304		goto bad_pool_target;
4305
4306	r = -ENOMEM;
4307
4308	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4309	if (!_new_mapping_cache)
4310		goto bad_new_mapping_cache;
4311
4312	return 0;
4313
 
 
4314bad_new_mapping_cache:
4315	dm_unregister_target(&pool_target);
4316bad_pool_target:
4317	dm_unregister_target(&thin_target);
4318
4319	return r;
4320}
4321
4322static void dm_thin_exit(void)
4323{
4324	dm_unregister_target(&thin_target);
4325	dm_unregister_target(&pool_target);
4326
4327	kmem_cache_destroy(_new_mapping_cache);
 
 
4328}
4329
4330module_init(dm_thin_init);
4331module_exit(dm_thin_exit);
4332
4333module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4334MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4335
4336MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4337MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338MODULE_LICENSE("GPL");