Linux Audio

Check our new training course

Loading...
   1/*
   2 *	An async IO implementation for Linux
   3 *	Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *	Implements an efficient asynchronous io interface.
   6 *
   7 *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *	See ../COPYING for licensing terms.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/errno.h>
  14#include <linux/time.h>
  15#include <linux/aio_abi.h>
  16#include <linux/export.h>
  17#include <linux/syscalls.h>
  18#include <linux/backing-dev.h>
  19#include <linux/uio.h>
  20
  21#define DEBUG 0
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/timer.h>
  31#include <linux/aio.h>
  32#include <linux/highmem.h>
  33#include <linux/workqueue.h>
  34#include <linux/security.h>
  35#include <linux/eventfd.h>
  36#include <linux/blkdev.h>
  37#include <linux/compat.h>
  38
  39#include <asm/kmap_types.h>
  40#include <asm/uaccess.h>
  41
  42#if DEBUG > 1
  43#define dprintk		printk
  44#else
  45#define dprintk(x...)	do { ; } while (0)
  46#endif
  47
  48/*------ sysctl variables----*/
  49static DEFINE_SPINLOCK(aio_nr_lock);
  50unsigned long aio_nr;		/* current system wide number of aio requests */
  51unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  52/*----end sysctl variables---*/
  53
  54static struct kmem_cache	*kiocb_cachep;
  55static struct kmem_cache	*kioctx_cachep;
  56
  57static struct workqueue_struct *aio_wq;
  58
  59/* Used for rare fput completion. */
  60static void aio_fput_routine(struct work_struct *);
  61static DECLARE_WORK(fput_work, aio_fput_routine);
  62
  63static DEFINE_SPINLOCK(fput_lock);
  64static LIST_HEAD(fput_head);
  65
  66static void aio_kick_handler(struct work_struct *);
  67static void aio_queue_work(struct kioctx *);
  68
  69/* aio_setup
  70 *	Creates the slab caches used by the aio routines, panic on
  71 *	failure as this is done early during the boot sequence.
  72 */
  73static int __init aio_setup(void)
  74{
  75	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  76	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  77
  78	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
  79	BUG_ON(!aio_wq);
  80
  81	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  82
  83	return 0;
  84}
  85__initcall(aio_setup);
  86
  87static void aio_free_ring(struct kioctx *ctx)
  88{
  89	struct aio_ring_info *info = &ctx->ring_info;
  90	long i;
  91
  92	for (i=0; i<info->nr_pages; i++)
  93		put_page(info->ring_pages[i]);
  94
  95	if (info->mmap_size) {
  96		BUG_ON(ctx->mm != current->mm);
  97		vm_munmap(info->mmap_base, info->mmap_size);
  98	}
  99
 100	if (info->ring_pages && info->ring_pages != info->internal_pages)
 101		kfree(info->ring_pages);
 102	info->ring_pages = NULL;
 103	info->nr = 0;
 104}
 105
 106static int aio_setup_ring(struct kioctx *ctx)
 107{
 108	struct aio_ring *ring;
 109	struct aio_ring_info *info = &ctx->ring_info;
 110	unsigned nr_events = ctx->max_reqs;
 111	unsigned long size;
 112	int nr_pages;
 113
 114	/* Compensate for the ring buffer's head/tail overlap entry */
 115	nr_events += 2;	/* 1 is required, 2 for good luck */
 116
 117	size = sizeof(struct aio_ring);
 118	size += sizeof(struct io_event) * nr_events;
 119	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
 120
 121	if (nr_pages < 0)
 122		return -EINVAL;
 123
 124	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
 125
 126	info->nr = 0;
 127	info->ring_pages = info->internal_pages;
 128	if (nr_pages > AIO_RING_PAGES) {
 129		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 130		if (!info->ring_pages)
 131			return -ENOMEM;
 132	}
 133
 134	info->mmap_size = nr_pages * PAGE_SIZE;
 135	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
 136	down_write(&ctx->mm->mmap_sem);
 137	info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size, 
 138					PROT_READ|PROT_WRITE,
 139					MAP_ANONYMOUS|MAP_PRIVATE, 0);
 140	if (IS_ERR((void *)info->mmap_base)) {
 141		up_write(&ctx->mm->mmap_sem);
 142		info->mmap_size = 0;
 143		aio_free_ring(ctx);
 144		return -EAGAIN;
 145	}
 146
 147	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
 148	info->nr_pages = get_user_pages(current, ctx->mm,
 149					info->mmap_base, nr_pages, 
 150					1, 0, info->ring_pages, NULL);
 151	up_write(&ctx->mm->mmap_sem);
 152
 153	if (unlikely(info->nr_pages != nr_pages)) {
 154		aio_free_ring(ctx);
 155		return -EAGAIN;
 156	}
 157
 158	ctx->user_id = info->mmap_base;
 159
 160	info->nr = nr_events;		/* trusted copy */
 161
 162	ring = kmap_atomic(info->ring_pages[0]);
 163	ring->nr = nr_events;	/* user copy */
 164	ring->id = ctx->user_id;
 165	ring->head = ring->tail = 0;
 166	ring->magic = AIO_RING_MAGIC;
 167	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 168	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 169	ring->header_length = sizeof(struct aio_ring);
 170	kunmap_atomic(ring);
 171
 172	return 0;
 173}
 174
 175
 176/* aio_ring_event: returns a pointer to the event at the given index from
 177 * kmap_atomic().  Release the pointer with put_aio_ring_event();
 178 */
 179#define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 180#define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 181#define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 182
 183#define aio_ring_event(info, nr) ({					\
 184	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
 185	struct io_event *__event;					\
 186	__event = kmap_atomic(						\
 187			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
 188	__event += pos % AIO_EVENTS_PER_PAGE;				\
 189	__event;							\
 190})
 191
 192#define put_aio_ring_event(event) do {		\
 193	struct io_event *__event = (event);	\
 194	(void)__event;				\
 195	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
 196} while(0)
 197
 198static void ctx_rcu_free(struct rcu_head *head)
 199{
 200	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
 201	kmem_cache_free(kioctx_cachep, ctx);
 202}
 203
 204/* __put_ioctx
 205 *	Called when the last user of an aio context has gone away,
 206 *	and the struct needs to be freed.
 207 */
 208static void __put_ioctx(struct kioctx *ctx)
 209{
 210	unsigned nr_events = ctx->max_reqs;
 211	BUG_ON(ctx->reqs_active);
 212
 213	cancel_delayed_work_sync(&ctx->wq);
 214	aio_free_ring(ctx);
 215	mmdrop(ctx->mm);
 216	ctx->mm = NULL;
 217	if (nr_events) {
 218		spin_lock(&aio_nr_lock);
 219		BUG_ON(aio_nr - nr_events > aio_nr);
 220		aio_nr -= nr_events;
 221		spin_unlock(&aio_nr_lock);
 222	}
 223	pr_debug("__put_ioctx: freeing %p\n", ctx);
 224	call_rcu(&ctx->rcu_head, ctx_rcu_free);
 225}
 226
 227static inline int try_get_ioctx(struct kioctx *kioctx)
 228{
 229	return atomic_inc_not_zero(&kioctx->users);
 230}
 231
 232static inline void put_ioctx(struct kioctx *kioctx)
 233{
 234	BUG_ON(atomic_read(&kioctx->users) <= 0);
 235	if (unlikely(atomic_dec_and_test(&kioctx->users)))
 236		__put_ioctx(kioctx);
 237}
 238
 239/* ioctx_alloc
 240 *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 241 */
 242static struct kioctx *ioctx_alloc(unsigned nr_events)
 243{
 244	struct mm_struct *mm;
 245	struct kioctx *ctx;
 246	int err = -ENOMEM;
 247
 248	/* Prevent overflows */
 249	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 250	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 251		pr_debug("ENOMEM: nr_events too high\n");
 252		return ERR_PTR(-EINVAL);
 253	}
 254
 255	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
 256		return ERR_PTR(-EAGAIN);
 257
 258	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 259	if (!ctx)
 260		return ERR_PTR(-ENOMEM);
 261
 262	ctx->max_reqs = nr_events;
 263	mm = ctx->mm = current->mm;
 264	atomic_inc(&mm->mm_count);
 265
 266	atomic_set(&ctx->users, 2);
 267	spin_lock_init(&ctx->ctx_lock);
 268	spin_lock_init(&ctx->ring_info.ring_lock);
 269	init_waitqueue_head(&ctx->wait);
 270
 271	INIT_LIST_HEAD(&ctx->active_reqs);
 272	INIT_LIST_HEAD(&ctx->run_list);
 273	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
 274
 275	if (aio_setup_ring(ctx) < 0)
 276		goto out_freectx;
 277
 278	/* limit the number of system wide aios */
 279	spin_lock(&aio_nr_lock);
 280	if (aio_nr + nr_events > aio_max_nr ||
 281	    aio_nr + nr_events < aio_nr) {
 282		spin_unlock(&aio_nr_lock);
 283		goto out_cleanup;
 284	}
 285	aio_nr += ctx->max_reqs;
 286	spin_unlock(&aio_nr_lock);
 287
 288	/* now link into global list. */
 289	spin_lock(&mm->ioctx_lock);
 290	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
 291	spin_unlock(&mm->ioctx_lock);
 292
 293	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 294		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
 295	return ctx;
 296
 297out_cleanup:
 298	err = -EAGAIN;
 299	aio_free_ring(ctx);
 300out_freectx:
 301	mmdrop(mm);
 302	kmem_cache_free(kioctx_cachep, ctx);
 303	dprintk("aio: error allocating ioctx %d\n", err);
 304	return ERR_PTR(err);
 305}
 306
 307/* kill_ctx
 308 *	Cancels all outstanding aio requests on an aio context.  Used 
 309 *	when the processes owning a context have all exited to encourage 
 310 *	the rapid destruction of the kioctx.
 311 */
 312static void kill_ctx(struct kioctx *ctx)
 313{
 314	int (*cancel)(struct kiocb *, struct io_event *);
 315	struct task_struct *tsk = current;
 316	DECLARE_WAITQUEUE(wait, tsk);
 317	struct io_event res;
 318
 319	spin_lock_irq(&ctx->ctx_lock);
 320	ctx->dead = 1;
 321	while (!list_empty(&ctx->active_reqs)) {
 322		struct list_head *pos = ctx->active_reqs.next;
 323		struct kiocb *iocb = list_kiocb(pos);
 324		list_del_init(&iocb->ki_list);
 325		cancel = iocb->ki_cancel;
 326		kiocbSetCancelled(iocb);
 327		if (cancel) {
 328			iocb->ki_users++;
 329			spin_unlock_irq(&ctx->ctx_lock);
 330			cancel(iocb, &res);
 331			spin_lock_irq(&ctx->ctx_lock);
 332		}
 333	}
 334
 335	if (!ctx->reqs_active)
 336		goto out;
 337
 338	add_wait_queue(&ctx->wait, &wait);
 339	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 340	while (ctx->reqs_active) {
 341		spin_unlock_irq(&ctx->ctx_lock);
 342		io_schedule();
 343		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 344		spin_lock_irq(&ctx->ctx_lock);
 345	}
 346	__set_task_state(tsk, TASK_RUNNING);
 347	remove_wait_queue(&ctx->wait, &wait);
 348
 349out:
 350	spin_unlock_irq(&ctx->ctx_lock);
 351}
 352
 353/* wait_on_sync_kiocb:
 354 *	Waits on the given sync kiocb to complete.
 355 */
 356ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
 357{
 358	while (iocb->ki_users) {
 359		set_current_state(TASK_UNINTERRUPTIBLE);
 360		if (!iocb->ki_users)
 361			break;
 362		io_schedule();
 363	}
 364	__set_current_state(TASK_RUNNING);
 365	return iocb->ki_user_data;
 366}
 367EXPORT_SYMBOL(wait_on_sync_kiocb);
 368
 369/* exit_aio: called when the last user of mm goes away.  At this point, 
 370 * there is no way for any new requests to be submited or any of the 
 371 * io_* syscalls to be called on the context.  However, there may be 
 372 * outstanding requests which hold references to the context; as they 
 373 * go away, they will call put_ioctx and release any pinned memory
 374 * associated with the request (held via struct page * references).
 375 */
 376void exit_aio(struct mm_struct *mm)
 377{
 378	struct kioctx *ctx;
 379
 380	while (!hlist_empty(&mm->ioctx_list)) {
 381		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
 382		hlist_del_rcu(&ctx->list);
 383
 384		kill_ctx(ctx);
 385
 386		if (1 != atomic_read(&ctx->users))
 387			printk(KERN_DEBUG
 388				"exit_aio:ioctx still alive: %d %d %d\n",
 389				atomic_read(&ctx->users), ctx->dead,
 390				ctx->reqs_active);
 391		/*
 392		 * We don't need to bother with munmap() here -
 393		 * exit_mmap(mm) is coming and it'll unmap everything.
 394		 * Since aio_free_ring() uses non-zero ->mmap_size
 395		 * as indicator that it needs to unmap the area,
 396		 * just set it to 0; aio_free_ring() is the only
 397		 * place that uses ->mmap_size, so it's safe.
 398		 * That way we get all munmap done to current->mm -
 399		 * all other callers have ctx->mm == current->mm.
 400		 */
 401		ctx->ring_info.mmap_size = 0;
 402		put_ioctx(ctx);
 403	}
 404}
 405
 406/* aio_get_req
 407 *	Allocate a slot for an aio request.  Increments the users count
 408 * of the kioctx so that the kioctx stays around until all requests are
 409 * complete.  Returns NULL if no requests are free.
 410 *
 411 * Returns with kiocb->users set to 2.  The io submit code path holds
 412 * an extra reference while submitting the i/o.
 413 * This prevents races between the aio code path referencing the
 414 * req (after submitting it) and aio_complete() freeing the req.
 415 */
 416static struct kiocb *__aio_get_req(struct kioctx *ctx)
 417{
 418	struct kiocb *req = NULL;
 419
 420	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 421	if (unlikely(!req))
 422		return NULL;
 423
 424	req->ki_flags = 0;
 425	req->ki_users = 2;
 426	req->ki_key = 0;
 427	req->ki_ctx = ctx;
 428	req->ki_cancel = NULL;
 429	req->ki_retry = NULL;
 430	req->ki_dtor = NULL;
 431	req->private = NULL;
 432	req->ki_iovec = NULL;
 433	INIT_LIST_HEAD(&req->ki_run_list);
 434	req->ki_eventfd = NULL;
 435
 436	return req;
 437}
 438
 439/*
 440 * struct kiocb's are allocated in batches to reduce the number of
 441 * times the ctx lock is acquired and released.
 442 */
 443#define KIOCB_BATCH_SIZE	32L
 444struct kiocb_batch {
 445	struct list_head head;
 446	long count; /* number of requests left to allocate */
 447};
 448
 449static void kiocb_batch_init(struct kiocb_batch *batch, long total)
 450{
 451	INIT_LIST_HEAD(&batch->head);
 452	batch->count = total;
 453}
 454
 455static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
 456{
 457	struct kiocb *req, *n;
 458
 459	if (list_empty(&batch->head))
 460		return;
 461
 462	spin_lock_irq(&ctx->ctx_lock);
 463	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 464		list_del(&req->ki_batch);
 465		list_del(&req->ki_list);
 466		kmem_cache_free(kiocb_cachep, req);
 467		ctx->reqs_active--;
 468	}
 469	if (unlikely(!ctx->reqs_active && ctx->dead))
 470		wake_up_all(&ctx->wait);
 471	spin_unlock_irq(&ctx->ctx_lock);
 472}
 473
 474/*
 475 * Allocate a batch of kiocbs.  This avoids taking and dropping the
 476 * context lock a lot during setup.
 477 */
 478static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
 479{
 480	unsigned short allocated, to_alloc;
 481	long avail;
 482	bool called_fput = false;
 483	struct kiocb *req, *n;
 484	struct aio_ring *ring;
 485
 486	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
 487	for (allocated = 0; allocated < to_alloc; allocated++) {
 488		req = __aio_get_req(ctx);
 489		if (!req)
 490			/* allocation failed, go with what we've got */
 491			break;
 492		list_add(&req->ki_batch, &batch->head);
 493	}
 494
 495	if (allocated == 0)
 496		goto out;
 497
 498retry:
 499	spin_lock_irq(&ctx->ctx_lock);
 500	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
 501
 502	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
 503	BUG_ON(avail < 0);
 504	if (avail == 0 && !called_fput) {
 505		/*
 506		 * Handle a potential starvation case.  It is possible that
 507		 * we hold the last reference on a struct file, causing us
 508		 * to delay the final fput to non-irq context.  In this case,
 509		 * ctx->reqs_active is artificially high.  Calling the fput
 510		 * routine here may free up a slot in the event completion
 511		 * ring, allowing this allocation to succeed.
 512		 */
 513		kunmap_atomic(ring);
 514		spin_unlock_irq(&ctx->ctx_lock);
 515		aio_fput_routine(NULL);
 516		called_fput = true;
 517		goto retry;
 518	}
 519
 520	if (avail < allocated) {
 521		/* Trim back the number of requests. */
 522		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
 523			list_del(&req->ki_batch);
 524			kmem_cache_free(kiocb_cachep, req);
 525			if (--allocated <= avail)
 526				break;
 527		}
 528	}
 529
 530	batch->count -= allocated;
 531	list_for_each_entry(req, &batch->head, ki_batch) {
 532		list_add(&req->ki_list, &ctx->active_reqs);
 533		ctx->reqs_active++;
 534	}
 535
 536	kunmap_atomic(ring);
 537	spin_unlock_irq(&ctx->ctx_lock);
 538
 539out:
 540	return allocated;
 541}
 542
 543static inline struct kiocb *aio_get_req(struct kioctx *ctx,
 544					struct kiocb_batch *batch)
 545{
 546	struct kiocb *req;
 547
 548	if (list_empty(&batch->head))
 549		if (kiocb_batch_refill(ctx, batch) == 0)
 550			return NULL;
 551	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
 552	list_del(&req->ki_batch);
 553	return req;
 554}
 555
 556static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
 557{
 558	assert_spin_locked(&ctx->ctx_lock);
 559
 560	if (req->ki_eventfd != NULL)
 561		eventfd_ctx_put(req->ki_eventfd);
 562	if (req->ki_dtor)
 563		req->ki_dtor(req);
 564	if (req->ki_iovec != &req->ki_inline_vec)
 565		kfree(req->ki_iovec);
 566	kmem_cache_free(kiocb_cachep, req);
 567	ctx->reqs_active--;
 568
 569	if (unlikely(!ctx->reqs_active && ctx->dead))
 570		wake_up_all(&ctx->wait);
 571}
 572
 573static void aio_fput_routine(struct work_struct *data)
 574{
 575	spin_lock_irq(&fput_lock);
 576	while (likely(!list_empty(&fput_head))) {
 577		struct kiocb *req = list_kiocb(fput_head.next);
 578		struct kioctx *ctx = req->ki_ctx;
 579
 580		list_del(&req->ki_list);
 581		spin_unlock_irq(&fput_lock);
 582
 583		/* Complete the fput(s) */
 584		if (req->ki_filp != NULL)
 585			fput(req->ki_filp);
 586
 587		/* Link the iocb into the context's free list */
 588		rcu_read_lock();
 589		spin_lock_irq(&ctx->ctx_lock);
 590		really_put_req(ctx, req);
 591		/*
 592		 * at that point ctx might've been killed, but actual
 593		 * freeing is RCU'd
 594		 */
 595		spin_unlock_irq(&ctx->ctx_lock);
 596		rcu_read_unlock();
 597
 598		spin_lock_irq(&fput_lock);
 599	}
 600	spin_unlock_irq(&fput_lock);
 601}
 602
 603/* __aio_put_req
 604 *	Returns true if this put was the last user of the request.
 605 */
 606static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
 607{
 608	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
 609		req, atomic_long_read(&req->ki_filp->f_count));
 610
 611	assert_spin_locked(&ctx->ctx_lock);
 612
 613	req->ki_users--;
 614	BUG_ON(req->ki_users < 0);
 615	if (likely(req->ki_users))
 616		return 0;
 617	list_del(&req->ki_list);		/* remove from active_reqs */
 618	req->ki_cancel = NULL;
 619	req->ki_retry = NULL;
 620
 621	/*
 622	 * Try to optimize the aio and eventfd file* puts, by avoiding to
 623	 * schedule work in case it is not final fput() time. In normal cases,
 624	 * we would not be holding the last reference to the file*, so
 625	 * this function will be executed w/out any aio kthread wakeup.
 626	 */
 627	if (unlikely(!fput_atomic(req->ki_filp))) {
 628		spin_lock(&fput_lock);
 629		list_add(&req->ki_list, &fput_head);
 630		spin_unlock(&fput_lock);
 631		schedule_work(&fput_work);
 632	} else {
 633		req->ki_filp = NULL;
 634		really_put_req(ctx, req);
 635	}
 636	return 1;
 637}
 638
 639/* aio_put_req
 640 *	Returns true if this put was the last user of the kiocb,
 641 *	false if the request is still in use.
 642 */
 643int aio_put_req(struct kiocb *req)
 644{
 645	struct kioctx *ctx = req->ki_ctx;
 646	int ret;
 647	spin_lock_irq(&ctx->ctx_lock);
 648	ret = __aio_put_req(ctx, req);
 649	spin_unlock_irq(&ctx->ctx_lock);
 650	return ret;
 651}
 652EXPORT_SYMBOL(aio_put_req);
 653
 654static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 655{
 656	struct mm_struct *mm = current->mm;
 657	struct kioctx *ctx, *ret = NULL;
 658	struct hlist_node *n;
 659
 660	rcu_read_lock();
 661
 662	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
 663		/*
 664		 * RCU protects us against accessing freed memory but
 665		 * we have to be careful not to get a reference when the
 666		 * reference count already dropped to 0 (ctx->dead test
 667		 * is unreliable because of races).
 668		 */
 669		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
 670			ret = ctx;
 671			break;
 672		}
 673	}
 674
 675	rcu_read_unlock();
 676	return ret;
 677}
 678
 679/*
 680 * Queue up a kiocb to be retried. Assumes that the kiocb
 681 * has already been marked as kicked, and places it on
 682 * the retry run list for the corresponding ioctx, if it
 683 * isn't already queued. Returns 1 if it actually queued
 684 * the kiocb (to tell the caller to activate the work
 685 * queue to process it), or 0, if it found that it was
 686 * already queued.
 687 */
 688static inline int __queue_kicked_iocb(struct kiocb *iocb)
 689{
 690	struct kioctx *ctx = iocb->ki_ctx;
 691
 692	assert_spin_locked(&ctx->ctx_lock);
 693
 694	if (list_empty(&iocb->ki_run_list)) {
 695		list_add_tail(&iocb->ki_run_list,
 696			&ctx->run_list);
 697		return 1;
 698	}
 699	return 0;
 700}
 701
 702/* aio_run_iocb
 703 *	This is the core aio execution routine. It is
 704 *	invoked both for initial i/o submission and
 705 *	subsequent retries via the aio_kick_handler.
 706 *	Expects to be invoked with iocb->ki_ctx->lock
 707 *	already held. The lock is released and reacquired
 708 *	as needed during processing.
 709 *
 710 * Calls the iocb retry method (already setup for the
 711 * iocb on initial submission) for operation specific
 712 * handling, but takes care of most of common retry
 713 * execution details for a given iocb. The retry method
 714 * needs to be non-blocking as far as possible, to avoid
 715 * holding up other iocbs waiting to be serviced by the
 716 * retry kernel thread.
 717 *
 718 * The trickier parts in this code have to do with
 719 * ensuring that only one retry instance is in progress
 720 * for a given iocb at any time. Providing that guarantee
 721 * simplifies the coding of individual aio operations as
 722 * it avoids various potential races.
 723 */
 724static ssize_t aio_run_iocb(struct kiocb *iocb)
 725{
 726	struct kioctx	*ctx = iocb->ki_ctx;
 727	ssize_t (*retry)(struct kiocb *);
 728	ssize_t ret;
 729
 730	if (!(retry = iocb->ki_retry)) {
 731		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
 732		return 0;
 733	}
 734
 735	/*
 736	 * We don't want the next retry iteration for this
 737	 * operation to start until this one has returned and
 738	 * updated the iocb state. However, wait_queue functions
 739	 * can trigger a kick_iocb from interrupt context in the
 740	 * meantime, indicating that data is available for the next
 741	 * iteration. We want to remember that and enable the
 742	 * next retry iteration _after_ we are through with
 743	 * this one.
 744	 *
 745	 * So, in order to be able to register a "kick", but
 746	 * prevent it from being queued now, we clear the kick
 747	 * flag, but make the kick code *think* that the iocb is
 748	 * still on the run list until we are actually done.
 749	 * When we are done with this iteration, we check if
 750	 * the iocb was kicked in the meantime and if so, queue
 751	 * it up afresh.
 752	 */
 753
 754	kiocbClearKicked(iocb);
 755
 756	/*
 757	 * This is so that aio_complete knows it doesn't need to
 758	 * pull the iocb off the run list (We can't just call
 759	 * INIT_LIST_HEAD because we don't want a kick_iocb to
 760	 * queue this on the run list yet)
 761	 */
 762	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
 763	spin_unlock_irq(&ctx->ctx_lock);
 764
 765	/* Quit retrying if the i/o has been cancelled */
 766	if (kiocbIsCancelled(iocb)) {
 767		ret = -EINTR;
 768		aio_complete(iocb, ret, 0);
 769		/* must not access the iocb after this */
 770		goto out;
 771	}
 772
 773	/*
 774	 * Now we are all set to call the retry method in async
 775	 * context.
 776	 */
 777	ret = retry(iocb);
 778
 779	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
 780		/*
 781		 * There's no easy way to restart the syscall since other AIO's
 782		 * may be already running. Just fail this IO with EINTR.
 783		 */
 784		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
 785			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
 786			ret = -EINTR;
 787		aio_complete(iocb, ret, 0);
 788	}
 789out:
 790	spin_lock_irq(&ctx->ctx_lock);
 791
 792	if (-EIOCBRETRY == ret) {
 793		/*
 794		 * OK, now that we are done with this iteration
 795		 * and know that there is more left to go,
 796		 * this is where we let go so that a subsequent
 797		 * "kick" can start the next iteration
 798		 */
 799
 800		/* will make __queue_kicked_iocb succeed from here on */
 801		INIT_LIST_HEAD(&iocb->ki_run_list);
 802		/* we must queue the next iteration ourselves, if it
 803		 * has already been kicked */
 804		if (kiocbIsKicked(iocb)) {
 805			__queue_kicked_iocb(iocb);
 806
 807			/*
 808			 * __queue_kicked_iocb will always return 1 here, because
 809			 * iocb->ki_run_list is empty at this point so it should
 810			 * be safe to unconditionally queue the context into the
 811			 * work queue.
 812			 */
 813			aio_queue_work(ctx);
 814		}
 815	}
 816	return ret;
 817}
 818
 819/*
 820 * __aio_run_iocbs:
 821 * 	Process all pending retries queued on the ioctx
 822 * 	run list.
 823 * Assumes it is operating within the aio issuer's mm
 824 * context.
 825 */
 826static int __aio_run_iocbs(struct kioctx *ctx)
 827{
 828	struct kiocb *iocb;
 829	struct list_head run_list;
 830
 831	assert_spin_locked(&ctx->ctx_lock);
 832
 833	list_replace_init(&ctx->run_list, &run_list);
 834	while (!list_empty(&run_list)) {
 835		iocb = list_entry(run_list.next, struct kiocb,
 836			ki_run_list);
 837		list_del(&iocb->ki_run_list);
 838		/*
 839		 * Hold an extra reference while retrying i/o.
 840		 */
 841		iocb->ki_users++;       /* grab extra reference */
 842		aio_run_iocb(iocb);
 843		__aio_put_req(ctx, iocb);
 844 	}
 845	if (!list_empty(&ctx->run_list))
 846		return 1;
 847	return 0;
 848}
 849
 850static void aio_queue_work(struct kioctx * ctx)
 851{
 852	unsigned long timeout;
 853	/*
 854	 * if someone is waiting, get the work started right
 855	 * away, otherwise, use a longer delay
 856	 */
 857	smp_mb();
 858	if (waitqueue_active(&ctx->wait))
 859		timeout = 1;
 860	else
 861		timeout = HZ/10;
 862	queue_delayed_work(aio_wq, &ctx->wq, timeout);
 863}
 864
 865/*
 866 * aio_run_all_iocbs:
 867 *	Process all pending retries queued on the ioctx
 868 *	run list, and keep running them until the list
 869 *	stays empty.
 870 * Assumes it is operating within the aio issuer's mm context.
 871 */
 872static inline void aio_run_all_iocbs(struct kioctx *ctx)
 873{
 874	spin_lock_irq(&ctx->ctx_lock);
 875	while (__aio_run_iocbs(ctx))
 876		;
 877	spin_unlock_irq(&ctx->ctx_lock);
 878}
 879
 880/*
 881 * aio_kick_handler:
 882 * 	Work queue handler triggered to process pending
 883 * 	retries on an ioctx. Takes on the aio issuer's
 884 *	mm context before running the iocbs, so that
 885 *	copy_xxx_user operates on the issuer's address
 886 *      space.
 887 * Run on aiod's context.
 888 */
 889static void aio_kick_handler(struct work_struct *work)
 890{
 891	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
 892	mm_segment_t oldfs = get_fs();
 893	struct mm_struct *mm;
 894	int requeue;
 895
 896	set_fs(USER_DS);
 897	use_mm(ctx->mm);
 898	spin_lock_irq(&ctx->ctx_lock);
 899	requeue =__aio_run_iocbs(ctx);
 900	mm = ctx->mm;
 901	spin_unlock_irq(&ctx->ctx_lock);
 902 	unuse_mm(mm);
 903	set_fs(oldfs);
 904	/*
 905	 * we're in a worker thread already; no point using non-zero delay
 906	 */
 907	if (requeue)
 908		queue_delayed_work(aio_wq, &ctx->wq, 0);
 909}
 910
 911
 912/*
 913 * Called by kick_iocb to queue the kiocb for retry
 914 * and if required activate the aio work queue to process
 915 * it
 916 */
 917static void try_queue_kicked_iocb(struct kiocb *iocb)
 918{
 919 	struct kioctx	*ctx = iocb->ki_ctx;
 920	unsigned long flags;
 921	int run = 0;
 922
 923	spin_lock_irqsave(&ctx->ctx_lock, flags);
 924	/* set this inside the lock so that we can't race with aio_run_iocb()
 925	 * testing it and putting the iocb on the run list under the lock */
 926	if (!kiocbTryKick(iocb))
 927		run = __queue_kicked_iocb(iocb);
 928	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 929	if (run)
 930		aio_queue_work(ctx);
 931}
 932
 933/*
 934 * kick_iocb:
 935 *      Called typically from a wait queue callback context
 936 *      to trigger a retry of the iocb.
 937 *      The retry is usually executed by aio workqueue
 938 *      threads (See aio_kick_handler).
 939 */
 940void kick_iocb(struct kiocb *iocb)
 941{
 942	/* sync iocbs are easy: they can only ever be executing from a 
 943	 * single context. */
 944	if (is_sync_kiocb(iocb)) {
 945		kiocbSetKicked(iocb);
 946	        wake_up_process(iocb->ki_obj.tsk);
 947		return;
 948	}
 949
 950	try_queue_kicked_iocb(iocb);
 951}
 952EXPORT_SYMBOL(kick_iocb);
 953
 954/* aio_complete
 955 *	Called when the io request on the given iocb is complete.
 956 *	Returns true if this is the last user of the request.  The 
 957 *	only other user of the request can be the cancellation code.
 958 */
 959int aio_complete(struct kiocb *iocb, long res, long res2)
 960{
 961	struct kioctx	*ctx = iocb->ki_ctx;
 962	struct aio_ring_info	*info;
 963	struct aio_ring	*ring;
 964	struct io_event	*event;
 965	unsigned long	flags;
 966	unsigned long	tail;
 967	int		ret;
 968
 969	/*
 970	 * Special case handling for sync iocbs:
 971	 *  - events go directly into the iocb for fast handling
 972	 *  - the sync task with the iocb in its stack holds the single iocb
 973	 *    ref, no other paths have a way to get another ref
 974	 *  - the sync task helpfully left a reference to itself in the iocb
 975	 */
 976	if (is_sync_kiocb(iocb)) {
 977		BUG_ON(iocb->ki_users != 1);
 978		iocb->ki_user_data = res;
 979		iocb->ki_users = 0;
 980		wake_up_process(iocb->ki_obj.tsk);
 981		return 1;
 982	}
 983
 984	info = &ctx->ring_info;
 985
 986	/* add a completion event to the ring buffer.
 987	 * must be done holding ctx->ctx_lock to prevent
 988	 * other code from messing with the tail
 989	 * pointer since we might be called from irq
 990	 * context.
 991	 */
 992	spin_lock_irqsave(&ctx->ctx_lock, flags);
 993
 994	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
 995		list_del_init(&iocb->ki_run_list);
 996
 997	/*
 998	 * cancelled requests don't get events, userland was given one
 999	 * when the event got cancelled.
1000	 */
1001	if (kiocbIsCancelled(iocb))
1002		goto put_rq;
1003
1004	ring = kmap_atomic(info->ring_pages[0]);
1005
1006	tail = info->tail;
1007	event = aio_ring_event(info, tail);
1008	if (++tail >= info->nr)
1009		tail = 0;
1010
1011	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1012	event->data = iocb->ki_user_data;
1013	event->res = res;
1014	event->res2 = res2;
1015
1016	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1017		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1018		res, res2);
1019
1020	/* after flagging the request as done, we
1021	 * must never even look at it again
1022	 */
1023	smp_wmb();	/* make event visible before updating tail */
1024
1025	info->tail = tail;
1026	ring->tail = tail;
1027
1028	put_aio_ring_event(event);
1029	kunmap_atomic(ring);
1030
1031	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1032
1033	/*
1034	 * Check if the user asked us to deliver the result through an
1035	 * eventfd. The eventfd_signal() function is safe to be called
1036	 * from IRQ context.
1037	 */
1038	if (iocb->ki_eventfd != NULL)
1039		eventfd_signal(iocb->ki_eventfd, 1);
1040
1041put_rq:
1042	/* everything turned out well, dispose of the aiocb. */
1043	ret = __aio_put_req(ctx, iocb);
1044
1045	/*
1046	 * We have to order our ring_info tail store above and test
1047	 * of the wait list below outside the wait lock.  This is
1048	 * like in wake_up_bit() where clearing a bit has to be
1049	 * ordered with the unlocked test.
1050	 */
1051	smp_mb();
1052
1053	if (waitqueue_active(&ctx->wait))
1054		wake_up(&ctx->wait);
1055
1056	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1057	return ret;
1058}
1059EXPORT_SYMBOL(aio_complete);
1060
1061/* aio_read_evt
1062 *	Pull an event off of the ioctx's event ring.  Returns the number of 
1063 *	events fetched (0 or 1 ;-)
1064 *	FIXME: make this use cmpxchg.
1065 *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1066 */
1067static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1068{
1069	struct aio_ring_info *info = &ioctx->ring_info;
1070	struct aio_ring *ring;
1071	unsigned long head;
1072	int ret = 0;
1073
1074	ring = kmap_atomic(info->ring_pages[0]);
1075	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1076		 (unsigned long)ring->head, (unsigned long)ring->tail,
1077		 (unsigned long)ring->nr);
1078
1079	if (ring->head == ring->tail)
1080		goto out;
1081
1082	spin_lock(&info->ring_lock);
1083
1084	head = ring->head % info->nr;
1085	if (head != ring->tail) {
1086		struct io_event *evp = aio_ring_event(info, head);
1087		*ent = *evp;
1088		head = (head + 1) % info->nr;
1089		smp_mb(); /* finish reading the event before updatng the head */
1090		ring->head = head;
1091		ret = 1;
1092		put_aio_ring_event(evp);
1093	}
1094	spin_unlock(&info->ring_lock);
1095
1096out:
1097	kunmap_atomic(ring);
1098	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1099		 (unsigned long)ring->head, (unsigned long)ring->tail);
1100	return ret;
1101}
1102
1103struct aio_timeout {
1104	struct timer_list	timer;
1105	int			timed_out;
1106	struct task_struct	*p;
1107};
1108
1109static void timeout_func(unsigned long data)
1110{
1111	struct aio_timeout *to = (struct aio_timeout *)data;
1112
1113	to->timed_out = 1;
1114	wake_up_process(to->p);
1115}
1116
1117static inline void init_timeout(struct aio_timeout *to)
1118{
1119	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1120	to->timed_out = 0;
1121	to->p = current;
1122}
1123
1124static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1125			       const struct timespec *ts)
1126{
1127	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1128	if (time_after(to->timer.expires, jiffies))
1129		add_timer(&to->timer);
1130	else
1131		to->timed_out = 1;
1132}
1133
1134static inline void clear_timeout(struct aio_timeout *to)
1135{
1136	del_singleshot_timer_sync(&to->timer);
1137}
1138
1139static int read_events(struct kioctx *ctx,
1140			long min_nr, long nr,
1141			struct io_event __user *event,
1142			struct timespec __user *timeout)
1143{
1144	long			start_jiffies = jiffies;
1145	struct task_struct	*tsk = current;
1146	DECLARE_WAITQUEUE(wait, tsk);
1147	int			ret;
1148	int			i = 0;
1149	struct io_event		ent;
1150	struct aio_timeout	to;
1151	int			retry = 0;
1152
1153	/* needed to zero any padding within an entry (there shouldn't be 
1154	 * any, but C is fun!
1155	 */
1156	memset(&ent, 0, sizeof(ent));
1157retry:
1158	ret = 0;
1159	while (likely(i < nr)) {
1160		ret = aio_read_evt(ctx, &ent);
1161		if (unlikely(ret <= 0))
1162			break;
1163
1164		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1165			ent.data, ent.obj, ent.res, ent.res2);
1166
1167		/* Could we split the check in two? */
1168		ret = -EFAULT;
1169		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1170			dprintk("aio: lost an event due to EFAULT.\n");
1171			break;
1172		}
1173		ret = 0;
1174
1175		/* Good, event copied to userland, update counts. */
1176		event ++;
1177		i ++;
1178	}
1179
1180	if (min_nr <= i)
1181		return i;
1182	if (ret)
1183		return ret;
1184
1185	/* End fast path */
1186
1187	/* racey check, but it gets redone */
1188	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1189		retry = 1;
1190		aio_run_all_iocbs(ctx);
1191		goto retry;
1192	}
1193
1194	init_timeout(&to);
1195	if (timeout) {
1196		struct timespec	ts;
1197		ret = -EFAULT;
1198		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1199			goto out;
1200
1201		set_timeout(start_jiffies, &to, &ts);
1202	}
1203
1204	while (likely(i < nr)) {
1205		add_wait_queue_exclusive(&ctx->wait, &wait);
1206		do {
1207			set_task_state(tsk, TASK_INTERRUPTIBLE);
1208			ret = aio_read_evt(ctx, &ent);
1209			if (ret)
1210				break;
1211			if (min_nr <= i)
1212				break;
1213			if (unlikely(ctx->dead)) {
1214				ret = -EINVAL;
1215				break;
1216			}
1217			if (to.timed_out)	/* Only check after read evt */
1218				break;
1219			/* Try to only show up in io wait if there are ops
1220			 *  in flight */
1221			if (ctx->reqs_active)
1222				io_schedule();
1223			else
1224				schedule();
1225			if (signal_pending(tsk)) {
1226				ret = -EINTR;
1227				break;
1228			}
1229			/*ret = aio_read_evt(ctx, &ent);*/
1230		} while (1) ;
1231
1232		set_task_state(tsk, TASK_RUNNING);
1233		remove_wait_queue(&ctx->wait, &wait);
1234
1235		if (unlikely(ret <= 0))
1236			break;
1237
1238		ret = -EFAULT;
1239		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1240			dprintk("aio: lost an event due to EFAULT.\n");
1241			break;
1242		}
1243
1244		/* Good, event copied to userland, update counts. */
1245		event ++;
1246		i ++;
1247	}
1248
1249	if (timeout)
1250		clear_timeout(&to);
1251out:
1252	destroy_timer_on_stack(&to.timer);
1253	return i ? i : ret;
1254}
1255
1256/* Take an ioctx and remove it from the list of ioctx's.  Protects 
1257 * against races with itself via ->dead.
1258 */
1259static void io_destroy(struct kioctx *ioctx)
1260{
1261	struct mm_struct *mm = current->mm;
1262	int was_dead;
1263
1264	/* delete the entry from the list is someone else hasn't already */
1265	spin_lock(&mm->ioctx_lock);
1266	was_dead = ioctx->dead;
1267	ioctx->dead = 1;
1268	hlist_del_rcu(&ioctx->list);
1269	spin_unlock(&mm->ioctx_lock);
1270
1271	dprintk("aio_release(%p)\n", ioctx);
1272	if (likely(!was_dead))
1273		put_ioctx(ioctx);	/* twice for the list */
1274
1275	kill_ctx(ioctx);
1276
1277	/*
1278	 * Wake up any waiters.  The setting of ctx->dead must be seen
1279	 * by other CPUs at this point.  Right now, we rely on the
1280	 * locking done by the above calls to ensure this consistency.
1281	 */
1282	wake_up_all(&ioctx->wait);
1283}
1284
1285/* sys_io_setup:
1286 *	Create an aio_context capable of receiving at least nr_events.
1287 *	ctxp must not point to an aio_context that already exists, and
1288 *	must be initialized to 0 prior to the call.  On successful
1289 *	creation of the aio_context, *ctxp is filled in with the resulting 
1290 *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1291 *	if the specified nr_events exceeds internal limits.  May fail 
1292 *	with -EAGAIN if the specified nr_events exceeds the user's limit 
1293 *	of available events.  May fail with -ENOMEM if insufficient kernel
1294 *	resources are available.  May fail with -EFAULT if an invalid
1295 *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1296 *	implemented.
1297 */
1298SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1299{
1300	struct kioctx *ioctx = NULL;
1301	unsigned long ctx;
1302	long ret;
1303
1304	ret = get_user(ctx, ctxp);
1305	if (unlikely(ret))
1306		goto out;
1307
1308	ret = -EINVAL;
1309	if (unlikely(ctx || nr_events == 0)) {
1310		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1311		         ctx, nr_events);
1312		goto out;
1313	}
1314
1315	ioctx = ioctx_alloc(nr_events);
1316	ret = PTR_ERR(ioctx);
1317	if (!IS_ERR(ioctx)) {
1318		ret = put_user(ioctx->user_id, ctxp);
1319		if (ret)
1320			io_destroy(ioctx);
1321		put_ioctx(ioctx);
1322	}
1323
1324out:
1325	return ret;
1326}
1327
1328/* sys_io_destroy:
1329 *	Destroy the aio_context specified.  May cancel any outstanding 
1330 *	AIOs and block on completion.  Will fail with -ENOSYS if not
1331 *	implemented.  May fail with -EINVAL if the context pointed to
1332 *	is invalid.
1333 */
1334SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1335{
1336	struct kioctx *ioctx = lookup_ioctx(ctx);
1337	if (likely(NULL != ioctx)) {
1338		io_destroy(ioctx);
1339		put_ioctx(ioctx);
1340		return 0;
1341	}
1342	pr_debug("EINVAL: io_destroy: invalid context id\n");
1343	return -EINVAL;
1344}
1345
1346static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1347{
1348	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1349
1350	BUG_ON(ret <= 0);
1351
1352	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1353		ssize_t this = min((ssize_t)iov->iov_len, ret);
1354		iov->iov_base += this;
1355		iov->iov_len -= this;
1356		iocb->ki_left -= this;
1357		ret -= this;
1358		if (iov->iov_len == 0) {
1359			iocb->ki_cur_seg++;
1360			iov++;
1361		}
1362	}
1363
1364	/* the caller should not have done more io than what fit in
1365	 * the remaining iovecs */
1366	BUG_ON(ret > 0 && iocb->ki_left == 0);
1367}
1368
1369static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1370{
1371	struct file *file = iocb->ki_filp;
1372	struct address_space *mapping = file->f_mapping;
1373	struct inode *inode = mapping->host;
1374	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1375			 unsigned long, loff_t);
1376	ssize_t ret = 0;
1377	unsigned short opcode;
1378
1379	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1380		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1381		rw_op = file->f_op->aio_read;
1382		opcode = IOCB_CMD_PREADV;
1383	} else {
1384		rw_op = file->f_op->aio_write;
1385		opcode = IOCB_CMD_PWRITEV;
1386	}
1387
1388	/* This matches the pread()/pwrite() logic */
1389	if (iocb->ki_pos < 0)
1390		return -EINVAL;
1391
1392	do {
1393		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1394			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1395			    iocb->ki_pos);
1396		if (ret > 0)
1397			aio_advance_iovec(iocb, ret);
1398
1399	/* retry all partial writes.  retry partial reads as long as its a
1400	 * regular file. */
1401	} while (ret > 0 && iocb->ki_left > 0 &&
1402		 (opcode == IOCB_CMD_PWRITEV ||
1403		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1404
1405	/* This means we must have transferred all that we could */
1406	/* No need to retry anymore */
1407	if ((ret == 0) || (iocb->ki_left == 0))
1408		ret = iocb->ki_nbytes - iocb->ki_left;
1409
1410	/* If we managed to write some out we return that, rather than
1411	 * the eventual error. */
1412	if (opcode == IOCB_CMD_PWRITEV
1413	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1414	    && iocb->ki_nbytes - iocb->ki_left)
1415		ret = iocb->ki_nbytes - iocb->ki_left;
1416
1417	return ret;
1418}
1419
1420static ssize_t aio_fdsync(struct kiocb *iocb)
1421{
1422	struct file *file = iocb->ki_filp;
1423	ssize_t ret = -EINVAL;
1424
1425	if (file->f_op->aio_fsync)
1426		ret = file->f_op->aio_fsync(iocb, 1);
1427	return ret;
1428}
1429
1430static ssize_t aio_fsync(struct kiocb *iocb)
1431{
1432	struct file *file = iocb->ki_filp;
1433	ssize_t ret = -EINVAL;
1434
1435	if (file->f_op->aio_fsync)
1436		ret = file->f_op->aio_fsync(iocb, 0);
1437	return ret;
1438}
1439
1440static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1441{
1442	ssize_t ret;
1443
1444#ifdef CONFIG_COMPAT
1445	if (compat)
1446		ret = compat_rw_copy_check_uvector(type,
1447				(struct compat_iovec __user *)kiocb->ki_buf,
1448				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1449				&kiocb->ki_iovec);
1450	else
1451#endif
1452		ret = rw_copy_check_uvector(type,
1453				(struct iovec __user *)kiocb->ki_buf,
1454				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1455				&kiocb->ki_iovec);
1456	if (ret < 0)
1457		goto out;
1458
1459	ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1460	if (ret < 0)
1461		goto out;
1462
1463	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1464	kiocb->ki_cur_seg = 0;
1465	/* ki_nbytes/left now reflect bytes instead of segs */
1466	kiocb->ki_nbytes = ret;
1467	kiocb->ki_left = ret;
1468
1469	ret = 0;
1470out:
1471	return ret;
1472}
1473
1474static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
1475{
1476	int bytes;
1477
1478	bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1479	if (bytes < 0)
1480		return bytes;
1481
1482	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1483	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1484	kiocb->ki_iovec->iov_len = bytes;
1485	kiocb->ki_nr_segs = 1;
1486	kiocb->ki_cur_seg = 0;
1487	return 0;
1488}
1489
1490/*
1491 * aio_setup_iocb:
1492 *	Performs the initial checks and aio retry method
1493 *	setup for the kiocb at the time of io submission.
1494 */
1495static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1496{
1497	struct file *file = kiocb->ki_filp;
1498	ssize_t ret = 0;
1499
1500	switch (kiocb->ki_opcode) {
1501	case IOCB_CMD_PREAD:
1502		ret = -EBADF;
1503		if (unlikely(!(file->f_mode & FMODE_READ)))
1504			break;
1505		ret = -EFAULT;
1506		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1507			kiocb->ki_left)))
1508			break;
1509		ret = aio_setup_single_vector(READ, file, kiocb);
1510		if (ret)
1511			break;
1512		ret = -EINVAL;
1513		if (file->f_op->aio_read)
1514			kiocb->ki_retry = aio_rw_vect_retry;
1515		break;
1516	case IOCB_CMD_PWRITE:
1517		ret = -EBADF;
1518		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1519			break;
1520		ret = -EFAULT;
1521		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1522			kiocb->ki_left)))
1523			break;
1524		ret = aio_setup_single_vector(WRITE, file, kiocb);
1525		if (ret)
1526			break;
1527		ret = -EINVAL;
1528		if (file->f_op->aio_write)
1529			kiocb->ki_retry = aio_rw_vect_retry;
1530		break;
1531	case IOCB_CMD_PREADV:
1532		ret = -EBADF;
1533		if (unlikely(!(file->f_mode & FMODE_READ)))
1534			break;
1535		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1536		if (ret)
1537			break;
1538		ret = -EINVAL;
1539		if (file->f_op->aio_read)
1540			kiocb->ki_retry = aio_rw_vect_retry;
1541		break;
1542	case IOCB_CMD_PWRITEV:
1543		ret = -EBADF;
1544		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1545			break;
1546		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1547		if (ret)
1548			break;
1549		ret = -EINVAL;
1550		if (file->f_op->aio_write)
1551			kiocb->ki_retry = aio_rw_vect_retry;
1552		break;
1553	case IOCB_CMD_FDSYNC:
1554		ret = -EINVAL;
1555		if (file->f_op->aio_fsync)
1556			kiocb->ki_retry = aio_fdsync;
1557		break;
1558	case IOCB_CMD_FSYNC:
1559		ret = -EINVAL;
1560		if (file->f_op->aio_fsync)
1561			kiocb->ki_retry = aio_fsync;
1562		break;
1563	default:
1564		dprintk("EINVAL: io_submit: no operation provided\n");
1565		ret = -EINVAL;
1566	}
1567
1568	if (!kiocb->ki_retry)
1569		return ret;
1570
1571	return 0;
1572}
1573
1574static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1575			 struct iocb *iocb, struct kiocb_batch *batch,
1576			 bool compat)
1577{
1578	struct kiocb *req;
1579	struct file *file;
1580	ssize_t ret;
1581
1582	/* enforce forwards compatibility on users */
1583	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1584		pr_debug("EINVAL: io_submit: reserve field set\n");
1585		return -EINVAL;
1586	}
1587
1588	/* prevent overflows */
1589	if (unlikely(
1590	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1591	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1592	    ((ssize_t)iocb->aio_nbytes < 0)
1593	   )) {
1594		pr_debug("EINVAL: io_submit: overflow check\n");
1595		return -EINVAL;
1596	}
1597
1598	file = fget(iocb->aio_fildes);
1599	if (unlikely(!file))
1600		return -EBADF;
1601
1602	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1603	if (unlikely(!req)) {
1604		fput(file);
1605		return -EAGAIN;
1606	}
1607	req->ki_filp = file;
1608	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1609		/*
1610		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1611		 * instance of the file* now. The file descriptor must be
1612		 * an eventfd() fd, and will be signaled for each completed
1613		 * event using the eventfd_signal() function.
1614		 */
1615		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1616		if (IS_ERR(req->ki_eventfd)) {
1617			ret = PTR_ERR(req->ki_eventfd);
1618			req->ki_eventfd = NULL;
1619			goto out_put_req;
1620		}
1621	}
1622
1623	ret = put_user(req->ki_key, &user_iocb->aio_key);
1624	if (unlikely(ret)) {
1625		dprintk("EFAULT: aio_key\n");
1626		goto out_put_req;
1627	}
1628
1629	req->ki_obj.user = user_iocb;
1630	req->ki_user_data = iocb->aio_data;
1631	req->ki_pos = iocb->aio_offset;
1632
1633	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1634	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1635	req->ki_opcode = iocb->aio_lio_opcode;
1636
1637	ret = aio_setup_iocb(req, compat);
1638
1639	if (ret)
1640		goto out_put_req;
1641
1642	spin_lock_irq(&ctx->ctx_lock);
1643	/*
1644	 * We could have raced with io_destroy() and are currently holding a
1645	 * reference to ctx which should be destroyed. We cannot submit IO
1646	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1647	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1648	 * for outstanding IO and the barrier between these two is realized by
1649	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1650	 * increment ctx->reqs_active before checking for ctx->dead and the
1651	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1652	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1653	 * finish.
1654	 */
1655	if (ctx->dead) {
1656		spin_unlock_irq(&ctx->ctx_lock);
1657		ret = -EINVAL;
1658		goto out_put_req;
1659	}
1660	aio_run_iocb(req);
1661	if (!list_empty(&ctx->run_list)) {
1662		/* drain the run list */
1663		while (__aio_run_iocbs(ctx))
1664			;
1665	}
1666	spin_unlock_irq(&ctx->ctx_lock);
1667
1668	aio_put_req(req);	/* drop extra ref to req */
1669	return 0;
1670
1671out_put_req:
1672	aio_put_req(req);	/* drop extra ref to req */
1673	aio_put_req(req);	/* drop i/o ref to req */
1674	return ret;
1675}
1676
1677long do_io_submit(aio_context_t ctx_id, long nr,
1678		  struct iocb __user *__user *iocbpp, bool compat)
1679{
1680	struct kioctx *ctx;
1681	long ret = 0;
1682	int i = 0;
1683	struct blk_plug plug;
1684	struct kiocb_batch batch;
1685
1686	if (unlikely(nr < 0))
1687		return -EINVAL;
1688
1689	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1690		nr = LONG_MAX/sizeof(*iocbpp);
1691
1692	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1693		return -EFAULT;
1694
1695	ctx = lookup_ioctx(ctx_id);
1696	if (unlikely(!ctx)) {
1697		pr_debug("EINVAL: io_submit: invalid context id\n");
1698		return -EINVAL;
1699	}
1700
1701	kiocb_batch_init(&batch, nr);
1702
1703	blk_start_plug(&plug);
1704
1705	/*
1706	 * AKPM: should this return a partial result if some of the IOs were
1707	 * successfully submitted?
1708	 */
1709	for (i=0; i<nr; i++) {
1710		struct iocb __user *user_iocb;
1711		struct iocb tmp;
1712
1713		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1714			ret = -EFAULT;
1715			break;
1716		}
1717
1718		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1719			ret = -EFAULT;
1720			break;
1721		}
1722
1723		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1724		if (ret)
1725			break;
1726	}
1727	blk_finish_plug(&plug);
1728
1729	kiocb_batch_free(ctx, &batch);
1730	put_ioctx(ctx);
1731	return i ? i : ret;
1732}
1733
1734/* sys_io_submit:
1735 *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1736 *	the number of iocbs queued.  May return -EINVAL if the aio_context
1737 *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1738 *	*iocbpp[0] is not properly initialized, if the operation specified
1739 *	is invalid for the file descriptor in the iocb.  May fail with
1740 *	-EFAULT if any of the data structures point to invalid data.  May
1741 *	fail with -EBADF if the file descriptor specified in the first
1742 *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1743 *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1744 *	fail with -ENOSYS if not implemented.
1745 */
1746SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1747		struct iocb __user * __user *, iocbpp)
1748{
1749	return do_io_submit(ctx_id, nr, iocbpp, 0);
1750}
1751
1752/* lookup_kiocb
1753 *	Finds a given iocb for cancellation.
1754 */
1755static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1756				  u32 key)
1757{
1758	struct list_head *pos;
1759
1760	assert_spin_locked(&ctx->ctx_lock);
1761
1762	/* TODO: use a hash or array, this sucks. */
1763	list_for_each(pos, &ctx->active_reqs) {
1764		struct kiocb *kiocb = list_kiocb(pos);
1765		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1766			return kiocb;
1767	}
1768	return NULL;
1769}
1770
1771/* sys_io_cancel:
1772 *	Attempts to cancel an iocb previously passed to io_submit.  If
1773 *	the operation is successfully cancelled, the resulting event is
1774 *	copied into the memory pointed to by result without being placed
1775 *	into the completion queue and 0 is returned.  May fail with
1776 *	-EFAULT if any of the data structures pointed to are invalid.
1777 *	May fail with -EINVAL if aio_context specified by ctx_id is
1778 *	invalid.  May fail with -EAGAIN if the iocb specified was not
1779 *	cancelled.  Will fail with -ENOSYS if not implemented.
1780 */
1781SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1782		struct io_event __user *, result)
1783{
1784	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1785	struct kioctx *ctx;
1786	struct kiocb *kiocb;
1787	u32 key;
1788	int ret;
1789
1790	ret = get_user(key, &iocb->aio_key);
1791	if (unlikely(ret))
1792		return -EFAULT;
1793
1794	ctx = lookup_ioctx(ctx_id);
1795	if (unlikely(!ctx))
1796		return -EINVAL;
1797
1798	spin_lock_irq(&ctx->ctx_lock);
1799	ret = -EAGAIN;
1800	kiocb = lookup_kiocb(ctx, iocb, key);
1801	if (kiocb && kiocb->ki_cancel) {
1802		cancel = kiocb->ki_cancel;
1803		kiocb->ki_users ++;
1804		kiocbSetCancelled(kiocb);
1805	} else
1806		cancel = NULL;
1807	spin_unlock_irq(&ctx->ctx_lock);
1808
1809	if (NULL != cancel) {
1810		struct io_event tmp;
1811		pr_debug("calling cancel\n");
1812		memset(&tmp, 0, sizeof(tmp));
1813		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1814		tmp.data = kiocb->ki_user_data;
1815		ret = cancel(kiocb, &tmp);
1816		if (!ret) {
1817			/* Cancellation succeeded -- copy the result
1818			 * into the user's buffer.
1819			 */
1820			if (copy_to_user(result, &tmp, sizeof(tmp)))
1821				ret = -EFAULT;
1822		}
1823	} else
1824		ret = -EINVAL;
1825
1826	put_ioctx(ctx);
1827
1828	return ret;
1829}
1830
1831/* io_getevents:
1832 *	Attempts to read at least min_nr events and up to nr events from
1833 *	the completion queue for the aio_context specified by ctx_id. If
1834 *	it succeeds, the number of read events is returned. May fail with
1835 *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1836 *	out of range, if timeout is out of range.  May fail with -EFAULT
1837 *	if any of the memory specified is invalid.  May return 0 or
1838 *	< min_nr if the timeout specified by timeout has elapsed
1839 *	before sufficient events are available, where timeout == NULL
1840 *	specifies an infinite timeout. Note that the timeout pointed to by
1841 *	timeout is relative and will be updated if not NULL and the
1842 *	operation blocks. Will fail with -ENOSYS if not implemented.
1843 */
1844SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1845		long, min_nr,
1846		long, nr,
1847		struct io_event __user *, events,
1848		struct timespec __user *, timeout)
1849{
1850	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1851	long ret = -EINVAL;
1852
1853	if (likely(ioctx)) {
1854		if (likely(min_nr <= nr && min_nr >= 0))
1855			ret = read_events(ioctx, min_nr, nr, events, timeout);
1856		put_ioctx(ioctx);
1857	}
1858
1859	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1860	return ret;
1861}