Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat UK.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "dm-bio-prison-v1.h"
  10#include "dm.h"
  11
  12#include <linux/device-mapper.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/log2.h>
  17#include <linux/list.h>
  18#include <linux/rculist.h>
  19#include <linux/init.h>
  20#include <linux/module.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sort.h>
  24#include <linux/rbtree.h>
  25
  26#define	DM_MSG_PREFIX	"thin"
  27
  28/*
  29 * Tunable constants
  30 */
  31#define ENDIO_HOOK_POOL_SIZE 1024
  32#define MAPPING_POOL_SIZE 1024
 
  33#define COMMIT_PERIOD HZ
  34#define NO_SPACE_TIMEOUT_SECS 60
  35
  36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  37
  38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  39		"A percentage of time allocated for copy on write");
  40
  41/*
  42 * The block size of the device holding pool data must be
  43 * between 64KB and 1GB.
  44 */
  45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  47
  48/*
  49 * Device id is restricted to 24 bits.
  50 */
  51#define MAX_DEV_ID ((1 << 24) - 1)
  52
  53/*
  54 * How do we handle breaking sharing of data blocks?
  55 * =================================================
  56 *
  57 * We use a standard copy-on-write btree to store the mappings for the
  58 * devices (note I'm talking about copy-on-write of the metadata here, not
  59 * the data).  When you take an internal snapshot you clone the root node
  60 * of the origin btree.  After this there is no concept of an origin or a
  61 * snapshot.  They are just two device trees that happen to point to the
  62 * same data blocks.
  63 *
  64 * When we get a write in we decide if it's to a shared data block using
  65 * some timestamp magic.  If it is, we have to break sharing.
  66 *
  67 * Let's say we write to a shared block in what was the origin.  The
  68 * steps are:
  69 *
  70 * i) plug io further to this physical block. (see bio_prison code).
  71 *
  72 * ii) quiesce any read io to that shared data block.  Obviously
  73 * including all devices that share this block.  (see dm_deferred_set code)
  74 *
  75 * iii) copy the data block to a newly allocate block.  This step can be
  76 * missed out if the io covers the block. (schedule_copy).
  77 *
  78 * iv) insert the new mapping into the origin's btree
  79 * (process_prepared_mapping).  This act of inserting breaks some
  80 * sharing of btree nodes between the two devices.  Breaking sharing only
  81 * effects the btree of that specific device.  Btrees for the other
  82 * devices that share the block never change.  The btree for the origin
  83 * device as it was after the last commit is untouched, ie. we're using
  84 * persistent data structures in the functional programming sense.
  85 *
  86 * v) unplug io to this physical block, including the io that triggered
  87 * the breaking of sharing.
  88 *
  89 * Steps (ii) and (iii) occur in parallel.
  90 *
  91 * The metadata _doesn't_ need to be committed before the io continues.  We
  92 * get away with this because the io is always written to a _new_ block.
  93 * If there's a crash, then:
  94 *
  95 * - The origin mapping will point to the old origin block (the shared
  96 * one).  This will contain the data as it was before the io that triggered
  97 * the breaking of sharing came in.
  98 *
  99 * - The snap mapping still points to the old block.  As it would after
 100 * the commit.
 101 *
 102 * The downside of this scheme is the timestamp magic isn't perfect, and
 103 * will continue to think that data block in the snapshot device is shared
 104 * even after the write to the origin has broken sharing.  I suspect data
 105 * blocks will typically be shared by many different devices, so we're
 106 * breaking sharing n + 1 times, rather than n, where n is the number of
 107 * devices that reference this data block.  At the moment I think the
 108 * benefits far, far outweigh the disadvantages.
 109 */
 110
 111/*----------------------------------------------------------------*/
 112
 113/*
 114 * Key building.
 115 */
 116enum lock_space {
 117	VIRTUAL,
 118	PHYSICAL
 119};
 120
 121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
 122		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 123{
 124	key->virtual = (ls == VIRTUAL);
 125	key->dev = dm_thin_dev_id(td);
 126	key->block_begin = b;
 127	key->block_end = e;
 128
 129	return dm_cell_key_has_valid_range(key);
 130}
 131
 132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 133			   struct dm_cell_key *key)
 134{
 135	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
 136}
 137
 138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 139			      struct dm_cell_key *key)
 140{
 141	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
 142}
 143
 144/*----------------------------------------------------------------*/
 145
 146#define THROTTLE_THRESHOLD (1 * HZ)
 147
 148struct throttle {
 149	struct rw_semaphore lock;
 150	unsigned long threshold;
 151	bool throttle_applied;
 152};
 153
 154static void throttle_init(struct throttle *t)
 155{
 156	init_rwsem(&t->lock);
 157	t->throttle_applied = false;
 158}
 159
 160static void throttle_work_start(struct throttle *t)
 161{
 162	t->threshold = jiffies + THROTTLE_THRESHOLD;
 163}
 164
 165static void throttle_work_update(struct throttle *t)
 166{
 167	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
 168		down_write(&t->lock);
 169		t->throttle_applied = true;
 170	}
 171}
 172
 173static void throttle_work_complete(struct throttle *t)
 174{
 175	if (t->throttle_applied) {
 176		t->throttle_applied = false;
 177		up_write(&t->lock);
 178	}
 179}
 180
 181static void throttle_lock(struct throttle *t)
 182{
 183	down_read(&t->lock);
 184}
 185
 186static void throttle_unlock(struct throttle *t)
 187{
 188	up_read(&t->lock);
 189}
 190
 191/*----------------------------------------------------------------*/
 192
 193/*
 194 * A pool device ties together a metadata device and a data device.  It
 195 * also provides the interface for creating and destroying internal
 196 * devices.
 197 */
 198struct dm_thin_new_mapping;
 199
 200/*
 201 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 202 */
 203enum pool_mode {
 204	PM_WRITE,		/* metadata may be changed */
 205	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 206
 207	/*
 208	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 209	 */
 210	PM_OUT_OF_METADATA_SPACE,
 211	PM_READ_ONLY,		/* metadata may not be changed */
 212
 213	PM_FAIL,		/* all I/O fails */
 214};
 215
 216struct pool_features {
 217	enum pool_mode mode;
 218
 219	bool zero_new_blocks:1;
 220	bool discard_enabled:1;
 221	bool discard_passdown:1;
 222	bool error_if_no_space:1;
 223};
 224
 225struct thin_c;
 226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 229
 230#define CELL_SORT_ARRAY_SIZE 8192
 231
 232struct pool {
 233	struct list_head list;
 234	struct dm_target *ti;	/* Only set if a pool target is bound */
 235
 236	struct mapped_device *pool_md;
 237	struct block_device *data_dev;
 238	struct block_device *md_dev;
 239	struct dm_pool_metadata *pmd;
 240
 241	dm_block_t low_water_blocks;
 242	uint32_t sectors_per_block;
 243	int sectors_per_block_shift;
 244
 245	struct pool_features pf;
 246	bool low_water_triggered:1;	/* A dm event has been sent */
 247	bool suspended:1;
 248	bool out_of_data_space:1;
 249
 250	struct dm_bio_prison *prison;
 251	struct dm_kcopyd_client *copier;
 252
 253	struct work_struct worker;
 254	struct workqueue_struct *wq;
 255	struct throttle throttle;
 256	struct delayed_work waker;
 257	struct delayed_work no_space_timeout;
 258
 259	unsigned long last_commit_jiffies;
 260	unsigned int ref_count;
 261
 262	spinlock_t lock;
 263	struct bio_list deferred_flush_bios;
 264	struct bio_list deferred_flush_completions;
 265	struct list_head prepared_mappings;
 266	struct list_head prepared_discards;
 267	struct list_head prepared_discards_pt2;
 268	struct list_head active_thins;
 269
 270	struct dm_deferred_set *shared_read_ds;
 271	struct dm_deferred_set *all_io_ds;
 272
 273	struct dm_thin_new_mapping *next_mapping;
 
 274
 275	process_bio_fn process_bio;
 276	process_bio_fn process_discard;
 277
 278	process_cell_fn process_cell;
 279	process_cell_fn process_discard_cell;
 280
 281	process_mapping_fn process_prepared_mapping;
 282	process_mapping_fn process_prepared_discard;
 283	process_mapping_fn process_prepared_discard_pt2;
 284
 285	struct dm_bio_prison_cell **cell_sort_array;
 286
 287	mempool_t mapping_pool;
 288};
 289
 
 290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 291
 292static enum pool_mode get_pool_mode(struct pool *pool)
 293{
 294	return pool->pf.mode;
 295}
 296
 297static void notify_of_pool_mode_change(struct pool *pool)
 298{
 299	static const char *descs[] = {
 300		"write",
 301		"out-of-data-space",
 302		"read-only",
 303		"read-only",
 304		"fail"
 305	};
 306	const char *extra_desc = NULL;
 307	enum pool_mode mode = get_pool_mode(pool);
 308
 309	if (mode == PM_OUT_OF_DATA_SPACE) {
 310		if (!pool->pf.error_if_no_space)
 311			extra_desc = " (queue IO)";
 312		else
 313			extra_desc = " (error IO)";
 314	}
 315
 316	dm_table_event(pool->ti->table);
 317	DMINFO("%s: switching pool to %s%s mode",
 318	       dm_device_name(pool->pool_md),
 319	       descs[(int)mode], extra_desc ? : "");
 320}
 321
 322/*
 323 * Target context for a pool.
 324 */
 325struct pool_c {
 326	struct dm_target *ti;
 327	struct pool *pool;
 328	struct dm_dev *data_dev;
 329	struct dm_dev *metadata_dev;
 
 330
 331	dm_block_t low_water_blocks;
 332	struct pool_features requested_pf; /* Features requested during table load */
 333	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 334};
 335
 336/*
 337 * Target context for a thin.
 338 */
 339struct thin_c {
 340	struct list_head list;
 341	struct dm_dev *pool_dev;
 342	struct dm_dev *origin_dev;
 343	sector_t origin_size;
 344	dm_thin_id dev_id;
 345
 346	struct pool *pool;
 347	struct dm_thin_device *td;
 348	struct mapped_device *thin_md;
 349
 350	bool requeue_mode:1;
 351	spinlock_t lock;
 352	struct list_head deferred_cells;
 353	struct bio_list deferred_bio_list;
 354	struct bio_list retry_on_resume_list;
 355	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 356
 357	/*
 358	 * Ensures the thin is not destroyed until the worker has finished
 359	 * iterating the active_thins list.
 360	 */
 361	refcount_t refcount;
 362	struct completion can_destroy;
 363};
 364
 365/*----------------------------------------------------------------*/
 366
 367static bool block_size_is_power_of_two(struct pool *pool)
 368{
 369	return pool->sectors_per_block_shift >= 0;
 370}
 371
 372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 373{
 374	return block_size_is_power_of_two(pool) ?
 375		(b << pool->sectors_per_block_shift) :
 376		(b * pool->sectors_per_block);
 377}
 378
 379/*----------------------------------------------------------------*/
 380
 381struct discard_op {
 382	struct thin_c *tc;
 383	struct blk_plug plug;
 384	struct bio *parent_bio;
 385	struct bio *bio;
 386};
 387
 388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 389{
 390	BUG_ON(!parent);
 391
 392	op->tc = tc;
 393	blk_start_plug(&op->plug);
 394	op->parent_bio = parent;
 395	op->bio = NULL;
 396}
 397
 398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 399{
 400	struct thin_c *tc = op->tc;
 401	sector_t s = block_to_sectors(tc->pool, data_b);
 402	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 403
 404	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		op->bio->bi_opf = REQ_OP_DISCARD;
 416		submit_bio(op->bio);
 417	}
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 437{
 438	queue_work(pool->wq, &pool->worker);
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r)
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462
 463	return r;
 464}
 465
 466static void cell_release(struct pool *pool,
 467			 struct dm_bio_prison_cell *cell,
 468			 struct bio_list *bios)
 469{
 470	dm_cell_release(pool->prison, cell, bios);
 471	dm_bio_prison_free_cell(pool->prison, cell);
 472}
 473
 474static void cell_visit_release(struct pool *pool,
 475			       void (*fn)(void *, struct dm_bio_prison_cell *),
 476			       void *context,
 477			       struct dm_bio_prison_cell *cell)
 478{
 479	dm_cell_visit_release(pool->prison, fn, context, cell);
 480	dm_bio_prison_free_cell(pool->prison, cell);
 481}
 482
 483static void cell_release_no_holder(struct pool *pool,
 484				   struct dm_bio_prison_cell *cell,
 485				   struct bio_list *bios)
 486{
 487	dm_cell_release_no_holder(pool->prison, cell, bios);
 488	dm_bio_prison_free_cell(pool->prison, cell);
 489}
 490
 491static void cell_error_with_code(struct pool *pool,
 492		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 493{
 494	dm_cell_error(pool->prison, cell, error_code);
 495	dm_bio_prison_free_cell(pool->prison, cell);
 496}
 497
 498static blk_status_t get_pool_io_error_code(struct pool *pool)
 499{
 500	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 501}
 502
 503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 504{
 505	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 506}
 507
 508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 509{
 510	cell_error_with_code(pool, cell, 0);
 511}
 512
 513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 
 514{
 515	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 
 516}
 517
 518/*----------------------------------------------------------------*/
 519
 520/*
 521 * A global list of pools that uses a struct mapped_device as a key.
 522 */
 523static struct dm_thin_pool_table {
 524	struct mutex mutex;
 525	struct list_head pools;
 526} dm_thin_pool_table;
 527
 528static void pool_table_init(void)
 529{
 530	mutex_init(&dm_thin_pool_table.mutex);
 531	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 532}
 533
 534static void pool_table_exit(void)
 535{
 536	mutex_destroy(&dm_thin_pool_table.mutex);
 537}
 538
 539static void __pool_table_insert(struct pool *pool)
 540{
 541	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 542	list_add(&pool->list, &dm_thin_pool_table.pools);
 543}
 544
 545static void __pool_table_remove(struct pool *pool)
 546{
 547	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 548	list_del(&pool->list);
 549}
 550
 551static struct pool *__pool_table_lookup(struct mapped_device *md)
 552{
 553	struct pool *pool = NULL, *tmp;
 554
 555	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 556
 557	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 558		if (tmp->pool_md == md) {
 559			pool = tmp;
 560			break;
 561		}
 562	}
 563
 564	return pool;
 565}
 566
 567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 568{
 569	struct pool *pool = NULL, *tmp;
 570
 571	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 572
 573	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 574		if (tmp->md_dev == md_dev) {
 575			pool = tmp;
 576			break;
 577		}
 578	}
 579
 580	return pool;
 581}
 582
 583/*----------------------------------------------------------------*/
 584
 585struct dm_thin_endio_hook {
 586	struct thin_c *tc;
 587	struct dm_deferred_entry *shared_read_entry;
 588	struct dm_deferred_entry *all_io_entry;
 589	struct dm_thin_new_mapping *overwrite_mapping;
 590	struct rb_node rb_node;
 591	struct dm_bio_prison_cell *cell;
 592};
 593
 594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 595{
 596	bio_list_merge(bios, master);
 597	bio_list_init(master);
 598}
 599
 600static void error_bio_list(struct bio_list *bios, blk_status_t error)
 601{
 602	struct bio *bio;
 603
 604	while ((bio = bio_list_pop(bios))) {
 605		bio->bi_status = error;
 606		bio_endio(bio);
 607	}
 608}
 609
 610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 611		blk_status_t error)
 612{
 613	struct bio_list bios;
 
 614
 615	bio_list_init(&bios);
 616
 617	spin_lock_irq(&tc->lock);
 618	__merge_bio_list(&bios, master);
 619	spin_unlock_irq(&tc->lock);
 
 620
 621	error_bio_list(&bios, error);
 
 622}
 623
 624static void requeue_deferred_cells(struct thin_c *tc)
 625{
 626	struct pool *pool = tc->pool;
 627	struct list_head cells;
 628	struct dm_bio_prison_cell *cell, *tmp;
 629
 630	INIT_LIST_HEAD(&cells);
 631
 632	spin_lock_irq(&tc->lock);
 633	list_splice_init(&tc->deferred_cells, &cells);
 634	spin_unlock_irq(&tc->lock);
 635
 636	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 637		cell_requeue(pool, cell);
 638}
 639
 640static void requeue_io(struct thin_c *tc)
 641{
 
 
 642	struct bio_list bios;
 643
 644	bio_list_init(&bios);
 645
 646	spin_lock_irq(&tc->lock);
 647	__merge_bio_list(&bios, &tc->deferred_bio_list);
 648	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 649	spin_unlock_irq(&tc->lock);
 650
 651	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 652	requeue_deferred_cells(tc);
 653}
 654
 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 656{
 657	struct thin_c *tc;
 658
 659	rcu_read_lock();
 660	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 661		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 662	rcu_read_unlock();
 663}
 664
 665static void error_retry_list(struct pool *pool)
 666{
 667	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 668}
 669
 670/*
 671 * This section of code contains the logic for processing a thin device's IO.
 672 * Much of the code depends on pool object resources (lists, workqueues, etc)
 673 * but most is exclusively called from the thin target rather than the thin-pool
 674 * target.
 675 */
 676
 
 
 
 
 
 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 678{
 679	struct pool *pool = tc->pool;
 680	sector_t block_nr = bio->bi_iter.bi_sector;
 681
 682	if (block_size_is_power_of_two(pool))
 683		block_nr >>= pool->sectors_per_block_shift;
 684	else
 685		(void) sector_div(block_nr, pool->sectors_per_block);
 686
 687	return block_nr;
 688}
 689
 690/*
 691 * Returns the _complete_ blocks that this bio covers.
 692 */
 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 694				dm_block_t *begin, dm_block_t *end)
 695{
 696	struct pool *pool = tc->pool;
 697	sector_t b = bio->bi_iter.bi_sector;
 698	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 699
 700	b += pool->sectors_per_block - 1ull; /* so we round up */
 701
 702	if (block_size_is_power_of_two(pool)) {
 703		b >>= pool->sectors_per_block_shift;
 704		e >>= pool->sectors_per_block_shift;
 705	} else {
 706		(void) sector_div(b, pool->sectors_per_block);
 707		(void) sector_div(e, pool->sectors_per_block);
 708	}
 709
 710	if (e < b)
 711		/* Can happen if the bio is within a single block. */
 712		e = b;
 713
 714	*begin = b;
 715	*end = e;
 716}
 717
 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 719{
 720	struct pool *pool = tc->pool;
 721	sector_t bi_sector = bio->bi_iter.bi_sector;
 722
 723	bio_set_dev(bio, tc->pool_dev->bdev);
 724	if (block_size_is_power_of_two(pool))
 725		bio->bi_iter.bi_sector =
 726			(block << pool->sectors_per_block_shift) |
 727			(bi_sector & (pool->sectors_per_block - 1));
 728	else
 729		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 730				 sector_div(bi_sector, pool->sectors_per_block);
 731}
 732
 733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 734{
 735	bio_set_dev(bio, tc->origin_dev->bdev);
 736}
 737
 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 739{
 740	return op_is_flush(bio->bi_opf) &&
 741		dm_thin_changed_this_transaction(tc->td);
 742}
 743
 744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 745{
 746	struct dm_thin_endio_hook *h;
 747
 748	if (bio_op(bio) == REQ_OP_DISCARD)
 749		return;
 750
 751	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 752	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 753}
 754
 755static void issue(struct thin_c *tc, struct bio *bio)
 756{
 757	struct pool *pool = tc->pool;
 
 758
 759	if (!bio_triggers_commit(tc, bio)) {
 760		dm_submit_bio_remap(bio, NULL);
 761		return;
 762	}
 763
 764	/*
 765	 * Complete bio with an error if earlier I/O caused changes to
 766	 * the metadata that can't be committed e.g, due to I/O errors
 767	 * on the metadata device.
 768	 */
 769	if (dm_thin_aborted_changes(tc->td)) {
 770		bio_io_error(bio);
 771		return;
 772	}
 773
 774	/*
 775	 * Batch together any bios that trigger commits and then issue a
 776	 * single commit for them in process_deferred_bios().
 777	 */
 778	spin_lock_irq(&pool->lock);
 779	bio_list_add(&pool->deferred_flush_bios, bio);
 780	spin_unlock_irq(&pool->lock);
 781}
 782
 783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 784{
 785	remap_to_origin(tc, bio);
 786	issue(tc, bio);
 787}
 788
 789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 790			    dm_block_t block)
 791{
 792	remap(tc, bio, block);
 793	issue(tc, bio);
 794}
 795
 796/*----------------------------------------------------------------*/
 797
 798/*
 799 * Bio endio functions.
 800 */
 801struct dm_thin_new_mapping {
 802	struct list_head list;
 803
 
 
 804	bool pass_discard:1;
 805	bool maybe_shared:1;
 806
 807	/*
 808	 * Track quiescing, copying and zeroing preparation actions.  When this
 809	 * counter hits zero the block is prepared and can be inserted into the
 810	 * btree.
 811	 */
 812	atomic_t prepare_actions;
 813
 814	blk_status_t status;
 815	struct thin_c *tc;
 816	dm_block_t virt_begin, virt_end;
 817	dm_block_t data_block;
 818	struct dm_bio_prison_cell *cell;
 819
 820	/*
 821	 * If the bio covers the whole area of a block then we can avoid
 822	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 823	 * still be in the cell, so care has to be taken to avoid issuing
 824	 * the bio twice.
 825	 */
 826	struct bio *bio;
 827	bio_end_io_t *saved_bi_end_io;
 828};
 829
 830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 831{
 832	struct pool *pool = m->tc->pool;
 833
 834	if (atomic_dec_and_test(&m->prepare_actions)) {
 835		list_add_tail(&m->list, &pool->prepared_mappings);
 836		wake_worker(pool);
 837	}
 838}
 839
 840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 841{
 842	unsigned long flags;
 
 843	struct pool *pool = m->tc->pool;
 844
 
 
 845	spin_lock_irqsave(&pool->lock, flags);
 846	__complete_mapping_preparation(m);
 
 847	spin_unlock_irqrestore(&pool->lock, flags);
 848}
 849
 850static void copy_complete(int read_err, unsigned long write_err, void *context)
 851{
 852	struct dm_thin_new_mapping *m = context;
 853
 854	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 855	complete_mapping_preparation(m);
 856}
 857
 858static void overwrite_endio(struct bio *bio)
 859{
 
 860	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 861	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 
 862
 863	bio->bi_end_io = m->saved_bi_end_io;
 864
 865	m->status = bio->bi_status;
 866	complete_mapping_preparation(m);
 
 
 867}
 868
 869/*----------------------------------------------------------------*/
 870
 871/*
 872 * Workqueue.
 873 */
 874
 875/*
 876 * Prepared mapping jobs.
 877 */
 878
 879/*
 880 * This sends the bios in the cell, except the original holder, back
 881 * to the deferred_bios list.
 882 */
 883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 884{
 885	struct pool *pool = tc->pool;
 886	unsigned long flags;
 887	struct bio_list bios;
 888
 889	bio_list_init(&bios);
 890	cell_release_no_holder(pool, cell, &bios);
 891
 892	if (!bio_list_empty(&bios)) {
 893		spin_lock_irqsave(&tc->lock, flags);
 894		bio_list_merge(&tc->deferred_bio_list, &bios);
 895		spin_unlock_irqrestore(&tc->lock, flags);
 896		wake_worker(pool);
 897	}
 898}
 899
 900static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 
 
 901
 902struct remap_info {
 903	struct thin_c *tc;
 904	struct bio_list defer_bios;
 905	struct bio_list issue_bios;
 906};
 907
 908static void __inc_remap_and_issue_cell(void *context,
 909				       struct dm_bio_prison_cell *cell)
 910{
 911	struct remap_info *info = context;
 912	struct bio *bio;
 913
 914	while ((bio = bio_list_pop(&cell->bios))) {
 915		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 916			bio_list_add(&info->defer_bios, bio);
 917		else {
 918			inc_all_io_entry(info->tc->pool, bio);
 919
 920			/*
 921			 * We can't issue the bios with the bio prison lock
 922			 * held, so we add them to a list to issue on
 923			 * return from this function.
 924			 */
 925			bio_list_add(&info->issue_bios, bio);
 926		}
 927	}
 928}
 929
 930static void inc_remap_and_issue_cell(struct thin_c *tc,
 931				     struct dm_bio_prison_cell *cell,
 932				     dm_block_t block)
 
 933{
 934	struct bio *bio;
 935	struct remap_info info;
 936
 937	info.tc = tc;
 938	bio_list_init(&info.defer_bios);
 939	bio_list_init(&info.issue_bios);
 940
 941	/*
 942	 * We have to be careful to inc any bios we're about to issue
 943	 * before the cell is released, and avoid a race with new bios
 944	 * being added to the cell.
 945	 */
 946	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 947			   &info, cell);
 948
 949	while ((bio = bio_list_pop(&info.defer_bios)))
 950		thin_defer_bio(tc, bio);
 
 951
 952	while ((bio = bio_list_pop(&info.issue_bios)))
 953		remap_and_issue(info.tc, bio, block);
 954}
 955
 956static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 957{
 
 
 
 
 958	cell_error(m->tc->pool, m->cell);
 959	list_del(&m->list);
 960	mempool_free(m, &m->tc->pool->mapping_pool);
 961}
 962
 963static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 964{
 965	struct pool *pool = tc->pool;
 966
 967	/*
 968	 * If the bio has the REQ_FUA flag set we must commit the metadata
 969	 * before signaling its completion.
 970	 */
 971	if (!bio_triggers_commit(tc, bio)) {
 972		bio_endio(bio);
 973		return;
 974	}
 975
 976	/*
 977	 * Complete bio with an error if earlier I/O caused changes to the
 978	 * metadata that can't be committed, e.g, due to I/O errors on the
 979	 * metadata device.
 980	 */
 981	if (dm_thin_aborted_changes(tc->td)) {
 982		bio_io_error(bio);
 983		return;
 984	}
 985
 986	/*
 987	 * Batch together any bios that trigger commits and then issue a
 988	 * single commit for them in process_deferred_bios().
 989	 */
 990	spin_lock_irq(&pool->lock);
 991	bio_list_add(&pool->deferred_flush_completions, bio);
 992	spin_unlock_irq(&pool->lock);
 993}
 994
 995static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 996{
 997	struct thin_c *tc = m->tc;
 998	struct pool *pool = tc->pool;
 999	struct bio *bio = m->bio;
1000	int r;
1001
1002	if (m->status) {
 
 
 
 
 
 
1003		cell_error(pool, m->cell);
1004		goto out;
1005	}
1006
1007	/*
1008	 * Commit the prepared block into the mapping btree.
1009	 * Any I/O for this block arriving after this point will get
1010	 * remapped to it directly.
1011	 */
1012	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013	if (r) {
1014		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015		cell_error(pool, m->cell);
1016		goto out;
1017	}
1018
1019	/*
1020	 * Release any bios held while the block was being provisioned.
1021	 * If we are processing a write bio that completely covers the block,
1022	 * we already processed it so can ignore it now when processing
1023	 * the bios in the cell.
1024	 */
1025	if (bio) {
1026		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027		complete_overwrite_bio(tc, bio);
1028	} else {
1029		inc_all_io_entry(tc->pool, m->cell->holder);
1030		remap_and_issue(tc, m->cell->holder, m->data_block);
1031		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032	}
1033
1034out:
1035	list_del(&m->list);
1036	mempool_free(m, &pool->mapping_pool);
1037}
1038
1039/*----------------------------------------------------------------*/
1040
1041static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042{
1043	struct thin_c *tc = m->tc;
1044
1045	if (m->cell)
1046		cell_defer_no_holder(tc, m->cell);
1047	mempool_free(m, &tc->pool->mapping_pool);
1048}
1049
1050static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1051{
1052	bio_io_error(m->bio);
1053	free_discard_mapping(m);
1054}
1055
1056static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1057{
1058	bio_endio(m->bio);
1059	free_discard_mapping(m);
1060}
1061
1062static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1063{
1064	int r;
1065	struct thin_c *tc = m->tc;
1066
1067	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1068	if (r) {
1069		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1070		bio_io_error(m->bio);
1071	} else
1072		bio_endio(m->bio);
1073
1074	cell_defer_no_holder(tc, m->cell);
1075	mempool_free(m, &tc->pool->mapping_pool);
 
1076}
1077
1078/*----------------------------------------------------------------*/
1079
1080static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1081						   struct bio *discard_parent)
1082{
1083	/*
1084	 * We've already unmapped this range of blocks, but before we
1085	 * passdown we have to check that these blocks are now unused.
1086	 */
1087	int r = 0;
1088	bool shared = true;
1089	struct thin_c *tc = m->tc;
1090	struct pool *pool = tc->pool;
1091	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1092	struct discard_op op;
1093
1094	begin_discard(&op, tc, discard_parent);
1095	while (b != end) {
1096		/* find start of unmapped run */
1097		for (; b < end; b++) {
1098			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1099			if (r)
1100				goto out;
1101
1102			if (!shared)
1103				break;
1104		}
1105
1106		if (b == end)
1107			break;
1108
1109		/* find end of run */
1110		for (e = b + 1; e != end; e++) {
1111			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1112			if (r)
1113				goto out;
1114
1115			if (shared)
1116				break;
 
 
 
 
 
 
 
1117		}
 
 
1118
1119		r = issue_discard(&op, b, e);
1120		if (r)
1121			goto out;
1122
1123		b = e;
1124	}
1125out:
1126	end_discard(&op, r);
1127}
1128
1129static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1130{
1131	unsigned long flags;
1132	struct pool *pool = m->tc->pool;
1133
1134	spin_lock_irqsave(&pool->lock, flags);
1135	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1136	spin_unlock_irqrestore(&pool->lock, flags);
1137	wake_worker(pool);
1138}
1139
1140static void passdown_endio(struct bio *bio)
1141{
1142	/*
1143	 * It doesn't matter if the passdown discard failed, we still want
1144	 * to unmap (we ignore err).
1145	 */
1146	queue_passdown_pt2(bio->bi_private);
1147	bio_put(bio);
1148}
1149
1150static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1151{
1152	int r;
1153	struct thin_c *tc = m->tc;
1154	struct pool *pool = tc->pool;
1155	struct bio *discard_parent;
1156	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1157
1158	/*
1159	 * Only this thread allocates blocks, so we can be sure that the
1160	 * newly unmapped blocks will not be allocated before the end of
1161	 * the function.
1162	 */
1163	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1164	if (r) {
1165		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1166		bio_io_error(m->bio);
1167		cell_defer_no_holder(tc, m->cell);
1168		mempool_free(m, &pool->mapping_pool);
1169		return;
1170	}
1171
1172	/*
1173	 * Increment the unmapped blocks.  This prevents a race between the
1174	 * passdown io and reallocation of freed blocks.
1175	 */
1176	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1177	if (r) {
1178		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1179		bio_io_error(m->bio);
1180		cell_defer_no_holder(tc, m->cell);
1181		mempool_free(m, &pool->mapping_pool);
1182		return;
1183	}
1184
1185	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1186	discard_parent->bi_end_io = passdown_endio;
1187	discard_parent->bi_private = m;
1188	if (m->maybe_shared)
1189		passdown_double_checking_shared_status(m, discard_parent);
1190	else {
1191		struct discard_op op;
1192
1193		begin_discard(&op, tc, discard_parent);
1194		r = issue_discard(&op, m->data_block, data_end);
1195		end_discard(&op, r);
1196	}
1197}
1198
1199static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1200{
1201	int r;
1202	struct thin_c *tc = m->tc;
1203	struct pool *pool = tc->pool;
1204
1205	/*
1206	 * The passdown has completed, so now we can decrement all those
1207	 * unmapped blocks.
1208	 */
1209	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1210				   m->data_block + (m->virt_end - m->virt_begin));
1211	if (r) {
1212		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1213		bio_io_error(m->bio);
1214	} else
1215		bio_endio(m->bio);
1216
1217	cell_defer_no_holder(tc, m->cell);
1218	mempool_free(m, &pool->mapping_pool);
1219}
1220
1221static void process_prepared(struct pool *pool, struct list_head *head,
1222			     process_mapping_fn *fn)
1223{
 
1224	struct list_head maps;
1225	struct dm_thin_new_mapping *m, *tmp;
1226
1227	INIT_LIST_HEAD(&maps);
1228	spin_lock_irq(&pool->lock);
1229	list_splice_init(head, &maps);
1230	spin_unlock_irq(&pool->lock);
1231
1232	list_for_each_entry_safe(m, tmp, &maps, list)
1233		(*fn)(m);
1234}
1235
1236/*
1237 * Deferred bio jobs.
1238 */
1239static int io_overlaps_block(struct pool *pool, struct bio *bio)
1240{
1241	return bio->bi_iter.bi_size ==
1242		(pool->sectors_per_block << SECTOR_SHIFT);
1243}
1244
1245static int io_overwrites_block(struct pool *pool, struct bio *bio)
1246{
1247	return (bio_data_dir(bio) == WRITE) &&
1248		io_overlaps_block(pool, bio);
1249}
1250
1251static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1252			       bio_end_io_t *fn)
1253{
1254	*save = bio->bi_end_io;
1255	bio->bi_end_io = fn;
1256}
1257
1258static int ensure_next_mapping(struct pool *pool)
1259{
1260	if (pool->next_mapping)
1261		return 0;
1262
1263	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1264
1265	return pool->next_mapping ? 0 : -ENOMEM;
1266}
1267
1268static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1269{
1270	struct dm_thin_new_mapping *m = pool->next_mapping;
1271
1272	BUG_ON(!pool->next_mapping);
1273
1274	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1275	INIT_LIST_HEAD(&m->list);
1276	m->bio = NULL;
1277
1278	pool->next_mapping = NULL;
1279
1280	return m;
1281}
1282
1283static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1284		    sector_t begin, sector_t end)
1285{
1286	struct dm_io_region to;
1287
1288	to.bdev = tc->pool_dev->bdev;
1289	to.sector = begin;
1290	to.count = end - begin;
1291
1292	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1293}
1294
1295static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1296				      dm_block_t data_begin,
1297				      struct dm_thin_new_mapping *m)
1298{
1299	struct pool *pool = tc->pool;
1300	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1301
1302	h->overwrite_mapping = m;
1303	m->bio = bio;
1304	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1305	inc_all_io_entry(pool, bio);
1306	remap_and_issue(tc, bio, data_begin);
1307}
1308
1309/*
1310 * A partial copy also needs to zero the uncopied region.
1311 */
1312static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1313			  struct dm_dev *origin, dm_block_t data_origin,
1314			  dm_block_t data_dest,
1315			  struct dm_bio_prison_cell *cell, struct bio *bio,
1316			  sector_t len)
1317{
 
1318	struct pool *pool = tc->pool;
1319	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1320
1321	m->tc = tc;
1322	m->virt_begin = virt_block;
1323	m->virt_end = virt_block + 1u;
1324	m->data_block = data_dest;
1325	m->cell = cell;
1326
1327	/*
1328	 * quiesce action + copy action + an extra reference held for the
1329	 * duration of this function (we may need to inc later for a
1330	 * partial zero).
1331	 */
1332	atomic_set(&m->prepare_actions, 3);
1333
1334	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1335		complete_mapping_preparation(m); /* already quiesced */
1336
1337	/*
1338	 * IO to pool_dev remaps to the pool target's data_dev.
1339	 *
1340	 * If the whole block of data is being overwritten, we can issue the
1341	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1342	 */
1343	if (io_overwrites_block(pool, bio))
1344		remap_and_issue_overwrite(tc, bio, data_dest, m);
1345	else {
 
 
 
 
 
 
1346		struct dm_io_region from, to;
1347
1348		from.bdev = origin->bdev;
1349		from.sector = data_origin * pool->sectors_per_block;
1350		from.count = len;
1351
1352		to.bdev = tc->pool_dev->bdev;
1353		to.sector = data_dest * pool->sectors_per_block;
1354		to.count = len;
1355
1356		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1357			       0, copy_complete, m);
1358
1359		/*
1360		 * Do we need to zero a tail region?
1361		 */
1362		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1363			atomic_inc(&m->prepare_actions);
1364			ll_zero(tc, m,
1365				data_dest * pool->sectors_per_block + len,
1366				(data_dest + 1) * pool->sectors_per_block);
1367		}
1368	}
1369
1370	complete_mapping_preparation(m); /* drop our ref */
1371}
1372
1373static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1374				   dm_block_t data_origin, dm_block_t data_dest,
1375				   struct dm_bio_prison_cell *cell, struct bio *bio)
1376{
1377	schedule_copy(tc, virt_block, tc->pool_dev,
1378		      data_origin, data_dest, cell, bio,
1379		      tc->pool->sectors_per_block);
 
 
 
 
 
 
 
1380}
1381
1382static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1383			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1384			  struct bio *bio)
1385{
1386	struct pool *pool = tc->pool;
1387	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1388
1389	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
 
1390	m->tc = tc;
1391	m->virt_begin = virt_block;
1392	m->virt_end = virt_block + 1u;
1393	m->data_block = data_block;
1394	m->cell = cell;
1395
1396	/*
1397	 * If the whole block of data is being overwritten or we are not
1398	 * zeroing pre-existing data, we can issue the bio immediately.
1399	 * Otherwise we use kcopyd to zero the data first.
1400	 */
1401	if (pool->pf.zero_new_blocks) {
1402		if (io_overwrites_block(pool, bio))
1403			remap_and_issue_overwrite(tc, bio, data_block, m);
1404		else
1405			ll_zero(tc, m, data_block * pool->sectors_per_block,
1406				(data_block + 1) * pool->sectors_per_block);
1407	} else
1408		process_prepared_mapping(m);
1409}
1410
1411static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1412				   dm_block_t data_dest,
1413				   struct dm_bio_prison_cell *cell, struct bio *bio)
1414{
1415	struct pool *pool = tc->pool;
1416	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1417	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1418
1419	if (virt_block_end <= tc->origin_size)
1420		schedule_copy(tc, virt_block, tc->origin_dev,
1421			      virt_block, data_dest, cell, bio,
1422			      pool->sectors_per_block);
1423
1424	else if (virt_block_begin < tc->origin_size)
1425		schedule_copy(tc, virt_block, tc->origin_dev,
1426			      virt_block, data_dest, cell, bio,
1427			      tc->origin_size - virt_block_begin);
1428
1429	else
1430		schedule_zero(tc, virt_block, data_dest, cell, bio);
1431}
1432
1433static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1434
1435static void requeue_bios(struct pool *pool);
1436
1437static bool is_read_only_pool_mode(enum pool_mode mode)
1438{
1439	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1440}
1441
1442static bool is_read_only(struct pool *pool)
1443{
1444	return is_read_only_pool_mode(get_pool_mode(pool));
1445}
1446
1447static void check_for_metadata_space(struct pool *pool)
1448{
1449	int r;
1450	const char *ooms_reason = NULL;
1451	dm_block_t nr_free;
1452
1453	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1454	if (r)
1455		ooms_reason = "Could not get free metadata blocks";
1456	else if (!nr_free)
1457		ooms_reason = "No free metadata blocks";
1458
1459	if (ooms_reason && !is_read_only(pool)) {
1460		DMERR("%s", ooms_reason);
1461		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1462	}
1463}
1464
1465static void check_for_data_space(struct pool *pool)
1466{
1467	int r;
1468	dm_block_t nr_free;
1469
1470	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1471		return;
 
 
 
 
 
 
1472
1473	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1474	if (r)
1475		return;
1476
1477	if (nr_free) {
1478		set_pool_mode(pool, PM_WRITE);
1479		requeue_bios(pool);
 
 
 
1480	}
1481}
1482
1483/*
1484 * A non-zero return indicates read_only or fail_io mode.
1485 * Many callers don't care about the return value.
1486 */
1487static int commit(struct pool *pool)
1488{
1489	int r;
1490
1491	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1492		return -EINVAL;
1493
1494	r = dm_pool_commit_metadata(pool->pmd);
1495	if (r)
1496		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1497	else {
1498		check_for_metadata_space(pool);
1499		check_for_data_space(pool);
1500	}
1501
1502	return r;
1503}
1504
1505static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1506{
 
 
1507	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1508		DMWARN("%s: reached low water mark for data device: sending event.",
1509		       dm_device_name(pool->pool_md));
1510		spin_lock_irq(&pool->lock);
1511		pool->low_water_triggered = true;
1512		spin_unlock_irq(&pool->lock);
1513		dm_table_event(pool->ti->table);
1514	}
1515}
1516
 
 
1517static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1518{
1519	int r;
1520	dm_block_t free_blocks;
1521	struct pool *pool = tc->pool;
1522
1523	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1524		return -EINVAL;
1525
1526	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1527	if (r) {
1528		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1529		return r;
1530	}
1531
1532	check_low_water_mark(pool, free_blocks);
1533
1534	if (!free_blocks) {
1535		/*
1536		 * Try to commit to see if that will free up some
1537		 * more space.
1538		 */
1539		r = commit(pool);
1540		if (r)
1541			return r;
1542
1543		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1544		if (r) {
1545			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1546			return r;
1547		}
1548
1549		if (!free_blocks) {
1550			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1551			return -ENOSPC;
1552		}
1553	}
1554
1555	r = dm_pool_alloc_data_block(pool->pmd, result);
1556	if (r) {
1557		if (r == -ENOSPC)
1558			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559		else
1560			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1561		return r;
1562	}
1563
1564	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1565	if (r) {
1566		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1567		return r;
1568	}
1569
1570	if (!free_blocks) {
1571		/* Let's commit before we use up the metadata reserve. */
1572		r = commit(pool);
1573		if (r)
1574			return r;
1575	}
1576
1577	return 0;
1578}
1579
1580/*
1581 * If we have run out of space, queue bios until the device is
1582 * resumed, presumably after having been reloaded with more space.
1583 */
1584static void retry_on_resume(struct bio *bio)
1585{
1586	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1587	struct thin_c *tc = h->tc;
 
1588
1589	spin_lock_irq(&tc->lock);
1590	bio_list_add(&tc->retry_on_resume_list, bio);
1591	spin_unlock_irq(&tc->lock);
1592}
1593
1594static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1595{
1596	enum pool_mode m = get_pool_mode(pool);
1597
1598	switch (m) {
1599	case PM_WRITE:
1600		/* Shouldn't get here */
1601		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1602		return BLK_STS_IOERR;
1603
1604	case PM_OUT_OF_DATA_SPACE:
1605		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1606
1607	case PM_OUT_OF_METADATA_SPACE:
1608	case PM_READ_ONLY:
1609	case PM_FAIL:
1610		return BLK_STS_IOERR;
1611	default:
1612		/* Shouldn't get here */
1613		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1614		return BLK_STS_IOERR;
1615	}
1616}
1617
1618static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1619{
1620	blk_status_t error = should_error_unserviceable_bio(pool);
1621
1622	if (error) {
1623		bio->bi_status = error;
1624		bio_endio(bio);
1625	} else
1626		retry_on_resume(bio);
1627}
1628
1629static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1630{
1631	struct bio *bio;
1632	struct bio_list bios;
1633	blk_status_t error;
1634
1635	error = should_error_unserviceable_bio(pool);
1636	if (error) {
1637		cell_error_with_code(pool, cell, error);
1638		return;
1639	}
1640
1641	bio_list_init(&bios);
1642	cell_release(pool, cell, &bios);
1643
1644	while ((bio = bio_list_pop(&bios)))
1645		retry_on_resume(bio);
1646}
1647
1648static void process_discard_cell_no_passdown(struct thin_c *tc,
1649					     struct dm_bio_prison_cell *virt_cell)
1650{
1651	struct pool *pool = tc->pool;
1652	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1653
1654	/*
1655	 * We don't need to lock the data blocks, since there's no
1656	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1657	 */
1658	m->tc = tc;
1659	m->virt_begin = virt_cell->key.block_begin;
1660	m->virt_end = virt_cell->key.block_end;
1661	m->cell = virt_cell;
1662	m->bio = virt_cell->holder;
1663
1664	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1665		pool->process_prepared_discard(m);
1666}
1667
1668static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1669				 struct bio *bio)
1670{
1671	struct pool *pool = tc->pool;
1672
1673	int r;
1674	bool maybe_shared;
1675	struct dm_cell_key data_key;
1676	struct dm_bio_prison_cell *data_cell;
 
 
 
1677	struct dm_thin_new_mapping *m;
1678	dm_block_t virt_begin, virt_end, data_begin, data_end;
1679	dm_block_t len, next_boundary;
1680
1681	while (begin != end) {
1682		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1683					      &data_begin, &maybe_shared);
1684		if (r) {
1685			/*
1686			 * Silently fail, letting any mappings we've
1687			 * created complete.
1688			 */
1689			break;
1690		}
1691
1692		data_end = data_begin + (virt_end - virt_begin);
1693
 
 
 
1694		/*
1695		 * Make sure the data region obeys the bio prison restrictions.
 
 
1696		 */
1697		while (data_begin < data_end) {
1698			r = ensure_next_mapping(pool);
1699			if (r)
1700				return; /* we did our best */
1701
1702			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1703				<< BIO_PRISON_MAX_RANGE_SHIFT;
1704			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1705
1706			/* This key is certainly within range given the above splitting */
1707			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1708			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1709				/* contention, we'll give up with this range */
1710				data_begin += len;
1711				continue;
1712			}
1713
 
1714			/*
1715			 * IO may still be going to the destination block.  We must
1716			 * quiesce before we can do the removal.
1717			 */
1718			m = get_next_mapping(pool);
1719			m->tc = tc;
1720			m->maybe_shared = maybe_shared;
1721			m->virt_begin = virt_begin;
1722			m->virt_end = virt_begin + len;
1723			m->data_block = data_begin;
1724			m->cell = data_cell;
 
1725			m->bio = bio;
1726
 
 
 
 
 
 
 
 
 
 
 
1727			/*
1728			 * The parent bio must not complete before sub discard bios are
1729			 * chained to it (see end_discard's bio_chain)!
1730			 *
1731			 * This per-mapping bi_remaining increment is paired with
1732			 * the implicit decrement that occurs via bio_endio() in
1733			 * end_discard().
1734			 */
1735			bio_inc_remaining(bio);
1736			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1737				pool->process_prepared_discard(m);
1738
1739			virt_begin += len;
1740			data_begin += len;
1741		}
 
1742
1743		begin = virt_end;
1744	}
1745}
1746
1747static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1748{
1749	struct bio *bio = virt_cell->holder;
1750	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1751
1752	/*
1753	 * The virt_cell will only get freed once the origin bio completes.
1754	 * This means it will remain locked while all the individual
1755	 * passdown bios are in flight.
1756	 */
1757	h->cell = virt_cell;
1758	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1759
1760	/*
1761	 * We complete the bio now, knowing that the bi_remaining field
1762	 * will prevent completion until the sub range discards have
1763	 * completed.
1764	 */
1765	bio_endio(bio);
1766}
1767
1768static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1769{
1770	dm_block_t begin, end;
1771	struct dm_cell_key virt_key;
1772	struct dm_bio_prison_cell *virt_cell;
1773
1774	get_bio_block_range(tc, bio, &begin, &end);
1775	if (begin == end) {
1776		/*
1777		 * The discard covers less than a block.
1778		 */
1779		bio_endio(bio);
1780		return;
1781	}
1782
1783	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1784		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1785		bio_endio(bio);
1786		return;
1787	}
1788
1789	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1790		/*
1791		 * Potential starvation issue: We're relying on the
1792		 * fs/application being well behaved, and not trying to
1793		 * send IO to a region at the same time as discarding it.
1794		 * If they do this persistently then it's possible this
1795		 * cell will never be granted.
1796		 */
1797		return;
1798	}
1799
1800	tc->pool->process_discard_cell(tc, virt_cell);
1801}
1802
1803static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1804			  struct dm_cell_key *key,
1805			  struct dm_thin_lookup_result *lookup_result,
1806			  struct dm_bio_prison_cell *cell)
1807{
1808	int r;
1809	dm_block_t data_block;
1810	struct pool *pool = tc->pool;
1811
1812	r = alloc_data_block(tc, &data_block);
1813	switch (r) {
1814	case 0:
1815		schedule_internal_copy(tc, block, lookup_result->block,
1816				       data_block, cell, bio);
1817		break;
1818
1819	case -ENOSPC:
1820		retry_bios_on_resume(pool, cell);
1821		break;
1822
1823	default:
1824		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1825			    __func__, r);
1826		cell_error(pool, cell);
1827		break;
1828	}
1829}
1830
1831static void __remap_and_issue_shared_cell(void *context,
1832					  struct dm_bio_prison_cell *cell)
1833{
1834	struct remap_info *info = context;
1835	struct bio *bio;
1836
1837	while ((bio = bio_list_pop(&cell->bios))) {
1838		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1839		    bio_op(bio) == REQ_OP_DISCARD)
1840			bio_list_add(&info->defer_bios, bio);
1841		else {
1842			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1843
1844			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1845			inc_all_io_entry(info->tc->pool, bio);
1846			bio_list_add(&info->issue_bios, bio);
1847		}
1848	}
1849}
1850
1851static void remap_and_issue_shared_cell(struct thin_c *tc,
1852					struct dm_bio_prison_cell *cell,
1853					dm_block_t block)
1854{
1855	struct bio *bio;
1856	struct remap_info info;
1857
1858	info.tc = tc;
1859	bio_list_init(&info.defer_bios);
1860	bio_list_init(&info.issue_bios);
1861
1862	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1863			   &info, cell);
1864
1865	while ((bio = bio_list_pop(&info.defer_bios)))
1866		thin_defer_bio(tc, bio);
1867
1868	while ((bio = bio_list_pop(&info.issue_bios)))
1869		remap_and_issue(tc, bio, block);
1870}
1871
1872static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1873			       dm_block_t block,
1874			       struct dm_thin_lookup_result *lookup_result,
1875			       struct dm_bio_prison_cell *virt_cell)
1876{
1877	struct dm_bio_prison_cell *data_cell;
1878	struct pool *pool = tc->pool;
1879	struct dm_cell_key key;
1880
1881	/*
1882	 * If cell is already occupied, then sharing is already in the process
1883	 * of being broken so we have nothing further to do here.
1884	 */
1885	build_data_key(tc->td, lookup_result->block, &key);
1886	if (bio_detain(pool, &key, bio, &data_cell)) {
1887		cell_defer_no_holder(tc, virt_cell);
1888		return;
1889	}
1890
1891	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1892		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1893		cell_defer_no_holder(tc, virt_cell);
1894	} else {
1895		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1896
1897		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1898		inc_all_io_entry(pool, bio);
1899		remap_and_issue(tc, bio, lookup_result->block);
1900
1901		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1902		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1903	}
1904}
1905
1906static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1907			    struct dm_bio_prison_cell *cell)
1908{
1909	int r;
1910	dm_block_t data_block;
1911	struct pool *pool = tc->pool;
1912
1913	/*
1914	 * Remap empty bios (flushes) immediately, without provisioning.
1915	 */
1916	if (!bio->bi_iter.bi_size) {
1917		inc_all_io_entry(pool, bio);
1918		cell_defer_no_holder(tc, cell);
1919
1920		remap_and_issue(tc, bio, 0);
1921		return;
1922	}
1923
1924	/*
1925	 * Fill read bios with zeroes and complete them immediately.
1926	 */
1927	if (bio_data_dir(bio) == READ) {
1928		zero_fill_bio(bio);
1929		cell_defer_no_holder(tc, cell);
1930		bio_endio(bio);
1931		return;
1932	}
1933
1934	r = alloc_data_block(tc, &data_block);
1935	switch (r) {
1936	case 0:
1937		if (tc->origin_dev)
1938			schedule_external_copy(tc, block, data_block, cell, bio);
1939		else
1940			schedule_zero(tc, block, data_block, cell, bio);
1941		break;
1942
1943	case -ENOSPC:
1944		retry_bios_on_resume(pool, cell);
1945		break;
1946
1947	default:
1948		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1949			    __func__, r);
1950		cell_error(pool, cell);
1951		break;
1952	}
1953}
1954
1955static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1956{
1957	int r;
1958	struct pool *pool = tc->pool;
1959	struct bio *bio = cell->holder;
1960	dm_block_t block = get_bio_block(tc, bio);
 
 
1961	struct dm_thin_lookup_result lookup_result;
1962
1963	if (tc->requeue_mode) {
1964		cell_requeue(pool, cell);
 
 
 
 
1965		return;
1966	}
1967
1968	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1969	switch (r) {
1970	case 0:
1971		if (lookup_result.shared)
1972			process_shared_bio(tc, bio, block, &lookup_result, cell);
1973		else {
 
1974			inc_all_io_entry(pool, bio);
 
 
1975			remap_and_issue(tc, bio, lookup_result.block);
1976			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1977		}
1978		break;
1979
1980	case -ENODATA:
1981		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1982			inc_all_io_entry(pool, bio);
1983			cell_defer_no_holder(tc, cell);
1984
1985			if (bio_end_sector(bio) <= tc->origin_size)
1986				remap_to_origin_and_issue(tc, bio);
1987
1988			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1989				zero_fill_bio(bio);
1990				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1991				remap_to_origin_and_issue(tc, bio);
1992
1993			} else {
1994				zero_fill_bio(bio);
1995				bio_endio(bio);
1996			}
1997		} else
1998			provision_block(tc, bio, block, cell);
1999		break;
2000
2001	default:
2002		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2003			    __func__, r);
2004		cell_defer_no_holder(tc, cell);
2005		bio_io_error(bio);
2006		break;
2007	}
2008}
2009
2010static void process_bio(struct thin_c *tc, struct bio *bio)
2011{
2012	struct pool *pool = tc->pool;
2013	dm_block_t block = get_bio_block(tc, bio);
2014	struct dm_bio_prison_cell *cell;
2015	struct dm_cell_key key;
2016
2017	/*
2018	 * If cell is already occupied, then the block is already
2019	 * being provisioned so we have nothing further to do here.
2020	 */
2021	build_virtual_key(tc->td, block, &key);
2022	if (bio_detain(pool, &key, bio, &cell))
2023		return;
2024
2025	process_cell(tc, cell);
2026}
2027
2028static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2029				    struct dm_bio_prison_cell *cell)
2030{
2031	int r;
2032	int rw = bio_data_dir(bio);
2033	dm_block_t block = get_bio_block(tc, bio);
2034	struct dm_thin_lookup_result lookup_result;
2035
2036	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2037	switch (r) {
2038	case 0:
2039		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2040			handle_unserviceable_bio(tc->pool, bio);
2041			if (cell)
2042				cell_defer_no_holder(tc, cell);
2043		} else {
2044			inc_all_io_entry(tc->pool, bio);
2045			remap_and_issue(tc, bio, lookup_result.block);
2046			if (cell)
2047				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2048		}
2049		break;
2050
2051	case -ENODATA:
2052		if (cell)
2053			cell_defer_no_holder(tc, cell);
2054		if (rw != READ) {
2055			handle_unserviceable_bio(tc->pool, bio);
2056			break;
2057		}
2058
2059		if (tc->origin_dev) {
2060			inc_all_io_entry(tc->pool, bio);
2061			remap_to_origin_and_issue(tc, bio);
2062			break;
2063		}
2064
2065		zero_fill_bio(bio);
2066		bio_endio(bio);
2067		break;
2068
2069	default:
2070		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2071			    __func__, r);
2072		if (cell)
2073			cell_defer_no_holder(tc, cell);
2074		bio_io_error(bio);
2075		break;
2076	}
2077}
2078
2079static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2080{
2081	__process_bio_read_only(tc, bio, NULL);
2082}
2083
2084static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2085{
2086	__process_bio_read_only(tc, cell->holder, cell);
2087}
2088
2089static void process_bio_success(struct thin_c *tc, struct bio *bio)
2090{
2091	bio_endio(bio);
2092}
2093
2094static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2095{
2096	bio_io_error(bio);
2097}
2098
2099static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2100{
2101	cell_success(tc->pool, cell);
2102}
2103
2104static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2105{
2106	cell_error(tc->pool, cell);
2107}
2108
2109/*
2110 * FIXME: should we also commit due to size of transaction, measured in
2111 * metadata blocks?
2112 */
2113static int need_commit_due_to_time(struct pool *pool)
2114{
2115	return !time_in_range(jiffies, pool->last_commit_jiffies,
2116			      pool->last_commit_jiffies + COMMIT_PERIOD);
2117}
2118
2119#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2120#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2121
2122static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2123{
2124	struct rb_node **rbp, *parent;
2125	struct dm_thin_endio_hook *pbd;
2126	sector_t bi_sector = bio->bi_iter.bi_sector;
2127
2128	rbp = &tc->sort_bio_list.rb_node;
2129	parent = NULL;
2130	while (*rbp) {
2131		parent = *rbp;
2132		pbd = thin_pbd(parent);
2133
2134		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2135			rbp = &(*rbp)->rb_left;
2136		else
2137			rbp = &(*rbp)->rb_right;
2138	}
2139
2140	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2141	rb_link_node(&pbd->rb_node, parent, rbp);
2142	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2143}
2144
2145static void __extract_sorted_bios(struct thin_c *tc)
2146{
2147	struct rb_node *node;
2148	struct dm_thin_endio_hook *pbd;
2149	struct bio *bio;
2150
2151	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2152		pbd = thin_pbd(node);
2153		bio = thin_bio(pbd);
2154
2155		bio_list_add(&tc->deferred_bio_list, bio);
2156		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2157	}
2158
2159	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2160}
2161
2162static void __sort_thin_deferred_bios(struct thin_c *tc)
2163{
2164	struct bio *bio;
2165	struct bio_list bios;
2166
2167	bio_list_init(&bios);
2168	bio_list_merge(&bios, &tc->deferred_bio_list);
2169	bio_list_init(&tc->deferred_bio_list);
2170
2171	/* Sort deferred_bio_list using rb-tree */
2172	while ((bio = bio_list_pop(&bios)))
2173		__thin_bio_rb_add(tc, bio);
2174
2175	/*
2176	 * Transfer the sorted bios in sort_bio_list back to
2177	 * deferred_bio_list to allow lockless submission of
2178	 * all bios.
2179	 */
2180	__extract_sorted_bios(tc);
2181}
2182
2183static void process_thin_deferred_bios(struct thin_c *tc)
2184{
2185	struct pool *pool = tc->pool;
 
2186	struct bio *bio;
2187	struct bio_list bios;
2188	struct blk_plug plug;
2189	unsigned int count = 0;
2190
2191	if (tc->requeue_mode) {
2192		error_thin_bio_list(tc, &tc->deferred_bio_list,
2193				BLK_STS_DM_REQUEUE);
2194		return;
2195	}
2196
2197	bio_list_init(&bios);
2198
2199	spin_lock_irq(&tc->lock);
2200
2201	if (bio_list_empty(&tc->deferred_bio_list)) {
2202		spin_unlock_irq(&tc->lock);
2203		return;
2204	}
2205
2206	__sort_thin_deferred_bios(tc);
2207
2208	bio_list_merge(&bios, &tc->deferred_bio_list);
2209	bio_list_init(&tc->deferred_bio_list);
2210
2211	spin_unlock_irq(&tc->lock);
2212
2213	blk_start_plug(&plug);
2214	while ((bio = bio_list_pop(&bios))) {
2215		/*
2216		 * If we've got no free new_mapping structs, and processing
2217		 * this bio might require one, we pause until there are some
2218		 * prepared mappings to process.
2219		 */
2220		if (ensure_next_mapping(pool)) {
2221			spin_lock_irq(&tc->lock);
2222			bio_list_add(&tc->deferred_bio_list, bio);
2223			bio_list_merge(&tc->deferred_bio_list, &bios);
2224			spin_unlock_irq(&tc->lock);
2225			break;
2226		}
2227
2228		if (bio_op(bio) == REQ_OP_DISCARD)
2229			pool->process_discard(tc, bio);
2230		else
2231			pool->process_bio(tc, bio);
2232
2233		if ((count++ & 127) == 0) {
2234			throttle_work_update(&pool->throttle);
2235			dm_pool_issue_prefetches(pool->pmd);
2236		}
2237		cond_resched();
2238	}
2239	blk_finish_plug(&plug);
2240}
2241
2242static int cmp_cells(const void *lhs, const void *rhs)
2243{
2244	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2245	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2246
2247	BUG_ON(!lhs_cell->holder);
2248	BUG_ON(!rhs_cell->holder);
2249
2250	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2251		return -1;
2252
2253	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2254		return 1;
2255
2256	return 0;
2257}
2258
2259static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2260{
2261	unsigned int count = 0;
2262	struct dm_bio_prison_cell *cell, *tmp;
2263
2264	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2265		if (count >= CELL_SORT_ARRAY_SIZE)
2266			break;
2267
2268		pool->cell_sort_array[count++] = cell;
2269		list_del(&cell->user_list);
2270	}
2271
2272	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2273
2274	return count;
2275}
2276
2277static void process_thin_deferred_cells(struct thin_c *tc)
2278{
2279	struct pool *pool = tc->pool;
2280	struct list_head cells;
2281	struct dm_bio_prison_cell *cell;
2282	unsigned int i, j, count;
2283
2284	INIT_LIST_HEAD(&cells);
2285
2286	spin_lock_irq(&tc->lock);
2287	list_splice_init(&tc->deferred_cells, &cells);
2288	spin_unlock_irq(&tc->lock);
2289
2290	if (list_empty(&cells))
2291		return;
2292
2293	do {
2294		count = sort_cells(tc->pool, &cells);
2295
2296		for (i = 0; i < count; i++) {
2297			cell = pool->cell_sort_array[i];
2298			BUG_ON(!cell->holder);
2299
2300			/*
2301			 * If we've got no free new_mapping structs, and processing
2302			 * this bio might require one, we pause until there are some
2303			 * prepared mappings to process.
2304			 */
2305			if (ensure_next_mapping(pool)) {
2306				for (j = i; j < count; j++)
2307					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2308
2309				spin_lock_irq(&tc->lock);
2310				list_splice(&cells, &tc->deferred_cells);
2311				spin_unlock_irq(&tc->lock);
2312				return;
2313			}
2314
2315			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2316				pool->process_discard_cell(tc, cell);
2317			else
2318				pool->process_cell(tc, cell);
2319		}
2320		cond_resched();
2321	} while (!list_empty(&cells));
2322}
2323
2324static void thin_get(struct thin_c *tc);
2325static void thin_put(struct thin_c *tc);
2326
2327/*
2328 * We can't hold rcu_read_lock() around code that can block.  So we
2329 * find a thin with the rcu lock held; bump a refcount; then drop
2330 * the lock.
2331 */
2332static struct thin_c *get_first_thin(struct pool *pool)
2333{
2334	struct thin_c *tc = NULL;
2335
2336	rcu_read_lock();
2337	if (!list_empty(&pool->active_thins)) {
2338		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2339		thin_get(tc);
2340	}
2341	rcu_read_unlock();
2342
2343	return tc;
2344}
2345
2346static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2347{
2348	struct thin_c *old_tc = tc;
2349
2350	rcu_read_lock();
2351	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2352		thin_get(tc);
2353		thin_put(old_tc);
2354		rcu_read_unlock();
2355		return tc;
2356	}
2357	thin_put(old_tc);
2358	rcu_read_unlock();
2359
2360	return NULL;
2361}
2362
2363static void process_deferred_bios(struct pool *pool)
2364{
 
2365	struct bio *bio;
2366	struct bio_list bios, bio_completions;
2367	struct thin_c *tc;
2368
2369	tc = get_first_thin(pool);
2370	while (tc) {
2371		process_thin_deferred_cells(tc);
2372		process_thin_deferred_bios(tc);
2373		tc = get_next_thin(pool, tc);
2374	}
2375
2376	/*
2377	 * If there are any deferred flush bios, we must commit the metadata
2378	 * before issuing them or signaling their completion.
2379	 */
2380	bio_list_init(&bios);
2381	bio_list_init(&bio_completions);
2382
2383	spin_lock_irq(&pool->lock);
2384	bio_list_merge(&bios, &pool->deferred_flush_bios);
2385	bio_list_init(&pool->deferred_flush_bios);
 
2386
2387	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2388	bio_list_init(&pool->deferred_flush_completions);
2389	spin_unlock_irq(&pool->lock);
2390
2391	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2392	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2393		return;
2394
2395	if (commit(pool)) {
2396		bio_list_merge(&bios, &bio_completions);
2397
2398		while ((bio = bio_list_pop(&bios)))
2399			bio_io_error(bio);
2400		return;
2401	}
2402	pool->last_commit_jiffies = jiffies;
2403
2404	while ((bio = bio_list_pop(&bio_completions)))
2405		bio_endio(bio);
2406
2407	while ((bio = bio_list_pop(&bios))) {
2408		/*
2409		 * The data device was flushed as part of metadata commit,
2410		 * so complete redundant flushes immediately.
2411		 */
2412		if (bio->bi_opf & REQ_PREFLUSH)
2413			bio_endio(bio);
2414		else
2415			dm_submit_bio_remap(bio, NULL);
2416	}
2417}
2418
2419static void do_worker(struct work_struct *ws)
2420{
2421	struct pool *pool = container_of(ws, struct pool, worker);
2422
2423	throttle_work_start(&pool->throttle);
2424	dm_pool_issue_prefetches(pool->pmd);
2425	throttle_work_update(&pool->throttle);
2426	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2427	throttle_work_update(&pool->throttle);
2428	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2429	throttle_work_update(&pool->throttle);
2430	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2431	throttle_work_update(&pool->throttle);
2432	process_deferred_bios(pool);
2433	throttle_work_complete(&pool->throttle);
2434}
2435
2436/*
2437 * We want to commit periodically so that not too much
2438 * unwritten data builds up.
2439 */
2440static void do_waker(struct work_struct *ws)
2441{
2442	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2443
2444	wake_worker(pool);
2445	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2446}
2447
2448/*
2449 * We're holding onto IO to allow userland time to react.  After the
2450 * timeout either the pool will have been resized (and thus back in
2451 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2452 */
2453static void do_no_space_timeout(struct work_struct *ws)
2454{
2455	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2456					 no_space_timeout);
2457
2458	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2459		pool->pf.error_if_no_space = true;
2460		notify_of_pool_mode_change(pool);
2461		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2462	}
2463}
2464
2465/*----------------------------------------------------------------*/
2466
2467struct pool_work {
2468	struct work_struct worker;
2469	struct completion complete;
2470};
2471
2472static struct pool_work *to_pool_work(struct work_struct *ws)
2473{
2474	return container_of(ws, struct pool_work, worker);
2475}
2476
2477static void pool_work_complete(struct pool_work *pw)
2478{
2479	complete(&pw->complete);
2480}
2481
2482static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2483			   void (*fn)(struct work_struct *))
2484{
2485	INIT_WORK_ONSTACK(&pw->worker, fn);
2486	init_completion(&pw->complete);
2487	queue_work(pool->wq, &pw->worker);
2488	wait_for_completion(&pw->complete);
2489}
2490
2491/*----------------------------------------------------------------*/
2492
2493struct noflush_work {
2494	struct pool_work pw;
2495	struct thin_c *tc;
 
 
 
2496};
2497
2498static struct noflush_work *to_noflush(struct work_struct *ws)
2499{
2500	return container_of(to_pool_work(ws), struct noflush_work, pw);
 
2501}
2502
2503static void do_noflush_start(struct work_struct *ws)
2504{
2505	struct noflush_work *w = to_noflush(ws);
2506
2507	w->tc->requeue_mode = true;
2508	requeue_io(w->tc);
2509	pool_work_complete(&w->pw);
2510}
2511
2512static void do_noflush_stop(struct work_struct *ws)
2513{
2514	struct noflush_work *w = to_noflush(ws);
2515
2516	w->tc->requeue_mode = false;
2517	pool_work_complete(&w->pw);
2518}
2519
2520static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2521{
2522	struct noflush_work w;
2523
 
2524	w.tc = tc;
2525	pool_work_wait(&w.pw, tc->pool, fn);
 
 
 
 
 
2526}
2527
2528/*----------------------------------------------------------------*/
2529
2530static void set_discard_callbacks(struct pool *pool)
2531{
2532	struct pool_c *pt = pool->ti->private;
 
2533
2534	if (pt->adjusted_pf.discard_passdown) {
2535		pool->process_discard_cell = process_discard_cell_passdown;
2536		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2537		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2538	} else {
2539		pool->process_discard_cell = process_discard_cell_no_passdown;
2540		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2541	}
2542}
2543
2544static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2545{
2546	struct pool_c *pt = pool->ti->private;
2547	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2548	enum pool_mode old_mode = get_pool_mode(pool);
2549	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2550
2551	/*
2552	 * Never allow the pool to transition to PM_WRITE mode if user
2553	 * intervention is required to verify metadata and data consistency.
2554	 */
2555	if (new_mode == PM_WRITE && needs_check) {
2556		DMERR("%s: unable to switch pool to write mode until repaired.",
2557		      dm_device_name(pool->pool_md));
2558		if (old_mode != new_mode)
2559			new_mode = old_mode;
2560		else
2561			new_mode = PM_READ_ONLY;
2562	}
2563	/*
2564	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2565	 * not going to recover without a thin_repair.	So we never let the
2566	 * pool move out of the old mode.
2567	 */
2568	if (old_mode == PM_FAIL)
2569		new_mode = old_mode;
2570
2571	switch (new_mode) {
2572	case PM_FAIL:
 
 
2573		dm_pool_metadata_read_only(pool->pmd);
2574		pool->process_bio = process_bio_fail;
2575		pool->process_discard = process_bio_fail;
2576		pool->process_cell = process_cell_fail;
2577		pool->process_discard_cell = process_cell_fail;
2578		pool->process_prepared_mapping = process_prepared_mapping_fail;
2579		pool->process_prepared_discard = process_prepared_discard_fail;
2580
2581		error_retry_list(pool);
2582		break;
2583
2584	case PM_OUT_OF_METADATA_SPACE:
2585	case PM_READ_ONLY:
 
 
2586		dm_pool_metadata_read_only(pool->pmd);
2587		pool->process_bio = process_bio_read_only;
2588		pool->process_discard = process_bio_success;
2589		pool->process_cell = process_cell_read_only;
2590		pool->process_discard_cell = process_cell_success;
2591		pool->process_prepared_mapping = process_prepared_mapping_fail;
2592		pool->process_prepared_discard = process_prepared_discard_success;
2593
2594		error_retry_list(pool);
2595		break;
2596
2597	case PM_OUT_OF_DATA_SPACE:
2598		/*
2599		 * Ideally we'd never hit this state; the low water mark
2600		 * would trigger userland to extend the pool before we
2601		 * completely run out of data space.  However, many small
2602		 * IOs to unprovisioned space can consume data space at an
2603		 * alarming rate.  Adjust your low water mark if you're
2604		 * frequently seeing this mode.
2605		 */
2606		pool->out_of_data_space = true;
 
2607		pool->process_bio = process_bio_read_only;
2608		pool->process_discard = process_discard_bio;
2609		pool->process_cell = process_cell_read_only;
2610		pool->process_prepared_mapping = process_prepared_mapping;
2611		set_discard_callbacks(pool);
2612
2613		if (!pool->pf.error_if_no_space && no_space_timeout)
2614			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2615		break;
2616
2617	case PM_WRITE:
2618		if (old_mode == PM_OUT_OF_DATA_SPACE)
2619			cancel_delayed_work_sync(&pool->no_space_timeout);
2620		pool->out_of_data_space = false;
2621		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2622		dm_pool_metadata_read_write(pool->pmd);
2623		pool->process_bio = process_bio;
2624		pool->process_discard = process_discard_bio;
2625		pool->process_cell = process_cell;
2626		pool->process_prepared_mapping = process_prepared_mapping;
2627		set_discard_callbacks(pool);
2628		break;
2629	}
2630
2631	pool->pf.mode = new_mode;
2632	/*
2633	 * The pool mode may have changed, sync it so bind_control_target()
2634	 * doesn't cause an unexpected mode transition on resume.
2635	 */
2636	pt->adjusted_pf.mode = new_mode;
2637
2638	if (old_mode != new_mode)
2639		notify_of_pool_mode_change(pool);
2640}
2641
2642static void abort_transaction(struct pool *pool)
2643{
2644	const char *dev_name = dm_device_name(pool->pool_md);
2645
2646	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2647	if (dm_pool_abort_metadata(pool->pmd)) {
2648		DMERR("%s: failed to abort metadata transaction", dev_name);
2649		set_pool_mode(pool, PM_FAIL);
2650	}
2651
2652	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2653		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2654		set_pool_mode(pool, PM_FAIL);
2655	}
2656}
2657
2658static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2659{
2660	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2661		    dm_device_name(pool->pool_md), op, r);
2662
2663	abort_transaction(pool);
2664	set_pool_mode(pool, PM_READ_ONLY);
2665}
2666
2667/*----------------------------------------------------------------*/
2668
2669/*
2670 * Mapping functions.
2671 */
2672
2673/*
2674 * Called only while mapping a thin bio to hand it over to the workqueue.
2675 */
2676static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2677{
 
2678	struct pool *pool = tc->pool;
2679
2680	spin_lock_irq(&tc->lock);
2681	bio_list_add(&tc->deferred_bio_list, bio);
2682	spin_unlock_irq(&tc->lock);
2683
2684	wake_worker(pool);
2685}
2686
2687static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2688{
2689	struct pool *pool = tc->pool;
2690
2691	throttle_lock(&pool->throttle);
2692	thin_defer_bio(tc, bio);
2693	throttle_unlock(&pool->throttle);
2694}
2695
2696static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2697{
2698	struct pool *pool = tc->pool;
2699
2700	throttle_lock(&pool->throttle);
2701	spin_lock_irq(&tc->lock);
2702	list_add_tail(&cell->user_list, &tc->deferred_cells);
2703	spin_unlock_irq(&tc->lock);
2704	throttle_unlock(&pool->throttle);
2705
2706	wake_worker(pool);
2707}
2708
2709static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2710{
2711	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2712
2713	h->tc = tc;
2714	h->shared_read_entry = NULL;
2715	h->all_io_entry = NULL;
2716	h->overwrite_mapping = NULL;
2717	h->cell = NULL;
2718}
2719
2720/*
2721 * Non-blocking function called from the thin target's map function.
2722 */
2723static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2724{
2725	int r;
2726	struct thin_c *tc = ti->private;
2727	dm_block_t block = get_bio_block(tc, bio);
2728	struct dm_thin_device *td = tc->td;
2729	struct dm_thin_lookup_result result;
2730	struct dm_bio_prison_cell *virt_cell, *data_cell;
 
2731	struct dm_cell_key key;
2732
2733	thin_hook_bio(tc, bio);
2734
2735	if (tc->requeue_mode) {
2736		bio->bi_status = BLK_STS_DM_REQUEUE;
2737		bio_endio(bio);
2738		return DM_MAPIO_SUBMITTED;
2739	}
2740
2741	if (get_pool_mode(tc->pool) == PM_FAIL) {
2742		bio_io_error(bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2747		thin_defer_bio_with_throttle(tc, bio);
2748		return DM_MAPIO_SUBMITTED;
2749	}
2750
2751	/*
2752	 * We must hold the virtual cell before doing the lookup, otherwise
2753	 * there's a race with discard.
2754	 */
2755	build_virtual_key(tc->td, block, &key);
2756	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2757		return DM_MAPIO_SUBMITTED;
2758
2759	r = dm_thin_find_block(td, block, 0, &result);
2760
2761	/*
2762	 * Note that we defer readahead too.
2763	 */
2764	switch (r) {
2765	case 0:
2766		if (unlikely(result.shared)) {
2767			/*
2768			 * We have a race condition here between the
2769			 * result.shared value returned by the lookup and
2770			 * snapshot creation, which may cause new
2771			 * sharing.
2772			 *
2773			 * To avoid this always quiesce the origin before
2774			 * taking the snap.  You want to do this anyway to
2775			 * ensure a consistent application view
2776			 * (i.e. lockfs).
2777			 *
2778			 * More distant ancestors are irrelevant. The
2779			 * shared flag will be set in their case.
2780			 */
2781			thin_defer_cell(tc, virt_cell);
2782			return DM_MAPIO_SUBMITTED;
2783		}
2784
 
 
 
 
2785		build_data_key(tc->td, result.block, &key);
2786		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2787			cell_defer_no_holder(tc, virt_cell);
2788			return DM_MAPIO_SUBMITTED;
2789		}
2790
2791		inc_all_io_entry(tc->pool, bio);
2792		cell_defer_no_holder(tc, data_cell);
2793		cell_defer_no_holder(tc, virt_cell);
2794
2795		remap(tc, bio, result.block);
2796		return DM_MAPIO_REMAPPED;
2797
2798	case -ENODATA:
 
 
 
 
 
 
 
 
 
 
2799	case -EWOULDBLOCK:
2800		thin_defer_cell(tc, virt_cell);
 
 
 
 
2801		return DM_MAPIO_SUBMITTED;
2802
2803	default:
2804		/*
2805		 * Must always call bio_io_error on failure.
2806		 * dm_thin_find_block can fail with -EINVAL if the
2807		 * pool is switched to fail-io mode.
2808		 */
2809		bio_io_error(bio);
2810		cell_defer_no_holder(tc, virt_cell);
2811		return DM_MAPIO_SUBMITTED;
2812	}
2813}
2814
 
 
 
 
 
 
 
 
 
 
 
 
2815static void requeue_bios(struct pool *pool)
2816{
 
2817	struct thin_c *tc;
2818
2819	rcu_read_lock();
2820	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2821		spin_lock_irq(&tc->lock);
2822		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2823		bio_list_init(&tc->retry_on_resume_list);
2824		spin_unlock_irq(&tc->lock);
2825	}
2826	rcu_read_unlock();
2827}
2828
2829/*
2830 *--------------------------------------------------------------
2831 * Binding of control targets to a pool object
2832 *--------------------------------------------------------------
2833 */
 
 
 
 
 
 
2834static bool is_factor(sector_t block_size, uint32_t n)
2835{
2836	return !sector_div(block_size, n);
2837}
2838
2839/*
2840 * If discard_passdown was enabled verify that the data device
2841 * supports discards.  Disable discard_passdown if not.
2842 */
2843static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2844{
2845	struct pool *pool = pt->pool;
2846	struct block_device *data_bdev = pt->data_dev->bdev;
2847	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
 
2848	const char *reason = NULL;
 
2849
2850	if (!pt->adjusted_pf.discard_passdown)
2851		return;
2852
2853	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2854		reason = "discard unsupported";
2855
2856	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2857		reason = "max discard sectors smaller than a block";
2858
 
 
 
 
 
 
2859	if (reason) {
2860		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2861		pt->adjusted_pf.discard_passdown = false;
2862	}
2863}
2864
2865static int bind_control_target(struct pool *pool, struct dm_target *ti)
2866{
2867	struct pool_c *pt = ti->private;
2868
2869	/*
2870	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2871	 */
2872	enum pool_mode old_mode = get_pool_mode(pool);
2873	enum pool_mode new_mode = pt->adjusted_pf.mode;
2874
2875	/*
2876	 * Don't change the pool's mode until set_pool_mode() below.
2877	 * Otherwise the pool's process_* function pointers may
2878	 * not match the desired pool mode.
2879	 */
2880	pt->adjusted_pf.mode = old_mode;
2881
2882	pool->ti = ti;
2883	pool->pf = pt->adjusted_pf;
2884	pool->low_water_blocks = pt->low_water_blocks;
2885
2886	set_pool_mode(pool, new_mode);
2887
2888	return 0;
2889}
2890
2891static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2892{
2893	if (pool->ti == ti)
2894		pool->ti = NULL;
2895}
2896
2897/*
2898 *--------------------------------------------------------------
2899 * Pool creation
2900 *--------------------------------------------------------------
2901 */
2902/* Initialize pool features. */
2903static void pool_features_init(struct pool_features *pf)
2904{
2905	pf->mode = PM_WRITE;
2906	pf->zero_new_blocks = true;
2907	pf->discard_enabled = true;
2908	pf->discard_passdown = true;
2909	pf->error_if_no_space = false;
2910}
2911
2912static void __pool_destroy(struct pool *pool)
2913{
2914	__pool_table_remove(pool);
2915
2916	vfree(pool->cell_sort_array);
2917	if (dm_pool_metadata_close(pool->pmd) < 0)
2918		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2919
2920	dm_bio_prison_destroy(pool->prison);
2921	dm_kcopyd_client_destroy(pool->copier);
2922
2923	cancel_delayed_work_sync(&pool->waker);
2924	cancel_delayed_work_sync(&pool->no_space_timeout);
2925	if (pool->wq)
2926		destroy_workqueue(pool->wq);
2927
2928	if (pool->next_mapping)
2929		mempool_free(pool->next_mapping, &pool->mapping_pool);
2930	mempool_exit(&pool->mapping_pool);
2931	dm_deferred_set_destroy(pool->shared_read_ds);
2932	dm_deferred_set_destroy(pool->all_io_ds);
2933	kfree(pool);
2934}
2935
2936static struct kmem_cache *_new_mapping_cache;
2937
2938static struct pool *pool_create(struct mapped_device *pool_md,
2939				struct block_device *metadata_dev,
2940				struct block_device *data_dev,
2941				unsigned long block_size,
2942				int read_only, char **error)
2943{
2944	int r;
2945	void *err_p;
2946	struct pool *pool;
2947	struct dm_pool_metadata *pmd;
2948	bool format_device = read_only ? false : true;
2949
2950	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2951	if (IS_ERR(pmd)) {
2952		*error = "Error creating metadata object";
2953		return (struct pool *)pmd;
2954	}
2955
2956	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2957	if (!pool) {
2958		*error = "Error allocating memory for pool";
2959		err_p = ERR_PTR(-ENOMEM);
2960		goto bad_pool;
2961	}
2962
2963	pool->pmd = pmd;
2964	pool->sectors_per_block = block_size;
2965	if (block_size & (block_size - 1))
2966		pool->sectors_per_block_shift = -1;
2967	else
2968		pool->sectors_per_block_shift = __ffs(block_size);
2969	pool->low_water_blocks = 0;
2970	pool_features_init(&pool->pf);
2971	pool->prison = dm_bio_prison_create();
2972	if (!pool->prison) {
2973		*error = "Error creating pool's bio prison";
2974		err_p = ERR_PTR(-ENOMEM);
2975		goto bad_prison;
2976	}
2977
2978	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2979	if (IS_ERR(pool->copier)) {
2980		r = PTR_ERR(pool->copier);
2981		*error = "Error creating pool's kcopyd client";
2982		err_p = ERR_PTR(r);
2983		goto bad_kcopyd_client;
2984	}
2985
2986	/*
2987	 * Create singlethreaded workqueue that will service all devices
2988	 * that use this metadata.
2989	 */
2990	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2991	if (!pool->wq) {
2992		*error = "Error creating pool's workqueue";
2993		err_p = ERR_PTR(-ENOMEM);
2994		goto bad_wq;
2995	}
2996
2997	throttle_init(&pool->throttle);
2998	INIT_WORK(&pool->worker, do_worker);
2999	INIT_DELAYED_WORK(&pool->waker, do_waker);
3000	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3001	spin_lock_init(&pool->lock);
3002	bio_list_init(&pool->deferred_flush_bios);
3003	bio_list_init(&pool->deferred_flush_completions);
3004	INIT_LIST_HEAD(&pool->prepared_mappings);
3005	INIT_LIST_HEAD(&pool->prepared_discards);
3006	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3007	INIT_LIST_HEAD(&pool->active_thins);
3008	pool->low_water_triggered = false;
3009	pool->suspended = true;
3010	pool->out_of_data_space = false;
3011
3012	pool->shared_read_ds = dm_deferred_set_create();
3013	if (!pool->shared_read_ds) {
3014		*error = "Error creating pool's shared read deferred set";
3015		err_p = ERR_PTR(-ENOMEM);
3016		goto bad_shared_read_ds;
3017	}
3018
3019	pool->all_io_ds = dm_deferred_set_create();
3020	if (!pool->all_io_ds) {
3021		*error = "Error creating pool's all io deferred set";
3022		err_p = ERR_PTR(-ENOMEM);
3023		goto bad_all_io_ds;
3024	}
3025
3026	pool->next_mapping = NULL;
3027	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3028				   _new_mapping_cache);
3029	if (r) {
3030		*error = "Error creating pool's mapping mempool";
3031		err_p = ERR_PTR(r);
3032		goto bad_mapping_pool;
3033	}
3034
3035	pool->cell_sort_array =
3036		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3037				   sizeof(*pool->cell_sort_array)));
3038	if (!pool->cell_sort_array) {
3039		*error = "Error allocating cell sort array";
3040		err_p = ERR_PTR(-ENOMEM);
3041		goto bad_sort_array;
3042	}
3043
3044	pool->ref_count = 1;
3045	pool->last_commit_jiffies = jiffies;
3046	pool->pool_md = pool_md;
3047	pool->md_dev = metadata_dev;
3048	pool->data_dev = data_dev;
3049	__pool_table_insert(pool);
3050
3051	return pool;
3052
3053bad_sort_array:
3054	mempool_exit(&pool->mapping_pool);
3055bad_mapping_pool:
3056	dm_deferred_set_destroy(pool->all_io_ds);
3057bad_all_io_ds:
3058	dm_deferred_set_destroy(pool->shared_read_ds);
3059bad_shared_read_ds:
3060	destroy_workqueue(pool->wq);
3061bad_wq:
3062	dm_kcopyd_client_destroy(pool->copier);
3063bad_kcopyd_client:
3064	dm_bio_prison_destroy(pool->prison);
3065bad_prison:
3066	kfree(pool);
3067bad_pool:
3068	if (dm_pool_metadata_close(pmd))
3069		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3070
3071	return err_p;
3072}
3073
3074static void __pool_inc(struct pool *pool)
3075{
3076	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077	pool->ref_count++;
3078}
3079
3080static void __pool_dec(struct pool *pool)
3081{
3082	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083	BUG_ON(!pool->ref_count);
3084	if (!--pool->ref_count)
3085		__pool_destroy(pool);
3086}
3087
3088static struct pool *__pool_find(struct mapped_device *pool_md,
3089				struct block_device *metadata_dev,
3090				struct block_device *data_dev,
3091				unsigned long block_size, int read_only,
3092				char **error, int *created)
3093{
3094	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095
3096	if (pool) {
3097		if (pool->pool_md != pool_md) {
3098			*error = "metadata device already in use by a pool";
3099			return ERR_PTR(-EBUSY);
3100		}
3101		if (pool->data_dev != data_dev) {
3102			*error = "data device already in use by a pool";
3103			return ERR_PTR(-EBUSY);
3104		}
3105		__pool_inc(pool);
3106
3107	} else {
3108		pool = __pool_table_lookup(pool_md);
3109		if (pool) {
3110			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3111				*error = "different pool cannot replace a pool";
3112				return ERR_PTR(-EINVAL);
3113			}
3114			__pool_inc(pool);
3115
3116		} else {
3117			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3118			*created = 1;
3119		}
3120	}
3121
3122	return pool;
3123}
3124
3125/*
3126 *--------------------------------------------------------------
3127 * Pool target methods
3128 *--------------------------------------------------------------
3129 */
3130static void pool_dtr(struct dm_target *ti)
3131{
3132	struct pool_c *pt = ti->private;
3133
3134	mutex_lock(&dm_thin_pool_table.mutex);
3135
3136	unbind_control_target(pt->pool, ti);
3137	__pool_dec(pt->pool);
3138	dm_put_device(ti, pt->metadata_dev);
3139	dm_put_device(ti, pt->data_dev);
3140	kfree(pt);
3141
3142	mutex_unlock(&dm_thin_pool_table.mutex);
3143}
3144
3145static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3146			       struct dm_target *ti)
3147{
3148	int r;
3149	unsigned int argc;
3150	const char *arg_name;
3151
3152	static const struct dm_arg _args[] = {
3153		{0, 4, "Invalid number of pool feature arguments"},
3154	};
3155
3156	/*
3157	 * No feature arguments supplied.
3158	 */
3159	if (!as->argc)
3160		return 0;
3161
3162	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3163	if (r)
3164		return -EINVAL;
3165
3166	while (argc && !r) {
3167		arg_name = dm_shift_arg(as);
3168		argc--;
3169
3170		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3171			pf->zero_new_blocks = false;
3172
3173		else if (!strcasecmp(arg_name, "ignore_discard"))
3174			pf->discard_enabled = false;
3175
3176		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3177			pf->discard_passdown = false;
3178
3179		else if (!strcasecmp(arg_name, "read_only"))
3180			pf->mode = PM_READ_ONLY;
3181
3182		else if (!strcasecmp(arg_name, "error_if_no_space"))
3183			pf->error_if_no_space = true;
3184
3185		else {
3186			ti->error = "Unrecognised pool feature requested";
3187			r = -EINVAL;
3188			break;
3189		}
3190	}
3191
3192	return r;
3193}
3194
3195static void metadata_low_callback(void *context)
3196{
3197	struct pool *pool = context;
3198
3199	DMWARN("%s: reached low water mark for metadata device: sending event.",
3200	       dm_device_name(pool->pool_md));
3201
3202	dm_table_event(pool->ti->table);
3203}
3204
3205/*
3206 * We need to flush the data device **before** committing the metadata.
3207 *
3208 * This ensures that the data blocks of any newly inserted mappings are
3209 * properly written to non-volatile storage and won't be lost in case of a
3210 * crash.
3211 *
3212 * Failure to do so can result in data corruption in the case of internal or
3213 * external snapshots and in the case of newly provisioned blocks, when block
3214 * zeroing is enabled.
3215 */
3216static int metadata_pre_commit_callback(void *context)
3217{
3218	struct pool *pool = context;
3219
3220	return blkdev_issue_flush(pool->data_dev);
3221}
3222
3223static sector_t get_dev_size(struct block_device *bdev)
3224{
3225	return bdev_nr_sectors(bdev);
3226}
3227
3228static void warn_if_metadata_device_too_big(struct block_device *bdev)
3229{
3230	sector_t metadata_dev_size = get_dev_size(bdev);
 
3231
3232	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3233		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3234		       bdev, THIN_METADATA_MAX_SECTORS);
3235}
3236
3237static sector_t get_metadata_dev_size(struct block_device *bdev)
3238{
3239	sector_t metadata_dev_size = get_dev_size(bdev);
3240
3241	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3242		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3243
3244	return metadata_dev_size;
3245}
3246
3247static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3248{
3249	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3250
3251	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3252
3253	return metadata_dev_size;
3254}
3255
3256/*
3257 * When a metadata threshold is crossed a dm event is triggered, and
3258 * userland should respond by growing the metadata device.  We could let
3259 * userland set the threshold, like we do with the data threshold, but I'm
3260 * not sure they know enough to do this well.
3261 */
3262static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3263{
3264	/*
3265	 * 4M is ample for all ops with the possible exception of thin
3266	 * device deletion which is harmless if it fails (just retry the
3267	 * delete after you've grown the device).
3268	 */
3269	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3270
3271	return min((dm_block_t)1024ULL /* 4M */, quarter);
3272}
3273
3274/*
3275 * thin-pool <metadata dev> <data dev>
3276 *	     <data block size (sectors)>
3277 *	     <low water mark (blocks)>
3278 *	     [<#feature args> [<arg>]*]
3279 *
3280 * Optional feature arguments are:
3281 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3282 *	     ignore_discard: disable discard
3283 *	     no_discard_passdown: don't pass discards down to the data device
3284 *	     read_only: Don't allow any changes to be made to the pool metadata.
3285 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3286 */
3287static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3288{
3289	int r, pool_created = 0;
3290	struct pool_c *pt;
3291	struct pool *pool;
3292	struct pool_features pf;
3293	struct dm_arg_set as;
3294	struct dm_dev *data_dev;
3295	unsigned long block_size;
3296	dm_block_t low_water_blocks;
3297	struct dm_dev *metadata_dev;
3298	blk_mode_t metadata_mode;
3299
3300	/*
3301	 * FIXME Remove validation from scope of lock.
3302	 */
3303	mutex_lock(&dm_thin_pool_table.mutex);
3304
3305	if (argc < 4) {
3306		ti->error = "Invalid argument count";
3307		r = -EINVAL;
3308		goto out_unlock;
3309	}
3310
3311	as.argc = argc;
3312	as.argv = argv;
3313
3314	/* make sure metadata and data are different devices */
3315	if (!strcmp(argv[0], argv[1])) {
3316		ti->error = "Error setting metadata or data device";
3317		r = -EINVAL;
3318		goto out_unlock;
3319	}
3320
3321	/*
3322	 * Set default pool features.
3323	 */
3324	pool_features_init(&pf);
3325
3326	dm_consume_args(&as, 4);
3327	r = parse_pool_features(&as, &pf, ti);
3328	if (r)
3329		goto out_unlock;
3330
3331	metadata_mode = BLK_OPEN_READ |
3332		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3333	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3334	if (r) {
3335		ti->error = "Error opening metadata block device";
3336		goto out_unlock;
3337	}
3338	warn_if_metadata_device_too_big(metadata_dev->bdev);
3339
3340	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3341	if (r) {
3342		ti->error = "Error getting data device";
3343		goto out_metadata;
3344	}
3345
3346	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3347	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3348	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3349	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3350		ti->error = "Invalid block size";
3351		r = -EINVAL;
3352		goto out;
3353	}
3354
3355	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3356		ti->error = "Invalid low water mark";
3357		r = -EINVAL;
3358		goto out;
3359	}
3360
3361	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3362	if (!pt) {
3363		r = -ENOMEM;
3364		goto out;
3365	}
3366
3367	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3368			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3369	if (IS_ERR(pool)) {
3370		r = PTR_ERR(pool);
3371		goto out_free_pt;
3372	}
3373
3374	/*
3375	 * 'pool_created' reflects whether this is the first table load.
3376	 * Top level discard support is not allowed to be changed after
3377	 * initial load.  This would require a pool reload to trigger thin
3378	 * device changes.
3379	 */
3380	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3381		ti->error = "Discard support cannot be disabled once enabled";
3382		r = -EINVAL;
3383		goto out_flags_changed;
3384	}
3385
3386	pt->pool = pool;
3387	pt->ti = ti;
3388	pt->metadata_dev = metadata_dev;
3389	pt->data_dev = data_dev;
3390	pt->low_water_blocks = low_water_blocks;
3391	pt->adjusted_pf = pt->requested_pf = pf;
3392	ti->num_flush_bios = 1;
3393	ti->limit_swap_bios = true;
3394
3395	/*
3396	 * Only need to enable discards if the pool should pass
3397	 * them down to the data device.  The thin device's discard
3398	 * processing will cause mappings to be removed from the btree.
3399	 */
 
3400	if (pf.discard_enabled && pf.discard_passdown) {
3401		ti->num_discard_bios = 1;
 
3402		/*
3403		 * Setting 'discards_supported' circumvents the normal
3404		 * stacking of discard limits (this keeps the pool and
3405		 * thin devices' discard limits consistent).
3406		 */
3407		ti->discards_supported = true;
3408		ti->max_discard_granularity = true;
3409	}
3410	ti->private = pt;
3411
3412	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3413						calc_metadata_threshold(pt),
3414						metadata_low_callback,
3415						pool);
3416	if (r) {
3417		ti->error = "Error registering metadata threshold";
3418		goto out_flags_changed;
3419	}
3420
3421	dm_pool_register_pre_commit_callback(pool->pmd,
3422					     metadata_pre_commit_callback, pool);
3423
3424	mutex_unlock(&dm_thin_pool_table.mutex);
3425
3426	return 0;
3427
3428out_flags_changed:
3429	__pool_dec(pool);
3430out_free_pt:
3431	kfree(pt);
3432out:
3433	dm_put_device(ti, data_dev);
3434out_metadata:
3435	dm_put_device(ti, metadata_dev);
3436out_unlock:
3437	mutex_unlock(&dm_thin_pool_table.mutex);
3438
3439	return r;
3440}
3441
3442static int pool_map(struct dm_target *ti, struct bio *bio)
3443{
 
3444	struct pool_c *pt = ti->private;
3445	struct pool *pool = pt->pool;
 
3446
3447	/*
3448	 * As this is a singleton target, ti->begin is always zero.
3449	 */
3450	spin_lock_irq(&pool->lock);
3451	bio_set_dev(bio, pt->data_dev->bdev);
3452	spin_unlock_irq(&pool->lock);
 
3453
3454	return DM_MAPIO_REMAPPED;
3455}
3456
3457static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3458{
3459	int r;
3460	struct pool_c *pt = ti->private;
3461	struct pool *pool = pt->pool;
3462	sector_t data_size = ti->len;
3463	dm_block_t sb_data_size;
3464
3465	*need_commit = false;
3466
3467	(void) sector_div(data_size, pool->sectors_per_block);
3468
3469	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3470	if (r) {
3471		DMERR("%s: failed to retrieve data device size",
3472		      dm_device_name(pool->pool_md));
3473		return r;
3474	}
3475
3476	if (data_size < sb_data_size) {
3477		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3478		      dm_device_name(pool->pool_md),
3479		      (unsigned long long)data_size, sb_data_size);
3480		return -EINVAL;
3481
3482	} else if (data_size > sb_data_size) {
3483		if (dm_pool_metadata_needs_check(pool->pmd)) {
3484			DMERR("%s: unable to grow the data device until repaired.",
3485			      dm_device_name(pool->pool_md));
3486			return 0;
3487		}
3488
3489		if (sb_data_size)
3490			DMINFO("%s: growing the data device from %llu to %llu blocks",
3491			       dm_device_name(pool->pool_md),
3492			       sb_data_size, (unsigned long long)data_size);
3493		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3494		if (r) {
3495			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3496			return r;
3497		}
3498
3499		*need_commit = true;
3500	}
3501
3502	return 0;
3503}
3504
3505static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3506{
3507	int r;
3508	struct pool_c *pt = ti->private;
3509	struct pool *pool = pt->pool;
3510	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3511
3512	*need_commit = false;
3513
3514	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3515
3516	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3517	if (r) {
3518		DMERR("%s: failed to retrieve metadata device size",
3519		      dm_device_name(pool->pool_md));
3520		return r;
3521	}
3522
3523	if (metadata_dev_size < sb_metadata_dev_size) {
3524		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3525		      dm_device_name(pool->pool_md),
3526		      metadata_dev_size, sb_metadata_dev_size);
3527		return -EINVAL;
3528
3529	} else if (metadata_dev_size > sb_metadata_dev_size) {
3530		if (dm_pool_metadata_needs_check(pool->pmd)) {
3531			DMERR("%s: unable to grow the metadata device until repaired.",
3532			      dm_device_name(pool->pool_md));
3533			return 0;
3534		}
3535
3536		warn_if_metadata_device_too_big(pool->md_dev);
3537		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3538		       dm_device_name(pool->pool_md),
3539		       sb_metadata_dev_size, metadata_dev_size);
3540
3541		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3542			set_pool_mode(pool, PM_WRITE);
3543
3544		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3545		if (r) {
3546			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3547			return r;
3548		}
3549
3550		*need_commit = true;
3551	}
3552
3553	return 0;
3554}
3555
3556/*
3557 * Retrieves the number of blocks of the data device from
3558 * the superblock and compares it to the actual device size,
3559 * thus resizing the data device in case it has grown.
3560 *
3561 * This both copes with opening preallocated data devices in the ctr
3562 * being followed by a resume
3563 * -and-
3564 * calling the resume method individually after userspace has
3565 * grown the data device in reaction to a table event.
3566 */
3567static int pool_preresume(struct dm_target *ti)
3568{
3569	int r;
3570	bool need_commit1, need_commit2;
3571	struct pool_c *pt = ti->private;
3572	struct pool *pool = pt->pool;
3573
3574	/*
3575	 * Take control of the pool object.
3576	 */
3577	r = bind_control_target(pool, ti);
3578	if (r)
3579		goto out;
3580
3581	r = maybe_resize_data_dev(ti, &need_commit1);
3582	if (r)
3583		goto out;
3584
3585	r = maybe_resize_metadata_dev(ti, &need_commit2);
3586	if (r)
3587		goto out;
3588
3589	if (need_commit1 || need_commit2)
3590		(void) commit(pool);
3591out:
3592	/*
3593	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3594	 * bio is in deferred list. Therefore need to return 0
3595	 * to allow pool_resume() to flush IO.
3596	 */
3597	if (r && get_pool_mode(pool) == PM_FAIL)
3598		r = 0;
3599
3600	return r;
3601}
3602
3603static void pool_suspend_active_thins(struct pool *pool)
3604{
3605	struct thin_c *tc;
3606
3607	/* Suspend all active thin devices */
3608	tc = get_first_thin(pool);
3609	while (tc) {
3610		dm_internal_suspend_noflush(tc->thin_md);
3611		tc = get_next_thin(pool, tc);
3612	}
3613}
3614
3615static void pool_resume_active_thins(struct pool *pool)
3616{
3617	struct thin_c *tc;
3618
3619	/* Resume all active thin devices */
3620	tc = get_first_thin(pool);
3621	while (tc) {
3622		dm_internal_resume(tc->thin_md);
3623		tc = get_next_thin(pool, tc);
3624	}
3625}
3626
3627static void pool_resume(struct dm_target *ti)
3628{
3629	struct pool_c *pt = ti->private;
3630	struct pool *pool = pt->pool;
 
3631
3632	/*
3633	 * Must requeue active_thins' bios and then resume
3634	 * active_thins _before_ clearing 'suspend' flag.
3635	 */
3636	requeue_bios(pool);
3637	pool_resume_active_thins(pool);
3638
3639	spin_lock_irq(&pool->lock);
3640	pool->low_water_triggered = false;
3641	pool->suspended = false;
3642	spin_unlock_irq(&pool->lock);
3643
3644	do_waker(&pool->waker.work);
3645}
3646
3647static void pool_presuspend(struct dm_target *ti)
3648{
3649	struct pool_c *pt = ti->private;
3650	struct pool *pool = pt->pool;
3651
3652	spin_lock_irq(&pool->lock);
3653	pool->suspended = true;
3654	spin_unlock_irq(&pool->lock);
3655
3656	pool_suspend_active_thins(pool);
3657}
3658
3659static void pool_presuspend_undo(struct dm_target *ti)
3660{
3661	struct pool_c *pt = ti->private;
3662	struct pool *pool = pt->pool;
3663
3664	pool_resume_active_thins(pool);
3665
3666	spin_lock_irq(&pool->lock);
3667	pool->suspended = false;
3668	spin_unlock_irq(&pool->lock);
3669}
3670
3671static void pool_postsuspend(struct dm_target *ti)
3672{
3673	struct pool_c *pt = ti->private;
3674	struct pool *pool = pt->pool;
3675
3676	cancel_delayed_work_sync(&pool->waker);
3677	cancel_delayed_work_sync(&pool->no_space_timeout);
3678	flush_workqueue(pool->wq);
3679	(void) commit(pool);
3680}
3681
3682static int check_arg_count(unsigned int argc, unsigned int args_required)
3683{
3684	if (argc != args_required) {
3685		DMWARN("Message received with %u arguments instead of %u.",
3686		       argc, args_required);
3687		return -EINVAL;
3688	}
3689
3690	return 0;
3691}
3692
3693static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3694{
3695	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3696	    *dev_id <= MAX_DEV_ID)
3697		return 0;
3698
3699	if (warning)
3700		DMWARN("Message received with invalid device id: %s", arg);
3701
3702	return -EINVAL;
3703}
3704
3705static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3706{
3707	dm_thin_id dev_id;
3708	int r;
3709
3710	r = check_arg_count(argc, 2);
3711	if (r)
3712		return r;
3713
3714	r = read_dev_id(argv[1], &dev_id, 1);
3715	if (r)
3716		return r;
3717
3718	r = dm_pool_create_thin(pool->pmd, dev_id);
3719	if (r) {
3720		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3721		       argv[1]);
3722		return r;
3723	}
3724
3725	return 0;
3726}
3727
3728static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3729{
3730	dm_thin_id dev_id;
3731	dm_thin_id origin_dev_id;
3732	int r;
3733
3734	r = check_arg_count(argc, 3);
3735	if (r)
3736		return r;
3737
3738	r = read_dev_id(argv[1], &dev_id, 1);
3739	if (r)
3740		return r;
3741
3742	r = read_dev_id(argv[2], &origin_dev_id, 1);
3743	if (r)
3744		return r;
3745
3746	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3747	if (r) {
3748		DMWARN("Creation of new snapshot %s of device %s failed.",
3749		       argv[1], argv[2]);
3750		return r;
3751	}
3752
3753	return 0;
3754}
3755
3756static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3757{
3758	dm_thin_id dev_id;
3759	int r;
3760
3761	r = check_arg_count(argc, 2);
3762	if (r)
3763		return r;
3764
3765	r = read_dev_id(argv[1], &dev_id, 1);
3766	if (r)
3767		return r;
3768
3769	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3770	if (r)
3771		DMWARN("Deletion of thin device %s failed.", argv[1]);
3772
3773	return r;
3774}
3775
3776static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3777{
3778	dm_thin_id old_id, new_id;
3779	int r;
3780
3781	r = check_arg_count(argc, 3);
3782	if (r)
3783		return r;
3784
3785	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3786		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3787		return -EINVAL;
3788	}
3789
3790	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3791		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3792		return -EINVAL;
3793	}
3794
3795	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3796	if (r) {
3797		DMWARN("Failed to change transaction id from %s to %s.",
3798		       argv[1], argv[2]);
3799		return r;
3800	}
3801
3802	return 0;
3803}
3804
3805static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3806{
3807	int r;
3808
3809	r = check_arg_count(argc, 1);
3810	if (r)
3811		return r;
3812
3813	(void) commit(pool);
3814
3815	r = dm_pool_reserve_metadata_snap(pool->pmd);
3816	if (r)
3817		DMWARN("reserve_metadata_snap message failed.");
3818
3819	return r;
3820}
3821
3822static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3823{
3824	int r;
3825
3826	r = check_arg_count(argc, 1);
3827	if (r)
3828		return r;
3829
3830	r = dm_pool_release_metadata_snap(pool->pmd);
3831	if (r)
3832		DMWARN("release_metadata_snap message failed.");
3833
3834	return r;
3835}
3836
3837/*
3838 * Messages supported:
3839 *   create_thin	<dev_id>
3840 *   create_snap	<dev_id> <origin_id>
3841 *   delete		<dev_id>
 
3842 *   set_transaction_id <current_trans_id> <new_trans_id>
3843 *   reserve_metadata_snap
3844 *   release_metadata_snap
3845 */
3846static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3847			char *result, unsigned int maxlen)
3848{
3849	int r = -EINVAL;
3850	struct pool_c *pt = ti->private;
3851	struct pool *pool = pt->pool;
3852
3853	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3854		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3855		      dm_device_name(pool->pool_md));
3856		return -EOPNOTSUPP;
3857	}
3858
3859	if (!strcasecmp(argv[0], "create_thin"))
3860		r = process_create_thin_mesg(argc, argv, pool);
3861
3862	else if (!strcasecmp(argv[0], "create_snap"))
3863		r = process_create_snap_mesg(argc, argv, pool);
3864
3865	else if (!strcasecmp(argv[0], "delete"))
3866		r = process_delete_mesg(argc, argv, pool);
3867
3868	else if (!strcasecmp(argv[0], "set_transaction_id"))
3869		r = process_set_transaction_id_mesg(argc, argv, pool);
3870
3871	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3872		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3873
3874	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3875		r = process_release_metadata_snap_mesg(argc, argv, pool);
3876
3877	else
3878		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3879
3880	if (!r)
3881		(void) commit(pool);
3882
3883	return r;
3884}
3885
3886static void emit_flags(struct pool_features *pf, char *result,
3887		       unsigned int sz, unsigned int maxlen)
3888{
3889	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3890		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3891		pf->error_if_no_space;
3892	DMEMIT("%u ", count);
3893
3894	if (!pf->zero_new_blocks)
3895		DMEMIT("skip_block_zeroing ");
3896
3897	if (!pf->discard_enabled)
3898		DMEMIT("ignore_discard ");
3899
3900	if (!pf->discard_passdown)
3901		DMEMIT("no_discard_passdown ");
3902
3903	if (pf->mode == PM_READ_ONLY)
3904		DMEMIT("read_only ");
3905
3906	if (pf->error_if_no_space)
3907		DMEMIT("error_if_no_space ");
3908}
3909
3910/*
3911 * Status line is:
3912 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3913 *    <used data sectors>/<total data sectors> <held metadata root>
3914 *    <pool mode> <discard config> <no space config> <needs_check>
3915 */
3916static void pool_status(struct dm_target *ti, status_type_t type,
3917			unsigned int status_flags, char *result, unsigned int maxlen)
3918{
3919	int r;
3920	unsigned int sz = 0;
3921	uint64_t transaction_id;
3922	dm_block_t nr_free_blocks_data;
3923	dm_block_t nr_free_blocks_metadata;
3924	dm_block_t nr_blocks_data;
3925	dm_block_t nr_blocks_metadata;
3926	dm_block_t held_root;
3927	enum pool_mode mode;
3928	char buf[BDEVNAME_SIZE];
3929	char buf2[BDEVNAME_SIZE];
3930	struct pool_c *pt = ti->private;
3931	struct pool *pool = pt->pool;
3932
3933	switch (type) {
3934	case STATUSTYPE_INFO:
3935		if (get_pool_mode(pool) == PM_FAIL) {
3936			DMEMIT("Fail");
3937			break;
3938		}
3939
3940		/* Commit to ensure statistics aren't out-of-date */
3941		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3942			(void) commit(pool);
3943
3944		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3945		if (r) {
3946			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3947			      dm_device_name(pool->pool_md), r);
3948			goto err;
3949		}
3950
3951		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3952		if (r) {
3953			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3954			      dm_device_name(pool->pool_md), r);
3955			goto err;
3956		}
3957
3958		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3959		if (r) {
3960			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3961			      dm_device_name(pool->pool_md), r);
3962			goto err;
3963		}
3964
3965		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3966		if (r) {
3967			DMERR("%s: dm_pool_get_free_block_count returned %d",
3968			      dm_device_name(pool->pool_md), r);
3969			goto err;
3970		}
3971
3972		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3973		if (r) {
3974			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3975			      dm_device_name(pool->pool_md), r);
3976			goto err;
3977		}
3978
3979		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3980		if (r) {
3981			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3982			      dm_device_name(pool->pool_md), r);
3983			goto err;
3984		}
3985
3986		DMEMIT("%llu %llu/%llu %llu/%llu ",
3987		       (unsigned long long)transaction_id,
3988		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3989		       (unsigned long long)nr_blocks_metadata,
3990		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3991		       (unsigned long long)nr_blocks_data);
3992
3993		if (held_root)
3994			DMEMIT("%llu ", held_root);
3995		else
3996			DMEMIT("- ");
3997
3998		mode = get_pool_mode(pool);
3999		if (mode == PM_OUT_OF_DATA_SPACE)
4000			DMEMIT("out_of_data_space ");
4001		else if (is_read_only_pool_mode(mode))
4002			DMEMIT("ro ");
4003		else
4004			DMEMIT("rw ");
4005
4006		if (!pool->pf.discard_enabled)
4007			DMEMIT("ignore_discard ");
4008		else if (pool->pf.discard_passdown)
4009			DMEMIT("discard_passdown ");
4010		else
4011			DMEMIT("no_discard_passdown ");
4012
4013		if (pool->pf.error_if_no_space)
4014			DMEMIT("error_if_no_space ");
4015		else
4016			DMEMIT("queue_if_no_space ");
4017
4018		if (dm_pool_metadata_needs_check(pool->pmd))
4019			DMEMIT("needs_check ");
4020		else
4021			DMEMIT("- ");
4022
4023		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4024
4025		break;
4026
4027	case STATUSTYPE_TABLE:
4028		DMEMIT("%s %s %lu %llu ",
4029		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4030		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4031		       (unsigned long)pool->sectors_per_block,
4032		       (unsigned long long)pt->low_water_blocks);
4033		emit_flags(&pt->requested_pf, result, sz, maxlen);
4034		break;
4035
4036	case STATUSTYPE_IMA:
4037		*result = '\0';
4038		break;
4039	}
4040	return;
4041
4042err:
4043	DMEMIT("Error");
4044}
4045
4046static int pool_iterate_devices(struct dm_target *ti,
4047				iterate_devices_callout_fn fn, void *data)
4048{
4049	struct pool_c *pt = ti->private;
4050
4051	return fn(ti, pt->data_dev, 0, ti->len, data);
4052}
4053
4054static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
 
4055{
4056	struct pool_c *pt = ti->private;
 
 
 
 
 
 
 
 
 
 
 
 
4057	struct pool *pool = pt->pool;
4058	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
 
 
4059
4060	/*
4061	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4062	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4063	 * This is especially beneficial when the pool's data device is a RAID
4064	 * device that has a full stripe width that matches pool->sectors_per_block
4065	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4066	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4067	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4068	 */
4069	if (limits->max_sectors < pool->sectors_per_block) {
4070		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4071			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4072				limits->max_sectors--;
4073			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4074		}
4075	}
 
 
 
 
 
4076
4077	/*
4078	 * If the system-determined stacked limits are compatible with the
4079	 * pool's blocksize (io_opt is a factor) do not override them.
4080	 */
4081	if (io_opt_sectors < pool->sectors_per_block ||
4082	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4083		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4084			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4085		else
4086			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4087		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4088	}
4089
4090	/*
4091	 * pt->adjusted_pf is a staging area for the actual features to use.
4092	 * They get transferred to the live pool in bind_control_target()
4093	 * called from pool_preresume().
4094	 */
4095
4096	if (pt->adjusted_pf.discard_enabled) {
4097		disable_discard_passdown_if_not_supported(pt);
4098		if (!pt->adjusted_pf.discard_passdown)
4099			limits->max_discard_sectors = 0;
4100		/*
4101		 * The pool uses the same discard limits as the underlying data
4102		 * device.  DM core has already set this up.
4103		 */
4104	} else {
4105		/*
4106		 * Must explicitly disallow stacking discard limits otherwise the
4107		 * block layer will stack them if pool's data device has support.
 
 
4108		 */
4109		limits->discard_granularity = 0;
 
4110	}
 
 
 
 
4111}
4112
4113static struct target_type pool_target = {
4114	.name = "thin-pool",
4115	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4116		    DM_TARGET_IMMUTABLE,
4117	.version = {1, 23, 0},
4118	.module = THIS_MODULE,
4119	.ctr = pool_ctr,
4120	.dtr = pool_dtr,
4121	.map = pool_map,
4122	.presuspend = pool_presuspend,
4123	.presuspend_undo = pool_presuspend_undo,
4124	.postsuspend = pool_postsuspend,
4125	.preresume = pool_preresume,
4126	.resume = pool_resume,
4127	.message = pool_message,
4128	.status = pool_status,
 
4129	.iterate_devices = pool_iterate_devices,
4130	.io_hints = pool_io_hints,
4131};
4132
4133/*
4134 *--------------------------------------------------------------
4135 * Thin target methods
4136 *--------------------------------------------------------------
4137 */
4138static void thin_get(struct thin_c *tc)
4139{
4140	refcount_inc(&tc->refcount);
4141}
4142
4143static void thin_put(struct thin_c *tc)
4144{
4145	if (refcount_dec_and_test(&tc->refcount))
4146		complete(&tc->can_destroy);
4147}
4148
4149static void thin_dtr(struct dm_target *ti)
4150{
4151	struct thin_c *tc = ti->private;
4152
4153	spin_lock_irq(&tc->pool->lock);
4154	list_del_rcu(&tc->list);
4155	spin_unlock_irq(&tc->pool->lock);
4156	synchronize_rcu();
4157
4158	thin_put(tc);
4159	wait_for_completion(&tc->can_destroy);
4160
 
 
 
 
 
4161	mutex_lock(&dm_thin_pool_table.mutex);
4162
4163	__pool_dec(tc->pool);
4164	dm_pool_close_thin_device(tc->td);
4165	dm_put_device(ti, tc->pool_dev);
4166	if (tc->origin_dev)
4167		dm_put_device(ti, tc->origin_dev);
4168	kfree(tc);
4169
4170	mutex_unlock(&dm_thin_pool_table.mutex);
4171}
4172
4173/*
4174 * Thin target parameters:
4175 *
4176 * <pool_dev> <dev_id> [origin_dev]
4177 *
4178 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4179 * dev_id: the internal device identifier
4180 * origin_dev: a device external to the pool that should act as the origin
4181 *
4182 * If the pool device has discards disabled, they get disabled for the thin
4183 * device as well.
4184 */
4185static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4186{
4187	int r;
4188	struct thin_c *tc;
4189	struct dm_dev *pool_dev, *origin_dev;
4190	struct mapped_device *pool_md;
 
4191
4192	mutex_lock(&dm_thin_pool_table.mutex);
4193
4194	if (argc != 2 && argc != 3) {
4195		ti->error = "Invalid argument count";
4196		r = -EINVAL;
4197		goto out_unlock;
4198	}
4199
4200	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4201	if (!tc) {
4202		ti->error = "Out of memory";
4203		r = -ENOMEM;
4204		goto out_unlock;
4205	}
4206	tc->thin_md = dm_table_get_md(ti->table);
4207	spin_lock_init(&tc->lock);
4208	INIT_LIST_HEAD(&tc->deferred_cells);
4209	bio_list_init(&tc->deferred_bio_list);
4210	bio_list_init(&tc->retry_on_resume_list);
4211	tc->sort_bio_list = RB_ROOT;
4212
4213	if (argc == 3) {
4214		if (!strcmp(argv[0], argv[2])) {
4215			ti->error = "Error setting origin device";
4216			r = -EINVAL;
4217			goto bad_origin_dev;
4218		}
4219
4220		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4221		if (r) {
4222			ti->error = "Error opening origin device";
4223			goto bad_origin_dev;
4224		}
4225		tc->origin_dev = origin_dev;
4226	}
4227
4228	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4229	if (r) {
4230		ti->error = "Error opening pool device";
4231		goto bad_pool_dev;
4232	}
4233	tc->pool_dev = pool_dev;
4234
4235	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4236		ti->error = "Invalid device id";
4237		r = -EINVAL;
4238		goto bad_common;
4239	}
4240
4241	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4242	if (!pool_md) {
4243		ti->error = "Couldn't get pool mapped device";
4244		r = -EINVAL;
4245		goto bad_common;
4246	}
4247
4248	tc->pool = __pool_table_lookup(pool_md);
4249	if (!tc->pool) {
4250		ti->error = "Couldn't find pool object";
4251		r = -EINVAL;
4252		goto bad_pool_lookup;
4253	}
4254	__pool_inc(tc->pool);
4255
4256	if (get_pool_mode(tc->pool) == PM_FAIL) {
4257		ti->error = "Couldn't open thin device, Pool is in fail mode";
4258		r = -EINVAL;
4259		goto bad_pool;
4260	}
4261
4262	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4263	if (r) {
4264		ti->error = "Couldn't open thin internal device";
4265		goto bad_pool;
4266	}
4267
4268	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4269	if (r)
4270		goto bad;
4271
4272	ti->num_flush_bios = 1;
4273	ti->limit_swap_bios = true;
4274	ti->flush_supported = true;
4275	ti->accounts_remapped_io = true;
4276	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4277
4278	/* In case the pool supports discards, pass them on. */
 
4279	if (tc->pool->pf.discard_enabled) {
4280		ti->discards_supported = true;
4281		ti->num_discard_bios = 1;
4282		ti->max_discard_granularity = true;
 
4283	}
4284
 
 
4285	mutex_unlock(&dm_thin_pool_table.mutex);
4286
4287	spin_lock_irq(&tc->pool->lock);
4288	if (tc->pool->suspended) {
4289		spin_unlock_irq(&tc->pool->lock);
4290		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4291		ti->error = "Unable to activate thin device while pool is suspended";
4292		r = -EINVAL;
4293		goto bad;
4294	}
4295	refcount_set(&tc->refcount, 1);
4296	init_completion(&tc->can_destroy);
 
 
4297	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4298	spin_unlock_irq(&tc->pool->lock);
4299	/*
4300	 * This synchronize_rcu() call is needed here otherwise we risk a
4301	 * wake_worker() call finding no bios to process (because the newly
4302	 * added tc isn't yet visible).  So this reduces latency since we
4303	 * aren't then dependent on the periodic commit to wake_worker().
4304	 */
4305	synchronize_rcu();
4306
4307	dm_put(pool_md);
4308
4309	return 0;
4310
4311bad:
4312	dm_pool_close_thin_device(tc->td);
4313bad_pool:
4314	__pool_dec(tc->pool);
4315bad_pool_lookup:
4316	dm_put(pool_md);
4317bad_common:
4318	dm_put_device(ti, tc->pool_dev);
4319bad_pool_dev:
4320	if (tc->origin_dev)
4321		dm_put_device(ti, tc->origin_dev);
4322bad_origin_dev:
4323	kfree(tc);
4324out_unlock:
4325	mutex_unlock(&dm_thin_pool_table.mutex);
4326
4327	return r;
4328}
4329
4330static int thin_map(struct dm_target *ti, struct bio *bio)
4331{
4332	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4333
4334	return thin_bio_map(ti, bio);
4335}
4336
4337static int thin_endio(struct dm_target *ti, struct bio *bio,
4338		blk_status_t *err)
4339{
4340	unsigned long flags;
4341	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4342	struct list_head work;
4343	struct dm_thin_new_mapping *m, *tmp;
4344	struct pool *pool = h->tc->pool;
4345
4346	if (h->shared_read_entry) {
4347		INIT_LIST_HEAD(&work);
4348		dm_deferred_entry_dec(h->shared_read_entry, &work);
4349
4350		spin_lock_irqsave(&pool->lock, flags);
4351		list_for_each_entry_safe(m, tmp, &work, list) {
4352			list_del(&m->list);
4353			__complete_mapping_preparation(m);
 
4354		}
4355		spin_unlock_irqrestore(&pool->lock, flags);
4356	}
4357
4358	if (h->all_io_entry) {
4359		INIT_LIST_HEAD(&work);
4360		dm_deferred_entry_dec(h->all_io_entry, &work);
4361		if (!list_empty(&work)) {
4362			spin_lock_irqsave(&pool->lock, flags);
4363			list_for_each_entry_safe(m, tmp, &work, list)
4364				list_add_tail(&m->list, &pool->prepared_discards);
4365			spin_unlock_irqrestore(&pool->lock, flags);
4366			wake_worker(pool);
4367		}
4368	}
4369
4370	if (h->cell)
4371		cell_defer_no_holder(h->tc, h->cell);
4372
4373	return DM_ENDIO_DONE;
4374}
4375
4376static void thin_presuspend(struct dm_target *ti)
4377{
4378	struct thin_c *tc = ti->private;
4379
4380	if (dm_noflush_suspending(ti))
4381		noflush_work(tc, do_noflush_start);
4382}
4383
4384static void thin_postsuspend(struct dm_target *ti)
4385{
4386	struct thin_c *tc = ti->private;
4387
4388	/*
4389	 * The dm_noflush_suspending flag has been cleared by now, so
4390	 * unfortunately we must always run this.
4391	 */
4392	noflush_work(tc, do_noflush_stop);
4393}
4394
4395static int thin_preresume(struct dm_target *ti)
4396{
4397	struct thin_c *tc = ti->private;
4398
4399	if (tc->origin_dev)
4400		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4401
4402	return 0;
4403}
4404
4405/*
4406 * <nr mapped sectors> <highest mapped sector>
4407 */
4408static void thin_status(struct dm_target *ti, status_type_t type,
4409			unsigned int status_flags, char *result, unsigned int maxlen)
4410{
4411	int r;
4412	ssize_t sz = 0;
4413	dm_block_t mapped, highest;
4414	char buf[BDEVNAME_SIZE];
4415	struct thin_c *tc = ti->private;
4416
4417	if (get_pool_mode(tc->pool) == PM_FAIL) {
4418		DMEMIT("Fail");
4419		return;
4420	}
4421
4422	if (!tc->td)
4423		DMEMIT("-");
4424	else {
4425		switch (type) {
4426		case STATUSTYPE_INFO:
4427			r = dm_thin_get_mapped_count(tc->td, &mapped);
4428			if (r) {
4429				DMERR("dm_thin_get_mapped_count returned %d", r);
4430				goto err;
4431			}
4432
4433			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4434			if (r < 0) {
4435				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4436				goto err;
4437			}
4438
4439			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4440			if (r)
4441				DMEMIT("%llu", ((highest + 1) *
4442						tc->pool->sectors_per_block) - 1);
4443			else
4444				DMEMIT("-");
4445			break;
4446
4447		case STATUSTYPE_TABLE:
4448			DMEMIT("%s %lu",
4449			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4450			       (unsigned long) tc->dev_id);
4451			if (tc->origin_dev)
4452				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4453			break;
4454
4455		case STATUSTYPE_IMA:
4456			*result = '\0';
4457			break;
4458		}
4459	}
4460
4461	return;
4462
4463err:
4464	DMEMIT("Error");
4465}
4466
4467static int thin_iterate_devices(struct dm_target *ti,
4468				iterate_devices_callout_fn fn, void *data)
4469{
4470	sector_t blocks;
4471	struct thin_c *tc = ti->private;
4472	struct pool *pool = tc->pool;
4473
4474	/*
4475	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4476	 * we follow a more convoluted path through to the pool's target.
4477	 */
4478	if (!pool->ti)
4479		return 0;	/* nothing is bound */
4480
4481	blocks = pool->ti->len;
4482	(void) sector_div(blocks, pool->sectors_per_block);
4483	if (blocks)
4484		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4485
4486	return 0;
4487}
4488
4489static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4490{
4491	struct thin_c *tc = ti->private;
4492	struct pool *pool = tc->pool;
4493
4494	if (pool->pf.discard_enabled) {
4495		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4496		limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4497	}
4498}
4499
4500static struct target_type thin_target = {
4501	.name = "thin",
4502	.version = {1, 23, 0},
4503	.module	= THIS_MODULE,
4504	.ctr = thin_ctr,
4505	.dtr = thin_dtr,
4506	.map = thin_map,
4507	.end_io = thin_endio,
4508	.preresume = thin_preresume,
4509	.presuspend = thin_presuspend,
4510	.postsuspend = thin_postsuspend,
4511	.status = thin_status,
4512	.iterate_devices = thin_iterate_devices,
4513	.io_hints = thin_io_hints,
4514};
4515
4516/*----------------------------------------------------------------*/
4517
4518static int __init dm_thin_init(void)
4519{
4520	int r = -ENOMEM;
4521
4522	pool_table_init();
4523
4524	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4525	if (!_new_mapping_cache)
4526		return r;
4527
4528	r = dm_register_target(&thin_target);
4529	if (r)
4530		goto bad_new_mapping_cache;
4531
4532	r = dm_register_target(&pool_target);
4533	if (r)
4534		goto bad_thin_target;
 
 
 
 
 
 
4535
4536	return 0;
4537
4538bad_thin_target:
4539	dm_unregister_target(&thin_target);
4540bad_new_mapping_cache:
4541	kmem_cache_destroy(_new_mapping_cache);
 
 
4542
4543	return r;
4544}
4545
4546static void dm_thin_exit(void)
4547{
4548	dm_unregister_target(&thin_target);
4549	dm_unregister_target(&pool_target);
4550
4551	kmem_cache_destroy(_new_mapping_cache);
4552
4553	pool_table_exit();
4554}
4555
4556module_init(dm_thin_init);
4557module_exit(dm_thin_exit);
4558
4559module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4560MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4561
4562MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4563MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4564MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
 
 
  14#include <linux/list.h>
  15#include <linux/rculist.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
 
 
  19#include <linux/rbtree.h>
  20
  21#define	DM_MSG_PREFIX	"thin"
  22
  23/*
  24 * Tunable constants
  25 */
  26#define ENDIO_HOOK_POOL_SIZE 1024
  27#define MAPPING_POOL_SIZE 1024
  28#define PRISON_CELLS 1024
  29#define COMMIT_PERIOD HZ
  30#define NO_SPACE_TIMEOUT_SECS 60
  31
  32static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  33
  34DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  35		"A percentage of time allocated for copy on write");
  36
  37/*
  38 * The block size of the device holding pool data must be
  39 * between 64KB and 1GB.
  40 */
  41#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  42#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  43
  44/*
  45 * Device id is restricted to 24 bits.
  46 */
  47#define MAX_DEV_ID ((1 << 24) - 1)
  48
  49/*
  50 * How do we handle breaking sharing of data blocks?
  51 * =================================================
  52 *
  53 * We use a standard copy-on-write btree to store the mappings for the
  54 * devices (note I'm talking about copy-on-write of the metadata here, not
  55 * the data).  When you take an internal snapshot you clone the root node
  56 * of the origin btree.  After this there is no concept of an origin or a
  57 * snapshot.  They are just two device trees that happen to point to the
  58 * same data blocks.
  59 *
  60 * When we get a write in we decide if it's to a shared data block using
  61 * some timestamp magic.  If it is, we have to break sharing.
  62 *
  63 * Let's say we write to a shared block in what was the origin.  The
  64 * steps are:
  65 *
  66 * i) plug io further to this physical block. (see bio_prison code).
  67 *
  68 * ii) quiesce any read io to that shared data block.  Obviously
  69 * including all devices that share this block.  (see dm_deferred_set code)
  70 *
  71 * iii) copy the data block to a newly allocate block.  This step can be
  72 * missed out if the io covers the block. (schedule_copy).
  73 *
  74 * iv) insert the new mapping into the origin's btree
  75 * (process_prepared_mapping).  This act of inserting breaks some
  76 * sharing of btree nodes between the two devices.  Breaking sharing only
  77 * effects the btree of that specific device.  Btrees for the other
  78 * devices that share the block never change.  The btree for the origin
  79 * device as it was after the last commit is untouched, ie. we're using
  80 * persistent data structures in the functional programming sense.
  81 *
  82 * v) unplug io to this physical block, including the io that triggered
  83 * the breaking of sharing.
  84 *
  85 * Steps (ii) and (iii) occur in parallel.
  86 *
  87 * The metadata _doesn't_ need to be committed before the io continues.  We
  88 * get away with this because the io is always written to a _new_ block.
  89 * If there's a crash, then:
  90 *
  91 * - The origin mapping will point to the old origin block (the shared
  92 * one).  This will contain the data as it was before the io that triggered
  93 * the breaking of sharing came in.
  94 *
  95 * - The snap mapping still points to the old block.  As it would after
  96 * the commit.
  97 *
  98 * The downside of this scheme is the timestamp magic isn't perfect, and
  99 * will continue to think that data block in the snapshot device is shared
 100 * even after the write to the origin has broken sharing.  I suspect data
 101 * blocks will typically be shared by many different devices, so we're
 102 * breaking sharing n + 1 times, rather than n, where n is the number of
 103 * devices that reference this data block.  At the moment I think the
 104 * benefits far, far outweigh the disadvantages.
 105 */
 106
 107/*----------------------------------------------------------------*/
 108
 109/*
 110 * Key building.
 111 */
 112static void build_data_key(struct dm_thin_device *td,
 113			   dm_block_t b, struct dm_cell_key *key)
 
 
 
 
 
 114{
 115	key->virtual = 0;
 116	key->dev = dm_thin_dev_id(td);
 117	key->block = b;
 
 
 
 
 
 
 
 
 
 118}
 119
 120static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 121			      struct dm_cell_key *key)
 122{
 123	key->virtual = 1;
 124	key->dev = dm_thin_dev_id(td);
 125	key->block = b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126}
 127
 128/*----------------------------------------------------------------*/
 129
 130/*
 131 * A pool device ties together a metadata device and a data device.  It
 132 * also provides the interface for creating and destroying internal
 133 * devices.
 134 */
 135struct dm_thin_new_mapping;
 136
 137/*
 138 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 139 */
 140enum pool_mode {
 141	PM_WRITE,		/* metadata may be changed */
 142	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 143	PM_READ_ONLY,		/* metadata may not be changed */
 
 144	PM_FAIL,		/* all I/O fails */
 145};
 146
 147struct pool_features {
 148	enum pool_mode mode;
 149
 150	bool zero_new_blocks:1;
 151	bool discard_enabled:1;
 152	bool discard_passdown:1;
 153	bool error_if_no_space:1;
 154};
 155
 156struct thin_c;
 157typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 
 158typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 159
 
 
 160struct pool {
 161	struct list_head list;
 162	struct dm_target *ti;	/* Only set if a pool target is bound */
 163
 164	struct mapped_device *pool_md;
 
 165	struct block_device *md_dev;
 166	struct dm_pool_metadata *pmd;
 167
 168	dm_block_t low_water_blocks;
 169	uint32_t sectors_per_block;
 170	int sectors_per_block_shift;
 171
 172	struct pool_features pf;
 173	bool low_water_triggered:1;	/* A dm event has been sent */
 
 
 174
 175	struct dm_bio_prison *prison;
 176	struct dm_kcopyd_client *copier;
 177
 
 178	struct workqueue_struct *wq;
 179	struct work_struct worker;
 180	struct delayed_work waker;
 181	struct delayed_work no_space_timeout;
 182
 183	unsigned long last_commit_jiffies;
 184	unsigned ref_count;
 185
 186	spinlock_t lock;
 187	struct bio_list deferred_flush_bios;
 
 188	struct list_head prepared_mappings;
 189	struct list_head prepared_discards;
 
 190	struct list_head active_thins;
 191
 192	struct dm_deferred_set *shared_read_ds;
 193	struct dm_deferred_set *all_io_ds;
 194
 195	struct dm_thin_new_mapping *next_mapping;
 196	mempool_t *mapping_pool;
 197
 198	process_bio_fn process_bio;
 199	process_bio_fn process_discard;
 200
 
 
 
 201	process_mapping_fn process_prepared_mapping;
 202	process_mapping_fn process_prepared_discard;
 
 
 
 
 
 203};
 204
 205static enum pool_mode get_pool_mode(struct pool *pool);
 206static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208/*
 209 * Target context for a pool.
 210 */
 211struct pool_c {
 212	struct dm_target *ti;
 213	struct pool *pool;
 214	struct dm_dev *data_dev;
 215	struct dm_dev *metadata_dev;
 216	struct dm_target_callbacks callbacks;
 217
 218	dm_block_t low_water_blocks;
 219	struct pool_features requested_pf; /* Features requested during table load */
 220	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 221};
 222
 223/*
 224 * Target context for a thin.
 225 */
 226struct thin_c {
 227	struct list_head list;
 228	struct dm_dev *pool_dev;
 229	struct dm_dev *origin_dev;
 
 230	dm_thin_id dev_id;
 231
 232	struct pool *pool;
 233	struct dm_thin_device *td;
 
 
 234	bool requeue_mode:1;
 235	spinlock_t lock;
 
 236	struct bio_list deferred_bio_list;
 237	struct bio_list retry_on_resume_list;
 238	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 239
 240	/*
 241	 * Ensures the thin is not destroyed until the worker has finished
 242	 * iterating the active_thins list.
 243	 */
 244	atomic_t refcount;
 245	struct completion can_destroy;
 246};
 247
 248/*----------------------------------------------------------------*/
 249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250/*
 251 * wake_worker() is used when new work is queued and when pool_resume is
 252 * ready to continue deferred IO processing.
 253 */
 254static void wake_worker(struct pool *pool)
 255{
 256	queue_work(pool->wq, &pool->worker);
 257}
 258
 259/*----------------------------------------------------------------*/
 260
 261static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 262		      struct dm_bio_prison_cell **cell_result)
 263{
 264	int r;
 265	struct dm_bio_prison_cell *cell_prealloc;
 266
 267	/*
 268	 * Allocate a cell from the prison's mempool.
 269	 * This might block but it can't fail.
 270	 */
 271	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 272
 273	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 274	if (r)
 275		/*
 276		 * We reused an old cell; we can get rid of
 277		 * the new one.
 278		 */
 279		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 280
 281	return r;
 282}
 283
 284static void cell_release(struct pool *pool,
 285			 struct dm_bio_prison_cell *cell,
 286			 struct bio_list *bios)
 287{
 288	dm_cell_release(pool->prison, cell, bios);
 289	dm_bio_prison_free_cell(pool->prison, cell);
 290}
 291
 
 
 
 
 
 
 
 
 
 292static void cell_release_no_holder(struct pool *pool,
 293				   struct dm_bio_prison_cell *cell,
 294				   struct bio_list *bios)
 295{
 296	dm_cell_release_no_holder(pool->prison, cell, bios);
 297	dm_bio_prison_free_cell(pool->prison, cell);
 298}
 299
 300static void cell_defer_no_holder_no_free(struct thin_c *tc,
 301					 struct dm_bio_prison_cell *cell)
 302{
 303	struct pool *pool = tc->pool;
 304	unsigned long flags;
 
 
 
 
 
 
 305
 306	spin_lock_irqsave(&tc->lock, flags);
 307	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
 308	spin_unlock_irqrestore(&tc->lock, flags);
 
 309
 310	wake_worker(pool);
 
 
 311}
 312
 313static void cell_error(struct pool *pool,
 314		       struct dm_bio_prison_cell *cell)
 315{
 316	dm_cell_error(pool->prison, cell);
 317	dm_bio_prison_free_cell(pool->prison, cell);
 318}
 319
 320/*----------------------------------------------------------------*/
 321
 322/*
 323 * A global list of pools that uses a struct mapped_device as a key.
 324 */
 325static struct dm_thin_pool_table {
 326	struct mutex mutex;
 327	struct list_head pools;
 328} dm_thin_pool_table;
 329
 330static void pool_table_init(void)
 331{
 332	mutex_init(&dm_thin_pool_table.mutex);
 333	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 334}
 335
 
 
 
 
 
 336static void __pool_table_insert(struct pool *pool)
 337{
 338	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 339	list_add(&pool->list, &dm_thin_pool_table.pools);
 340}
 341
 342static void __pool_table_remove(struct pool *pool)
 343{
 344	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 345	list_del(&pool->list);
 346}
 347
 348static struct pool *__pool_table_lookup(struct mapped_device *md)
 349{
 350	struct pool *pool = NULL, *tmp;
 351
 352	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 353
 354	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 355		if (tmp->pool_md == md) {
 356			pool = tmp;
 357			break;
 358		}
 359	}
 360
 361	return pool;
 362}
 363
 364static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 365{
 366	struct pool *pool = NULL, *tmp;
 367
 368	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 369
 370	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 371		if (tmp->md_dev == md_dev) {
 372			pool = tmp;
 373			break;
 374		}
 375	}
 376
 377	return pool;
 378}
 379
 380/*----------------------------------------------------------------*/
 381
 382struct dm_thin_endio_hook {
 383	struct thin_c *tc;
 384	struct dm_deferred_entry *shared_read_entry;
 385	struct dm_deferred_entry *all_io_entry;
 386	struct dm_thin_new_mapping *overwrite_mapping;
 387	struct rb_node rb_node;
 
 388};
 389
 390static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 
 
 
 
 
 
 391{
 392	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 393	struct bio_list bios;
 394	unsigned long flags;
 395
 396	bio_list_init(&bios);
 397
 398	spin_lock_irqsave(&tc->lock, flags);
 399	bio_list_merge(&bios, master);
 400	bio_list_init(master);
 401	spin_unlock_irqrestore(&tc->lock, flags);
 402
 403	while ((bio = bio_list_pop(&bios)))
 404		bio_endio(bio, DM_ENDIO_REQUEUE);
 405}
 406
 407static void requeue_io(struct thin_c *tc)
 408{
 409	requeue_bio_list(tc, &tc->deferred_bio_list);
 410	requeue_bio_list(tc, &tc->retry_on_resume_list);
 
 
 
 
 
 
 
 
 
 
 411}
 412
 413static void error_thin_retry_list(struct thin_c *tc)
 414{
 415	struct bio *bio;
 416	unsigned long flags;
 417	struct bio_list bios;
 418
 419	bio_list_init(&bios);
 420
 421	spin_lock_irqsave(&tc->lock, flags);
 422	bio_list_merge(&bios, &tc->retry_on_resume_list);
 423	bio_list_init(&tc->retry_on_resume_list);
 424	spin_unlock_irqrestore(&tc->lock, flags);
 425
 426	while ((bio = bio_list_pop(&bios)))
 427		bio_io_error(bio);
 428}
 429
 430static void error_retry_list(struct pool *pool)
 431{
 432	struct thin_c *tc;
 433
 434	rcu_read_lock();
 435	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 436		error_thin_retry_list(tc);
 437	rcu_read_unlock();
 438}
 439
 
 
 
 
 
 440/*
 441 * This section of code contains the logic for processing a thin device's IO.
 442 * Much of the code depends on pool object resources (lists, workqueues, etc)
 443 * but most is exclusively called from the thin target rather than the thin-pool
 444 * target.
 445 */
 446
 447static bool block_size_is_power_of_two(struct pool *pool)
 448{
 449	return pool->sectors_per_block_shift >= 0;
 450}
 451
 452static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 453{
 454	struct pool *pool = tc->pool;
 455	sector_t block_nr = bio->bi_iter.bi_sector;
 456
 457	if (block_size_is_power_of_two(pool))
 458		block_nr >>= pool->sectors_per_block_shift;
 459	else
 460		(void) sector_div(block_nr, pool->sectors_per_block);
 461
 462	return block_nr;
 463}
 464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 466{
 467	struct pool *pool = tc->pool;
 468	sector_t bi_sector = bio->bi_iter.bi_sector;
 469
 470	bio->bi_bdev = tc->pool_dev->bdev;
 471	if (block_size_is_power_of_two(pool))
 472		bio->bi_iter.bi_sector =
 473			(block << pool->sectors_per_block_shift) |
 474			(bi_sector & (pool->sectors_per_block - 1));
 475	else
 476		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 477				 sector_div(bi_sector, pool->sectors_per_block);
 478}
 479
 480static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 481{
 482	bio->bi_bdev = tc->origin_dev->bdev;
 483}
 484
 485static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 486{
 487	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 488		dm_thin_changed_this_transaction(tc->td);
 489}
 490
 491static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 492{
 493	struct dm_thin_endio_hook *h;
 494
 495	if (bio->bi_rw & REQ_DISCARD)
 496		return;
 497
 498	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 499	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 500}
 501
 502static void issue(struct thin_c *tc, struct bio *bio)
 503{
 504	struct pool *pool = tc->pool;
 505	unsigned long flags;
 506
 507	if (!bio_triggers_commit(tc, bio)) {
 508		generic_make_request(bio);
 509		return;
 510	}
 511
 512	/*
 513	 * Complete bio with an error if earlier I/O caused changes to
 514	 * the metadata that can't be committed e.g, due to I/O errors
 515	 * on the metadata device.
 516	 */
 517	if (dm_thin_aborted_changes(tc->td)) {
 518		bio_io_error(bio);
 519		return;
 520	}
 521
 522	/*
 523	 * Batch together any bios that trigger commits and then issue a
 524	 * single commit for them in process_deferred_bios().
 525	 */
 526	spin_lock_irqsave(&pool->lock, flags);
 527	bio_list_add(&pool->deferred_flush_bios, bio);
 528	spin_unlock_irqrestore(&pool->lock, flags);
 529}
 530
 531static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 532{
 533	remap_to_origin(tc, bio);
 534	issue(tc, bio);
 535}
 536
 537static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 538			    dm_block_t block)
 539{
 540	remap(tc, bio, block);
 541	issue(tc, bio);
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546/*
 547 * Bio endio functions.
 548 */
 549struct dm_thin_new_mapping {
 550	struct list_head list;
 551
 552	bool quiesced:1;
 553	bool prepared:1;
 554	bool pass_discard:1;
 555	bool definitely_not_shared:1;
 556
 557	int err;
 
 
 
 
 
 
 
 558	struct thin_c *tc;
 559	dm_block_t virt_block;
 560	dm_block_t data_block;
 561	struct dm_bio_prison_cell *cell, *cell2;
 562
 563	/*
 564	 * If the bio covers the whole area of a block then we can avoid
 565	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 566	 * still be in the cell, so care has to be taken to avoid issuing
 567	 * the bio twice.
 568	 */
 569	struct bio *bio;
 570	bio_end_io_t *saved_bi_end_io;
 571};
 572
 573static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 574{
 575	struct pool *pool = m->tc->pool;
 576
 577	if (m->quiesced && m->prepared) {
 578		list_add_tail(&m->list, &pool->prepared_mappings);
 579		wake_worker(pool);
 580	}
 581}
 582
 583static void copy_complete(int read_err, unsigned long write_err, void *context)
 584{
 585	unsigned long flags;
 586	struct dm_thin_new_mapping *m = context;
 587	struct pool *pool = m->tc->pool;
 588
 589	m->err = read_err || write_err ? -EIO : 0;
 590
 591	spin_lock_irqsave(&pool->lock, flags);
 592	m->prepared = true;
 593	__maybe_add_mapping(m);
 594	spin_unlock_irqrestore(&pool->lock, flags);
 595}
 596
 597static void overwrite_endio(struct bio *bio, int err)
 
 
 
 
 
 
 
 
 598{
 599	unsigned long flags;
 600	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 601	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 602	struct pool *pool = m->tc->pool;
 603
 604	m->err = err;
 605
 606	spin_lock_irqsave(&pool->lock, flags);
 607	m->prepared = true;
 608	__maybe_add_mapping(m);
 609	spin_unlock_irqrestore(&pool->lock, flags);
 610}
 611
 612/*----------------------------------------------------------------*/
 613
 614/*
 615 * Workqueue.
 616 */
 617
 618/*
 619 * Prepared mapping jobs.
 620 */
 621
 622/*
 623 * This sends the bios in the cell back to the deferred_bios list.
 
 624 */
 625static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 626{
 627	struct pool *pool = tc->pool;
 628	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	spin_lock_irqsave(&tc->lock, flags);
 631	cell_release(pool, cell, &tc->deferred_bio_list);
 632	spin_unlock_irqrestore(&tc->lock, flags);
 633
 634	wake_worker(pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637/*
 638 * Same as cell_defer above, except it omits the original holder of the cell.
 639 */
 640static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 641{
 642	struct pool *pool = tc->pool;
 643	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645	spin_lock_irqsave(&tc->lock, flags);
 646	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 647	spin_unlock_irqrestore(&tc->lock, flags);
 648
 649	wake_worker(pool);
 
 650}
 651
 652static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 653{
 654	if (m->bio) {
 655		m->bio->bi_end_io = m->saved_bi_end_io;
 656		atomic_inc(&m->bio->bi_remaining);
 657	}
 658	cell_error(m->tc->pool, m->cell);
 659	list_del(&m->list);
 660	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661}
 662
 663static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 664{
 665	struct thin_c *tc = m->tc;
 666	struct pool *pool = tc->pool;
 667	struct bio *bio;
 668	int r;
 669
 670	bio = m->bio;
 671	if (bio) {
 672		bio->bi_end_io = m->saved_bi_end_io;
 673		atomic_inc(&bio->bi_remaining);
 674	}
 675
 676	if (m->err) {
 677		cell_error(pool, m->cell);
 678		goto out;
 679	}
 680
 681	/*
 682	 * Commit the prepared block into the mapping btree.
 683	 * Any I/O for this block arriving after this point will get
 684	 * remapped to it directly.
 685	 */
 686	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 687	if (r) {
 688		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 689		cell_error(pool, m->cell);
 690		goto out;
 691	}
 692
 693	/*
 694	 * Release any bios held while the block was being provisioned.
 695	 * If we are processing a write bio that completely covers the block,
 696	 * we already processed it so can ignore it now when processing
 697	 * the bios in the cell.
 698	 */
 699	if (bio) {
 700		cell_defer_no_holder(tc, m->cell);
 701		bio_endio(bio, 0);
 702	} else
 703		cell_defer(tc, m->cell);
 
 
 
 704
 705out:
 706	list_del(&m->list);
 707	mempool_free(m, pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 708}
 709
 710static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 711{
 
 
 
 
 
 
 
 
 
 
 
 
 
 712	struct thin_c *tc = m->tc;
 713
 714	bio_io_error(m->bio);
 
 
 
 
 
 
 715	cell_defer_no_holder(tc, m->cell);
 716	cell_defer_no_holder(tc, m->cell2);
 717	mempool_free(m, tc->pool->mapping_pool);
 718}
 719
 720static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
 
 
 
 721{
 
 
 
 
 
 
 722	struct thin_c *tc = m->tc;
 
 
 
 
 
 
 
 
 
 
 
 723
 724	inc_all_io_entry(tc->pool, m->bio);
 725	cell_defer_no_holder(tc, m->cell);
 726	cell_defer_no_holder(tc, m->cell2);
 
 
 
 
 
 
 
 
 
 727
 728	if (m->pass_discard)
 729		if (m->definitely_not_shared)
 730			remap_and_issue(tc, m->bio, m->data_block);
 731		else {
 732			bool used = false;
 733			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
 734				bio_endio(m->bio, 0);
 735			else
 736				remap_and_issue(tc, m->bio, m->data_block);
 737		}
 738	else
 739		bio_endio(m->bio, 0);
 740
 741	mempool_free(m, tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742}
 743
 744static void process_prepared_discard(struct dm_thin_new_mapping *m)
 745{
 746	int r;
 747	struct thin_c *tc = m->tc;
 
 748
 749	r = dm_thin_remove_block(tc->td, m->virt_block);
 750	if (r)
 751		DMERR_LIMIT("dm_thin_remove_block() failed");
 
 
 
 
 
 
 
 
 752
 753	process_prepared_discard_passdown(m);
 
 754}
 755
 756static void process_prepared(struct pool *pool, struct list_head *head,
 757			     process_mapping_fn *fn)
 758{
 759	unsigned long flags;
 760	struct list_head maps;
 761	struct dm_thin_new_mapping *m, *tmp;
 762
 763	INIT_LIST_HEAD(&maps);
 764	spin_lock_irqsave(&pool->lock, flags);
 765	list_splice_init(head, &maps);
 766	spin_unlock_irqrestore(&pool->lock, flags);
 767
 768	list_for_each_entry_safe(m, tmp, &maps, list)
 769		(*fn)(m);
 770}
 771
 772/*
 773 * Deferred bio jobs.
 774 */
 775static int io_overlaps_block(struct pool *pool, struct bio *bio)
 776{
 777	return bio->bi_iter.bi_size ==
 778		(pool->sectors_per_block << SECTOR_SHIFT);
 779}
 780
 781static int io_overwrites_block(struct pool *pool, struct bio *bio)
 782{
 783	return (bio_data_dir(bio) == WRITE) &&
 784		io_overlaps_block(pool, bio);
 785}
 786
 787static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 788			       bio_end_io_t *fn)
 789{
 790	*save = bio->bi_end_io;
 791	bio->bi_end_io = fn;
 792}
 793
 794static int ensure_next_mapping(struct pool *pool)
 795{
 796	if (pool->next_mapping)
 797		return 0;
 798
 799	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 800
 801	return pool->next_mapping ? 0 : -ENOMEM;
 802}
 803
 804static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 805{
 806	struct dm_thin_new_mapping *m = pool->next_mapping;
 807
 808	BUG_ON(!pool->next_mapping);
 809
 810	memset(m, 0, sizeof(struct dm_thin_new_mapping));
 811	INIT_LIST_HEAD(&m->list);
 812	m->bio = NULL;
 813
 814	pool->next_mapping = NULL;
 815
 816	return m;
 817}
 818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 820			  struct dm_dev *origin, dm_block_t data_origin,
 821			  dm_block_t data_dest,
 822			  struct dm_bio_prison_cell *cell, struct bio *bio)
 
 823{
 824	int r;
 825	struct pool *pool = tc->pool;
 826	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 827
 828	m->tc = tc;
 829	m->virt_block = virt_block;
 
 830	m->data_block = data_dest;
 831	m->cell = cell;
 832
 
 
 
 
 
 
 
 833	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
 834		m->quiesced = true;
 835
 836	/*
 837	 * IO to pool_dev remaps to the pool target's data_dev.
 838	 *
 839	 * If the whole block of data is being overwritten, we can issue the
 840	 * bio immediately. Otherwise we use kcopyd to clone the data first.
 841	 */
 842	if (io_overwrites_block(pool, bio)) {
 843		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 844
 845		h->overwrite_mapping = m;
 846		m->bio = bio;
 847		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 848		inc_all_io_entry(pool, bio);
 849		remap_and_issue(tc, bio, data_dest);
 850	} else {
 851		struct dm_io_region from, to;
 852
 853		from.bdev = origin->bdev;
 854		from.sector = data_origin * pool->sectors_per_block;
 855		from.count = pool->sectors_per_block;
 856
 857		to.bdev = tc->pool_dev->bdev;
 858		to.sector = data_dest * pool->sectors_per_block;
 859		to.count = pool->sectors_per_block;
 
 
 
 860
 861		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
 862				   0, copy_complete, m);
 863		if (r < 0) {
 864			mempool_free(m, pool->mapping_pool);
 865			DMERR_LIMIT("dm_kcopyd_copy() failed");
 866			cell_error(pool, cell);
 
 
 867		}
 868	}
 
 
 869}
 870
 871static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
 872				   dm_block_t data_origin, dm_block_t data_dest,
 873				   struct dm_bio_prison_cell *cell, struct bio *bio)
 874{
 875	schedule_copy(tc, virt_block, tc->pool_dev,
 876		      data_origin, data_dest, cell, bio);
 877}
 878
 879static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
 880				   dm_block_t data_dest,
 881				   struct dm_bio_prison_cell *cell, struct bio *bio)
 882{
 883	schedule_copy(tc, virt_block, tc->origin_dev,
 884		      virt_block, data_dest, cell, bio);
 885}
 886
 887static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
 888			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
 889			  struct bio *bio)
 890{
 891	struct pool *pool = tc->pool;
 892	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 893
 894	m->quiesced = true;
 895	m->prepared = false;
 896	m->tc = tc;
 897	m->virt_block = virt_block;
 
 898	m->data_block = data_block;
 899	m->cell = cell;
 900
 901	/*
 902	 * If the whole block of data is being overwritten or we are not
 903	 * zeroing pre-existing data, we can issue the bio immediately.
 904	 * Otherwise we use kcopyd to zero the data first.
 905	 */
 906	if (!pool->pf.zero_new_blocks)
 
 
 
 
 
 
 907		process_prepared_mapping(m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908
 909	else if (io_overwrites_block(pool, bio)) {
 910		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911
 912		h->overwrite_mapping = m;
 913		m->bio = bio;
 914		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 915		inc_all_io_entry(pool, bio);
 916		remap_and_issue(tc, bio, data_block);
 917	} else {
 918		int r;
 919		struct dm_io_region to;
 920
 921		to.bdev = tc->pool_dev->bdev;
 922		to.sector = data_block * pool->sectors_per_block;
 923		to.count = pool->sectors_per_block;
 924
 925		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
 926		if (r < 0) {
 927			mempool_free(m, pool->mapping_pool);
 928			DMERR_LIMIT("dm_kcopyd_zero() failed");
 929			cell_error(pool, cell);
 930		}
 931	}
 932}
 933
 934/*
 935 * A non-zero return indicates read_only or fail_io mode.
 936 * Many callers don't care about the return value.
 937 */
 938static int commit(struct pool *pool)
 939{
 940	int r;
 941
 942	if (get_pool_mode(pool) >= PM_READ_ONLY)
 943		return -EINVAL;
 944
 945	r = dm_pool_commit_metadata(pool->pmd);
 946	if (r)
 947		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
 
 
 
 
 948
 949	return r;
 950}
 951
 952static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
 953{
 954	unsigned long flags;
 955
 956	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
 957		DMWARN("%s: reached low water mark for data device: sending event.",
 958		       dm_device_name(pool->pool_md));
 959		spin_lock_irqsave(&pool->lock, flags);
 960		pool->low_water_triggered = true;
 961		spin_unlock_irqrestore(&pool->lock, flags);
 962		dm_table_event(pool->ti->table);
 963	}
 964}
 965
 966static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
 967
 968static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
 969{
 970	int r;
 971	dm_block_t free_blocks;
 972	struct pool *pool = tc->pool;
 973
 974	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
 975		return -EINVAL;
 976
 977	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 978	if (r) {
 979		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 980		return r;
 981	}
 982
 983	check_low_water_mark(pool, free_blocks);
 984
 985	if (!free_blocks) {
 986		/*
 987		 * Try to commit to see if that will free up some
 988		 * more space.
 989		 */
 990		r = commit(pool);
 991		if (r)
 992			return r;
 993
 994		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 995		if (r) {
 996			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 997			return r;
 998		}
 999
1000		if (!free_blocks) {
1001			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002			return -ENOSPC;
1003		}
1004	}
1005
1006	r = dm_pool_alloc_data_block(pool->pmd, result);
1007	if (r) {
1008		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
1009		return r;
1010	}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
1012	return 0;
1013}
1014
1015/*
1016 * If we have run out of space, queue bios until the device is
1017 * resumed, presumably after having been reloaded with more space.
1018 */
1019static void retry_on_resume(struct bio *bio)
1020{
1021	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1022	struct thin_c *tc = h->tc;
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tc->lock, flags);
1026	bio_list_add(&tc->retry_on_resume_list, bio);
1027	spin_unlock_irqrestore(&tc->lock, flags);
1028}
1029
1030static bool should_error_unserviceable_bio(struct pool *pool)
1031{
1032	enum pool_mode m = get_pool_mode(pool);
1033
1034	switch (m) {
1035	case PM_WRITE:
1036		/* Shouldn't get here */
1037		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1038		return true;
1039
1040	case PM_OUT_OF_DATA_SPACE:
1041		return pool->pf.error_if_no_space;
1042
 
1043	case PM_READ_ONLY:
1044	case PM_FAIL:
1045		return true;
1046	default:
1047		/* Shouldn't get here */
1048		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049		return true;
1050	}
1051}
1052
1053static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1054{
1055	if (should_error_unserviceable_bio(pool))
1056		bio_io_error(bio);
1057	else
 
 
 
1058		retry_on_resume(bio);
1059}
1060
1061static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1062{
1063	struct bio *bio;
1064	struct bio_list bios;
 
1065
1066	if (should_error_unserviceable_bio(pool)) {
1067		cell_error(pool, cell);
 
1068		return;
1069	}
1070
1071	bio_list_init(&bios);
1072	cell_release(pool, cell, &bios);
1073
1074	if (should_error_unserviceable_bio(pool))
1075		while ((bio = bio_list_pop(&bios)))
1076			bio_io_error(bio);
1077	else
1078		while ((bio = bio_list_pop(&bios)))
1079			retry_on_resume(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
1081
1082static void process_discard(struct thin_c *tc, struct bio *bio)
 
1083{
 
 
1084	int r;
1085	unsigned long flags;
1086	struct pool *pool = tc->pool;
1087	struct dm_bio_prison_cell *cell, *cell2;
1088	struct dm_cell_key key, key2;
1089	dm_block_t block = get_bio_block(tc, bio);
1090	struct dm_thin_lookup_result lookup_result;
1091	struct dm_thin_new_mapping *m;
 
 
1092
1093	build_virtual_key(tc->td, block, &key);
1094	if (bio_detain(tc->pool, &key, bio, &cell))
1095		return;
 
 
 
 
 
 
 
 
 
1096
1097	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1098	switch (r) {
1099	case 0:
1100		/*
1101		 * Check nobody is fiddling with this pool block.  This can
1102		 * happen if someone's in the process of breaking sharing
1103		 * on this block.
1104		 */
1105		build_data_key(tc->td, lookup_result.block, &key2);
1106		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1107			cell_defer_no_holder(tc, cell);
1108			break;
1109		}
 
 
 
 
 
 
 
 
 
 
 
1110
1111		if (io_overlaps_block(pool, bio)) {
1112			/*
1113			 * IO may still be going to the destination block.  We must
1114			 * quiesce before we can do the removal.
1115			 */
1116			m = get_next_mapping(pool);
1117			m->tc = tc;
1118			m->pass_discard = pool->pf.discard_passdown;
1119			m->definitely_not_shared = !lookup_result.shared;
1120			m->virt_block = block;
1121			m->data_block = lookup_result.block;
1122			m->cell = cell;
1123			m->cell2 = cell2;
1124			m->bio = bio;
1125
1126			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1127				spin_lock_irqsave(&pool->lock, flags);
1128				list_add_tail(&m->list, &pool->prepared_discards);
1129				spin_unlock_irqrestore(&pool->lock, flags);
1130				wake_worker(pool);
1131			}
1132		} else {
1133			inc_all_io_entry(pool, bio);
1134			cell_defer_no_holder(tc, cell);
1135			cell_defer_no_holder(tc, cell2);
1136
1137			/*
1138			 * The DM core makes sure that the discard doesn't span
1139			 * a block boundary.  So we submit the discard of a
1140			 * partial block appropriately.
 
 
 
1141			 */
1142			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1143				remap_and_issue(tc, bio, lookup_result.block);
1144			else
1145				bio_endio(bio, 0);
 
 
1146		}
1147		break;
1148
1149	case -ENODATA:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150		/*
1151		 * It isn't provisioned, just forget it.
1152		 */
1153		cell_defer_no_holder(tc, cell);
1154		bio_endio(bio, 0);
1155		break;
 
 
 
 
 
 
1156
1157	default:
1158		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1159			    __func__, r);
1160		cell_defer_no_holder(tc, cell);
1161		bio_io_error(bio);
1162		break;
 
 
 
1163	}
 
 
1164}
1165
1166static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1167			  struct dm_cell_key *key,
1168			  struct dm_thin_lookup_result *lookup_result,
1169			  struct dm_bio_prison_cell *cell)
1170{
1171	int r;
1172	dm_block_t data_block;
1173	struct pool *pool = tc->pool;
1174
1175	r = alloc_data_block(tc, &data_block);
1176	switch (r) {
1177	case 0:
1178		schedule_internal_copy(tc, block, lookup_result->block,
1179				       data_block, cell, bio);
1180		break;
1181
1182	case -ENOSPC:
1183		retry_bios_on_resume(pool, cell);
1184		break;
1185
1186	default:
1187		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1188			    __func__, r);
1189		cell_error(pool, cell);
1190		break;
1191	}
1192}
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1195			       dm_block_t block,
1196			       struct dm_thin_lookup_result *lookup_result)
 
1197{
1198	struct dm_bio_prison_cell *cell;
1199	struct pool *pool = tc->pool;
1200	struct dm_cell_key key;
1201
1202	/*
1203	 * If cell is already occupied, then sharing is already in the process
1204	 * of being broken so we have nothing further to do here.
1205	 */
1206	build_data_key(tc->td, lookup_result->block, &key);
1207	if (bio_detain(pool, &key, bio, &cell))
 
1208		return;
 
1209
1210	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1211		break_sharing(tc, bio, block, &key, lookup_result, cell);
1212	else {
 
1213		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1214
1215		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1216		inc_all_io_entry(pool, bio);
1217		cell_defer_no_holder(tc, cell);
1218
1219		remap_and_issue(tc, bio, lookup_result->block);
 
1220	}
1221}
1222
1223static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1224			    struct dm_bio_prison_cell *cell)
1225{
1226	int r;
1227	dm_block_t data_block;
1228	struct pool *pool = tc->pool;
1229
1230	/*
1231	 * Remap empty bios (flushes) immediately, without provisioning.
1232	 */
1233	if (!bio->bi_iter.bi_size) {
1234		inc_all_io_entry(pool, bio);
1235		cell_defer_no_holder(tc, cell);
1236
1237		remap_and_issue(tc, bio, 0);
1238		return;
1239	}
1240
1241	/*
1242	 * Fill read bios with zeroes and complete them immediately.
1243	 */
1244	if (bio_data_dir(bio) == READ) {
1245		zero_fill_bio(bio);
1246		cell_defer_no_holder(tc, cell);
1247		bio_endio(bio, 0);
1248		return;
1249	}
1250
1251	r = alloc_data_block(tc, &data_block);
1252	switch (r) {
1253	case 0:
1254		if (tc->origin_dev)
1255			schedule_external_copy(tc, block, data_block, cell, bio);
1256		else
1257			schedule_zero(tc, block, data_block, cell, bio);
1258		break;
1259
1260	case -ENOSPC:
1261		retry_bios_on_resume(pool, cell);
1262		break;
1263
1264	default:
1265		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1266			    __func__, r);
1267		cell_error(pool, cell);
1268		break;
1269	}
1270}
1271
1272static void process_bio(struct thin_c *tc, struct bio *bio)
1273{
1274	int r;
1275	struct pool *pool = tc->pool;
 
1276	dm_block_t block = get_bio_block(tc, bio);
1277	struct dm_bio_prison_cell *cell;
1278	struct dm_cell_key key;
1279	struct dm_thin_lookup_result lookup_result;
1280
1281	/*
1282	 * If cell is already occupied, then the block is already
1283	 * being provisioned so we have nothing further to do here.
1284	 */
1285	build_virtual_key(tc->td, block, &key);
1286	if (bio_detain(pool, &key, bio, &cell))
1287		return;
 
1288
1289	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1290	switch (r) {
1291	case 0:
1292		if (lookup_result.shared) {
1293			process_shared_bio(tc, bio, block, &lookup_result);
1294			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1295		} else {
1296			inc_all_io_entry(pool, bio);
1297			cell_defer_no_holder(tc, cell);
1298
1299			remap_and_issue(tc, bio, lookup_result.block);
 
1300		}
1301		break;
1302
1303	case -ENODATA:
1304		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1305			inc_all_io_entry(pool, bio);
1306			cell_defer_no_holder(tc, cell);
1307
1308			remap_to_origin_and_issue(tc, bio);
 
 
 
 
 
 
 
 
 
 
 
1309		} else
1310			provision_block(tc, bio, block, cell);
1311		break;
1312
1313	default:
1314		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1315			    __func__, r);
1316		cell_defer_no_holder(tc, cell);
1317		bio_io_error(bio);
1318		break;
1319	}
1320}
1321
1322static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323{
1324	int r;
1325	int rw = bio_data_dir(bio);
1326	dm_block_t block = get_bio_block(tc, bio);
1327	struct dm_thin_lookup_result lookup_result;
1328
1329	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1330	switch (r) {
1331	case 0:
1332		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1333			handle_unserviceable_bio(tc->pool, bio);
1334		else {
 
 
1335			inc_all_io_entry(tc->pool, bio);
1336			remap_and_issue(tc, bio, lookup_result.block);
 
 
1337		}
1338		break;
1339
1340	case -ENODATA:
 
 
1341		if (rw != READ) {
1342			handle_unserviceable_bio(tc->pool, bio);
1343			break;
1344		}
1345
1346		if (tc->origin_dev) {
1347			inc_all_io_entry(tc->pool, bio);
1348			remap_to_origin_and_issue(tc, bio);
1349			break;
1350		}
1351
1352		zero_fill_bio(bio);
1353		bio_endio(bio, 0);
1354		break;
1355
1356	default:
1357		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1358			    __func__, r);
 
 
1359		bio_io_error(bio);
1360		break;
1361	}
1362}
1363
 
 
 
 
 
 
 
 
 
 
1364static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365{
1366	bio_endio(bio, 0);
1367}
1368
1369static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1370{
1371	bio_io_error(bio);
1372}
1373
 
 
 
 
 
 
 
 
 
 
1374/*
1375 * FIXME: should we also commit due to size of transaction, measured in
1376 * metadata blocks?
1377 */
1378static int need_commit_due_to_time(struct pool *pool)
1379{
1380	return jiffies < pool->last_commit_jiffies ||
1381	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1382}
1383
1384#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1385#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1386
1387static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1388{
1389	struct rb_node **rbp, *parent;
1390	struct dm_thin_endio_hook *pbd;
1391	sector_t bi_sector = bio->bi_iter.bi_sector;
1392
1393	rbp = &tc->sort_bio_list.rb_node;
1394	parent = NULL;
1395	while (*rbp) {
1396		parent = *rbp;
1397		pbd = thin_pbd(parent);
1398
1399		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1400			rbp = &(*rbp)->rb_left;
1401		else
1402			rbp = &(*rbp)->rb_right;
1403	}
1404
1405	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406	rb_link_node(&pbd->rb_node, parent, rbp);
1407	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1408}
1409
1410static void __extract_sorted_bios(struct thin_c *tc)
1411{
1412	struct rb_node *node;
1413	struct dm_thin_endio_hook *pbd;
1414	struct bio *bio;
1415
1416	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1417		pbd = thin_pbd(node);
1418		bio = thin_bio(pbd);
1419
1420		bio_list_add(&tc->deferred_bio_list, bio);
1421		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1422	}
1423
1424	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1425}
1426
1427static void __sort_thin_deferred_bios(struct thin_c *tc)
1428{
1429	struct bio *bio;
1430	struct bio_list bios;
1431
1432	bio_list_init(&bios);
1433	bio_list_merge(&bios, &tc->deferred_bio_list);
1434	bio_list_init(&tc->deferred_bio_list);
1435
1436	/* Sort deferred_bio_list using rb-tree */
1437	while ((bio = bio_list_pop(&bios)))
1438		__thin_bio_rb_add(tc, bio);
1439
1440	/*
1441	 * Transfer the sorted bios in sort_bio_list back to
1442	 * deferred_bio_list to allow lockless submission of
1443	 * all bios.
1444	 */
1445	__extract_sorted_bios(tc);
1446}
1447
1448static void process_thin_deferred_bios(struct thin_c *tc)
1449{
1450	struct pool *pool = tc->pool;
1451	unsigned long flags;
1452	struct bio *bio;
1453	struct bio_list bios;
1454	struct blk_plug plug;
 
1455
1456	if (tc->requeue_mode) {
1457		requeue_bio_list(tc, &tc->deferred_bio_list);
 
1458		return;
1459	}
1460
1461	bio_list_init(&bios);
1462
1463	spin_lock_irqsave(&tc->lock, flags);
1464
1465	if (bio_list_empty(&tc->deferred_bio_list)) {
1466		spin_unlock_irqrestore(&tc->lock, flags);
1467		return;
1468	}
1469
1470	__sort_thin_deferred_bios(tc);
1471
1472	bio_list_merge(&bios, &tc->deferred_bio_list);
1473	bio_list_init(&tc->deferred_bio_list);
1474
1475	spin_unlock_irqrestore(&tc->lock, flags);
1476
1477	blk_start_plug(&plug);
1478	while ((bio = bio_list_pop(&bios))) {
1479		/*
1480		 * If we've got no free new_mapping structs, and processing
1481		 * this bio might require one, we pause until there are some
1482		 * prepared mappings to process.
1483		 */
1484		if (ensure_next_mapping(pool)) {
1485			spin_lock_irqsave(&tc->lock, flags);
1486			bio_list_add(&tc->deferred_bio_list, bio);
1487			bio_list_merge(&tc->deferred_bio_list, &bios);
1488			spin_unlock_irqrestore(&tc->lock, flags);
1489			break;
1490		}
1491
1492		if (bio->bi_rw & REQ_DISCARD)
1493			pool->process_discard(tc, bio);
1494		else
1495			pool->process_bio(tc, bio);
 
 
 
 
 
 
1496	}
1497	blk_finish_plug(&plug);
1498}
1499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500static void thin_get(struct thin_c *tc);
1501static void thin_put(struct thin_c *tc);
1502
1503/*
1504 * We can't hold rcu_read_lock() around code that can block.  So we
1505 * find a thin with the rcu lock held; bump a refcount; then drop
1506 * the lock.
1507 */
1508static struct thin_c *get_first_thin(struct pool *pool)
1509{
1510	struct thin_c *tc = NULL;
1511
1512	rcu_read_lock();
1513	if (!list_empty(&pool->active_thins)) {
1514		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1515		thin_get(tc);
1516	}
1517	rcu_read_unlock();
1518
1519	return tc;
1520}
1521
1522static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1523{
1524	struct thin_c *old_tc = tc;
1525
1526	rcu_read_lock();
1527	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1528		thin_get(tc);
1529		thin_put(old_tc);
1530		rcu_read_unlock();
1531		return tc;
1532	}
1533	thin_put(old_tc);
1534	rcu_read_unlock();
1535
1536	return NULL;
1537}
1538
1539static void process_deferred_bios(struct pool *pool)
1540{
1541	unsigned long flags;
1542	struct bio *bio;
1543	struct bio_list bios;
1544	struct thin_c *tc;
1545
1546	tc = get_first_thin(pool);
1547	while (tc) {
 
1548		process_thin_deferred_bios(tc);
1549		tc = get_next_thin(pool, tc);
1550	}
1551
1552	/*
1553	 * If there are any deferred flush bios, we must commit
1554	 * the metadata before issuing them.
1555	 */
1556	bio_list_init(&bios);
1557	spin_lock_irqsave(&pool->lock, flags);
 
 
1558	bio_list_merge(&bios, &pool->deferred_flush_bios);
1559	bio_list_init(&pool->deferred_flush_bios);
1560	spin_unlock_irqrestore(&pool->lock, flags);
1561
1562	if (bio_list_empty(&bios) &&
 
 
 
 
1563	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1564		return;
1565
1566	if (commit(pool)) {
 
 
1567		while ((bio = bio_list_pop(&bios)))
1568			bio_io_error(bio);
1569		return;
1570	}
1571	pool->last_commit_jiffies = jiffies;
1572
1573	while ((bio = bio_list_pop(&bios)))
1574		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
1575}
1576
1577static void do_worker(struct work_struct *ws)
1578{
1579	struct pool *pool = container_of(ws, struct pool, worker);
1580
 
 
 
1581	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
 
1582	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
 
 
 
1583	process_deferred_bios(pool);
 
1584}
1585
1586/*
1587 * We want to commit periodically so that not too much
1588 * unwritten data builds up.
1589 */
1590static void do_waker(struct work_struct *ws)
1591{
1592	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
 
1593	wake_worker(pool);
1594	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1595}
1596
1597/*
1598 * We're holding onto IO to allow userland time to react.  After the
1599 * timeout either the pool will have been resized (and thus back in
1600 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1601 */
1602static void do_no_space_timeout(struct work_struct *ws)
1603{
1604	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1605					 no_space_timeout);
1606
1607	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1608		set_pool_mode(pool, PM_READ_ONLY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613struct noflush_work {
1614	struct work_struct worker;
1615	struct thin_c *tc;
1616
1617	atomic_t complete;
1618	wait_queue_head_t wait;
1619};
1620
1621static void complete_noflush_work(struct noflush_work *w)
1622{
1623	atomic_set(&w->complete, 1);
1624	wake_up(&w->wait);
1625}
1626
1627static void do_noflush_start(struct work_struct *ws)
1628{
1629	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
 
1630	w->tc->requeue_mode = true;
1631	requeue_io(w->tc);
1632	complete_noflush_work(w);
1633}
1634
1635static void do_noflush_stop(struct work_struct *ws)
1636{
1637	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
 
1638	w->tc->requeue_mode = false;
1639	complete_noflush_work(w);
1640}
1641
1642static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1643{
1644	struct noflush_work w;
1645
1646	INIT_WORK_ONSTACK(&w.worker, fn);
1647	w.tc = tc;
1648	atomic_set(&w.complete, 0);
1649	init_waitqueue_head(&w.wait);
1650
1651	queue_work(tc->pool->wq, &w.worker);
1652
1653	wait_event(w.wait, atomic_read(&w.complete));
1654}
1655
1656/*----------------------------------------------------------------*/
1657
1658static enum pool_mode get_pool_mode(struct pool *pool)
1659{
1660	return pool->pf.mode;
1661}
1662
1663static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1664{
1665	dm_table_event(pool->ti->table);
1666	DMINFO("%s: switching pool to %s mode",
1667	       dm_device_name(pool->pool_md), new_mode);
 
 
 
1668}
1669
1670static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1671{
1672	struct pool_c *pt = pool->ti->private;
1673	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1674	enum pool_mode old_mode = get_pool_mode(pool);
1675	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1676
1677	/*
1678	 * Never allow the pool to transition to PM_WRITE mode if user
1679	 * intervention is required to verify metadata and data consistency.
1680	 */
1681	if (new_mode == PM_WRITE && needs_check) {
1682		DMERR("%s: unable to switch pool to write mode until repaired.",
1683		      dm_device_name(pool->pool_md));
1684		if (old_mode != new_mode)
1685			new_mode = old_mode;
1686		else
1687			new_mode = PM_READ_ONLY;
1688	}
1689	/*
1690	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1691	 * not going to recover without a thin_repair.	So we never let the
1692	 * pool move out of the old mode.
1693	 */
1694	if (old_mode == PM_FAIL)
1695		new_mode = old_mode;
1696
1697	switch (new_mode) {
1698	case PM_FAIL:
1699		if (old_mode != new_mode)
1700			notify_of_pool_mode_change(pool, "failure");
1701		dm_pool_metadata_read_only(pool->pmd);
1702		pool->process_bio = process_bio_fail;
1703		pool->process_discard = process_bio_fail;
 
 
1704		pool->process_prepared_mapping = process_prepared_mapping_fail;
1705		pool->process_prepared_discard = process_prepared_discard_fail;
1706
1707		error_retry_list(pool);
1708		break;
1709
 
1710	case PM_READ_ONLY:
1711		if (old_mode != new_mode)
1712			notify_of_pool_mode_change(pool, "read-only");
1713		dm_pool_metadata_read_only(pool->pmd);
1714		pool->process_bio = process_bio_read_only;
1715		pool->process_discard = process_bio_success;
 
 
1716		pool->process_prepared_mapping = process_prepared_mapping_fail;
1717		pool->process_prepared_discard = process_prepared_discard_passdown;
1718
1719		error_retry_list(pool);
1720		break;
1721
1722	case PM_OUT_OF_DATA_SPACE:
1723		/*
1724		 * Ideally we'd never hit this state; the low water mark
1725		 * would trigger userland to extend the pool before we
1726		 * completely run out of data space.  However, many small
1727		 * IOs to unprovisioned space can consume data space at an
1728		 * alarming rate.  Adjust your low water mark if you're
1729		 * frequently seeing this mode.
1730		 */
1731		if (old_mode != new_mode)
1732			notify_of_pool_mode_change(pool, "out-of-data-space");
1733		pool->process_bio = process_bio_read_only;
1734		pool->process_discard = process_discard;
 
1735		pool->process_prepared_mapping = process_prepared_mapping;
1736		pool->process_prepared_discard = process_prepared_discard_passdown;
1737
1738		if (!pool->pf.error_if_no_space && no_space_timeout)
1739			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1740		break;
1741
1742	case PM_WRITE:
1743		if (old_mode != new_mode)
1744			notify_of_pool_mode_change(pool, "write");
 
 
1745		dm_pool_metadata_read_write(pool->pmd);
1746		pool->process_bio = process_bio;
1747		pool->process_discard = process_discard;
 
1748		pool->process_prepared_mapping = process_prepared_mapping;
1749		pool->process_prepared_discard = process_prepared_discard;
1750		break;
1751	}
1752
1753	pool->pf.mode = new_mode;
1754	/*
1755	 * The pool mode may have changed, sync it so bind_control_target()
1756	 * doesn't cause an unexpected mode transition on resume.
1757	 */
1758	pt->adjusted_pf.mode = new_mode;
 
 
 
1759}
1760
1761static void abort_transaction(struct pool *pool)
1762{
1763	const char *dev_name = dm_device_name(pool->pool_md);
1764
1765	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1766	if (dm_pool_abort_metadata(pool->pmd)) {
1767		DMERR("%s: failed to abort metadata transaction", dev_name);
1768		set_pool_mode(pool, PM_FAIL);
1769	}
1770
1771	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1772		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1773		set_pool_mode(pool, PM_FAIL);
1774	}
1775}
1776
1777static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1778{
1779	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1780		    dm_device_name(pool->pool_md), op, r);
1781
1782	abort_transaction(pool);
1783	set_pool_mode(pool, PM_READ_ONLY);
1784}
1785
1786/*----------------------------------------------------------------*/
1787
1788/*
1789 * Mapping functions.
1790 */
1791
1792/*
1793 * Called only while mapping a thin bio to hand it over to the workqueue.
1794 */
1795static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1796{
1797	unsigned long flags;
1798	struct pool *pool = tc->pool;
1799
1800	spin_lock_irqsave(&tc->lock, flags);
1801	bio_list_add(&tc->deferred_bio_list, bio);
1802	spin_unlock_irqrestore(&tc->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804	wake_worker(pool);
1805}
1806
1807static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1808{
1809	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1810
1811	h->tc = tc;
1812	h->shared_read_entry = NULL;
1813	h->all_io_entry = NULL;
1814	h->overwrite_mapping = NULL;
 
1815}
1816
1817/*
1818 * Non-blocking function called from the thin target's map function.
1819 */
1820static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1821{
1822	int r;
1823	struct thin_c *tc = ti->private;
1824	dm_block_t block = get_bio_block(tc, bio);
1825	struct dm_thin_device *td = tc->td;
1826	struct dm_thin_lookup_result result;
1827	struct dm_bio_prison_cell cell1, cell2;
1828	struct dm_bio_prison_cell *cell_result;
1829	struct dm_cell_key key;
1830
1831	thin_hook_bio(tc, bio);
1832
1833	if (tc->requeue_mode) {
1834		bio_endio(bio, DM_ENDIO_REQUEUE);
 
1835		return DM_MAPIO_SUBMITTED;
1836	}
1837
1838	if (get_pool_mode(tc->pool) == PM_FAIL) {
1839		bio_io_error(bio);
1840		return DM_MAPIO_SUBMITTED;
1841	}
1842
1843	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1844		thin_defer_bio(tc, bio);
1845		return DM_MAPIO_SUBMITTED;
1846	}
1847
 
 
 
 
 
 
 
 
1848	r = dm_thin_find_block(td, block, 0, &result);
1849
1850	/*
1851	 * Note that we defer readahead too.
1852	 */
1853	switch (r) {
1854	case 0:
1855		if (unlikely(result.shared)) {
1856			/*
1857			 * We have a race condition here between the
1858			 * result.shared value returned by the lookup and
1859			 * snapshot creation, which may cause new
1860			 * sharing.
1861			 *
1862			 * To avoid this always quiesce the origin before
1863			 * taking the snap.  You want to do this anyway to
1864			 * ensure a consistent application view
1865			 * (i.e. lockfs).
1866			 *
1867			 * More distant ancestors are irrelevant. The
1868			 * shared flag will be set in their case.
1869			 */
1870			thin_defer_bio(tc, bio);
1871			return DM_MAPIO_SUBMITTED;
1872		}
1873
1874		build_virtual_key(tc->td, block, &key);
1875		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1876			return DM_MAPIO_SUBMITTED;
1877
1878		build_data_key(tc->td, result.block, &key);
1879		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1880			cell_defer_no_holder_no_free(tc, &cell1);
1881			return DM_MAPIO_SUBMITTED;
1882		}
1883
1884		inc_all_io_entry(tc->pool, bio);
1885		cell_defer_no_holder_no_free(tc, &cell2);
1886		cell_defer_no_holder_no_free(tc, &cell1);
1887
1888		remap(tc, bio, result.block);
1889		return DM_MAPIO_REMAPPED;
1890
1891	case -ENODATA:
1892		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1893			/*
1894			 * This block isn't provisioned, and we have no way
1895			 * of doing so.
1896			 */
1897			handle_unserviceable_bio(tc->pool, bio);
1898			return DM_MAPIO_SUBMITTED;
1899		}
1900		/* fall through */
1901
1902	case -EWOULDBLOCK:
1903		/*
1904		 * In future, the failed dm_thin_find_block above could
1905		 * provide the hint to load the metadata into cache.
1906		 */
1907		thin_defer_bio(tc, bio);
1908		return DM_MAPIO_SUBMITTED;
1909
1910	default:
1911		/*
1912		 * Must always call bio_io_error on failure.
1913		 * dm_thin_find_block can fail with -EINVAL if the
1914		 * pool is switched to fail-io mode.
1915		 */
1916		bio_io_error(bio);
 
1917		return DM_MAPIO_SUBMITTED;
1918	}
1919}
1920
1921static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1922{
1923	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1924	struct request_queue *q;
1925
1926	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1927		return 1;
1928
1929	q = bdev_get_queue(pt->data_dev->bdev);
1930	return bdi_congested(&q->backing_dev_info, bdi_bits);
1931}
1932
1933static void requeue_bios(struct pool *pool)
1934{
1935	unsigned long flags;
1936	struct thin_c *tc;
1937
1938	rcu_read_lock();
1939	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1940		spin_lock_irqsave(&tc->lock, flags);
1941		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1942		bio_list_init(&tc->retry_on_resume_list);
1943		spin_unlock_irqrestore(&tc->lock, flags);
1944	}
1945	rcu_read_unlock();
1946}
1947
1948/*----------------------------------------------------------------
 
1949 * Binding of control targets to a pool object
1950 *--------------------------------------------------------------*/
1951static bool data_dev_supports_discard(struct pool_c *pt)
1952{
1953	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1954
1955	return q && blk_queue_discard(q);
1956}
1957
1958static bool is_factor(sector_t block_size, uint32_t n)
1959{
1960	return !sector_div(block_size, n);
1961}
1962
1963/*
1964 * If discard_passdown was enabled verify that the data device
1965 * supports discards.  Disable discard_passdown if not.
1966 */
1967static void disable_passdown_if_not_supported(struct pool_c *pt)
1968{
1969	struct pool *pool = pt->pool;
1970	struct block_device *data_bdev = pt->data_dev->bdev;
1971	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1972	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1973	const char *reason = NULL;
1974	char buf[BDEVNAME_SIZE];
1975
1976	if (!pt->adjusted_pf.discard_passdown)
1977		return;
1978
1979	if (!data_dev_supports_discard(pt))
1980		reason = "discard unsupported";
1981
1982	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1983		reason = "max discard sectors smaller than a block";
1984
1985	else if (data_limits->discard_granularity > block_size)
1986		reason = "discard granularity larger than a block";
1987
1988	else if (!is_factor(block_size, data_limits->discard_granularity))
1989		reason = "discard granularity not a factor of block size";
1990
1991	if (reason) {
1992		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1993		pt->adjusted_pf.discard_passdown = false;
1994	}
1995}
1996
1997static int bind_control_target(struct pool *pool, struct dm_target *ti)
1998{
1999	struct pool_c *pt = ti->private;
2000
2001	/*
2002	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2003	 */
2004	enum pool_mode old_mode = get_pool_mode(pool);
2005	enum pool_mode new_mode = pt->adjusted_pf.mode;
2006
2007	/*
2008	 * Don't change the pool's mode until set_pool_mode() below.
2009	 * Otherwise the pool's process_* function pointers may
2010	 * not match the desired pool mode.
2011	 */
2012	pt->adjusted_pf.mode = old_mode;
2013
2014	pool->ti = ti;
2015	pool->pf = pt->adjusted_pf;
2016	pool->low_water_blocks = pt->low_water_blocks;
2017
2018	set_pool_mode(pool, new_mode);
2019
2020	return 0;
2021}
2022
2023static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2024{
2025	if (pool->ti == ti)
2026		pool->ti = NULL;
2027}
2028
2029/*----------------------------------------------------------------
 
2030 * Pool creation
2031 *--------------------------------------------------------------*/
 
2032/* Initialize pool features. */
2033static void pool_features_init(struct pool_features *pf)
2034{
2035	pf->mode = PM_WRITE;
2036	pf->zero_new_blocks = true;
2037	pf->discard_enabled = true;
2038	pf->discard_passdown = true;
2039	pf->error_if_no_space = false;
2040}
2041
2042static void __pool_destroy(struct pool *pool)
2043{
2044	__pool_table_remove(pool);
2045
 
2046	if (dm_pool_metadata_close(pool->pmd) < 0)
2047		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2048
2049	dm_bio_prison_destroy(pool->prison);
2050	dm_kcopyd_client_destroy(pool->copier);
2051
 
 
2052	if (pool->wq)
2053		destroy_workqueue(pool->wq);
2054
2055	if (pool->next_mapping)
2056		mempool_free(pool->next_mapping, pool->mapping_pool);
2057	mempool_destroy(pool->mapping_pool);
2058	dm_deferred_set_destroy(pool->shared_read_ds);
2059	dm_deferred_set_destroy(pool->all_io_ds);
2060	kfree(pool);
2061}
2062
2063static struct kmem_cache *_new_mapping_cache;
2064
2065static struct pool *pool_create(struct mapped_device *pool_md,
2066				struct block_device *metadata_dev,
 
2067				unsigned long block_size,
2068				int read_only, char **error)
2069{
2070	int r;
2071	void *err_p;
2072	struct pool *pool;
2073	struct dm_pool_metadata *pmd;
2074	bool format_device = read_only ? false : true;
2075
2076	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2077	if (IS_ERR(pmd)) {
2078		*error = "Error creating metadata object";
2079		return (struct pool *)pmd;
2080	}
2081
2082	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2083	if (!pool) {
2084		*error = "Error allocating memory for pool";
2085		err_p = ERR_PTR(-ENOMEM);
2086		goto bad_pool;
2087	}
2088
2089	pool->pmd = pmd;
2090	pool->sectors_per_block = block_size;
2091	if (block_size & (block_size - 1))
2092		pool->sectors_per_block_shift = -1;
2093	else
2094		pool->sectors_per_block_shift = __ffs(block_size);
2095	pool->low_water_blocks = 0;
2096	pool_features_init(&pool->pf);
2097	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2098	if (!pool->prison) {
2099		*error = "Error creating pool's bio prison";
2100		err_p = ERR_PTR(-ENOMEM);
2101		goto bad_prison;
2102	}
2103
2104	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2105	if (IS_ERR(pool->copier)) {
2106		r = PTR_ERR(pool->copier);
2107		*error = "Error creating pool's kcopyd client";
2108		err_p = ERR_PTR(r);
2109		goto bad_kcopyd_client;
2110	}
2111
2112	/*
2113	 * Create singlethreaded workqueue that will service all devices
2114	 * that use this metadata.
2115	 */
2116	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2117	if (!pool->wq) {
2118		*error = "Error creating pool's workqueue";
2119		err_p = ERR_PTR(-ENOMEM);
2120		goto bad_wq;
2121	}
2122
 
2123	INIT_WORK(&pool->worker, do_worker);
2124	INIT_DELAYED_WORK(&pool->waker, do_waker);
2125	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2126	spin_lock_init(&pool->lock);
2127	bio_list_init(&pool->deferred_flush_bios);
 
2128	INIT_LIST_HEAD(&pool->prepared_mappings);
2129	INIT_LIST_HEAD(&pool->prepared_discards);
 
2130	INIT_LIST_HEAD(&pool->active_thins);
2131	pool->low_water_triggered = false;
 
 
2132
2133	pool->shared_read_ds = dm_deferred_set_create();
2134	if (!pool->shared_read_ds) {
2135		*error = "Error creating pool's shared read deferred set";
2136		err_p = ERR_PTR(-ENOMEM);
2137		goto bad_shared_read_ds;
2138	}
2139
2140	pool->all_io_ds = dm_deferred_set_create();
2141	if (!pool->all_io_ds) {
2142		*error = "Error creating pool's all io deferred set";
2143		err_p = ERR_PTR(-ENOMEM);
2144		goto bad_all_io_ds;
2145	}
2146
2147	pool->next_mapping = NULL;
2148	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2149						      _new_mapping_cache);
2150	if (!pool->mapping_pool) {
2151		*error = "Error creating pool's mapping mempool";
 
 
 
 
 
 
 
 
 
2152		err_p = ERR_PTR(-ENOMEM);
2153		goto bad_mapping_pool;
2154	}
2155
2156	pool->ref_count = 1;
2157	pool->last_commit_jiffies = jiffies;
2158	pool->pool_md = pool_md;
2159	pool->md_dev = metadata_dev;
 
2160	__pool_table_insert(pool);
2161
2162	return pool;
2163
 
 
2164bad_mapping_pool:
2165	dm_deferred_set_destroy(pool->all_io_ds);
2166bad_all_io_ds:
2167	dm_deferred_set_destroy(pool->shared_read_ds);
2168bad_shared_read_ds:
2169	destroy_workqueue(pool->wq);
2170bad_wq:
2171	dm_kcopyd_client_destroy(pool->copier);
2172bad_kcopyd_client:
2173	dm_bio_prison_destroy(pool->prison);
2174bad_prison:
2175	kfree(pool);
2176bad_pool:
2177	if (dm_pool_metadata_close(pmd))
2178		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2179
2180	return err_p;
2181}
2182
2183static void __pool_inc(struct pool *pool)
2184{
2185	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2186	pool->ref_count++;
2187}
2188
2189static void __pool_dec(struct pool *pool)
2190{
2191	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2192	BUG_ON(!pool->ref_count);
2193	if (!--pool->ref_count)
2194		__pool_destroy(pool);
2195}
2196
2197static struct pool *__pool_find(struct mapped_device *pool_md,
2198				struct block_device *metadata_dev,
 
2199				unsigned long block_size, int read_only,
2200				char **error, int *created)
2201{
2202	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2203
2204	if (pool) {
2205		if (pool->pool_md != pool_md) {
2206			*error = "metadata device already in use by a pool";
2207			return ERR_PTR(-EBUSY);
2208		}
 
 
 
 
2209		__pool_inc(pool);
2210
2211	} else {
2212		pool = __pool_table_lookup(pool_md);
2213		if (pool) {
2214			if (pool->md_dev != metadata_dev) {
2215				*error = "different pool cannot replace a pool";
2216				return ERR_PTR(-EINVAL);
2217			}
2218			__pool_inc(pool);
2219
2220		} else {
2221			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2222			*created = 1;
2223		}
2224	}
2225
2226	return pool;
2227}
2228
2229/*----------------------------------------------------------------
 
2230 * Pool target methods
2231 *--------------------------------------------------------------*/
 
2232static void pool_dtr(struct dm_target *ti)
2233{
2234	struct pool_c *pt = ti->private;
2235
2236	mutex_lock(&dm_thin_pool_table.mutex);
2237
2238	unbind_control_target(pt->pool, ti);
2239	__pool_dec(pt->pool);
2240	dm_put_device(ti, pt->metadata_dev);
2241	dm_put_device(ti, pt->data_dev);
2242	kfree(pt);
2243
2244	mutex_unlock(&dm_thin_pool_table.mutex);
2245}
2246
2247static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2248			       struct dm_target *ti)
2249{
2250	int r;
2251	unsigned argc;
2252	const char *arg_name;
2253
2254	static struct dm_arg _args[] = {
2255		{0, 4, "Invalid number of pool feature arguments"},
2256	};
2257
2258	/*
2259	 * No feature arguments supplied.
2260	 */
2261	if (!as->argc)
2262		return 0;
2263
2264	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2265	if (r)
2266		return -EINVAL;
2267
2268	while (argc && !r) {
2269		arg_name = dm_shift_arg(as);
2270		argc--;
2271
2272		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2273			pf->zero_new_blocks = false;
2274
2275		else if (!strcasecmp(arg_name, "ignore_discard"))
2276			pf->discard_enabled = false;
2277
2278		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2279			pf->discard_passdown = false;
2280
2281		else if (!strcasecmp(arg_name, "read_only"))
2282			pf->mode = PM_READ_ONLY;
2283
2284		else if (!strcasecmp(arg_name, "error_if_no_space"))
2285			pf->error_if_no_space = true;
2286
2287		else {
2288			ti->error = "Unrecognised pool feature requested";
2289			r = -EINVAL;
2290			break;
2291		}
2292	}
2293
2294	return r;
2295}
2296
2297static void metadata_low_callback(void *context)
2298{
2299	struct pool *pool = context;
2300
2301	DMWARN("%s: reached low water mark for metadata device: sending event.",
2302	       dm_device_name(pool->pool_md));
2303
2304	dm_table_event(pool->ti->table);
2305}
2306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307static sector_t get_dev_size(struct block_device *bdev)
2308{
2309	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2310}
2311
2312static void warn_if_metadata_device_too_big(struct block_device *bdev)
2313{
2314	sector_t metadata_dev_size = get_dev_size(bdev);
2315	char buffer[BDEVNAME_SIZE];
2316
2317	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2318		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2319		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2320}
2321
2322static sector_t get_metadata_dev_size(struct block_device *bdev)
2323{
2324	sector_t metadata_dev_size = get_dev_size(bdev);
2325
2326	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2327		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2328
2329	return metadata_dev_size;
2330}
2331
2332static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2333{
2334	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2335
2336	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2337
2338	return metadata_dev_size;
2339}
2340
2341/*
2342 * When a metadata threshold is crossed a dm event is triggered, and
2343 * userland should respond by growing the metadata device.  We could let
2344 * userland set the threshold, like we do with the data threshold, but I'm
2345 * not sure they know enough to do this well.
2346 */
2347static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2348{
2349	/*
2350	 * 4M is ample for all ops with the possible exception of thin
2351	 * device deletion which is harmless if it fails (just retry the
2352	 * delete after you've grown the device).
2353	 */
2354	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
 
2355	return min((dm_block_t)1024ULL /* 4M */, quarter);
2356}
2357
2358/*
2359 * thin-pool <metadata dev> <data dev>
2360 *	     <data block size (sectors)>
2361 *	     <low water mark (blocks)>
2362 *	     [<#feature args> [<arg>]*]
2363 *
2364 * Optional feature arguments are:
2365 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2366 *	     ignore_discard: disable discard
2367 *	     no_discard_passdown: don't pass discards down to the data device
2368 *	     read_only: Don't allow any changes to be made to the pool metadata.
2369 *	     error_if_no_space: error IOs, instead of queueing, if no space.
2370 */
2371static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2372{
2373	int r, pool_created = 0;
2374	struct pool_c *pt;
2375	struct pool *pool;
2376	struct pool_features pf;
2377	struct dm_arg_set as;
2378	struct dm_dev *data_dev;
2379	unsigned long block_size;
2380	dm_block_t low_water_blocks;
2381	struct dm_dev *metadata_dev;
2382	fmode_t metadata_mode;
2383
2384	/*
2385	 * FIXME Remove validation from scope of lock.
2386	 */
2387	mutex_lock(&dm_thin_pool_table.mutex);
2388
2389	if (argc < 4) {
2390		ti->error = "Invalid argument count";
2391		r = -EINVAL;
2392		goto out_unlock;
2393	}
2394
2395	as.argc = argc;
2396	as.argv = argv;
2397
 
 
 
 
 
 
 
2398	/*
2399	 * Set default pool features.
2400	 */
2401	pool_features_init(&pf);
2402
2403	dm_consume_args(&as, 4);
2404	r = parse_pool_features(&as, &pf, ti);
2405	if (r)
2406		goto out_unlock;
2407
2408	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
 
2409	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2410	if (r) {
2411		ti->error = "Error opening metadata block device";
2412		goto out_unlock;
2413	}
2414	warn_if_metadata_device_too_big(metadata_dev->bdev);
2415
2416	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2417	if (r) {
2418		ti->error = "Error getting data device";
2419		goto out_metadata;
2420	}
2421
2422	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2423	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2424	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2425	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2426		ti->error = "Invalid block size";
2427		r = -EINVAL;
2428		goto out;
2429	}
2430
2431	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2432		ti->error = "Invalid low water mark";
2433		r = -EINVAL;
2434		goto out;
2435	}
2436
2437	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2438	if (!pt) {
2439		r = -ENOMEM;
2440		goto out;
2441	}
2442
2443	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2444			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2445	if (IS_ERR(pool)) {
2446		r = PTR_ERR(pool);
2447		goto out_free_pt;
2448	}
2449
2450	/*
2451	 * 'pool_created' reflects whether this is the first table load.
2452	 * Top level discard support is not allowed to be changed after
2453	 * initial load.  This would require a pool reload to trigger thin
2454	 * device changes.
2455	 */
2456	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2457		ti->error = "Discard support cannot be disabled once enabled";
2458		r = -EINVAL;
2459		goto out_flags_changed;
2460	}
2461
2462	pt->pool = pool;
2463	pt->ti = ti;
2464	pt->metadata_dev = metadata_dev;
2465	pt->data_dev = data_dev;
2466	pt->low_water_blocks = low_water_blocks;
2467	pt->adjusted_pf = pt->requested_pf = pf;
2468	ti->num_flush_bios = 1;
 
2469
2470	/*
2471	 * Only need to enable discards if the pool should pass
2472	 * them down to the data device.  The thin device's discard
2473	 * processing will cause mappings to be removed from the btree.
2474	 */
2475	ti->discard_zeroes_data_unsupported = true;
2476	if (pf.discard_enabled && pf.discard_passdown) {
2477		ti->num_discard_bios = 1;
2478
2479		/*
2480		 * Setting 'discards_supported' circumvents the normal
2481		 * stacking of discard limits (this keeps the pool and
2482		 * thin devices' discard limits consistent).
2483		 */
2484		ti->discards_supported = true;
 
2485	}
2486	ti->private = pt;
2487
2488	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2489						calc_metadata_threshold(pt),
2490						metadata_low_callback,
2491						pool);
2492	if (r)
2493		goto out_free_pt;
 
 
2494
2495	pt->callbacks.congested_fn = pool_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2497
2498	mutex_unlock(&dm_thin_pool_table.mutex);
2499
2500	return 0;
2501
2502out_flags_changed:
2503	__pool_dec(pool);
2504out_free_pt:
2505	kfree(pt);
2506out:
2507	dm_put_device(ti, data_dev);
2508out_metadata:
2509	dm_put_device(ti, metadata_dev);
2510out_unlock:
2511	mutex_unlock(&dm_thin_pool_table.mutex);
2512
2513	return r;
2514}
2515
2516static int pool_map(struct dm_target *ti, struct bio *bio)
2517{
2518	int r;
2519	struct pool_c *pt = ti->private;
2520	struct pool *pool = pt->pool;
2521	unsigned long flags;
2522
2523	/*
2524	 * As this is a singleton target, ti->begin is always zero.
2525	 */
2526	spin_lock_irqsave(&pool->lock, flags);
2527	bio->bi_bdev = pt->data_dev->bdev;
2528	r = DM_MAPIO_REMAPPED;
2529	spin_unlock_irqrestore(&pool->lock, flags);
2530
2531	return r;
2532}
2533
2534static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2535{
2536	int r;
2537	struct pool_c *pt = ti->private;
2538	struct pool *pool = pt->pool;
2539	sector_t data_size = ti->len;
2540	dm_block_t sb_data_size;
2541
2542	*need_commit = false;
2543
2544	(void) sector_div(data_size, pool->sectors_per_block);
2545
2546	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2547	if (r) {
2548		DMERR("%s: failed to retrieve data device size",
2549		      dm_device_name(pool->pool_md));
2550		return r;
2551	}
2552
2553	if (data_size < sb_data_size) {
2554		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2555		      dm_device_name(pool->pool_md),
2556		      (unsigned long long)data_size, sb_data_size);
2557		return -EINVAL;
2558
2559	} else if (data_size > sb_data_size) {
2560		if (dm_pool_metadata_needs_check(pool->pmd)) {
2561			DMERR("%s: unable to grow the data device until repaired.",
2562			      dm_device_name(pool->pool_md));
2563			return 0;
2564		}
2565
2566		if (sb_data_size)
2567			DMINFO("%s: growing the data device from %llu to %llu blocks",
2568			       dm_device_name(pool->pool_md),
2569			       sb_data_size, (unsigned long long)data_size);
2570		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2571		if (r) {
2572			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2573			return r;
2574		}
2575
2576		*need_commit = true;
2577	}
2578
2579	return 0;
2580}
2581
2582static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2583{
2584	int r;
2585	struct pool_c *pt = ti->private;
2586	struct pool *pool = pt->pool;
2587	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2588
2589	*need_commit = false;
2590
2591	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2592
2593	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2594	if (r) {
2595		DMERR("%s: failed to retrieve metadata device size",
2596		      dm_device_name(pool->pool_md));
2597		return r;
2598	}
2599
2600	if (metadata_dev_size < sb_metadata_dev_size) {
2601		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2602		      dm_device_name(pool->pool_md),
2603		      metadata_dev_size, sb_metadata_dev_size);
2604		return -EINVAL;
2605
2606	} else if (metadata_dev_size > sb_metadata_dev_size) {
2607		if (dm_pool_metadata_needs_check(pool->pmd)) {
2608			DMERR("%s: unable to grow the metadata device until repaired.",
2609			      dm_device_name(pool->pool_md));
2610			return 0;
2611		}
2612
2613		warn_if_metadata_device_too_big(pool->md_dev);
2614		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2615		       dm_device_name(pool->pool_md),
2616		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
2617		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2618		if (r) {
2619			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2620			return r;
2621		}
2622
2623		*need_commit = true;
2624	}
2625
2626	return 0;
2627}
2628
2629/*
2630 * Retrieves the number of blocks of the data device from
2631 * the superblock and compares it to the actual device size,
2632 * thus resizing the data device in case it has grown.
2633 *
2634 * This both copes with opening preallocated data devices in the ctr
2635 * being followed by a resume
2636 * -and-
2637 * calling the resume method individually after userspace has
2638 * grown the data device in reaction to a table event.
2639 */
2640static int pool_preresume(struct dm_target *ti)
2641{
2642	int r;
2643	bool need_commit1, need_commit2;
2644	struct pool_c *pt = ti->private;
2645	struct pool *pool = pt->pool;
2646
2647	/*
2648	 * Take control of the pool object.
2649	 */
2650	r = bind_control_target(pool, ti);
2651	if (r)
2652		return r;
2653
2654	r = maybe_resize_data_dev(ti, &need_commit1);
2655	if (r)
2656		return r;
2657
2658	r = maybe_resize_metadata_dev(ti, &need_commit2);
2659	if (r)
2660		return r;
2661
2662	if (need_commit1 || need_commit2)
2663		(void) commit(pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664
2665	return 0;
 
 
 
 
 
 
 
 
 
2666}
2667
2668static void pool_resume(struct dm_target *ti)
2669{
2670	struct pool_c *pt = ti->private;
2671	struct pool *pool = pt->pool;
2672	unsigned long flags;
2673
2674	spin_lock_irqsave(&pool->lock, flags);
 
 
 
 
 
 
 
2675	pool->low_water_triggered = false;
2676	spin_unlock_irqrestore(&pool->lock, flags);
2677	requeue_bios(pool);
2678
2679	do_waker(&pool->waker.work);
2680}
2681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2682static void pool_postsuspend(struct dm_target *ti)
2683{
2684	struct pool_c *pt = ti->private;
2685	struct pool *pool = pt->pool;
2686
2687	cancel_delayed_work(&pool->waker);
2688	cancel_delayed_work(&pool->no_space_timeout);
2689	flush_workqueue(pool->wq);
2690	(void) commit(pool);
2691}
2692
2693static int check_arg_count(unsigned argc, unsigned args_required)
2694{
2695	if (argc != args_required) {
2696		DMWARN("Message received with %u arguments instead of %u.",
2697		       argc, args_required);
2698		return -EINVAL;
2699	}
2700
2701	return 0;
2702}
2703
2704static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2705{
2706	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2707	    *dev_id <= MAX_DEV_ID)
2708		return 0;
2709
2710	if (warning)
2711		DMWARN("Message received with invalid device id: %s", arg);
2712
2713	return -EINVAL;
2714}
2715
2716static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2717{
2718	dm_thin_id dev_id;
2719	int r;
2720
2721	r = check_arg_count(argc, 2);
2722	if (r)
2723		return r;
2724
2725	r = read_dev_id(argv[1], &dev_id, 1);
2726	if (r)
2727		return r;
2728
2729	r = dm_pool_create_thin(pool->pmd, dev_id);
2730	if (r) {
2731		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2732		       argv[1]);
2733		return r;
2734	}
2735
2736	return 0;
2737}
2738
2739static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2740{
2741	dm_thin_id dev_id;
2742	dm_thin_id origin_dev_id;
2743	int r;
2744
2745	r = check_arg_count(argc, 3);
2746	if (r)
2747		return r;
2748
2749	r = read_dev_id(argv[1], &dev_id, 1);
2750	if (r)
2751		return r;
2752
2753	r = read_dev_id(argv[2], &origin_dev_id, 1);
2754	if (r)
2755		return r;
2756
2757	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2758	if (r) {
2759		DMWARN("Creation of new snapshot %s of device %s failed.",
2760		       argv[1], argv[2]);
2761		return r;
2762	}
2763
2764	return 0;
2765}
2766
2767static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2768{
2769	dm_thin_id dev_id;
2770	int r;
2771
2772	r = check_arg_count(argc, 2);
2773	if (r)
2774		return r;
2775
2776	r = read_dev_id(argv[1], &dev_id, 1);
2777	if (r)
2778		return r;
2779
2780	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2781	if (r)
2782		DMWARN("Deletion of thin device %s failed.", argv[1]);
2783
2784	return r;
2785}
2786
2787static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2788{
2789	dm_thin_id old_id, new_id;
2790	int r;
2791
2792	r = check_arg_count(argc, 3);
2793	if (r)
2794		return r;
2795
2796	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2797		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2798		return -EINVAL;
2799	}
2800
2801	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2802		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2803		return -EINVAL;
2804	}
2805
2806	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2807	if (r) {
2808		DMWARN("Failed to change transaction id from %s to %s.",
2809		       argv[1], argv[2]);
2810		return r;
2811	}
2812
2813	return 0;
2814}
2815
2816static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2817{
2818	int r;
2819
2820	r = check_arg_count(argc, 1);
2821	if (r)
2822		return r;
2823
2824	(void) commit(pool);
2825
2826	r = dm_pool_reserve_metadata_snap(pool->pmd);
2827	if (r)
2828		DMWARN("reserve_metadata_snap message failed.");
2829
2830	return r;
2831}
2832
2833static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2834{
2835	int r;
2836
2837	r = check_arg_count(argc, 1);
2838	if (r)
2839		return r;
2840
2841	r = dm_pool_release_metadata_snap(pool->pmd);
2842	if (r)
2843		DMWARN("release_metadata_snap message failed.");
2844
2845	return r;
2846}
2847
2848/*
2849 * Messages supported:
2850 *   create_thin	<dev_id>
2851 *   create_snap	<dev_id> <origin_id>
2852 *   delete		<dev_id>
2853 *   trim		<dev_id> <new_size_in_sectors>
2854 *   set_transaction_id <current_trans_id> <new_trans_id>
2855 *   reserve_metadata_snap
2856 *   release_metadata_snap
2857 */
2858static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
2859{
2860	int r = -EINVAL;
2861	struct pool_c *pt = ti->private;
2862	struct pool *pool = pt->pool;
2863
 
 
 
 
 
 
2864	if (!strcasecmp(argv[0], "create_thin"))
2865		r = process_create_thin_mesg(argc, argv, pool);
2866
2867	else if (!strcasecmp(argv[0], "create_snap"))
2868		r = process_create_snap_mesg(argc, argv, pool);
2869
2870	else if (!strcasecmp(argv[0], "delete"))
2871		r = process_delete_mesg(argc, argv, pool);
2872
2873	else if (!strcasecmp(argv[0], "set_transaction_id"))
2874		r = process_set_transaction_id_mesg(argc, argv, pool);
2875
2876	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2877		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2878
2879	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2880		r = process_release_metadata_snap_mesg(argc, argv, pool);
2881
2882	else
2883		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2884
2885	if (!r)
2886		(void) commit(pool);
2887
2888	return r;
2889}
2890
2891static void emit_flags(struct pool_features *pf, char *result,
2892		       unsigned sz, unsigned maxlen)
2893{
2894	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2895		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2896		pf->error_if_no_space;
2897	DMEMIT("%u ", count);
2898
2899	if (!pf->zero_new_blocks)
2900		DMEMIT("skip_block_zeroing ");
2901
2902	if (!pf->discard_enabled)
2903		DMEMIT("ignore_discard ");
2904
2905	if (!pf->discard_passdown)
2906		DMEMIT("no_discard_passdown ");
2907
2908	if (pf->mode == PM_READ_ONLY)
2909		DMEMIT("read_only ");
2910
2911	if (pf->error_if_no_space)
2912		DMEMIT("error_if_no_space ");
2913}
2914
2915/*
2916 * Status line is:
2917 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2918 *    <used data sectors>/<total data sectors> <held metadata root>
 
2919 */
2920static void pool_status(struct dm_target *ti, status_type_t type,
2921			unsigned status_flags, char *result, unsigned maxlen)
2922{
2923	int r;
2924	unsigned sz = 0;
2925	uint64_t transaction_id;
2926	dm_block_t nr_free_blocks_data;
2927	dm_block_t nr_free_blocks_metadata;
2928	dm_block_t nr_blocks_data;
2929	dm_block_t nr_blocks_metadata;
2930	dm_block_t held_root;
 
2931	char buf[BDEVNAME_SIZE];
2932	char buf2[BDEVNAME_SIZE];
2933	struct pool_c *pt = ti->private;
2934	struct pool *pool = pt->pool;
2935
2936	switch (type) {
2937	case STATUSTYPE_INFO:
2938		if (get_pool_mode(pool) == PM_FAIL) {
2939			DMEMIT("Fail");
2940			break;
2941		}
2942
2943		/* Commit to ensure statistics aren't out-of-date */
2944		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2945			(void) commit(pool);
2946
2947		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2948		if (r) {
2949			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2950			      dm_device_name(pool->pool_md), r);
2951			goto err;
2952		}
2953
2954		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2955		if (r) {
2956			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2957			      dm_device_name(pool->pool_md), r);
2958			goto err;
2959		}
2960
2961		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2962		if (r) {
2963			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2964			      dm_device_name(pool->pool_md), r);
2965			goto err;
2966		}
2967
2968		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2969		if (r) {
2970			DMERR("%s: dm_pool_get_free_block_count returned %d",
2971			      dm_device_name(pool->pool_md), r);
2972			goto err;
2973		}
2974
2975		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2976		if (r) {
2977			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2978			      dm_device_name(pool->pool_md), r);
2979			goto err;
2980		}
2981
2982		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2983		if (r) {
2984			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2985			      dm_device_name(pool->pool_md), r);
2986			goto err;
2987		}
2988
2989		DMEMIT("%llu %llu/%llu %llu/%llu ",
2990		       (unsigned long long)transaction_id,
2991		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2992		       (unsigned long long)nr_blocks_metadata,
2993		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2994		       (unsigned long long)nr_blocks_data);
2995
2996		if (held_root)
2997			DMEMIT("%llu ", held_root);
2998		else
2999			DMEMIT("- ");
3000
3001		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3002			DMEMIT("out_of_data_space ");
3003		else if (pool->pf.mode == PM_READ_ONLY)
3004			DMEMIT("ro ");
3005		else
3006			DMEMIT("rw ");
3007
3008		if (!pool->pf.discard_enabled)
3009			DMEMIT("ignore_discard ");
3010		else if (pool->pf.discard_passdown)
3011			DMEMIT("discard_passdown ");
3012		else
3013			DMEMIT("no_discard_passdown ");
3014
3015		if (pool->pf.error_if_no_space)
3016			DMEMIT("error_if_no_space ");
3017		else
3018			DMEMIT("queue_if_no_space ");
3019
 
 
 
 
 
 
 
3020		break;
3021
3022	case STATUSTYPE_TABLE:
3023		DMEMIT("%s %s %lu %llu ",
3024		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3025		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3026		       (unsigned long)pool->sectors_per_block,
3027		       (unsigned long long)pt->low_water_blocks);
3028		emit_flags(&pt->requested_pf, result, sz, maxlen);
3029		break;
 
 
 
 
3030	}
3031	return;
3032
3033err:
3034	DMEMIT("Error");
3035}
3036
3037static int pool_iterate_devices(struct dm_target *ti,
3038				iterate_devices_callout_fn fn, void *data)
3039{
3040	struct pool_c *pt = ti->private;
3041
3042	return fn(ti, pt->data_dev, 0, ti->len, data);
3043}
3044
3045static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3046		      struct bio_vec *biovec, int max_size)
3047{
3048	struct pool_c *pt = ti->private;
3049	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3050
3051	if (!q->merge_bvec_fn)
3052		return max_size;
3053
3054	bvm->bi_bdev = pt->data_dev->bdev;
3055
3056	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3057}
3058
3059static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3060{
3061	struct pool *pool = pt->pool;
3062	struct queue_limits *data_limits;
3063
3064	limits->max_discard_sectors = pool->sectors_per_block;
3065
3066	/*
3067	 * discard_granularity is just a hint, and not enforced.
 
 
 
 
 
 
3068	 */
3069	if (pt->adjusted_pf.discard_passdown) {
3070		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3071		limits->discard_granularity = data_limits->discard_granularity;
3072	} else
3073		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3074}
3075
3076static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3077{
3078	struct pool_c *pt = ti->private;
3079	struct pool *pool = pt->pool;
3080	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3081
3082	/*
3083	 * If the system-determined stacked limits are compatible with the
3084	 * pool's blocksize (io_opt is a factor) do not override them.
3085	 */
3086	if (io_opt_sectors < pool->sectors_per_block ||
3087	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3088		blk_limits_io_min(limits, 0);
 
 
 
3089		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3090	}
3091
3092	/*
3093	 * pt->adjusted_pf is a staging area for the actual features to use.
3094	 * They get transferred to the live pool in bind_control_target()
3095	 * called from pool_preresume().
3096	 */
3097	if (!pt->adjusted_pf.discard_enabled) {
 
 
 
 
 
 
 
 
 
3098		/*
3099		 * Must explicitly disallow stacking discard limits otherwise the
3100		 * block layer will stack them if pool's data device has support.
3101		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3102		 * user to see that, so make sure to set all discard limits to 0.
3103		 */
3104		limits->discard_granularity = 0;
3105		return;
3106	}
3107
3108	disable_passdown_if_not_supported(pt);
3109
3110	set_discard_limits(pt, limits);
3111}
3112
3113static struct target_type pool_target = {
3114	.name = "thin-pool",
3115	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3116		    DM_TARGET_IMMUTABLE,
3117	.version = {1, 12, 0},
3118	.module = THIS_MODULE,
3119	.ctr = pool_ctr,
3120	.dtr = pool_dtr,
3121	.map = pool_map,
 
 
3122	.postsuspend = pool_postsuspend,
3123	.preresume = pool_preresume,
3124	.resume = pool_resume,
3125	.message = pool_message,
3126	.status = pool_status,
3127	.merge = pool_merge,
3128	.iterate_devices = pool_iterate_devices,
3129	.io_hints = pool_io_hints,
3130};
3131
3132/*----------------------------------------------------------------
 
3133 * Thin target methods
3134 *--------------------------------------------------------------*/
 
3135static void thin_get(struct thin_c *tc)
3136{
3137	atomic_inc(&tc->refcount);
3138}
3139
3140static void thin_put(struct thin_c *tc)
3141{
3142	if (atomic_dec_and_test(&tc->refcount))
3143		complete(&tc->can_destroy);
3144}
3145
3146static void thin_dtr(struct dm_target *ti)
3147{
3148	struct thin_c *tc = ti->private;
3149	unsigned long flags;
 
 
 
 
3150
3151	thin_put(tc);
3152	wait_for_completion(&tc->can_destroy);
3153
3154	spin_lock_irqsave(&tc->pool->lock, flags);
3155	list_del_rcu(&tc->list);
3156	spin_unlock_irqrestore(&tc->pool->lock, flags);
3157	synchronize_rcu();
3158
3159	mutex_lock(&dm_thin_pool_table.mutex);
3160
3161	__pool_dec(tc->pool);
3162	dm_pool_close_thin_device(tc->td);
3163	dm_put_device(ti, tc->pool_dev);
3164	if (tc->origin_dev)
3165		dm_put_device(ti, tc->origin_dev);
3166	kfree(tc);
3167
3168	mutex_unlock(&dm_thin_pool_table.mutex);
3169}
3170
3171/*
3172 * Thin target parameters:
3173 *
3174 * <pool_dev> <dev_id> [origin_dev]
3175 *
3176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3177 * dev_id: the internal device identifier
3178 * origin_dev: a device external to the pool that should act as the origin
3179 *
3180 * If the pool device has discards disabled, they get disabled for the thin
3181 * device as well.
3182 */
3183static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3184{
3185	int r;
3186	struct thin_c *tc;
3187	struct dm_dev *pool_dev, *origin_dev;
3188	struct mapped_device *pool_md;
3189	unsigned long flags;
3190
3191	mutex_lock(&dm_thin_pool_table.mutex);
3192
3193	if (argc != 2 && argc != 3) {
3194		ti->error = "Invalid argument count";
3195		r = -EINVAL;
3196		goto out_unlock;
3197	}
3198
3199	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3200	if (!tc) {
3201		ti->error = "Out of memory";
3202		r = -ENOMEM;
3203		goto out_unlock;
3204	}
 
3205	spin_lock_init(&tc->lock);
 
3206	bio_list_init(&tc->deferred_bio_list);
3207	bio_list_init(&tc->retry_on_resume_list);
3208	tc->sort_bio_list = RB_ROOT;
3209
3210	if (argc == 3) {
3211		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
 
 
 
 
 
 
3212		if (r) {
3213			ti->error = "Error opening origin device";
3214			goto bad_origin_dev;
3215		}
3216		tc->origin_dev = origin_dev;
3217	}
3218
3219	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3220	if (r) {
3221		ti->error = "Error opening pool device";
3222		goto bad_pool_dev;
3223	}
3224	tc->pool_dev = pool_dev;
3225
3226	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3227		ti->error = "Invalid device id";
3228		r = -EINVAL;
3229		goto bad_common;
3230	}
3231
3232	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3233	if (!pool_md) {
3234		ti->error = "Couldn't get pool mapped device";
3235		r = -EINVAL;
3236		goto bad_common;
3237	}
3238
3239	tc->pool = __pool_table_lookup(pool_md);
3240	if (!tc->pool) {
3241		ti->error = "Couldn't find pool object";
3242		r = -EINVAL;
3243		goto bad_pool_lookup;
3244	}
3245	__pool_inc(tc->pool);
3246
3247	if (get_pool_mode(tc->pool) == PM_FAIL) {
3248		ti->error = "Couldn't open thin device, Pool is in fail mode";
3249		r = -EINVAL;
3250		goto bad_thin_open;
3251	}
3252
3253	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3254	if (r) {
3255		ti->error = "Couldn't open thin internal device";
3256		goto bad_thin_open;
3257	}
3258
3259	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3260	if (r)
3261		goto bad_target_max_io_len;
3262
3263	ti->num_flush_bios = 1;
 
3264	ti->flush_supported = true;
3265	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
 
3266
3267	/* In case the pool supports discards, pass them on. */
3268	ti->discard_zeroes_data_unsupported = true;
3269	if (tc->pool->pf.discard_enabled) {
3270		ti->discards_supported = true;
3271		ti->num_discard_bios = 1;
3272		/* Discard bios must be split on a block boundary */
3273		ti->split_discard_bios = true;
3274	}
3275
3276	dm_put(pool_md);
3277
3278	mutex_unlock(&dm_thin_pool_table.mutex);
3279
3280	atomic_set(&tc->refcount, 1);
 
 
 
 
 
 
 
 
3281	init_completion(&tc->can_destroy);
3282
3283	spin_lock_irqsave(&tc->pool->lock, flags);
3284	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3285	spin_unlock_irqrestore(&tc->pool->lock, flags);
3286	/*
3287	 * This synchronize_rcu() call is needed here otherwise we risk a
3288	 * wake_worker() call finding no bios to process (because the newly
3289	 * added tc isn't yet visible).  So this reduces latency since we
3290	 * aren't then dependent on the periodic commit to wake_worker().
3291	 */
3292	synchronize_rcu();
3293
 
 
3294	return 0;
3295
3296bad_target_max_io_len:
3297	dm_pool_close_thin_device(tc->td);
3298bad_thin_open:
3299	__pool_dec(tc->pool);
3300bad_pool_lookup:
3301	dm_put(pool_md);
3302bad_common:
3303	dm_put_device(ti, tc->pool_dev);
3304bad_pool_dev:
3305	if (tc->origin_dev)
3306		dm_put_device(ti, tc->origin_dev);
3307bad_origin_dev:
3308	kfree(tc);
3309out_unlock:
3310	mutex_unlock(&dm_thin_pool_table.mutex);
3311
3312	return r;
3313}
3314
3315static int thin_map(struct dm_target *ti, struct bio *bio)
3316{
3317	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3318
3319	return thin_bio_map(ti, bio);
3320}
3321
3322static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
 
3323{
3324	unsigned long flags;
3325	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3326	struct list_head work;
3327	struct dm_thin_new_mapping *m, *tmp;
3328	struct pool *pool = h->tc->pool;
3329
3330	if (h->shared_read_entry) {
3331		INIT_LIST_HEAD(&work);
3332		dm_deferred_entry_dec(h->shared_read_entry, &work);
3333
3334		spin_lock_irqsave(&pool->lock, flags);
3335		list_for_each_entry_safe(m, tmp, &work, list) {
3336			list_del(&m->list);
3337			m->quiesced = true;
3338			__maybe_add_mapping(m);
3339		}
3340		spin_unlock_irqrestore(&pool->lock, flags);
3341	}
3342
3343	if (h->all_io_entry) {
3344		INIT_LIST_HEAD(&work);
3345		dm_deferred_entry_dec(h->all_io_entry, &work);
3346		if (!list_empty(&work)) {
3347			spin_lock_irqsave(&pool->lock, flags);
3348			list_for_each_entry_safe(m, tmp, &work, list)
3349				list_add_tail(&m->list, &pool->prepared_discards);
3350			spin_unlock_irqrestore(&pool->lock, flags);
3351			wake_worker(pool);
3352		}
3353	}
3354
3355	return 0;
 
 
 
3356}
3357
3358static void thin_presuspend(struct dm_target *ti)
3359{
3360	struct thin_c *tc = ti->private;
3361
3362	if (dm_noflush_suspending(ti))
3363		noflush_work(tc, do_noflush_start);
3364}
3365
3366static void thin_postsuspend(struct dm_target *ti)
3367{
3368	struct thin_c *tc = ti->private;
3369
3370	/*
3371	 * The dm_noflush_suspending flag has been cleared by now, so
3372	 * unfortunately we must always run this.
3373	 */
3374	noflush_work(tc, do_noflush_stop);
3375}
3376
 
 
 
 
 
 
 
 
 
 
3377/*
3378 * <nr mapped sectors> <highest mapped sector>
3379 */
3380static void thin_status(struct dm_target *ti, status_type_t type,
3381			unsigned status_flags, char *result, unsigned maxlen)
3382{
3383	int r;
3384	ssize_t sz = 0;
3385	dm_block_t mapped, highest;
3386	char buf[BDEVNAME_SIZE];
3387	struct thin_c *tc = ti->private;
3388
3389	if (get_pool_mode(tc->pool) == PM_FAIL) {
3390		DMEMIT("Fail");
3391		return;
3392	}
3393
3394	if (!tc->td)
3395		DMEMIT("-");
3396	else {
3397		switch (type) {
3398		case STATUSTYPE_INFO:
3399			r = dm_thin_get_mapped_count(tc->td, &mapped);
3400			if (r) {
3401				DMERR("dm_thin_get_mapped_count returned %d", r);
3402				goto err;
3403			}
3404
3405			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3406			if (r < 0) {
3407				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3408				goto err;
3409			}
3410
3411			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3412			if (r)
3413				DMEMIT("%llu", ((highest + 1) *
3414						tc->pool->sectors_per_block) - 1);
3415			else
3416				DMEMIT("-");
3417			break;
3418
3419		case STATUSTYPE_TABLE:
3420			DMEMIT("%s %lu",
3421			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3422			       (unsigned long) tc->dev_id);
3423			if (tc->origin_dev)
3424				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3425			break;
 
 
 
 
3426		}
3427	}
3428
3429	return;
3430
3431err:
3432	DMEMIT("Error");
3433}
3434
3435static int thin_iterate_devices(struct dm_target *ti,
3436				iterate_devices_callout_fn fn, void *data)
3437{
3438	sector_t blocks;
3439	struct thin_c *tc = ti->private;
3440	struct pool *pool = tc->pool;
3441
3442	/*
3443	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3444	 * we follow a more convoluted path through to the pool's target.
3445	 */
3446	if (!pool->ti)
3447		return 0;	/* nothing is bound */
3448
3449	blocks = pool->ti->len;
3450	(void) sector_div(blocks, pool->sectors_per_block);
3451	if (blocks)
3452		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3453
3454	return 0;
3455}
3456
 
 
 
 
 
 
 
 
 
 
 
3457static struct target_type thin_target = {
3458	.name = "thin",
3459	.version = {1, 12, 0},
3460	.module	= THIS_MODULE,
3461	.ctr = thin_ctr,
3462	.dtr = thin_dtr,
3463	.map = thin_map,
3464	.end_io = thin_endio,
 
3465	.presuspend = thin_presuspend,
3466	.postsuspend = thin_postsuspend,
3467	.status = thin_status,
3468	.iterate_devices = thin_iterate_devices,
 
3469};
3470
3471/*----------------------------------------------------------------*/
3472
3473static int __init dm_thin_init(void)
3474{
3475	int r;
3476
3477	pool_table_init();
3478
 
 
 
 
3479	r = dm_register_target(&thin_target);
3480	if (r)
3481		return r;
3482
3483	r = dm_register_target(&pool_target);
3484	if (r)
3485		goto bad_pool_target;
3486
3487	r = -ENOMEM;
3488
3489	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3490	if (!_new_mapping_cache)
3491		goto bad_new_mapping_cache;
3492
3493	return 0;
3494
 
 
3495bad_new_mapping_cache:
3496	dm_unregister_target(&pool_target);
3497bad_pool_target:
3498	dm_unregister_target(&thin_target);
3499
3500	return r;
3501}
3502
3503static void dm_thin_exit(void)
3504{
3505	dm_unregister_target(&thin_target);
3506	dm_unregister_target(&pool_target);
3507
3508	kmem_cache_destroy(_new_mapping_cache);
 
 
3509}
3510
3511module_init(dm_thin_init);
3512module_exit(dm_thin_exit);
3513
3514module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3515MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3516
3517MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3518MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3519MODULE_LICENSE("GPL");