Loading...
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
19#include <linux/export.h>
20#include <linux/syscalls.h>
21#include <linux/backing-dev.h>
22#include <linux/refcount.h>
23#include <linux/uio.h>
24
25#include <linux/sched/signal.h>
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
37#include <linux/eventfd.h>
38#include <linux/blkdev.h>
39#include <linux/compat.h>
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
42#include <linux/percpu-refcount.h>
43#include <linux/mount.h>
44#include <linux/pseudo_fs.h>
45
46#include <linux/uaccess.h>
47#include <linux/nospec.h>
48
49#include "internal.h"
50
51#define KIOCB_KEY 0
52
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70}; /* 128 bytes + ring size */
71
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
78#define AIO_RING_PAGES 8
79
80struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[] __counted_by(nr);
84};
85
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
95struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167};
168
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178};
179
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
221/*------ sysctl variables----*/
222static DEFINE_SPINLOCK(aio_nr_lock);
223static unsigned long aio_nr; /* current system wide number of aio requests */
224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225/*----end sysctl variables---*/
226#ifdef CONFIG_SYSCTL
227static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242};
243
244static void __init aio_sysctl_init(void)
245{
246 register_sysctl_init("fs", aio_sysctls);
247}
248#else
249#define aio_sysctl_init() do { } while (0)
250#endif
251
252static struct kmem_cache *kiocb_cachep;
253static struct kmem_cache *kioctx_cachep;
254
255static struct vfsmount *aio_mnt;
256
257static const struct file_operations aio_ring_fops;
258static const struct address_space_operations aio_ctx_aops;
259
260static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261{
262 struct file *file;
263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 if (IS_ERR(inode))
265 return ERR_CAST(inode);
266
267 inode->i_mapping->a_ops = &aio_ctx_aops;
268 inode->i_mapping->i_private_data = ctx;
269 inode->i_size = PAGE_SIZE * nr_pages;
270
271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 O_RDWR, &aio_ring_fops);
273 if (IS_ERR(file))
274 iput(inode);
275 return file;
276}
277
278static int aio_init_fs_context(struct fs_context *fc)
279{
280 if (!init_pseudo(fc, AIO_RING_MAGIC))
281 return -ENOMEM;
282 fc->s_iflags |= SB_I_NOEXEC;
283 return 0;
284}
285
286/* aio_setup
287 * Creates the slab caches used by the aio routines, panic on
288 * failure as this is done early during the boot sequence.
289 */
290static int __init aio_setup(void)
291{
292 static struct file_system_type aio_fs = {
293 .name = "aio",
294 .init_fs_context = aio_init_fs_context,
295 .kill_sb = kill_anon_super,
296 };
297 aio_mnt = kern_mount(&aio_fs);
298 if (IS_ERR(aio_mnt))
299 panic("Failed to create aio fs mount.");
300
301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 aio_sysctl_init();
304 return 0;
305}
306__initcall(aio_setup);
307
308static void put_aio_ring_file(struct kioctx *ctx)
309{
310 struct file *aio_ring_file = ctx->aio_ring_file;
311 struct address_space *i_mapping;
312
313 if (aio_ring_file) {
314 truncate_setsize(file_inode(aio_ring_file), 0);
315
316 /* Prevent further access to the kioctx from migratepages */
317 i_mapping = aio_ring_file->f_mapping;
318 spin_lock(&i_mapping->i_private_lock);
319 i_mapping->i_private_data = NULL;
320 ctx->aio_ring_file = NULL;
321 spin_unlock(&i_mapping->i_private_lock);
322
323 fput(aio_ring_file);
324 }
325}
326
327static void aio_free_ring(struct kioctx *ctx)
328{
329 int i;
330
331 /* Disconnect the kiotx from the ring file. This prevents future
332 * accesses to the kioctx from page migration.
333 */
334 put_aio_ring_file(ctx);
335
336 for (i = 0; i < ctx->nr_pages; i++) {
337 struct page *page;
338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 page_count(ctx->ring_pages[i]));
340 page = ctx->ring_pages[i];
341 if (!page)
342 continue;
343 ctx->ring_pages[i] = NULL;
344 put_page(page);
345 }
346
347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 kfree(ctx->ring_pages);
349 ctx->ring_pages = NULL;
350 }
351}
352
353static int aio_ring_mremap(struct vm_area_struct *vma)
354{
355 struct file *file = vma->vm_file;
356 struct mm_struct *mm = vma->vm_mm;
357 struct kioctx_table *table;
358 int i, res = -EINVAL;
359
360 spin_lock(&mm->ioctx_lock);
361 rcu_read_lock();
362 table = rcu_dereference(mm->ioctx_table);
363 if (!table)
364 goto out_unlock;
365
366 for (i = 0; i < table->nr; i++) {
367 struct kioctx *ctx;
368
369 ctx = rcu_dereference(table->table[i]);
370 if (ctx && ctx->aio_ring_file == file) {
371 if (!atomic_read(&ctx->dead)) {
372 ctx->user_id = ctx->mmap_base = vma->vm_start;
373 res = 0;
374 }
375 break;
376 }
377 }
378
379out_unlock:
380 rcu_read_unlock();
381 spin_unlock(&mm->ioctx_lock);
382 return res;
383}
384
385static const struct vm_operations_struct aio_ring_vm_ops = {
386 .mremap = aio_ring_mremap,
387#if IS_ENABLED(CONFIG_MMU)
388 .fault = filemap_fault,
389 .map_pages = filemap_map_pages,
390 .page_mkwrite = filemap_page_mkwrite,
391#endif
392};
393
394static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395{
396 vm_flags_set(vma, VM_DONTEXPAND);
397 vma->vm_ops = &aio_ring_vm_ops;
398 return 0;
399}
400
401static const struct file_operations aio_ring_fops = {
402 .mmap = aio_ring_mmap,
403};
404
405#if IS_ENABLED(CONFIG_MIGRATION)
406static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 struct folio *src, enum migrate_mode mode)
408{
409 struct kioctx *ctx;
410 unsigned long flags;
411 pgoff_t idx;
412 int rc;
413
414 /*
415 * We cannot support the _NO_COPY case here, because copy needs to
416 * happen under the ctx->completion_lock. That does not work with the
417 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 */
419 if (mode == MIGRATE_SYNC_NO_COPY)
420 return -EINVAL;
421
422 rc = 0;
423
424 /* mapping->i_private_lock here protects against the kioctx teardown. */
425 spin_lock(&mapping->i_private_lock);
426 ctx = mapping->i_private_data;
427 if (!ctx) {
428 rc = -EINVAL;
429 goto out;
430 }
431
432 /* The ring_lock mutex. The prevents aio_read_events() from writing
433 * to the ring's head, and prevents page migration from mucking in
434 * a partially initialized kiotx.
435 */
436 if (!mutex_trylock(&ctx->ring_lock)) {
437 rc = -EAGAIN;
438 goto out;
439 }
440
441 idx = src->index;
442 if (idx < (pgoff_t)ctx->nr_pages) {
443 /* Make sure the old folio hasn't already been changed */
444 if (ctx->ring_pages[idx] != &src->page)
445 rc = -EAGAIN;
446 } else
447 rc = -EINVAL;
448
449 if (rc != 0)
450 goto out_unlock;
451
452 /* Writeback must be complete */
453 BUG_ON(folio_test_writeback(src));
454 folio_get(dst);
455
456 rc = folio_migrate_mapping(mapping, dst, src, 1);
457 if (rc != MIGRATEPAGE_SUCCESS) {
458 folio_put(dst);
459 goto out_unlock;
460 }
461
462 /* Take completion_lock to prevent other writes to the ring buffer
463 * while the old folio is copied to the new. This prevents new
464 * events from being lost.
465 */
466 spin_lock_irqsave(&ctx->completion_lock, flags);
467 folio_migrate_copy(dst, src);
468 BUG_ON(ctx->ring_pages[idx] != &src->page);
469 ctx->ring_pages[idx] = &dst->page;
470 spin_unlock_irqrestore(&ctx->completion_lock, flags);
471
472 /* The old folio is no longer accessible. */
473 folio_put(src);
474
475out_unlock:
476 mutex_unlock(&ctx->ring_lock);
477out:
478 spin_unlock(&mapping->i_private_lock);
479 return rc;
480}
481#else
482#define aio_migrate_folio NULL
483#endif
484
485static const struct address_space_operations aio_ctx_aops = {
486 .dirty_folio = noop_dirty_folio,
487 .migrate_folio = aio_migrate_folio,
488};
489
490static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491{
492 struct aio_ring *ring;
493 struct mm_struct *mm = current->mm;
494 unsigned long size, unused;
495 int nr_pages;
496 int i;
497 struct file *file;
498
499 /* Compensate for the ring buffer's head/tail overlap entry */
500 nr_events += 2; /* 1 is required, 2 for good luck */
501
502 size = sizeof(struct aio_ring);
503 size += sizeof(struct io_event) * nr_events;
504
505 nr_pages = PFN_UP(size);
506 if (nr_pages < 0)
507 return -EINVAL;
508
509 file = aio_private_file(ctx, nr_pages);
510 if (IS_ERR(file)) {
511 ctx->aio_ring_file = NULL;
512 return -ENOMEM;
513 }
514
515 ctx->aio_ring_file = file;
516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 / sizeof(struct io_event);
518
519 ctx->ring_pages = ctx->internal_pages;
520 if (nr_pages > AIO_RING_PAGES) {
521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 GFP_KERNEL);
523 if (!ctx->ring_pages) {
524 put_aio_ring_file(ctx);
525 return -ENOMEM;
526 }
527 }
528
529 for (i = 0; i < nr_pages; i++) {
530 struct page *page;
531 page = find_or_create_page(file->f_mapping,
532 i, GFP_USER | __GFP_ZERO);
533 if (!page)
534 break;
535 pr_debug("pid(%d) page[%d]->count=%d\n",
536 current->pid, i, page_count(page));
537 SetPageUptodate(page);
538 unlock_page(page);
539
540 ctx->ring_pages[i] = page;
541 }
542 ctx->nr_pages = i;
543
544 if (unlikely(i != nr_pages)) {
545 aio_free_ring(ctx);
546 return -ENOMEM;
547 }
548
549 ctx->mmap_size = nr_pages * PAGE_SIZE;
550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551
552 if (mmap_write_lock_killable(mm)) {
553 ctx->mmap_size = 0;
554 aio_free_ring(ctx);
555 return -EINTR;
556 }
557
558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 PROT_READ | PROT_WRITE,
560 MAP_SHARED, 0, 0, &unused, NULL);
561 mmap_write_unlock(mm);
562 if (IS_ERR((void *)ctx->mmap_base)) {
563 ctx->mmap_size = 0;
564 aio_free_ring(ctx);
565 return -ENOMEM;
566 }
567
568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569
570 ctx->user_id = ctx->mmap_base;
571 ctx->nr_events = nr_events; /* trusted copy */
572
573 ring = page_address(ctx->ring_pages[0]);
574 ring->nr = nr_events; /* user copy */
575 ring->id = ~0U;
576 ring->head = ring->tail = 0;
577 ring->magic = AIO_RING_MAGIC;
578 ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 ring->header_length = sizeof(struct aio_ring);
581 flush_dcache_page(ctx->ring_pages[0]);
582
583 return 0;
584}
585
586#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
587#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589
590void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591{
592 struct aio_kiocb *req;
593 struct kioctx *ctx;
594 unsigned long flags;
595
596 /*
597 * kiocb didn't come from aio or is neither a read nor a write, hence
598 * ignore it.
599 */
600 if (!(iocb->ki_flags & IOCB_AIO_RW))
601 return;
602
603 req = container_of(iocb, struct aio_kiocb, rw);
604
605 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
606 return;
607
608 ctx = req->ki_ctx;
609
610 spin_lock_irqsave(&ctx->ctx_lock, flags);
611 list_add_tail(&req->ki_list, &ctx->active_reqs);
612 req->ki_cancel = cancel;
613 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
614}
615EXPORT_SYMBOL(kiocb_set_cancel_fn);
616
617/*
618 * free_ioctx() should be RCU delayed to synchronize against the RCU
619 * protected lookup_ioctx() and also needs process context to call
620 * aio_free_ring(). Use rcu_work.
621 */
622static void free_ioctx(struct work_struct *work)
623{
624 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
625 free_rwork);
626 pr_debug("freeing %p\n", ctx);
627
628 aio_free_ring(ctx);
629 free_percpu(ctx->cpu);
630 percpu_ref_exit(&ctx->reqs);
631 percpu_ref_exit(&ctx->users);
632 kmem_cache_free(kioctx_cachep, ctx);
633}
634
635static void free_ioctx_reqs(struct percpu_ref *ref)
636{
637 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
638
639 /* At this point we know that there are no any in-flight requests */
640 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
641 complete(&ctx->rq_wait->comp);
642
643 /* Synchronize against RCU protected table->table[] dereferences */
644 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
645 queue_rcu_work(system_wq, &ctx->free_rwork);
646}
647
648/*
649 * When this function runs, the kioctx has been removed from the "hash table"
650 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
651 * now it's safe to cancel any that need to be.
652 */
653static void free_ioctx_users(struct percpu_ref *ref)
654{
655 struct kioctx *ctx = container_of(ref, struct kioctx, users);
656 struct aio_kiocb *req;
657
658 spin_lock_irq(&ctx->ctx_lock);
659
660 while (!list_empty(&ctx->active_reqs)) {
661 req = list_first_entry(&ctx->active_reqs,
662 struct aio_kiocb, ki_list);
663 req->ki_cancel(&req->rw);
664 list_del_init(&req->ki_list);
665 }
666
667 spin_unlock_irq(&ctx->ctx_lock);
668
669 percpu_ref_kill(&ctx->reqs);
670 percpu_ref_put(&ctx->reqs);
671}
672
673static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
674{
675 unsigned i, new_nr;
676 struct kioctx_table *table, *old;
677 struct aio_ring *ring;
678
679 spin_lock(&mm->ioctx_lock);
680 table = rcu_dereference_raw(mm->ioctx_table);
681
682 while (1) {
683 if (table)
684 for (i = 0; i < table->nr; i++)
685 if (!rcu_access_pointer(table->table[i])) {
686 ctx->id = i;
687 rcu_assign_pointer(table->table[i], ctx);
688 spin_unlock(&mm->ioctx_lock);
689
690 /* While kioctx setup is in progress,
691 * we are protected from page migration
692 * changes ring_pages by ->ring_lock.
693 */
694 ring = page_address(ctx->ring_pages[0]);
695 ring->id = ctx->id;
696 return 0;
697 }
698
699 new_nr = (table ? table->nr : 1) * 4;
700 spin_unlock(&mm->ioctx_lock);
701
702 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
703 if (!table)
704 return -ENOMEM;
705
706 table->nr = new_nr;
707
708 spin_lock(&mm->ioctx_lock);
709 old = rcu_dereference_raw(mm->ioctx_table);
710
711 if (!old) {
712 rcu_assign_pointer(mm->ioctx_table, table);
713 } else if (table->nr > old->nr) {
714 memcpy(table->table, old->table,
715 old->nr * sizeof(struct kioctx *));
716
717 rcu_assign_pointer(mm->ioctx_table, table);
718 kfree_rcu(old, rcu);
719 } else {
720 kfree(table);
721 table = old;
722 }
723 }
724}
725
726static void aio_nr_sub(unsigned nr)
727{
728 spin_lock(&aio_nr_lock);
729 if (WARN_ON(aio_nr - nr > aio_nr))
730 aio_nr = 0;
731 else
732 aio_nr -= nr;
733 spin_unlock(&aio_nr_lock);
734}
735
736/* ioctx_alloc
737 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
738 */
739static struct kioctx *ioctx_alloc(unsigned nr_events)
740{
741 struct mm_struct *mm = current->mm;
742 struct kioctx *ctx;
743 int err = -ENOMEM;
744
745 /*
746 * Store the original nr_events -- what userspace passed to io_setup(),
747 * for counting against the global limit -- before it changes.
748 */
749 unsigned int max_reqs = nr_events;
750
751 /*
752 * We keep track of the number of available ringbuffer slots, to prevent
753 * overflow (reqs_available), and we also use percpu counters for this.
754 *
755 * So since up to half the slots might be on other cpu's percpu counters
756 * and unavailable, double nr_events so userspace sees what they
757 * expected: additionally, we move req_batch slots to/from percpu
758 * counters at a time, so make sure that isn't 0:
759 */
760 nr_events = max(nr_events, num_possible_cpus() * 4);
761 nr_events *= 2;
762
763 /* Prevent overflows */
764 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
765 pr_debug("ENOMEM: nr_events too high\n");
766 return ERR_PTR(-EINVAL);
767 }
768
769 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
770 return ERR_PTR(-EAGAIN);
771
772 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
773 if (!ctx)
774 return ERR_PTR(-ENOMEM);
775
776 ctx->max_reqs = max_reqs;
777
778 spin_lock_init(&ctx->ctx_lock);
779 spin_lock_init(&ctx->completion_lock);
780 mutex_init(&ctx->ring_lock);
781 /* Protect against page migration throughout kiotx setup by keeping
782 * the ring_lock mutex held until setup is complete. */
783 mutex_lock(&ctx->ring_lock);
784 init_waitqueue_head(&ctx->wait);
785
786 INIT_LIST_HEAD(&ctx->active_reqs);
787
788 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
789 goto err;
790
791 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
792 goto err;
793
794 ctx->cpu = alloc_percpu(struct kioctx_cpu);
795 if (!ctx->cpu)
796 goto err;
797
798 err = aio_setup_ring(ctx, nr_events);
799 if (err < 0)
800 goto err;
801
802 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
803 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
804 if (ctx->req_batch < 1)
805 ctx->req_batch = 1;
806
807 /* limit the number of system wide aios */
808 spin_lock(&aio_nr_lock);
809 if (aio_nr + ctx->max_reqs > aio_max_nr ||
810 aio_nr + ctx->max_reqs < aio_nr) {
811 spin_unlock(&aio_nr_lock);
812 err = -EAGAIN;
813 goto err_ctx;
814 }
815 aio_nr += ctx->max_reqs;
816 spin_unlock(&aio_nr_lock);
817
818 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
819 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
820
821 err = ioctx_add_table(ctx, mm);
822 if (err)
823 goto err_cleanup;
824
825 /* Release the ring_lock mutex now that all setup is complete. */
826 mutex_unlock(&ctx->ring_lock);
827
828 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
829 ctx, ctx->user_id, mm, ctx->nr_events);
830 return ctx;
831
832err_cleanup:
833 aio_nr_sub(ctx->max_reqs);
834err_ctx:
835 atomic_set(&ctx->dead, 1);
836 if (ctx->mmap_size)
837 vm_munmap(ctx->mmap_base, ctx->mmap_size);
838 aio_free_ring(ctx);
839err:
840 mutex_unlock(&ctx->ring_lock);
841 free_percpu(ctx->cpu);
842 percpu_ref_exit(&ctx->reqs);
843 percpu_ref_exit(&ctx->users);
844 kmem_cache_free(kioctx_cachep, ctx);
845 pr_debug("error allocating ioctx %d\n", err);
846 return ERR_PTR(err);
847}
848
849/* kill_ioctx
850 * Cancels all outstanding aio requests on an aio context. Used
851 * when the processes owning a context have all exited to encourage
852 * the rapid destruction of the kioctx.
853 */
854static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
855 struct ctx_rq_wait *wait)
856{
857 struct kioctx_table *table;
858
859 spin_lock(&mm->ioctx_lock);
860 if (atomic_xchg(&ctx->dead, 1)) {
861 spin_unlock(&mm->ioctx_lock);
862 return -EINVAL;
863 }
864
865 table = rcu_dereference_raw(mm->ioctx_table);
866 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
867 RCU_INIT_POINTER(table->table[ctx->id], NULL);
868 spin_unlock(&mm->ioctx_lock);
869
870 /* free_ioctx_reqs() will do the necessary RCU synchronization */
871 wake_up_all(&ctx->wait);
872
873 /*
874 * It'd be more correct to do this in free_ioctx(), after all
875 * the outstanding kiocbs have finished - but by then io_destroy
876 * has already returned, so io_setup() could potentially return
877 * -EAGAIN with no ioctxs actually in use (as far as userspace
878 * could tell).
879 */
880 aio_nr_sub(ctx->max_reqs);
881
882 if (ctx->mmap_size)
883 vm_munmap(ctx->mmap_base, ctx->mmap_size);
884
885 ctx->rq_wait = wait;
886 percpu_ref_kill(&ctx->users);
887 return 0;
888}
889
890/*
891 * exit_aio: called when the last user of mm goes away. At this point, there is
892 * no way for any new requests to be submited or any of the io_* syscalls to be
893 * called on the context.
894 *
895 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
896 * them.
897 */
898void exit_aio(struct mm_struct *mm)
899{
900 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
901 struct ctx_rq_wait wait;
902 int i, skipped;
903
904 if (!table)
905 return;
906
907 atomic_set(&wait.count, table->nr);
908 init_completion(&wait.comp);
909
910 skipped = 0;
911 for (i = 0; i < table->nr; ++i) {
912 struct kioctx *ctx =
913 rcu_dereference_protected(table->table[i], true);
914
915 if (!ctx) {
916 skipped++;
917 continue;
918 }
919
920 /*
921 * We don't need to bother with munmap() here - exit_mmap(mm)
922 * is coming and it'll unmap everything. And we simply can't,
923 * this is not necessarily our ->mm.
924 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
925 * that it needs to unmap the area, just set it to 0.
926 */
927 ctx->mmap_size = 0;
928 kill_ioctx(mm, ctx, &wait);
929 }
930
931 if (!atomic_sub_and_test(skipped, &wait.count)) {
932 /* Wait until all IO for the context are done. */
933 wait_for_completion(&wait.comp);
934 }
935
936 RCU_INIT_POINTER(mm->ioctx_table, NULL);
937 kfree(table);
938}
939
940static void put_reqs_available(struct kioctx *ctx, unsigned nr)
941{
942 struct kioctx_cpu *kcpu;
943 unsigned long flags;
944
945 local_irq_save(flags);
946 kcpu = this_cpu_ptr(ctx->cpu);
947 kcpu->reqs_available += nr;
948
949 while (kcpu->reqs_available >= ctx->req_batch * 2) {
950 kcpu->reqs_available -= ctx->req_batch;
951 atomic_add(ctx->req_batch, &ctx->reqs_available);
952 }
953
954 local_irq_restore(flags);
955}
956
957static bool __get_reqs_available(struct kioctx *ctx)
958{
959 struct kioctx_cpu *kcpu;
960 bool ret = false;
961 unsigned long flags;
962
963 local_irq_save(flags);
964 kcpu = this_cpu_ptr(ctx->cpu);
965 if (!kcpu->reqs_available) {
966 int avail = atomic_read(&ctx->reqs_available);
967
968 do {
969 if (avail < ctx->req_batch)
970 goto out;
971 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
972 &avail, avail - ctx->req_batch));
973
974 kcpu->reqs_available += ctx->req_batch;
975 }
976
977 ret = true;
978 kcpu->reqs_available--;
979out:
980 local_irq_restore(flags);
981 return ret;
982}
983
984/* refill_reqs_available
985 * Updates the reqs_available reference counts used for tracking the
986 * number of free slots in the completion ring. This can be called
987 * from aio_complete() (to optimistically update reqs_available) or
988 * from aio_get_req() (the we're out of events case). It must be
989 * called holding ctx->completion_lock.
990 */
991static void refill_reqs_available(struct kioctx *ctx, unsigned head,
992 unsigned tail)
993{
994 unsigned events_in_ring, completed;
995
996 /* Clamp head since userland can write to it. */
997 head %= ctx->nr_events;
998 if (head <= tail)
999 events_in_ring = tail - head;
1000 else
1001 events_in_ring = ctx->nr_events - (head - tail);
1002
1003 completed = ctx->completed_events;
1004 if (events_in_ring < completed)
1005 completed -= events_in_ring;
1006 else
1007 completed = 0;
1008
1009 if (!completed)
1010 return;
1011
1012 ctx->completed_events -= completed;
1013 put_reqs_available(ctx, completed);
1014}
1015
1016/* user_refill_reqs_available
1017 * Called to refill reqs_available when aio_get_req() encounters an
1018 * out of space in the completion ring.
1019 */
1020static void user_refill_reqs_available(struct kioctx *ctx)
1021{
1022 spin_lock_irq(&ctx->completion_lock);
1023 if (ctx->completed_events) {
1024 struct aio_ring *ring;
1025 unsigned head;
1026
1027 /* Access of ring->head may race with aio_read_events_ring()
1028 * here, but that's okay since whether we read the old version
1029 * or the new version, and either will be valid. The important
1030 * part is that head cannot pass tail since we prevent
1031 * aio_complete() from updating tail by holding
1032 * ctx->completion_lock. Even if head is invalid, the check
1033 * against ctx->completed_events below will make sure we do the
1034 * safe/right thing.
1035 */
1036 ring = page_address(ctx->ring_pages[0]);
1037 head = ring->head;
1038
1039 refill_reqs_available(ctx, head, ctx->tail);
1040 }
1041
1042 spin_unlock_irq(&ctx->completion_lock);
1043}
1044
1045static bool get_reqs_available(struct kioctx *ctx)
1046{
1047 if (__get_reqs_available(ctx))
1048 return true;
1049 user_refill_reqs_available(ctx);
1050 return __get_reqs_available(ctx);
1051}
1052
1053/* aio_get_req
1054 * Allocate a slot for an aio request.
1055 * Returns NULL if no requests are free.
1056 *
1057 * The refcount is initialized to 2 - one for the async op completion,
1058 * one for the synchronous code that does this.
1059 */
1060static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1061{
1062 struct aio_kiocb *req;
1063
1064 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1065 if (unlikely(!req))
1066 return NULL;
1067
1068 if (unlikely(!get_reqs_available(ctx))) {
1069 kmem_cache_free(kiocb_cachep, req);
1070 return NULL;
1071 }
1072
1073 percpu_ref_get(&ctx->reqs);
1074 req->ki_ctx = ctx;
1075 INIT_LIST_HEAD(&req->ki_list);
1076 refcount_set(&req->ki_refcnt, 2);
1077 req->ki_eventfd = NULL;
1078 return req;
1079}
1080
1081static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1082{
1083 struct aio_ring __user *ring = (void __user *)ctx_id;
1084 struct mm_struct *mm = current->mm;
1085 struct kioctx *ctx, *ret = NULL;
1086 struct kioctx_table *table;
1087 unsigned id;
1088
1089 if (get_user(id, &ring->id))
1090 return NULL;
1091
1092 rcu_read_lock();
1093 table = rcu_dereference(mm->ioctx_table);
1094
1095 if (!table || id >= table->nr)
1096 goto out;
1097
1098 id = array_index_nospec(id, table->nr);
1099 ctx = rcu_dereference(table->table[id]);
1100 if (ctx && ctx->user_id == ctx_id) {
1101 if (percpu_ref_tryget_live(&ctx->users))
1102 ret = ctx;
1103 }
1104out:
1105 rcu_read_unlock();
1106 return ret;
1107}
1108
1109static inline void iocb_destroy(struct aio_kiocb *iocb)
1110{
1111 if (iocb->ki_eventfd)
1112 eventfd_ctx_put(iocb->ki_eventfd);
1113 if (iocb->ki_filp)
1114 fput(iocb->ki_filp);
1115 percpu_ref_put(&iocb->ki_ctx->reqs);
1116 kmem_cache_free(kiocb_cachep, iocb);
1117}
1118
1119struct aio_waiter {
1120 struct wait_queue_entry w;
1121 size_t min_nr;
1122};
1123
1124/* aio_complete
1125 * Called when the io request on the given iocb is complete.
1126 */
1127static void aio_complete(struct aio_kiocb *iocb)
1128{
1129 struct kioctx *ctx = iocb->ki_ctx;
1130 struct aio_ring *ring;
1131 struct io_event *ev_page, *event;
1132 unsigned tail, pos, head, avail;
1133 unsigned long flags;
1134
1135 /*
1136 * Add a completion event to the ring buffer. Must be done holding
1137 * ctx->completion_lock to prevent other code from messing with the tail
1138 * pointer since we might be called from irq context.
1139 */
1140 spin_lock_irqsave(&ctx->completion_lock, flags);
1141
1142 tail = ctx->tail;
1143 pos = tail + AIO_EVENTS_OFFSET;
1144
1145 if (++tail >= ctx->nr_events)
1146 tail = 0;
1147
1148 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1150
1151 *event = iocb->ki_res;
1152
1153 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1154
1155 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1156 (void __user *)(unsigned long)iocb->ki_res.obj,
1157 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1158
1159 /* after flagging the request as done, we
1160 * must never even look at it again
1161 */
1162 smp_wmb(); /* make event visible before updating tail */
1163
1164 ctx->tail = tail;
1165
1166 ring = page_address(ctx->ring_pages[0]);
1167 head = ring->head;
1168 ring->tail = tail;
1169 flush_dcache_page(ctx->ring_pages[0]);
1170
1171 ctx->completed_events++;
1172 if (ctx->completed_events > 1)
1173 refill_reqs_available(ctx, head, tail);
1174
1175 avail = tail > head
1176 ? tail - head
1177 : tail + ctx->nr_events - head;
1178 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1179
1180 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1181
1182 /*
1183 * Check if the user asked us to deliver the result through an
1184 * eventfd. The eventfd_signal() function is safe to be called
1185 * from IRQ context.
1186 */
1187 if (iocb->ki_eventfd)
1188 eventfd_signal(iocb->ki_eventfd);
1189
1190 /*
1191 * We have to order our ring_info tail store above and test
1192 * of the wait list below outside the wait lock. This is
1193 * like in wake_up_bit() where clearing a bit has to be
1194 * ordered with the unlocked test.
1195 */
1196 smp_mb();
1197
1198 if (waitqueue_active(&ctx->wait)) {
1199 struct aio_waiter *curr, *next;
1200 unsigned long flags;
1201
1202 spin_lock_irqsave(&ctx->wait.lock, flags);
1203 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1204 if (avail >= curr->min_nr) {
1205 list_del_init_careful(&curr->w.entry);
1206 wake_up_process(curr->w.private);
1207 }
1208 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1209 }
1210}
1211
1212static inline void iocb_put(struct aio_kiocb *iocb)
1213{
1214 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1215 aio_complete(iocb);
1216 iocb_destroy(iocb);
1217 }
1218}
1219
1220/* aio_read_events_ring
1221 * Pull an event off of the ioctx's event ring. Returns the number of
1222 * events fetched
1223 */
1224static long aio_read_events_ring(struct kioctx *ctx,
1225 struct io_event __user *event, long nr)
1226{
1227 struct aio_ring *ring;
1228 unsigned head, tail, pos;
1229 long ret = 0;
1230 int copy_ret;
1231
1232 /*
1233 * The mutex can block and wake us up and that will cause
1234 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1235 * and repeat. This should be rare enough that it doesn't cause
1236 * peformance issues. See the comment in read_events() for more detail.
1237 */
1238 sched_annotate_sleep();
1239 mutex_lock(&ctx->ring_lock);
1240
1241 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1242 ring = page_address(ctx->ring_pages[0]);
1243 head = ring->head;
1244 tail = ring->tail;
1245
1246 /*
1247 * Ensure that once we've read the current tail pointer, that
1248 * we also see the events that were stored up to the tail.
1249 */
1250 smp_rmb();
1251
1252 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1253
1254 if (head == tail)
1255 goto out;
1256
1257 head %= ctx->nr_events;
1258 tail %= ctx->nr_events;
1259
1260 while (ret < nr) {
1261 long avail;
1262 struct io_event *ev;
1263 struct page *page;
1264
1265 avail = (head <= tail ? tail : ctx->nr_events) - head;
1266 if (head == tail)
1267 break;
1268
1269 pos = head + AIO_EVENTS_OFFSET;
1270 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1271 pos %= AIO_EVENTS_PER_PAGE;
1272
1273 avail = min(avail, nr - ret);
1274 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1275
1276 ev = page_address(page);
1277 copy_ret = copy_to_user(event + ret, ev + pos,
1278 sizeof(*ev) * avail);
1279
1280 if (unlikely(copy_ret)) {
1281 ret = -EFAULT;
1282 goto out;
1283 }
1284
1285 ret += avail;
1286 head += avail;
1287 head %= ctx->nr_events;
1288 }
1289
1290 ring = page_address(ctx->ring_pages[0]);
1291 ring->head = head;
1292 flush_dcache_page(ctx->ring_pages[0]);
1293
1294 pr_debug("%li h%u t%u\n", ret, head, tail);
1295out:
1296 mutex_unlock(&ctx->ring_lock);
1297
1298 return ret;
1299}
1300
1301static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1302 struct io_event __user *event, long *i)
1303{
1304 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1305
1306 if (ret > 0)
1307 *i += ret;
1308
1309 if (unlikely(atomic_read(&ctx->dead)))
1310 ret = -EINVAL;
1311
1312 if (!*i)
1313 *i = ret;
1314
1315 return ret < 0 || *i >= min_nr;
1316}
1317
1318static long read_events(struct kioctx *ctx, long min_nr, long nr,
1319 struct io_event __user *event,
1320 ktime_t until)
1321{
1322 struct hrtimer_sleeper t;
1323 struct aio_waiter w;
1324 long ret = 0, ret2 = 0;
1325
1326 /*
1327 * Note that aio_read_events() is being called as the conditional - i.e.
1328 * we're calling it after prepare_to_wait() has set task state to
1329 * TASK_INTERRUPTIBLE.
1330 *
1331 * But aio_read_events() can block, and if it blocks it's going to flip
1332 * the task state back to TASK_RUNNING.
1333 *
1334 * This should be ok, provided it doesn't flip the state back to
1335 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1336 * will only happen if the mutex_lock() call blocks, and we then find
1337 * the ringbuffer empty. So in practice we should be ok, but it's
1338 * something to be aware of when touching this code.
1339 */
1340 aio_read_events(ctx, min_nr, nr, event, &ret);
1341 if (until == 0 || ret < 0 || ret >= min_nr)
1342 return ret;
1343
1344 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1345 if (until != KTIME_MAX) {
1346 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1347 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1348 }
1349
1350 init_wait(&w.w);
1351
1352 while (1) {
1353 unsigned long nr_got = ret;
1354
1355 w.min_nr = min_nr - ret;
1356
1357 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1358 if (!ret2 && !t.task)
1359 ret2 = -ETIME;
1360
1361 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1362 break;
1363
1364 if (nr_got == ret)
1365 schedule();
1366 }
1367
1368 finish_wait(&ctx->wait, &w.w);
1369 hrtimer_cancel(&t.timer);
1370 destroy_hrtimer_on_stack(&t.timer);
1371
1372 return ret;
1373}
1374
1375/* sys_io_setup:
1376 * Create an aio_context capable of receiving at least nr_events.
1377 * ctxp must not point to an aio_context that already exists, and
1378 * must be initialized to 0 prior to the call. On successful
1379 * creation of the aio_context, *ctxp is filled in with the resulting
1380 * handle. May fail with -EINVAL if *ctxp is not initialized,
1381 * if the specified nr_events exceeds internal limits. May fail
1382 * with -EAGAIN if the specified nr_events exceeds the user's limit
1383 * of available events. May fail with -ENOMEM if insufficient kernel
1384 * resources are available. May fail with -EFAULT if an invalid
1385 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1386 * implemented.
1387 */
1388SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1389{
1390 struct kioctx *ioctx = NULL;
1391 unsigned long ctx;
1392 long ret;
1393
1394 ret = get_user(ctx, ctxp);
1395 if (unlikely(ret))
1396 goto out;
1397
1398 ret = -EINVAL;
1399 if (unlikely(ctx || nr_events == 0)) {
1400 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1401 ctx, nr_events);
1402 goto out;
1403 }
1404
1405 ioctx = ioctx_alloc(nr_events);
1406 ret = PTR_ERR(ioctx);
1407 if (!IS_ERR(ioctx)) {
1408 ret = put_user(ioctx->user_id, ctxp);
1409 if (ret)
1410 kill_ioctx(current->mm, ioctx, NULL);
1411 percpu_ref_put(&ioctx->users);
1412 }
1413
1414out:
1415 return ret;
1416}
1417
1418#ifdef CONFIG_COMPAT
1419COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1420{
1421 struct kioctx *ioctx = NULL;
1422 unsigned long ctx;
1423 long ret;
1424
1425 ret = get_user(ctx, ctx32p);
1426 if (unlikely(ret))
1427 goto out;
1428
1429 ret = -EINVAL;
1430 if (unlikely(ctx || nr_events == 0)) {
1431 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1432 ctx, nr_events);
1433 goto out;
1434 }
1435
1436 ioctx = ioctx_alloc(nr_events);
1437 ret = PTR_ERR(ioctx);
1438 if (!IS_ERR(ioctx)) {
1439 /* truncating is ok because it's a user address */
1440 ret = put_user((u32)ioctx->user_id, ctx32p);
1441 if (ret)
1442 kill_ioctx(current->mm, ioctx, NULL);
1443 percpu_ref_put(&ioctx->users);
1444 }
1445
1446out:
1447 return ret;
1448}
1449#endif
1450
1451/* sys_io_destroy:
1452 * Destroy the aio_context specified. May cancel any outstanding
1453 * AIOs and block on completion. Will fail with -ENOSYS if not
1454 * implemented. May fail with -EINVAL if the context pointed to
1455 * is invalid.
1456 */
1457SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1458{
1459 struct kioctx *ioctx = lookup_ioctx(ctx);
1460 if (likely(NULL != ioctx)) {
1461 struct ctx_rq_wait wait;
1462 int ret;
1463
1464 init_completion(&wait.comp);
1465 atomic_set(&wait.count, 1);
1466
1467 /* Pass requests_done to kill_ioctx() where it can be set
1468 * in a thread-safe way. If we try to set it here then we have
1469 * a race condition if two io_destroy() called simultaneously.
1470 */
1471 ret = kill_ioctx(current->mm, ioctx, &wait);
1472 percpu_ref_put(&ioctx->users);
1473
1474 /* Wait until all IO for the context are done. Otherwise kernel
1475 * keep using user-space buffers even if user thinks the context
1476 * is destroyed.
1477 */
1478 if (!ret)
1479 wait_for_completion(&wait.comp);
1480
1481 return ret;
1482 }
1483 pr_debug("EINVAL: invalid context id\n");
1484 return -EINVAL;
1485}
1486
1487static void aio_remove_iocb(struct aio_kiocb *iocb)
1488{
1489 struct kioctx *ctx = iocb->ki_ctx;
1490 unsigned long flags;
1491
1492 spin_lock_irqsave(&ctx->ctx_lock, flags);
1493 list_del(&iocb->ki_list);
1494 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1495}
1496
1497static void aio_complete_rw(struct kiocb *kiocb, long res)
1498{
1499 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1500
1501 if (!list_empty_careful(&iocb->ki_list))
1502 aio_remove_iocb(iocb);
1503
1504 if (kiocb->ki_flags & IOCB_WRITE) {
1505 struct inode *inode = file_inode(kiocb->ki_filp);
1506
1507 if (S_ISREG(inode->i_mode))
1508 kiocb_end_write(kiocb);
1509 }
1510
1511 iocb->ki_res.res = res;
1512 iocb->ki_res.res2 = 0;
1513 iocb_put(iocb);
1514}
1515
1516static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1517{
1518 int ret;
1519
1520 req->ki_complete = aio_complete_rw;
1521 req->private = NULL;
1522 req->ki_pos = iocb->aio_offset;
1523 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1524 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1525 req->ki_flags |= IOCB_EVENTFD;
1526 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1527 /*
1528 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1529 * aio_reqprio is interpreted as an I/O scheduling
1530 * class and priority.
1531 */
1532 ret = ioprio_check_cap(iocb->aio_reqprio);
1533 if (ret) {
1534 pr_debug("aio ioprio check cap error: %d\n", ret);
1535 return ret;
1536 }
1537
1538 req->ki_ioprio = iocb->aio_reqprio;
1539 } else
1540 req->ki_ioprio = get_current_ioprio();
1541
1542 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1543 if (unlikely(ret))
1544 return ret;
1545
1546 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1547 return 0;
1548}
1549
1550static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1551 struct iovec **iovec, bool vectored, bool compat,
1552 struct iov_iter *iter)
1553{
1554 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1555 size_t len = iocb->aio_nbytes;
1556
1557 if (!vectored) {
1558 ssize_t ret = import_ubuf(rw, buf, len, iter);
1559 *iovec = NULL;
1560 return ret;
1561 }
1562
1563 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1564}
1565
1566static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1567{
1568 switch (ret) {
1569 case -EIOCBQUEUED:
1570 break;
1571 case -ERESTARTSYS:
1572 case -ERESTARTNOINTR:
1573 case -ERESTARTNOHAND:
1574 case -ERESTART_RESTARTBLOCK:
1575 /*
1576 * There's no easy way to restart the syscall since other AIO's
1577 * may be already running. Just fail this IO with EINTR.
1578 */
1579 ret = -EINTR;
1580 fallthrough;
1581 default:
1582 req->ki_complete(req, ret);
1583 }
1584}
1585
1586static int aio_read(struct kiocb *req, const struct iocb *iocb,
1587 bool vectored, bool compat)
1588{
1589 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1590 struct iov_iter iter;
1591 struct file *file;
1592 int ret;
1593
1594 ret = aio_prep_rw(req, iocb);
1595 if (ret)
1596 return ret;
1597 file = req->ki_filp;
1598 if (unlikely(!(file->f_mode & FMODE_READ)))
1599 return -EBADF;
1600 if (unlikely(!file->f_op->read_iter))
1601 return -EINVAL;
1602
1603 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1604 if (ret < 0)
1605 return ret;
1606 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1607 if (!ret)
1608 aio_rw_done(req, call_read_iter(file, req, &iter));
1609 kfree(iovec);
1610 return ret;
1611}
1612
1613static int aio_write(struct kiocb *req, const struct iocb *iocb,
1614 bool vectored, bool compat)
1615{
1616 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1617 struct iov_iter iter;
1618 struct file *file;
1619 int ret;
1620
1621 ret = aio_prep_rw(req, iocb);
1622 if (ret)
1623 return ret;
1624 file = req->ki_filp;
1625
1626 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1627 return -EBADF;
1628 if (unlikely(!file->f_op->write_iter))
1629 return -EINVAL;
1630
1631 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1632 if (ret < 0)
1633 return ret;
1634 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1635 if (!ret) {
1636 if (S_ISREG(file_inode(file)->i_mode))
1637 kiocb_start_write(req);
1638 req->ki_flags |= IOCB_WRITE;
1639 aio_rw_done(req, call_write_iter(file, req, &iter));
1640 }
1641 kfree(iovec);
1642 return ret;
1643}
1644
1645static void aio_fsync_work(struct work_struct *work)
1646{
1647 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1648 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1649
1650 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1651 revert_creds(old_cred);
1652 put_cred(iocb->fsync.creds);
1653 iocb_put(iocb);
1654}
1655
1656static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1657 bool datasync)
1658{
1659 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1660 iocb->aio_rw_flags))
1661 return -EINVAL;
1662
1663 if (unlikely(!req->file->f_op->fsync))
1664 return -EINVAL;
1665
1666 req->creds = prepare_creds();
1667 if (!req->creds)
1668 return -ENOMEM;
1669
1670 req->datasync = datasync;
1671 INIT_WORK(&req->work, aio_fsync_work);
1672 schedule_work(&req->work);
1673 return 0;
1674}
1675
1676static void aio_poll_put_work(struct work_struct *work)
1677{
1678 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1679 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1680
1681 iocb_put(iocb);
1682}
1683
1684/*
1685 * Safely lock the waitqueue which the request is on, synchronizing with the
1686 * case where the ->poll() provider decides to free its waitqueue early.
1687 *
1688 * Returns true on success, meaning that req->head->lock was locked, req->wait
1689 * is on req->head, and an RCU read lock was taken. Returns false if the
1690 * request was already removed from its waitqueue (which might no longer exist).
1691 */
1692static bool poll_iocb_lock_wq(struct poll_iocb *req)
1693{
1694 wait_queue_head_t *head;
1695
1696 /*
1697 * While we hold the waitqueue lock and the waitqueue is nonempty,
1698 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1699 * lock in the first place can race with the waitqueue being freed.
1700 *
1701 * We solve this as eventpoll does: by taking advantage of the fact that
1702 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1703 * we enter rcu_read_lock() and see that the pointer to the queue is
1704 * non-NULL, we can then lock it without the memory being freed out from
1705 * under us, then check whether the request is still on the queue.
1706 *
1707 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1708 * case the caller deletes the entry from the queue, leaving it empty.
1709 * In that case, only RCU prevents the queue memory from being freed.
1710 */
1711 rcu_read_lock();
1712 head = smp_load_acquire(&req->head);
1713 if (head) {
1714 spin_lock(&head->lock);
1715 if (!list_empty(&req->wait.entry))
1716 return true;
1717 spin_unlock(&head->lock);
1718 }
1719 rcu_read_unlock();
1720 return false;
1721}
1722
1723static void poll_iocb_unlock_wq(struct poll_iocb *req)
1724{
1725 spin_unlock(&req->head->lock);
1726 rcu_read_unlock();
1727}
1728
1729static void aio_poll_complete_work(struct work_struct *work)
1730{
1731 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1732 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1733 struct poll_table_struct pt = { ._key = req->events };
1734 struct kioctx *ctx = iocb->ki_ctx;
1735 __poll_t mask = 0;
1736
1737 if (!READ_ONCE(req->cancelled))
1738 mask = vfs_poll(req->file, &pt) & req->events;
1739
1740 /*
1741 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1742 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1743 * synchronize with them. In the cancellation case the list_del_init
1744 * itself is not actually needed, but harmless so we keep it in to
1745 * avoid further branches in the fast path.
1746 */
1747 spin_lock_irq(&ctx->ctx_lock);
1748 if (poll_iocb_lock_wq(req)) {
1749 if (!mask && !READ_ONCE(req->cancelled)) {
1750 /*
1751 * The request isn't actually ready to be completed yet.
1752 * Reschedule completion if another wakeup came in.
1753 */
1754 if (req->work_need_resched) {
1755 schedule_work(&req->work);
1756 req->work_need_resched = false;
1757 } else {
1758 req->work_scheduled = false;
1759 }
1760 poll_iocb_unlock_wq(req);
1761 spin_unlock_irq(&ctx->ctx_lock);
1762 return;
1763 }
1764 list_del_init(&req->wait.entry);
1765 poll_iocb_unlock_wq(req);
1766 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1767 list_del_init(&iocb->ki_list);
1768 iocb->ki_res.res = mangle_poll(mask);
1769 spin_unlock_irq(&ctx->ctx_lock);
1770
1771 iocb_put(iocb);
1772}
1773
1774/* assumes we are called with irqs disabled */
1775static int aio_poll_cancel(struct kiocb *iocb)
1776{
1777 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1778 struct poll_iocb *req = &aiocb->poll;
1779
1780 if (poll_iocb_lock_wq(req)) {
1781 WRITE_ONCE(req->cancelled, true);
1782 if (!req->work_scheduled) {
1783 schedule_work(&aiocb->poll.work);
1784 req->work_scheduled = true;
1785 }
1786 poll_iocb_unlock_wq(req);
1787 } /* else, the request was force-cancelled by POLLFREE already */
1788
1789 return 0;
1790}
1791
1792static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1793 void *key)
1794{
1795 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1796 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1797 __poll_t mask = key_to_poll(key);
1798 unsigned long flags;
1799
1800 /* for instances that support it check for an event match first: */
1801 if (mask && !(mask & req->events))
1802 return 0;
1803
1804 /*
1805 * Complete the request inline if possible. This requires that three
1806 * conditions be met:
1807 * 1. An event mask must have been passed. If a plain wakeup was done
1808 * instead, then mask == 0 and we have to call vfs_poll() to get
1809 * the events, so inline completion isn't possible.
1810 * 2. The completion work must not have already been scheduled.
1811 * 3. ctx_lock must not be busy. We have to use trylock because we
1812 * already hold the waitqueue lock, so this inverts the normal
1813 * locking order. Use irqsave/irqrestore because not all
1814 * filesystems (e.g. fuse) call this function with IRQs disabled,
1815 * yet IRQs have to be disabled before ctx_lock is obtained.
1816 */
1817 if (mask && !req->work_scheduled &&
1818 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1819 struct kioctx *ctx = iocb->ki_ctx;
1820
1821 list_del_init(&req->wait.entry);
1822 list_del(&iocb->ki_list);
1823 iocb->ki_res.res = mangle_poll(mask);
1824 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1825 iocb = NULL;
1826 INIT_WORK(&req->work, aio_poll_put_work);
1827 schedule_work(&req->work);
1828 }
1829 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1830 if (iocb)
1831 iocb_put(iocb);
1832 } else {
1833 /*
1834 * Schedule the completion work if needed. If it was already
1835 * scheduled, record that another wakeup came in.
1836 *
1837 * Don't remove the request from the waitqueue here, as it might
1838 * not actually be complete yet (we won't know until vfs_poll()
1839 * is called), and we must not miss any wakeups. POLLFREE is an
1840 * exception to this; see below.
1841 */
1842 if (req->work_scheduled) {
1843 req->work_need_resched = true;
1844 } else {
1845 schedule_work(&req->work);
1846 req->work_scheduled = true;
1847 }
1848
1849 /*
1850 * If the waitqueue is being freed early but we can't complete
1851 * the request inline, we have to tear down the request as best
1852 * we can. That means immediately removing the request from its
1853 * waitqueue and preventing all further accesses to the
1854 * waitqueue via the request. We also need to schedule the
1855 * completion work (done above). Also mark the request as
1856 * cancelled, to potentially skip an unneeded call to ->poll().
1857 */
1858 if (mask & POLLFREE) {
1859 WRITE_ONCE(req->cancelled, true);
1860 list_del_init(&req->wait.entry);
1861
1862 /*
1863 * Careful: this *must* be the last step, since as soon
1864 * as req->head is NULL'ed out, the request can be
1865 * completed and freed, since aio_poll_complete_work()
1866 * will no longer need to take the waitqueue lock.
1867 */
1868 smp_store_release(&req->head, NULL);
1869 }
1870 }
1871 return 1;
1872}
1873
1874struct aio_poll_table {
1875 struct poll_table_struct pt;
1876 struct aio_kiocb *iocb;
1877 bool queued;
1878 int error;
1879};
1880
1881static void
1882aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1883 struct poll_table_struct *p)
1884{
1885 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1886
1887 /* multiple wait queues per file are not supported */
1888 if (unlikely(pt->queued)) {
1889 pt->error = -EINVAL;
1890 return;
1891 }
1892
1893 pt->queued = true;
1894 pt->error = 0;
1895 pt->iocb->poll.head = head;
1896 add_wait_queue(head, &pt->iocb->poll.wait);
1897}
1898
1899static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1900{
1901 struct kioctx *ctx = aiocb->ki_ctx;
1902 struct poll_iocb *req = &aiocb->poll;
1903 struct aio_poll_table apt;
1904 bool cancel = false;
1905 __poll_t mask;
1906
1907 /* reject any unknown events outside the normal event mask. */
1908 if ((u16)iocb->aio_buf != iocb->aio_buf)
1909 return -EINVAL;
1910 /* reject fields that are not defined for poll */
1911 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1912 return -EINVAL;
1913
1914 INIT_WORK(&req->work, aio_poll_complete_work);
1915 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1916
1917 req->head = NULL;
1918 req->cancelled = false;
1919 req->work_scheduled = false;
1920 req->work_need_resched = false;
1921
1922 apt.pt._qproc = aio_poll_queue_proc;
1923 apt.pt._key = req->events;
1924 apt.iocb = aiocb;
1925 apt.queued = false;
1926 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1927
1928 /* initialized the list so that we can do list_empty checks */
1929 INIT_LIST_HEAD(&req->wait.entry);
1930 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1931
1932 mask = vfs_poll(req->file, &apt.pt) & req->events;
1933 spin_lock_irq(&ctx->ctx_lock);
1934 if (likely(apt.queued)) {
1935 bool on_queue = poll_iocb_lock_wq(req);
1936
1937 if (!on_queue || req->work_scheduled) {
1938 /*
1939 * aio_poll_wake() already either scheduled the async
1940 * completion work, or completed the request inline.
1941 */
1942 if (apt.error) /* unsupported case: multiple queues */
1943 cancel = true;
1944 apt.error = 0;
1945 mask = 0;
1946 }
1947 if (mask || apt.error) {
1948 /* Steal to complete synchronously. */
1949 list_del_init(&req->wait.entry);
1950 } else if (cancel) {
1951 /* Cancel if possible (may be too late though). */
1952 WRITE_ONCE(req->cancelled, true);
1953 } else if (on_queue) {
1954 /*
1955 * Actually waiting for an event, so add the request to
1956 * active_reqs so that it can be cancelled if needed.
1957 */
1958 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1959 aiocb->ki_cancel = aio_poll_cancel;
1960 }
1961 if (on_queue)
1962 poll_iocb_unlock_wq(req);
1963 }
1964 if (mask) { /* no async, we'd stolen it */
1965 aiocb->ki_res.res = mangle_poll(mask);
1966 apt.error = 0;
1967 }
1968 spin_unlock_irq(&ctx->ctx_lock);
1969 if (mask)
1970 iocb_put(aiocb);
1971 return apt.error;
1972}
1973
1974static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1975 struct iocb __user *user_iocb, struct aio_kiocb *req,
1976 bool compat)
1977{
1978 req->ki_filp = fget(iocb->aio_fildes);
1979 if (unlikely(!req->ki_filp))
1980 return -EBADF;
1981
1982 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1983 struct eventfd_ctx *eventfd;
1984 /*
1985 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1986 * instance of the file* now. The file descriptor must be
1987 * an eventfd() fd, and will be signaled for each completed
1988 * event using the eventfd_signal() function.
1989 */
1990 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1991 if (IS_ERR(eventfd))
1992 return PTR_ERR(eventfd);
1993
1994 req->ki_eventfd = eventfd;
1995 }
1996
1997 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1998 pr_debug("EFAULT: aio_key\n");
1999 return -EFAULT;
2000 }
2001
2002 req->ki_res.obj = (u64)(unsigned long)user_iocb;
2003 req->ki_res.data = iocb->aio_data;
2004 req->ki_res.res = 0;
2005 req->ki_res.res2 = 0;
2006
2007 switch (iocb->aio_lio_opcode) {
2008 case IOCB_CMD_PREAD:
2009 return aio_read(&req->rw, iocb, false, compat);
2010 case IOCB_CMD_PWRITE:
2011 return aio_write(&req->rw, iocb, false, compat);
2012 case IOCB_CMD_PREADV:
2013 return aio_read(&req->rw, iocb, true, compat);
2014 case IOCB_CMD_PWRITEV:
2015 return aio_write(&req->rw, iocb, true, compat);
2016 case IOCB_CMD_FSYNC:
2017 return aio_fsync(&req->fsync, iocb, false);
2018 case IOCB_CMD_FDSYNC:
2019 return aio_fsync(&req->fsync, iocb, true);
2020 case IOCB_CMD_POLL:
2021 return aio_poll(req, iocb);
2022 default:
2023 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2024 return -EINVAL;
2025 }
2026}
2027
2028static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2029 bool compat)
2030{
2031 struct aio_kiocb *req;
2032 struct iocb iocb;
2033 int err;
2034
2035 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2036 return -EFAULT;
2037
2038 /* enforce forwards compatibility on users */
2039 if (unlikely(iocb.aio_reserved2)) {
2040 pr_debug("EINVAL: reserve field set\n");
2041 return -EINVAL;
2042 }
2043
2044 /* prevent overflows */
2045 if (unlikely(
2046 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2047 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2048 ((ssize_t)iocb.aio_nbytes < 0)
2049 )) {
2050 pr_debug("EINVAL: overflow check\n");
2051 return -EINVAL;
2052 }
2053
2054 req = aio_get_req(ctx);
2055 if (unlikely(!req))
2056 return -EAGAIN;
2057
2058 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2059
2060 /* Done with the synchronous reference */
2061 iocb_put(req);
2062
2063 /*
2064 * If err is 0, we'd either done aio_complete() ourselves or have
2065 * arranged for that to be done asynchronously. Anything non-zero
2066 * means that we need to destroy req ourselves.
2067 */
2068 if (unlikely(err)) {
2069 iocb_destroy(req);
2070 put_reqs_available(ctx, 1);
2071 }
2072 return err;
2073}
2074
2075/* sys_io_submit:
2076 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2077 * the number of iocbs queued. May return -EINVAL if the aio_context
2078 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2079 * *iocbpp[0] is not properly initialized, if the operation specified
2080 * is invalid for the file descriptor in the iocb. May fail with
2081 * -EFAULT if any of the data structures point to invalid data. May
2082 * fail with -EBADF if the file descriptor specified in the first
2083 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2084 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2085 * fail with -ENOSYS if not implemented.
2086 */
2087SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2088 struct iocb __user * __user *, iocbpp)
2089{
2090 struct kioctx *ctx;
2091 long ret = 0;
2092 int i = 0;
2093 struct blk_plug plug;
2094
2095 if (unlikely(nr < 0))
2096 return -EINVAL;
2097
2098 ctx = lookup_ioctx(ctx_id);
2099 if (unlikely(!ctx)) {
2100 pr_debug("EINVAL: invalid context id\n");
2101 return -EINVAL;
2102 }
2103
2104 if (nr > ctx->nr_events)
2105 nr = ctx->nr_events;
2106
2107 if (nr > AIO_PLUG_THRESHOLD)
2108 blk_start_plug(&plug);
2109 for (i = 0; i < nr; i++) {
2110 struct iocb __user *user_iocb;
2111
2112 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2113 ret = -EFAULT;
2114 break;
2115 }
2116
2117 ret = io_submit_one(ctx, user_iocb, false);
2118 if (ret)
2119 break;
2120 }
2121 if (nr > AIO_PLUG_THRESHOLD)
2122 blk_finish_plug(&plug);
2123
2124 percpu_ref_put(&ctx->users);
2125 return i ? i : ret;
2126}
2127
2128#ifdef CONFIG_COMPAT
2129COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2130 int, nr, compat_uptr_t __user *, iocbpp)
2131{
2132 struct kioctx *ctx;
2133 long ret = 0;
2134 int i = 0;
2135 struct blk_plug plug;
2136
2137 if (unlikely(nr < 0))
2138 return -EINVAL;
2139
2140 ctx = lookup_ioctx(ctx_id);
2141 if (unlikely(!ctx)) {
2142 pr_debug("EINVAL: invalid context id\n");
2143 return -EINVAL;
2144 }
2145
2146 if (nr > ctx->nr_events)
2147 nr = ctx->nr_events;
2148
2149 if (nr > AIO_PLUG_THRESHOLD)
2150 blk_start_plug(&plug);
2151 for (i = 0; i < nr; i++) {
2152 compat_uptr_t user_iocb;
2153
2154 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2155 ret = -EFAULT;
2156 break;
2157 }
2158
2159 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2160 if (ret)
2161 break;
2162 }
2163 if (nr > AIO_PLUG_THRESHOLD)
2164 blk_finish_plug(&plug);
2165
2166 percpu_ref_put(&ctx->users);
2167 return i ? i : ret;
2168}
2169#endif
2170
2171/* sys_io_cancel:
2172 * Attempts to cancel an iocb previously passed to io_submit. If
2173 * the operation is successfully cancelled, the resulting event is
2174 * copied into the memory pointed to by result without being placed
2175 * into the completion queue and 0 is returned. May fail with
2176 * -EFAULT if any of the data structures pointed to are invalid.
2177 * May fail with -EINVAL if aio_context specified by ctx_id is
2178 * invalid. May fail with -EAGAIN if the iocb specified was not
2179 * cancelled. Will fail with -ENOSYS if not implemented.
2180 */
2181SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2182 struct io_event __user *, result)
2183{
2184 struct kioctx *ctx;
2185 struct aio_kiocb *kiocb;
2186 int ret = -EINVAL;
2187 u32 key;
2188 u64 obj = (u64)(unsigned long)iocb;
2189
2190 if (unlikely(get_user(key, &iocb->aio_key)))
2191 return -EFAULT;
2192 if (unlikely(key != KIOCB_KEY))
2193 return -EINVAL;
2194
2195 ctx = lookup_ioctx(ctx_id);
2196 if (unlikely(!ctx))
2197 return -EINVAL;
2198
2199 spin_lock_irq(&ctx->ctx_lock);
2200 /* TODO: use a hash or array, this sucks. */
2201 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2202 if (kiocb->ki_res.obj == obj) {
2203 ret = kiocb->ki_cancel(&kiocb->rw);
2204 list_del_init(&kiocb->ki_list);
2205 break;
2206 }
2207 }
2208 spin_unlock_irq(&ctx->ctx_lock);
2209
2210 if (!ret) {
2211 /*
2212 * The result argument is no longer used - the io_event is
2213 * always delivered via the ring buffer. -EINPROGRESS indicates
2214 * cancellation is progress:
2215 */
2216 ret = -EINPROGRESS;
2217 }
2218
2219 percpu_ref_put(&ctx->users);
2220
2221 return ret;
2222}
2223
2224static long do_io_getevents(aio_context_t ctx_id,
2225 long min_nr,
2226 long nr,
2227 struct io_event __user *events,
2228 struct timespec64 *ts)
2229{
2230 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2231 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2232 long ret = -EINVAL;
2233
2234 if (likely(ioctx)) {
2235 if (likely(min_nr <= nr && min_nr >= 0))
2236 ret = read_events(ioctx, min_nr, nr, events, until);
2237 percpu_ref_put(&ioctx->users);
2238 }
2239
2240 return ret;
2241}
2242
2243/* io_getevents:
2244 * Attempts to read at least min_nr events and up to nr events from
2245 * the completion queue for the aio_context specified by ctx_id. If
2246 * it succeeds, the number of read events is returned. May fail with
2247 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2248 * out of range, if timeout is out of range. May fail with -EFAULT
2249 * if any of the memory specified is invalid. May return 0 or
2250 * < min_nr if the timeout specified by timeout has elapsed
2251 * before sufficient events are available, where timeout == NULL
2252 * specifies an infinite timeout. Note that the timeout pointed to by
2253 * timeout is relative. Will fail with -ENOSYS if not implemented.
2254 */
2255#ifdef CONFIG_64BIT
2256
2257SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2258 long, min_nr,
2259 long, nr,
2260 struct io_event __user *, events,
2261 struct __kernel_timespec __user *, timeout)
2262{
2263 struct timespec64 ts;
2264 int ret;
2265
2266 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2267 return -EFAULT;
2268
2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2270 if (!ret && signal_pending(current))
2271 ret = -EINTR;
2272 return ret;
2273}
2274
2275#endif
2276
2277struct __aio_sigset {
2278 const sigset_t __user *sigmask;
2279 size_t sigsetsize;
2280};
2281
2282SYSCALL_DEFINE6(io_pgetevents,
2283 aio_context_t, ctx_id,
2284 long, min_nr,
2285 long, nr,
2286 struct io_event __user *, events,
2287 struct __kernel_timespec __user *, timeout,
2288 const struct __aio_sigset __user *, usig)
2289{
2290 struct __aio_sigset ksig = { NULL, };
2291 struct timespec64 ts;
2292 bool interrupted;
2293 int ret;
2294
2295 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2296 return -EFAULT;
2297
2298 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299 return -EFAULT;
2300
2301 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2302 if (ret)
2303 return ret;
2304
2305 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2306
2307 interrupted = signal_pending(current);
2308 restore_saved_sigmask_unless(interrupted);
2309 if (interrupted && !ret)
2310 ret = -ERESTARTNOHAND;
2311
2312 return ret;
2313}
2314
2315#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2316
2317SYSCALL_DEFINE6(io_pgetevents_time32,
2318 aio_context_t, ctx_id,
2319 long, min_nr,
2320 long, nr,
2321 struct io_event __user *, events,
2322 struct old_timespec32 __user *, timeout,
2323 const struct __aio_sigset __user *, usig)
2324{
2325 struct __aio_sigset ksig = { NULL, };
2326 struct timespec64 ts;
2327 bool interrupted;
2328 int ret;
2329
2330 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2331 return -EFAULT;
2332
2333 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2334 return -EFAULT;
2335
2336
2337 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2338 if (ret)
2339 return ret;
2340
2341 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2342
2343 interrupted = signal_pending(current);
2344 restore_saved_sigmask_unless(interrupted);
2345 if (interrupted && !ret)
2346 ret = -ERESTARTNOHAND;
2347
2348 return ret;
2349}
2350
2351#endif
2352
2353#if defined(CONFIG_COMPAT_32BIT_TIME)
2354
2355SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2356 __s32, min_nr,
2357 __s32, nr,
2358 struct io_event __user *, events,
2359 struct old_timespec32 __user *, timeout)
2360{
2361 struct timespec64 t;
2362 int ret;
2363
2364 if (timeout && get_old_timespec32(&t, timeout))
2365 return -EFAULT;
2366
2367 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2368 if (!ret && signal_pending(current))
2369 ret = -EINTR;
2370 return ret;
2371}
2372
2373#endif
2374
2375#ifdef CONFIG_COMPAT
2376
2377struct __compat_aio_sigset {
2378 compat_uptr_t sigmask;
2379 compat_size_t sigsetsize;
2380};
2381
2382#if defined(CONFIG_COMPAT_32BIT_TIME)
2383
2384COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2385 compat_aio_context_t, ctx_id,
2386 compat_long_t, min_nr,
2387 compat_long_t, nr,
2388 struct io_event __user *, events,
2389 struct old_timespec32 __user *, timeout,
2390 const struct __compat_aio_sigset __user *, usig)
2391{
2392 struct __compat_aio_sigset ksig = { 0, };
2393 struct timespec64 t;
2394 bool interrupted;
2395 int ret;
2396
2397 if (timeout && get_old_timespec32(&t, timeout))
2398 return -EFAULT;
2399
2400 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401 return -EFAULT;
2402
2403 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2404 if (ret)
2405 return ret;
2406
2407 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2408
2409 interrupted = signal_pending(current);
2410 restore_saved_sigmask_unless(interrupted);
2411 if (interrupted && !ret)
2412 ret = -ERESTARTNOHAND;
2413
2414 return ret;
2415}
2416
2417#endif
2418
2419COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2420 compat_aio_context_t, ctx_id,
2421 compat_long_t, min_nr,
2422 compat_long_t, nr,
2423 struct io_event __user *, events,
2424 struct __kernel_timespec __user *, timeout,
2425 const struct __compat_aio_sigset __user *, usig)
2426{
2427 struct __compat_aio_sigset ksig = { 0, };
2428 struct timespec64 t;
2429 bool interrupted;
2430 int ret;
2431
2432 if (timeout && get_timespec64(&t, timeout))
2433 return -EFAULT;
2434
2435 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2436 return -EFAULT;
2437
2438 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2439 if (ret)
2440 return ret;
2441
2442 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2443
2444 interrupted = signal_pending(current);
2445 restore_saved_sigmask_unless(interrupted);
2446 if (interrupted && !ret)
2447 ret = -ERESTARTNOHAND;
2448
2449 return ret;
2450}
2451#endif
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched/signal.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43
44#include <asm/kmap_types.h>
45#include <linux/uaccess.h>
46
47#include "internal.h"
48
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
69
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
74};
75
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
80struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83};
84
85struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct rcu_work free_rwork; /* see free_ioctx() */
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157};
158
159/*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170#define KIOCB_CANCELLED ((void *) (~0ULL))
171
172struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
191/*------ sysctl variables----*/
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195/*----end sysctl variables---*/
196
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
199
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
248}
249
250/* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254static int __init aio_setup(void)
255{
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269
270 return 0;
271}
272__initcall(aio_setup);
273
274static void put_aio_ring_file(struct kioctx *ctx)
275{
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 struct address_space *i_mapping;
278
279 if (aio_ring_file) {
280 truncate_setsize(file_inode(aio_ring_file), 0);
281
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping = aio_ring_file->f_mapping;
284 spin_lock(&i_mapping->private_lock);
285 i_mapping->private_data = NULL;
286 ctx->aio_ring_file = NULL;
287 spin_unlock(&i_mapping->private_lock);
288
289 fput(aio_ring_file);
290 }
291}
292
293static void aio_free_ring(struct kioctx *ctx)
294{
295 int i;
296
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
299 */
300 put_aio_ring_file(ctx);
301
302 for (i = 0; i < ctx->nr_pages; i++) {
303 struct page *page;
304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 page_count(ctx->ring_pages[i]));
306 page = ctx->ring_pages[i];
307 if (!page)
308 continue;
309 ctx->ring_pages[i] = NULL;
310 put_page(page);
311 }
312
313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 kfree(ctx->ring_pages);
315 ctx->ring_pages = NULL;
316 }
317}
318
319static int aio_ring_mremap(struct vm_area_struct *vma)
320{
321 struct file *file = vma->vm_file;
322 struct mm_struct *mm = vma->vm_mm;
323 struct kioctx_table *table;
324 int i, res = -EINVAL;
325
326 spin_lock(&mm->ioctx_lock);
327 rcu_read_lock();
328 table = rcu_dereference(mm->ioctx_table);
329 for (i = 0; i < table->nr; i++) {
330 struct kioctx *ctx;
331
332 ctx = rcu_dereference(table->table[i]);
333 if (ctx && ctx->aio_ring_file == file) {
334 if (!atomic_read(&ctx->dead)) {
335 ctx->user_id = ctx->mmap_base = vma->vm_start;
336 res = 0;
337 }
338 break;
339 }
340 }
341
342 rcu_read_unlock();
343 spin_unlock(&mm->ioctx_lock);
344 return res;
345}
346
347static const struct vm_operations_struct aio_ring_vm_ops = {
348 .mremap = aio_ring_mremap,
349#if IS_ENABLED(CONFIG_MMU)
350 .fault = filemap_fault,
351 .map_pages = filemap_map_pages,
352 .page_mkwrite = filemap_page_mkwrite,
353#endif
354};
355
356static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357{
358 vma->vm_flags |= VM_DONTEXPAND;
359 vma->vm_ops = &aio_ring_vm_ops;
360 return 0;
361}
362
363static const struct file_operations aio_ring_fops = {
364 .mmap = aio_ring_mmap,
365};
366
367#if IS_ENABLED(CONFIG_MIGRATION)
368static int aio_migratepage(struct address_space *mapping, struct page *new,
369 struct page *old, enum migrate_mode mode)
370{
371 struct kioctx *ctx;
372 unsigned long flags;
373 pgoff_t idx;
374 int rc;
375
376 /*
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 */
381 if (mode == MIGRATE_SYNC_NO_COPY)
382 return -EINVAL;
383
384 rc = 0;
385
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping->private_lock);
388 ctx = mapping->private_data;
389 if (!ctx) {
390 rc = -EINVAL;
391 goto out;
392 }
393
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
397 */
398 if (!mutex_trylock(&ctx->ring_lock)) {
399 rc = -EAGAIN;
400 goto out;
401 }
402
403 idx = old->index;
404 if (idx < (pgoff_t)ctx->nr_pages) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx->ring_pages[idx] != old)
407 rc = -EAGAIN;
408 } else
409 rc = -EINVAL;
410
411 if (rc != 0)
412 goto out_unlock;
413
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old));
416 get_page(new);
417
418 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 if (rc != MIGRATEPAGE_SUCCESS) {
420 put_page(new);
421 goto out_unlock;
422 }
423
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
427 */
428 spin_lock_irqsave(&ctx->completion_lock, flags);
429 migrate_page_copy(new, old);
430 BUG_ON(ctx->ring_pages[idx] != old);
431 ctx->ring_pages[idx] = new;
432 spin_unlock_irqrestore(&ctx->completion_lock, flags);
433
434 /* The old page is no longer accessible. */
435 put_page(old);
436
437out_unlock:
438 mutex_unlock(&ctx->ring_lock);
439out:
440 spin_unlock(&mapping->private_lock);
441 return rc;
442}
443#endif
444
445static const struct address_space_operations aio_ctx_aops = {
446 .set_page_dirty = __set_page_dirty_no_writeback,
447#if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage = aio_migratepage,
449#endif
450};
451
452static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453{
454 struct aio_ring *ring;
455 struct mm_struct *mm = current->mm;
456 unsigned long size, unused;
457 int nr_pages;
458 int i;
459 struct file *file;
460
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events += 2; /* 1 is required, 2 for good luck */
463
464 size = sizeof(struct aio_ring);
465 size += sizeof(struct io_event) * nr_events;
466
467 nr_pages = PFN_UP(size);
468 if (nr_pages < 0)
469 return -EINVAL;
470
471 file = aio_private_file(ctx, nr_pages);
472 if (IS_ERR(file)) {
473 ctx->aio_ring_file = NULL;
474 return -ENOMEM;
475 }
476
477 ctx->aio_ring_file = file;
478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 / sizeof(struct io_event);
480
481 ctx->ring_pages = ctx->internal_pages;
482 if (nr_pages > AIO_RING_PAGES) {
483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 GFP_KERNEL);
485 if (!ctx->ring_pages) {
486 put_aio_ring_file(ctx);
487 return -ENOMEM;
488 }
489 }
490
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page;
493 page = find_or_create_page(file->f_mapping,
494 i, GFP_HIGHUSER | __GFP_ZERO);
495 if (!page)
496 break;
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current->pid, i, page_count(page));
499 SetPageUptodate(page);
500 unlock_page(page);
501
502 ctx->ring_pages[i] = page;
503 }
504 ctx->nr_pages = i;
505
506 if (unlikely(i != nr_pages)) {
507 aio_free_ring(ctx);
508 return -ENOMEM;
509 }
510
511 ctx->mmap_size = nr_pages * PAGE_SIZE;
512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513
514 if (down_write_killable(&mm->mmap_sem)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -EINTR;
518 }
519
520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 PROT_READ | PROT_WRITE,
522 MAP_SHARED, 0, &unused, NULL);
523 up_write(&mm->mmap_sem);
524 if (IS_ERR((void *)ctx->mmap_base)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -ENOMEM;
528 }
529
530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531
532 ctx->user_id = ctx->mmap_base;
533 ctx->nr_events = nr_events; /* trusted copy */
534
535 ring = kmap_atomic(ctx->ring_pages[0]);
536 ring->nr = nr_events; /* user copy */
537 ring->id = ~0U;
538 ring->head = ring->tail = 0;
539 ring->magic = AIO_RING_MAGIC;
540 ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 ring->header_length = sizeof(struct aio_ring);
543 kunmap_atomic(ring);
544 flush_dcache_page(ctx->ring_pages[0]);
545
546 return 0;
547}
548
549#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552
553void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554{
555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 struct kioctx *ctx = req->ki_ctx;
557 unsigned long flags;
558
559 spin_lock_irqsave(&ctx->ctx_lock, flags);
560
561 if (!req->ki_list.next)
562 list_add(&req->ki_list, &ctx->active_reqs);
563
564 req->ki_cancel = cancel;
565
566 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567}
568EXPORT_SYMBOL(kiocb_set_cancel_fn);
569
570static int kiocb_cancel(struct aio_kiocb *kiocb)
571{
572 kiocb_cancel_fn *old, *cancel;
573
574 /*
575 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 * actually has a cancel function, hence the cmpxchg()
577 */
578
579 cancel = READ_ONCE(kiocb->ki_cancel);
580 do {
581 if (!cancel || cancel == KIOCB_CANCELLED)
582 return -EINVAL;
583
584 old = cancel;
585 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 } while (cancel != old);
587
588 return cancel(&kiocb->common);
589}
590
591/*
592 * free_ioctx() should be RCU delayed to synchronize against the RCU
593 * protected lookup_ioctx() and also needs process context to call
594 * aio_free_ring(). Use rcu_work.
595 */
596static void free_ioctx(struct work_struct *work)
597{
598 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
599 free_rwork);
600 pr_debug("freeing %p\n", ctx);
601
602 aio_free_ring(ctx);
603 free_percpu(ctx->cpu);
604 percpu_ref_exit(&ctx->reqs);
605 percpu_ref_exit(&ctx->users);
606 kmem_cache_free(kioctx_cachep, ctx);
607}
608
609static void free_ioctx_reqs(struct percpu_ref *ref)
610{
611 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
612
613 /* At this point we know that there are no any in-flight requests */
614 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
615 complete(&ctx->rq_wait->comp);
616
617 /* Synchronize against RCU protected table->table[] dereferences */
618 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
619 queue_rcu_work(system_wq, &ctx->free_rwork);
620}
621
622/*
623 * When this function runs, the kioctx has been removed from the "hash table"
624 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
625 * now it's safe to cancel any that need to be.
626 */
627static void free_ioctx_users(struct percpu_ref *ref)
628{
629 struct kioctx *ctx = container_of(ref, struct kioctx, users);
630 struct aio_kiocb *req;
631
632 spin_lock_irq(&ctx->ctx_lock);
633
634 while (!list_empty(&ctx->active_reqs)) {
635 req = list_first_entry(&ctx->active_reqs,
636 struct aio_kiocb, ki_list);
637 kiocb_cancel(req);
638 list_del_init(&req->ki_list);
639 }
640
641 spin_unlock_irq(&ctx->ctx_lock);
642
643 percpu_ref_kill(&ctx->reqs);
644 percpu_ref_put(&ctx->reqs);
645}
646
647static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
648{
649 unsigned i, new_nr;
650 struct kioctx_table *table, *old;
651 struct aio_ring *ring;
652
653 spin_lock(&mm->ioctx_lock);
654 table = rcu_dereference_raw(mm->ioctx_table);
655
656 while (1) {
657 if (table)
658 for (i = 0; i < table->nr; i++)
659 if (!rcu_access_pointer(table->table[i])) {
660 ctx->id = i;
661 rcu_assign_pointer(table->table[i], ctx);
662 spin_unlock(&mm->ioctx_lock);
663
664 /* While kioctx setup is in progress,
665 * we are protected from page migration
666 * changes ring_pages by ->ring_lock.
667 */
668 ring = kmap_atomic(ctx->ring_pages[0]);
669 ring->id = ctx->id;
670 kunmap_atomic(ring);
671 return 0;
672 }
673
674 new_nr = (table ? table->nr : 1) * 4;
675 spin_unlock(&mm->ioctx_lock);
676
677 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
678 new_nr, GFP_KERNEL);
679 if (!table)
680 return -ENOMEM;
681
682 table->nr = new_nr;
683
684 spin_lock(&mm->ioctx_lock);
685 old = rcu_dereference_raw(mm->ioctx_table);
686
687 if (!old) {
688 rcu_assign_pointer(mm->ioctx_table, table);
689 } else if (table->nr > old->nr) {
690 memcpy(table->table, old->table,
691 old->nr * sizeof(struct kioctx *));
692
693 rcu_assign_pointer(mm->ioctx_table, table);
694 kfree_rcu(old, rcu);
695 } else {
696 kfree(table);
697 table = old;
698 }
699 }
700}
701
702static void aio_nr_sub(unsigned nr)
703{
704 spin_lock(&aio_nr_lock);
705 if (WARN_ON(aio_nr - nr > aio_nr))
706 aio_nr = 0;
707 else
708 aio_nr -= nr;
709 spin_unlock(&aio_nr_lock);
710}
711
712/* ioctx_alloc
713 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
714 */
715static struct kioctx *ioctx_alloc(unsigned nr_events)
716{
717 struct mm_struct *mm = current->mm;
718 struct kioctx *ctx;
719 int err = -ENOMEM;
720
721 /*
722 * Store the original nr_events -- what userspace passed to io_setup(),
723 * for counting against the global limit -- before it changes.
724 */
725 unsigned int max_reqs = nr_events;
726
727 /*
728 * We keep track of the number of available ringbuffer slots, to prevent
729 * overflow (reqs_available), and we also use percpu counters for this.
730 *
731 * So since up to half the slots might be on other cpu's percpu counters
732 * and unavailable, double nr_events so userspace sees what they
733 * expected: additionally, we move req_batch slots to/from percpu
734 * counters at a time, so make sure that isn't 0:
735 */
736 nr_events = max(nr_events, num_possible_cpus() * 4);
737 nr_events *= 2;
738
739 /* Prevent overflows */
740 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
741 pr_debug("ENOMEM: nr_events too high\n");
742 return ERR_PTR(-EINVAL);
743 }
744
745 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
746 return ERR_PTR(-EAGAIN);
747
748 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
749 if (!ctx)
750 return ERR_PTR(-ENOMEM);
751
752 ctx->max_reqs = max_reqs;
753
754 spin_lock_init(&ctx->ctx_lock);
755 spin_lock_init(&ctx->completion_lock);
756 mutex_init(&ctx->ring_lock);
757 /* Protect against page migration throughout kiotx setup by keeping
758 * the ring_lock mutex held until setup is complete. */
759 mutex_lock(&ctx->ring_lock);
760 init_waitqueue_head(&ctx->wait);
761
762 INIT_LIST_HEAD(&ctx->active_reqs);
763
764 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
765 goto err;
766
767 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
768 goto err;
769
770 ctx->cpu = alloc_percpu(struct kioctx_cpu);
771 if (!ctx->cpu)
772 goto err;
773
774 err = aio_setup_ring(ctx, nr_events);
775 if (err < 0)
776 goto err;
777
778 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
779 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
780 if (ctx->req_batch < 1)
781 ctx->req_batch = 1;
782
783 /* limit the number of system wide aios */
784 spin_lock(&aio_nr_lock);
785 if (aio_nr + ctx->max_reqs > aio_max_nr ||
786 aio_nr + ctx->max_reqs < aio_nr) {
787 spin_unlock(&aio_nr_lock);
788 err = -EAGAIN;
789 goto err_ctx;
790 }
791 aio_nr += ctx->max_reqs;
792 spin_unlock(&aio_nr_lock);
793
794 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
795 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
796
797 err = ioctx_add_table(ctx, mm);
798 if (err)
799 goto err_cleanup;
800
801 /* Release the ring_lock mutex now that all setup is complete. */
802 mutex_unlock(&ctx->ring_lock);
803
804 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
805 ctx, ctx->user_id, mm, ctx->nr_events);
806 return ctx;
807
808err_cleanup:
809 aio_nr_sub(ctx->max_reqs);
810err_ctx:
811 atomic_set(&ctx->dead, 1);
812 if (ctx->mmap_size)
813 vm_munmap(ctx->mmap_base, ctx->mmap_size);
814 aio_free_ring(ctx);
815err:
816 mutex_unlock(&ctx->ring_lock);
817 free_percpu(ctx->cpu);
818 percpu_ref_exit(&ctx->reqs);
819 percpu_ref_exit(&ctx->users);
820 kmem_cache_free(kioctx_cachep, ctx);
821 pr_debug("error allocating ioctx %d\n", err);
822 return ERR_PTR(err);
823}
824
825/* kill_ioctx
826 * Cancels all outstanding aio requests on an aio context. Used
827 * when the processes owning a context have all exited to encourage
828 * the rapid destruction of the kioctx.
829 */
830static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
831 struct ctx_rq_wait *wait)
832{
833 struct kioctx_table *table;
834
835 spin_lock(&mm->ioctx_lock);
836 if (atomic_xchg(&ctx->dead, 1)) {
837 spin_unlock(&mm->ioctx_lock);
838 return -EINVAL;
839 }
840
841 table = rcu_dereference_raw(mm->ioctx_table);
842 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
843 RCU_INIT_POINTER(table->table[ctx->id], NULL);
844 spin_unlock(&mm->ioctx_lock);
845
846 /* free_ioctx_reqs() will do the necessary RCU synchronization */
847 wake_up_all(&ctx->wait);
848
849 /*
850 * It'd be more correct to do this in free_ioctx(), after all
851 * the outstanding kiocbs have finished - but by then io_destroy
852 * has already returned, so io_setup() could potentially return
853 * -EAGAIN with no ioctxs actually in use (as far as userspace
854 * could tell).
855 */
856 aio_nr_sub(ctx->max_reqs);
857
858 if (ctx->mmap_size)
859 vm_munmap(ctx->mmap_base, ctx->mmap_size);
860
861 ctx->rq_wait = wait;
862 percpu_ref_kill(&ctx->users);
863 return 0;
864}
865
866/*
867 * exit_aio: called when the last user of mm goes away. At this point, there is
868 * no way for any new requests to be submited or any of the io_* syscalls to be
869 * called on the context.
870 *
871 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
872 * them.
873 */
874void exit_aio(struct mm_struct *mm)
875{
876 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
877 struct ctx_rq_wait wait;
878 int i, skipped;
879
880 if (!table)
881 return;
882
883 atomic_set(&wait.count, table->nr);
884 init_completion(&wait.comp);
885
886 skipped = 0;
887 for (i = 0; i < table->nr; ++i) {
888 struct kioctx *ctx =
889 rcu_dereference_protected(table->table[i], true);
890
891 if (!ctx) {
892 skipped++;
893 continue;
894 }
895
896 /*
897 * We don't need to bother with munmap() here - exit_mmap(mm)
898 * is coming and it'll unmap everything. And we simply can't,
899 * this is not necessarily our ->mm.
900 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
901 * that it needs to unmap the area, just set it to 0.
902 */
903 ctx->mmap_size = 0;
904 kill_ioctx(mm, ctx, &wait);
905 }
906
907 if (!atomic_sub_and_test(skipped, &wait.count)) {
908 /* Wait until all IO for the context are done. */
909 wait_for_completion(&wait.comp);
910 }
911
912 RCU_INIT_POINTER(mm->ioctx_table, NULL);
913 kfree(table);
914}
915
916static void put_reqs_available(struct kioctx *ctx, unsigned nr)
917{
918 struct kioctx_cpu *kcpu;
919 unsigned long flags;
920
921 local_irq_save(flags);
922 kcpu = this_cpu_ptr(ctx->cpu);
923 kcpu->reqs_available += nr;
924
925 while (kcpu->reqs_available >= ctx->req_batch * 2) {
926 kcpu->reqs_available -= ctx->req_batch;
927 atomic_add(ctx->req_batch, &ctx->reqs_available);
928 }
929
930 local_irq_restore(flags);
931}
932
933static bool get_reqs_available(struct kioctx *ctx)
934{
935 struct kioctx_cpu *kcpu;
936 bool ret = false;
937 unsigned long flags;
938
939 local_irq_save(flags);
940 kcpu = this_cpu_ptr(ctx->cpu);
941 if (!kcpu->reqs_available) {
942 int old, avail = atomic_read(&ctx->reqs_available);
943
944 do {
945 if (avail < ctx->req_batch)
946 goto out;
947
948 old = avail;
949 avail = atomic_cmpxchg(&ctx->reqs_available,
950 avail, avail - ctx->req_batch);
951 } while (avail != old);
952
953 kcpu->reqs_available += ctx->req_batch;
954 }
955
956 ret = true;
957 kcpu->reqs_available--;
958out:
959 local_irq_restore(flags);
960 return ret;
961}
962
963/* refill_reqs_available
964 * Updates the reqs_available reference counts used for tracking the
965 * number of free slots in the completion ring. This can be called
966 * from aio_complete() (to optimistically update reqs_available) or
967 * from aio_get_req() (the we're out of events case). It must be
968 * called holding ctx->completion_lock.
969 */
970static void refill_reqs_available(struct kioctx *ctx, unsigned head,
971 unsigned tail)
972{
973 unsigned events_in_ring, completed;
974
975 /* Clamp head since userland can write to it. */
976 head %= ctx->nr_events;
977 if (head <= tail)
978 events_in_ring = tail - head;
979 else
980 events_in_ring = ctx->nr_events - (head - tail);
981
982 completed = ctx->completed_events;
983 if (events_in_ring < completed)
984 completed -= events_in_ring;
985 else
986 completed = 0;
987
988 if (!completed)
989 return;
990
991 ctx->completed_events -= completed;
992 put_reqs_available(ctx, completed);
993}
994
995/* user_refill_reqs_available
996 * Called to refill reqs_available when aio_get_req() encounters an
997 * out of space in the completion ring.
998 */
999static void user_refill_reqs_available(struct kioctx *ctx)
1000{
1001 spin_lock_irq(&ctx->completion_lock);
1002 if (ctx->completed_events) {
1003 struct aio_ring *ring;
1004 unsigned head;
1005
1006 /* Access of ring->head may race with aio_read_events_ring()
1007 * here, but that's okay since whether we read the old version
1008 * or the new version, and either will be valid. The important
1009 * part is that head cannot pass tail since we prevent
1010 * aio_complete() from updating tail by holding
1011 * ctx->completion_lock. Even if head is invalid, the check
1012 * against ctx->completed_events below will make sure we do the
1013 * safe/right thing.
1014 */
1015 ring = kmap_atomic(ctx->ring_pages[0]);
1016 head = ring->head;
1017 kunmap_atomic(ring);
1018
1019 refill_reqs_available(ctx, head, ctx->tail);
1020 }
1021
1022 spin_unlock_irq(&ctx->completion_lock);
1023}
1024
1025/* aio_get_req
1026 * Allocate a slot for an aio request.
1027 * Returns NULL if no requests are free.
1028 */
1029static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1030{
1031 struct aio_kiocb *req;
1032
1033 if (!get_reqs_available(ctx)) {
1034 user_refill_reqs_available(ctx);
1035 if (!get_reqs_available(ctx))
1036 return NULL;
1037 }
1038
1039 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1040 if (unlikely(!req))
1041 goto out_put;
1042
1043 percpu_ref_get(&ctx->reqs);
1044
1045 req->ki_ctx = ctx;
1046 return req;
1047out_put:
1048 put_reqs_available(ctx, 1);
1049 return NULL;
1050}
1051
1052static void kiocb_free(struct aio_kiocb *req)
1053{
1054 if (req->common.ki_filp)
1055 fput(req->common.ki_filp);
1056 if (req->ki_eventfd != NULL)
1057 eventfd_ctx_put(req->ki_eventfd);
1058 kmem_cache_free(kiocb_cachep, req);
1059}
1060
1061static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1062{
1063 struct aio_ring __user *ring = (void __user *)ctx_id;
1064 struct mm_struct *mm = current->mm;
1065 struct kioctx *ctx, *ret = NULL;
1066 struct kioctx_table *table;
1067 unsigned id;
1068
1069 if (get_user(id, &ring->id))
1070 return NULL;
1071
1072 rcu_read_lock();
1073 table = rcu_dereference(mm->ioctx_table);
1074
1075 if (!table || id >= table->nr)
1076 goto out;
1077
1078 ctx = rcu_dereference(table->table[id]);
1079 if (ctx && ctx->user_id == ctx_id) {
1080 if (percpu_ref_tryget_live(&ctx->users))
1081 ret = ctx;
1082 }
1083out:
1084 rcu_read_unlock();
1085 return ret;
1086}
1087
1088/* aio_complete
1089 * Called when the io request on the given iocb is complete.
1090 */
1091static void aio_complete(struct kiocb *kiocb, long res, long res2)
1092{
1093 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1094 struct kioctx *ctx = iocb->ki_ctx;
1095 struct aio_ring *ring;
1096 struct io_event *ev_page, *event;
1097 unsigned tail, pos, head;
1098 unsigned long flags;
1099
1100 if (kiocb->ki_flags & IOCB_WRITE) {
1101 struct file *file = kiocb->ki_filp;
1102
1103 /*
1104 * Tell lockdep we inherited freeze protection from submission
1105 * thread.
1106 */
1107 if (S_ISREG(file_inode(file)->i_mode))
1108 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1109 file_end_write(file);
1110 }
1111
1112 /*
1113 * Special case handling for sync iocbs:
1114 * - events go directly into the iocb for fast handling
1115 * - the sync task with the iocb in its stack holds the single iocb
1116 * ref, no other paths have a way to get another ref
1117 * - the sync task helpfully left a reference to itself in the iocb
1118 */
1119 BUG_ON(is_sync_kiocb(kiocb));
1120
1121 if (iocb->ki_list.next) {
1122 unsigned long flags;
1123
1124 spin_lock_irqsave(&ctx->ctx_lock, flags);
1125 list_del(&iocb->ki_list);
1126 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1127 }
1128
1129 /*
1130 * Add a completion event to the ring buffer. Must be done holding
1131 * ctx->completion_lock to prevent other code from messing with the tail
1132 * pointer since we might be called from irq context.
1133 */
1134 spin_lock_irqsave(&ctx->completion_lock, flags);
1135
1136 tail = ctx->tail;
1137 pos = tail + AIO_EVENTS_OFFSET;
1138
1139 if (++tail >= ctx->nr_events)
1140 tail = 0;
1141
1142 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144
1145 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1146 event->data = iocb->ki_user_data;
1147 event->res = res;
1148 event->res2 = res2;
1149
1150 kunmap_atomic(ev_page);
1151 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1152
1153 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1154 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1155 res, res2);
1156
1157 /* after flagging the request as done, we
1158 * must never even look at it again
1159 */
1160 smp_wmb(); /* make event visible before updating tail */
1161
1162 ctx->tail = tail;
1163
1164 ring = kmap_atomic(ctx->ring_pages[0]);
1165 head = ring->head;
1166 ring->tail = tail;
1167 kunmap_atomic(ring);
1168 flush_dcache_page(ctx->ring_pages[0]);
1169
1170 ctx->completed_events++;
1171 if (ctx->completed_events > 1)
1172 refill_reqs_available(ctx, head, tail);
1173 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1174
1175 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1176
1177 /*
1178 * Check if the user asked us to deliver the result through an
1179 * eventfd. The eventfd_signal() function is safe to be called
1180 * from IRQ context.
1181 */
1182 if (iocb->ki_eventfd != NULL)
1183 eventfd_signal(iocb->ki_eventfd, 1);
1184
1185 /* everything turned out well, dispose of the aiocb. */
1186 kiocb_free(iocb);
1187
1188 /*
1189 * We have to order our ring_info tail store above and test
1190 * of the wait list below outside the wait lock. This is
1191 * like in wake_up_bit() where clearing a bit has to be
1192 * ordered with the unlocked test.
1193 */
1194 smp_mb();
1195
1196 if (waitqueue_active(&ctx->wait))
1197 wake_up(&ctx->wait);
1198
1199 percpu_ref_put(&ctx->reqs);
1200}
1201
1202/* aio_read_events_ring
1203 * Pull an event off of the ioctx's event ring. Returns the number of
1204 * events fetched
1205 */
1206static long aio_read_events_ring(struct kioctx *ctx,
1207 struct io_event __user *event, long nr)
1208{
1209 struct aio_ring *ring;
1210 unsigned head, tail, pos;
1211 long ret = 0;
1212 int copy_ret;
1213
1214 /*
1215 * The mutex can block and wake us up and that will cause
1216 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1217 * and repeat. This should be rare enough that it doesn't cause
1218 * peformance issues. See the comment in read_events() for more detail.
1219 */
1220 sched_annotate_sleep();
1221 mutex_lock(&ctx->ring_lock);
1222
1223 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1224 ring = kmap_atomic(ctx->ring_pages[0]);
1225 head = ring->head;
1226 tail = ring->tail;
1227 kunmap_atomic(ring);
1228
1229 /*
1230 * Ensure that once we've read the current tail pointer, that
1231 * we also see the events that were stored up to the tail.
1232 */
1233 smp_rmb();
1234
1235 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1236
1237 if (head == tail)
1238 goto out;
1239
1240 head %= ctx->nr_events;
1241 tail %= ctx->nr_events;
1242
1243 while (ret < nr) {
1244 long avail;
1245 struct io_event *ev;
1246 struct page *page;
1247
1248 avail = (head <= tail ? tail : ctx->nr_events) - head;
1249 if (head == tail)
1250 break;
1251
1252 avail = min(avail, nr - ret);
1253 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1254 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1255
1256 pos = head + AIO_EVENTS_OFFSET;
1257 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1258 pos %= AIO_EVENTS_PER_PAGE;
1259
1260 ev = kmap(page);
1261 copy_ret = copy_to_user(event + ret, ev + pos,
1262 sizeof(*ev) * avail);
1263 kunmap(page);
1264
1265 if (unlikely(copy_ret)) {
1266 ret = -EFAULT;
1267 goto out;
1268 }
1269
1270 ret += avail;
1271 head += avail;
1272 head %= ctx->nr_events;
1273 }
1274
1275 ring = kmap_atomic(ctx->ring_pages[0]);
1276 ring->head = head;
1277 kunmap_atomic(ring);
1278 flush_dcache_page(ctx->ring_pages[0]);
1279
1280 pr_debug("%li h%u t%u\n", ret, head, tail);
1281out:
1282 mutex_unlock(&ctx->ring_lock);
1283
1284 return ret;
1285}
1286
1287static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1288 struct io_event __user *event, long *i)
1289{
1290 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1291
1292 if (ret > 0)
1293 *i += ret;
1294
1295 if (unlikely(atomic_read(&ctx->dead)))
1296 ret = -EINVAL;
1297
1298 if (!*i)
1299 *i = ret;
1300
1301 return ret < 0 || *i >= min_nr;
1302}
1303
1304static long read_events(struct kioctx *ctx, long min_nr, long nr,
1305 struct io_event __user *event,
1306 ktime_t until)
1307{
1308 long ret = 0;
1309
1310 /*
1311 * Note that aio_read_events() is being called as the conditional - i.e.
1312 * we're calling it after prepare_to_wait() has set task state to
1313 * TASK_INTERRUPTIBLE.
1314 *
1315 * But aio_read_events() can block, and if it blocks it's going to flip
1316 * the task state back to TASK_RUNNING.
1317 *
1318 * This should be ok, provided it doesn't flip the state back to
1319 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1320 * will only happen if the mutex_lock() call blocks, and we then find
1321 * the ringbuffer empty. So in practice we should be ok, but it's
1322 * something to be aware of when touching this code.
1323 */
1324 if (until == 0)
1325 aio_read_events(ctx, min_nr, nr, event, &ret);
1326 else
1327 wait_event_interruptible_hrtimeout(ctx->wait,
1328 aio_read_events(ctx, min_nr, nr, event, &ret),
1329 until);
1330
1331 if (!ret && signal_pending(current))
1332 ret = -EINTR;
1333
1334 return ret;
1335}
1336
1337/* sys_io_setup:
1338 * Create an aio_context capable of receiving at least nr_events.
1339 * ctxp must not point to an aio_context that already exists, and
1340 * must be initialized to 0 prior to the call. On successful
1341 * creation of the aio_context, *ctxp is filled in with the resulting
1342 * handle. May fail with -EINVAL if *ctxp is not initialized,
1343 * if the specified nr_events exceeds internal limits. May fail
1344 * with -EAGAIN if the specified nr_events exceeds the user's limit
1345 * of available events. May fail with -ENOMEM if insufficient kernel
1346 * resources are available. May fail with -EFAULT if an invalid
1347 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1348 * implemented.
1349 */
1350SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1351{
1352 struct kioctx *ioctx = NULL;
1353 unsigned long ctx;
1354 long ret;
1355
1356 ret = get_user(ctx, ctxp);
1357 if (unlikely(ret))
1358 goto out;
1359
1360 ret = -EINVAL;
1361 if (unlikely(ctx || nr_events == 0)) {
1362 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1363 ctx, nr_events);
1364 goto out;
1365 }
1366
1367 ioctx = ioctx_alloc(nr_events);
1368 ret = PTR_ERR(ioctx);
1369 if (!IS_ERR(ioctx)) {
1370 ret = put_user(ioctx->user_id, ctxp);
1371 if (ret)
1372 kill_ioctx(current->mm, ioctx, NULL);
1373 percpu_ref_put(&ioctx->users);
1374 }
1375
1376out:
1377 return ret;
1378}
1379
1380#ifdef CONFIG_COMPAT
1381COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1382{
1383 struct kioctx *ioctx = NULL;
1384 unsigned long ctx;
1385 long ret;
1386
1387 ret = get_user(ctx, ctx32p);
1388 if (unlikely(ret))
1389 goto out;
1390
1391 ret = -EINVAL;
1392 if (unlikely(ctx || nr_events == 0)) {
1393 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1394 ctx, nr_events);
1395 goto out;
1396 }
1397
1398 ioctx = ioctx_alloc(nr_events);
1399 ret = PTR_ERR(ioctx);
1400 if (!IS_ERR(ioctx)) {
1401 /* truncating is ok because it's a user address */
1402 ret = put_user((u32)ioctx->user_id, ctx32p);
1403 if (ret)
1404 kill_ioctx(current->mm, ioctx, NULL);
1405 percpu_ref_put(&ioctx->users);
1406 }
1407
1408out:
1409 return ret;
1410}
1411#endif
1412
1413/* sys_io_destroy:
1414 * Destroy the aio_context specified. May cancel any outstanding
1415 * AIOs and block on completion. Will fail with -ENOSYS if not
1416 * implemented. May fail with -EINVAL if the context pointed to
1417 * is invalid.
1418 */
1419SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1420{
1421 struct kioctx *ioctx = lookup_ioctx(ctx);
1422 if (likely(NULL != ioctx)) {
1423 struct ctx_rq_wait wait;
1424 int ret;
1425
1426 init_completion(&wait.comp);
1427 atomic_set(&wait.count, 1);
1428
1429 /* Pass requests_done to kill_ioctx() where it can be set
1430 * in a thread-safe way. If we try to set it here then we have
1431 * a race condition if two io_destroy() called simultaneously.
1432 */
1433 ret = kill_ioctx(current->mm, ioctx, &wait);
1434 percpu_ref_put(&ioctx->users);
1435
1436 /* Wait until all IO for the context are done. Otherwise kernel
1437 * keep using user-space buffers even if user thinks the context
1438 * is destroyed.
1439 */
1440 if (!ret)
1441 wait_for_completion(&wait.comp);
1442
1443 return ret;
1444 }
1445 pr_debug("EINVAL: invalid context id\n");
1446 return -EINVAL;
1447}
1448
1449static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1450 bool vectored, bool compat, struct iov_iter *iter)
1451{
1452 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1453 size_t len = iocb->aio_nbytes;
1454
1455 if (!vectored) {
1456 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1457 *iovec = NULL;
1458 return ret;
1459 }
1460#ifdef CONFIG_COMPAT
1461 if (compat)
1462 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1463 iter);
1464#endif
1465 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1466}
1467
1468static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1469{
1470 switch (ret) {
1471 case -EIOCBQUEUED:
1472 return ret;
1473 case -ERESTARTSYS:
1474 case -ERESTARTNOINTR:
1475 case -ERESTARTNOHAND:
1476 case -ERESTART_RESTARTBLOCK:
1477 /*
1478 * There's no easy way to restart the syscall since other AIO's
1479 * may be already running. Just fail this IO with EINTR.
1480 */
1481 ret = -EINTR;
1482 /*FALLTHRU*/
1483 default:
1484 aio_complete(req, ret, 0);
1485 return 0;
1486 }
1487}
1488
1489static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1490 bool compat)
1491{
1492 struct file *file = req->ki_filp;
1493 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1494 struct iov_iter iter;
1495 ssize_t ret;
1496
1497 if (unlikely(!(file->f_mode & FMODE_READ)))
1498 return -EBADF;
1499 if (unlikely(!file->f_op->read_iter))
1500 return -EINVAL;
1501
1502 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1503 if (ret)
1504 return ret;
1505 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1506 if (!ret)
1507 ret = aio_ret(req, call_read_iter(file, req, &iter));
1508 kfree(iovec);
1509 return ret;
1510}
1511
1512static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1513 bool compat)
1514{
1515 struct file *file = req->ki_filp;
1516 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1517 struct iov_iter iter;
1518 ssize_t ret;
1519
1520 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1521 return -EBADF;
1522 if (unlikely(!file->f_op->write_iter))
1523 return -EINVAL;
1524
1525 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1526 if (ret)
1527 return ret;
1528 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1529 if (!ret) {
1530 req->ki_flags |= IOCB_WRITE;
1531 file_start_write(file);
1532 ret = aio_ret(req, call_write_iter(file, req, &iter));
1533 /*
1534 * We release freeze protection in aio_complete(). Fool lockdep
1535 * by telling it the lock got released so that it doesn't
1536 * complain about held lock when we return to userspace.
1537 */
1538 if (S_ISREG(file_inode(file)->i_mode))
1539 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1540 }
1541 kfree(iovec);
1542 return ret;
1543}
1544
1545static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1546 struct iocb *iocb, bool compat)
1547{
1548 struct aio_kiocb *req;
1549 struct file *file;
1550 ssize_t ret;
1551
1552 /* enforce forwards compatibility on users */
1553 if (unlikely(iocb->aio_reserved2)) {
1554 pr_debug("EINVAL: reserve field set\n");
1555 return -EINVAL;
1556 }
1557
1558 /* prevent overflows */
1559 if (unlikely(
1560 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1561 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1562 ((ssize_t)iocb->aio_nbytes < 0)
1563 )) {
1564 pr_debug("EINVAL: overflow check\n");
1565 return -EINVAL;
1566 }
1567
1568 req = aio_get_req(ctx);
1569 if (unlikely(!req))
1570 return -EAGAIN;
1571
1572 req->common.ki_filp = file = fget(iocb->aio_fildes);
1573 if (unlikely(!req->common.ki_filp)) {
1574 ret = -EBADF;
1575 goto out_put_req;
1576 }
1577 req->common.ki_pos = iocb->aio_offset;
1578 req->common.ki_complete = aio_complete;
1579 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1580 req->common.ki_hint = file_write_hint(file);
1581
1582 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1583 /*
1584 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1585 * instance of the file* now. The file descriptor must be
1586 * an eventfd() fd, and will be signaled for each completed
1587 * event using the eventfd_signal() function.
1588 */
1589 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1590 if (IS_ERR(req->ki_eventfd)) {
1591 ret = PTR_ERR(req->ki_eventfd);
1592 req->ki_eventfd = NULL;
1593 goto out_put_req;
1594 }
1595
1596 req->common.ki_flags |= IOCB_EVENTFD;
1597 }
1598
1599 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1600 if (unlikely(ret)) {
1601 pr_debug("EINVAL: aio_rw_flags\n");
1602 goto out_put_req;
1603 }
1604
1605 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1606 if (unlikely(ret)) {
1607 pr_debug("EFAULT: aio_key\n");
1608 goto out_put_req;
1609 }
1610
1611 req->ki_user_iocb = user_iocb;
1612 req->ki_user_data = iocb->aio_data;
1613
1614 get_file(file);
1615 switch (iocb->aio_lio_opcode) {
1616 case IOCB_CMD_PREAD:
1617 ret = aio_read(&req->common, iocb, false, compat);
1618 break;
1619 case IOCB_CMD_PWRITE:
1620 ret = aio_write(&req->common, iocb, false, compat);
1621 break;
1622 case IOCB_CMD_PREADV:
1623 ret = aio_read(&req->common, iocb, true, compat);
1624 break;
1625 case IOCB_CMD_PWRITEV:
1626 ret = aio_write(&req->common, iocb, true, compat);
1627 break;
1628 default:
1629 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1630 ret = -EINVAL;
1631 break;
1632 }
1633 fput(file);
1634
1635 if (ret && ret != -EIOCBQUEUED)
1636 goto out_put_req;
1637 return 0;
1638out_put_req:
1639 put_reqs_available(ctx, 1);
1640 percpu_ref_put(&ctx->reqs);
1641 kiocb_free(req);
1642 return ret;
1643}
1644
1645static long do_io_submit(aio_context_t ctx_id, long nr,
1646 struct iocb __user *__user *iocbpp, bool compat)
1647{
1648 struct kioctx *ctx;
1649 long ret = 0;
1650 int i = 0;
1651 struct blk_plug plug;
1652
1653 if (unlikely(nr < 0))
1654 return -EINVAL;
1655
1656 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1657 nr = LONG_MAX/sizeof(*iocbpp);
1658
1659 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1660 return -EFAULT;
1661
1662 ctx = lookup_ioctx(ctx_id);
1663 if (unlikely(!ctx)) {
1664 pr_debug("EINVAL: invalid context id\n");
1665 return -EINVAL;
1666 }
1667
1668 blk_start_plug(&plug);
1669
1670 /*
1671 * AKPM: should this return a partial result if some of the IOs were
1672 * successfully submitted?
1673 */
1674 for (i=0; i<nr; i++) {
1675 struct iocb __user *user_iocb;
1676 struct iocb tmp;
1677
1678 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1679 ret = -EFAULT;
1680 break;
1681 }
1682
1683 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1684 ret = -EFAULT;
1685 break;
1686 }
1687
1688 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1689 if (ret)
1690 break;
1691 }
1692 blk_finish_plug(&plug);
1693
1694 percpu_ref_put(&ctx->users);
1695 return i ? i : ret;
1696}
1697
1698/* sys_io_submit:
1699 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1700 * the number of iocbs queued. May return -EINVAL if the aio_context
1701 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1702 * *iocbpp[0] is not properly initialized, if the operation specified
1703 * is invalid for the file descriptor in the iocb. May fail with
1704 * -EFAULT if any of the data structures point to invalid data. May
1705 * fail with -EBADF if the file descriptor specified in the first
1706 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1707 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1708 * fail with -ENOSYS if not implemented.
1709 */
1710SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1711 struct iocb __user * __user *, iocbpp)
1712{
1713 return do_io_submit(ctx_id, nr, iocbpp, 0);
1714}
1715
1716#ifdef CONFIG_COMPAT
1717static inline long
1718copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1719{
1720 compat_uptr_t uptr;
1721 int i;
1722
1723 for (i = 0; i < nr; ++i) {
1724 if (get_user(uptr, ptr32 + i))
1725 return -EFAULT;
1726 if (put_user(compat_ptr(uptr), ptr64 + i))
1727 return -EFAULT;
1728 }
1729 return 0;
1730}
1731
1732#define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1733
1734COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1735 int, nr, u32 __user *, iocb)
1736{
1737 struct iocb __user * __user *iocb64;
1738 long ret;
1739
1740 if (unlikely(nr < 0))
1741 return -EINVAL;
1742
1743 if (nr > MAX_AIO_SUBMITS)
1744 nr = MAX_AIO_SUBMITS;
1745
1746 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1747 ret = copy_iocb(nr, iocb, iocb64);
1748 if (!ret)
1749 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1750 return ret;
1751}
1752#endif
1753
1754/* lookup_kiocb
1755 * Finds a given iocb for cancellation.
1756 */
1757static struct aio_kiocb *
1758lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1759{
1760 struct aio_kiocb *kiocb;
1761
1762 assert_spin_locked(&ctx->ctx_lock);
1763
1764 if (key != KIOCB_KEY)
1765 return NULL;
1766
1767 /* TODO: use a hash or array, this sucks. */
1768 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1769 if (kiocb->ki_user_iocb == iocb)
1770 return kiocb;
1771 }
1772 return NULL;
1773}
1774
1775/* sys_io_cancel:
1776 * Attempts to cancel an iocb previously passed to io_submit. If
1777 * the operation is successfully cancelled, the resulting event is
1778 * copied into the memory pointed to by result without being placed
1779 * into the completion queue and 0 is returned. May fail with
1780 * -EFAULT if any of the data structures pointed to are invalid.
1781 * May fail with -EINVAL if aio_context specified by ctx_id is
1782 * invalid. May fail with -EAGAIN if the iocb specified was not
1783 * cancelled. Will fail with -ENOSYS if not implemented.
1784 */
1785SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1786 struct io_event __user *, result)
1787{
1788 struct kioctx *ctx;
1789 struct aio_kiocb *kiocb;
1790 u32 key;
1791 int ret;
1792
1793 ret = get_user(key, &iocb->aio_key);
1794 if (unlikely(ret))
1795 return -EFAULT;
1796
1797 ctx = lookup_ioctx(ctx_id);
1798 if (unlikely(!ctx))
1799 return -EINVAL;
1800
1801 spin_lock_irq(&ctx->ctx_lock);
1802
1803 kiocb = lookup_kiocb(ctx, iocb, key);
1804 if (kiocb)
1805 ret = kiocb_cancel(kiocb);
1806 else
1807 ret = -EINVAL;
1808
1809 spin_unlock_irq(&ctx->ctx_lock);
1810
1811 if (!ret) {
1812 /*
1813 * The result argument is no longer used - the io_event is
1814 * always delivered via the ring buffer. -EINPROGRESS indicates
1815 * cancellation is progress:
1816 */
1817 ret = -EINPROGRESS;
1818 }
1819
1820 percpu_ref_put(&ctx->users);
1821
1822 return ret;
1823}
1824
1825static long do_io_getevents(aio_context_t ctx_id,
1826 long min_nr,
1827 long nr,
1828 struct io_event __user *events,
1829 struct timespec64 *ts)
1830{
1831 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1832 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1833 long ret = -EINVAL;
1834
1835 if (likely(ioctx)) {
1836 if (likely(min_nr <= nr && min_nr >= 0))
1837 ret = read_events(ioctx, min_nr, nr, events, until);
1838 percpu_ref_put(&ioctx->users);
1839 }
1840
1841 return ret;
1842}
1843
1844/* io_getevents:
1845 * Attempts to read at least min_nr events and up to nr events from
1846 * the completion queue for the aio_context specified by ctx_id. If
1847 * it succeeds, the number of read events is returned. May fail with
1848 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1849 * out of range, if timeout is out of range. May fail with -EFAULT
1850 * if any of the memory specified is invalid. May return 0 or
1851 * < min_nr if the timeout specified by timeout has elapsed
1852 * before sufficient events are available, where timeout == NULL
1853 * specifies an infinite timeout. Note that the timeout pointed to by
1854 * timeout is relative. Will fail with -ENOSYS if not implemented.
1855 */
1856SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1857 long, min_nr,
1858 long, nr,
1859 struct io_event __user *, events,
1860 struct timespec __user *, timeout)
1861{
1862 struct timespec64 ts;
1863
1864 if (timeout) {
1865 if (unlikely(get_timespec64(&ts, timeout)))
1866 return -EFAULT;
1867 }
1868
1869 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1870}
1871
1872#ifdef CONFIG_COMPAT
1873COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1874 compat_long_t, min_nr,
1875 compat_long_t, nr,
1876 struct io_event __user *, events,
1877 struct compat_timespec __user *, timeout)
1878{
1879 struct timespec64 t;
1880
1881 if (timeout) {
1882 if (compat_get_timespec64(&t, timeout))
1883 return -EFAULT;
1884
1885 }
1886
1887 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1888}
1889#endif