Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/sched.h>
   7#include <linux/netdevice.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_common.h"
  11#include "ixgbe_phy.h"
  12
  13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  19					u16 count);
  20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  24
  25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  28					     u16 words, u16 *data);
  29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  30					     u16 words, u16 *data);
  31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  32						 u16 offset);
  33static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
  34
  35/* Base table for registers values that change by MAC */
  36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  37	IXGBE_MVALS_INIT(8259X)
  38};
  39
  40/**
  41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  42 *  control
  43 *  @hw: pointer to hardware structure
  44 *
  45 *  There are several phys that do not support autoneg flow control. This
  46 *  function check the device id to see if the associated phy supports
  47 *  autoneg flow control.
  48 **/
  49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  50{
  51	bool supported = false;
  52	ixgbe_link_speed speed;
  53	bool link_up;
  54
  55	switch (hw->phy.media_type) {
  56	case ixgbe_media_type_fiber:
  57		/* flow control autoneg black list */
  58		switch (hw->device_id) {
  59		case IXGBE_DEV_ID_X550EM_A_SFP:
  60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
  61			supported = false;
  62			break;
  63		default:
  64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
  65			/* if link is down, assume supported */
  66			if (link_up)
  67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
 
  68			else
  69				supported = true;
  70		}
  71
  72		break;
  73	case ixgbe_media_type_backplane:
  74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
  75			supported = false;
  76		else
  77			supported = true;
  78		break;
  79	case ixgbe_media_type_copper:
  80		/* only some copper devices support flow control autoneg */
  81		switch (hw->device_id) {
  82		case IXGBE_DEV_ID_82599_T3_LOM:
  83		case IXGBE_DEV_ID_X540T:
  84		case IXGBE_DEV_ID_X540T1:
  85		case IXGBE_DEV_ID_X550T:
  86		case IXGBE_DEV_ID_X550T1:
  87		case IXGBE_DEV_ID_X550EM_X_10G_T:
  88		case IXGBE_DEV_ID_X550EM_A_10G_T:
  89		case IXGBE_DEV_ID_X550EM_A_1G_T:
  90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
  91			supported = true;
  92			break;
  93		default:
  94			break;
  95		}
  96		break;
  97	default:
  98		break;
  99	}
 100
 101	if (!supported)
 102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 103		       hw->device_id);
 104
 105	return supported;
 106}
 107
 108/**
 109 *  ixgbe_setup_fc_generic - Set up flow control
 110 *  @hw: pointer to hardware structure
 111 *
 112 *  Called at init time to set up flow control.
 113 **/
 114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 115{
 116	s32 ret_val = 0;
 117	u32 reg = 0, reg_bp = 0;
 118	u16 reg_cu = 0;
 119	bool locked = false;
 120
 121	/*
 122	 * Validate the requested mode.  Strict IEEE mode does not allow
 123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 124	 */
 125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 127		return -EINVAL;
 128	}
 129
 130	/*
 131	 * 10gig parts do not have a word in the EEPROM to determine the
 132	 * default flow control setting, so we explicitly set it to full.
 133	 */
 134	if (hw->fc.requested_mode == ixgbe_fc_default)
 135		hw->fc.requested_mode = ixgbe_fc_full;
 136
 137	/*
 138	 * Set up the 1G and 10G flow control advertisement registers so the
 139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 141	 */
 142	switch (hw->phy.media_type) {
 143	case ixgbe_media_type_backplane:
 144		/* some MAC's need RMW protection on AUTOC */
 145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 146		if (ret_val)
 147			return ret_val;
 148
 149		fallthrough; /* only backplane uses autoc */
 150	case ixgbe_media_type_fiber:
 151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 152
 153		break;
 154	case ixgbe_media_type_copper:
 155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 156					MDIO_MMD_AN, &reg_cu);
 157		break;
 158	default:
 159		break;
 160	}
 161
 162	/*
 163	 * The possible values of fc.requested_mode are:
 164	 * 0: Flow control is completely disabled
 165	 * 1: Rx flow control is enabled (we can receive pause frames,
 166	 *    but not send pause frames).
 167	 * 2: Tx flow control is enabled (we can send pause frames but
 168	 *    we do not support receiving pause frames).
 169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 170	 * other: Invalid.
 171	 */
 172	switch (hw->fc.requested_mode) {
 173	case ixgbe_fc_none:
 174		/* Flow control completely disabled by software override. */
 175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 176		if (hw->phy.media_type == ixgbe_media_type_backplane)
 177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 178				    IXGBE_AUTOC_ASM_PAUSE);
 179		else if (hw->phy.media_type == ixgbe_media_type_copper)
 180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 181		break;
 182	case ixgbe_fc_tx_pause:
 183		/*
 184		 * Tx Flow control is enabled, and Rx Flow control is
 185		 * disabled by software override.
 186		 */
 187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 195		}
 196		break;
 197	case ixgbe_fc_rx_pause:
 198		/*
 199		 * Rx Flow control is enabled and Tx Flow control is
 200		 * disabled by software override. Since there really
 201		 * isn't a way to advertise that we are capable of RX
 202		 * Pause ONLY, we will advertise that we support both
 203		 * symmetric and asymmetric Rx PAUSE, as such we fall
 204		 * through to the fc_full statement.  Later, we will
 205		 * disable the adapter's ability to send PAUSE frames.
 206		 */
 207	case ixgbe_fc_full:
 208		/* Flow control (both Rx and Tx) is enabled by SW override. */
 209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 210		if (hw->phy.media_type == ixgbe_media_type_backplane)
 211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 212				  IXGBE_AUTOC_ASM_PAUSE;
 213		else if (hw->phy.media_type == ixgbe_media_type_copper)
 214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 215		break;
 216	default:
 217		hw_dbg(hw, "Flow control param set incorrectly\n");
 218		return -EIO;
 219	}
 220
 221	if (hw->mac.type != ixgbe_mac_X540) {
 222		/*
 223		 * Enable auto-negotiation between the MAC & PHY;
 224		 * the MAC will advertise clause 37 flow control.
 225		 */
 226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 228
 229		/* Disable AN timeout */
 230		if (hw->fc.strict_ieee)
 231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 232
 233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 235	}
 236
 237	/*
 238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 239	 * and copper. There is no need to set the PCS1GCTL register.
 240	 *
 241	 */
 242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 244		 * LESM is on, likewise reset_pipeline requries the lock as
 245		 * it also writes AUTOC.
 246		 */
 247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 248		if (ret_val)
 249			return ret_val;
 250
 251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 252		   ixgbe_device_supports_autoneg_fc(hw)) {
 253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 254				      MDIO_MMD_AN, reg_cu);
 255	}
 256
 257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 258	return ret_val;
 259}
 260
 261/**
 262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 263 *  @hw: pointer to hardware structure
 264 *
 265 *  Starts the hardware by filling the bus info structure and media type, clears
 266 *  all on chip counters, initializes receive address registers, multicast
 267 *  table, VLAN filter table, calls routine to set up link and flow control
 268 *  settings, and leaves transmit and receive units disabled and uninitialized
 269 **/
 270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 271{
 272	s32 ret_val;
 273	u32 ctrl_ext;
 274	u16 device_caps;
 275
 276	/* Set the media type */
 277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279	/* Identify the PHY */
 280	hw->phy.ops.identify(hw);
 281
 282	/* Clear the VLAN filter table */
 283	hw->mac.ops.clear_vfta(hw);
 284
 285	/* Clear statistics registers */
 286	hw->mac.ops.clear_hw_cntrs(hw);
 287
 288	/* Set No Snoop Disable */
 289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292	IXGBE_WRITE_FLUSH(hw);
 293
 294	/* Setup flow control if method for doing so */
 295	if (hw->mac.ops.setup_fc) {
 296		ret_val = hw->mac.ops.setup_fc(hw);
 297		if (ret_val)
 298			return ret_val;
 299	}
 300
 301	/* Cashe bit indicating need for crosstalk fix */
 302	switch (hw->mac.type) {
 303	case ixgbe_mac_82599EB:
 304	case ixgbe_mac_X550EM_x:
 305	case ixgbe_mac_x550em_a:
 306		hw->mac.ops.get_device_caps(hw, &device_caps);
 307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 308			hw->need_crosstalk_fix = false;
 309		else
 310			hw->need_crosstalk_fix = true;
 311		break;
 312	default:
 313		hw->need_crosstalk_fix = false;
 314		break;
 315	}
 316
 317	/* Clear adapter stopped flag */
 318	hw->adapter_stopped = false;
 319
 320	return 0;
 321}
 322
 323/**
 324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 325 *  @hw: pointer to hw structure
 326 *
 327 * Performs the init sequence common to the second generation
 328 * of 10 GbE devices.
 329 * Devices in the second generation:
 330 *     82599
 331 *     X540
 332 **/
 333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 334{
 335	u32 i;
 336
 337	/* Clear the rate limiters */
 338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 341	}
 342	IXGBE_WRITE_FLUSH(hw);
 343
 344	return 0;
 345}
 346
 347/**
 348 *  ixgbe_init_hw_generic - Generic hardware initialization
 349 *  @hw: pointer to hardware structure
 350 *
 351 *  Initialize the hardware by resetting the hardware, filling the bus info
 352 *  structure and media type, clears all on chip counters, initializes receive
 353 *  address registers, multicast table, VLAN filter table, calls routine to set
 354 *  up link and flow control settings, and leaves transmit and receive units
 355 *  disabled and uninitialized
 356 **/
 357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 358{
 359	s32 status;
 360
 361	/* Reset the hardware */
 362	status = hw->mac.ops.reset_hw(hw);
 363
 364	if (status == 0) {
 365		/* Start the HW */
 366		status = hw->mac.ops.start_hw(hw);
 367	}
 368
 369	/* Initialize the LED link active for LED blink support */
 370	if (hw->mac.ops.init_led_link_act)
 371		hw->mac.ops.init_led_link_act(hw);
 372
 373	return status;
 374}
 375
 376/**
 377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 378 *  @hw: pointer to hardware structure
 379 *
 380 *  Clears all hardware statistics counters by reading them from the hardware
 381 *  Statistics counters are clear on read.
 382 **/
 383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 384{
 385	u16 i = 0;
 386
 387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 391	for (i = 0; i < 8; i++)
 392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 393
 394	IXGBE_READ_REG(hw, IXGBE_MLFC);
 395	IXGBE_READ_REG(hw, IXGBE_MRFC);
 396	IXGBE_READ_REG(hw, IXGBE_RLEC);
 397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 399	if (hw->mac.type >= ixgbe_mac_82599EB) {
 400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 402	} else {
 403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 405	}
 406
 407	for (i = 0; i < 8; i++) {
 408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 410		if (hw->mac.type >= ixgbe_mac_82599EB) {
 411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 413		} else {
 414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 416		}
 417	}
 418	if (hw->mac.type >= ixgbe_mac_82599EB)
 419		for (i = 0; i < 8; i++)
 420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 421	IXGBE_READ_REG(hw, IXGBE_PRC64);
 422	IXGBE_READ_REG(hw, IXGBE_PRC127);
 423	IXGBE_READ_REG(hw, IXGBE_PRC255);
 424	IXGBE_READ_REG(hw, IXGBE_PRC511);
 425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 427	IXGBE_READ_REG(hw, IXGBE_GPRC);
 428	IXGBE_READ_REG(hw, IXGBE_BPRC);
 429	IXGBE_READ_REG(hw, IXGBE_MPRC);
 430	IXGBE_READ_REG(hw, IXGBE_GPTC);
 431	IXGBE_READ_REG(hw, IXGBE_GORCL);
 432	IXGBE_READ_REG(hw, IXGBE_GORCH);
 433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 435	if (hw->mac.type == ixgbe_mac_82598EB)
 436		for (i = 0; i < 8; i++)
 437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 438	IXGBE_READ_REG(hw, IXGBE_RUC);
 439	IXGBE_READ_REG(hw, IXGBE_RFC);
 440	IXGBE_READ_REG(hw, IXGBE_ROC);
 441	IXGBE_READ_REG(hw, IXGBE_RJC);
 442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 445	IXGBE_READ_REG(hw, IXGBE_TORL);
 446	IXGBE_READ_REG(hw, IXGBE_TORH);
 447	IXGBE_READ_REG(hw, IXGBE_TPR);
 448	IXGBE_READ_REG(hw, IXGBE_TPT);
 449	IXGBE_READ_REG(hw, IXGBE_PTC64);
 450	IXGBE_READ_REG(hw, IXGBE_PTC127);
 451	IXGBE_READ_REG(hw, IXGBE_PTC255);
 452	IXGBE_READ_REG(hw, IXGBE_PTC511);
 453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 455	IXGBE_READ_REG(hw, IXGBE_MPTC);
 456	IXGBE_READ_REG(hw, IXGBE_BPTC);
 457	for (i = 0; i < 16; i++) {
 458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 460		if (hw->mac.type >= ixgbe_mac_82599EB) {
 461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 466		} else {
 467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 469		}
 470	}
 471
 472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 473		if (hw->phy.id == 0)
 474			hw->phy.ops.identify(hw);
 475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 479	}
 480
 481	return 0;
 482}
 483
 484/**
 485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 486 *  @hw: pointer to hardware structure
 487 *  @pba_num: stores the part number string from the EEPROM
 488 *  @pba_num_size: part number string buffer length
 489 *
 490 *  Reads the part number string from the EEPROM.
 491 **/
 492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 493				  u32 pba_num_size)
 494{
 495	s32 ret_val;
 496	u16 data;
 497	u16 pba_ptr;
 498	u16 offset;
 499	u16 length;
 500
 501	if (pba_num == NULL) {
 502		hw_dbg(hw, "PBA string buffer was null\n");
 503		return -EINVAL;
 504	}
 505
 506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 507	if (ret_val) {
 508		hw_dbg(hw, "NVM Read Error\n");
 509		return ret_val;
 510	}
 511
 512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 513	if (ret_val) {
 514		hw_dbg(hw, "NVM Read Error\n");
 515		return ret_val;
 516	}
 517
 518	/*
 519	 * if data is not ptr guard the PBA must be in legacy format which
 520	 * means pba_ptr is actually our second data word for the PBA number
 521	 * and we can decode it into an ascii string
 522	 */
 523	if (data != IXGBE_PBANUM_PTR_GUARD) {
 524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 525
 526		/* we will need 11 characters to store the PBA */
 527		if (pba_num_size < 11) {
 528			hw_dbg(hw, "PBA string buffer too small\n");
 529			return -ENOSPC;
 530		}
 531
 532		/* extract hex string from data and pba_ptr */
 533		pba_num[0] = (data >> 12) & 0xF;
 534		pba_num[1] = (data >> 8) & 0xF;
 535		pba_num[2] = (data >> 4) & 0xF;
 536		pba_num[3] = data & 0xF;
 537		pba_num[4] = (pba_ptr >> 12) & 0xF;
 538		pba_num[5] = (pba_ptr >> 8) & 0xF;
 539		pba_num[6] = '-';
 540		pba_num[7] = 0;
 541		pba_num[8] = (pba_ptr >> 4) & 0xF;
 542		pba_num[9] = pba_ptr & 0xF;
 543
 544		/* put a null character on the end of our string */
 545		pba_num[10] = '\0';
 546
 547		/* switch all the data but the '-' to hex char */
 548		for (offset = 0; offset < 10; offset++) {
 549			if (pba_num[offset] < 0xA)
 550				pba_num[offset] += '0';
 551			else if (pba_num[offset] < 0x10)
 552				pba_num[offset] += 'A' - 0xA;
 553		}
 554
 555		return 0;
 556	}
 557
 558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 559	if (ret_val) {
 560		hw_dbg(hw, "NVM Read Error\n");
 561		return ret_val;
 562	}
 563
 564	if (length == 0xFFFF || length == 0) {
 565		hw_dbg(hw, "NVM PBA number section invalid length\n");
 566		return -EIO;
 567	}
 568
 569	/* check if pba_num buffer is big enough */
 570	if (pba_num_size  < (((u32)length * 2) - 1)) {
 571		hw_dbg(hw, "PBA string buffer too small\n");
 572		return -ENOSPC;
 573	}
 574
 575	/* trim pba length from start of string */
 576	pba_ptr++;
 577	length--;
 578
 579	for (offset = 0; offset < length; offset++) {
 580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 581		if (ret_val) {
 582			hw_dbg(hw, "NVM Read Error\n");
 583			return ret_val;
 584		}
 585		pba_num[offset * 2] = (u8)(data >> 8);
 586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 587	}
 588	pba_num[offset * 2] = '\0';
 589
 590	return 0;
 591}
 592
 593/**
 594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 595 *  @hw: pointer to hardware structure
 596 *  @mac_addr: Adapter MAC address
 597 *
 598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 599 *  A reset of the adapter must be performed prior to calling this function
 600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 601 **/
 602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 603{
 604	u32 rar_high;
 605	u32 rar_low;
 606	u16 i;
 607
 608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 610
 611	for (i = 0; i < 4; i++)
 612		mac_addr[i] = (u8)(rar_low >> (i*8));
 613
 614	for (i = 0; i < 2; i++)
 615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 616
 617	return 0;
 618}
 619
 620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 621{
 622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 623	case IXGBE_PCI_LINK_WIDTH_1:
 624		return ixgbe_bus_width_pcie_x1;
 625	case IXGBE_PCI_LINK_WIDTH_2:
 626		return ixgbe_bus_width_pcie_x2;
 627	case IXGBE_PCI_LINK_WIDTH_4:
 628		return ixgbe_bus_width_pcie_x4;
 629	case IXGBE_PCI_LINK_WIDTH_8:
 630		return ixgbe_bus_width_pcie_x8;
 631	default:
 632		return ixgbe_bus_width_unknown;
 633	}
 634}
 635
 636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 637{
 638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 639	case IXGBE_PCI_LINK_SPEED_2500:
 640		return ixgbe_bus_speed_2500;
 641	case IXGBE_PCI_LINK_SPEED_5000:
 642		return ixgbe_bus_speed_5000;
 643	case IXGBE_PCI_LINK_SPEED_8000:
 644		return ixgbe_bus_speed_8000;
 645	default:
 646		return ixgbe_bus_speed_unknown;
 647	}
 648}
 649
 650/**
 651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 652 *  @hw: pointer to hardware structure
 653 *
 654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 655 **/
 656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 657{
 658	u16 link_status;
 659
 660	hw->bus.type = ixgbe_bus_type_pci_express;
 661
 662	/* Get the negotiated link width and speed from PCI config space */
 663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 664
 665	hw->bus.width = ixgbe_convert_bus_width(link_status);
 666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 667
 668	hw->mac.ops.set_lan_id(hw);
 669
 670	return 0;
 671}
 672
 673/**
 674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 675 *  @hw: pointer to the HW structure
 676 *
 677 *  Determines the LAN function id by reading memory-mapped registers
 678 *  and swaps the port value if requested.
 679 **/
 680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 681{
 682	struct ixgbe_bus_info *bus = &hw->bus;
 683	u16 ee_ctrl_4;
 684	u32 reg;
 685
 686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687	bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
 688	bus->lan_id = bus->func;
 689
 690	/* check for a port swap */
 691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692	if (reg & IXGBE_FACTPS_LFS)
 693		bus->func ^= 0x1;
 694
 695	/* Get MAC instance from EEPROM for configuring CS4227 */
 696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 698		bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
 699					     ee_ctrl_4);
 700	}
 701}
 702
 703/**
 704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 705 *  @hw: pointer to hardware structure
 706 *
 707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 708 *  disables transmit and receive units. The adapter_stopped flag is used by
 709 *  the shared code and drivers to determine if the adapter is in a stopped
 710 *  state and should not touch the hardware.
 711 **/
 712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 713{
 714	u32 reg_val;
 715	u16 i;
 716
 717	/*
 718	 * Set the adapter_stopped flag so other driver functions stop touching
 719	 * the hardware
 720	 */
 721	hw->adapter_stopped = true;
 722
 723	/* Disable the receive unit */
 724	hw->mac.ops.disable_rx(hw);
 725
 726	/* Clear interrupt mask to stop interrupts from being generated */
 727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 728
 729	/* Clear any pending interrupts, flush previous writes */
 730	IXGBE_READ_REG(hw, IXGBE_EICR);
 731
 732	/* Disable the transmit unit.  Each queue must be disabled. */
 733	for (i = 0; i < hw->mac.max_tx_queues; i++)
 734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 735
 736	/* Disable the receive unit by stopping each queue */
 737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 740		reg_val |= IXGBE_RXDCTL_SWFLSH;
 741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 742	}
 743
 744	/* flush all queues disables */
 745	IXGBE_WRITE_FLUSH(hw);
 746	usleep_range(1000, 2000);
 747
 748	/*
 749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
 750	 * access and verify no pending requests
 751	 */
 752	return ixgbe_disable_pcie_primary(hw);
 753}
 754
 755/**
 756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 757 *  @hw: pointer to hardware structure
 758 *
 759 *  Store the index for the link active LED. This will be used to support
 760 *  blinking the LED.
 761 **/
 762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 763{
 764	struct ixgbe_mac_info *mac = &hw->mac;
 765	u32 led_reg, led_mode;
 766	u16 i;
 767
 768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 769
 770	/* Get LED link active from the LEDCTL register */
 771	for (i = 0; i < 4; i++) {
 772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 773
 774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 775		    IXGBE_LED_LINK_ACTIVE) {
 776			mac->led_link_act = i;
 777			return 0;
 778		}
 779	}
 780
 781	/* If LEDCTL register does not have the LED link active set, then use
 782	 * known MAC defaults.
 783	 */
 784	switch (hw->mac.type) {
 785	case ixgbe_mac_x550em_a:
 786		mac->led_link_act = 0;
 787		break;
 788	case ixgbe_mac_X550EM_x:
 789		mac->led_link_act = 1;
 790		break;
 791	default:
 792		mac->led_link_act = 2;
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 800 *  @hw: pointer to hardware structure
 801 *  @index: led number to turn on
 802 **/
 803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 804{
 805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 806
 807	if (index > 3)
 808		return -EINVAL;
 809
 810	/* To turn on the LED, set mode to ON. */
 811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 814	IXGBE_WRITE_FLUSH(hw);
 815
 816	return 0;
 817}
 818
 819/**
 820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 821 *  @hw: pointer to hardware structure
 822 *  @index: led number to turn off
 823 **/
 824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 825{
 826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 827
 828	if (index > 3)
 829		return -EINVAL;
 830
 831	/* To turn off the LED, set mode to OFF. */
 832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 835	IXGBE_WRITE_FLUSH(hw);
 836
 837	return 0;
 838}
 839
 840/**
 841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 842 *  @hw: pointer to hardware structure
 843 *
 844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 845 *  ixgbe_hw struct in order to set up EEPROM access.
 846 **/
 847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 848{
 849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 850	u32 eec;
 851	u16 eeprom_size;
 852
 853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 854		eeprom->type = ixgbe_eeprom_none;
 855		/* Set default semaphore delay to 10ms which is a well
 856		 * tested value */
 857		eeprom->semaphore_delay = 10;
 858		/* Clear EEPROM page size, it will be initialized as needed */
 859		eeprom->word_page_size = 0;
 860
 861		/*
 862		 * Check for EEPROM present first.
 863		 * If not present leave as none
 864		 */
 865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 866		if (eec & IXGBE_EEC_PRES) {
 867			eeprom->type = ixgbe_eeprom_spi;
 868
 869			/*
 870			 * SPI EEPROM is assumed here.  This code would need to
 871			 * change if a future EEPROM is not SPI.
 872			 */
 873			eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
 
 874			eeprom->word_size = BIT(eeprom_size +
 875						IXGBE_EEPROM_WORD_SIZE_SHIFT);
 876		}
 877
 878		if (eec & IXGBE_EEC_ADDR_SIZE)
 879			eeprom->address_bits = 16;
 880		else
 881			eeprom->address_bits = 8;
 882		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 883		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 884	}
 885
 886	return 0;
 887}
 888
 889/**
 890 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 891 *  @hw: pointer to hardware structure
 892 *  @offset: offset within the EEPROM to write
 893 *  @words: number of words
 894 *  @data: 16 bit word(s) to write to EEPROM
 895 *
 896 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 897 **/
 898s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 899					       u16 words, u16 *data)
 900{
 901	s32 status;
 902	u16 i, count;
 903
 904	hw->eeprom.ops.init_params(hw);
 905
 906	if (words == 0 || (offset + words > hw->eeprom.word_size))
 907		return -EINVAL;
 
 
 
 908
 909	/*
 910	 * The EEPROM page size cannot be queried from the chip. We do lazy
 911	 * initialization. It is worth to do that when we write large buffer.
 912	 */
 913	if ((hw->eeprom.word_page_size == 0) &&
 914	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 915		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 916
 917	/*
 918	 * We cannot hold synchronization semaphores for too long
 919	 * to avoid other entity starvation. However it is more efficient
 920	 * to read in bursts than synchronizing access for each word.
 921	 */
 922	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 923		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 924			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 925		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 926							    count, &data[i]);
 927
 928		if (status != 0)
 929			break;
 930	}
 931
 932	return status;
 933}
 934
 935/**
 936 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 937 *  @hw: pointer to hardware structure
 938 *  @offset: offset within the EEPROM to be written to
 939 *  @words: number of word(s)
 940 *  @data: 16 bit word(s) to be written to the EEPROM
 941 *
 942 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 943 *  EEPROM will most likely contain an invalid checksum.
 944 **/
 945static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 946					      u16 words, u16 *data)
 947{
 948	s32 status;
 949	u16 word;
 950	u16 page_size;
 951	u16 i;
 952	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 953
 954	/* Prepare the EEPROM for writing  */
 955	status = ixgbe_acquire_eeprom(hw);
 956	if (status)
 957		return status;
 958
 959	if (ixgbe_ready_eeprom(hw) != 0) {
 960		ixgbe_release_eeprom(hw);
 961		return -EIO;
 962	}
 963
 964	for (i = 0; i < words; i++) {
 965		ixgbe_standby_eeprom(hw);
 966
 967		/* Send the WRITE ENABLE command (8 bit opcode) */
 968		ixgbe_shift_out_eeprom_bits(hw,
 969					    IXGBE_EEPROM_WREN_OPCODE_SPI,
 970					    IXGBE_EEPROM_OPCODE_BITS);
 971
 972		ixgbe_standby_eeprom(hw);
 973
 974		/* Some SPI eeproms use the 8th address bit embedded
 975		 * in the opcode
 976		 */
 977		if ((hw->eeprom.address_bits == 8) &&
 978		    ((offset + i) >= 128))
 979			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 980
 981		/* Send the Write command (8-bit opcode + addr) */
 982		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 983					    IXGBE_EEPROM_OPCODE_BITS);
 984		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 985					    hw->eeprom.address_bits);
 986
 987		page_size = hw->eeprom.word_page_size;
 988
 989		/* Send the data in burst via SPI */
 990		do {
 991			word = data[i];
 992			word = (word >> 8) | (word << 8);
 993			ixgbe_shift_out_eeprom_bits(hw, word, 16);
 994
 995			if (page_size == 0)
 996				break;
 997
 998			/* do not wrap around page */
 999			if (((offset + i) & (page_size - 1)) ==
1000			    (page_size - 1))
1001				break;
1002		} while (++i < words);
1003
1004		ixgbe_standby_eeprom(hw);
1005		usleep_range(10000, 20000);
1006	}
1007	/* Done with writing - release the EEPROM */
1008	ixgbe_release_eeprom(hw);
1009
1010	return 0;
1011}
1012
1013/**
1014 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 *  @hw: pointer to hardware structure
1016 *  @offset: offset within the EEPROM to be written to
1017 *  @data: 16 bit word to be written to the EEPROM
1018 *
1019 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1020 *  EEPROM will most likely contain an invalid checksum.
1021 **/
1022s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023{
1024	hw->eeprom.ops.init_params(hw);
1025
1026	if (offset >= hw->eeprom.word_size)
1027		return -EINVAL;
1028
1029	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1030}
1031
1032/**
1033 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 *  @hw: pointer to hardware structure
1035 *  @offset: offset within the EEPROM to be read
1036 *  @words: number of word(s)
1037 *  @data: read 16 bit words(s) from EEPROM
1038 *
1039 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
1041s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042					      u16 words, u16 *data)
1043{
1044	s32 status;
1045	u16 i, count;
1046
1047	hw->eeprom.ops.init_params(hw);
1048
1049	if (words == 0 || (offset + words > hw->eeprom.word_size))
1050		return -EINVAL;
 
 
 
1051
1052	/*
1053	 * We cannot hold synchronization semaphores for too long
1054	 * to avoid other entity starvation. However it is more efficient
1055	 * to read in bursts than synchronizing access for each word.
1056	 */
1057	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062							   count, &data[i]);
1063
1064		if (status)
1065			return status;
1066	}
1067
1068	return 0;
1069}
1070
1071/**
1072 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset within the EEPROM to be read
1075 *  @words: number of word(s)
1076 *  @data: read 16 bit word(s) from EEPROM
1077 *
1078 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
1080static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081					     u16 words, u16 *data)
1082{
1083	s32 status;
1084	u16 word_in;
1085	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1086	u16 i;
1087
1088	/* Prepare the EEPROM for reading  */
1089	status = ixgbe_acquire_eeprom(hw);
1090	if (status)
1091		return status;
1092
1093	if (ixgbe_ready_eeprom(hw) != 0) {
1094		ixgbe_release_eeprom(hw);
1095		return -EIO;
1096	}
1097
1098	for (i = 0; i < words; i++) {
1099		ixgbe_standby_eeprom(hw);
1100		/* Some SPI eeproms use the 8th address bit embedded
1101		 * in the opcode
1102		 */
1103		if ((hw->eeprom.address_bits == 8) &&
1104		    ((offset + i) >= 128))
1105			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107		/* Send the READ command (opcode + addr) */
1108		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109					    IXGBE_EEPROM_OPCODE_BITS);
1110		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111					    hw->eeprom.address_bits);
1112
1113		/* Read the data. */
1114		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115		data[i] = (word_in >> 8) | (word_in << 8);
1116	}
1117
1118	/* End this read operation */
1119	ixgbe_release_eeprom(hw);
1120
1121	return 0;
1122}
1123
1124/**
1125 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 *  @hw: pointer to hardware structure
1127 *  @offset: offset within the EEPROM to be read
1128 *  @data: read 16 bit value from EEPROM
1129 *
1130 *  Reads 16 bit value from EEPROM through bit-bang method
1131 **/
1132s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133				       u16 *data)
1134{
1135	hw->eeprom.ops.init_params(hw);
1136
1137	if (offset >= hw->eeprom.word_size)
1138		return -EINVAL;
1139
1140	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1141}
1142
1143/**
1144 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 *  @hw: pointer to hardware structure
1146 *  @offset: offset of word in the EEPROM to read
1147 *  @words: number of word(s)
1148 *  @data: 16 bit word(s) from the EEPROM
1149 *
1150 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
1152s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153				   u16 words, u16 *data)
1154{
1155	u32 eerd;
1156	s32 status;
1157	u32 i;
1158
1159	hw->eeprom.ops.init_params(hw);
1160
1161	if (words == 0 || offset >= hw->eeprom.word_size)
1162		return -EINVAL;
 
 
 
1163
1164	for (i = 0; i < words; i++) {
1165		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166		       IXGBE_EEPROM_RW_REG_START;
1167
1168		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171		if (status == 0) {
1172			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173				   IXGBE_EEPROM_RW_REG_DATA);
1174		} else {
1175			hw_dbg(hw, "Eeprom read timed out\n");
1176			return status;
1177		}
1178	}
1179
1180	return 0;
1181}
1182
1183/**
1184 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 *  @hw: pointer to hardware structure
1186 *  @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 *  Discover EEPROM page size by writing marching data at given offset.
1189 *  This function is called only when we are writing a new large buffer
1190 *  at given offset so the data would be overwritten anyway.
1191 **/
1192static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193						 u16 offset)
1194{
1195	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196	s32 status;
1197	u16 i;
1198
1199	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200		data[i] = i;
1201
1202	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205	hw->eeprom.word_page_size = 0;
1206	if (status)
1207		return status;
1208
1209	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210	if (status)
1211		return status;
1212
1213	/*
1214	 * When writing in burst more than the actual page size
1215	 * EEPROM address wraps around current page.
1216	 */
1217	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220	       hw->eeprom.word_page_size);
1221	return 0;
1222}
1223
1224/**
1225 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 *  @hw: pointer to hardware structure
1227 *  @offset: offset of  word in the EEPROM to read
1228 *  @data: word read from the EEPROM
1229 *
1230 *  Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
1232s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233{
1234	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235}
1236
1237/**
1238 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 *  @hw: pointer to hardware structure
1240 *  @offset: offset of  word in the EEPROM to write
1241 *  @words: number of words
1242 *  @data: word(s) write to the EEPROM
1243 *
1244 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
1246s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247				    u16 words, u16 *data)
1248{
1249	u32 eewr;
1250	s32 status;
1251	u16 i;
1252
1253	hw->eeprom.ops.init_params(hw);
1254
1255	if (words == 0 || offset >= hw->eeprom.word_size)
1256		return -EINVAL;
 
 
 
1257
1258	for (i = 0; i < words; i++) {
1259		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261		       IXGBE_EEPROM_RW_REG_START;
1262
1263		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264		if (status) {
1265			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266			return status;
1267		}
1268
1269		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272		if (status) {
1273			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274			return status;
1275		}
1276	}
1277
1278	return 0;
1279}
1280
1281/**
1282 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 *  @hw: pointer to hardware structure
1284 *  @offset: offset of  word in the EEPROM to write
1285 *  @data: word write to the EEPROM
1286 *
1287 *  Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
1289s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290{
1291	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292}
1293
1294/**
1295 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 *  @hw: pointer to hardware structure
1297 *  @ee_reg: EEPROM flag for polling
1298 *
1299 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 *  read or write is done respectively.
1301 **/
1302static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303{
1304	u32 i;
1305	u32 reg;
1306
1307	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308		if (ee_reg == IXGBE_NVM_POLL_READ)
1309			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310		else
1311			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314			return 0;
1315		}
1316		udelay(5);
1317	}
1318	return -EIO;
1319}
1320
1321/**
1322 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 *  @hw: pointer to hardware structure
1324 *
1325 *  Prepares EEPROM for access using bit-bang method. This function should
1326 *  be called before issuing a command to the EEPROM.
1327 **/
1328static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329{
1330	u32 eec;
1331	u32 i;
1332
1333	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334		return -EBUSY;
1335
1336	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1337
1338	/* Request EEPROM Access */
1339	eec |= IXGBE_EEC_REQ;
1340	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1341
1342	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344		if (eec & IXGBE_EEC_GNT)
1345			break;
1346		udelay(5);
1347	}
1348
1349	/* Release if grant not acquired */
1350	if (!(eec & IXGBE_EEC_GNT)) {
1351		eec &= ~IXGBE_EEC_REQ;
1352		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356		return -EIO;
1357	}
1358
1359	/* Setup EEPROM for Read/Write */
1360	/* Clear CS and SK */
1361	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363	IXGBE_WRITE_FLUSH(hw);
1364	udelay(1);
1365	return 0;
1366}
1367
1368/**
1369 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 *  @hw: pointer to hardware structure
1371 *
1372 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
1374static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375{
1376	u32 timeout = 2000;
1377	u32 i;
1378	u32 swsm;
1379
1380	/* Get SMBI software semaphore between device drivers first */
1381	for (i = 0; i < timeout; i++) {
1382		/*
1383		 * If the SMBI bit is 0 when we read it, then the bit will be
1384		 * set and we have the semaphore
1385		 */
1386		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387		if (!(swsm & IXGBE_SWSM_SMBI))
1388			break;
1389		usleep_range(50, 100);
1390	}
1391
1392	if (i == timeout) {
1393		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394		/* this release is particularly important because our attempts
1395		 * above to get the semaphore may have succeeded, and if there
1396		 * was a timeout, we should unconditionally clear the semaphore
1397		 * bits to free the driver to make progress
1398		 */
1399		ixgbe_release_eeprom_semaphore(hw);
1400
1401		usleep_range(50, 100);
1402		/* one last try
1403		 * If the SMBI bit is 0 when we read it, then the bit will be
1404		 * set and we have the semaphore
1405		 */
1406		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407		if (swsm & IXGBE_SWSM_SMBI) {
1408			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409			return -EIO;
1410		}
1411	}
1412
1413	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1414	for (i = 0; i < timeout; i++) {
1415		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1416
1417		/* Set the SW EEPROM semaphore bit to request access */
1418		swsm |= IXGBE_SWSM_SWESMBI;
1419		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421		/* If we set the bit successfully then we got the
1422		 * semaphore.
1423		 */
1424		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425		if (swsm & IXGBE_SWSM_SWESMBI)
1426			break;
1427
1428		usleep_range(50, 100);
1429	}
1430
1431	/* Release semaphores and return error if SW EEPROM semaphore
1432	 * was not granted because we don't have access to the EEPROM
1433	 */
1434	if (i >= timeout) {
1435		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436		ixgbe_release_eeprom_semaphore(hw);
1437		return -EIO;
1438	}
1439
1440	return 0;
1441}
1442
1443/**
1444 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 *  @hw: pointer to hardware structure
1446 *
1447 *  This function clears hardware semaphore bits.
1448 **/
1449static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450{
1451	u32 swsm;
1452
1453	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458	IXGBE_WRITE_FLUSH(hw);
1459}
1460
1461/**
1462 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1463 *  @hw: pointer to hardware structure
1464 **/
1465static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466{
1467	u16 i;
1468	u8 spi_stat_reg;
1469
1470	/*
1471	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1472	 * EEPROM will signal that the command has been completed by clearing
1473	 * bit 0 of the internal status register.  If it's not cleared within
1474	 * 5 milliseconds, then error out.
1475	 */
1476	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478					    IXGBE_EEPROM_OPCODE_BITS);
1479		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481			break;
1482
1483		udelay(5);
1484		ixgbe_standby_eeprom(hw);
1485	}
1486
1487	/*
1488	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489	 * devices (and only 0-5mSec on 5V devices)
1490	 */
1491	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492		hw_dbg(hw, "SPI EEPROM Status error\n");
1493		return -EIO;
1494	}
1495
1496	return 0;
1497}
1498
1499/**
1500 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 *  @hw: pointer to hardware structure
1502 **/
1503static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504{
1505	u32 eec;
1506
1507	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509	/* Toggle CS to flush commands */
1510	eec |= IXGBE_EEC_CS;
1511	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512	IXGBE_WRITE_FLUSH(hw);
1513	udelay(1);
1514	eec &= ~IXGBE_EEC_CS;
1515	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516	IXGBE_WRITE_FLUSH(hw);
1517	udelay(1);
1518}
1519
1520/**
1521 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 *  @hw: pointer to hardware structure
1523 *  @data: data to send to the EEPROM
1524 *  @count: number of bits to shift out
1525 **/
1526static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527					u16 count)
1528{
1529	u32 eec;
1530	u32 mask;
1531	u32 i;
1532
1533	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535	/*
1536	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537	 * one bit at a time.  Determine the starting bit based on count
1538	 */
1539	mask = BIT(count - 1);
1540
1541	for (i = 0; i < count; i++) {
1542		/*
1543		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544		 * "1", and then raising and then lowering the clock (the SK
1545		 * bit controls the clock input to the EEPROM).  A "0" is
1546		 * shifted out to the EEPROM by setting "DI" to "0" and then
1547		 * raising and then lowering the clock.
1548		 */
1549		if (data & mask)
1550			eec |= IXGBE_EEC_DI;
1551		else
1552			eec &= ~IXGBE_EEC_DI;
1553
1554		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555		IXGBE_WRITE_FLUSH(hw);
1556
1557		udelay(1);
1558
1559		ixgbe_raise_eeprom_clk(hw, &eec);
1560		ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562		/*
1563		 * Shift mask to signify next bit of data to shift in to the
1564		 * EEPROM
1565		 */
1566		mask = mask >> 1;
1567	}
1568
1569	/* We leave the "DI" bit set to "0" when we leave this routine. */
1570	eec &= ~IXGBE_EEC_DI;
1571	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572	IXGBE_WRITE_FLUSH(hw);
1573}
1574
1575/**
1576 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 *  @hw: pointer to hardware structure
1578 *  @count: number of bits to shift
1579 **/
1580static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581{
1582	u32 eec;
1583	u32 i;
1584	u16 data = 0;
1585
1586	/*
1587	 * In order to read a register from the EEPROM, we need to shift
1588	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589	 * the clock input to the EEPROM (setting the SK bit), and then reading
1590	 * the value of the "DO" bit.  During this "shifting in" process the
1591	 * "DI" bit should always be clear.
1592	 */
1593	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597	for (i = 0; i < count; i++) {
1598		data = data << 1;
1599		ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603		eec &= ~(IXGBE_EEC_DI);
1604		if (eec & IXGBE_EEC_DO)
1605			data |= 1;
1606
1607		ixgbe_lower_eeprom_clk(hw, &eec);
1608	}
1609
1610	return data;
1611}
1612
1613/**
1614 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 *  @hw: pointer to hardware structure
1616 *  @eec: EEC register's current value
1617 **/
1618static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619{
1620	/*
1621	 * Raise the clock input to the EEPROM
1622	 * (setting the SK bit), then delay
1623	 */
1624	*eec = *eec | IXGBE_EEC_SK;
1625	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626	IXGBE_WRITE_FLUSH(hw);
1627	udelay(1);
1628}
1629
1630/**
1631 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 *  @hw: pointer to hardware structure
1633 *  @eec: EEC's current value
1634 **/
1635static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636{
1637	/*
1638	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639	 * delay
1640	 */
1641	*eec = *eec & ~IXGBE_EEC_SK;
1642	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643	IXGBE_WRITE_FLUSH(hw);
1644	udelay(1);
1645}
1646
1647/**
1648 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 *  @hw: pointer to hardware structure
1650 **/
1651static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652{
1653	u32 eec;
1654
1655	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1658	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661	IXGBE_WRITE_FLUSH(hw);
1662
1663	udelay(1);
1664
1665	/* Stop requesting EEPROM access */
1666	eec &= ~IXGBE_EEC_REQ;
1667	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671	/*
1672	 * Delay before attempt to obtain semaphore again to allow FW
1673	 * access. semaphore_delay is in ms we need us for usleep_range
1674	 */
1675	usleep_range(hw->eeprom.semaphore_delay * 1000,
1676		     hw->eeprom.semaphore_delay * 2000);
1677}
1678
1679/**
1680 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 *  @hw: pointer to hardware structure
1682 **/
1683s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684{
1685	u16 i;
1686	u16 j;
1687	u16 checksum = 0;
1688	u16 length = 0;
1689	u16 pointer = 0;
1690	u16 word = 0;
1691
1692	/* Include 0x0-0x3F in the checksum */
1693	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694		if (hw->eeprom.ops.read(hw, i, &word)) {
1695			hw_dbg(hw, "EEPROM read failed\n");
1696			break;
1697		}
1698		checksum += word;
1699	}
1700
1701	/* Include all data from pointers except for the fw pointer */
1702	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704			hw_dbg(hw, "EEPROM read failed\n");
1705			return -EIO;
1706		}
1707
1708		/* If the pointer seems invalid */
1709		if (pointer == 0xFFFF || pointer == 0)
1710			continue;
1711
1712		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713			hw_dbg(hw, "EEPROM read failed\n");
1714			return -EIO;
1715		}
1716
1717		if (length == 0xFFFF || length == 0)
1718			continue;
1719
1720		for (j = pointer + 1; j <= pointer + length; j++) {
1721			if (hw->eeprom.ops.read(hw, j, &word)) {
1722				hw_dbg(hw, "EEPROM read failed\n");
1723				return -EIO;
1724			}
1725			checksum += word;
1726		}
1727	}
1728
1729	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731	return (s32)checksum;
1732}
1733
1734/**
1735 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 *  @hw: pointer to hardware structure
1737 *  @checksum_val: calculated checksum
1738 *
1739 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1740 *  caller does not need checksum_val, the value can be NULL.
1741 **/
1742s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743					   u16 *checksum_val)
1744{
1745	s32 status;
1746	u16 checksum;
1747	u16 read_checksum = 0;
1748
1749	/*
1750	 * Read the first word from the EEPROM. If this times out or fails, do
1751	 * not continue or we could be in for a very long wait while every
1752	 * EEPROM read fails
1753	 */
1754	status = hw->eeprom.ops.read(hw, 0, &checksum);
1755	if (status) {
1756		hw_dbg(hw, "EEPROM read failed\n");
1757		return status;
1758	}
1759
1760	status = hw->eeprom.ops.calc_checksum(hw);
1761	if (status < 0)
1762		return status;
1763
1764	checksum = (u16)(status & 0xffff);
1765
1766	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767	if (status) {
1768		hw_dbg(hw, "EEPROM read failed\n");
1769		return status;
1770	}
1771
1772	/* Verify read checksum from EEPROM is the same as
1773	 * calculated checksum
1774	 */
1775	if (read_checksum != checksum)
1776		status = -EIO;
1777
1778	/* If the user cares, return the calculated checksum */
1779	if (checksum_val)
1780		*checksum_val = checksum;
1781
1782	return status;
1783}
1784
1785/**
1786 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 *  @hw: pointer to hardware structure
1788 **/
1789s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790{
1791	s32 status;
1792	u16 checksum;
1793
1794	/*
1795	 * Read the first word from the EEPROM. If this times out or fails, do
1796	 * not continue or we could be in for a very long wait while every
1797	 * EEPROM read fails
1798	 */
1799	status = hw->eeprom.ops.read(hw, 0, &checksum);
1800	if (status) {
1801		hw_dbg(hw, "EEPROM read failed\n");
1802		return status;
1803	}
1804
1805	status = hw->eeprom.ops.calc_checksum(hw);
1806	if (status < 0)
1807		return status;
1808
1809	checksum = (u16)(status & 0xffff);
1810
1811	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812
1813	return status;
1814}
1815
1816/**
1817 *  ixgbe_set_rar_generic - Set Rx address register
1818 *  @hw: pointer to hardware structure
1819 *  @index: Receive address register to write
1820 *  @addr: Address to put into receive address register
1821 *  @vmdq: VMDq "set" or "pool" index
1822 *  @enable_addr: set flag that address is active
1823 *
1824 *  Puts an ethernet address into a receive address register.
1825 **/
1826s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827			  u32 enable_addr)
1828{
1829	u32 rar_low, rar_high;
1830	u32 rar_entries = hw->mac.num_rar_entries;
1831
1832	/* Make sure we are using a valid rar index range */
1833	if (index >= rar_entries) {
1834		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835		return -EINVAL;
1836	}
1837
1838	/* setup VMDq pool selection before this RAR gets enabled */
1839	hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841	/*
1842	 * HW expects these in little endian so we reverse the byte
1843	 * order from network order (big endian) to little endian
1844	 */
1845	rar_low = ((u32)addr[0] |
1846		   ((u32)addr[1] << 8) |
1847		   ((u32)addr[2] << 16) |
1848		   ((u32)addr[3] << 24));
1849	/*
1850	 * Some parts put the VMDq setting in the extra RAH bits,
1851	 * so save everything except the lower 16 bits that hold part
1852	 * of the address and the address valid bit.
1853	 */
1854	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858	if (enable_addr != 0)
1859		rar_high |= IXGBE_RAH_AV;
1860
1861	/* Record lower 32 bits of MAC address and then make
1862	 * sure that write is flushed to hardware before writing
1863	 * the upper 16 bits and setting the valid bit.
1864	 */
1865	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866	IXGBE_WRITE_FLUSH(hw);
1867	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869	return 0;
1870}
1871
1872/**
1873 *  ixgbe_clear_rar_generic - Remove Rx address register
1874 *  @hw: pointer to hardware structure
1875 *  @index: Receive address register to write
1876 *
1877 *  Clears an ethernet address from a receive address register.
1878 **/
1879s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880{
1881	u32 rar_high;
1882	u32 rar_entries = hw->mac.num_rar_entries;
1883
1884	/* Make sure we are using a valid rar index range */
1885	if (index >= rar_entries) {
1886		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887		return -EINVAL;
1888	}
1889
1890	/*
1891	 * Some parts put the VMDq setting in the extra RAH bits,
1892	 * so save everything except the lower 16 bits that hold part
1893	 * of the address and the address valid bit.
1894	 */
1895	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898	/* Clear the address valid bit and upper 16 bits of the address
1899	 * before clearing the lower bits. This way we aren't updating
1900	 * a live filter.
1901	 */
1902	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903	IXGBE_WRITE_FLUSH(hw);
1904	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 
1905
1906	/* clear VMDq pool/queue selection for this RAR */
1907	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909	return 0;
1910}
1911
1912/**
1913 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 *  @hw: pointer to hardware structure
1915 *
1916 *  Places the MAC address in receive address register 0 and clears the rest
1917 *  of the receive address registers. Clears the multicast table. Assumes
1918 *  the receiver is in reset when the routine is called.
1919 **/
1920s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921{
1922	u32 i;
1923	u32 rar_entries = hw->mac.num_rar_entries;
1924
1925	/*
1926	 * If the current mac address is valid, assume it is a software override
1927	 * to the permanent address.
1928	 * Otherwise, use the permanent address from the eeprom.
1929	 */
1930	if (!is_valid_ether_addr(hw->mac.addr)) {
1931		/* Get the MAC address from the RAR0 for later reference */
1932		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935	} else {
1936		/* Setup the receive address. */
1937		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941	}
1942
1943	/*  clear VMDq pool/queue selection for RAR 0 */
1944	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
1946	hw->addr_ctrl.overflow_promisc = 0;
1947
1948	hw->addr_ctrl.rar_used_count = 1;
1949
1950	/* Zero out the other receive addresses. */
1951	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952	for (i = 1; i < rar_entries; i++) {
1953		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955	}
1956
1957	/* Clear the MTA */
1958	hw->addr_ctrl.mta_in_use = 0;
1959	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961	hw_dbg(hw, " Clearing MTA\n");
1962	for (i = 0; i < hw->mac.mcft_size; i++)
1963		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965	if (hw->mac.ops.init_uta_tables)
1966		hw->mac.ops.init_uta_tables(hw);
1967
1968	return 0;
1969}
1970
1971/**
1972 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 *  @hw: pointer to hardware structure
1974 *  @mc_addr: the multicast address
1975 *
1976 *  Extracts the 12 bits, from a multicast address, to determine which
1977 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 *  incoming rx multicast addresses, to determine the bit-vector to check in
1979 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 *  to mc_filter_type.
1982 **/
1983static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984{
1985	u32 vector = 0;
1986
1987	switch (hw->mac.mc_filter_type) {
1988	case 0:   /* use bits [47:36] of the address */
1989		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990		break;
1991	case 1:   /* use bits [46:35] of the address */
1992		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993		break;
1994	case 2:   /* use bits [45:34] of the address */
1995		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996		break;
1997	case 3:   /* use bits [43:32] of the address */
1998		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999		break;
2000	default:  /* Invalid mc_filter_type */
2001		hw_dbg(hw, "MC filter type param set incorrectly\n");
2002		break;
2003	}
2004
2005	/* vector can only be 12-bits or boundary will be exceeded */
2006	vector &= 0xFFF;
2007	return vector;
2008}
2009
2010/**
2011 *  ixgbe_set_mta - Set bit-vector in multicast table
2012 *  @hw: pointer to hardware structure
2013 *  @mc_addr: Multicast address
2014 *
2015 *  Sets the bit-vector in the multicast table.
2016 **/
2017static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018{
2019	u32 vector;
2020	u32 vector_bit;
2021	u32 vector_reg;
2022
2023	hw->addr_ctrl.mta_in_use++;
2024
2025	vector = ixgbe_mta_vector(hw, mc_addr);
2026	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028	/*
2029	 * The MTA is a register array of 128 32-bit registers. It is treated
2030	 * like an array of 4096 bits.  We want to set bit
2031	 * BitArray[vector_value]. So we figure out what register the bit is
2032	 * in, read it, OR in the new bit, then write back the new value.  The
2033	 * register is determined by the upper 7 bits of the vector value and
2034	 * the bit within that register are determined by the lower 5 bits of
2035	 * the value.
2036	 */
2037	vector_reg = (vector >> 5) & 0x7F;
2038	vector_bit = vector & 0x1F;
2039	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040}
2041
2042/**
2043 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 *  @hw: pointer to hardware structure
2045 *  @netdev: pointer to net device structure
2046 *
2047 *  The given list replaces any existing list. Clears the MC addrs from receive
2048 *  address registers and the multicast table. Uses unused receive address
2049 *  registers for the first multicast addresses, and hashes the rest into the
2050 *  multicast table.
2051 **/
2052s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053				      struct net_device *netdev)
2054{
2055	struct netdev_hw_addr *ha;
2056	u32 i;
2057
2058	/*
2059	 * Set the new number of MC addresses that we are being requested to
2060	 * use.
2061	 */
2062	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063	hw->addr_ctrl.mta_in_use = 0;
2064
2065	/* Clear mta_shadow */
2066	hw_dbg(hw, " Clearing MTA\n");
2067	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069	/* Update mta shadow */
2070	netdev_for_each_mc_addr(ha, netdev) {
2071		hw_dbg(hw, " Adding the multicast addresses:\n");
2072		ixgbe_set_mta(hw, ha->addr);
2073	}
2074
2075	/* Enable mta */
2076	for (i = 0; i < hw->mac.mcft_size; i++)
2077		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078				      hw->mac.mta_shadow[i]);
2079
2080	if (hw->addr_ctrl.mta_in_use > 0)
2081		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085	return 0;
2086}
2087
2088/**
2089 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 *  @hw: pointer to hardware structure
2091 *
2092 *  Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
2094s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095{
2096	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098	if (a->mta_in_use > 0)
2099		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100				hw->mac.mc_filter_type);
2101
2102	return 0;
2103}
2104
2105/**
2106 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 *  @hw: pointer to hardware structure
2108 *
2109 *  Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
2111s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112{
2113	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115	if (a->mta_in_use > 0)
2116		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118	return 0;
2119}
2120
2121/**
2122 *  ixgbe_fc_enable_generic - Enable flow control
2123 *  @hw: pointer to hardware structure
2124 *
2125 *  Enable flow control according to the current settings.
2126 **/
2127s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128{
2129	u32 mflcn_reg, fccfg_reg;
2130	u32 reg;
2131	u32 fcrtl, fcrth;
2132	int i;
2133
2134	/* Validate the water mark configuration. */
2135	if (!hw->fc.pause_time)
2136		return -EINVAL;
2137
2138	/* Low water mark of zero causes XOFF floods */
2139	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141		    hw->fc.high_water[i]) {
2142			if (!hw->fc.low_water[i] ||
2143			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144				hw_dbg(hw, "Invalid water mark configuration\n");
2145				return -EINVAL;
2146			}
2147		}
2148	}
2149
2150	/* Negotiate the fc mode to use */
2151	hw->mac.ops.fc_autoneg(hw);
2152
2153	/* Disable any previous flow control settings */
2154	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160	/*
2161	 * The possible values of fc.current_mode are:
2162	 * 0: Flow control is completely disabled
2163	 * 1: Rx flow control is enabled (we can receive pause frames,
2164	 *    but not send pause frames).
2165	 * 2: Tx flow control is enabled (we can send pause frames but
2166	 *    we do not support receiving pause frames).
2167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168	 * other: Invalid.
2169	 */
2170	switch (hw->fc.current_mode) {
2171	case ixgbe_fc_none:
2172		/*
2173		 * Flow control is disabled by software override or autoneg.
2174		 * The code below will actually disable it in the HW.
2175		 */
2176		break;
2177	case ixgbe_fc_rx_pause:
2178		/*
2179		 * Rx Flow control is enabled and Tx Flow control is
2180		 * disabled by software override. Since there really
2181		 * isn't a way to advertise that we are capable of RX
2182		 * Pause ONLY, we will advertise that we support both
2183		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2184		 * disable the adapter's ability to send PAUSE frames.
2185		 */
2186		mflcn_reg |= IXGBE_MFLCN_RFCE;
2187		break;
2188	case ixgbe_fc_tx_pause:
2189		/*
2190		 * Tx Flow control is enabled, and Rx Flow control is
2191		 * disabled by software override.
2192		 */
2193		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194		break;
2195	case ixgbe_fc_full:
2196		/* Flow control (both Rx and Tx) is enabled by SW override. */
2197		mflcn_reg |= IXGBE_MFLCN_RFCE;
2198		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199		break;
2200	default:
2201		hw_dbg(hw, "Flow control param set incorrectly\n");
2202		return -EIO;
2203	}
2204
2205	/* Set 802.3x based flow control settings. */
2206	mflcn_reg |= IXGBE_MFLCN_DPF;
2207	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
2210	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213		    hw->fc.high_water[i]) {
2214			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217		} else {
2218			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219			/*
2220			 * In order to prevent Tx hangs when the internal Tx
2221			 * switch is enabled we must set the high water mark
2222			 * to the Rx packet buffer size - 24KB.  This allows
2223			 * the Tx switch to function even under heavy Rx
2224			 * workloads.
2225			 */
2226			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227		}
2228
2229		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230	}
2231
2232	/* Configure pause time (2 TCs per register) */
2233	reg = hw->fc.pause_time * 0x00010001U;
2234	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239	return 0;
2240}
2241
2242/**
2243 *  ixgbe_negotiate_fc - Negotiate flow control
2244 *  @hw: pointer to hardware structure
2245 *  @adv_reg: flow control advertised settings
2246 *  @lp_reg: link partner's flow control settings
2247 *  @adv_sym: symmetric pause bit in advertisement
2248 *  @adv_asm: asymmetric pause bit in advertisement
2249 *  @lp_sym: symmetric pause bit in link partner advertisement
2250 *  @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 *  Find the intersection between advertised settings and link partner's
2253 *  advertised settings
2254 **/
2255s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257{
2258	if ((!(adv_reg)) ||  (!(lp_reg)))
2259		return -EINVAL;
2260
2261	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262		/*
2263		 * Now we need to check if the user selected Rx ONLY
2264		 * of pause frames.  In this case, we had to advertise
2265		 * FULL flow control because we could not advertise RX
2266		 * ONLY. Hence, we must now check to see if we need to
2267		 * turn OFF the TRANSMISSION of PAUSE frames.
2268		 */
2269		if (hw->fc.requested_mode == ixgbe_fc_full) {
2270			hw->fc.current_mode = ixgbe_fc_full;
2271			hw_dbg(hw, "Flow Control = FULL.\n");
2272		} else {
2273			hw->fc.current_mode = ixgbe_fc_rx_pause;
2274			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275		}
2276	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278		hw->fc.current_mode = ixgbe_fc_tx_pause;
2279		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282		hw->fc.current_mode = ixgbe_fc_rx_pause;
2283		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284	} else {
2285		hw->fc.current_mode = ixgbe_fc_none;
2286		hw_dbg(hw, "Flow Control = NONE.\n");
2287	}
2288	return 0;
2289}
2290
2291/**
2292 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 *  @hw: pointer to hardware structure
2294 *
2295 *  Enable flow control according on 1 gig fiber.
2296 **/
2297static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298{
2299	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300	s32 ret_val;
2301
2302	/*
2303	 * On multispeed fiber at 1g, bail out if
2304	 * - link is up but AN did not complete, or if
2305	 * - link is up and AN completed but timed out
2306	 */
2307
2308	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311		return -EIO;
2312
2313	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318			       IXGBE_PCS1GANA_ASM_PAUSE,
2319			       IXGBE_PCS1GANA_SYM_PAUSE,
2320			       IXGBE_PCS1GANA_ASM_PAUSE);
2321
2322	return ret_val;
2323}
2324
2325/**
2326 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Enable flow control according to IEEE clause 37.
2330 **/
2331static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332{
2333	u32 links2, anlp1_reg, autoc_reg, links;
2334	s32 ret_val;
2335
2336	/*
2337	 * On backplane, bail out if
2338	 * - backplane autoneg was not completed, or if
2339	 * - we are 82599 and link partner is not AN enabled
2340	 */
2341	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343		return -EIO;
2344
2345	if (hw->mac.type == ixgbe_mac_82599EB) {
2346		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348			return -EIO;
2349	}
2350	/*
2351	 * Read the 10g AN autoc and LP ability registers and resolve
2352	 * local flow control settings accordingly
2353	 */
2354	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
2361	return ret_val;
2362}
2363
2364/**
2365 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 *  @hw: pointer to hardware structure
2367 *
2368 *  Enable flow control according to IEEE clause 37.
2369 **/
2370static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371{
2372	u16 technology_ability_reg = 0;
2373	u16 lp_technology_ability_reg = 0;
2374
2375	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376			     MDIO_MMD_AN,
2377			     &technology_ability_reg);
2378	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379			     MDIO_MMD_AN,
2380			     &lp_technology_ability_reg);
2381
2382	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383				  (u32)lp_technology_ability_reg,
2384				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386}
2387
2388/**
2389 *  ixgbe_fc_autoneg - Configure flow control
2390 *  @hw: pointer to hardware structure
2391 *
2392 *  Compares our advertised flow control capabilities to those advertised by
2393 *  our link partner, and determines the proper flow control mode to use.
2394 **/
2395void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396{
 
2397	ixgbe_link_speed speed;
2398	s32 ret_val = -EIO;
2399	bool link_up;
2400
2401	/*
2402	 * AN should have completed when the cable was plugged in.
2403	 * Look for reasons to bail out.  Bail out if:
2404	 * - FC autoneg is disabled, or if
2405	 * - link is not up.
2406	 *
2407	 * Since we're being called from an LSC, link is already known to be up.
2408	 * So use link_up_wait_to_complete=false.
2409	 */
2410	if (hw->fc.disable_fc_autoneg)
2411		goto out;
2412
2413	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414	if (!link_up)
2415		goto out;
2416
2417	switch (hw->phy.media_type) {
2418	/* Autoneg flow control on fiber adapters */
2419	case ixgbe_media_type_fiber:
2420		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421			ret_val = ixgbe_fc_autoneg_fiber(hw);
2422		break;
2423
2424	/* Autoneg flow control on backplane adapters */
2425	case ixgbe_media_type_backplane:
2426		ret_val = ixgbe_fc_autoneg_backplane(hw);
2427		break;
2428
2429	/* Autoneg flow control on copper adapters */
2430	case ixgbe_media_type_copper:
2431		if (ixgbe_device_supports_autoneg_fc(hw))
2432			ret_val = ixgbe_fc_autoneg_copper(hw);
2433		break;
2434
2435	default:
2436		break;
2437	}
2438
2439out:
2440	if (ret_val == 0) {
2441		hw->fc.fc_was_autonegged = true;
2442	} else {
2443		hw->fc.fc_was_autonegged = false;
2444		hw->fc.current_mode = hw->fc.requested_mode;
2445	}
2446}
2447
2448/**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 *  Add 10% to specified maximum and return the number of times to poll for
2455 *  completion timeout, in units of 100 microsec.  Never return less than
2456 *  800 = 80 millisec.
2457 **/
2458static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459{
2460	s16 devctl2;
2461	u32 pollcnt;
2462
2463	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466	switch (devctl2) {
2467	case IXGBE_PCIDEVCTRL2_65_130ms:
2468		 pollcnt = 1300;         /* 130 millisec */
2469		break;
2470	case IXGBE_PCIDEVCTRL2_260_520ms:
2471		pollcnt = 5200;         /* 520 millisec */
2472		break;
2473	case IXGBE_PCIDEVCTRL2_1_2s:
2474		pollcnt = 20000;        /* 2 sec */
2475		break;
2476	case IXGBE_PCIDEVCTRL2_4_8s:
2477		pollcnt = 80000;        /* 8 sec */
2478		break;
2479	case IXGBE_PCIDEVCTRL2_17_34s:
2480		pollcnt = 34000;        /* 34 sec */
2481		break;
2482	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2483	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2484	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2485	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2486	default:
2487		pollcnt = 800;          /* 80 millisec minimum */
2488		break;
2489	}
2490
2491	/* add 10% to spec maximum */
2492	return (pollcnt * 11) / 10;
2493}
2494
2495/**
2496 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Disables PCI-Express primary access and verifies there are no pending
2500 *  requests. -EALREADY is returned if primary disable
2501 *  bit hasn't caused the primary requests to be disabled, else 0
2502 *  is returned signifying primary requests disabled.
2503 **/
2504static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505{
2506	u32 i, poll;
2507	u16 value;
2508
2509	/* Always set this bit to ensure any future transactions are blocked */
2510	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512	/* Poll for bit to read as set */
2513	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515			break;
2516		usleep_range(100, 120);
2517	}
2518	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520		goto gio_disable_fail;
2521	}
2522
2523	/* Exit if primary requests are blocked */
2524	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525	    ixgbe_removed(hw->hw_addr))
2526		return 0;
2527
2528	/* Poll for primary request bit to clear */
2529	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530		udelay(100);
2531		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532			return 0;
2533	}
2534
2535	/*
2536	 * Two consecutive resets are required via CTRL.RST per datasheet
2537	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2538	 * of this need.  The first reset prevents new primary requests from
2539	 * being issued by our device.  We then must wait 1usec or more for any
2540	 * remaining completions from the PCIe bus to trickle in, and then reset
2541	 * again to clear out any effects they may have had on our device.
2542	 */
2543	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544gio_disable_fail:
2545	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547	if (hw->mac.type >= ixgbe_mac_X550)
2548		return 0;
2549
2550	/*
2551	 * Before proceeding, make sure that the PCIe block does not have
2552	 * transactions pending.
2553	 */
2554	poll = ixgbe_pcie_timeout_poll(hw);
2555	for (i = 0; i < poll; i++) {
2556		udelay(100);
2557		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558		if (ixgbe_removed(hw->hw_addr))
2559			return 0;
2560		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561			return 0;
2562	}
2563
2564	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565	return -EALREADY;
2566}
2567
2568/**
2569 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 *  @hw: pointer to hardware structure
2571 *  @mask: Mask to specify which semaphore to acquire
2572 *
2573 *  Acquires the SWFW semaphore through the GSSR register for the specified
2574 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577{
2578	u32 gssr = 0;
2579	u32 swmask = mask;
2580	u32 fwmask = mask << 5;
2581	u32 timeout = 200;
2582	u32 i;
2583
2584	for (i = 0; i < timeout; i++) {
2585		/*
2586		 * SW NVM semaphore bit is used for access to all
2587		 * SW_FW_SYNC bits (not just NVM)
2588		 */
2589		if (ixgbe_get_eeprom_semaphore(hw))
2590			return -EBUSY;
2591
2592		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593		if (!(gssr & (fwmask | swmask))) {
2594			gssr |= swmask;
2595			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596			ixgbe_release_eeprom_semaphore(hw);
2597			return 0;
2598		} else {
2599			/* Resource is currently in use by FW or SW */
2600			ixgbe_release_eeprom_semaphore(hw);
2601			usleep_range(5000, 10000);
2602		}
2603	}
2604
2605	/* If time expired clear the bits holding the lock and retry */
2606	if (gssr & (fwmask | swmask))
2607		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609	usleep_range(5000, 10000);
2610	return -EBUSY;
2611}
2612
2613/**
2614 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2615 *  @hw: pointer to hardware structure
2616 *  @mask: Mask to specify which semaphore to release
2617 *
2618 *  Releases the SWFW semaphore through the GSSR register for the specified
2619 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
2621void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622{
2623	u32 gssr;
2624	u32 swmask = mask;
2625
2626	ixgbe_get_eeprom_semaphore(hw);
2627
2628	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629	gssr &= ~swmask;
2630	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632	ixgbe_release_eeprom_semaphore(hw);
2633}
2634
2635/**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2640 *	    true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
2644s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645{
2646	*locked = false;
2647	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648	return 0;
2649}
2650
2651/**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 *	    previous read.
2657 **/
2658s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659{
2660	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661	return 0;
2662}
2663
2664/**
2665 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 *  @hw: pointer to hardware structure
2667 *
2668 *  Stops the receive data path and waits for the HW to internally
2669 *  empty the Rx security block.
2670 **/
2671s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672{
2673#define IXGBE_MAX_SECRX_POLL 40
2674	int i;
2675	int secrxreg;
2676
2677	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683			break;
2684		else
2685			/* Use interrupt-safe sleep just in case */
2686			udelay(1000);
2687	}
2688
2689	/* For informational purposes only */
2690	if (i >= IXGBE_MAX_SECRX_POLL)
2691		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2692
2693	return 0;
2694
2695}
2696
2697/**
2698 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 *  @hw: pointer to hardware structure
2700 *
2701 *  Enables the receive data path
2702 **/
2703s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704{
2705	u32 secrxreg;
2706
2707	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710	IXGBE_WRITE_FLUSH(hw);
2711
2712	return 0;
2713}
2714
2715/**
2716 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 *  @hw: pointer to hardware structure
2718 *  @regval: register value to write to RXCTRL
2719 *
2720 *  Enables the Rx DMA unit
2721 **/
2722s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723{
2724	if (regval & IXGBE_RXCTRL_RXEN)
2725		hw->mac.ops.enable_rx(hw);
2726	else
2727		hw->mac.ops.disable_rx(hw);
2728
2729	return 0;
2730}
2731
2732/**
2733 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2734 *  @hw: pointer to hardware structure
2735 *  @index: led number to blink
2736 **/
2737s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738{
2739	ixgbe_link_speed speed = 0;
2740	bool link_up = false;
2741	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2742	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2743	bool locked = false;
2744	s32 ret_val;
2745
2746	if (index > 3)
2747		return -EINVAL;
2748
2749	/*
2750	 * Link must be up to auto-blink the LEDs;
2751	 * Force it if link is down.
2752	 */
2753	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755	if (!link_up) {
2756		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757		if (ret_val)
2758			return ret_val;
2759
2760		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761		autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764		if (ret_val)
2765			return ret_val;
2766
2767		IXGBE_WRITE_FLUSH(hw);
2768
2769		usleep_range(10000, 20000);
2770	}
2771
2772	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773	led_reg |= IXGBE_LED_BLINK(index);
2774	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775	IXGBE_WRITE_FLUSH(hw);
2776
2777	return 0;
2778}
2779
2780/**
2781 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 *  @hw: pointer to hardware structure
2783 *  @index: led number to stop blinking
2784 **/
2785s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786{
2787	u32 autoc_reg = 0;
2788	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2789	bool locked = false;
2790	s32 ret_val;
2791
2792	if (index > 3)
2793		return -EINVAL;
2794
2795	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796	if (ret_val)
2797		return ret_val;
2798
2799	autoc_reg &= ~IXGBE_AUTOC_FLU;
2800	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803	if (ret_val)
2804		return ret_val;
2805
2806	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807	led_reg &= ~IXGBE_LED_BLINK(index);
2808	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810	IXGBE_WRITE_FLUSH(hw);
2811
2812	return 0;
2813}
2814
2815/**
2816 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 *  @hw: pointer to hardware structure
2818 *  @san_mac_offset: SAN MAC address offset
2819 *
2820 *  This function will read the EEPROM location for the SAN MAC address
2821 *  pointer, and returns the value at that location.  This is used in both
2822 *  get and set mac_addr routines.
2823 **/
2824static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825					u16 *san_mac_offset)
2826{
2827	s32 ret_val;
2828
2829	/*
2830	 * First read the EEPROM pointer to see if the MAC addresses are
2831	 * available.
2832	 */
2833	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834				      san_mac_offset);
2835	if (ret_val)
2836		hw_err(hw, "eeprom read at offset %d failed\n",
2837		       IXGBE_SAN_MAC_ADDR_PTR);
2838
2839	return ret_val;
2840}
2841
2842/**
2843 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 *  @hw: pointer to hardware structure
2845 *  @san_mac_addr: SAN MAC address
2846 *
2847 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2848 *  per-port, so set_lan_id() must be called before reading the addresses.
2849 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 *  upon for non-SFP connections, so we must call it here.
2851 **/
2852s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853{
2854	u16 san_mac_data, san_mac_offset;
2855	u8 i;
2856	s32 ret_val;
2857
2858	/*
2859	 * First read the EEPROM pointer to see if the MAC addresses are
2860	 * available.  If they're not, no point in calling set_lan_id() here.
2861	 */
2862	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864
2865		goto san_mac_addr_clr;
2866
2867	/* make sure we know which port we need to program */
2868	hw->mac.ops.set_lan_id(hw);
2869	/* apply the port offset to the address offset */
2870	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872	for (i = 0; i < 3; i++) {
2873		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874					      &san_mac_data);
2875		if (ret_val) {
2876			hw_err(hw, "eeprom read at offset %d failed\n",
2877			       san_mac_offset);
2878			goto san_mac_addr_clr;
2879		}
2880		san_mac_addr[i * 2] = (u8)(san_mac_data);
2881		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882		san_mac_offset++;
2883	}
2884	return 0;
2885
2886san_mac_addr_clr:
2887	/* No addresses available in this EEPROM.  It's not necessarily an
2888	 * error though, so just wipe the local address and return.
2889	 */
2890	for (i = 0; i < 6; i++)
2891		san_mac_addr[i] = 0xFF;
2892	return ret_val;
2893}
2894
2895/**
2896 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 *  @hw: pointer to hardware structure
2898 *
2899 *  Read PCIe configuration space, and get the MSI-X vector count from
2900 *  the capabilities table.
2901 **/
2902u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903{
2904	u16 msix_count;
2905	u16 max_msix_count;
2906	u16 pcie_offset;
2907
2908	switch (hw->mac.type) {
2909	case ixgbe_mac_82598EB:
2910		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912		break;
2913	case ixgbe_mac_82599EB:
2914	case ixgbe_mac_X540:
2915	case ixgbe_mac_X550:
2916	case ixgbe_mac_X550EM_x:
2917	case ixgbe_mac_x550em_a:
2918		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920		break;
2921	default:
2922		return 1;
2923	}
2924
2925	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926	if (ixgbe_removed(hw->hw_addr))
2927		msix_count = 0;
2928	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930	/* MSI-X count is zero-based in HW */
2931	msix_count++;
2932
2933	if (msix_count > max_msix_count)
2934		msix_count = max_msix_count;
2935
2936	return msix_count;
2937}
2938
2939/**
2940 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 *  @hw: pointer to hardware struct
2942 *  @rar: receive address register index to disassociate
2943 *  @vmdq: VMDq pool index to remove from the rar
2944 **/
2945s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946{
2947	u32 mpsar_lo, mpsar_hi;
2948	u32 rar_entries = hw->mac.num_rar_entries;
2949
2950	/* Make sure we are using a valid rar index range */
2951	if (rar >= rar_entries) {
2952		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953		return -EINVAL;
2954	}
2955
2956	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959	if (ixgbe_removed(hw->hw_addr))
2960		return 0;
2961
2962	if (!mpsar_lo && !mpsar_hi)
2963		return 0;
2964
2965	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966		if (mpsar_lo) {
2967			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968			mpsar_lo = 0;
2969		}
2970		if (mpsar_hi) {
2971			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972			mpsar_hi = 0;
2973		}
2974	} else if (vmdq < 32) {
2975		mpsar_lo &= ~BIT(vmdq);
2976		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977	} else {
2978		mpsar_hi &= ~BIT(vmdq - 32);
2979		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980	}
2981
2982	/* was that the last pool using this rar? */
2983	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2985		hw->mac.ops.clear_rar(hw, rar);
2986
2987	return 0;
2988}
2989
2990/**
2991 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 *  @hw: pointer to hardware struct
2993 *  @rar: receive address register index to associate with a VMDq index
2994 *  @vmdq: VMDq pool index
2995 **/
2996s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997{
2998	u32 mpsar;
2999	u32 rar_entries = hw->mac.num_rar_entries;
3000
3001	/* Make sure we are using a valid rar index range */
3002	if (rar >= rar_entries) {
3003		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004		return -EINVAL;
3005	}
3006
3007	if (vmdq < 32) {
3008		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009		mpsar |= BIT(vmdq);
3010		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011	} else {
3012		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013		mpsar |= BIT(vmdq - 32);
3014		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015	}
3016	return 0;
3017}
3018
3019/**
3020 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 *  @hw: pointer to hardware struct
3022 *  @vmdq: VMDq pool index
3023 *
3024 *  This function should only be involved in the IOV mode.
3025 *  In IOV mode, Default pool is next pool after the number of
3026 *  VFs advertized and not 0.
3027 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 
 
 
 
3028 **/
3029s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030{
3031	u32 rar = hw->mac.san_mac_rar_index;
3032
3033	if (vmdq < 32) {
3034		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036	} else {
3037		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039	}
3040
3041	return 0;
3042}
3043
3044/**
3045 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 *  @hw: pointer to hardware structure
3047 **/
3048s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049{
3050	int i;
3051
3052	for (i = 0; i < 128; i++)
3053		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055	return 0;
3056}
3057
3058/**
3059 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 *  @hw: pointer to hardware structure
3061 *  @vlan: VLAN id to write to VLAN filter
3062 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 *		  vlanid not found
3064 *
3065 *  return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
3068static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069{
3070	s32 regindex, first_empty_slot;
3071	u32 bits;
3072
3073	/* short cut the special case */
3074	if (vlan == 0)
3075		return 0;
3076
3077	/* if vlvf_bypass is set we don't want to use an empty slot, we
3078	 * will simply bypass the VLVF if there are no entries present in the
3079	 * VLVF that contain our VLAN
3080	 */
3081	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083	/* add VLAN enable bit for comparison */
3084	vlan |= IXGBE_VLVF_VIEN;
3085
3086	/* Search for the vlan id in the VLVF entries. Save off the first empty
3087	 * slot found along the way.
3088	 *
3089	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090	 */
3091	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093		if (bits == vlan)
3094			return regindex;
3095		if (!first_empty_slot && !bits)
3096			first_empty_slot = regindex;
3097	}
3098
3099	/* If we are here then we didn't find the VLAN.  Return first empty
3100	 * slot we found during our search, else error.
3101	 */
3102	if (!first_empty_slot)
3103		hw_dbg(hw, "No space in VLVF.\n");
3104
3105	return first_empty_slot ? : -ENOSPC;
3106}
3107
3108/**
3109 *  ixgbe_set_vfta_generic - Set VLAN filter table
3110 *  @hw: pointer to hardware structure
3111 *  @vlan: VLAN id to write to VLAN filter
3112 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 *  Turn on/off specified VLAN in the VLAN filter table.
3117 **/
3118s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119			   bool vlan_on, bool vlvf_bypass)
3120{
3121	u32 regidx, vfta_delta, vfta, bits;
3122	s32 vlvf_index;
3123
3124	if ((vlan > 4095) || (vind > 63))
3125		return -EINVAL;
3126
3127	/*
3128	 * this is a 2 part operation - first the VFTA, then the
3129	 * VLVF and VLVFB if VT Mode is set
3130	 * We don't write the VFTA until we know the VLVF part succeeded.
3131	 */
3132
3133	/* Part 1
3134	 * The VFTA is a bitstring made up of 128 32-bit registers
3135	 * that enable the particular VLAN id, much like the MTA:
3136	 *    bits[11-5]: which register
3137	 *    bits[4-0]:  which bit in the register
3138	 */
3139	regidx = vlan / 32;
3140	vfta_delta = BIT(vlan % 32);
3141	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143	/* vfta_delta represents the difference between the current value
3144	 * of vfta and the value we want in the register.  Since the diff
3145	 * is an XOR mask we can just update vfta using an XOR.
3146	 */
3147	vfta_delta &= vlan_on ? ~vfta : vfta;
3148	vfta ^= vfta_delta;
3149
3150	/* Part 2
3151	 * If VT Mode is set
3152	 *   Either vlan_on
3153	 *     make sure the vlan is in VLVF
3154	 *     set the vind bit in the matching VLVFB
3155	 *   Or !vlan_on
3156	 *     clear the pool bit and possibly the vind
3157	 */
3158	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159		goto vfta_update;
3160
3161	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162	if (vlvf_index < 0) {
3163		if (vlvf_bypass)
3164			goto vfta_update;
3165		return vlvf_index;
3166	}
3167
3168	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170	/* set the pool bit */
3171	bits |= BIT(vind % 32);
3172	if (vlan_on)
3173		goto vlvf_update;
3174
3175	/* clear the pool bit */
3176	bits ^= BIT(vind % 32);
3177
3178	if (!bits &&
3179	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180		/* Clear VFTA first, then disable VLVF.  Otherwise
3181		 * we run the risk of stray packets leaking into
3182		 * the PF via the default pool
3183		 */
3184		if (vfta_delta)
3185			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187		/* disable VLVF and clear remaining bit from pool */
3188		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3190
3191		return 0;
3192	}
3193
3194	/* If there are still bits set in the VLVFB registers
3195	 * for the VLAN ID indicated we need to see if the
3196	 * caller is requesting that we clear the VFTA entry bit.
3197	 * If the caller has requested that we clear the VFTA
3198	 * entry bit but there are still pools/VFs using this VLAN
3199	 * ID entry then ignore the request.  We're not worried
3200	 * about the case where we're turning the VFTA VLAN ID
3201	 * entry bit on, only when requested to turn it off as
3202	 * there may be multiple pools and/or VFs using the
3203	 * VLAN ID entry.  In that case we cannot clear the
3204	 * VFTA bit until all pools/VFs using that VLAN ID have also
3205	 * been cleared.  This will be indicated by "bits" being
3206	 * zero.
3207	 */
3208	vfta_delta = 0;
3209
3210vlvf_update:
3211	/* record pool change and enable VLAN ID if not already enabled */
3212	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215vfta_update:
3216	/* Update VFTA now that we are ready for traffic */
3217	if (vfta_delta)
3218		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220	return 0;
3221}
3222
3223/**
3224 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 *  @hw: pointer to hardware structure
3226 *
3227 *  Clears the VLAN filter table, and the VMDq index associated with the filter
3228 **/
3229s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230{
3231	u32 offset;
3232
3233	for (offset = 0; offset < hw->mac.vft_size; offset++)
3234		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240	}
3241
3242	return 0;
3243}
3244
3245/**
3246 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 *  @hw: pointer to hardware structure
3248 *
3249 *  Contains the logic to identify if we need to verify link for the
3250 *  crosstalk fix
3251 **/
3252static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253{
3254	/* Does FW say we need the fix */
3255	if (!hw->need_crosstalk_fix)
3256		return false;
3257
3258	/* Only consider SFP+ PHYs i.e. media type fiber */
3259	switch (hw->mac.ops.get_media_type(hw)) {
3260	case ixgbe_media_type_fiber:
3261	case ixgbe_media_type_fiber_qsfp:
3262		break;
3263	default:
3264		return false;
3265	}
3266
3267	return true;
3268}
3269
3270/**
3271 *  ixgbe_check_mac_link_generic - Determine link and speed status
3272 *  @hw: pointer to hardware structure
3273 *  @speed: pointer to link speed
3274 *  @link_up: true when link is up
3275 *  @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 *  Reads the links register to determine if link is up and the current speed
3278 **/
3279s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280				 bool *link_up, bool link_up_wait_to_complete)
3281{
3282	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283	u32 links_reg, links_orig;
3284	u32 i;
3285
3286	/* If Crosstalk fix enabled do the sanity check of making sure
3287	 * the SFP+ cage is full.
3288	 */
3289	if (crosstalk_fix_active) {
3290		u32 sfp_cage_full;
3291
3292		switch (hw->mac.type) {
3293		case ixgbe_mac_82599EB:
3294			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295					IXGBE_ESDP_SDP2;
3296			break;
3297		case ixgbe_mac_X550EM_x:
3298		case ixgbe_mac_x550em_a:
3299			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300					IXGBE_ESDP_SDP0;
3301			break;
3302		default:
3303			/* sanity check - No SFP+ devices here */
3304			sfp_cage_full = false;
3305			break;
3306		}
3307
3308		if (!sfp_cage_full) {
3309			*link_up = false;
3310			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3311			return 0;
3312		}
3313	}
3314
3315	/* clear the old state */
3316	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317
3318	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320	if (links_orig != links_reg) {
3321		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322		       links_orig, links_reg);
3323	}
3324
3325	if (link_up_wait_to_complete) {
3326		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327			if (links_reg & IXGBE_LINKS_UP) {
3328				*link_up = true;
3329				break;
3330			} else {
3331				*link_up = false;
3332			}
3333			msleep(100);
3334			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335		}
3336	} else {
3337		if (links_reg & IXGBE_LINKS_UP) {
3338			if (crosstalk_fix_active) {
3339				/* Check the link state again after a delay
3340				 * to filter out spurious link up
3341				 * notifications.
3342				 */
3343				mdelay(5);
3344				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345				if (!(links_reg & IXGBE_LINKS_UP)) {
3346					*link_up = false;
3347					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3348					return 0;
3349				}
3350			}
3351			*link_up = true;
3352		} else {
3353			*link_up = false;
3354		}
3355	}
3356
3357	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358	case IXGBE_LINKS_SPEED_10G_82599:
3359		if ((hw->mac.type >= ixgbe_mac_X550) &&
3360		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362		else
3363			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3364		break;
3365	case IXGBE_LINKS_SPEED_1G_82599:
3366		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3367		break;
3368	case IXGBE_LINKS_SPEED_100_82599:
3369		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3372		else
3373			*speed = IXGBE_LINK_SPEED_100_FULL;
3374		break;
3375	case IXGBE_LINKS_SPEED_10_X550EM_A:
3376		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3377		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379			*speed = IXGBE_LINK_SPEED_10_FULL;
3380		}
3381		break;
3382	default:
3383		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3384	}
3385
3386	return 0;
3387}
3388
3389/**
3390 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391 *  the EEPROM
3392 *  @hw: pointer to hardware structure
3393 *  @wwnn_prefix: the alternative WWNN prefix
3394 *  @wwpn_prefix: the alternative WWPN prefix
3395 *
3396 *  This function will read the EEPROM from the alternative SAN MAC address
3397 *  block to check the support for the alternative WWNN/WWPN prefix support.
3398 **/
3399s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400					u16 *wwpn_prefix)
3401{
3402	u16 offset, caps;
3403	u16 alt_san_mac_blk_offset;
3404
3405	/* clear output first */
3406	*wwnn_prefix = 0xFFFF;
3407	*wwpn_prefix = 0xFFFF;
3408
3409	/* check if alternative SAN MAC is supported */
3410	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412		goto wwn_prefix_err;
3413
3414	if ((alt_san_mac_blk_offset == 0) ||
3415	    (alt_san_mac_blk_offset == 0xFFFF))
3416		return 0;
3417
3418	/* check capability in alternative san mac address block */
3419	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420	if (hw->eeprom.ops.read(hw, offset, &caps))
3421		goto wwn_prefix_err;
3422	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423		return 0;
3424
3425	/* get the corresponding prefix for WWNN/WWPN */
3426	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429
3430	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432		goto wwn_prefix_err;
3433
3434	return 0;
3435
3436wwn_prefix_err:
3437	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438	return 0;
3439}
3440
3441/**
3442 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 *  @hw: pointer to hardware structure
3444 *  @enable: enable or disable switch for MAC anti-spoofing
3445 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 *
3447 **/
3448void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449{
3450	int vf_target_reg = vf >> 3;
3451	int vf_target_shift = vf % 8;
3452	u32 pfvfspoof;
3453
3454	if (hw->mac.type == ixgbe_mac_82598EB)
3455		return;
3456
3457	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458	if (enable)
3459		pfvfspoof |= BIT(vf_target_shift);
3460	else
3461		pfvfspoof &= ~BIT(vf_target_shift);
3462	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3463}
3464
3465/**
3466 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 *  @hw: pointer to hardware structure
3468 *  @enable: enable or disable switch for VLAN anti-spoofing
3469 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 *
3471 **/
3472void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473{
3474	int vf_target_reg = vf >> 3;
3475	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476	u32 pfvfspoof;
3477
3478	if (hw->mac.type == ixgbe_mac_82598EB)
3479		return;
3480
3481	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482	if (enable)
3483		pfvfspoof |= BIT(vf_target_shift);
3484	else
3485		pfvfspoof &= ~BIT(vf_target_shift);
3486	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487}
3488
3489/**
3490 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3491 *  @hw: pointer to hardware structure
3492 *  @device_caps: the EEPROM word with the extra device capabilities
3493 *
3494 *  This function will read the EEPROM location for the device capabilities,
3495 *  and return the word through device_caps.
3496 **/
3497s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498{
3499	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500
3501	return 0;
3502}
3503
3504/**
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3510 **/
3511void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512			     int num_pb,
3513			     u32 headroom,
3514			     int strategy)
3515{
3516	u32 pbsize = hw->mac.rx_pb_size;
3517	int i = 0;
3518	u32 rxpktsize, txpktsize, txpbthresh;
3519
3520	/* Reserve headroom */
3521	pbsize -= headroom;
3522
3523	if (!num_pb)
3524		num_pb = 1;
3525
3526	/* Divide remaining packet buffer space amongst the number
3527	 * of packet buffers requested using supplied strategy.
3528	 */
3529	switch (strategy) {
3530	case (PBA_STRATEGY_WEIGHTED):
3531		/* pba_80_48 strategy weight first half of packet buffer with
3532		 * 5/8 of the packet buffer space.
3533		 */
3534		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535		pbsize -= rxpktsize * (num_pb / 2);
3536		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537		for (; i < (num_pb / 2); i++)
3538			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539		fallthrough; /* configure remaining packet buffers */
3540	case (PBA_STRATEGY_EQUAL):
3541		/* Divide the remaining Rx packet buffer evenly among the TCs */
3542		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543		for (; i < num_pb; i++)
3544			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545		break;
3546	default:
3547		break;
3548	}
3549
3550	/*
3551	 * Setup Tx packet buffer and threshold equally for all TCs
3552	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553	 * 10 since the largest packet we support is just over 9K.
3554	 */
3555	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557	for (i = 0; i < num_pb; i++) {
3558		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560	}
3561
3562	/* Clear unused TCs, if any, to zero buffer size*/
3563	for (; i < IXGBE_MAX_PB; i++) {
3564		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567	}
3568}
3569
3570/**
3571 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3572 *  @buffer: pointer to EEPROM
3573 *  @length: size of EEPROM to calculate a checksum for
3574 *
3575 *  Calculates the checksum for some buffer on a specified length.  The
3576 *  checksum calculated is returned.
3577 **/
3578u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579{
3580	u32 i;
3581	u8 sum = 0;
3582
3583	if (!buffer)
3584		return 0;
3585
3586	for (i = 0; i < length; i++)
3587		sum += buffer[i];
3588
3589	return (u8) (0 - sum);
3590}
3591
3592/**
3593 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 *  @hw: pointer to the HW structure
3595 *  @buffer: command to write and where the return status will be placed
3596 *  @length: length of buffer, must be multiple of 4 bytes
3597 *  @timeout: time in ms to wait for command completion
3598 *
3599 *  Communicates with the manageability block. On success return 0
3600 *  else returns semaphore error when encountering an error acquiring
3601 *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602 *  command fails.
3603 *
3604 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605 *  by the caller.
3606 **/
3607s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608		       u32 timeout)
3609{
3610	u32 hicr, i, fwsts;
3611	u16 dword_len;
3612
3613	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615		return -EINVAL;
3616	}
3617
3618	/* Set bit 9 of FWSTS clearing FW reset indication */
3619	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3621
3622	/* Check that the host interface is enabled. */
3623	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624	if (!(hicr & IXGBE_HICR_EN)) {
3625		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626		return -EIO;
3627	}
3628
3629	/* Calculate length in DWORDs. We must be DWORD aligned */
3630	if (length % sizeof(u32)) {
3631		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632		return -EINVAL;
3633	}
3634
3635	dword_len = length >> 2;
3636
3637	/* The device driver writes the relevant command block
3638	 * into the ram area.
3639	 */
3640	for (i = 0; i < dword_len; i++)
3641		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642				      i, (__force u32)cpu_to_le32(buffer[i]));
3643
3644	/* Setting this bit tells the ARC that a new command is pending. */
3645	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646
3647	for (i = 0; i < timeout; i++) {
3648		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649		if (!(hicr & IXGBE_HICR_C))
3650			break;
3651		usleep_range(1000, 2000);
3652	}
3653
3654	/* Check command successful completion. */
3655	if ((timeout && i == timeout) ||
3656	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657		return -EIO;
3658
3659	return 0;
3660}
3661
3662/**
3663 *  ixgbe_host_interface_command - Issue command to manageability block
3664 *  @hw: pointer to the HW structure
3665 *  @buffer: contains the command to write and where the return status will
3666 *           be placed
3667 *  @length: length of buffer, must be multiple of 4 bytes
3668 *  @timeout: time in ms to wait for command completion
3669 *  @return_data: read and return data from the buffer (true) or not (false)
3670 *  Needed because FW structures are big endian and decoding of
3671 *  these fields can be 8 bit or 16 bit based on command. Decoding
3672 *  is not easily understood without making a table of commands.
3673 *  So we will leave this up to the caller to read back the data
3674 *  in these cases.
3675 *
3676 *  Communicates with the manageability block.  On success return 0
3677 *  else return -EIO or -EINVAL.
3678 **/
3679s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680				 u32 length, u32 timeout,
3681				 bool return_data)
3682{
3683	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684	struct ixgbe_hic_hdr *hdr = buffer;
3685	u32 *u32arr = buffer;
 
 
3686	u16 buf_len, dword_len;
3687	s32 status;
3688	u32 bi;
3689
3690	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692		return -EINVAL;
3693	}
3694	/* Take management host interface semaphore */
3695	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696	if (status)
3697		return status;
3698
3699	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700	if (status)
3701		goto rel_out;
3702
3703	if (!return_data)
3704		goto rel_out;
3705
3706	/* Calculate length in DWORDs */
3707	dword_len = hdr_size >> 2;
3708
3709	/* first pull in the header so we know the buffer length */
3710	for (bi = 0; bi < dword_len; bi++) {
3711		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712		le32_to_cpus(&u32arr[bi]);
3713	}
3714
3715	/* If there is any thing in data position pull it in */
3716	buf_len = hdr->buf_len;
3717	if (!buf_len)
3718		goto rel_out;
3719
3720	if (length < round_up(buf_len, 4) + hdr_size) {
3721		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722		status = -EIO;
3723		goto rel_out;
3724	}
3725
3726	/* Calculate length in DWORDs, add 3 for odd lengths */
3727	dword_len = (buf_len + 3) >> 2;
3728
3729	/* Pull in the rest of the buffer (bi is where we left off) */
3730	for (; bi <= dword_len; bi++) {
3731		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732		le32_to_cpus(&u32arr[bi]);
3733	}
3734
3735rel_out:
3736	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737
3738	return status;
3739}
3740
3741/**
3742 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 *  @hw: pointer to the HW structure
3744 *  @maj: driver version major number
3745 *  @min: driver version minor number
3746 *  @build: driver version build number
3747 *  @sub: driver version sub build number
3748 *  @len: length of driver_ver string
3749 *  @driver_ver: driver string
3750 *
3751 *  Sends driver version number to firmware through the manageability
3752 *  block.  On success return 0
3753 *  else returns -EBUSY when encountering an error acquiring
3754 *  semaphore or -EIO when command fails.
3755 **/
3756s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757				 u8 build, u8 sub, __always_unused u16 len,
3758				 __always_unused const char *driver_ver)
3759{
3760	struct ixgbe_hic_drv_info fw_cmd;
3761	int i;
3762	s32 ret_val;
3763
3764	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767	fw_cmd.port_num = hw->bus.func;
3768	fw_cmd.ver_maj = maj;
3769	fw_cmd.ver_min = min;
3770	fw_cmd.ver_build = build;
3771	fw_cmd.ver_sub = sub;
3772	fw_cmd.hdr.checksum = 0;
3773	fw_cmd.pad = 0;
3774	fw_cmd.pad2 = 0;
3775	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3777
3778	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780						       sizeof(fw_cmd),
3781						       IXGBE_HI_COMMAND_TIMEOUT,
3782						       true);
3783		if (ret_val != 0)
3784			continue;
3785
3786		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787		    FW_CEM_RESP_STATUS_SUCCESS)
3788			ret_val = 0;
3789		else
3790			ret_val = -EIO;
3791
3792		break;
3793	}
3794
3795	return ret_val;
3796}
3797
3798/**
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3801 *
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs.  This function prevents this by flushing the PCIe
3804 * buffers on the system.
3805 **/
3806void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807{
3808	u32 gcr_ext, hlreg0, i, poll;
3809	u16 value;
3810
3811	/*
3812	 * If double reset is not requested then all transactions should
3813	 * already be clear and as such there is no work to do
3814	 */
3815	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816		return;
3817
3818	/*
3819	 * Set loopback enable to prevent any transmits from being sent
3820	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3821	 * has already been cleared.
3822	 */
3823	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825
3826	/* wait for a last completion before clearing buffers */
3827	IXGBE_WRITE_FLUSH(hw);
3828	usleep_range(3000, 6000);
3829
3830	/* Before proceeding, make sure that the PCIe block does not have
3831	 * transactions pending.
3832	 */
3833	poll = ixgbe_pcie_timeout_poll(hw);
3834	for (i = 0; i < poll; i++) {
3835		usleep_range(100, 200);
3836		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837		if (ixgbe_removed(hw->hw_addr))
3838			break;
3839		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840			break;
3841	}
3842
3843	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3844	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847
3848	/* Flush all writes and allow 20usec for all transactions to clear */
3849	IXGBE_WRITE_FLUSH(hw);
3850	udelay(20);
3851
3852	/* restore previous register values */
3853	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855}
3856
3857static const u8 ixgbe_emc_temp_data[4] = {
3858	IXGBE_EMC_INTERNAL_DATA,
3859	IXGBE_EMC_DIODE1_DATA,
3860	IXGBE_EMC_DIODE2_DATA,
3861	IXGBE_EMC_DIODE3_DATA
3862};
3863static const u8 ixgbe_emc_therm_limit[4] = {
3864	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865	IXGBE_EMC_DIODE1_THERM_LIMIT,
3866	IXGBE_EMC_DIODE2_THERM_LIMIT,
3867	IXGBE_EMC_DIODE3_THERM_LIMIT
3868};
3869
3870/**
3871 *  ixgbe_get_ets_data - Extracts the ETS bit data
3872 *  @hw: pointer to hardware structure
3873 *  @ets_cfg: extected ETS data
3874 *  @ets_offset: offset of ETS data
3875 *
3876 *  Returns error code.
3877 **/
3878static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879			      u16 *ets_offset)
3880{
3881	s32 status;
3882
3883	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884	if (status)
3885		return status;
3886
3887	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888		return -EOPNOTSUPP;
3889
3890	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891	if (status)
3892		return status;
3893
3894	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895		return -EOPNOTSUPP;
3896
3897	return 0;
3898}
3899
3900/**
3901 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 *  @hw: pointer to hardware structure
3903 *
3904 *  Returns the thermal sensor data structure
3905 **/
3906s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907{
3908	s32 status;
3909	u16 ets_offset;
3910	u16 ets_cfg;
3911	u16 ets_sensor;
3912	u8  num_sensors;
3913	u8  i;
3914	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915
3916	/* Only support thermal sensors attached to physical port 0 */
3917	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918		return -EOPNOTSUPP;
3919
3920	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921	if (status)
3922		return status;
3923
3924	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925	if (num_sensors > IXGBE_MAX_SENSORS)
3926		num_sensors = IXGBE_MAX_SENSORS;
3927
3928	for (i = 0; i < num_sensors; i++) {
3929		u8  sensor_index;
3930		u8  sensor_location;
3931
3932		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933					     &ets_sensor);
3934		if (status)
3935			return status;
3936
3937		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938					 ets_sensor);
3939		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940					    ets_sensor);
3941
3942		if (sensor_location != 0) {
3943			status = hw->phy.ops.read_i2c_byte(hw,
3944					ixgbe_emc_temp_data[sensor_index],
3945					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946					&data->sensor[i].temp);
3947			if (status)
3948				return status;
3949		}
3950	}
3951
3952	return 0;
3953}
3954
3955/**
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3958 *
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3961 **/
3962s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963{
3964	s32 status;
3965	u16 ets_offset;
3966	u16 ets_cfg;
3967	u16 ets_sensor;
3968	u8  low_thresh_delta;
3969	u8  num_sensors;
3970	u8  therm_limit;
3971	u8  i;
3972	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3973
3974	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975
3976	/* Only support thermal sensors attached to physical port 0 */
3977	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978		return -EOPNOTSUPP;
3979
3980	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981	if (status)
3982		return status;
3983
3984	low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
 
3985	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986	if (num_sensors > IXGBE_MAX_SENSORS)
3987		num_sensors = IXGBE_MAX_SENSORS;
3988
3989	for (i = 0; i < num_sensors; i++) {
3990		u8  sensor_index;
3991		u8  sensor_location;
3992
3993		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994			hw_err(hw, "eeprom read at offset %d failed\n",
3995			       ets_offset + 1 + i);
3996			continue;
3997		}
3998		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999					 ets_sensor);
4000		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001					    ets_sensor);
4002		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004		hw->phy.ops.write_i2c_byte(hw,
4005			ixgbe_emc_therm_limit[sensor_index],
4006			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008		if (sensor_location == 0)
4009			continue;
4010
4011		data->sensor[i].location = sensor_location;
4012		data->sensor[i].caution_thresh = therm_limit;
4013		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014	}
4015
4016	return 0;
4017}
4018
4019/**
4020 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021 *
4022 *  @hw: pointer to hardware structure
4023 *  @nvm_ver: pointer to output structure
4024 *
4025 *  if valid option ROM version, nvm_ver->or_valid set to true
4026 *  else nvm_ver->or_valid is false.
4027 **/
4028void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029			    struct ixgbe_nvm_version *nvm_ver)
4030{
4031	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033	nvm_ver->or_valid = false;
4034	/* Option Rom may or may not be present.  Start with pointer */
4035	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037	/* make sure offset is valid */
4038	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039		return;
4040
4041	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044	/* option rom exists and is valid */
4045	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4047	    eeprom_cfg_blkh == NVM_VER_INVALID)
4048		return;
4049
4050	nvm_ver->or_valid = true;
4051	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055}
4056
4057/**
4058 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
 
4059 *  @hw: pointer to hardware structure
4060 *  @nvm_ver: pointer to output structure
4061 *
4062 *  if valid OEM product version, nvm_ver->oem_valid set to true
4063 *  else nvm_ver->oem_valid is false.
4064 **/
4065void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066				struct ixgbe_nvm_version *nvm_ver)
4067{
4068	u16 rel_num, prod_ver, mod_len, cap, offset;
4069
4070	nvm_ver->oem_valid = false;
4071	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072
4073	/* Return is offset to OEM Product Version block is invalid */
4074	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075		return;
4076
4077	/* Read product version block */
4078	hw->eeprom.ops.read(hw, offset, &mod_len);
4079	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080
4081	/* Return if OEM product version block is invalid */
4082	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084		return;
4085
4086	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088
4089	/* Return if version is invalid */
4090	if ((rel_num | prod_ver) == 0x0 ||
4091	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092		return;
4093
4094	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096	nvm_ver->oem_release = rel_num;
4097	nvm_ver->oem_valid = true;
4098}
4099
4100/**
4101 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102 *
4103 *  @hw: pointer to hardware structure
4104 *  @nvm_ver: pointer to output structure
4105 *
4106 *  word read errors will return 0xFFFF
4107 **/
4108void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109		      struct ixgbe_nvm_version *nvm_ver)
4110{
4111	u16 etk_id_l, etk_id_h;
4112
4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114		etk_id_l = NVM_VER_INVALID;
4115	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116		etk_id_h = NVM_VER_INVALID;
4117
4118	/* The word order for the version format is determined by high order
4119	 * word bit 15.
4120	 */
4121	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122		nvm_ver->etk_id = etk_id_h;
4123		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124	} else {
4125		nvm_ver->etk_id = etk_id_l;
4126		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127	}
4128}
4129
4130void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131{
4132	u32 rxctrl;
4133
4134	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136		if (hw->mac.type != ixgbe_mac_82598EB) {
4137			u32 pfdtxgswc;
4138
4139			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143				hw->mac.set_lben = true;
4144			} else {
4145				hw->mac.set_lben = false;
4146			}
4147		}
4148		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150	}
4151}
4152
4153void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154{
4155	u32 rxctrl;
4156
4157	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159
4160	if (hw->mac.type != ixgbe_mac_82598EB) {
4161		if (hw->mac.set_lben) {
4162			u32 pfdtxgswc;
4163
4164			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167			hw->mac.set_lben = false;
4168		}
4169	}
4170}
4171
4172/** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4174 **/
4175bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176{
4177	u32 fwsm;
4178
4179	if (hw->mac.type < ixgbe_mac_82599EB)
4180		return false;
4181
4182	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183
4184	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185}
4186
4187/**
4188 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 *  @hw: pointer to hardware structure
4190 *  @speed: new link speed
4191 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192 *
4193 *  Set the link speed in the MAC and/or PHY register and restarts link.
4194 */
4195s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196					  ixgbe_link_speed speed,
4197					  bool autoneg_wait_to_complete)
4198{
4199	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201	s32 status = 0;
4202	u32 speedcnt = 0;
4203	u32 i = 0;
4204	bool autoneg, link_up = false;
4205
4206	/* Mask off requested but non-supported speeds */
4207	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208	if (status)
4209		return status;
4210
4211	speed &= link_speed;
4212
4213	/* Try each speed one by one, highest priority first.  We do this in
4214	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215	 */
4216	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217		speedcnt++;
4218		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219
4220		/* Set the module link speed */
4221		switch (hw->phy.media_type) {
4222		case ixgbe_media_type_fiber:
4223			hw->mac.ops.set_rate_select_speed(hw,
4224						    IXGBE_LINK_SPEED_10GB_FULL);
4225			break;
4226		case ixgbe_media_type_fiber_qsfp:
4227			/* QSFP module automatically detects MAC link speed */
4228			break;
4229		default:
4230			hw_dbg(hw, "Unexpected media type\n");
4231			break;
4232		}
4233
4234		/* Allow module to change analog characteristics (1G->10G) */
4235		msleep(40);
4236
4237		status = hw->mac.ops.setup_mac_link(hw,
4238						    IXGBE_LINK_SPEED_10GB_FULL,
4239						    autoneg_wait_to_complete);
4240		if (status)
4241			return status;
4242
4243		/* Flap the Tx laser if it has not already been done */
4244		if (hw->mac.ops.flap_tx_laser)
4245			hw->mac.ops.flap_tx_laser(hw);
4246
4247		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249		 * attempted.  82599 uses the same timing for 10g SFI.
4250		 */
4251		for (i = 0; i < 5; i++) {
4252			/* Wait for the link partner to also set speed */
4253			msleep(100);
4254
4255			/* If we have link, just jump out */
4256			status = hw->mac.ops.check_link(hw, &link_speed,
4257							&link_up, false);
4258			if (status)
4259				return status;
4260
4261			if (link_up)
4262				goto out;
4263		}
4264	}
4265
4266	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267		speedcnt++;
4268		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270
4271		/* Set the module link speed */
4272		switch (hw->phy.media_type) {
4273		case ixgbe_media_type_fiber:
4274			hw->mac.ops.set_rate_select_speed(hw,
4275						     IXGBE_LINK_SPEED_1GB_FULL);
4276			break;
4277		case ixgbe_media_type_fiber_qsfp:
4278			/* QSFP module automatically detects link speed */
4279			break;
4280		default:
4281			hw_dbg(hw, "Unexpected media type\n");
4282			break;
4283		}
4284
4285		/* Allow module to change analog characteristics (10G->1G) */
4286		msleep(40);
4287
4288		status = hw->mac.ops.setup_mac_link(hw,
4289						    IXGBE_LINK_SPEED_1GB_FULL,
4290						    autoneg_wait_to_complete);
4291		if (status)
4292			return status;
4293
4294		/* Flap the Tx laser if it has not already been done */
4295		if (hw->mac.ops.flap_tx_laser)
4296			hw->mac.ops.flap_tx_laser(hw);
4297
4298		/* Wait for the link partner to also set speed */
4299		msleep(100);
4300
4301		/* If we have link, just jump out */
4302		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303						false);
4304		if (status)
4305			return status;
4306
4307		if (link_up)
4308			goto out;
4309	}
4310
4311	/* We didn't get link.  Configure back to the highest speed we tried,
4312	 * (if there was more than one).  We call ourselves back with just the
4313	 * single highest speed that the user requested.
4314	 */
4315	if (speedcnt > 1)
4316		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317						      highest_link_speed,
4318						      autoneg_wait_to_complete);
4319
4320out:
4321	/* Set autoneg_advertised value based on input link speed */
4322	hw->phy.autoneg_advertised = 0;
4323
4324	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326
4327	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329
4330	return status;
4331}
4332
4333/**
4334 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335 *  @hw: pointer to hardware structure
4336 *  @speed: link speed to set
4337 *
4338 *  Set module link speed via the soft rate select.
4339 */
4340void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341				      ixgbe_link_speed speed)
4342{
4343	s32 status;
4344	u8 rs, eeprom_data;
4345
4346	switch (speed) {
4347	case IXGBE_LINK_SPEED_10GB_FULL:
4348		/* one bit mask same as setting on */
4349		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350		break;
4351	case IXGBE_LINK_SPEED_1GB_FULL:
4352		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353		break;
4354	default:
4355		hw_dbg(hw, "Invalid fixed module speed\n");
4356		return;
4357	}
4358
4359	/* Set RS0 */
4360	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362					   &eeprom_data);
4363	if (status) {
4364		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365		return;
4366	}
4367
4368	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369
4370	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372					    eeprom_data);
4373	if (status) {
4374		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375		return;
4376	}
4377
4378	/* Set RS1 */
4379	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381					   &eeprom_data);
4382	if (status) {
4383		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384		return;
4385	}
4386
4387	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388
4389	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391					    eeprom_data);
4392	if (status) {
4393		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394		return;
4395	}
4396}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3
   4  Intel 10 Gigabit PCI Express Linux driver
   5  Copyright(c) 1999 - 2016 Intel Corporation.
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, write to the Free Software Foundation, Inc.,
  18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  19
  20  The full GNU General Public License is included in this distribution in
  21  the file called "COPYING".
  22
  23  Contact Information:
  24  Linux NICS <linux.nics@intel.com>
  25  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  26  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  27
  28*******************************************************************************/
  29
  30#include <linux/pci.h>
  31#include <linux/delay.h>
  32#include <linux/sched.h>
  33#include <linux/netdevice.h>
  34
  35#include "ixgbe.h"
  36#include "ixgbe_common.h"
  37#include "ixgbe_phy.h"
  38
  39static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  40static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  41static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  42static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  44static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  45					u16 count);
  46static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  47static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  49static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  50
  51static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  52static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  53static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  54					     u16 words, u16 *data);
  55static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  56					     u16 words, u16 *data);
  57static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  58						 u16 offset);
  59static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  60
  61/* Base table for registers values that change by MAC */
  62const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  63	IXGBE_MVALS_INIT(8259X)
  64};
  65
  66/**
  67 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  68 *  control
  69 *  @hw: pointer to hardware structure
  70 *
  71 *  There are several phys that do not support autoneg flow control. This
  72 *  function check the device id to see if the associated phy supports
  73 *  autoneg flow control.
  74 **/
  75bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  76{
  77	bool supported = false;
  78	ixgbe_link_speed speed;
  79	bool link_up;
  80
  81	switch (hw->phy.media_type) {
  82	case ixgbe_media_type_fiber:
  83		/* flow control autoneg black list */
  84		switch (hw->device_id) {
  85		case IXGBE_DEV_ID_X550EM_A_SFP:
  86		case IXGBE_DEV_ID_X550EM_A_SFP_N:
  87			supported = false;
  88			break;
  89		default:
  90			hw->mac.ops.check_link(hw, &speed, &link_up, false);
  91			/* if link is down, assume supported */
  92			if (link_up)
  93				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  94				true : false;
  95			else
  96				supported = true;
  97		}
  98
  99		break;
 100	case ixgbe_media_type_backplane:
 101		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
 102			supported = false;
 103		else
 104			supported = true;
 105		break;
 106	case ixgbe_media_type_copper:
 107		/* only some copper devices support flow control autoneg */
 108		switch (hw->device_id) {
 109		case IXGBE_DEV_ID_82599_T3_LOM:
 110		case IXGBE_DEV_ID_X540T:
 111		case IXGBE_DEV_ID_X540T1:
 112		case IXGBE_DEV_ID_X550T:
 113		case IXGBE_DEV_ID_X550T1:
 114		case IXGBE_DEV_ID_X550EM_X_10G_T:
 115		case IXGBE_DEV_ID_X550EM_A_10G_T:
 116		case IXGBE_DEV_ID_X550EM_A_1G_T:
 117		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 118			supported = true;
 119			break;
 120		default:
 121			break;
 122		}
 
 123	default:
 124		break;
 125	}
 126
 127	if (!supported)
 128		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 129		       hw->device_id);
 130
 131	return supported;
 132}
 133
 134/**
 135 *  ixgbe_setup_fc_generic - Set up flow control
 136 *  @hw: pointer to hardware structure
 137 *
 138 *  Called at init time to set up flow control.
 139 **/
 140s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 141{
 142	s32 ret_val = 0;
 143	u32 reg = 0, reg_bp = 0;
 144	u16 reg_cu = 0;
 145	bool locked = false;
 146
 147	/*
 148	 * Validate the requested mode.  Strict IEEE mode does not allow
 149	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 150	 */
 151	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 152		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 153		return IXGBE_ERR_INVALID_LINK_SETTINGS;
 154	}
 155
 156	/*
 157	 * 10gig parts do not have a word in the EEPROM to determine the
 158	 * default flow control setting, so we explicitly set it to full.
 159	 */
 160	if (hw->fc.requested_mode == ixgbe_fc_default)
 161		hw->fc.requested_mode = ixgbe_fc_full;
 162
 163	/*
 164	 * Set up the 1G and 10G flow control advertisement registers so the
 165	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 166	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 167	 */
 168	switch (hw->phy.media_type) {
 169	case ixgbe_media_type_backplane:
 170		/* some MAC's need RMW protection on AUTOC */
 171		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 172		if (ret_val)
 173			return ret_val;
 174
 175		/* fall through - only backplane uses autoc */
 176	case ixgbe_media_type_fiber:
 177		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 178
 179		break;
 180	case ixgbe_media_type_copper:
 181		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 182					MDIO_MMD_AN, &reg_cu);
 183		break;
 184	default:
 185		break;
 186	}
 187
 188	/*
 189	 * The possible values of fc.requested_mode are:
 190	 * 0: Flow control is completely disabled
 191	 * 1: Rx flow control is enabled (we can receive pause frames,
 192	 *    but not send pause frames).
 193	 * 2: Tx flow control is enabled (we can send pause frames but
 194	 *    we do not support receiving pause frames).
 195	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 196	 * other: Invalid.
 197	 */
 198	switch (hw->fc.requested_mode) {
 199	case ixgbe_fc_none:
 200		/* Flow control completely disabled by software override. */
 201		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 202		if (hw->phy.media_type == ixgbe_media_type_backplane)
 203			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 204				    IXGBE_AUTOC_ASM_PAUSE);
 205		else if (hw->phy.media_type == ixgbe_media_type_copper)
 206			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 207		break;
 208	case ixgbe_fc_tx_pause:
 209		/*
 210		 * Tx Flow control is enabled, and Rx Flow control is
 211		 * disabled by software override.
 212		 */
 213		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 214		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 215		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 216			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 217			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 218		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 219			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 220			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 221		}
 222		break;
 223	case ixgbe_fc_rx_pause:
 224		/*
 225		 * Rx Flow control is enabled and Tx Flow control is
 226		 * disabled by software override. Since there really
 227		 * isn't a way to advertise that we are capable of RX
 228		 * Pause ONLY, we will advertise that we support both
 229		 * symmetric and asymmetric Rx PAUSE, as such we fall
 230		 * through to the fc_full statement.  Later, we will
 231		 * disable the adapter's ability to send PAUSE frames.
 232		 */
 233	case ixgbe_fc_full:
 234		/* Flow control (both Rx and Tx) is enabled by SW override. */
 235		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 236		if (hw->phy.media_type == ixgbe_media_type_backplane)
 237			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 238				  IXGBE_AUTOC_ASM_PAUSE;
 239		else if (hw->phy.media_type == ixgbe_media_type_copper)
 240			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 241		break;
 242	default:
 243		hw_dbg(hw, "Flow control param set incorrectly\n");
 244		return IXGBE_ERR_CONFIG;
 245	}
 246
 247	if (hw->mac.type != ixgbe_mac_X540) {
 248		/*
 249		 * Enable auto-negotiation between the MAC & PHY;
 250		 * the MAC will advertise clause 37 flow control.
 251		 */
 252		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 253		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 254
 255		/* Disable AN timeout */
 256		if (hw->fc.strict_ieee)
 257			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 258
 259		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 260		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 261	}
 262
 263	/*
 264	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 265	 * and copper. There is no need to set the PCS1GCTL register.
 266	 *
 267	 */
 268	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 269		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 270		 * LESM is on, likewise reset_pipeline requries the lock as
 271		 * it also writes AUTOC.
 272		 */
 273		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 274		if (ret_val)
 275			return ret_val;
 276
 277	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 278		   ixgbe_device_supports_autoneg_fc(hw)) {
 279		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 280				      MDIO_MMD_AN, reg_cu);
 281	}
 282
 283	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 284	return ret_val;
 285}
 286
 287/**
 288 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 289 *  @hw: pointer to hardware structure
 290 *
 291 *  Starts the hardware by filling the bus info structure and media type, clears
 292 *  all on chip counters, initializes receive address registers, multicast
 293 *  table, VLAN filter table, calls routine to set up link and flow control
 294 *  settings, and leaves transmit and receive units disabled and uninitialized
 295 **/
 296s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 297{
 298	s32 ret_val;
 299	u32 ctrl_ext;
 300	u16 device_caps;
 301
 302	/* Set the media type */
 303	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 304
 305	/* Identify the PHY */
 306	hw->phy.ops.identify(hw);
 307
 308	/* Clear the VLAN filter table */
 309	hw->mac.ops.clear_vfta(hw);
 310
 311	/* Clear statistics registers */
 312	hw->mac.ops.clear_hw_cntrs(hw);
 313
 314	/* Set No Snoop Disable */
 315	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 316	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 317	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 318	IXGBE_WRITE_FLUSH(hw);
 319
 320	/* Setup flow control if method for doing so */
 321	if (hw->mac.ops.setup_fc) {
 322		ret_val = hw->mac.ops.setup_fc(hw);
 323		if (ret_val)
 324			return ret_val;
 325	}
 326
 327	/* Cashe bit indicating need for crosstalk fix */
 328	switch (hw->mac.type) {
 329	case ixgbe_mac_82599EB:
 330	case ixgbe_mac_X550EM_x:
 331	case ixgbe_mac_x550em_a:
 332		hw->mac.ops.get_device_caps(hw, &device_caps);
 333		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 334			hw->need_crosstalk_fix = false;
 335		else
 336			hw->need_crosstalk_fix = true;
 337		break;
 338	default:
 339		hw->need_crosstalk_fix = false;
 340		break;
 341	}
 342
 343	/* Clear adapter stopped flag */
 344	hw->adapter_stopped = false;
 345
 346	return 0;
 347}
 348
 349/**
 350 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 351 *  @hw: pointer to hw structure
 352 *
 353 * Performs the init sequence common to the second generation
 354 * of 10 GbE devices.
 355 * Devices in the second generation:
 356 *     82599
 357 *     X540
 358 **/
 359s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 360{
 361	u32 i;
 362
 363	/* Clear the rate limiters */
 364	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 365		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 366		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 367	}
 368	IXGBE_WRITE_FLUSH(hw);
 369
 370	return 0;
 371}
 372
 373/**
 374 *  ixgbe_init_hw_generic - Generic hardware initialization
 375 *  @hw: pointer to hardware structure
 376 *
 377 *  Initialize the hardware by resetting the hardware, filling the bus info
 378 *  structure and media type, clears all on chip counters, initializes receive
 379 *  address registers, multicast table, VLAN filter table, calls routine to set
 380 *  up link and flow control settings, and leaves transmit and receive units
 381 *  disabled and uninitialized
 382 **/
 383s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 384{
 385	s32 status;
 386
 387	/* Reset the hardware */
 388	status = hw->mac.ops.reset_hw(hw);
 389
 390	if (status == 0) {
 391		/* Start the HW */
 392		status = hw->mac.ops.start_hw(hw);
 393	}
 394
 395	/* Initialize the LED link active for LED blink support */
 396	if (hw->mac.ops.init_led_link_act)
 397		hw->mac.ops.init_led_link_act(hw);
 398
 399	return status;
 400}
 401
 402/**
 403 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 404 *  @hw: pointer to hardware structure
 405 *
 406 *  Clears all hardware statistics counters by reading them from the hardware
 407 *  Statistics counters are clear on read.
 408 **/
 409s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 410{
 411	u16 i = 0;
 412
 413	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 414	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 415	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 416	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 417	for (i = 0; i < 8; i++)
 418		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 419
 420	IXGBE_READ_REG(hw, IXGBE_MLFC);
 421	IXGBE_READ_REG(hw, IXGBE_MRFC);
 422	IXGBE_READ_REG(hw, IXGBE_RLEC);
 423	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 424	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 425	if (hw->mac.type >= ixgbe_mac_82599EB) {
 426		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 427		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 428	} else {
 429		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 430		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 431	}
 432
 433	for (i = 0; i < 8; i++) {
 434		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 435		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 436		if (hw->mac.type >= ixgbe_mac_82599EB) {
 437			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 438			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 439		} else {
 440			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 441			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 442		}
 443	}
 444	if (hw->mac.type >= ixgbe_mac_82599EB)
 445		for (i = 0; i < 8; i++)
 446			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 447	IXGBE_READ_REG(hw, IXGBE_PRC64);
 448	IXGBE_READ_REG(hw, IXGBE_PRC127);
 449	IXGBE_READ_REG(hw, IXGBE_PRC255);
 450	IXGBE_READ_REG(hw, IXGBE_PRC511);
 451	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 452	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 453	IXGBE_READ_REG(hw, IXGBE_GPRC);
 454	IXGBE_READ_REG(hw, IXGBE_BPRC);
 455	IXGBE_READ_REG(hw, IXGBE_MPRC);
 456	IXGBE_READ_REG(hw, IXGBE_GPTC);
 457	IXGBE_READ_REG(hw, IXGBE_GORCL);
 458	IXGBE_READ_REG(hw, IXGBE_GORCH);
 459	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 460	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 461	if (hw->mac.type == ixgbe_mac_82598EB)
 462		for (i = 0; i < 8; i++)
 463			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 464	IXGBE_READ_REG(hw, IXGBE_RUC);
 465	IXGBE_READ_REG(hw, IXGBE_RFC);
 466	IXGBE_READ_REG(hw, IXGBE_ROC);
 467	IXGBE_READ_REG(hw, IXGBE_RJC);
 468	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 469	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 470	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 471	IXGBE_READ_REG(hw, IXGBE_TORL);
 472	IXGBE_READ_REG(hw, IXGBE_TORH);
 473	IXGBE_READ_REG(hw, IXGBE_TPR);
 474	IXGBE_READ_REG(hw, IXGBE_TPT);
 475	IXGBE_READ_REG(hw, IXGBE_PTC64);
 476	IXGBE_READ_REG(hw, IXGBE_PTC127);
 477	IXGBE_READ_REG(hw, IXGBE_PTC255);
 478	IXGBE_READ_REG(hw, IXGBE_PTC511);
 479	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 480	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 481	IXGBE_READ_REG(hw, IXGBE_MPTC);
 482	IXGBE_READ_REG(hw, IXGBE_BPTC);
 483	for (i = 0; i < 16; i++) {
 484		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 485		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 486		if (hw->mac.type >= ixgbe_mac_82599EB) {
 487			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 488			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 489			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 490			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 491			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 492		} else {
 493			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 494			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 495		}
 496	}
 497
 498	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 499		if (hw->phy.id == 0)
 500			hw->phy.ops.identify(hw);
 501		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 502		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 503		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 504		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 505	}
 506
 507	return 0;
 508}
 509
 510/**
 511 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 512 *  @hw: pointer to hardware structure
 513 *  @pba_num: stores the part number string from the EEPROM
 514 *  @pba_num_size: part number string buffer length
 515 *
 516 *  Reads the part number string from the EEPROM.
 517 **/
 518s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 519				  u32 pba_num_size)
 520{
 521	s32 ret_val;
 522	u16 data;
 523	u16 pba_ptr;
 524	u16 offset;
 525	u16 length;
 526
 527	if (pba_num == NULL) {
 528		hw_dbg(hw, "PBA string buffer was null\n");
 529		return IXGBE_ERR_INVALID_ARGUMENT;
 530	}
 531
 532	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 533	if (ret_val) {
 534		hw_dbg(hw, "NVM Read Error\n");
 535		return ret_val;
 536	}
 537
 538	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 539	if (ret_val) {
 540		hw_dbg(hw, "NVM Read Error\n");
 541		return ret_val;
 542	}
 543
 544	/*
 545	 * if data is not ptr guard the PBA must be in legacy format which
 546	 * means pba_ptr is actually our second data word for the PBA number
 547	 * and we can decode it into an ascii string
 548	 */
 549	if (data != IXGBE_PBANUM_PTR_GUARD) {
 550		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 551
 552		/* we will need 11 characters to store the PBA */
 553		if (pba_num_size < 11) {
 554			hw_dbg(hw, "PBA string buffer too small\n");
 555			return IXGBE_ERR_NO_SPACE;
 556		}
 557
 558		/* extract hex string from data and pba_ptr */
 559		pba_num[0] = (data >> 12) & 0xF;
 560		pba_num[1] = (data >> 8) & 0xF;
 561		pba_num[2] = (data >> 4) & 0xF;
 562		pba_num[3] = data & 0xF;
 563		pba_num[4] = (pba_ptr >> 12) & 0xF;
 564		pba_num[5] = (pba_ptr >> 8) & 0xF;
 565		pba_num[6] = '-';
 566		pba_num[7] = 0;
 567		pba_num[8] = (pba_ptr >> 4) & 0xF;
 568		pba_num[9] = pba_ptr & 0xF;
 569
 570		/* put a null character on the end of our string */
 571		pba_num[10] = '\0';
 572
 573		/* switch all the data but the '-' to hex char */
 574		for (offset = 0; offset < 10; offset++) {
 575			if (pba_num[offset] < 0xA)
 576				pba_num[offset] += '0';
 577			else if (pba_num[offset] < 0x10)
 578				pba_num[offset] += 'A' - 0xA;
 579		}
 580
 581		return 0;
 582	}
 583
 584	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 585	if (ret_val) {
 586		hw_dbg(hw, "NVM Read Error\n");
 587		return ret_val;
 588	}
 589
 590	if (length == 0xFFFF || length == 0) {
 591		hw_dbg(hw, "NVM PBA number section invalid length\n");
 592		return IXGBE_ERR_PBA_SECTION;
 593	}
 594
 595	/* check if pba_num buffer is big enough */
 596	if (pba_num_size  < (((u32)length * 2) - 1)) {
 597		hw_dbg(hw, "PBA string buffer too small\n");
 598		return IXGBE_ERR_NO_SPACE;
 599	}
 600
 601	/* trim pba length from start of string */
 602	pba_ptr++;
 603	length--;
 604
 605	for (offset = 0; offset < length; offset++) {
 606		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 607		if (ret_val) {
 608			hw_dbg(hw, "NVM Read Error\n");
 609			return ret_val;
 610		}
 611		pba_num[offset * 2] = (u8)(data >> 8);
 612		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 613	}
 614	pba_num[offset * 2] = '\0';
 615
 616	return 0;
 617}
 618
 619/**
 620 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 621 *  @hw: pointer to hardware structure
 622 *  @mac_addr: Adapter MAC address
 623 *
 624 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 625 *  A reset of the adapter must be performed prior to calling this function
 626 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 627 **/
 628s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 629{
 630	u32 rar_high;
 631	u32 rar_low;
 632	u16 i;
 633
 634	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 635	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 636
 637	for (i = 0; i < 4; i++)
 638		mac_addr[i] = (u8)(rar_low >> (i*8));
 639
 640	for (i = 0; i < 2; i++)
 641		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 642
 643	return 0;
 644}
 645
 646enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 647{
 648	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 649	case IXGBE_PCI_LINK_WIDTH_1:
 650		return ixgbe_bus_width_pcie_x1;
 651	case IXGBE_PCI_LINK_WIDTH_2:
 652		return ixgbe_bus_width_pcie_x2;
 653	case IXGBE_PCI_LINK_WIDTH_4:
 654		return ixgbe_bus_width_pcie_x4;
 655	case IXGBE_PCI_LINK_WIDTH_8:
 656		return ixgbe_bus_width_pcie_x8;
 657	default:
 658		return ixgbe_bus_width_unknown;
 659	}
 660}
 661
 662enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 663{
 664	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 665	case IXGBE_PCI_LINK_SPEED_2500:
 666		return ixgbe_bus_speed_2500;
 667	case IXGBE_PCI_LINK_SPEED_5000:
 668		return ixgbe_bus_speed_5000;
 669	case IXGBE_PCI_LINK_SPEED_8000:
 670		return ixgbe_bus_speed_8000;
 671	default:
 672		return ixgbe_bus_speed_unknown;
 673	}
 674}
 675
 676/**
 677 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 678 *  @hw: pointer to hardware structure
 679 *
 680 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 681 **/
 682s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 683{
 684	u16 link_status;
 685
 686	hw->bus.type = ixgbe_bus_type_pci_express;
 687
 688	/* Get the negotiated link width and speed from PCI config space */
 689	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 690
 691	hw->bus.width = ixgbe_convert_bus_width(link_status);
 692	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 693
 694	hw->mac.ops.set_lan_id(hw);
 695
 696	return 0;
 697}
 698
 699/**
 700 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 701 *  @hw: pointer to the HW structure
 702 *
 703 *  Determines the LAN function id by reading memory-mapped registers
 704 *  and swaps the port value if requested.
 705 **/
 706void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 707{
 708	struct ixgbe_bus_info *bus = &hw->bus;
 709	u16 ee_ctrl_4;
 710	u32 reg;
 711
 712	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 713	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 714	bus->lan_id = bus->func;
 715
 716	/* check for a port swap */
 717	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 718	if (reg & IXGBE_FACTPS_LFS)
 719		bus->func ^= 0x1;
 720
 721	/* Get MAC instance from EEPROM for configuring CS4227 */
 722	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 723		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 724		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
 725				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
 726	}
 727}
 728
 729/**
 730 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 731 *  @hw: pointer to hardware structure
 732 *
 733 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 734 *  disables transmit and receive units. The adapter_stopped flag is used by
 735 *  the shared code and drivers to determine if the adapter is in a stopped
 736 *  state and should not touch the hardware.
 737 **/
 738s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 739{
 740	u32 reg_val;
 741	u16 i;
 742
 743	/*
 744	 * Set the adapter_stopped flag so other driver functions stop touching
 745	 * the hardware
 746	 */
 747	hw->adapter_stopped = true;
 748
 749	/* Disable the receive unit */
 750	hw->mac.ops.disable_rx(hw);
 751
 752	/* Clear interrupt mask to stop interrupts from being generated */
 753	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 754
 755	/* Clear any pending interrupts, flush previous writes */
 756	IXGBE_READ_REG(hw, IXGBE_EICR);
 757
 758	/* Disable the transmit unit.  Each queue must be disabled. */
 759	for (i = 0; i < hw->mac.max_tx_queues; i++)
 760		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 761
 762	/* Disable the receive unit by stopping each queue */
 763	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 764		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 765		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 766		reg_val |= IXGBE_RXDCTL_SWFLSH;
 767		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 768	}
 769
 770	/* flush all queues disables */
 771	IXGBE_WRITE_FLUSH(hw);
 772	usleep_range(1000, 2000);
 773
 774	/*
 775	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 776	 * access and verify no pending requests
 777	 */
 778	return ixgbe_disable_pcie_master(hw);
 779}
 780
 781/**
 782 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 783 *  @hw: pointer to hardware structure
 784 *
 785 *  Store the index for the link active LED. This will be used to support
 786 *  blinking the LED.
 787 **/
 788s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 789{
 790	struct ixgbe_mac_info *mac = &hw->mac;
 791	u32 led_reg, led_mode;
 792	u16 i;
 793
 794	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 795
 796	/* Get LED link active from the LEDCTL register */
 797	for (i = 0; i < 4; i++) {
 798		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 799
 800		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 801		    IXGBE_LED_LINK_ACTIVE) {
 802			mac->led_link_act = i;
 803			return 0;
 804		}
 805	}
 806
 807	/* If LEDCTL register does not have the LED link active set, then use
 808	 * known MAC defaults.
 809	 */
 810	switch (hw->mac.type) {
 811	case ixgbe_mac_x550em_a:
 812		mac->led_link_act = 0;
 813		break;
 814	case ixgbe_mac_X550EM_x:
 815		mac->led_link_act = 1;
 816		break;
 817	default:
 818		mac->led_link_act = 2;
 819	}
 820
 821	return 0;
 822}
 823
 824/**
 825 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 826 *  @hw: pointer to hardware structure
 827 *  @index: led number to turn on
 828 **/
 829s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 830{
 831	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 832
 833	if (index > 3)
 834		return IXGBE_ERR_PARAM;
 835
 836	/* To turn on the LED, set mode to ON. */
 837	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 838	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 839	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 840	IXGBE_WRITE_FLUSH(hw);
 841
 842	return 0;
 843}
 844
 845/**
 846 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 847 *  @hw: pointer to hardware structure
 848 *  @index: led number to turn off
 849 **/
 850s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 851{
 852	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 853
 854	if (index > 3)
 855		return IXGBE_ERR_PARAM;
 856
 857	/* To turn off the LED, set mode to OFF. */
 858	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 859	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 860	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 861	IXGBE_WRITE_FLUSH(hw);
 862
 863	return 0;
 864}
 865
 866/**
 867 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 868 *  @hw: pointer to hardware structure
 869 *
 870 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 871 *  ixgbe_hw struct in order to set up EEPROM access.
 872 **/
 873s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 874{
 875	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 876	u32 eec;
 877	u16 eeprom_size;
 878
 879	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 880		eeprom->type = ixgbe_eeprom_none;
 881		/* Set default semaphore delay to 10ms which is a well
 882		 * tested value */
 883		eeprom->semaphore_delay = 10;
 884		/* Clear EEPROM page size, it will be initialized as needed */
 885		eeprom->word_page_size = 0;
 886
 887		/*
 888		 * Check for EEPROM present first.
 889		 * If not present leave as none
 890		 */
 891		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 892		if (eec & IXGBE_EEC_PRES) {
 893			eeprom->type = ixgbe_eeprom_spi;
 894
 895			/*
 896			 * SPI EEPROM is assumed here.  This code would need to
 897			 * change if a future EEPROM is not SPI.
 898			 */
 899			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 900					    IXGBE_EEC_SIZE_SHIFT);
 901			eeprom->word_size = BIT(eeprom_size +
 902						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
 903		}
 904
 905		if (eec & IXGBE_EEC_ADDR_SIZE)
 906			eeprom->address_bits = 16;
 907		else
 908			eeprom->address_bits = 8;
 909		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 910		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 911	}
 912
 913	return 0;
 914}
 915
 916/**
 917 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 918 *  @hw: pointer to hardware structure
 919 *  @offset: offset within the EEPROM to write
 920 *  @words: number of words
 921 *  @data: 16 bit word(s) to write to EEPROM
 922 *
 923 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 924 **/
 925s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 926					       u16 words, u16 *data)
 927{
 928	s32 status;
 929	u16 i, count;
 930
 931	hw->eeprom.ops.init_params(hw);
 932
 933	if (words == 0)
 934		return IXGBE_ERR_INVALID_ARGUMENT;
 935
 936	if (offset + words > hw->eeprom.word_size)
 937		return IXGBE_ERR_EEPROM;
 938
 939	/*
 940	 * The EEPROM page size cannot be queried from the chip. We do lazy
 941	 * initialization. It is worth to do that when we write large buffer.
 942	 */
 943	if ((hw->eeprom.word_page_size == 0) &&
 944	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 945		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 946
 947	/*
 948	 * We cannot hold synchronization semaphores for too long
 949	 * to avoid other entity starvation. However it is more efficient
 950	 * to read in bursts than synchronizing access for each word.
 951	 */
 952	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 953		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 954			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 955		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 956							    count, &data[i]);
 957
 958		if (status != 0)
 959			break;
 960	}
 961
 962	return status;
 963}
 964
 965/**
 966 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 967 *  @hw: pointer to hardware structure
 968 *  @offset: offset within the EEPROM to be written to
 969 *  @words: number of word(s)
 970 *  @data: 16 bit word(s) to be written to the EEPROM
 971 *
 972 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 973 *  EEPROM will most likely contain an invalid checksum.
 974 **/
 975static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 976					      u16 words, u16 *data)
 977{
 978	s32 status;
 979	u16 word;
 980	u16 page_size;
 981	u16 i;
 982	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 983
 984	/* Prepare the EEPROM for writing  */
 985	status = ixgbe_acquire_eeprom(hw);
 986	if (status)
 987		return status;
 988
 989	if (ixgbe_ready_eeprom(hw) != 0) {
 990		ixgbe_release_eeprom(hw);
 991		return IXGBE_ERR_EEPROM;
 992	}
 993
 994	for (i = 0; i < words; i++) {
 995		ixgbe_standby_eeprom(hw);
 996
 997		/* Send the WRITE ENABLE command (8 bit opcode) */
 998		ixgbe_shift_out_eeprom_bits(hw,
 999					    IXGBE_EEPROM_WREN_OPCODE_SPI,
1000					    IXGBE_EEPROM_OPCODE_BITS);
1001
1002		ixgbe_standby_eeprom(hw);
1003
1004		/* Some SPI eeproms use the 8th address bit embedded
1005		 * in the opcode
1006		 */
1007		if ((hw->eeprom.address_bits == 8) &&
1008		    ((offset + i) >= 128))
1009			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1010
1011		/* Send the Write command (8-bit opcode + addr) */
1012		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1013					    IXGBE_EEPROM_OPCODE_BITS);
1014		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1015					    hw->eeprom.address_bits);
1016
1017		page_size = hw->eeprom.word_page_size;
1018
1019		/* Send the data in burst via SPI */
1020		do {
1021			word = data[i];
1022			word = (word >> 8) | (word << 8);
1023			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1024
1025			if (page_size == 0)
1026				break;
1027
1028			/* do not wrap around page */
1029			if (((offset + i) & (page_size - 1)) ==
1030			    (page_size - 1))
1031				break;
1032		} while (++i < words);
1033
1034		ixgbe_standby_eeprom(hw);
1035		usleep_range(10000, 20000);
1036	}
1037	/* Done with writing - release the EEPROM */
1038	ixgbe_release_eeprom(hw);
1039
1040	return 0;
1041}
1042
1043/**
1044 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1045 *  @hw: pointer to hardware structure
1046 *  @offset: offset within the EEPROM to be written to
1047 *  @data: 16 bit word to be written to the EEPROM
1048 *
1049 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1050 *  EEPROM will most likely contain an invalid checksum.
1051 **/
1052s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1053{
1054	hw->eeprom.ops.init_params(hw);
1055
1056	if (offset >= hw->eeprom.word_size)
1057		return IXGBE_ERR_EEPROM;
1058
1059	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1060}
1061
1062/**
1063 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1064 *  @hw: pointer to hardware structure
1065 *  @offset: offset within the EEPROM to be read
1066 *  @words: number of word(s)
1067 *  @data: read 16 bit words(s) from EEPROM
1068 *
1069 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1070 **/
1071s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1072					      u16 words, u16 *data)
1073{
1074	s32 status;
1075	u16 i, count;
1076
1077	hw->eeprom.ops.init_params(hw);
1078
1079	if (words == 0)
1080		return IXGBE_ERR_INVALID_ARGUMENT;
1081
1082	if (offset + words > hw->eeprom.word_size)
1083		return IXGBE_ERR_EEPROM;
1084
1085	/*
1086	 * We cannot hold synchronization semaphores for too long
1087	 * to avoid other entity starvation. However it is more efficient
1088	 * to read in bursts than synchronizing access for each word.
1089	 */
1090	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1091		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1092			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1093
1094		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1095							   count, &data[i]);
1096
1097		if (status)
1098			return status;
1099	}
1100
1101	return 0;
1102}
1103
1104/**
1105 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1106 *  @hw: pointer to hardware structure
1107 *  @offset: offset within the EEPROM to be read
1108 *  @words: number of word(s)
1109 *  @data: read 16 bit word(s) from EEPROM
1110 *
1111 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1112 **/
1113static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1114					     u16 words, u16 *data)
1115{
1116	s32 status;
1117	u16 word_in;
1118	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1119	u16 i;
1120
1121	/* Prepare the EEPROM for reading  */
1122	status = ixgbe_acquire_eeprom(hw);
1123	if (status)
1124		return status;
1125
1126	if (ixgbe_ready_eeprom(hw) != 0) {
1127		ixgbe_release_eeprom(hw);
1128		return IXGBE_ERR_EEPROM;
1129	}
1130
1131	for (i = 0; i < words; i++) {
1132		ixgbe_standby_eeprom(hw);
1133		/* Some SPI eeproms use the 8th address bit embedded
1134		 * in the opcode
1135		 */
1136		if ((hw->eeprom.address_bits == 8) &&
1137		    ((offset + i) >= 128))
1138			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1139
1140		/* Send the READ command (opcode + addr) */
1141		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1142					    IXGBE_EEPROM_OPCODE_BITS);
1143		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1144					    hw->eeprom.address_bits);
1145
1146		/* Read the data. */
1147		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1148		data[i] = (word_in >> 8) | (word_in << 8);
1149	}
1150
1151	/* End this read operation */
1152	ixgbe_release_eeprom(hw);
1153
1154	return 0;
1155}
1156
1157/**
1158 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1159 *  @hw: pointer to hardware structure
1160 *  @offset: offset within the EEPROM to be read
1161 *  @data: read 16 bit value from EEPROM
1162 *
1163 *  Reads 16 bit value from EEPROM through bit-bang method
1164 **/
1165s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1166				       u16 *data)
1167{
1168	hw->eeprom.ops.init_params(hw);
1169
1170	if (offset >= hw->eeprom.word_size)
1171		return IXGBE_ERR_EEPROM;
1172
1173	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1174}
1175
1176/**
1177 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1178 *  @hw: pointer to hardware structure
1179 *  @offset: offset of word in the EEPROM to read
1180 *  @words: number of word(s)
1181 *  @data: 16 bit word(s) from the EEPROM
1182 *
1183 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1184 **/
1185s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1186				   u16 words, u16 *data)
1187{
1188	u32 eerd;
1189	s32 status;
1190	u32 i;
1191
1192	hw->eeprom.ops.init_params(hw);
1193
1194	if (words == 0)
1195		return IXGBE_ERR_INVALID_ARGUMENT;
1196
1197	if (offset >= hw->eeprom.word_size)
1198		return IXGBE_ERR_EEPROM;
1199
1200	for (i = 0; i < words; i++) {
1201		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1202		       IXGBE_EEPROM_RW_REG_START;
1203
1204		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1205		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1206
1207		if (status == 0) {
1208			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1209				   IXGBE_EEPROM_RW_REG_DATA);
1210		} else {
1211			hw_dbg(hw, "Eeprom read timed out\n");
1212			return status;
1213		}
1214	}
1215
1216	return 0;
1217}
1218
1219/**
1220 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1221 *  @hw: pointer to hardware structure
1222 *  @offset: offset within the EEPROM to be used as a scratch pad
1223 *
1224 *  Discover EEPROM page size by writing marching data at given offset.
1225 *  This function is called only when we are writing a new large buffer
1226 *  at given offset so the data would be overwritten anyway.
1227 **/
1228static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1229						 u16 offset)
1230{
1231	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1232	s32 status;
1233	u16 i;
1234
1235	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1236		data[i] = i;
1237
1238	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1239	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1240					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1241	hw->eeprom.word_page_size = 0;
1242	if (status)
1243		return status;
1244
1245	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1246	if (status)
1247		return status;
1248
1249	/*
1250	 * When writing in burst more than the actual page size
1251	 * EEPROM address wraps around current page.
1252	 */
1253	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1254
1255	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1256	       hw->eeprom.word_page_size);
1257	return 0;
1258}
1259
1260/**
1261 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1262 *  @hw: pointer to hardware structure
1263 *  @offset: offset of  word in the EEPROM to read
1264 *  @data: word read from the EEPROM
1265 *
1266 *  Reads a 16 bit word from the EEPROM using the EERD register.
1267 **/
1268s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1269{
1270	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1271}
1272
1273/**
1274 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1275 *  @hw: pointer to hardware structure
1276 *  @offset: offset of  word in the EEPROM to write
1277 *  @words: number of words
1278 *  @data: word(s) write to the EEPROM
1279 *
1280 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1281 **/
1282s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1283				    u16 words, u16 *data)
1284{
1285	u32 eewr;
1286	s32 status;
1287	u16 i;
1288
1289	hw->eeprom.ops.init_params(hw);
1290
1291	if (words == 0)
1292		return IXGBE_ERR_INVALID_ARGUMENT;
1293
1294	if (offset >= hw->eeprom.word_size)
1295		return IXGBE_ERR_EEPROM;
1296
1297	for (i = 0; i < words; i++) {
1298		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1299		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1300		       IXGBE_EEPROM_RW_REG_START;
1301
1302		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1303		if (status) {
1304			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1305			return status;
1306		}
1307
1308		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1309
1310		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1311		if (status) {
1312			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1313			return status;
1314		}
1315	}
1316
1317	return 0;
1318}
1319
1320/**
1321 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1322 *  @hw: pointer to hardware structure
1323 *  @offset: offset of  word in the EEPROM to write
1324 *  @data: word write to the EEPROM
1325 *
1326 *  Write a 16 bit word to the EEPROM using the EEWR register.
1327 **/
1328s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1329{
1330	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1331}
1332
1333/**
1334 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1335 *  @hw: pointer to hardware structure
1336 *  @ee_reg: EEPROM flag for polling
1337 *
1338 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1339 *  read or write is done respectively.
1340 **/
1341static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1342{
1343	u32 i;
1344	u32 reg;
1345
1346	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1347		if (ee_reg == IXGBE_NVM_POLL_READ)
1348			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1349		else
1350			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1351
1352		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1353			return 0;
1354		}
1355		udelay(5);
1356	}
1357	return IXGBE_ERR_EEPROM;
1358}
1359
1360/**
1361 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1362 *  @hw: pointer to hardware structure
1363 *
1364 *  Prepares EEPROM for access using bit-bang method. This function should
1365 *  be called before issuing a command to the EEPROM.
1366 **/
1367static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1368{
1369	u32 eec;
1370	u32 i;
1371
1372	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1373		return IXGBE_ERR_SWFW_SYNC;
1374
1375	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1376
1377	/* Request EEPROM Access */
1378	eec |= IXGBE_EEC_REQ;
1379	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1380
1381	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1382		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1383		if (eec & IXGBE_EEC_GNT)
1384			break;
1385		udelay(5);
1386	}
1387
1388	/* Release if grant not acquired */
1389	if (!(eec & IXGBE_EEC_GNT)) {
1390		eec &= ~IXGBE_EEC_REQ;
1391		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1392		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1393
1394		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1395		return IXGBE_ERR_EEPROM;
1396	}
1397
1398	/* Setup EEPROM for Read/Write */
1399	/* Clear CS and SK */
1400	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1401	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1402	IXGBE_WRITE_FLUSH(hw);
1403	udelay(1);
1404	return 0;
1405}
1406
1407/**
1408 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1409 *  @hw: pointer to hardware structure
1410 *
1411 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412 **/
1413static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1414{
1415	u32 timeout = 2000;
1416	u32 i;
1417	u32 swsm;
1418
1419	/* Get SMBI software semaphore between device drivers first */
1420	for (i = 0; i < timeout; i++) {
1421		/*
1422		 * If the SMBI bit is 0 when we read it, then the bit will be
1423		 * set and we have the semaphore
1424		 */
1425		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426		if (!(swsm & IXGBE_SWSM_SMBI))
1427			break;
1428		usleep_range(50, 100);
1429	}
1430
1431	if (i == timeout) {
1432		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1433		/* this release is particularly important because our attempts
1434		 * above to get the semaphore may have succeeded, and if there
1435		 * was a timeout, we should unconditionally clear the semaphore
1436		 * bits to free the driver to make progress
1437		 */
1438		ixgbe_release_eeprom_semaphore(hw);
1439
1440		usleep_range(50, 100);
1441		/* one last try
1442		 * If the SMBI bit is 0 when we read it, then the bit will be
1443		 * set and we have the semaphore
1444		 */
1445		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1446		if (swsm & IXGBE_SWSM_SMBI) {
1447			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1448			return IXGBE_ERR_EEPROM;
1449		}
1450	}
1451
1452	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1453	for (i = 0; i < timeout; i++) {
1454		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455
1456		/* Set the SW EEPROM semaphore bit to request access */
1457		swsm |= IXGBE_SWSM_SWESMBI;
1458		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459
1460		/* If we set the bit successfully then we got the
1461		 * semaphore.
1462		 */
1463		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1464		if (swsm & IXGBE_SWSM_SWESMBI)
1465			break;
1466
1467		usleep_range(50, 100);
1468	}
1469
1470	/* Release semaphores and return error if SW EEPROM semaphore
1471	 * was not granted because we don't have access to the EEPROM
1472	 */
1473	if (i >= timeout) {
1474		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1475		ixgbe_release_eeprom_semaphore(hw);
1476		return IXGBE_ERR_EEPROM;
1477	}
1478
1479	return 0;
1480}
1481
1482/**
1483 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1484 *  @hw: pointer to hardware structure
1485 *
1486 *  This function clears hardware semaphore bits.
1487 **/
1488static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1489{
1490	u32 swsm;
1491
1492	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1493
1494	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1495	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1496	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1497	IXGBE_WRITE_FLUSH(hw);
1498}
1499
1500/**
1501 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1502 *  @hw: pointer to hardware structure
1503 **/
1504static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1505{
1506	u16 i;
1507	u8 spi_stat_reg;
1508
1509	/*
1510	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1511	 * EEPROM will signal that the command has been completed by clearing
1512	 * bit 0 of the internal status register.  If it's not cleared within
1513	 * 5 milliseconds, then error out.
1514	 */
1515	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1516		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1517					    IXGBE_EEPROM_OPCODE_BITS);
1518		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1519		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1520			break;
1521
1522		udelay(5);
1523		ixgbe_standby_eeprom(hw);
1524	}
1525
1526	/*
1527	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1528	 * devices (and only 0-5mSec on 5V devices)
1529	 */
1530	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1531		hw_dbg(hw, "SPI EEPROM Status error\n");
1532		return IXGBE_ERR_EEPROM;
1533	}
1534
1535	return 0;
1536}
1537
1538/**
1539 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1540 *  @hw: pointer to hardware structure
1541 **/
1542static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1543{
1544	u32 eec;
1545
1546	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548	/* Toggle CS to flush commands */
1549	eec |= IXGBE_EEC_CS;
1550	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1551	IXGBE_WRITE_FLUSH(hw);
1552	udelay(1);
1553	eec &= ~IXGBE_EEC_CS;
1554	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555	IXGBE_WRITE_FLUSH(hw);
1556	udelay(1);
1557}
1558
1559/**
1560 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1561 *  @hw: pointer to hardware structure
1562 *  @data: data to send to the EEPROM
1563 *  @count: number of bits to shift out
1564 **/
1565static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1566					u16 count)
1567{
1568	u32 eec;
1569	u32 mask;
1570	u32 i;
1571
1572	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1573
1574	/*
1575	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1576	 * one bit at a time.  Determine the starting bit based on count
1577	 */
1578	mask = BIT(count - 1);
1579
1580	for (i = 0; i < count; i++) {
1581		/*
1582		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1583		 * "1", and then raising and then lowering the clock (the SK
1584		 * bit controls the clock input to the EEPROM).  A "0" is
1585		 * shifted out to the EEPROM by setting "DI" to "0" and then
1586		 * raising and then lowering the clock.
1587		 */
1588		if (data & mask)
1589			eec |= IXGBE_EEC_DI;
1590		else
1591			eec &= ~IXGBE_EEC_DI;
1592
1593		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1594		IXGBE_WRITE_FLUSH(hw);
1595
1596		udelay(1);
1597
1598		ixgbe_raise_eeprom_clk(hw, &eec);
1599		ixgbe_lower_eeprom_clk(hw, &eec);
1600
1601		/*
1602		 * Shift mask to signify next bit of data to shift in to the
1603		 * EEPROM
1604		 */
1605		mask = mask >> 1;
1606	}
1607
1608	/* We leave the "DI" bit set to "0" when we leave this routine. */
1609	eec &= ~IXGBE_EEC_DI;
1610	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1611	IXGBE_WRITE_FLUSH(hw);
1612}
1613
1614/**
1615 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1616 *  @hw: pointer to hardware structure
1617 *  @count: number of bits to shift
1618 **/
1619static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1620{
1621	u32 eec;
1622	u32 i;
1623	u16 data = 0;
1624
1625	/*
1626	 * In order to read a register from the EEPROM, we need to shift
1627	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628	 * the clock input to the EEPROM (setting the SK bit), and then reading
1629	 * the value of the "DO" bit.  During this "shifting in" process the
1630	 * "DI" bit should always be clear.
1631	 */
1632	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1633
1634	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1635
1636	for (i = 0; i < count; i++) {
1637		data = data << 1;
1638		ixgbe_raise_eeprom_clk(hw, &eec);
1639
1640		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1641
1642		eec &= ~(IXGBE_EEC_DI);
1643		if (eec & IXGBE_EEC_DO)
1644			data |= 1;
1645
1646		ixgbe_lower_eeprom_clk(hw, &eec);
1647	}
1648
1649	return data;
1650}
1651
1652/**
1653 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654 *  @hw: pointer to hardware structure
1655 *  @eec: EEC register's current value
1656 **/
1657static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1658{
1659	/*
1660	 * Raise the clock input to the EEPROM
1661	 * (setting the SK bit), then delay
1662	 */
1663	*eec = *eec | IXGBE_EEC_SK;
1664	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665	IXGBE_WRITE_FLUSH(hw);
1666	udelay(1);
1667}
1668
1669/**
1670 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671 *  @hw: pointer to hardware structure
1672 *  @eec: EEC's current value
1673 **/
1674static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1675{
1676	/*
1677	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1678	 * delay
1679	 */
1680	*eec = *eec & ~IXGBE_EEC_SK;
1681	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682	IXGBE_WRITE_FLUSH(hw);
1683	udelay(1);
1684}
1685
1686/**
1687 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1688 *  @hw: pointer to hardware structure
1689 **/
1690static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1691{
1692	u32 eec;
1693
1694	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1695
1696	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1697	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1698
1699	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700	IXGBE_WRITE_FLUSH(hw);
1701
1702	udelay(1);
1703
1704	/* Stop requesting EEPROM access */
1705	eec &= ~IXGBE_EEC_REQ;
1706	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1707
1708	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1709
1710	/*
1711	 * Delay before attempt to obtain semaphore again to allow FW
1712	 * access. semaphore_delay is in ms we need us for usleep_range
1713	 */
1714	usleep_range(hw->eeprom.semaphore_delay * 1000,
1715		     hw->eeprom.semaphore_delay * 2000);
1716}
1717
1718/**
1719 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720 *  @hw: pointer to hardware structure
1721 **/
1722s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1723{
1724	u16 i;
1725	u16 j;
1726	u16 checksum = 0;
1727	u16 length = 0;
1728	u16 pointer = 0;
1729	u16 word = 0;
1730
1731	/* Include 0x0-0x3F in the checksum */
1732	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733		if (hw->eeprom.ops.read(hw, i, &word)) {
1734			hw_dbg(hw, "EEPROM read failed\n");
1735			break;
1736		}
1737		checksum += word;
1738	}
1739
1740	/* Include all data from pointers except for the fw pointer */
1741	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743			hw_dbg(hw, "EEPROM read failed\n");
1744			return IXGBE_ERR_EEPROM;
1745		}
1746
1747		/* If the pointer seems invalid */
1748		if (pointer == 0xFFFF || pointer == 0)
1749			continue;
1750
1751		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752			hw_dbg(hw, "EEPROM read failed\n");
1753			return IXGBE_ERR_EEPROM;
1754		}
1755
1756		if (length == 0xFFFF || length == 0)
1757			continue;
1758
1759		for (j = pointer + 1; j <= pointer + length; j++) {
1760			if (hw->eeprom.ops.read(hw, j, &word)) {
1761				hw_dbg(hw, "EEPROM read failed\n");
1762				return IXGBE_ERR_EEPROM;
1763			}
1764			checksum += word;
1765		}
1766	}
1767
1768	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1769
1770	return (s32)checksum;
1771}
1772
1773/**
1774 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775 *  @hw: pointer to hardware structure
1776 *  @checksum_val: calculated checksum
1777 *
1778 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1779 *  caller does not need checksum_val, the value can be NULL.
1780 **/
1781s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1782					   u16 *checksum_val)
1783{
1784	s32 status;
1785	u16 checksum;
1786	u16 read_checksum = 0;
1787
1788	/*
1789	 * Read the first word from the EEPROM. If this times out or fails, do
1790	 * not continue or we could be in for a very long wait while every
1791	 * EEPROM read fails
1792	 */
1793	status = hw->eeprom.ops.read(hw, 0, &checksum);
1794	if (status) {
1795		hw_dbg(hw, "EEPROM read failed\n");
1796		return status;
1797	}
1798
1799	status = hw->eeprom.ops.calc_checksum(hw);
1800	if (status < 0)
1801		return status;
1802
1803	checksum = (u16)(status & 0xffff);
1804
1805	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1806	if (status) {
1807		hw_dbg(hw, "EEPROM read failed\n");
1808		return status;
1809	}
1810
1811	/* Verify read checksum from EEPROM is the same as
1812	 * calculated checksum
1813	 */
1814	if (read_checksum != checksum)
1815		status = IXGBE_ERR_EEPROM_CHECKSUM;
1816
1817	/* If the user cares, return the calculated checksum */
1818	if (checksum_val)
1819		*checksum_val = checksum;
1820
1821	return status;
1822}
1823
1824/**
1825 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826 *  @hw: pointer to hardware structure
1827 **/
1828s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1829{
1830	s32 status;
1831	u16 checksum;
1832
1833	/*
1834	 * Read the first word from the EEPROM. If this times out or fails, do
1835	 * not continue or we could be in for a very long wait while every
1836	 * EEPROM read fails
1837	 */
1838	status = hw->eeprom.ops.read(hw, 0, &checksum);
1839	if (status) {
1840		hw_dbg(hw, "EEPROM read failed\n");
1841		return status;
1842	}
1843
1844	status = hw->eeprom.ops.calc_checksum(hw);
1845	if (status < 0)
1846		return status;
1847
1848	checksum = (u16)(status & 0xffff);
1849
1850	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1851
1852	return status;
1853}
1854
1855/**
1856 *  ixgbe_set_rar_generic - Set Rx address register
1857 *  @hw: pointer to hardware structure
1858 *  @index: Receive address register to write
1859 *  @addr: Address to put into receive address register
1860 *  @vmdq: VMDq "set" or "pool" index
1861 *  @enable_addr: set flag that address is active
1862 *
1863 *  Puts an ethernet address into a receive address register.
1864 **/
1865s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1866			  u32 enable_addr)
1867{
1868	u32 rar_low, rar_high;
1869	u32 rar_entries = hw->mac.num_rar_entries;
1870
1871	/* Make sure we are using a valid rar index range */
1872	if (index >= rar_entries) {
1873		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874		return IXGBE_ERR_INVALID_ARGUMENT;
1875	}
1876
1877	/* setup VMDq pool selection before this RAR gets enabled */
1878	hw->mac.ops.set_vmdq(hw, index, vmdq);
1879
1880	/*
1881	 * HW expects these in little endian so we reverse the byte
1882	 * order from network order (big endian) to little endian
1883	 */
1884	rar_low = ((u32)addr[0] |
1885		   ((u32)addr[1] << 8) |
1886		   ((u32)addr[2] << 16) |
1887		   ((u32)addr[3] << 24));
1888	/*
1889	 * Some parts put the VMDq setting in the extra RAH bits,
1890	 * so save everything except the lower 16 bits that hold part
1891	 * of the address and the address valid bit.
1892	 */
1893	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1896
1897	if (enable_addr != 0)
1898		rar_high |= IXGBE_RAH_AV;
1899
 
 
 
 
1900	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 
1901	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1902
1903	return 0;
1904}
1905
1906/**
1907 *  ixgbe_clear_rar_generic - Remove Rx address register
1908 *  @hw: pointer to hardware structure
1909 *  @index: Receive address register to write
1910 *
1911 *  Clears an ethernet address from a receive address register.
1912 **/
1913s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1914{
1915	u32 rar_high;
1916	u32 rar_entries = hw->mac.num_rar_entries;
1917
1918	/* Make sure we are using a valid rar index range */
1919	if (index >= rar_entries) {
1920		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921		return IXGBE_ERR_INVALID_ARGUMENT;
1922	}
1923
1924	/*
1925	 * Some parts put the VMDq setting in the extra RAH bits,
1926	 * so save everything except the lower 16 bits that hold part
1927	 * of the address and the address valid bit.
1928	 */
1929	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1931
 
 
 
 
 
 
1932	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1934
1935	/* clear VMDq pool/queue selection for this RAR */
1936	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1937
1938	return 0;
1939}
1940
1941/**
1942 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943 *  @hw: pointer to hardware structure
1944 *
1945 *  Places the MAC address in receive address register 0 and clears the rest
1946 *  of the receive address registers. Clears the multicast table. Assumes
1947 *  the receiver is in reset when the routine is called.
1948 **/
1949s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1950{
1951	u32 i;
1952	u32 rar_entries = hw->mac.num_rar_entries;
1953
1954	/*
1955	 * If the current mac address is valid, assume it is a software override
1956	 * to the permanent address.
1957	 * Otherwise, use the permanent address from the eeprom.
1958	 */
1959	if (!is_valid_ether_addr(hw->mac.addr)) {
1960		/* Get the MAC address from the RAR0 for later reference */
1961		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1962
1963		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1964	} else {
1965		/* Setup the receive address. */
1966		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1968
1969		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1970	}
1971
1972	/*  clear VMDq pool/queue selection for RAR 0 */
1973	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1974
1975	hw->addr_ctrl.overflow_promisc = 0;
1976
1977	hw->addr_ctrl.rar_used_count = 1;
1978
1979	/* Zero out the other receive addresses. */
1980	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981	for (i = 1; i < rar_entries; i++) {
1982		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1984	}
1985
1986	/* Clear the MTA */
1987	hw->addr_ctrl.mta_in_use = 0;
1988	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1989
1990	hw_dbg(hw, " Clearing MTA\n");
1991	for (i = 0; i < hw->mac.mcft_size; i++)
1992		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1993
1994	if (hw->mac.ops.init_uta_tables)
1995		hw->mac.ops.init_uta_tables(hw);
1996
1997	return 0;
1998}
1999
2000/**
2001 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002 *  @hw: pointer to hardware structure
2003 *  @mc_addr: the multicast address
2004 *
2005 *  Extracts the 12 bits, from a multicast address, to determine which
2006 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007 *  incoming rx multicast addresses, to determine the bit-vector to check in
2008 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2010 *  to mc_filter_type.
2011 **/
2012static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2013{
2014	u32 vector = 0;
2015
2016	switch (hw->mac.mc_filter_type) {
2017	case 0:   /* use bits [47:36] of the address */
2018		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2019		break;
2020	case 1:   /* use bits [46:35] of the address */
2021		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2022		break;
2023	case 2:   /* use bits [45:34] of the address */
2024		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2025		break;
2026	case 3:   /* use bits [43:32] of the address */
2027		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2028		break;
2029	default:  /* Invalid mc_filter_type */
2030		hw_dbg(hw, "MC filter type param set incorrectly\n");
2031		break;
2032	}
2033
2034	/* vector can only be 12-bits or boundary will be exceeded */
2035	vector &= 0xFFF;
2036	return vector;
2037}
2038
2039/**
2040 *  ixgbe_set_mta - Set bit-vector in multicast table
2041 *  @hw: pointer to hardware structure
2042 *  @mc_addr: Multicast address
2043 *
2044 *  Sets the bit-vector in the multicast table.
2045 **/
2046static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2047{
2048	u32 vector;
2049	u32 vector_bit;
2050	u32 vector_reg;
2051
2052	hw->addr_ctrl.mta_in_use++;
2053
2054	vector = ixgbe_mta_vector(hw, mc_addr);
2055	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2056
2057	/*
2058	 * The MTA is a register array of 128 32-bit registers. It is treated
2059	 * like an array of 4096 bits.  We want to set bit
2060	 * BitArray[vector_value]. So we figure out what register the bit is
2061	 * in, read it, OR in the new bit, then write back the new value.  The
2062	 * register is determined by the upper 7 bits of the vector value and
2063	 * the bit within that register are determined by the lower 5 bits of
2064	 * the value.
2065	 */
2066	vector_reg = (vector >> 5) & 0x7F;
2067	vector_bit = vector & 0x1F;
2068	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2069}
2070
2071/**
2072 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073 *  @hw: pointer to hardware structure
2074 *  @netdev: pointer to net device structure
2075 *
2076 *  The given list replaces any existing list. Clears the MC addrs from receive
2077 *  address registers and the multicast table. Uses unused receive address
2078 *  registers for the first multicast addresses, and hashes the rest into the
2079 *  multicast table.
2080 **/
2081s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082				      struct net_device *netdev)
2083{
2084	struct netdev_hw_addr *ha;
2085	u32 i;
2086
2087	/*
2088	 * Set the new number of MC addresses that we are being requested to
2089	 * use.
2090	 */
2091	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092	hw->addr_ctrl.mta_in_use = 0;
2093
2094	/* Clear mta_shadow */
2095	hw_dbg(hw, " Clearing MTA\n");
2096	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2097
2098	/* Update mta shadow */
2099	netdev_for_each_mc_addr(ha, netdev) {
2100		hw_dbg(hw, " Adding the multicast addresses:\n");
2101		ixgbe_set_mta(hw, ha->addr);
2102	}
2103
2104	/* Enable mta */
2105	for (i = 0; i < hw->mac.mcft_size; i++)
2106		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107				      hw->mac.mta_shadow[i]);
2108
2109	if (hw->addr_ctrl.mta_in_use > 0)
2110		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2112
2113	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2114	return 0;
2115}
2116
2117/**
2118 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2119 *  @hw: pointer to hardware structure
2120 *
2121 *  Enables multicast address in RAR and the use of the multicast hash table.
2122 **/
2123s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2124{
2125	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126
2127	if (a->mta_in_use > 0)
2128		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129				hw->mac.mc_filter_type);
2130
2131	return 0;
2132}
2133
2134/**
2135 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2136 *  @hw: pointer to hardware structure
2137 *
2138 *  Disables multicast address in RAR and the use of the multicast hash table.
2139 **/
2140s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2141{
2142	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143
2144	if (a->mta_in_use > 0)
2145		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2146
2147	return 0;
2148}
2149
2150/**
2151 *  ixgbe_fc_enable_generic - Enable flow control
2152 *  @hw: pointer to hardware structure
2153 *
2154 *  Enable flow control according to the current settings.
2155 **/
2156s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2157{
2158	u32 mflcn_reg, fccfg_reg;
2159	u32 reg;
2160	u32 fcrtl, fcrth;
2161	int i;
2162
2163	/* Validate the water mark configuration. */
2164	if (!hw->fc.pause_time)
2165		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2166
2167	/* Low water mark of zero causes XOFF floods */
2168	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170		    hw->fc.high_water[i]) {
2171			if (!hw->fc.low_water[i] ||
2172			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173				hw_dbg(hw, "Invalid water mark configuration\n");
2174				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2175			}
2176		}
2177	}
2178
2179	/* Negotiate the fc mode to use */
2180	hw->mac.ops.fc_autoneg(hw);
2181
2182	/* Disable any previous flow control settings */
2183	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2185
2186	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2188
2189	/*
2190	 * The possible values of fc.current_mode are:
2191	 * 0: Flow control is completely disabled
2192	 * 1: Rx flow control is enabled (we can receive pause frames,
2193	 *    but not send pause frames).
2194	 * 2: Tx flow control is enabled (we can send pause frames but
2195	 *    we do not support receiving pause frames).
2196	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2197	 * other: Invalid.
2198	 */
2199	switch (hw->fc.current_mode) {
2200	case ixgbe_fc_none:
2201		/*
2202		 * Flow control is disabled by software override or autoneg.
2203		 * The code below will actually disable it in the HW.
2204		 */
2205		break;
2206	case ixgbe_fc_rx_pause:
2207		/*
2208		 * Rx Flow control is enabled and Tx Flow control is
2209		 * disabled by software override. Since there really
2210		 * isn't a way to advertise that we are capable of RX
2211		 * Pause ONLY, we will advertise that we support both
2212		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2213		 * disable the adapter's ability to send PAUSE frames.
2214		 */
2215		mflcn_reg |= IXGBE_MFLCN_RFCE;
2216		break;
2217	case ixgbe_fc_tx_pause:
2218		/*
2219		 * Tx Flow control is enabled, and Rx Flow control is
2220		 * disabled by software override.
2221		 */
2222		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2223		break;
2224	case ixgbe_fc_full:
2225		/* Flow control (both Rx and Tx) is enabled by SW override. */
2226		mflcn_reg |= IXGBE_MFLCN_RFCE;
2227		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2228		break;
2229	default:
2230		hw_dbg(hw, "Flow control param set incorrectly\n");
2231		return IXGBE_ERR_CONFIG;
2232	}
2233
2234	/* Set 802.3x based flow control settings. */
2235	mflcn_reg |= IXGBE_MFLCN_DPF;
2236	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2238
2239	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242		    hw->fc.high_water[i]) {
2243			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2246		} else {
2247			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2248			/*
2249			 * In order to prevent Tx hangs when the internal Tx
2250			 * switch is enabled we must set the high water mark
2251			 * to the Rx packet buffer size - 24KB.  This allows
2252			 * the Tx switch to function even under heavy Rx
2253			 * workloads.
2254			 */
2255			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2256		}
2257
2258		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2259	}
2260
2261	/* Configure pause time (2 TCs per register) */
2262	reg = hw->fc.pause_time * 0x00010001;
2263	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2265
2266	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2267
2268	return 0;
2269}
2270
2271/**
2272 *  ixgbe_negotiate_fc - Negotiate flow control
2273 *  @hw: pointer to hardware structure
2274 *  @adv_reg: flow control advertised settings
2275 *  @lp_reg: link partner's flow control settings
2276 *  @adv_sym: symmetric pause bit in advertisement
2277 *  @adv_asm: asymmetric pause bit in advertisement
2278 *  @lp_sym: symmetric pause bit in link partner advertisement
2279 *  @lp_asm: asymmetric pause bit in link partner advertisement
2280 *
2281 *  Find the intersection between advertised settings and link partner's
2282 *  advertised settings
2283 **/
2284s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2286{
2287	if ((!(adv_reg)) ||  (!(lp_reg)))
2288		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289
2290	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2291		/*
2292		 * Now we need to check if the user selected Rx ONLY
2293		 * of pause frames.  In this case, we had to advertise
2294		 * FULL flow control because we could not advertise RX
2295		 * ONLY. Hence, we must now check to see if we need to
2296		 * turn OFF the TRANSMISSION of PAUSE frames.
2297		 */
2298		if (hw->fc.requested_mode == ixgbe_fc_full) {
2299			hw->fc.current_mode = ixgbe_fc_full;
2300			hw_dbg(hw, "Flow Control = FULL.\n");
2301		} else {
2302			hw->fc.current_mode = ixgbe_fc_rx_pause;
2303			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2304		}
2305	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307		hw->fc.current_mode = ixgbe_fc_tx_pause;
2308		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311		hw->fc.current_mode = ixgbe_fc_rx_pause;
2312		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2313	} else {
2314		hw->fc.current_mode = ixgbe_fc_none;
2315		hw_dbg(hw, "Flow Control = NONE.\n");
2316	}
2317	return 0;
2318}
2319
2320/**
2321 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322 *  @hw: pointer to hardware structure
2323 *
2324 *  Enable flow control according on 1 gig fiber.
2325 **/
2326static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2327{
2328	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2329	s32 ret_val;
2330
2331	/*
2332	 * On multispeed fiber at 1g, bail out if
2333	 * - link is up but AN did not complete, or if
2334	 * - link is up and AN completed but timed out
2335	 */
2336
2337	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2341
2342	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2344
2345	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347			       IXGBE_PCS1GANA_ASM_PAUSE,
2348			       IXGBE_PCS1GANA_SYM_PAUSE,
2349			       IXGBE_PCS1GANA_ASM_PAUSE);
2350
2351	return ret_val;
2352}
2353
2354/**
2355 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356 *  @hw: pointer to hardware structure
2357 *
2358 *  Enable flow control according to IEEE clause 37.
2359 **/
2360static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2361{
2362	u32 links2, anlp1_reg, autoc_reg, links;
2363	s32 ret_val;
2364
2365	/*
2366	 * On backplane, bail out if
2367	 * - backplane autoneg was not completed, or if
2368	 * - we are 82599 and link partner is not AN enabled
2369	 */
2370	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2373
2374	if (hw->mac.type == ixgbe_mac_82599EB) {
2375		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2378	}
2379	/*
2380	 * Read the 10g AN autoc and LP ability registers and resolve
2381	 * local flow control settings accordingly
2382	 */
2383	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2385
2386	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2389
2390	return ret_val;
2391}
2392
2393/**
2394 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395 *  @hw: pointer to hardware structure
2396 *
2397 *  Enable flow control according to IEEE clause 37.
2398 **/
2399static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2400{
2401	u16 technology_ability_reg = 0;
2402	u16 lp_technology_ability_reg = 0;
2403
2404	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2405			     MDIO_MMD_AN,
2406			     &technology_ability_reg);
2407	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2408			     MDIO_MMD_AN,
2409			     &lp_technology_ability_reg);
2410
2411	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412				  (u32)lp_technology_ability_reg,
2413				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2415}
2416
2417/**
2418 *  ixgbe_fc_autoneg - Configure flow control
2419 *  @hw: pointer to hardware structure
2420 *
2421 *  Compares our advertised flow control capabilities to those advertised by
2422 *  our link partner, and determines the proper flow control mode to use.
2423 **/
2424void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2425{
2426	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427	ixgbe_link_speed speed;
 
2428	bool link_up;
2429
2430	/*
2431	 * AN should have completed when the cable was plugged in.
2432	 * Look for reasons to bail out.  Bail out if:
2433	 * - FC autoneg is disabled, or if
2434	 * - link is not up.
2435	 *
2436	 * Since we're being called from an LSC, link is already known to be up.
2437	 * So use link_up_wait_to_complete=false.
2438	 */
2439	if (hw->fc.disable_fc_autoneg)
2440		goto out;
2441
2442	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2443	if (!link_up)
2444		goto out;
2445
2446	switch (hw->phy.media_type) {
2447	/* Autoneg flow control on fiber adapters */
2448	case ixgbe_media_type_fiber:
2449		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450			ret_val = ixgbe_fc_autoneg_fiber(hw);
2451		break;
2452
2453	/* Autoneg flow control on backplane adapters */
2454	case ixgbe_media_type_backplane:
2455		ret_val = ixgbe_fc_autoneg_backplane(hw);
2456		break;
2457
2458	/* Autoneg flow control on copper adapters */
2459	case ixgbe_media_type_copper:
2460		if (ixgbe_device_supports_autoneg_fc(hw))
2461			ret_val = ixgbe_fc_autoneg_copper(hw);
2462		break;
2463
2464	default:
2465		break;
2466	}
2467
2468out:
2469	if (ret_val == 0) {
2470		hw->fc.fc_was_autonegged = true;
2471	} else {
2472		hw->fc.fc_was_autonegged = false;
2473		hw->fc.current_mode = hw->fc.requested_mode;
2474	}
2475}
2476
2477/**
2478 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479 * @hw: pointer to hardware structure
2480 *
2481 * System-wide timeout range is encoded in PCIe Device Control2 register.
2482 *
2483 *  Add 10% to specified maximum and return the number of times to poll for
2484 *  completion timeout, in units of 100 microsec.  Never return less than
2485 *  800 = 80 millisec.
2486 **/
2487static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2488{
2489	s16 devctl2;
2490	u32 pollcnt;
2491
2492	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2494
2495	switch (devctl2) {
2496	case IXGBE_PCIDEVCTRL2_65_130ms:
2497		 pollcnt = 1300;         /* 130 millisec */
2498		break;
2499	case IXGBE_PCIDEVCTRL2_260_520ms:
2500		pollcnt = 5200;         /* 520 millisec */
2501		break;
2502	case IXGBE_PCIDEVCTRL2_1_2s:
2503		pollcnt = 20000;        /* 2 sec */
2504		break;
2505	case IXGBE_PCIDEVCTRL2_4_8s:
2506		pollcnt = 80000;        /* 8 sec */
2507		break;
2508	case IXGBE_PCIDEVCTRL2_17_34s:
2509		pollcnt = 34000;        /* 34 sec */
2510		break;
2511	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2512	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2513	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2514	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2515	default:
2516		pollcnt = 800;          /* 80 millisec minimum */
2517		break;
2518	}
2519
2520	/* add 10% to spec maximum */
2521	return (pollcnt * 11) / 10;
2522}
2523
2524/**
2525 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2526 *  @hw: pointer to hardware structure
2527 *
2528 *  Disables PCI-Express master access and verifies there are no pending
2529 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530 *  bit hasn't caused the master requests to be disabled, else 0
2531 *  is returned signifying master requests disabled.
2532 **/
2533static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2534{
2535	u32 i, poll;
2536	u16 value;
2537
2538	/* Always set this bit to ensure any future transactions are blocked */
2539	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2540
2541	/* Poll for bit to read as set */
2542	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2544			break;
2545		usleep_range(100, 120);
2546	}
2547	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549		goto gio_disable_fail;
2550	}
2551
2552	/* Exit if master requests are blocked */
2553	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554	    ixgbe_removed(hw->hw_addr))
2555		return 0;
2556
2557	/* Poll for master request bit to clear */
2558	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2559		udelay(100);
2560		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2561			return 0;
2562	}
2563
2564	/*
2565	 * Two consecutive resets are required via CTRL.RST per datasheet
2566	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2567	 * of this need.  The first reset prevents new master requests from
2568	 * being issued by our device.  We then must wait 1usec or more for any
2569	 * remaining completions from the PCIe bus to trickle in, and then reset
2570	 * again to clear out any effects they may have had on our device.
2571	 */
2572	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2573gio_disable_fail:
2574	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2575
2576	if (hw->mac.type >= ixgbe_mac_X550)
2577		return 0;
2578
2579	/*
2580	 * Before proceeding, make sure that the PCIe block does not have
2581	 * transactions pending.
2582	 */
2583	poll = ixgbe_pcie_timeout_poll(hw);
2584	for (i = 0; i < poll; i++) {
2585		udelay(100);
2586		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587		if (ixgbe_removed(hw->hw_addr))
2588			return 0;
2589		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2590			return 0;
2591	}
2592
2593	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2595}
2596
2597/**
2598 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599 *  @hw: pointer to hardware structure
2600 *  @mask: Mask to specify which semaphore to acquire
2601 *
2602 *  Acquires the SWFW semaphore through the GSSR register for the specified
2603 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2604 **/
2605s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2606{
2607	u32 gssr = 0;
2608	u32 swmask = mask;
2609	u32 fwmask = mask << 5;
2610	u32 timeout = 200;
2611	u32 i;
2612
2613	for (i = 0; i < timeout; i++) {
2614		/*
2615		 * SW NVM semaphore bit is used for access to all
2616		 * SW_FW_SYNC bits (not just NVM)
2617		 */
2618		if (ixgbe_get_eeprom_semaphore(hw))
2619			return IXGBE_ERR_SWFW_SYNC;
2620
2621		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622		if (!(gssr & (fwmask | swmask))) {
2623			gssr |= swmask;
2624			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625			ixgbe_release_eeprom_semaphore(hw);
2626			return 0;
2627		} else {
2628			/* Resource is currently in use by FW or SW */
2629			ixgbe_release_eeprom_semaphore(hw);
2630			usleep_range(5000, 10000);
2631		}
2632	}
2633
2634	/* If time expired clear the bits holding the lock and retry */
2635	if (gssr & (fwmask | swmask))
2636		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2637
2638	usleep_range(5000, 10000);
2639	return IXGBE_ERR_SWFW_SYNC;
2640}
2641
2642/**
2643 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2644 *  @hw: pointer to hardware structure
2645 *  @mask: Mask to specify which semaphore to release
2646 *
2647 *  Releases the SWFW semaphore through the GSSR register for the specified
2648 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2649 **/
2650void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2651{
2652	u32 gssr;
2653	u32 swmask = mask;
2654
2655	ixgbe_get_eeprom_semaphore(hw);
2656
2657	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2658	gssr &= ~swmask;
2659	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2660
2661	ixgbe_release_eeprom_semaphore(hw);
2662}
2663
2664/**
2665 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666 * @hw: pointer to hardware structure
2667 * @reg_val: Value we read from AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2669 *	    true in this the generic case.
2670 *
2671 * The default case requires no protection so just to the register read.
2672 **/
2673s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2674{
2675	*locked = false;
2676	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2677	return 0;
2678}
2679
2680/**
2681 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682 * @hw: pointer to hardware structure
2683 * @reg_val: value to write to AUTOC
2684 * @locked: bool to indicate whether the SW/FW lock was already taken by
2685 *	    previous read.
2686 **/
2687s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2688{
2689	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2690	return 0;
2691}
2692
2693/**
2694 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2695 *  @hw: pointer to hardware structure
2696 *
2697 *  Stops the receive data path and waits for the HW to internally
2698 *  empty the Rx security block.
2699 **/
2700s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2701{
2702#define IXGBE_MAX_SECRX_POLL 40
2703	int i;
2704	int secrxreg;
2705
2706	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2712			break;
2713		else
2714			/* Use interrupt-safe sleep just in case */
2715			udelay(1000);
2716	}
2717
2718	/* For informational purposes only */
2719	if (i >= IXGBE_MAX_SECRX_POLL)
2720		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2721
2722	return 0;
2723
2724}
2725
2726/**
2727 *  ixgbe_enable_rx_buff - Enables the receive data path
2728 *  @hw: pointer to hardware structure
2729 *
2730 *  Enables the receive data path
2731 **/
2732s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2733{
2734	u32 secrxreg;
2735
2736	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739	IXGBE_WRITE_FLUSH(hw);
2740
2741	return 0;
2742}
2743
2744/**
2745 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746 *  @hw: pointer to hardware structure
2747 *  @regval: register value to write to RXCTRL
2748 *
2749 *  Enables the Rx DMA unit
2750 **/
2751s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2752{
2753	if (regval & IXGBE_RXCTRL_RXEN)
2754		hw->mac.ops.enable_rx(hw);
2755	else
2756		hw->mac.ops.disable_rx(hw);
2757
2758	return 0;
2759}
2760
2761/**
2762 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2763 *  @hw: pointer to hardware structure
2764 *  @index: led number to blink
2765 **/
2766s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2767{
2768	ixgbe_link_speed speed = 0;
2769	bool link_up = false;
2770	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772	bool locked = false;
2773	s32 ret_val;
2774
2775	if (index > 3)
2776		return IXGBE_ERR_PARAM;
2777
2778	/*
2779	 * Link must be up to auto-blink the LEDs;
2780	 * Force it if link is down.
2781	 */
2782	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2783
2784	if (!link_up) {
2785		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2786		if (ret_val)
2787			return ret_val;
2788
2789		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790		autoc_reg |= IXGBE_AUTOC_FLU;
2791
2792		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2793		if (ret_val)
2794			return ret_val;
2795
2796		IXGBE_WRITE_FLUSH(hw);
2797
2798		usleep_range(10000, 20000);
2799	}
2800
2801	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802	led_reg |= IXGBE_LED_BLINK(index);
2803	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804	IXGBE_WRITE_FLUSH(hw);
2805
2806	return 0;
2807}
2808
2809/**
2810 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811 *  @hw: pointer to hardware structure
2812 *  @index: led number to stop blinking
2813 **/
2814s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2815{
2816	u32 autoc_reg = 0;
2817	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818	bool locked = false;
2819	s32 ret_val;
2820
2821	if (index > 3)
2822		return IXGBE_ERR_PARAM;
2823
2824	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2825	if (ret_val)
2826		return ret_val;
2827
2828	autoc_reg &= ~IXGBE_AUTOC_FLU;
2829	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2830
2831	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2832	if (ret_val)
2833		return ret_val;
2834
2835	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836	led_reg &= ~IXGBE_LED_BLINK(index);
2837	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839	IXGBE_WRITE_FLUSH(hw);
2840
2841	return 0;
2842}
2843
2844/**
2845 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846 *  @hw: pointer to hardware structure
2847 *  @san_mac_offset: SAN MAC address offset
2848 *
2849 *  This function will read the EEPROM location for the SAN MAC address
2850 *  pointer, and returns the value at that location.  This is used in both
2851 *  get and set mac_addr routines.
2852 **/
2853static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854					u16 *san_mac_offset)
2855{
2856	s32 ret_val;
2857
2858	/*
2859	 * First read the EEPROM pointer to see if the MAC addresses are
2860	 * available.
2861	 */
2862	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2863				      san_mac_offset);
2864	if (ret_val)
2865		hw_err(hw, "eeprom read at offset %d failed\n",
2866		       IXGBE_SAN_MAC_ADDR_PTR);
2867
2868	return ret_val;
2869}
2870
2871/**
2872 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873 *  @hw: pointer to hardware structure
2874 *  @san_mac_addr: SAN MAC address
2875 *
2876 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2877 *  per-port, so set_lan_id() must be called before reading the addresses.
2878 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2879 *  upon for non-SFP connections, so we must call it here.
2880 **/
2881s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2882{
2883	u16 san_mac_data, san_mac_offset;
2884	u8 i;
2885	s32 ret_val;
2886
2887	/*
2888	 * First read the EEPROM pointer to see if the MAC addresses are
2889	 * available.  If they're not, no point in calling set_lan_id() here.
2890	 */
2891	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2893
2894		goto san_mac_addr_clr;
2895
2896	/* make sure we know which port we need to program */
2897	hw->mac.ops.set_lan_id(hw);
2898	/* apply the port offset to the address offset */
2899	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901	for (i = 0; i < 3; i++) {
2902		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2903					      &san_mac_data);
2904		if (ret_val) {
2905			hw_err(hw, "eeprom read at offset %d failed\n",
2906			       san_mac_offset);
2907			goto san_mac_addr_clr;
2908		}
2909		san_mac_addr[i * 2] = (u8)(san_mac_data);
2910		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2911		san_mac_offset++;
2912	}
2913	return 0;
2914
2915san_mac_addr_clr:
2916	/* No addresses available in this EEPROM.  It's not necessarily an
2917	 * error though, so just wipe the local address and return.
2918	 */
2919	for (i = 0; i < 6; i++)
2920		san_mac_addr[i] = 0xFF;
2921	return ret_val;
2922}
2923
2924/**
2925 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926 *  @hw: pointer to hardware structure
2927 *
2928 *  Read PCIe configuration space, and get the MSI-X vector count from
2929 *  the capabilities table.
2930 **/
2931u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2932{
2933	u16 msix_count;
2934	u16 max_msix_count;
2935	u16 pcie_offset;
2936
2937	switch (hw->mac.type) {
2938	case ixgbe_mac_82598EB:
2939		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2941		break;
2942	case ixgbe_mac_82599EB:
2943	case ixgbe_mac_X540:
2944	case ixgbe_mac_X550:
2945	case ixgbe_mac_X550EM_x:
2946	case ixgbe_mac_x550em_a:
2947		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2949		break;
2950	default:
2951		return 1;
2952	}
2953
2954	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955	if (ixgbe_removed(hw->hw_addr))
2956		msix_count = 0;
2957	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2958
2959	/* MSI-X count is zero-based in HW */
2960	msix_count++;
2961
2962	if (msix_count > max_msix_count)
2963		msix_count = max_msix_count;
2964
2965	return msix_count;
2966}
2967
2968/**
2969 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970 *  @hw: pointer to hardware struct
2971 *  @rar: receive address register index to disassociate
2972 *  @vmdq: VMDq pool index to remove from the rar
2973 **/
2974s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975{
2976	u32 mpsar_lo, mpsar_hi;
2977	u32 rar_entries = hw->mac.num_rar_entries;
2978
2979	/* Make sure we are using a valid rar index range */
2980	if (rar >= rar_entries) {
2981		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982		return IXGBE_ERR_INVALID_ARGUMENT;
2983	}
2984
2985	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2987
2988	if (ixgbe_removed(hw->hw_addr))
2989		return 0;
2990
2991	if (!mpsar_lo && !mpsar_hi)
2992		return 0;
2993
2994	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2995		if (mpsar_lo) {
2996			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997			mpsar_lo = 0;
2998		}
2999		if (mpsar_hi) {
3000			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3001			mpsar_hi = 0;
3002		}
3003	} else if (vmdq < 32) {
3004		mpsar_lo &= ~BIT(vmdq);
3005		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3006	} else {
3007		mpsar_hi &= ~BIT(vmdq - 32);
3008		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3009	}
3010
3011	/* was that the last pool using this rar? */
3012	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3014		hw->mac.ops.clear_rar(hw, rar);
3015
3016	return 0;
3017}
3018
3019/**
3020 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021 *  @hw: pointer to hardware struct
3022 *  @rar: receive address register index to associate with a VMDq index
3023 *  @vmdq: VMDq pool index
3024 **/
3025s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3026{
3027	u32 mpsar;
3028	u32 rar_entries = hw->mac.num_rar_entries;
3029
3030	/* Make sure we are using a valid rar index range */
3031	if (rar >= rar_entries) {
3032		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033		return IXGBE_ERR_INVALID_ARGUMENT;
3034	}
3035
3036	if (vmdq < 32) {
3037		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3038		mpsar |= BIT(vmdq);
3039		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3040	} else {
3041		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042		mpsar |= BIT(vmdq - 32);
3043		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3044	}
3045	return 0;
3046}
3047
3048/**
 
 
 
 
3049 *  This function should only be involved in the IOV mode.
3050 *  In IOV mode, Default pool is next pool after the number of
3051 *  VFs advertized and not 0.
3052 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053 *
3054 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055 *  @hw: pointer to hardware struct
3056 *  @vmdq: VMDq pool index
3057 **/
3058s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3059{
3060	u32 rar = hw->mac.san_mac_rar_index;
3061
3062	if (vmdq < 32) {
3063		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3064		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3065	} else {
3066		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3067		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3068	}
3069
3070	return 0;
3071}
3072
3073/**
3074 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075 *  @hw: pointer to hardware structure
3076 **/
3077s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3078{
3079	int i;
3080
3081	for (i = 0; i < 128; i++)
3082		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3083
3084	return 0;
3085}
3086
3087/**
3088 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089 *  @hw: pointer to hardware structure
3090 *  @vlan: VLAN id to write to VLAN filter
3091 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3092 *		  vlanid not found
3093 *
3094 *  return the VLVF index where this VLAN id should be placed
3095 *
3096 **/
3097static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3098{
3099	s32 regindex, first_empty_slot;
3100	u32 bits;
3101
3102	/* short cut the special case */
3103	if (vlan == 0)
3104		return 0;
3105
3106	/* if vlvf_bypass is set we don't want to use an empty slot, we
3107	 * will simply bypass the VLVF if there are no entries present in the
3108	 * VLVF that contain our VLAN
3109	 */
3110	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3111
3112	/* add VLAN enable bit for comparison */
3113	vlan |= IXGBE_VLVF_VIEN;
3114
3115	/* Search for the vlan id in the VLVF entries. Save off the first empty
3116	 * slot found along the way.
3117	 *
3118	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3119	 */
3120	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3121		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3122		if (bits == vlan)
3123			return regindex;
3124		if (!first_empty_slot && !bits)
3125			first_empty_slot = regindex;
3126	}
3127
3128	/* If we are here then we didn't find the VLAN.  Return first empty
3129	 * slot we found during our search, else error.
3130	 */
3131	if (!first_empty_slot)
3132		hw_dbg(hw, "No space in VLVF.\n");
3133
3134	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3135}
3136
3137/**
3138 *  ixgbe_set_vfta_generic - Set VLAN filter table
3139 *  @hw: pointer to hardware structure
3140 *  @vlan: VLAN id to write to VLAN filter
3141 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3142 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3143 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3144 *
3145 *  Turn on/off specified VLAN in the VLAN filter table.
3146 **/
3147s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3148			   bool vlan_on, bool vlvf_bypass)
3149{
3150	u32 regidx, vfta_delta, vfta, bits;
3151	s32 vlvf_index;
3152
3153	if ((vlan > 4095) || (vind > 63))
3154		return IXGBE_ERR_PARAM;
3155
3156	/*
3157	 * this is a 2 part operation - first the VFTA, then the
3158	 * VLVF and VLVFB if VT Mode is set
3159	 * We don't write the VFTA until we know the VLVF part succeeded.
3160	 */
3161
3162	/* Part 1
3163	 * The VFTA is a bitstring made up of 128 32-bit registers
3164	 * that enable the particular VLAN id, much like the MTA:
3165	 *    bits[11-5]: which register
3166	 *    bits[4-0]:  which bit in the register
3167	 */
3168	regidx = vlan / 32;
3169	vfta_delta = BIT(vlan % 32);
3170	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3171
3172	/* vfta_delta represents the difference between the current value
3173	 * of vfta and the value we want in the register.  Since the diff
3174	 * is an XOR mask we can just update vfta using an XOR.
3175	 */
3176	vfta_delta &= vlan_on ? ~vfta : vfta;
3177	vfta ^= vfta_delta;
3178
3179	/* Part 2
3180	 * If VT Mode is set
3181	 *   Either vlan_on
3182	 *     make sure the vlan is in VLVF
3183	 *     set the vind bit in the matching VLVFB
3184	 *   Or !vlan_on
3185	 *     clear the pool bit and possibly the vind
3186	 */
3187	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3188		goto vfta_update;
3189
3190	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3191	if (vlvf_index < 0) {
3192		if (vlvf_bypass)
3193			goto vfta_update;
3194		return vlvf_index;
3195	}
3196
3197	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3198
3199	/* set the pool bit */
3200	bits |= BIT(vind % 32);
3201	if (vlan_on)
3202		goto vlvf_update;
3203
3204	/* clear the pool bit */
3205	bits ^= BIT(vind % 32);
3206
3207	if (!bits &&
3208	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3209		/* Clear VFTA first, then disable VLVF.  Otherwise
3210		 * we run the risk of stray packets leaking into
3211		 * the PF via the default pool
3212		 */
3213		if (vfta_delta)
3214			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3215
3216		/* disable VLVF and clear remaining bit from pool */
3217		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3218		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3219
3220		return 0;
3221	}
3222
3223	/* If there are still bits set in the VLVFB registers
3224	 * for the VLAN ID indicated we need to see if the
3225	 * caller is requesting that we clear the VFTA entry bit.
3226	 * If the caller has requested that we clear the VFTA
3227	 * entry bit but there are still pools/VFs using this VLAN
3228	 * ID entry then ignore the request.  We're not worried
3229	 * about the case where we're turning the VFTA VLAN ID
3230	 * entry bit on, only when requested to turn it off as
3231	 * there may be multiple pools and/or VFs using the
3232	 * VLAN ID entry.  In that case we cannot clear the
3233	 * VFTA bit until all pools/VFs using that VLAN ID have also
3234	 * been cleared.  This will be indicated by "bits" being
3235	 * zero.
3236	 */
3237	vfta_delta = 0;
3238
3239vlvf_update:
3240	/* record pool change and enable VLAN ID if not already enabled */
3241	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3242	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3243
3244vfta_update:
3245	/* Update VFTA now that we are ready for traffic */
3246	if (vfta_delta)
3247		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3248
3249	return 0;
3250}
3251
3252/**
3253 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3254 *  @hw: pointer to hardware structure
3255 *
3256 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3257 **/
3258s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3259{
3260	u32 offset;
3261
3262	for (offset = 0; offset < hw->mac.vft_size; offset++)
3263		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3264
3265	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3266		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3267		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3268		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3269	}
3270
3271	return 0;
3272}
3273
3274/**
3275 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3276 *  @hw: pointer to hardware structure
3277 *
3278 *  Contains the logic to identify if we need to verify link for the
3279 *  crosstalk fix
3280 **/
3281static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3282{
3283	/* Does FW say we need the fix */
3284	if (!hw->need_crosstalk_fix)
3285		return false;
3286
3287	/* Only consider SFP+ PHYs i.e. media type fiber */
3288	switch (hw->mac.ops.get_media_type(hw)) {
3289	case ixgbe_media_type_fiber:
3290	case ixgbe_media_type_fiber_qsfp:
3291		break;
3292	default:
3293		return false;
3294	}
3295
3296	return true;
3297}
3298
3299/**
3300 *  ixgbe_check_mac_link_generic - Determine link and speed status
3301 *  @hw: pointer to hardware structure
3302 *  @speed: pointer to link speed
3303 *  @link_up: true when link is up
3304 *  @link_up_wait_to_complete: bool used to wait for link up or not
3305 *
3306 *  Reads the links register to determine if link is up and the current speed
3307 **/
3308s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3309				 bool *link_up, bool link_up_wait_to_complete)
3310{
 
3311	u32 links_reg, links_orig;
3312	u32 i;
3313
3314	/* If Crosstalk fix enabled do the sanity check of making sure
3315	 * the SFP+ cage is full.
3316	 */
3317	if (ixgbe_need_crosstalk_fix(hw)) {
3318		u32 sfp_cage_full;
3319
3320		switch (hw->mac.type) {
3321		case ixgbe_mac_82599EB:
3322			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3323					IXGBE_ESDP_SDP2;
3324			break;
3325		case ixgbe_mac_X550EM_x:
3326		case ixgbe_mac_x550em_a:
3327			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3328					IXGBE_ESDP_SDP0;
3329			break;
3330		default:
3331			/* sanity check - No SFP+ devices here */
3332			sfp_cage_full = false;
3333			break;
3334		}
3335
3336		if (!sfp_cage_full) {
3337			*link_up = false;
3338			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3339			return 0;
3340		}
3341	}
3342
3343	/* clear the old state */
3344	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345
3346	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347
3348	if (links_orig != links_reg) {
3349		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3350		       links_orig, links_reg);
3351	}
3352
3353	if (link_up_wait_to_complete) {
3354		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3355			if (links_reg & IXGBE_LINKS_UP) {
3356				*link_up = true;
3357				break;
3358			} else {
3359				*link_up = false;
3360			}
3361			msleep(100);
3362			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3363		}
3364	} else {
3365		if (links_reg & IXGBE_LINKS_UP)
 
 
 
 
 
 
 
 
 
 
 
 
 
3366			*link_up = true;
3367		else
3368			*link_up = false;
 
3369	}
3370
3371	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3372	case IXGBE_LINKS_SPEED_10G_82599:
3373		if ((hw->mac.type >= ixgbe_mac_X550) &&
3374		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3375			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3376		else
3377			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3378		break;
3379	case IXGBE_LINKS_SPEED_1G_82599:
3380		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3381		break;
3382	case IXGBE_LINKS_SPEED_100_82599:
3383		if ((hw->mac.type >= ixgbe_mac_X550) &&
3384		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3385			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3386		else
3387			*speed = IXGBE_LINK_SPEED_100_FULL;
3388		break;
3389	case IXGBE_LINKS_SPEED_10_X550EM_A:
3390		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3391		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3392		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3393			*speed = IXGBE_LINK_SPEED_10_FULL;
3394		}
3395		break;
3396	default:
3397		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3398	}
3399
3400	return 0;
3401}
3402
3403/**
3404 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3405 *  the EEPROM
3406 *  @hw: pointer to hardware structure
3407 *  @wwnn_prefix: the alternative WWNN prefix
3408 *  @wwpn_prefix: the alternative WWPN prefix
3409 *
3410 *  This function will read the EEPROM from the alternative SAN MAC address
3411 *  block to check the support for the alternative WWNN/WWPN prefix support.
3412 **/
3413s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3414					u16 *wwpn_prefix)
3415{
3416	u16 offset, caps;
3417	u16 alt_san_mac_blk_offset;
3418
3419	/* clear output first */
3420	*wwnn_prefix = 0xFFFF;
3421	*wwpn_prefix = 0xFFFF;
3422
3423	/* check if alternative SAN MAC is supported */
3424	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3425	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3426		goto wwn_prefix_err;
3427
3428	if ((alt_san_mac_blk_offset == 0) ||
3429	    (alt_san_mac_blk_offset == 0xFFFF))
3430		return 0;
3431
3432	/* check capability in alternative san mac address block */
3433	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3434	if (hw->eeprom.ops.read(hw, offset, &caps))
3435		goto wwn_prefix_err;
3436	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3437		return 0;
3438
3439	/* get the corresponding prefix for WWNN/WWPN */
3440	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3441	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3442		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3443
3444	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3445	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3446		goto wwn_prefix_err;
3447
3448	return 0;
3449
3450wwn_prefix_err:
3451	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3452	return 0;
3453}
3454
3455/**
3456 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3457 *  @hw: pointer to hardware structure
3458 *  @enable: enable or disable switch for MAC anti-spoofing
3459 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3460 *
3461 **/
3462void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3463{
3464	int vf_target_reg = vf >> 3;
3465	int vf_target_shift = vf % 8;
3466	u32 pfvfspoof;
3467
3468	if (hw->mac.type == ixgbe_mac_82598EB)
3469		return;
3470
3471	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3472	if (enable)
3473		pfvfspoof |= BIT(vf_target_shift);
3474	else
3475		pfvfspoof &= ~BIT(vf_target_shift);
3476	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3477}
3478
3479/**
3480 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3481 *  @hw: pointer to hardware structure
3482 *  @enable: enable or disable switch for VLAN anti-spoofing
3483 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3484 *
3485 **/
3486void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3487{
3488	int vf_target_reg = vf >> 3;
3489	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3490	u32 pfvfspoof;
3491
3492	if (hw->mac.type == ixgbe_mac_82598EB)
3493		return;
3494
3495	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3496	if (enable)
3497		pfvfspoof |= BIT(vf_target_shift);
3498	else
3499		pfvfspoof &= ~BIT(vf_target_shift);
3500	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3501}
3502
3503/**
3504 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3505 *  @hw: pointer to hardware structure
3506 *  @device_caps: the EEPROM word with the extra device capabilities
3507 *
3508 *  This function will read the EEPROM location for the device capabilities,
3509 *  and return the word through device_caps.
3510 **/
3511s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3512{
3513	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3514
3515	return 0;
3516}
3517
3518/**
3519 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3520 * @hw: pointer to hardware structure
3521 * @num_pb: number of packet buffers to allocate
3522 * @headroom: reserve n KB of headroom
3523 * @strategy: packet buffer allocation strategy
3524 **/
3525void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3526			     int num_pb,
3527			     u32 headroom,
3528			     int strategy)
3529{
3530	u32 pbsize = hw->mac.rx_pb_size;
3531	int i = 0;
3532	u32 rxpktsize, txpktsize, txpbthresh;
3533
3534	/* Reserve headroom */
3535	pbsize -= headroom;
3536
3537	if (!num_pb)
3538		num_pb = 1;
3539
3540	/* Divide remaining packet buffer space amongst the number
3541	 * of packet buffers requested using supplied strategy.
3542	 */
3543	switch (strategy) {
3544	case (PBA_STRATEGY_WEIGHTED):
3545		/* pba_80_48 strategy weight first half of packet buffer with
3546		 * 5/8 of the packet buffer space.
3547		 */
3548		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3549		pbsize -= rxpktsize * (num_pb / 2);
3550		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3551		for (; i < (num_pb / 2); i++)
3552			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3553		/* fall through - configure remaining packet buffers */
3554	case (PBA_STRATEGY_EQUAL):
3555		/* Divide the remaining Rx packet buffer evenly among the TCs */
3556		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3557		for (; i < num_pb; i++)
3558			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3559		break;
3560	default:
3561		break;
3562	}
3563
3564	/*
3565	 * Setup Tx packet buffer and threshold equally for all TCs
3566	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3567	 * 10 since the largest packet we support is just over 9K.
3568	 */
3569	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3570	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3571	for (i = 0; i < num_pb; i++) {
3572		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3573		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3574	}
3575
3576	/* Clear unused TCs, if any, to zero buffer size*/
3577	for (; i < IXGBE_MAX_PB; i++) {
3578		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3579		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3580		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3581	}
3582}
3583
3584/**
3585 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3586 *  @buffer: pointer to EEPROM
3587 *  @length: size of EEPROM to calculate a checksum for
3588 *
3589 *  Calculates the checksum for some buffer on a specified length.  The
3590 *  checksum calculated is returned.
3591 **/
3592u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3593{
3594	u32 i;
3595	u8 sum = 0;
3596
3597	if (!buffer)
3598		return 0;
3599
3600	for (i = 0; i < length; i++)
3601		sum += buffer[i];
3602
3603	return (u8) (0 - sum);
3604}
3605
3606/**
3607 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3608 *  @hw: pointer to the HW structure
3609 *  @buffer: command to write and where the return status will be placed
3610 *  @length: length of buffer, must be multiple of 4 bytes
3611 *  @timeout: time in ms to wait for command completion
3612 *
3613 *  Communicates with the manageability block. On success return 0
3614 *  else returns semaphore error when encountering an error acquiring
3615 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 
3616 *
3617 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3618 *  by the caller.
3619 **/
3620s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3621		       u32 timeout)
3622{
3623	u32 hicr, i, fwsts;
3624	u16 dword_len;
3625
3626	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3627		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3628		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3629	}
3630
3631	/* Set bit 9 of FWSTS clearing FW reset indication */
3632	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3633	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3634
3635	/* Check that the host interface is enabled. */
3636	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3637	if (!(hicr & IXGBE_HICR_EN)) {
3638		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3639		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3640	}
3641
3642	/* Calculate length in DWORDs. We must be DWORD aligned */
3643	if (length % sizeof(u32)) {
3644		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3645		return IXGBE_ERR_INVALID_ARGUMENT;
3646	}
3647
3648	dword_len = length >> 2;
3649
3650	/* The device driver writes the relevant command block
3651	 * into the ram area.
3652	 */
3653	for (i = 0; i < dword_len; i++)
3654		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3655				      i, cpu_to_le32(buffer[i]));
3656
3657	/* Setting this bit tells the ARC that a new command is pending. */
3658	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3659
3660	for (i = 0; i < timeout; i++) {
3661		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3662		if (!(hicr & IXGBE_HICR_C))
3663			break;
3664		usleep_range(1000, 2000);
3665	}
3666
3667	/* Check command successful completion. */
3668	if ((timeout && i == timeout) ||
3669	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3670		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3671
3672	return 0;
3673}
3674
3675/**
3676 *  ixgbe_host_interface_command - Issue command to manageability block
3677 *  @hw: pointer to the HW structure
3678 *  @buffer: contains the command to write and where the return status will
3679 *           be placed
3680 *  @length: length of buffer, must be multiple of 4 bytes
3681 *  @timeout: time in ms to wait for command completion
3682 *  @return_data: read and return data from the buffer (true) or not (false)
3683 *  Needed because FW structures are big endian and decoding of
3684 *  these fields can be 8 bit or 16 bit based on command. Decoding
3685 *  is not easily understood without making a table of commands.
3686 *  So we will leave this up to the caller to read back the data
3687 *  in these cases.
3688 *
3689 *  Communicates with the manageability block.  On success return 0
3690 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3691 **/
3692s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3693				 u32 length, u32 timeout,
3694				 bool return_data)
3695{
3696	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3697	union {
3698		struct ixgbe_hic_hdr hdr;
3699		u32 u32arr[1];
3700	} *bp = buffer;
3701	u16 buf_len, dword_len;
3702	s32 status;
3703	u32 bi;
3704
3705	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3706		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3707		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3708	}
3709	/* Take management host interface semaphore */
3710	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3711	if (status)
3712		return status;
3713
3714	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3715	if (status)
3716		goto rel_out;
3717
3718	if (!return_data)
3719		goto rel_out;
3720
3721	/* Calculate length in DWORDs */
3722	dword_len = hdr_size >> 2;
3723
3724	/* first pull in the header so we know the buffer length */
3725	for (bi = 0; bi < dword_len; bi++) {
3726		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3727		le32_to_cpus(&bp->u32arr[bi]);
3728	}
3729
3730	/* If there is any thing in data position pull it in */
3731	buf_len = bp->hdr.buf_len;
3732	if (!buf_len)
3733		goto rel_out;
3734
3735	if (length < round_up(buf_len, 4) + hdr_size) {
3736		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3737		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3738		goto rel_out;
3739	}
3740
3741	/* Calculate length in DWORDs, add 3 for odd lengths */
3742	dword_len = (buf_len + 3) >> 2;
3743
3744	/* Pull in the rest of the buffer (bi is where we left off) */
3745	for (; bi <= dword_len; bi++) {
3746		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3747		le32_to_cpus(&bp->u32arr[bi]);
3748	}
3749
3750rel_out:
3751	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3752
3753	return status;
3754}
3755
3756/**
3757 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3758 *  @hw: pointer to the HW structure
3759 *  @maj: driver version major number
3760 *  @min: driver version minor number
3761 *  @build: driver version build number
3762 *  @sub: driver version sub build number
3763 *  @len: length of driver_ver string
3764 *  @driver_ver: driver string
3765 *
3766 *  Sends driver version number to firmware through the manageability
3767 *  block.  On success return 0
3768 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3769 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3770 **/
3771s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3772				 u8 build, u8 sub, __always_unused u16 len,
3773				 __always_unused const char *driver_ver)
3774{
3775	struct ixgbe_hic_drv_info fw_cmd;
3776	int i;
3777	s32 ret_val;
3778
3779	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3780	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3781	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3782	fw_cmd.port_num = hw->bus.func;
3783	fw_cmd.ver_maj = maj;
3784	fw_cmd.ver_min = min;
3785	fw_cmd.ver_build = build;
3786	fw_cmd.ver_sub = sub;
3787	fw_cmd.hdr.checksum = 0;
3788	fw_cmd.pad = 0;
3789	fw_cmd.pad2 = 0;
3790	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3791				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3792
3793	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3794		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3795						       sizeof(fw_cmd),
3796						       IXGBE_HI_COMMAND_TIMEOUT,
3797						       true);
3798		if (ret_val != 0)
3799			continue;
3800
3801		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3802		    FW_CEM_RESP_STATUS_SUCCESS)
3803			ret_val = 0;
3804		else
3805			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3806
3807		break;
3808	}
3809
3810	return ret_val;
3811}
3812
3813/**
3814 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3815 * @hw: pointer to the hardware structure
3816 *
3817 * The 82599 and x540 MACs can experience issues if TX work is still pending
3818 * when a reset occurs.  This function prevents this by flushing the PCIe
3819 * buffers on the system.
3820 **/
3821void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3822{
3823	u32 gcr_ext, hlreg0, i, poll;
3824	u16 value;
3825
3826	/*
3827	 * If double reset is not requested then all transactions should
3828	 * already be clear and as such there is no work to do
3829	 */
3830	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3831		return;
3832
3833	/*
3834	 * Set loopback enable to prevent any transmits from being sent
3835	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3836	 * has already been cleared.
3837	 */
3838	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3839	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3840
3841	/* wait for a last completion before clearing buffers */
3842	IXGBE_WRITE_FLUSH(hw);
3843	usleep_range(3000, 6000);
3844
3845	/* Before proceeding, make sure that the PCIe block does not have
3846	 * transactions pending.
3847	 */
3848	poll = ixgbe_pcie_timeout_poll(hw);
3849	for (i = 0; i < poll; i++) {
3850		usleep_range(100, 200);
3851		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3852		if (ixgbe_removed(hw->hw_addr))
3853			break;
3854		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3855			break;
3856	}
3857
3858	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3859	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3860	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3861			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3862
3863	/* Flush all writes and allow 20usec for all transactions to clear */
3864	IXGBE_WRITE_FLUSH(hw);
3865	udelay(20);
3866
3867	/* restore previous register values */
3868	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3869	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3870}
3871
3872static const u8 ixgbe_emc_temp_data[4] = {
3873	IXGBE_EMC_INTERNAL_DATA,
3874	IXGBE_EMC_DIODE1_DATA,
3875	IXGBE_EMC_DIODE2_DATA,
3876	IXGBE_EMC_DIODE3_DATA
3877};
3878static const u8 ixgbe_emc_therm_limit[4] = {
3879	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3880	IXGBE_EMC_DIODE1_THERM_LIMIT,
3881	IXGBE_EMC_DIODE2_THERM_LIMIT,
3882	IXGBE_EMC_DIODE3_THERM_LIMIT
3883};
3884
3885/**
3886 *  ixgbe_get_ets_data - Extracts the ETS bit data
3887 *  @hw: pointer to hardware structure
3888 *  @ets_cfg: extected ETS data
3889 *  @ets_offset: offset of ETS data
3890 *
3891 *  Returns error code.
3892 **/
3893static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3894			      u16 *ets_offset)
3895{
3896	s32 status;
3897
3898	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3899	if (status)
3900		return status;
3901
3902	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3903		return IXGBE_NOT_IMPLEMENTED;
3904
3905	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3906	if (status)
3907		return status;
3908
3909	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3910		return IXGBE_NOT_IMPLEMENTED;
3911
3912	return 0;
3913}
3914
3915/**
3916 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3917 *  @hw: pointer to hardware structure
3918 *
3919 *  Returns the thermal sensor data structure
3920 **/
3921s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3922{
3923	s32 status;
3924	u16 ets_offset;
3925	u16 ets_cfg;
3926	u16 ets_sensor;
3927	u8  num_sensors;
3928	u8  i;
3929	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3930
3931	/* Only support thermal sensors attached to physical port 0 */
3932	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3933		return IXGBE_NOT_IMPLEMENTED;
3934
3935	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3936	if (status)
3937		return status;
3938
3939	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3940	if (num_sensors > IXGBE_MAX_SENSORS)
3941		num_sensors = IXGBE_MAX_SENSORS;
3942
3943	for (i = 0; i < num_sensors; i++) {
3944		u8  sensor_index;
3945		u8  sensor_location;
3946
3947		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3948					     &ets_sensor);
3949		if (status)
3950			return status;
3951
3952		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3953				IXGBE_ETS_DATA_INDEX_SHIFT);
3954		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3955				   IXGBE_ETS_DATA_LOC_SHIFT);
3956
3957		if (sensor_location != 0) {
3958			status = hw->phy.ops.read_i2c_byte(hw,
3959					ixgbe_emc_temp_data[sensor_index],
3960					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3961					&data->sensor[i].temp);
3962			if (status)
3963				return status;
3964		}
3965	}
3966
3967	return 0;
3968}
3969
3970/**
3971 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3972 * @hw: pointer to hardware structure
3973 *
3974 * Inits the thermal sensor thresholds according to the NVM map
3975 * and save off the threshold and location values into mac.thermal_sensor_data
3976 **/
3977s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3978{
3979	s32 status;
3980	u16 ets_offset;
3981	u16 ets_cfg;
3982	u16 ets_sensor;
3983	u8  low_thresh_delta;
3984	u8  num_sensors;
3985	u8  therm_limit;
3986	u8  i;
3987	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3988
3989	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3990
3991	/* Only support thermal sensors attached to physical port 0 */
3992	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3993		return IXGBE_NOT_IMPLEMENTED;
3994
3995	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3996	if (status)
3997		return status;
3998
3999	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4000			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
4001	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4002	if (num_sensors > IXGBE_MAX_SENSORS)
4003		num_sensors = IXGBE_MAX_SENSORS;
4004
4005	for (i = 0; i < num_sensors; i++) {
4006		u8  sensor_index;
4007		u8  sensor_location;
4008
4009		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4010			hw_err(hw, "eeprom read at offset %d failed\n",
4011			       ets_offset + 1 + i);
4012			continue;
4013		}
4014		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4015				IXGBE_ETS_DATA_INDEX_SHIFT);
4016		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4017				   IXGBE_ETS_DATA_LOC_SHIFT);
4018		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4019
4020		hw->phy.ops.write_i2c_byte(hw,
4021			ixgbe_emc_therm_limit[sensor_index],
4022			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4023
4024		if (sensor_location == 0)
4025			continue;
4026
4027		data->sensor[i].location = sensor_location;
4028		data->sensor[i].caution_thresh = therm_limit;
4029		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4030	}
4031
4032	return 0;
4033}
4034
4035/**
4036 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4037 *
4038 *  @hw: pointer to hardware structure
4039 *  @nvm_ver: pointer to output structure
4040 *
4041 *  if valid option ROM version, nvm_ver->or_valid set to true
4042 *  else nvm_ver->or_valid is false.
4043 **/
4044void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4045			    struct ixgbe_nvm_version *nvm_ver)
4046{
4047	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4048
4049	nvm_ver->or_valid = false;
4050	/* Option Rom may or may not be present.  Start with pointer */
4051	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4052
4053	/* make sure offset is valid */
4054	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4055		return;
4056
4057	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4058	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4059
4060	/* option rom exists and is valid */
4061	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4062	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4063	    eeprom_cfg_blkh == NVM_VER_INVALID)
4064		return;
4065
4066	nvm_ver->or_valid = true;
4067	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4068	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4069			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4070	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4071}
4072
4073/**
4074 *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4075 *
4076 *  @hw: pointer to hardware structure
4077 *  @nvm_ver: pointer to output structure
4078 *
4079 *  if valid OEM product version, nvm_ver->oem_valid set to true
4080 *  else nvm_ver->oem_valid is false.
4081 **/
4082void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4083				struct ixgbe_nvm_version *nvm_ver)
4084{
4085	u16 rel_num, prod_ver, mod_len, cap, offset;
4086
4087	nvm_ver->oem_valid = false;
4088	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4089
4090	/* Return is offset to OEM Product Version block is invalid */
4091	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4092		return;
4093
4094	/* Read product version block */
4095	hw->eeprom.ops.read(hw, offset, &mod_len);
4096	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4097
4098	/* Return if OEM product version block is invalid */
4099	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4100	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4101		return;
4102
4103	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4104	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4105
4106	/* Return if version is invalid */
4107	if ((rel_num | prod_ver) == 0x0 ||
4108	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4109		return;
4110
4111	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4112	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4113	nvm_ver->oem_release = rel_num;
4114	nvm_ver->oem_valid = true;
4115}
4116
4117/**
4118 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119 *
4120 *  @hw: pointer to hardware structure
4121 *  @nvm_ver: pointer to output structure
4122 *
4123 *  word read errors will return 0xFFFF
4124 **/
4125void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4126		      struct ixgbe_nvm_version *nvm_ver)
4127{
4128	u16 etk_id_l, etk_id_h;
4129
4130	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4131		etk_id_l = NVM_VER_INVALID;
4132	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4133		etk_id_h = NVM_VER_INVALID;
4134
4135	/* The word order for the version format is determined by high order
4136	 * word bit 15.
4137	 */
4138	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4139		nvm_ver->etk_id = etk_id_h;
4140		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4141	} else {
4142		nvm_ver->etk_id = etk_id_l;
4143		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4144	}
4145}
4146
4147void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4148{
4149	u32 rxctrl;
4150
4151	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4152	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4153		if (hw->mac.type != ixgbe_mac_82598EB) {
4154			u32 pfdtxgswc;
4155
4156			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4157			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4158				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4159				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4160				hw->mac.set_lben = true;
4161			} else {
4162				hw->mac.set_lben = false;
4163			}
4164		}
4165		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4166		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4167	}
4168}
4169
4170void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4171{
4172	u32 rxctrl;
4173
4174	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4175	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4176
4177	if (hw->mac.type != ixgbe_mac_82598EB) {
4178		if (hw->mac.set_lben) {
4179			u32 pfdtxgswc;
4180
4181			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4182			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4183			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4184			hw->mac.set_lben = false;
4185		}
4186	}
4187}
4188
4189/** ixgbe_mng_present - returns true when management capability is present
4190 * @hw: pointer to hardware structure
4191 **/
4192bool ixgbe_mng_present(struct ixgbe_hw *hw)
4193{
4194	u32 fwsm;
4195
4196	if (hw->mac.type < ixgbe_mac_82599EB)
4197		return false;
4198
4199	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4200
4201	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4202}
4203
4204/**
4205 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4206 *  @hw: pointer to hardware structure
4207 *  @speed: new link speed
4208 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4209 *
4210 *  Set the link speed in the MAC and/or PHY register and restarts link.
4211 */
4212s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4213					  ixgbe_link_speed speed,
4214					  bool autoneg_wait_to_complete)
4215{
4216	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4218	s32 status = 0;
4219	u32 speedcnt = 0;
4220	u32 i = 0;
4221	bool autoneg, link_up = false;
4222
4223	/* Mask off requested but non-supported speeds */
4224	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4225	if (status)
4226		return status;
4227
4228	speed &= link_speed;
4229
4230	/* Try each speed one by one, highest priority first.  We do this in
4231	 * software because 10Gb fiber doesn't support speed autonegotiation.
4232	 */
4233	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4234		speedcnt++;
4235		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4236
4237		/* Set the module link speed */
4238		switch (hw->phy.media_type) {
4239		case ixgbe_media_type_fiber:
4240			hw->mac.ops.set_rate_select_speed(hw,
4241						    IXGBE_LINK_SPEED_10GB_FULL);
4242			break;
4243		case ixgbe_media_type_fiber_qsfp:
4244			/* QSFP module automatically detects MAC link speed */
4245			break;
4246		default:
4247			hw_dbg(hw, "Unexpected media type\n");
4248			break;
4249		}
4250
4251		/* Allow module to change analog characteristics (1G->10G) */
4252		msleep(40);
4253
4254		status = hw->mac.ops.setup_mac_link(hw,
4255						    IXGBE_LINK_SPEED_10GB_FULL,
4256						    autoneg_wait_to_complete);
4257		if (status)
4258			return status;
4259
4260		/* Flap the Tx laser if it has not already been done */
4261		if (hw->mac.ops.flap_tx_laser)
4262			hw->mac.ops.flap_tx_laser(hw);
4263
4264		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4265		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4266		 * attempted.  82599 uses the same timing for 10g SFI.
4267		 */
4268		for (i = 0; i < 5; i++) {
4269			/* Wait for the link partner to also set speed */
4270			msleep(100);
4271
4272			/* If we have link, just jump out */
4273			status = hw->mac.ops.check_link(hw, &link_speed,
4274							&link_up, false);
4275			if (status)
4276				return status;
4277
4278			if (link_up)
4279				goto out;
4280		}
4281	}
4282
4283	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4284		speedcnt++;
4285		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4286			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4287
4288		/* Set the module link speed */
4289		switch (hw->phy.media_type) {
4290		case ixgbe_media_type_fiber:
4291			hw->mac.ops.set_rate_select_speed(hw,
4292						     IXGBE_LINK_SPEED_1GB_FULL);
4293			break;
4294		case ixgbe_media_type_fiber_qsfp:
4295			/* QSFP module automatically detects link speed */
4296			break;
4297		default:
4298			hw_dbg(hw, "Unexpected media type\n");
4299			break;
4300		}
4301
4302		/* Allow module to change analog characteristics (10G->1G) */
4303		msleep(40);
4304
4305		status = hw->mac.ops.setup_mac_link(hw,
4306						    IXGBE_LINK_SPEED_1GB_FULL,
4307						    autoneg_wait_to_complete);
4308		if (status)
4309			return status;
4310
4311		/* Flap the Tx laser if it has not already been done */
4312		if (hw->mac.ops.flap_tx_laser)
4313			hw->mac.ops.flap_tx_laser(hw);
4314
4315		/* Wait for the link partner to also set speed */
4316		msleep(100);
4317
4318		/* If we have link, just jump out */
4319		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4320						false);
4321		if (status)
4322			return status;
4323
4324		if (link_up)
4325			goto out;
4326	}
4327
4328	/* We didn't get link.  Configure back to the highest speed we tried,
4329	 * (if there was more than one).  We call ourselves back with just the
4330	 * single highest speed that the user requested.
4331	 */
4332	if (speedcnt > 1)
4333		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4334						      highest_link_speed,
4335						      autoneg_wait_to_complete);
4336
4337out:
4338	/* Set autoneg_advertised value based on input link speed */
4339	hw->phy.autoneg_advertised = 0;
4340
4341	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4342		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4343
4344	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4345		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4346
4347	return status;
4348}
4349
4350/**
4351 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4352 *  @hw: pointer to hardware structure
4353 *  @speed: link speed to set
4354 *
4355 *  Set module link speed via the soft rate select.
4356 */
4357void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4358				      ixgbe_link_speed speed)
4359{
4360	s32 status;
4361	u8 rs, eeprom_data;
4362
4363	switch (speed) {
4364	case IXGBE_LINK_SPEED_10GB_FULL:
4365		/* one bit mask same as setting on */
4366		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4367		break;
4368	case IXGBE_LINK_SPEED_1GB_FULL:
4369		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4370		break;
4371	default:
4372		hw_dbg(hw, "Invalid fixed module speed\n");
4373		return;
4374	}
4375
4376	/* Set RS0 */
4377	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4378					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4379					   &eeprom_data);
4380	if (status) {
4381		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4382		return;
4383	}
4384
4385	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386
4387	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4388					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4389					    eeprom_data);
4390	if (status) {
4391		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4392		return;
4393	}
4394
4395	/* Set RS1 */
4396	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4397					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4398					   &eeprom_data);
4399	if (status) {
4400		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4401		return;
4402	}
4403
4404	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4405
4406	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4407					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4408					    eeprom_data);
4409	if (status) {
4410		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4411		return;
4412	}
4413}