Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22#include <linux/string_helpers.h>
  23#include <linux/platform_device.h>
  24
  25#include <linux/acpi.h>
  26#include <linux/io.h>
  27#include <linux/delay.h>
  28#include <linux/uaccess.h>
  29
  30#include <acpi/processor.h>
  31#include <acpi/cppc_acpi.h>
  32
  33#include <asm/msr.h>
  34#include <asm/processor.h>
  35#include <asm/cpufeature.h>
  36#include <asm/cpu_device_id.h>
  37
  38MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  39MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  40MODULE_LICENSE("GPL");
  41
 
 
  42enum {
  43	UNDEFINED_CAPABLE = 0,
  44	SYSTEM_INTEL_MSR_CAPABLE,
  45	SYSTEM_AMD_MSR_CAPABLE,
  46	SYSTEM_IO_CAPABLE,
  47};
  48
  49#define INTEL_MSR_RANGE		(0xffff)
  50#define AMD_MSR_RANGE		(0x7)
  51#define HYGON_MSR_RANGE		(0x7)
  52
  53#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
  54
  55struct acpi_cpufreq_data {
 
  56	unsigned int resume;
  57	unsigned int cpu_feature;
  58	unsigned int acpi_perf_cpu;
  59	cpumask_var_t freqdomain_cpus;
  60	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  61	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  62};
  63
  64/* acpi_perf_data is a pointer to percpu data. */
  65static struct acpi_processor_performance __percpu *acpi_perf_data;
  66
  67static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  68{
  69	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  70}
  71
  72static struct cpufreq_driver acpi_cpufreq_driver;
  73
  74static unsigned int acpi_pstate_strict;
 
  75
  76static bool boost_state(unsigned int cpu)
  77{
  78	u32 lo, hi;
  79	u64 msr;
  80
  81	switch (boot_cpu_data.x86_vendor) {
  82	case X86_VENDOR_INTEL:
  83	case X86_VENDOR_CENTAUR:
  84	case X86_VENDOR_ZHAOXIN:
  85		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
  86		msr = lo | ((u64)hi << 32);
  87		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  88	case X86_VENDOR_HYGON:
  89	case X86_VENDOR_AMD:
  90		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  91		msr = lo | ((u64)hi << 32);
  92		return !(msr & MSR_K7_HWCR_CPB_DIS);
  93	}
  94	return false;
  95}
  96
  97static int boost_set_msr(bool enable)
  98{
 
  99	u32 msr_addr;
 100	u64 msr_mask, val;
 101
 102	switch (boot_cpu_data.x86_vendor) {
 103	case X86_VENDOR_INTEL:
 104	case X86_VENDOR_CENTAUR:
 105	case X86_VENDOR_ZHAOXIN:
 106		msr_addr = MSR_IA32_MISC_ENABLE;
 107		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 108		break;
 109	case X86_VENDOR_HYGON:
 110	case X86_VENDOR_AMD:
 111		msr_addr = MSR_K7_HWCR;
 112		msr_mask = MSR_K7_HWCR_CPB_DIS;
 113		break;
 114	default:
 115		return -EINVAL;
 116	}
 117
 118	rdmsrl(msr_addr, val);
 119
 120	if (enable)
 121		val &= ~msr_mask;
 122	else
 123		val |= msr_mask;
 124
 125	wrmsrl(msr_addr, val);
 126	return 0;
 127}
 128
 129static void boost_set_msr_each(void *p_en)
 130{
 131	bool enable = (bool) p_en;
 
 
 
 
 132
 133	boost_set_msr(enable);
 134}
 135
 136static int set_boost(struct cpufreq_policy *policy, int val)
 137{
 138	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
 139			 (void *)(long)val, 1);
 140	pr_debug("CPU %*pbl: Core Boosting %s.\n",
 141		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
 142
 143	return 0;
 144}
 145
 146static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 147{
 148	struct acpi_cpufreq_data *data = policy->driver_data;
 149
 150	if (unlikely(!data))
 151		return -ENODEV;
 152
 153	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 154}
 155
 156cpufreq_freq_attr_ro(freqdomain_cpus);
 157
 158#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 159static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 160			 size_t count)
 161{
 162	int ret;
 163	unsigned int val = 0;
 164
 165	if (!acpi_cpufreq_driver.set_boost)
 166		return -EINVAL;
 167
 168	ret = kstrtouint(buf, 10, &val);
 169	if (ret || val > 1)
 170		return -EINVAL;
 171
 172	cpus_read_lock();
 173	set_boost(policy, val);
 174	cpus_read_unlock();
 175
 176	return count;
 177}
 178
 179static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 180{
 181	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 182}
 183
 184cpufreq_freq_attr_rw(cpb);
 185#endif
 186
 187static int check_est_cpu(unsigned int cpuid)
 188{
 189	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 190
 191	return cpu_has(cpu, X86_FEATURE_EST);
 192}
 193
 194static int check_amd_hwpstate_cpu(unsigned int cpuid)
 195{
 196	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 197
 198	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 199}
 200
 201static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 202{
 203	struct acpi_cpufreq_data *data = policy->driver_data;
 204	struct acpi_processor_performance *perf;
 205	int i;
 206
 207	perf = to_perf_data(data);
 208
 209	for (i = 0; i < perf->state_count; i++) {
 210		if (value == perf->states[i].status)
 211			return policy->freq_table[i].frequency;
 212	}
 213	return 0;
 214}
 215
 216static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 217{
 218	struct acpi_cpufreq_data *data = policy->driver_data;
 219	struct cpufreq_frequency_table *pos;
 220	struct acpi_processor_performance *perf;
 221
 222	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 223		msr &= AMD_MSR_RANGE;
 224	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 225		msr &= HYGON_MSR_RANGE;
 226	else
 227		msr &= INTEL_MSR_RANGE;
 228
 229	perf = to_perf_data(data);
 230
 231	cpufreq_for_each_entry(pos, policy->freq_table)
 232		if (msr == perf->states[pos->driver_data].status)
 233			return pos->frequency;
 234	return policy->freq_table[0].frequency;
 235}
 236
 237static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 238{
 239	struct acpi_cpufreq_data *data = policy->driver_data;
 240
 241	switch (data->cpu_feature) {
 242	case SYSTEM_INTEL_MSR_CAPABLE:
 243	case SYSTEM_AMD_MSR_CAPABLE:
 244		return extract_msr(policy, val);
 245	case SYSTEM_IO_CAPABLE:
 246		return extract_io(policy, val);
 247	default:
 248		return 0;
 249	}
 250}
 251
 252static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 253{
 254	u32 val, dummy __always_unused;
 255
 256	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 257	return val;
 258}
 259
 260static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 261{
 262	u32 lo, hi;
 263
 264	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 265	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 266	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 267}
 268
 269static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 270{
 271	u32 val, dummy __always_unused;
 272
 273	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 274	return val;
 275}
 276
 277static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 278{
 279	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 280}
 281
 282static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 283{
 284	u32 val;
 285
 286	acpi_os_read_port(reg->address, &val, reg->bit_width);
 287	return val;
 288}
 289
 290static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 291{
 292	acpi_os_write_port(reg->address, val, reg->bit_width);
 293}
 294
 295struct drv_cmd {
 296	struct acpi_pct_register *reg;
 297	u32 val;
 298	union {
 299		void (*write)(struct acpi_pct_register *reg, u32 val);
 300		u32 (*read)(struct acpi_pct_register *reg);
 301	} func;
 302};
 303
 304/* Called via smp_call_function_single(), on the target CPU */
 305static void do_drv_read(void *_cmd)
 306{
 307	struct drv_cmd *cmd = _cmd;
 308
 309	cmd->val = cmd->func.read(cmd->reg);
 310}
 311
 312static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 313{
 314	struct acpi_processor_performance *perf = to_perf_data(data);
 315	struct drv_cmd cmd = {
 316		.reg = &perf->control_register,
 317		.func.read = data->cpu_freq_read,
 318	};
 319	int err;
 320
 321	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 322	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 323	return cmd.val;
 324}
 325
 326/* Called via smp_call_function_many(), on the target CPUs */
 327static void do_drv_write(void *_cmd)
 328{
 329	struct drv_cmd *cmd = _cmd;
 330
 331	cmd->func.write(cmd->reg, cmd->val);
 332}
 333
 334static void drv_write(struct acpi_cpufreq_data *data,
 335		      const struct cpumask *mask, u32 val)
 336{
 337	struct acpi_processor_performance *perf = to_perf_data(data);
 338	struct drv_cmd cmd = {
 339		.reg = &perf->control_register,
 340		.val = val,
 341		.func.write = data->cpu_freq_write,
 342	};
 343	int this_cpu;
 344
 345	this_cpu = get_cpu();
 346	if (cpumask_test_cpu(this_cpu, mask))
 347		do_drv_write(&cmd);
 348
 349	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 350	put_cpu();
 351}
 352
 353static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 354{
 355	u32 val;
 356
 357	if (unlikely(cpumask_empty(mask)))
 358		return 0;
 359
 360	val = drv_read(data, mask);
 361
 362	pr_debug("%s = %u\n", __func__, val);
 363
 364	return val;
 365}
 366
 367static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 368{
 369	struct acpi_cpufreq_data *data;
 370	struct cpufreq_policy *policy;
 371	unsigned int freq;
 372	unsigned int cached_freq;
 373
 374	pr_debug("%s (%d)\n", __func__, cpu);
 375
 376	policy = cpufreq_cpu_get_raw(cpu);
 377	if (unlikely(!policy))
 378		return 0;
 379
 380	data = policy->driver_data;
 381	if (unlikely(!data || !policy->freq_table))
 382		return 0;
 383
 384	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 385	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 386	if (freq != cached_freq) {
 387		/*
 388		 * The dreaded BIOS frequency change behind our back.
 389		 * Force set the frequency on next target call.
 390		 */
 391		data->resume = 1;
 392	}
 393
 394	pr_debug("cur freq = %u\n", freq);
 395
 396	return freq;
 397}
 398
 399static unsigned int check_freqs(struct cpufreq_policy *policy,
 400				const struct cpumask *mask, unsigned int freq)
 401{
 402	struct acpi_cpufreq_data *data = policy->driver_data;
 403	unsigned int cur_freq;
 404	unsigned int i;
 405
 406	for (i = 0; i < 100; i++) {
 407		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 408		if (cur_freq == freq)
 409			return 1;
 410		udelay(10);
 411	}
 412	return 0;
 413}
 414
 415static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 416			       unsigned int index)
 417{
 418	struct acpi_cpufreq_data *data = policy->driver_data;
 419	struct acpi_processor_performance *perf;
 420	const struct cpumask *mask;
 421	unsigned int next_perf_state = 0; /* Index into perf table */
 422	int result = 0;
 423
 424	if (unlikely(!data)) {
 425		return -ENODEV;
 426	}
 427
 428	perf = to_perf_data(data);
 429	next_perf_state = policy->freq_table[index].driver_data;
 430	if (perf->state == next_perf_state) {
 431		if (unlikely(data->resume)) {
 432			pr_debug("Called after resume, resetting to P%d\n",
 433				next_perf_state);
 434			data->resume = 0;
 435		} else {
 436			pr_debug("Already at target state (P%d)\n",
 437				next_perf_state);
 438			return 0;
 439		}
 440	}
 441
 442	/*
 443	 * The core won't allow CPUs to go away until the governor has been
 444	 * stopped, so we can rely on the stability of policy->cpus.
 445	 */
 446	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 447		cpumask_of(policy->cpu) : policy->cpus;
 448
 449	drv_write(data, mask, perf->states[next_perf_state].control);
 450
 451	if (acpi_pstate_strict) {
 452		if (!check_freqs(policy, mask,
 453				 policy->freq_table[index].frequency)) {
 454			pr_debug("%s (%d)\n", __func__, policy->cpu);
 
 455			result = -EAGAIN;
 456		}
 457	}
 458
 459	if (!result)
 460		perf->state = next_perf_state;
 461
 462	return result;
 463}
 464
 465static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 466					     unsigned int target_freq)
 467{
 468	struct acpi_cpufreq_data *data = policy->driver_data;
 469	struct acpi_processor_performance *perf;
 470	struct cpufreq_frequency_table *entry;
 471	unsigned int next_perf_state, next_freq, index;
 472
 473	/*
 474	 * Find the closest frequency above target_freq.
 475	 */
 476	if (policy->cached_target_freq == target_freq)
 477		index = policy->cached_resolved_idx;
 478	else
 479		index = cpufreq_table_find_index_dl(policy, target_freq,
 480						    false);
 481
 482	entry = &policy->freq_table[index];
 483	next_freq = entry->frequency;
 484	next_perf_state = entry->driver_data;
 485
 486	perf = to_perf_data(data);
 487	if (perf->state == next_perf_state) {
 488		if (unlikely(data->resume))
 489			data->resume = 0;
 490		else
 491			return next_freq;
 492	}
 493
 494	data->cpu_freq_write(&perf->control_register,
 495			     perf->states[next_perf_state].control);
 496	perf->state = next_perf_state;
 497	return next_freq;
 498}
 499
 500static unsigned long
 501acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 502{
 503	struct acpi_processor_performance *perf;
 504
 505	perf = to_perf_data(data);
 506	if (cpu_khz) {
 507		/* search the closest match to cpu_khz */
 508		unsigned int i;
 509		unsigned long freq;
 510		unsigned long freqn = perf->states[0].core_frequency * 1000;
 511
 512		for (i = 0; i < (perf->state_count-1); i++) {
 513			freq = freqn;
 514			freqn = perf->states[i+1].core_frequency * 1000;
 515			if ((2 * cpu_khz) > (freqn + freq)) {
 516				perf->state = i;
 517				return freq;
 518			}
 519		}
 520		perf->state = perf->state_count-1;
 521		return freqn;
 522	} else {
 523		/* assume CPU is at P0... */
 524		perf->state = 0;
 525		return perf->states[0].core_frequency * 1000;
 526	}
 527}
 528
 529static void free_acpi_perf_data(void)
 530{
 531	unsigned int i;
 532
 533	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 534	for_each_possible_cpu(i)
 535		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 536				 ->shared_cpu_map);
 537	free_percpu(acpi_perf_data);
 538}
 539
 540static int cpufreq_boost_down_prep(unsigned int cpu)
 
 541{
 
 
 
 
 
 542	/*
 543	 * Clear the boost-disable bit on the CPU_DOWN path so that
 544	 * this cpu cannot block the remaining ones from boosting.
 
 
 545	 */
 546	return boost_set_msr(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547}
 548
 
 
 
 
 
 549/*
 550 * acpi_cpufreq_early_init - initialize ACPI P-States library
 551 *
 552 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 553 * in order to determine correct frequency and voltage pairings. We can
 554 * do _PDC and _PSD and find out the processor dependency for the
 555 * actual init that will happen later...
 556 */
 557static int __init acpi_cpufreq_early_init(void)
 558{
 559	unsigned int i;
 560	pr_debug("%s\n", __func__);
 561
 562	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 563	if (!acpi_perf_data) {
 564		pr_debug("Memory allocation error for acpi_perf_data.\n");
 565		return -ENOMEM;
 566	}
 567	for_each_possible_cpu(i) {
 568		if (!zalloc_cpumask_var_node(
 569			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 570			GFP_KERNEL, cpu_to_node(i))) {
 571
 572			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 573			free_acpi_perf_data();
 574			return -ENOMEM;
 575		}
 576	}
 577
 578	/* Do initialization in ACPI core */
 579	acpi_processor_preregister_performance(acpi_perf_data);
 580	return 0;
 581}
 582
 583#ifdef CONFIG_SMP
 584/*
 585 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 586 * or do it in BIOS firmware and won't inform about it to OS. If not
 587 * detected, this has a side effect of making CPU run at a different speed
 588 * than OS intended it to run at. Detect it and handle it cleanly.
 589 */
 590static int bios_with_sw_any_bug;
 591
 592static int sw_any_bug_found(const struct dmi_system_id *d)
 593{
 594	bios_with_sw_any_bug = 1;
 595	return 0;
 596}
 597
 598static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 599	{
 600		.callback = sw_any_bug_found,
 601		.ident = "Supermicro Server X6DLP",
 602		.matches = {
 603			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 604			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 605			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 606		},
 607	},
 608	{ }
 609};
 610
 611static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 612{
 613	/* Intel Xeon Processor 7100 Series Specification Update
 614	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
 615	 * AL30: A Machine Check Exception (MCE) Occurring during an
 616	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 617	 * Both Processor Cores to Lock Up. */
 618	if (c->x86_vendor == X86_VENDOR_INTEL) {
 619		if ((c->x86 == 15) &&
 620		    (c->x86_model == 6) &&
 621		    (c->x86_stepping == 8)) {
 622			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 
 
 
 623			return -ENODEV;
 624		    }
 625		}
 626	return 0;
 627}
 628#endif
 629
 630#ifdef CONFIG_ACPI_CPPC_LIB
 631static u64 get_max_boost_ratio(unsigned int cpu)
 632{
 633	struct cppc_perf_caps perf_caps;
 634	u64 highest_perf, nominal_perf;
 635	int ret;
 636
 637	if (acpi_pstate_strict)
 638		return 0;
 639
 640	ret = cppc_get_perf_caps(cpu, &perf_caps);
 641	if (ret) {
 642		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
 643			 cpu, ret);
 644		return 0;
 645	}
 646
 647	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 648		highest_perf = amd_get_highest_perf();
 649	else
 650		highest_perf = perf_caps.highest_perf;
 651
 652	nominal_perf = perf_caps.nominal_perf;
 653
 654	if (!highest_perf || !nominal_perf) {
 655		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
 656		return 0;
 657	}
 658
 659	if (highest_perf < nominal_perf) {
 660		pr_debug("CPU%d: nominal performance above highest\n", cpu);
 661		return 0;
 662	}
 663
 664	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
 665}
 666#else
 667static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
 668#endif
 669
 670static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 671{
 672	struct cpufreq_frequency_table *freq_table;
 673	struct acpi_processor_performance *perf;
 674	struct acpi_cpufreq_data *data;
 675	unsigned int cpu = policy->cpu;
 676	struct cpuinfo_x86 *c = &cpu_data(cpu);
 677	unsigned int valid_states = 0;
 
 
 678	unsigned int result = 0;
 679	u64 max_boost_ratio;
 680	unsigned int i;
 681#ifdef CONFIG_SMP
 682	static int blacklisted;
 683#endif
 684
 685	pr_debug("%s\n", __func__);
 686
 687#ifdef CONFIG_SMP
 688	if (blacklisted)
 689		return blacklisted;
 690	blacklisted = acpi_cpufreq_blacklist(c);
 691	if (blacklisted)
 692		return blacklisted;
 693#endif
 694
 695	data = kzalloc(sizeof(*data), GFP_KERNEL);
 696	if (!data)
 697		return -ENOMEM;
 698
 699	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 700		result = -ENOMEM;
 701		goto err_free;
 702	}
 703
 704	perf = per_cpu_ptr(acpi_perf_data, cpu);
 705	data->acpi_perf_cpu = cpu;
 706	policy->driver_data = data;
 707
 708	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 709		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 710
 711	result = acpi_processor_register_performance(perf, cpu);
 712	if (result)
 713		goto err_free_mask;
 714
 715	policy->shared_type = perf->shared_type;
 716
 717	/*
 718	 * Will let policy->cpus know about dependency only when software
 719	 * coordination is required.
 720	 */
 721	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 722	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 723		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 724	}
 725	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 726
 727#ifdef CONFIG_SMP
 728	dmi_check_system(sw_any_bug_dmi_table);
 729	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 730		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 731		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 732	}
 733
 734	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
 735	    !acpi_pstate_strict) {
 736		cpumask_clear(policy->cpus);
 737		cpumask_set_cpu(cpu, policy->cpus);
 738		cpumask_copy(data->freqdomain_cpus,
 739			     topology_sibling_cpumask(cpu));
 740		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 741		pr_info_once("overriding BIOS provided _PSD data\n");
 742	}
 743#endif
 744
 745	/* capability check */
 746	if (perf->state_count <= 1) {
 747		pr_debug("No P-States\n");
 748		result = -ENODEV;
 749		goto err_unreg;
 750	}
 751
 752	if (perf->control_register.space_id != perf->status_register.space_id) {
 753		result = -ENODEV;
 754		goto err_unreg;
 755	}
 756
 757	switch (perf->control_register.space_id) {
 758	case ACPI_ADR_SPACE_SYSTEM_IO:
 759		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 760		    boot_cpu_data.x86 == 0xf) {
 761			pr_debug("AMD K8 systems must use native drivers.\n");
 762			result = -ENODEV;
 763			goto err_unreg;
 764		}
 765		pr_debug("SYSTEM IO addr space\n");
 766		data->cpu_feature = SYSTEM_IO_CAPABLE;
 767		data->cpu_freq_read = cpu_freq_read_io;
 768		data->cpu_freq_write = cpu_freq_write_io;
 769		break;
 770	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 771		pr_debug("HARDWARE addr space\n");
 772		if (check_est_cpu(cpu)) {
 773			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 774			data->cpu_freq_read = cpu_freq_read_intel;
 775			data->cpu_freq_write = cpu_freq_write_intel;
 776			break;
 777		}
 778		if (check_amd_hwpstate_cpu(cpu)) {
 779			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 780			data->cpu_freq_read = cpu_freq_read_amd;
 781			data->cpu_freq_write = cpu_freq_write_amd;
 782			break;
 783		}
 784		result = -ENODEV;
 785		goto err_unreg;
 786	default:
 787		pr_debug("Unknown addr space %d\n",
 788			(u32) (perf->control_register.space_id));
 789		result = -ENODEV;
 790		goto err_unreg;
 791	}
 792
 793	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 794			     GFP_KERNEL);
 795	if (!freq_table) {
 796		result = -ENOMEM;
 797		goto err_unreg;
 798	}
 799
 800	/* detect transition latency */
 801	policy->cpuinfo.transition_latency = 0;
 802	for (i = 0; i < perf->state_count; i++) {
 803		if ((perf->states[i].transition_latency * 1000) >
 804		    policy->cpuinfo.transition_latency)
 805			policy->cpuinfo.transition_latency =
 806			    perf->states[i].transition_latency * 1000;
 807	}
 808
 809	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 810	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 811	    policy->cpuinfo.transition_latency > 20 * 1000) {
 812		policy->cpuinfo.transition_latency = 20 * 1000;
 813		pr_info_once("P-state transition latency capped at 20 uS\n");
 
 814	}
 815
 816	/* table init */
 817	for (i = 0; i < perf->state_count; i++) {
 818		if (i > 0 && perf->states[i].core_frequency >=
 819		    freq_table[valid_states-1].frequency / 1000)
 820			continue;
 821
 822		freq_table[valid_states].driver_data = i;
 823		freq_table[valid_states].frequency =
 824		    perf->states[i].core_frequency * 1000;
 825		valid_states++;
 826	}
 827	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 828
 829	max_boost_ratio = get_max_boost_ratio(cpu);
 830	if (max_boost_ratio) {
 831		unsigned int freq = freq_table[0].frequency;
 832
 833		/*
 834		 * Because the loop above sorts the freq_table entries in the
 835		 * descending order, freq is the maximum frequency in the table.
 836		 * Assume that it corresponds to the CPPC nominal frequency and
 837		 * use it to set cpuinfo.max_freq.
 838		 */
 839		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
 840	} else {
 841		/*
 842		 * If the maximum "boost" frequency is unknown, ask the arch
 843		 * scale-invariance code to use the "nominal" performance for
 844		 * CPU utilization scaling so as to prevent the schedutil
 845		 * governor from selecting inadequate CPU frequencies.
 846		 */
 847		arch_set_max_freq_ratio(true);
 848	}
 849
 850	policy->freq_table = freq_table;
 851	perf->state = 0;
 852
 853	switch (perf->control_register.space_id) {
 854	case ACPI_ADR_SPACE_SYSTEM_IO:
 855		/*
 856		 * The core will not set policy->cur, because
 857		 * cpufreq_driver->get is NULL, so we need to set it here.
 858		 * However, we have to guess it, because the current speed is
 859		 * unknown and not detectable via IO ports.
 860		 */
 861		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 862		break;
 863	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 864		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 865		break;
 866	default:
 867		break;
 868	}
 869
 870	/* notify BIOS that we exist */
 871	acpi_processor_notify_smm(THIS_MODULE);
 872
 873	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 874	for (i = 0; i < perf->state_count; i++)
 875		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 876			(i == perf->state ? '*' : ' '), i,
 877			(u32) perf->states[i].core_frequency,
 878			(u32) perf->states[i].power,
 879			(u32) perf->states[i].transition_latency);
 880
 881	/*
 882	 * the first call to ->target() should result in us actually
 883	 * writing something to the appropriate registers.
 884	 */
 885	data->resume = 1;
 886
 887	policy->fast_switch_possible = !acpi_pstate_strict &&
 888		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 889
 890	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
 891		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 892
 893	if (acpi_cpufreq_driver.set_boost)
 894		set_boost(policy, acpi_cpufreq_driver.boost_enabled);
 895
 896	return result;
 897
 
 
 898err_unreg:
 899	acpi_processor_unregister_performance(cpu);
 900err_free_mask:
 901	free_cpumask_var(data->freqdomain_cpus);
 902err_free:
 903	kfree(data);
 904	policy->driver_data = NULL;
 905
 906	return result;
 907}
 908
 909static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 910{
 911	struct acpi_cpufreq_data *data = policy->driver_data;
 912
 913	pr_debug("%s\n", __func__);
 914
 915	cpufreq_boost_down_prep(policy->cpu);
 916	policy->fast_switch_possible = false;
 917	policy->driver_data = NULL;
 918	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 919	free_cpumask_var(data->freqdomain_cpus);
 920	kfree(policy->freq_table);
 921	kfree(data);
 922
 923	return 0;
 924}
 925
 926static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 927{
 928	struct acpi_cpufreq_data *data = policy->driver_data;
 929
 930	pr_debug("%s\n", __func__);
 931
 932	data->resume = 1;
 933
 934	return 0;
 935}
 936
 937static struct freq_attr *acpi_cpufreq_attr[] = {
 938	&cpufreq_freq_attr_scaling_available_freqs,
 939	&freqdomain_cpus,
 940#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 941	&cpb,
 942#endif
 943	NULL,
 944};
 945
 946static struct cpufreq_driver acpi_cpufreq_driver = {
 947	.verify		= cpufreq_generic_frequency_table_verify,
 948	.target_index	= acpi_cpufreq_target,
 949	.fast_switch	= acpi_cpufreq_fast_switch,
 950	.bios_limit	= acpi_processor_get_bios_limit,
 951	.init		= acpi_cpufreq_cpu_init,
 952	.exit		= acpi_cpufreq_cpu_exit,
 953	.resume		= acpi_cpufreq_resume,
 954	.name		= "acpi-cpufreq",
 955	.attr		= acpi_cpufreq_attr,
 956};
 957
 958static void __init acpi_cpufreq_boost_init(void)
 959{
 960	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 961		pr_debug("Boost capabilities not present in the processor\n");
 962		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	}
 
 
 
 
 
 
 964
 965	acpi_cpufreq_driver.set_boost = set_boost;
 966	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 
 967}
 968
 969static int __init acpi_cpufreq_probe(struct platform_device *pdev)
 970{
 971	int ret;
 972
 973	if (acpi_disabled)
 974		return -ENODEV;
 975
 976	/* don't keep reloading if cpufreq_driver exists */
 977	if (cpufreq_get_current_driver())
 978		return -ENODEV;
 979
 980	pr_debug("%s\n", __func__);
 981
 982	ret = acpi_cpufreq_early_init();
 983	if (ret)
 984		return ret;
 985
 986#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 987	/* this is a sysfs file with a strange name and an even stranger
 988	 * semantic - per CPU instantiation, but system global effect.
 989	 * Lets enable it only on AMD CPUs for compatibility reasons and
 990	 * only if configured. This is considered legacy code, which
 991	 * will probably be removed at some point in the future.
 992	 */
 993	if (!check_amd_hwpstate_cpu(0)) {
 994		struct freq_attr **attr;
 995
 996		pr_debug("CPB unsupported, do not expose it\n");
 997
 998		for (attr = acpi_cpufreq_attr; *attr; attr++)
 999			if (*attr == &cpb) {
1000				*attr = NULL;
1001				break;
1002			}
1003	}
1004#endif
1005	acpi_cpufreq_boost_init();
1006
1007	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1008	if (ret) {
1009		free_acpi_perf_data();
 
1010	}
1011	return ret;
1012}
1013
1014static void acpi_cpufreq_remove(struct platform_device *pdev)
1015{
1016	pr_debug("%s\n", __func__);
 
 
1017
1018	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1019
1020	free_acpi_perf_data();
1021}
1022
1023static struct platform_driver acpi_cpufreq_platdrv = {
1024	.driver = {
1025		.name	= "acpi-cpufreq",
1026	},
1027	.remove_new	= acpi_cpufreq_remove,
1028};
1029
1030static int __init acpi_cpufreq_init(void)
1031{
1032	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1033}
1034
1035static void __exit acpi_cpufreq_exit(void)
1036{
1037	platform_driver_unregister(&acpi_cpufreq_platdrv);
1038}
1039
1040module_param(acpi_pstate_strict, uint, 0644);
1041MODULE_PARM_DESC(acpi_pstate_strict,
1042	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1043	"performed during frequency changes.");
1044
1045late_initcall(acpi_cpufreq_init);
1046module_exit(acpi_cpufreq_exit);
1047
1048MODULE_ALIAS("platform:acpi-cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
 
  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 
 
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36#include <linux/slab.h>
 
 
 37
 38#include <linux/acpi.h>
 39#include <linux/io.h>
 40#include <linux/delay.h>
 41#include <linux/uaccess.h>
 42
 43#include <acpi/processor.h>
 
 44
 45#include <asm/msr.h>
 46#include <asm/processor.h>
 47#include <asm/cpufeature.h>
 
 48
 49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 51MODULE_LICENSE("GPL");
 52
 53#define PFX "acpi-cpufreq: "
 54
 55enum {
 56	UNDEFINED_CAPABLE = 0,
 57	SYSTEM_INTEL_MSR_CAPABLE,
 58	SYSTEM_AMD_MSR_CAPABLE,
 59	SYSTEM_IO_CAPABLE,
 60};
 61
 62#define INTEL_MSR_RANGE		(0xffff)
 63#define AMD_MSR_RANGE		(0x7)
 
 64
 65#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
 66
 67struct acpi_cpufreq_data {
 68	struct cpufreq_frequency_table *freq_table;
 69	unsigned int resume;
 70	unsigned int cpu_feature;
 71	unsigned int acpi_perf_cpu;
 72	cpumask_var_t freqdomain_cpus;
 73	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
 74	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
 75};
 76
 77/* acpi_perf_data is a pointer to percpu data. */
 78static struct acpi_processor_performance __percpu *acpi_perf_data;
 79
 80static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
 81{
 82	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
 83}
 84
 85static struct cpufreq_driver acpi_cpufreq_driver;
 86
 87static unsigned int acpi_pstate_strict;
 88static struct msr __percpu *msrs;
 89
 90static bool boost_state(unsigned int cpu)
 91{
 92	u32 lo, hi;
 93	u64 msr;
 94
 95	switch (boot_cpu_data.x86_vendor) {
 96	case X86_VENDOR_INTEL:
 
 
 97		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
 98		msr = lo | ((u64)hi << 32);
 99		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
 
100	case X86_VENDOR_AMD:
101		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102		msr = lo | ((u64)hi << 32);
103		return !(msr & MSR_K7_HWCR_CPB_DIS);
104	}
105	return false;
106}
107
108static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109{
110	u32 cpu;
111	u32 msr_addr;
112	u64 msr_mask;
113
114	switch (boot_cpu_data.x86_vendor) {
115	case X86_VENDOR_INTEL:
 
 
116		msr_addr = MSR_IA32_MISC_ENABLE;
117		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118		break;
 
119	case X86_VENDOR_AMD:
120		msr_addr = MSR_K7_HWCR;
121		msr_mask = MSR_K7_HWCR_CPB_DIS;
122		break;
123	default:
124		return;
125	}
126
127	rdmsr_on_cpus(cpumask, msr_addr, msrs);
 
 
 
 
 
 
 
 
 
128
129	for_each_cpu(cpu, cpumask) {
130		struct msr *reg = per_cpu_ptr(msrs, cpu);
131		if (enable)
132			reg->q &= ~msr_mask;
133		else
134			reg->q |= msr_mask;
135	}
136
137	wrmsr_on_cpus(cpumask, msr_addr, msrs);
138}
139
140static int set_boost(int val)
141{
142	get_online_cpus();
143	boost_set_msrs(val, cpu_online_mask);
144	put_online_cpus();
145	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146
147	return 0;
148}
149
150static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151{
152	struct acpi_cpufreq_data *data = policy->driver_data;
153
154	if (unlikely(!data))
155		return -ENODEV;
156
157	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158}
159
160cpufreq_freq_attr_ro(freqdomain_cpus);
161
162#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164			 size_t count)
165{
166	int ret;
167	unsigned int val = 0;
168
169	if (!acpi_cpufreq_driver.set_boost)
170		return -EINVAL;
171
172	ret = kstrtouint(buf, 10, &val);
173	if (ret || val > 1)
174		return -EINVAL;
175
176	set_boost(val);
 
 
177
178	return count;
179}
180
181static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182{
183	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184}
185
186cpufreq_freq_attr_rw(cpb);
187#endif
188
189static int check_est_cpu(unsigned int cpuid)
190{
191	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193	return cpu_has(cpu, X86_FEATURE_EST);
194}
195
196static int check_amd_hwpstate_cpu(unsigned int cpuid)
197{
198	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201}
202
203static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204{
 
205	struct acpi_processor_performance *perf;
206	int i;
207
208	perf = to_perf_data(data);
209
210	for (i = 0; i < perf->state_count; i++) {
211		if (value == perf->states[i].status)
212			return data->freq_table[i].frequency;
213	}
214	return 0;
215}
216
217static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218{
 
219	struct cpufreq_frequency_table *pos;
220	struct acpi_processor_performance *perf;
221
222	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223		msr &= AMD_MSR_RANGE;
 
 
224	else
225		msr &= INTEL_MSR_RANGE;
226
227	perf = to_perf_data(data);
228
229	cpufreq_for_each_entry(pos, data->freq_table)
230		if (msr == perf->states[pos->driver_data].status)
231			return pos->frequency;
232	return data->freq_table[0].frequency;
233}
234
235static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236{
 
 
237	switch (data->cpu_feature) {
238	case SYSTEM_INTEL_MSR_CAPABLE:
239	case SYSTEM_AMD_MSR_CAPABLE:
240		return extract_msr(val, data);
241	case SYSTEM_IO_CAPABLE:
242		return extract_io(val, data);
243	default:
244		return 0;
245	}
246}
247
248static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249{
250	u32 val, dummy;
251
252	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253	return val;
254}
255
256static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257{
258	u32 lo, hi;
259
260	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263}
264
265static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266{
267	u32 val, dummy;
268
269	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270	return val;
271}
272
273static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274{
275	wrmsr(MSR_AMD_PERF_CTL, val, 0);
276}
277
278static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279{
280	u32 val;
281
282	acpi_os_read_port(reg->address, &val, reg->bit_width);
283	return val;
284}
285
286static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287{
288	acpi_os_write_port(reg->address, val, reg->bit_width);
289}
290
291struct drv_cmd {
292	struct acpi_pct_register *reg;
293	u32 val;
294	union {
295		void (*write)(struct acpi_pct_register *reg, u32 val);
296		u32 (*read)(struct acpi_pct_register *reg);
297	} func;
298};
299
300/* Called via smp_call_function_single(), on the target CPU */
301static void do_drv_read(void *_cmd)
302{
303	struct drv_cmd *cmd = _cmd;
304
305	cmd->val = cmd->func.read(cmd->reg);
306}
307
308static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309{
310	struct acpi_processor_performance *perf = to_perf_data(data);
311	struct drv_cmd cmd = {
312		.reg = &perf->control_register,
313		.func.read = data->cpu_freq_read,
314	};
315	int err;
316
317	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
319	return cmd.val;
320}
321
322/* Called via smp_call_function_many(), on the target CPUs */
323static void do_drv_write(void *_cmd)
324{
325	struct drv_cmd *cmd = _cmd;
326
327	cmd->func.write(cmd->reg, cmd->val);
328}
329
330static void drv_write(struct acpi_cpufreq_data *data,
331		      const struct cpumask *mask, u32 val)
332{
333	struct acpi_processor_performance *perf = to_perf_data(data);
334	struct drv_cmd cmd = {
335		.reg = &perf->control_register,
336		.val = val,
337		.func.write = data->cpu_freq_write,
338	};
339	int this_cpu;
340
341	this_cpu = get_cpu();
342	if (cpumask_test_cpu(this_cpu, mask))
343		do_drv_write(&cmd);
344
345	smp_call_function_many(mask, do_drv_write, &cmd, 1);
346	put_cpu();
347}
348
349static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350{
351	u32 val;
352
353	if (unlikely(cpumask_empty(mask)))
354		return 0;
355
356	val = drv_read(data, mask);
357
358	pr_debug("get_cur_val = %u\n", val);
359
360	return val;
361}
362
363static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364{
365	struct acpi_cpufreq_data *data;
366	struct cpufreq_policy *policy;
367	unsigned int freq;
368	unsigned int cached_freq;
369
370	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371
372	policy = cpufreq_cpu_get_raw(cpu);
373	if (unlikely(!policy))
374		return 0;
375
376	data = policy->driver_data;
377	if (unlikely(!data || !data->freq_table))
378		return 0;
379
380	cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381	freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382	if (freq != cached_freq) {
383		/*
384		 * The dreaded BIOS frequency change behind our back.
385		 * Force set the frequency on next target call.
386		 */
387		data->resume = 1;
388	}
389
390	pr_debug("cur freq = %u\n", freq);
391
392	return freq;
393}
394
395static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396				struct acpi_cpufreq_data *data)
397{
 
398	unsigned int cur_freq;
399	unsigned int i;
400
401	for (i = 0; i < 100; i++) {
402		cur_freq = extract_freq(get_cur_val(mask, data), data);
403		if (cur_freq == freq)
404			return 1;
405		udelay(10);
406	}
407	return 0;
408}
409
410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411			       unsigned int index)
412{
413	struct acpi_cpufreq_data *data = policy->driver_data;
414	struct acpi_processor_performance *perf;
415	const struct cpumask *mask;
416	unsigned int next_perf_state = 0; /* Index into perf table */
417	int result = 0;
418
419	if (unlikely(data == NULL || data->freq_table == NULL)) {
420		return -ENODEV;
421	}
422
423	perf = to_perf_data(data);
424	next_perf_state = data->freq_table[index].driver_data;
425	if (perf->state == next_perf_state) {
426		if (unlikely(data->resume)) {
427			pr_debug("Called after resume, resetting to P%d\n",
428				next_perf_state);
429			data->resume = 0;
430		} else {
431			pr_debug("Already at target state (P%d)\n",
432				next_perf_state);
433			return 0;
434		}
435	}
436
437	/*
438	 * The core won't allow CPUs to go away until the governor has been
439	 * stopped, so we can rely on the stability of policy->cpus.
440	 */
441	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442		cpumask_of(policy->cpu) : policy->cpus;
443
444	drv_write(data, mask, perf->states[next_perf_state].control);
445
446	if (acpi_pstate_strict) {
447		if (!check_freqs(mask, data->freq_table[index].frequency,
448					data)) {
449			pr_debug("acpi_cpufreq_target failed (%d)\n",
450				policy->cpu);
451			result = -EAGAIN;
452		}
453	}
454
455	if (!result)
456		perf->state = next_perf_state;
457
458	return result;
459}
460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461static unsigned long
462acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463{
464	struct acpi_processor_performance *perf;
465
466	perf = to_perf_data(data);
467	if (cpu_khz) {
468		/* search the closest match to cpu_khz */
469		unsigned int i;
470		unsigned long freq;
471		unsigned long freqn = perf->states[0].core_frequency * 1000;
472
473		for (i = 0; i < (perf->state_count-1); i++) {
474			freq = freqn;
475			freqn = perf->states[i+1].core_frequency * 1000;
476			if ((2 * cpu_khz) > (freqn + freq)) {
477				perf->state = i;
478				return freq;
479			}
480		}
481		perf->state = perf->state_count-1;
482		return freqn;
483	} else {
484		/* assume CPU is at P0... */
485		perf->state = 0;
486		return perf->states[0].core_frequency * 1000;
487	}
488}
489
490static void free_acpi_perf_data(void)
491{
492	unsigned int i;
493
494	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495	for_each_possible_cpu(i)
496		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497				 ->shared_cpu_map);
498	free_percpu(acpi_perf_data);
499}
500
501static int boost_notify(struct notifier_block *nb, unsigned long action,
502		      void *hcpu)
503{
504	unsigned cpu = (long)hcpu;
505	const struct cpumask *cpumask;
506
507	cpumask = get_cpu_mask(cpu);
508
509	/*
510	 * Clear the boost-disable bit on the CPU_DOWN path so that
511	 * this cpu cannot block the remaining ones from boosting. On
512	 * the CPU_UP path we simply keep the boost-disable flag in
513	 * sync with the current global state.
514	 */
515
516	switch (action) {
517	case CPU_DOWN_FAILED:
518	case CPU_DOWN_FAILED_FROZEN:
519	case CPU_ONLINE:
520	case CPU_ONLINE_FROZEN:
521		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
522		break;
523
524	case CPU_DOWN_PREPARE:
525	case CPU_DOWN_PREPARE_FROZEN:
526		boost_set_msrs(1, cpumask);
527		break;
528
529	default:
530		break;
531	}
532
533	return NOTIFY_OK;
534}
535
536
537static struct notifier_block boost_nb = {
538	.notifier_call          = boost_notify,
539};
540
541/*
542 * acpi_cpufreq_early_init - initialize ACPI P-States library
543 *
544 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
545 * in order to determine correct frequency and voltage pairings. We can
546 * do _PDC and _PSD and find out the processor dependency for the
547 * actual init that will happen later...
548 */
549static int __init acpi_cpufreq_early_init(void)
550{
551	unsigned int i;
552	pr_debug("acpi_cpufreq_early_init\n");
553
554	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
555	if (!acpi_perf_data) {
556		pr_debug("Memory allocation error for acpi_perf_data.\n");
557		return -ENOMEM;
558	}
559	for_each_possible_cpu(i) {
560		if (!zalloc_cpumask_var_node(
561			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
562			GFP_KERNEL, cpu_to_node(i))) {
563
564			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
565			free_acpi_perf_data();
566			return -ENOMEM;
567		}
568	}
569
570	/* Do initialization in ACPI core */
571	acpi_processor_preregister_performance(acpi_perf_data);
572	return 0;
573}
574
575#ifdef CONFIG_SMP
576/*
577 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
578 * or do it in BIOS firmware and won't inform about it to OS. If not
579 * detected, this has a side effect of making CPU run at a different speed
580 * than OS intended it to run at. Detect it and handle it cleanly.
581 */
582static int bios_with_sw_any_bug;
583
584static int sw_any_bug_found(const struct dmi_system_id *d)
585{
586	bios_with_sw_any_bug = 1;
587	return 0;
588}
589
590static const struct dmi_system_id sw_any_bug_dmi_table[] = {
591	{
592		.callback = sw_any_bug_found,
593		.ident = "Supermicro Server X6DLP",
594		.matches = {
595			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
596			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
597			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598		},
599	},
600	{ }
601};
602
603static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
604{
605	/* Intel Xeon Processor 7100 Series Specification Update
606	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
607	 * AL30: A Machine Check Exception (MCE) Occurring during an
608	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
609	 * Both Processor Cores to Lock Up. */
610	if (c->x86_vendor == X86_VENDOR_INTEL) {
611		if ((c->x86 == 15) &&
612		    (c->x86_model == 6) &&
613		    (c->x86_mask == 8)) {
614			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
615			    "Xeon(R) 7100 Errata AL30, processors may "
616			    "lock up on frequency changes: disabling "
617			    "acpi-cpufreq.\n");
618			return -ENODEV;
619		    }
620		}
621	return 0;
622}
623#endif
624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
626{
627	unsigned int i;
 
 
 
 
628	unsigned int valid_states = 0;
629	unsigned int cpu = policy->cpu;
630	struct acpi_cpufreq_data *data;
631	unsigned int result = 0;
632	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
633	struct acpi_processor_performance *perf;
634#ifdef CONFIG_SMP
635	static int blacklisted;
636#endif
637
638	pr_debug("acpi_cpufreq_cpu_init\n");
639
640#ifdef CONFIG_SMP
641	if (blacklisted)
642		return blacklisted;
643	blacklisted = acpi_cpufreq_blacklist(c);
644	if (blacklisted)
645		return blacklisted;
646#endif
647
648	data = kzalloc(sizeof(*data), GFP_KERNEL);
649	if (!data)
650		return -ENOMEM;
651
652	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
653		result = -ENOMEM;
654		goto err_free;
655	}
656
657	perf = per_cpu_ptr(acpi_perf_data, cpu);
658	data->acpi_perf_cpu = cpu;
659	policy->driver_data = data;
660
661	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
662		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
663
664	result = acpi_processor_register_performance(perf, cpu);
665	if (result)
666		goto err_free_mask;
667
668	policy->shared_type = perf->shared_type;
669
670	/*
671	 * Will let policy->cpus know about dependency only when software
672	 * coordination is required.
673	 */
674	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
675	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
676		cpumask_copy(policy->cpus, perf->shared_cpu_map);
677	}
678	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
679
680#ifdef CONFIG_SMP
681	dmi_check_system(sw_any_bug_dmi_table);
682	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
683		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
684		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
685	}
686
687	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
 
688		cpumask_clear(policy->cpus);
689		cpumask_set_cpu(cpu, policy->cpus);
690		cpumask_copy(data->freqdomain_cpus,
691			     topology_sibling_cpumask(cpu));
692		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
693		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
694	}
695#endif
696
697	/* capability check */
698	if (perf->state_count <= 1) {
699		pr_debug("No P-States\n");
700		result = -ENODEV;
701		goto err_unreg;
702	}
703
704	if (perf->control_register.space_id != perf->status_register.space_id) {
705		result = -ENODEV;
706		goto err_unreg;
707	}
708
709	switch (perf->control_register.space_id) {
710	case ACPI_ADR_SPACE_SYSTEM_IO:
711		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
712		    boot_cpu_data.x86 == 0xf) {
713			pr_debug("AMD K8 systems must use native drivers.\n");
714			result = -ENODEV;
715			goto err_unreg;
716		}
717		pr_debug("SYSTEM IO addr space\n");
718		data->cpu_feature = SYSTEM_IO_CAPABLE;
719		data->cpu_freq_read = cpu_freq_read_io;
720		data->cpu_freq_write = cpu_freq_write_io;
721		break;
722	case ACPI_ADR_SPACE_FIXED_HARDWARE:
723		pr_debug("HARDWARE addr space\n");
724		if (check_est_cpu(cpu)) {
725			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
726			data->cpu_freq_read = cpu_freq_read_intel;
727			data->cpu_freq_write = cpu_freq_write_intel;
728			break;
729		}
730		if (check_amd_hwpstate_cpu(cpu)) {
731			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
732			data->cpu_freq_read = cpu_freq_read_amd;
733			data->cpu_freq_write = cpu_freq_write_amd;
734			break;
735		}
736		result = -ENODEV;
737		goto err_unreg;
738	default:
739		pr_debug("Unknown addr space %d\n",
740			(u32) (perf->control_register.space_id));
741		result = -ENODEV;
742		goto err_unreg;
743	}
744
745	data->freq_table = kzalloc(sizeof(*data->freq_table) *
746		    (perf->state_count+1), GFP_KERNEL);
747	if (!data->freq_table) {
748		result = -ENOMEM;
749		goto err_unreg;
750	}
751
752	/* detect transition latency */
753	policy->cpuinfo.transition_latency = 0;
754	for (i = 0; i < perf->state_count; i++) {
755		if ((perf->states[i].transition_latency * 1000) >
756		    policy->cpuinfo.transition_latency)
757			policy->cpuinfo.transition_latency =
758			    perf->states[i].transition_latency * 1000;
759	}
760
761	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
762	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
763	    policy->cpuinfo.transition_latency > 20 * 1000) {
764		policy->cpuinfo.transition_latency = 20 * 1000;
765		printk_once(KERN_INFO
766			    "P-state transition latency capped at 20 uS\n");
767	}
768
769	/* table init */
770	for (i = 0; i < perf->state_count; i++) {
771		if (i > 0 && perf->states[i].core_frequency >=
772		    data->freq_table[valid_states-1].frequency / 1000)
773			continue;
774
775		data->freq_table[valid_states].driver_data = i;
776		data->freq_table[valid_states].frequency =
777		    perf->states[i].core_frequency * 1000;
778		valid_states++;
779	}
780	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
781	perf->state = 0;
 
 
 
782
783	result = cpufreq_table_validate_and_show(policy, data->freq_table);
784	if (result)
785		goto err_freqfree;
 
 
 
 
 
 
 
 
 
 
 
 
 
786
787	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
788		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
789
790	switch (perf->control_register.space_id) {
791	case ACPI_ADR_SPACE_SYSTEM_IO:
792		/*
793		 * The core will not set policy->cur, because
794		 * cpufreq_driver->get is NULL, so we need to set it here.
795		 * However, we have to guess it, because the current speed is
796		 * unknown and not detectable via IO ports.
797		 */
798		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799		break;
800	case ACPI_ADR_SPACE_FIXED_HARDWARE:
801		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
802		break;
803	default:
804		break;
805	}
806
807	/* notify BIOS that we exist */
808	acpi_processor_notify_smm(THIS_MODULE);
809
810	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811	for (i = 0; i < perf->state_count; i++)
812		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
813			(i == perf->state ? '*' : ' '), i,
814			(u32) perf->states[i].core_frequency,
815			(u32) perf->states[i].power,
816			(u32) perf->states[i].transition_latency);
817
818	/*
819	 * the first call to ->target() should result in us actually
820	 * writing something to the appropriate registers.
821	 */
822	data->resume = 1;
823
 
 
 
 
 
 
 
 
 
824	return result;
825
826err_freqfree:
827	kfree(data->freq_table);
828err_unreg:
829	acpi_processor_unregister_performance(cpu);
830err_free_mask:
831	free_cpumask_var(data->freqdomain_cpus);
832err_free:
833	kfree(data);
834	policy->driver_data = NULL;
835
836	return result;
837}
838
839static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
840{
841	struct acpi_cpufreq_data *data = policy->driver_data;
842
843	pr_debug("acpi_cpufreq_cpu_exit\n");
844
845	if (data) {
846		policy->driver_data = NULL;
847		acpi_processor_unregister_performance(data->acpi_perf_cpu);
848		free_cpumask_var(data->freqdomain_cpus);
849		kfree(data->freq_table);
850		kfree(data);
851	}
852
853	return 0;
854}
855
856static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
857{
858	struct acpi_cpufreq_data *data = policy->driver_data;
859
860	pr_debug("acpi_cpufreq_resume\n");
861
862	data->resume = 1;
863
864	return 0;
865}
866
867static struct freq_attr *acpi_cpufreq_attr[] = {
868	&cpufreq_freq_attr_scaling_available_freqs,
869	&freqdomain_cpus,
870#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
871	&cpb,
872#endif
873	NULL,
874};
875
876static struct cpufreq_driver acpi_cpufreq_driver = {
877	.verify		= cpufreq_generic_frequency_table_verify,
878	.target_index	= acpi_cpufreq_target,
 
879	.bios_limit	= acpi_processor_get_bios_limit,
880	.init		= acpi_cpufreq_cpu_init,
881	.exit		= acpi_cpufreq_cpu_exit,
882	.resume		= acpi_cpufreq_resume,
883	.name		= "acpi-cpufreq",
884	.attr		= acpi_cpufreq_attr,
885};
886
887static void __init acpi_cpufreq_boost_init(void)
888{
889	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
890		msrs = msrs_alloc();
891
892		if (!msrs)
893			return;
894
895		acpi_cpufreq_driver.set_boost = set_boost;
896		acpi_cpufreq_driver.boost_enabled = boost_state(0);
897
898		cpu_notifier_register_begin();
899
900		/* Force all MSRs to the same value */
901		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
902			       cpu_online_mask);
903
904		__register_cpu_notifier(&boost_nb);
905
906		cpu_notifier_register_done();
907	}
908}
909
910static void acpi_cpufreq_boost_exit(void)
911{
912	if (msrs) {
913		unregister_cpu_notifier(&boost_nb);
914
915		msrs_free(msrs);
916		msrs = NULL;
917	}
918}
919
920static int __init acpi_cpufreq_init(void)
921{
922	int ret;
923
924	if (acpi_disabled)
925		return -ENODEV;
926
927	/* don't keep reloading if cpufreq_driver exists */
928	if (cpufreq_get_current_driver())
929		return -EEXIST;
930
931	pr_debug("acpi_cpufreq_init\n");
932
933	ret = acpi_cpufreq_early_init();
934	if (ret)
935		return ret;
936
937#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
938	/* this is a sysfs file with a strange name and an even stranger
939	 * semantic - per CPU instantiation, but system global effect.
940	 * Lets enable it only on AMD CPUs for compatibility reasons and
941	 * only if configured. This is considered legacy code, which
942	 * will probably be removed at some point in the future.
943	 */
944	if (!check_amd_hwpstate_cpu(0)) {
945		struct freq_attr **attr;
946
947		pr_debug("CPB unsupported, do not expose it\n");
948
949		for (attr = acpi_cpufreq_attr; *attr; attr++)
950			if (*attr == &cpb) {
951				*attr = NULL;
952				break;
953			}
954	}
955#endif
956	acpi_cpufreq_boost_init();
957
958	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
959	if (ret) {
960		free_acpi_perf_data();
961		acpi_cpufreq_boost_exit();
962	}
963	return ret;
964}
965
966static void __exit acpi_cpufreq_exit(void)
967{
968	pr_debug("acpi_cpufreq_exit\n");
969
970	acpi_cpufreq_boost_exit();
971
972	cpufreq_unregister_driver(&acpi_cpufreq_driver);
973
974	free_acpi_perf_data();
975}
976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
977module_param(acpi_pstate_strict, uint, 0644);
978MODULE_PARM_DESC(acpi_pstate_strict,
979	"value 0 or non-zero. non-zero -> strict ACPI checks are "
980	"performed during frequency changes.");
981
982late_initcall(acpi_cpufreq_init);
983module_exit(acpi_cpufreq_exit);
984
985static const struct x86_cpu_id acpi_cpufreq_ids[] = {
986	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
987	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
988	{}
989};
990MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
991
992static const struct acpi_device_id processor_device_ids[] = {
993	{ACPI_PROCESSOR_OBJECT_HID, },
994	{ACPI_PROCESSOR_DEVICE_HID, },
995	{},
996};
997MODULE_DEVICE_TABLE(acpi, processor_device_ids);
998
999MODULE_ALIAS("acpi");