Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/sched.h>
   7#include <linux/netdevice.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_common.h"
  11#include "ixgbe_phy.h"
  12
  13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  19					u16 count);
  20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  24
  25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  28					     u16 words, u16 *data);
  29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  30					     u16 words, u16 *data);
  31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  32						 u16 offset);
  33static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
  34
  35/* Base table for registers values that change by MAC */
  36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  37	IXGBE_MVALS_INIT(8259X)
  38};
  39
  40/**
  41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  42 *  control
  43 *  @hw: pointer to hardware structure
  44 *
  45 *  There are several phys that do not support autoneg flow control. This
  46 *  function check the device id to see if the associated phy supports
  47 *  autoneg flow control.
  48 **/
  49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  50{
  51	bool supported = false;
  52	ixgbe_link_speed speed;
  53	bool link_up;
  54
  55	switch (hw->phy.media_type) {
  56	case ixgbe_media_type_fiber:
  57		/* flow control autoneg black list */
  58		switch (hw->device_id) {
  59		case IXGBE_DEV_ID_X550EM_A_SFP:
  60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
  61			supported = false;
  62			break;
  63		default:
  64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
  65			/* if link is down, assume supported */
  66			if (link_up)
  67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
  68			else
  69				supported = true;
  70		}
  71
  72		break;
  73	case ixgbe_media_type_backplane:
  74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
  75			supported = false;
  76		else
  77			supported = true;
  78		break;
  79	case ixgbe_media_type_copper:
  80		/* only some copper devices support flow control autoneg */
  81		switch (hw->device_id) {
  82		case IXGBE_DEV_ID_82599_T3_LOM:
  83		case IXGBE_DEV_ID_X540T:
  84		case IXGBE_DEV_ID_X540T1:
  85		case IXGBE_DEV_ID_X550T:
  86		case IXGBE_DEV_ID_X550T1:
  87		case IXGBE_DEV_ID_X550EM_X_10G_T:
  88		case IXGBE_DEV_ID_X550EM_A_10G_T:
  89		case IXGBE_DEV_ID_X550EM_A_1G_T:
  90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
  91			supported = true;
  92			break;
  93		default:
  94			break;
  95		}
  96		break;
  97	default:
  98		break;
  99	}
 100
 101	if (!supported)
 102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 103		       hw->device_id);
 104
 105	return supported;
 106}
 107
 108/**
 109 *  ixgbe_setup_fc_generic - Set up flow control
 110 *  @hw: pointer to hardware structure
 111 *
 112 *  Called at init time to set up flow control.
 113 **/
 114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 115{
 116	s32 ret_val = 0;
 117	u32 reg = 0, reg_bp = 0;
 118	u16 reg_cu = 0;
 119	bool locked = false;
 120
 121	/*
 122	 * Validate the requested mode.  Strict IEEE mode does not allow
 123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 124	 */
 125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 127		return -EINVAL;
 
 128	}
 129
 130	/*
 131	 * 10gig parts do not have a word in the EEPROM to determine the
 132	 * default flow control setting, so we explicitly set it to full.
 133	 */
 134	if (hw->fc.requested_mode == ixgbe_fc_default)
 135		hw->fc.requested_mode = ixgbe_fc_full;
 136
 137	/*
 138	 * Set up the 1G and 10G flow control advertisement registers so the
 139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 141	 */
 142	switch (hw->phy.media_type) {
 143	case ixgbe_media_type_backplane:
 144		/* some MAC's need RMW protection on AUTOC */
 145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 146		if (ret_val)
 147			return ret_val;
 148
 149		fallthrough; /* only backplane uses autoc */
 150	case ixgbe_media_type_fiber:
 
 151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 152
 153		break;
 154	case ixgbe_media_type_copper:
 155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 156					MDIO_MMD_AN, &reg_cu);
 157		break;
 158	default:
 159		break;
 160	}
 161
 162	/*
 163	 * The possible values of fc.requested_mode are:
 164	 * 0: Flow control is completely disabled
 165	 * 1: Rx flow control is enabled (we can receive pause frames,
 166	 *    but not send pause frames).
 167	 * 2: Tx flow control is enabled (we can send pause frames but
 168	 *    we do not support receiving pause frames).
 169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 170	 * other: Invalid.
 171	 */
 172	switch (hw->fc.requested_mode) {
 173	case ixgbe_fc_none:
 174		/* Flow control completely disabled by software override. */
 175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 176		if (hw->phy.media_type == ixgbe_media_type_backplane)
 177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 178				    IXGBE_AUTOC_ASM_PAUSE);
 179		else if (hw->phy.media_type == ixgbe_media_type_copper)
 180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 181		break;
 182	case ixgbe_fc_tx_pause:
 183		/*
 184		 * Tx Flow control is enabled, and Rx Flow control is
 185		 * disabled by software override.
 186		 */
 187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 195		}
 196		break;
 197	case ixgbe_fc_rx_pause:
 198		/*
 199		 * Rx Flow control is enabled and Tx Flow control is
 200		 * disabled by software override. Since there really
 201		 * isn't a way to advertise that we are capable of RX
 202		 * Pause ONLY, we will advertise that we support both
 203		 * symmetric and asymmetric Rx PAUSE, as such we fall
 204		 * through to the fc_full statement.  Later, we will
 205		 * disable the adapter's ability to send PAUSE frames.
 206		 */
 207	case ixgbe_fc_full:
 208		/* Flow control (both Rx and Tx) is enabled by SW override. */
 209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 210		if (hw->phy.media_type == ixgbe_media_type_backplane)
 211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 212				  IXGBE_AUTOC_ASM_PAUSE;
 213		else if (hw->phy.media_type == ixgbe_media_type_copper)
 214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 215		break;
 216	default:
 217		hw_dbg(hw, "Flow control param set incorrectly\n");
 218		return -EIO;
 
 
 219	}
 220
 221	if (hw->mac.type != ixgbe_mac_X540) {
 222		/*
 223		 * Enable auto-negotiation between the MAC & PHY;
 224		 * the MAC will advertise clause 37 flow control.
 225		 */
 226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 228
 229		/* Disable AN timeout */
 230		if (hw->fc.strict_ieee)
 231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 232
 233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 235	}
 236
 237	/*
 238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 239	 * and copper. There is no need to set the PCS1GCTL register.
 240	 *
 241	 */
 242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 244		 * LESM is on, likewise reset_pipeline requries the lock as
 245		 * it also writes AUTOC.
 246		 */
 247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 248		if (ret_val)
 249			return ret_val;
 250
 251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 252		   ixgbe_device_supports_autoneg_fc(hw)) {
 253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 254				      MDIO_MMD_AN, reg_cu);
 255	}
 256
 257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 
 258	return ret_val;
 259}
 260
 261/**
 262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 263 *  @hw: pointer to hardware structure
 264 *
 265 *  Starts the hardware by filling the bus info structure and media type, clears
 266 *  all on chip counters, initializes receive address registers, multicast
 267 *  table, VLAN filter table, calls routine to set up link and flow control
 268 *  settings, and leaves transmit and receive units disabled and uninitialized
 269 **/
 270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 271{
 272	s32 ret_val;
 273	u32 ctrl_ext;
 274	u16 device_caps;
 275
 276	/* Set the media type */
 277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279	/* Identify the PHY */
 280	hw->phy.ops.identify(hw);
 281
 282	/* Clear the VLAN filter table */
 283	hw->mac.ops.clear_vfta(hw);
 284
 285	/* Clear statistics registers */
 286	hw->mac.ops.clear_hw_cntrs(hw);
 287
 288	/* Set No Snoop Disable */
 289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292	IXGBE_WRITE_FLUSH(hw);
 293
 294	/* Setup flow control if method for doing so */
 295	if (hw->mac.ops.setup_fc) {
 296		ret_val = hw->mac.ops.setup_fc(hw);
 297		if (ret_val)
 298			return ret_val;
 299	}
 300
 301	/* Cashe bit indicating need for crosstalk fix */
 302	switch (hw->mac.type) {
 303	case ixgbe_mac_82599EB:
 304	case ixgbe_mac_X550EM_x:
 305	case ixgbe_mac_x550em_a:
 306		hw->mac.ops.get_device_caps(hw, &device_caps);
 307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 308			hw->need_crosstalk_fix = false;
 309		else
 310			hw->need_crosstalk_fix = true;
 311		break;
 312	default:
 313		hw->need_crosstalk_fix = false;
 314		break;
 315	}
 316
 317	/* Clear adapter stopped flag */
 318	hw->adapter_stopped = false;
 319
 320	return 0;
 321}
 322
 323/**
 324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 325 *  @hw: pointer to hw structure
 326 *
 327 * Performs the init sequence common to the second generation
 328 * of 10 GbE devices.
 329 * Devices in the second generation:
 330 *     82599
 331 *     X540
 332 **/
 333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 334{
 335	u32 i;
 
 336
 337	/* Clear the rate limiters */
 338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 341	}
 342	IXGBE_WRITE_FLUSH(hw);
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344	return 0;
 345}
 346
 347/**
 348 *  ixgbe_init_hw_generic - Generic hardware initialization
 349 *  @hw: pointer to hardware structure
 350 *
 351 *  Initialize the hardware by resetting the hardware, filling the bus info
 352 *  structure and media type, clears all on chip counters, initializes receive
 353 *  address registers, multicast table, VLAN filter table, calls routine to set
 354 *  up link and flow control settings, and leaves transmit and receive units
 355 *  disabled and uninitialized
 356 **/
 357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 358{
 359	s32 status;
 360
 361	/* Reset the hardware */
 362	status = hw->mac.ops.reset_hw(hw);
 363
 364	if (status == 0) {
 365		/* Start the HW */
 366		status = hw->mac.ops.start_hw(hw);
 367	}
 368
 369	/* Initialize the LED link active for LED blink support */
 370	if (hw->mac.ops.init_led_link_act)
 371		hw->mac.ops.init_led_link_act(hw);
 372
 373	return status;
 374}
 375
 376/**
 377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 378 *  @hw: pointer to hardware structure
 379 *
 380 *  Clears all hardware statistics counters by reading them from the hardware
 381 *  Statistics counters are clear on read.
 382 **/
 383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 384{
 385	u16 i = 0;
 386
 387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 391	for (i = 0; i < 8; i++)
 392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 393
 394	IXGBE_READ_REG(hw, IXGBE_MLFC);
 395	IXGBE_READ_REG(hw, IXGBE_MRFC);
 396	IXGBE_READ_REG(hw, IXGBE_RLEC);
 397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 399	if (hw->mac.type >= ixgbe_mac_82599EB) {
 400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 402	} else {
 403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 405	}
 406
 407	for (i = 0; i < 8; i++) {
 408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 410		if (hw->mac.type >= ixgbe_mac_82599EB) {
 411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 413		} else {
 414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 416		}
 417	}
 418	if (hw->mac.type >= ixgbe_mac_82599EB)
 419		for (i = 0; i < 8; i++)
 420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 421	IXGBE_READ_REG(hw, IXGBE_PRC64);
 422	IXGBE_READ_REG(hw, IXGBE_PRC127);
 423	IXGBE_READ_REG(hw, IXGBE_PRC255);
 424	IXGBE_READ_REG(hw, IXGBE_PRC511);
 425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 427	IXGBE_READ_REG(hw, IXGBE_GPRC);
 428	IXGBE_READ_REG(hw, IXGBE_BPRC);
 429	IXGBE_READ_REG(hw, IXGBE_MPRC);
 430	IXGBE_READ_REG(hw, IXGBE_GPTC);
 431	IXGBE_READ_REG(hw, IXGBE_GORCL);
 432	IXGBE_READ_REG(hw, IXGBE_GORCH);
 433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 435	if (hw->mac.type == ixgbe_mac_82598EB)
 436		for (i = 0; i < 8; i++)
 437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 438	IXGBE_READ_REG(hw, IXGBE_RUC);
 439	IXGBE_READ_REG(hw, IXGBE_RFC);
 440	IXGBE_READ_REG(hw, IXGBE_ROC);
 441	IXGBE_READ_REG(hw, IXGBE_RJC);
 442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 445	IXGBE_READ_REG(hw, IXGBE_TORL);
 446	IXGBE_READ_REG(hw, IXGBE_TORH);
 447	IXGBE_READ_REG(hw, IXGBE_TPR);
 448	IXGBE_READ_REG(hw, IXGBE_TPT);
 449	IXGBE_READ_REG(hw, IXGBE_PTC64);
 450	IXGBE_READ_REG(hw, IXGBE_PTC127);
 451	IXGBE_READ_REG(hw, IXGBE_PTC255);
 452	IXGBE_READ_REG(hw, IXGBE_PTC511);
 453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 455	IXGBE_READ_REG(hw, IXGBE_MPTC);
 456	IXGBE_READ_REG(hw, IXGBE_BPTC);
 457	for (i = 0; i < 16; i++) {
 458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 460		if (hw->mac.type >= ixgbe_mac_82599EB) {
 461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 466		} else {
 467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 469		}
 470	}
 471
 472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 473		if (hw->phy.id == 0)
 474			hw->phy.ops.identify(hw);
 475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 479	}
 480
 481	return 0;
 482}
 483
 484/**
 485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 486 *  @hw: pointer to hardware structure
 487 *  @pba_num: stores the part number string from the EEPROM
 488 *  @pba_num_size: part number string buffer length
 489 *
 490 *  Reads the part number string from the EEPROM.
 491 **/
 492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 493				  u32 pba_num_size)
 494{
 495	s32 ret_val;
 496	u16 data;
 497	u16 pba_ptr;
 498	u16 offset;
 499	u16 length;
 500
 501	if (pba_num == NULL) {
 502		hw_dbg(hw, "PBA string buffer was null\n");
 503		return -EINVAL;
 504	}
 505
 506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 507	if (ret_val) {
 508		hw_dbg(hw, "NVM Read Error\n");
 509		return ret_val;
 510	}
 511
 512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 513	if (ret_val) {
 514		hw_dbg(hw, "NVM Read Error\n");
 515		return ret_val;
 516	}
 517
 518	/*
 519	 * if data is not ptr guard the PBA must be in legacy format which
 520	 * means pba_ptr is actually our second data word for the PBA number
 521	 * and we can decode it into an ascii string
 522	 */
 523	if (data != IXGBE_PBANUM_PTR_GUARD) {
 524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 525
 526		/* we will need 11 characters to store the PBA */
 527		if (pba_num_size < 11) {
 528			hw_dbg(hw, "PBA string buffer too small\n");
 529			return -ENOSPC;
 530		}
 531
 532		/* extract hex string from data and pba_ptr */
 533		pba_num[0] = (data >> 12) & 0xF;
 534		pba_num[1] = (data >> 8) & 0xF;
 535		pba_num[2] = (data >> 4) & 0xF;
 536		pba_num[3] = data & 0xF;
 537		pba_num[4] = (pba_ptr >> 12) & 0xF;
 538		pba_num[5] = (pba_ptr >> 8) & 0xF;
 539		pba_num[6] = '-';
 540		pba_num[7] = 0;
 541		pba_num[8] = (pba_ptr >> 4) & 0xF;
 542		pba_num[9] = pba_ptr & 0xF;
 543
 544		/* put a null character on the end of our string */
 545		pba_num[10] = '\0';
 546
 547		/* switch all the data but the '-' to hex char */
 548		for (offset = 0; offset < 10; offset++) {
 549			if (pba_num[offset] < 0xA)
 550				pba_num[offset] += '0';
 551			else if (pba_num[offset] < 0x10)
 552				pba_num[offset] += 'A' - 0xA;
 553		}
 554
 555		return 0;
 556	}
 557
 558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 559	if (ret_val) {
 560		hw_dbg(hw, "NVM Read Error\n");
 561		return ret_val;
 562	}
 563
 564	if (length == 0xFFFF || length == 0) {
 565		hw_dbg(hw, "NVM PBA number section invalid length\n");
 566		return -EIO;
 567	}
 568
 569	/* check if pba_num buffer is big enough */
 570	if (pba_num_size  < (((u32)length * 2) - 1)) {
 571		hw_dbg(hw, "PBA string buffer too small\n");
 572		return -ENOSPC;
 573	}
 574
 575	/* trim pba length from start of string */
 576	pba_ptr++;
 577	length--;
 578
 579	for (offset = 0; offset < length; offset++) {
 580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 581		if (ret_val) {
 582			hw_dbg(hw, "NVM Read Error\n");
 583			return ret_val;
 584		}
 585		pba_num[offset * 2] = (u8)(data >> 8);
 586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 587	}
 588	pba_num[offset * 2] = '\0';
 589
 590	return 0;
 591}
 592
 593/**
 594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 595 *  @hw: pointer to hardware structure
 596 *  @mac_addr: Adapter MAC address
 597 *
 598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 599 *  A reset of the adapter must be performed prior to calling this function
 600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 601 **/
 602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 603{
 604	u32 rar_high;
 605	u32 rar_low;
 606	u16 i;
 607
 608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 610
 611	for (i = 0; i < 4; i++)
 612		mac_addr[i] = (u8)(rar_low >> (i*8));
 613
 614	for (i = 0; i < 2; i++)
 615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 616
 617	return 0;
 618}
 619
 620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 621{
 622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 623	case IXGBE_PCI_LINK_WIDTH_1:
 624		return ixgbe_bus_width_pcie_x1;
 625	case IXGBE_PCI_LINK_WIDTH_2:
 626		return ixgbe_bus_width_pcie_x2;
 627	case IXGBE_PCI_LINK_WIDTH_4:
 628		return ixgbe_bus_width_pcie_x4;
 629	case IXGBE_PCI_LINK_WIDTH_8:
 630		return ixgbe_bus_width_pcie_x8;
 631	default:
 632		return ixgbe_bus_width_unknown;
 633	}
 634}
 635
 636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 637{
 638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 639	case IXGBE_PCI_LINK_SPEED_2500:
 640		return ixgbe_bus_speed_2500;
 641	case IXGBE_PCI_LINK_SPEED_5000:
 642		return ixgbe_bus_speed_5000;
 643	case IXGBE_PCI_LINK_SPEED_8000:
 644		return ixgbe_bus_speed_8000;
 645	default:
 646		return ixgbe_bus_speed_unknown;
 647	}
 648}
 649
 650/**
 651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 652 *  @hw: pointer to hardware structure
 653 *
 654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 655 **/
 656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 657{
 
 
 658	u16 link_status;
 659
 660	hw->bus.type = ixgbe_bus_type_pci_express;
 661
 662	/* Get the negotiated link width and speed from PCI config space */
 663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 
 664
 665	hw->bus.width = ixgbe_convert_bus_width(link_status);
 666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668	hw->mac.ops.set_lan_id(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670	return 0;
 671}
 672
 673/**
 674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 675 *  @hw: pointer to the HW structure
 676 *
 677 *  Determines the LAN function id by reading memory-mapped registers
 678 *  and swaps the port value if requested.
 679 **/
 680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 681{
 682	struct ixgbe_bus_info *bus = &hw->bus;
 683	u16 ee_ctrl_4;
 684	u32 reg;
 685
 686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687	bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
 688	bus->lan_id = bus->func;
 689
 690	/* check for a port swap */
 691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692	if (reg & IXGBE_FACTPS_LFS)
 693		bus->func ^= 0x1;
 694
 695	/* Get MAC instance from EEPROM for configuring CS4227 */
 696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 698		bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
 699					     ee_ctrl_4);
 700	}
 701}
 702
 703/**
 704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 705 *  @hw: pointer to hardware structure
 706 *
 707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 708 *  disables transmit and receive units. The adapter_stopped flag is used by
 709 *  the shared code and drivers to determine if the adapter is in a stopped
 710 *  state and should not touch the hardware.
 711 **/
 712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 713{
 714	u32 reg_val;
 715	u16 i;
 716
 717	/*
 718	 * Set the adapter_stopped flag so other driver functions stop touching
 719	 * the hardware
 720	 */
 721	hw->adapter_stopped = true;
 722
 723	/* Disable the receive unit */
 724	hw->mac.ops.disable_rx(hw);
 725
 726	/* Clear interrupt mask to stop interrupts from being generated */
 727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 728
 729	/* Clear any pending interrupts, flush previous writes */
 730	IXGBE_READ_REG(hw, IXGBE_EICR);
 731
 732	/* Disable the transmit unit.  Each queue must be disabled. */
 733	for (i = 0; i < hw->mac.max_tx_queues; i++)
 734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 735
 736	/* Disable the receive unit by stopping each queue */
 737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 740		reg_val |= IXGBE_RXDCTL_SWFLSH;
 741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 742	}
 743
 744	/* flush all queues disables */
 745	IXGBE_WRITE_FLUSH(hw);
 746	usleep_range(1000, 2000);
 747
 748	/*
 749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
 750	 * access and verify no pending requests
 751	 */
 752	return ixgbe_disable_pcie_primary(hw);
 753}
 754
 755/**
 756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 757 *  @hw: pointer to hardware structure
 758 *
 759 *  Store the index for the link active LED. This will be used to support
 760 *  blinking the LED.
 761 **/
 762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 763{
 764	struct ixgbe_mac_info *mac = &hw->mac;
 765	u32 led_reg, led_mode;
 766	u16 i;
 767
 768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 769
 770	/* Get LED link active from the LEDCTL register */
 771	for (i = 0; i < 4; i++) {
 772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 773
 774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 775		    IXGBE_LED_LINK_ACTIVE) {
 776			mac->led_link_act = i;
 777			return 0;
 778		}
 779	}
 780
 781	/* If LEDCTL register does not have the LED link active set, then use
 782	 * known MAC defaults.
 783	 */
 784	switch (hw->mac.type) {
 785	case ixgbe_mac_x550em_a:
 786		mac->led_link_act = 0;
 787		break;
 788	case ixgbe_mac_X550EM_x:
 789		mac->led_link_act = 1;
 790		break;
 791	default:
 792		mac->led_link_act = 2;
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 800 *  @hw: pointer to hardware structure
 801 *  @index: led number to turn on
 802 **/
 803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 804{
 805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 806
 807	if (index > 3)
 808		return -EINVAL;
 809
 810	/* To turn on the LED, set mode to ON. */
 811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 814	IXGBE_WRITE_FLUSH(hw);
 815
 816	return 0;
 817}
 818
 819/**
 820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 821 *  @hw: pointer to hardware structure
 822 *  @index: led number to turn off
 823 **/
 824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 825{
 826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 827
 828	if (index > 3)
 829		return -EINVAL;
 830
 831	/* To turn off the LED, set mode to OFF. */
 832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 835	IXGBE_WRITE_FLUSH(hw);
 836
 837	return 0;
 838}
 839
 840/**
 841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 842 *  @hw: pointer to hardware structure
 843 *
 844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 845 *  ixgbe_hw struct in order to set up EEPROM access.
 846 **/
 847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 848{
 849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 850	u32 eec;
 851	u16 eeprom_size;
 852
 853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 854		eeprom->type = ixgbe_eeprom_none;
 855		/* Set default semaphore delay to 10ms which is a well
 856		 * tested value */
 857		eeprom->semaphore_delay = 10;
 858		/* Clear EEPROM page size, it will be initialized as needed */
 859		eeprom->word_page_size = 0;
 860
 861		/*
 862		 * Check for EEPROM present first.
 863		 * If not present leave as none
 864		 */
 865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 866		if (eec & IXGBE_EEC_PRES) {
 867			eeprom->type = ixgbe_eeprom_spi;
 868
 869			/*
 870			 * SPI EEPROM is assumed here.  This code would need to
 871			 * change if a future EEPROM is not SPI.
 872			 */
 873			eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
 874			eeprom->word_size = BIT(eeprom_size +
 875						IXGBE_EEPROM_WORD_SIZE_SHIFT);
 
 876		}
 877
 878		if (eec & IXGBE_EEC_ADDR_SIZE)
 879			eeprom->address_bits = 16;
 880		else
 881			eeprom->address_bits = 8;
 882		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 883		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 
 884	}
 885
 886	return 0;
 887}
 888
 889/**
 890 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 891 *  @hw: pointer to hardware structure
 892 *  @offset: offset within the EEPROM to write
 893 *  @words: number of words
 894 *  @data: 16 bit word(s) to write to EEPROM
 895 *
 896 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 897 **/
 898s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 899					       u16 words, u16 *data)
 900{
 901	s32 status;
 902	u16 i, count;
 903
 904	hw->eeprom.ops.init_params(hw);
 905
 906	if (words == 0 || (offset + words > hw->eeprom.word_size))
 907		return -EINVAL;
 
 
 
 
 
 
 
 908
 909	/*
 910	 * The EEPROM page size cannot be queried from the chip. We do lazy
 911	 * initialization. It is worth to do that when we write large buffer.
 912	 */
 913	if ((hw->eeprom.word_page_size == 0) &&
 914	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 915		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 916
 917	/*
 918	 * We cannot hold synchronization semaphores for too long
 919	 * to avoid other entity starvation. However it is more efficient
 920	 * to read in bursts than synchronizing access for each word.
 921	 */
 922	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 923		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 924			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 925		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 926							    count, &data[i]);
 927
 928		if (status != 0)
 929			break;
 930	}
 931
 
 932	return status;
 933}
 934
 935/**
 936 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 937 *  @hw: pointer to hardware structure
 938 *  @offset: offset within the EEPROM to be written to
 939 *  @words: number of word(s)
 940 *  @data: 16 bit word(s) to be written to the EEPROM
 941 *
 942 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 943 *  EEPROM will most likely contain an invalid checksum.
 944 **/
 945static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 946					      u16 words, u16 *data)
 947{
 948	s32 status;
 949	u16 word;
 950	u16 page_size;
 951	u16 i;
 952	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 953
 954	/* Prepare the EEPROM for writing  */
 955	status = ixgbe_acquire_eeprom(hw);
 956	if (status)
 957		return status;
 958
 959	if (ixgbe_ready_eeprom(hw) != 0) {
 960		ixgbe_release_eeprom(hw);
 961		return -EIO;
 
 
 962	}
 963
 964	for (i = 0; i < words; i++) {
 965		ixgbe_standby_eeprom(hw);
 966
 967		/* Send the WRITE ENABLE command (8 bit opcode) */
 968		ixgbe_shift_out_eeprom_bits(hw,
 969					    IXGBE_EEPROM_WREN_OPCODE_SPI,
 970					    IXGBE_EEPROM_OPCODE_BITS);
 971
 972		ixgbe_standby_eeprom(hw);
 973
 974		/* Some SPI eeproms use the 8th address bit embedded
 975		 * in the opcode
 976		 */
 977		if ((hw->eeprom.address_bits == 8) &&
 978		    ((offset + i) >= 128))
 979			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 980
 981		/* Send the Write command (8-bit opcode + addr) */
 982		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 983					    IXGBE_EEPROM_OPCODE_BITS);
 984		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 985					    hw->eeprom.address_bits);
 986
 987		page_size = hw->eeprom.word_page_size;
 988
 989		/* Send the data in burst via SPI */
 990		do {
 991			word = data[i];
 992			word = (word >> 8) | (word << 8);
 993			ixgbe_shift_out_eeprom_bits(hw, word, 16);
 994
 995			if (page_size == 0)
 996				break;
 997
 998			/* do not wrap around page */
 999			if (((offset + i) & (page_size - 1)) ==
1000			    (page_size - 1))
1001				break;
1002		} while (++i < words);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004		ixgbe_standby_eeprom(hw);
1005		usleep_range(10000, 20000);
 
 
 
1006	}
1007	/* Done with writing - release the EEPROM */
1008	ixgbe_release_eeprom(hw);
1009
1010	return 0;
1011}
1012
1013/**
1014 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 *  @hw: pointer to hardware structure
1016 *  @offset: offset within the EEPROM to be written to
1017 *  @data: 16 bit word to be written to the EEPROM
1018 *
1019 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1020 *  EEPROM will most likely contain an invalid checksum.
1021 **/
1022s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023{
 
 
1024	hw->eeprom.ops.init_params(hw);
1025
1026	if (offset >= hw->eeprom.word_size)
1027		return -EINVAL;
 
 
1028
1029	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 
 
 
1030}
1031
1032/**
1033 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 *  @hw: pointer to hardware structure
1035 *  @offset: offset within the EEPROM to be read
1036 *  @words: number of word(s)
1037 *  @data: read 16 bit words(s) from EEPROM
1038 *
1039 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
1041s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042					      u16 words, u16 *data)
1043{
1044	s32 status;
1045	u16 i, count;
1046
1047	hw->eeprom.ops.init_params(hw);
1048
1049	if (words == 0 || (offset + words > hw->eeprom.word_size))
1050		return -EINVAL;
 
 
 
 
 
 
 
1051
1052	/*
1053	 * We cannot hold synchronization semaphores for too long
1054	 * to avoid other entity starvation. However it is more efficient
1055	 * to read in bursts than synchronizing access for each word.
1056	 */
1057	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062							   count, &data[i]);
1063
1064		if (status)
1065			return status;
1066	}
1067
1068	return 0;
 
1069}
1070
1071/**
1072 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset within the EEPROM to be read
1075 *  @words: number of word(s)
1076 *  @data: read 16 bit word(s) from EEPROM
1077 *
1078 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
1080static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081					     u16 words, u16 *data)
1082{
1083	s32 status;
1084	u16 word_in;
1085	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1086	u16 i;
1087
1088	/* Prepare the EEPROM for reading  */
1089	status = ixgbe_acquire_eeprom(hw);
1090	if (status)
1091		return status;
1092
1093	if (ixgbe_ready_eeprom(hw) != 0) {
1094		ixgbe_release_eeprom(hw);
1095		return -EIO;
 
 
1096	}
1097
1098	for (i = 0; i < words; i++) {
1099		ixgbe_standby_eeprom(hw);
1100		/* Some SPI eeproms use the 8th address bit embedded
1101		 * in the opcode
1102		 */
1103		if ((hw->eeprom.address_bits == 8) &&
1104		    ((offset + i) >= 128))
1105			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107		/* Send the READ command (opcode + addr) */
1108		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109					    IXGBE_EEPROM_OPCODE_BITS);
1110		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111					    hw->eeprom.address_bits);
1112
1113		/* Read the data. */
1114		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115		data[i] = (word_in >> 8) | (word_in << 8);
1116	}
 
 
1117
1118	/* End this read operation */
1119	ixgbe_release_eeprom(hw);
 
1120
1121	return 0;
1122}
1123
1124/**
1125 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 *  @hw: pointer to hardware structure
1127 *  @offset: offset within the EEPROM to be read
1128 *  @data: read 16 bit value from EEPROM
1129 *
1130 *  Reads 16 bit value from EEPROM through bit-bang method
1131 **/
1132s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133				       u16 *data)
1134{
 
 
1135	hw->eeprom.ops.init_params(hw);
1136
1137	if (offset >= hw->eeprom.word_size)
1138		return -EINVAL;
 
 
 
 
1139
1140	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 
1141}
1142
1143/**
1144 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 *  @hw: pointer to hardware structure
1146 *  @offset: offset of word in the EEPROM to read
1147 *  @words: number of word(s)
1148 *  @data: 16 bit word(s) from the EEPROM
1149 *
1150 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
1152s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153				   u16 words, u16 *data)
1154{
1155	u32 eerd;
1156	s32 status;
1157	u32 i;
1158
1159	hw->eeprom.ops.init_params(hw);
1160
1161	if (words == 0 || offset >= hw->eeprom.word_size)
1162		return -EINVAL;
 
 
 
 
 
 
 
1163
1164	for (i = 0; i < words; i++) {
1165		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166		       IXGBE_EEPROM_RW_REG_START;
1167
1168		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171		if (status == 0) {
1172			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173				   IXGBE_EEPROM_RW_REG_DATA);
1174		} else {
1175			hw_dbg(hw, "Eeprom read timed out\n");
1176			return status;
1177		}
1178	}
1179
1180	return 0;
1181}
1182
1183/**
1184 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 *  @hw: pointer to hardware structure
1186 *  @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 *  Discover EEPROM page size by writing marching data at given offset.
1189 *  This function is called only when we are writing a new large buffer
1190 *  at given offset so the data would be overwritten anyway.
1191 **/
1192static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193						 u16 offset)
1194{
1195	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196	s32 status;
1197	u16 i;
1198
1199	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200		data[i] = i;
1201
1202	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205	hw->eeprom.word_page_size = 0;
1206	if (status)
1207		return status;
1208
1209	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210	if (status)
1211		return status;
1212
1213	/*
1214	 * When writing in burst more than the actual page size
1215	 * EEPROM address wraps around current page.
1216	 */
1217	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220	       hw->eeprom.word_page_size);
1221	return 0;
 
1222}
1223
1224/**
1225 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 *  @hw: pointer to hardware structure
1227 *  @offset: offset of  word in the EEPROM to read
1228 *  @data: word read from the EEPROM
1229 *
1230 *  Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
1232s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233{
1234	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235}
1236
1237/**
1238 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 *  @hw: pointer to hardware structure
1240 *  @offset: offset of  word in the EEPROM to write
1241 *  @words: number of words
1242 *  @data: word(s) write to the EEPROM
1243 *
1244 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
1246s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247				    u16 words, u16 *data)
1248{
1249	u32 eewr;
1250	s32 status;
1251	u16 i;
1252
1253	hw->eeprom.ops.init_params(hw);
1254
1255	if (words == 0 || offset >= hw->eeprom.word_size)
1256		return -EINVAL;
 
 
 
 
 
 
 
1257
1258	for (i = 0; i < words; i++) {
1259		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261		       IXGBE_EEPROM_RW_REG_START;
1262
1263		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264		if (status) {
1265			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266			return status;
1267		}
1268
1269		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272		if (status) {
1273			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274			return status;
1275		}
1276	}
1277
1278	return 0;
 
1279}
1280
1281/**
1282 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 *  @hw: pointer to hardware structure
1284 *  @offset: offset of  word in the EEPROM to write
1285 *  @data: word write to the EEPROM
1286 *
1287 *  Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
1289s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290{
1291	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292}
1293
1294/**
1295 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 *  @hw: pointer to hardware structure
1297 *  @ee_reg: EEPROM flag for polling
1298 *
1299 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 *  read or write is done respectively.
1301 **/
1302static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303{
1304	u32 i;
1305	u32 reg;
 
1306
1307	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308		if (ee_reg == IXGBE_NVM_POLL_READ)
1309			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310		else
1311			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314			return 0;
 
1315		}
1316		udelay(5);
1317	}
1318	return -EIO;
1319}
1320
1321/**
1322 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 *  @hw: pointer to hardware structure
1324 *
1325 *  Prepares EEPROM for access using bit-bang method. This function should
1326 *  be called before issuing a command to the EEPROM.
1327 **/
1328static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329{
 
1330	u32 eec;
1331	u32 i;
1332
1333	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334		return -EBUSY;
1335
1336	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 
1337
1338	/* Request EEPROM Access */
1339	eec |= IXGBE_EEC_REQ;
1340	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
 
 
 
 
 
 
 
1341
1342	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344		if (eec & IXGBE_EEC_GNT)
1345			break;
1346		udelay(5);
1347	}
1348
1349	/* Release if grant not acquired */
1350	if (!(eec & IXGBE_EEC_GNT)) {
1351		eec &= ~IXGBE_EEC_REQ;
1352		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356		return -EIO;
1357	}
1358
1359	/* Setup EEPROM for Read/Write */
1360	/* Clear CS and SK */
1361	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363	IXGBE_WRITE_FLUSH(hw);
1364	udelay(1);
1365	return 0;
 
 
 
1366}
1367
1368/**
1369 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 *  @hw: pointer to hardware structure
1371 *
1372 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
1374static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375{
 
1376	u32 timeout = 2000;
1377	u32 i;
1378	u32 swsm;
1379
1380	/* Get SMBI software semaphore between device drivers first */
1381	for (i = 0; i < timeout; i++) {
1382		/*
1383		 * If the SMBI bit is 0 when we read it, then the bit will be
1384		 * set and we have the semaphore
1385		 */
1386		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387		if (!(swsm & IXGBE_SWSM_SMBI))
 
1388			break;
1389		usleep_range(50, 100);
 
1390	}
1391
1392	if (i == timeout) {
1393		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394		/* this release is particularly important because our attempts
 
 
1395		 * above to get the semaphore may have succeeded, and if there
1396		 * was a timeout, we should unconditionally clear the semaphore
1397		 * bits to free the driver to make progress
1398		 */
1399		ixgbe_release_eeprom_semaphore(hw);
1400
1401		usleep_range(50, 100);
1402		/* one last try
 
1403		 * If the SMBI bit is 0 when we read it, then the bit will be
1404		 * set and we have the semaphore
1405		 */
1406		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407		if (swsm & IXGBE_SWSM_SMBI) {
1408			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409			return -EIO;
1410		}
1411	}
1412
1413	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1414	for (i = 0; i < timeout; i++) {
1415		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
 
1416
1417		/* Set the SW EEPROM semaphore bit to request access */
1418		swsm |= IXGBE_SWSM_SWESMBI;
1419		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421		/* If we set the bit successfully then we got the
1422		 * semaphore.
1423		 */
1424		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425		if (swsm & IXGBE_SWSM_SWESMBI)
1426			break;
 
1427
1428		usleep_range(50, 100);
1429	}
1430
1431	/* Release semaphores and return error if SW EEPROM semaphore
1432	 * was not granted because we don't have access to the EEPROM
1433	 */
1434	if (i >= timeout) {
1435		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436		ixgbe_release_eeprom_semaphore(hw);
1437		return -EIO;
 
 
 
 
 
 
1438	}
1439
1440	return 0;
1441}
1442
1443/**
1444 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 *  @hw: pointer to hardware structure
1446 *
1447 *  This function clears hardware semaphore bits.
1448 **/
1449static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450{
1451	u32 swsm;
1452
1453	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458	IXGBE_WRITE_FLUSH(hw);
1459}
1460
1461/**
1462 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1463 *  @hw: pointer to hardware structure
1464 **/
1465static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466{
 
1467	u16 i;
1468	u8 spi_stat_reg;
1469
1470	/*
1471	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1472	 * EEPROM will signal that the command has been completed by clearing
1473	 * bit 0 of the internal status register.  If it's not cleared within
1474	 * 5 milliseconds, then error out.
1475	 */
1476	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478					    IXGBE_EEPROM_OPCODE_BITS);
1479		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481			break;
1482
1483		udelay(5);
1484		ixgbe_standby_eeprom(hw);
1485	}
1486
1487	/*
1488	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489	 * devices (and only 0-5mSec on 5V devices)
1490	 */
1491	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492		hw_dbg(hw, "SPI EEPROM Status error\n");
1493		return -EIO;
1494	}
1495
1496	return 0;
1497}
1498
1499/**
1500 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 *  @hw: pointer to hardware structure
1502 **/
1503static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504{
1505	u32 eec;
1506
1507	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509	/* Toggle CS to flush commands */
1510	eec |= IXGBE_EEC_CS;
1511	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512	IXGBE_WRITE_FLUSH(hw);
1513	udelay(1);
1514	eec &= ~IXGBE_EEC_CS;
1515	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516	IXGBE_WRITE_FLUSH(hw);
1517	udelay(1);
1518}
1519
1520/**
1521 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 *  @hw: pointer to hardware structure
1523 *  @data: data to send to the EEPROM
1524 *  @count: number of bits to shift out
1525 **/
1526static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527					u16 count)
1528{
1529	u32 eec;
1530	u32 mask;
1531	u32 i;
1532
1533	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535	/*
1536	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537	 * one bit at a time.  Determine the starting bit based on count
1538	 */
1539	mask = BIT(count - 1);
1540
1541	for (i = 0; i < count; i++) {
1542		/*
1543		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544		 * "1", and then raising and then lowering the clock (the SK
1545		 * bit controls the clock input to the EEPROM).  A "0" is
1546		 * shifted out to the EEPROM by setting "DI" to "0" and then
1547		 * raising and then lowering the clock.
1548		 */
1549		if (data & mask)
1550			eec |= IXGBE_EEC_DI;
1551		else
1552			eec &= ~IXGBE_EEC_DI;
1553
1554		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555		IXGBE_WRITE_FLUSH(hw);
1556
1557		udelay(1);
1558
1559		ixgbe_raise_eeprom_clk(hw, &eec);
1560		ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562		/*
1563		 * Shift mask to signify next bit of data to shift in to the
1564		 * EEPROM
1565		 */
1566		mask = mask >> 1;
1567	}
1568
1569	/* We leave the "DI" bit set to "0" when we leave this routine. */
1570	eec &= ~IXGBE_EEC_DI;
1571	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572	IXGBE_WRITE_FLUSH(hw);
1573}
1574
1575/**
1576 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 *  @hw: pointer to hardware structure
1578 *  @count: number of bits to shift
1579 **/
1580static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581{
1582	u32 eec;
1583	u32 i;
1584	u16 data = 0;
1585
1586	/*
1587	 * In order to read a register from the EEPROM, we need to shift
1588	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589	 * the clock input to the EEPROM (setting the SK bit), and then reading
1590	 * the value of the "DO" bit.  During this "shifting in" process the
1591	 * "DI" bit should always be clear.
1592	 */
1593	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597	for (i = 0; i < count; i++) {
1598		data = data << 1;
1599		ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603		eec &= ~(IXGBE_EEC_DI);
1604		if (eec & IXGBE_EEC_DO)
1605			data |= 1;
1606
1607		ixgbe_lower_eeprom_clk(hw, &eec);
1608	}
1609
1610	return data;
1611}
1612
1613/**
1614 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 *  @hw: pointer to hardware structure
1616 *  @eec: EEC register's current value
1617 **/
1618static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619{
1620	/*
1621	 * Raise the clock input to the EEPROM
1622	 * (setting the SK bit), then delay
1623	 */
1624	*eec = *eec | IXGBE_EEC_SK;
1625	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626	IXGBE_WRITE_FLUSH(hw);
1627	udelay(1);
1628}
1629
1630/**
1631 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 *  @hw: pointer to hardware structure
1633 *  @eec: EEC's current value
1634 **/
1635static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636{
1637	/*
1638	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639	 * delay
1640	 */
1641	*eec = *eec & ~IXGBE_EEC_SK;
1642	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643	IXGBE_WRITE_FLUSH(hw);
1644	udelay(1);
1645}
1646
1647/**
1648 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 *  @hw: pointer to hardware structure
1650 **/
1651static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652{
1653	u32 eec;
1654
1655	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1658	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661	IXGBE_WRITE_FLUSH(hw);
1662
1663	udelay(1);
1664
1665	/* Stop requesting EEPROM access */
1666	eec &= ~IXGBE_EEC_REQ;
1667	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671	/*
1672	 * Delay before attempt to obtain semaphore again to allow FW
1673	 * access. semaphore_delay is in ms we need us for usleep_range
1674	 */
1675	usleep_range(hw->eeprom.semaphore_delay * 1000,
1676		     hw->eeprom.semaphore_delay * 2000);
1677}
1678
1679/**
1680 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 *  @hw: pointer to hardware structure
1682 **/
1683s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684{
1685	u16 i;
1686	u16 j;
1687	u16 checksum = 0;
1688	u16 length = 0;
1689	u16 pointer = 0;
1690	u16 word = 0;
1691
1692	/* Include 0x0-0x3F in the checksum */
1693	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694		if (hw->eeprom.ops.read(hw, i, &word)) {
1695			hw_dbg(hw, "EEPROM read failed\n");
1696			break;
1697		}
1698		checksum += word;
1699	}
1700
1701	/* Include all data from pointers except for the fw pointer */
1702	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704			hw_dbg(hw, "EEPROM read failed\n");
1705			return -EIO;
1706		}
1707
1708		/* If the pointer seems invalid */
1709		if (pointer == 0xFFFF || pointer == 0)
1710			continue;
1711
1712		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713			hw_dbg(hw, "EEPROM read failed\n");
1714			return -EIO;
1715		}
1716
1717		if (length == 0xFFFF || length == 0)
1718			continue;
1719
1720		for (j = pointer + 1; j <= pointer + length; j++) {
1721			if (hw->eeprom.ops.read(hw, j, &word)) {
1722				hw_dbg(hw, "EEPROM read failed\n");
1723				return -EIO;
1724			}
1725			checksum += word;
1726		}
1727	}
1728
1729	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731	return (s32)checksum;
1732}
1733
1734/**
1735 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 *  @hw: pointer to hardware structure
1737 *  @checksum_val: calculated checksum
1738 *
1739 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1740 *  caller does not need checksum_val, the value can be NULL.
1741 **/
1742s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743					   u16 *checksum_val)
1744{
1745	s32 status;
1746	u16 checksum;
1747	u16 read_checksum = 0;
1748
1749	/*
1750	 * Read the first word from the EEPROM. If this times out or fails, do
1751	 * not continue or we could be in for a very long wait while every
1752	 * EEPROM read fails
1753	 */
1754	status = hw->eeprom.ops.read(hw, 0, &checksum);
1755	if (status) {
1756		hw_dbg(hw, "EEPROM read failed\n");
1757		return status;
1758	}
1759
1760	status = hw->eeprom.ops.calc_checksum(hw);
1761	if (status < 0)
1762		return status;
 
1763
1764	checksum = (u16)(status & 0xffff);
 
 
 
 
 
1765
1766	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767	if (status) {
 
 
1768		hw_dbg(hw, "EEPROM read failed\n");
1769		return status;
1770	}
1771
1772	/* Verify read checksum from EEPROM is the same as
1773	 * calculated checksum
1774	 */
1775	if (read_checksum != checksum)
1776		status = -EIO;
1777
1778	/* If the user cares, return the calculated checksum */
1779	if (checksum_val)
1780		*checksum_val = checksum;
1781
1782	return status;
1783}
1784
1785/**
1786 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 *  @hw: pointer to hardware structure
1788 **/
1789s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790{
1791	s32 status;
1792	u16 checksum;
1793
1794	/*
1795	 * Read the first word from the EEPROM. If this times out or fails, do
1796	 * not continue or we could be in for a very long wait while every
1797	 * EEPROM read fails
1798	 */
1799	status = hw->eeprom.ops.read(hw, 0, &checksum);
1800	if (status) {
 
 
 
 
 
1801		hw_dbg(hw, "EEPROM read failed\n");
1802		return status;
1803	}
1804
1805	status = hw->eeprom.ops.calc_checksum(hw);
1806	if (status < 0)
1807		return status;
1808
1809	checksum = (u16)(status & 0xffff);
 
 
 
 
 
 
 
 
1810
1811	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
 
 
 
 
 
 
 
 
 
1812
1813	return status;
1814}
1815
1816/**
1817 *  ixgbe_set_rar_generic - Set Rx address register
1818 *  @hw: pointer to hardware structure
1819 *  @index: Receive address register to write
1820 *  @addr: Address to put into receive address register
1821 *  @vmdq: VMDq "set" or "pool" index
1822 *  @enable_addr: set flag that address is active
1823 *
1824 *  Puts an ethernet address into a receive address register.
1825 **/
1826s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827			  u32 enable_addr)
1828{
1829	u32 rar_low, rar_high;
1830	u32 rar_entries = hw->mac.num_rar_entries;
1831
1832	/* Make sure we are using a valid rar index range */
1833	if (index >= rar_entries) {
1834		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835		return -EINVAL;
1836	}
1837
1838	/* setup VMDq pool selection before this RAR gets enabled */
1839	hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841	/*
1842	 * HW expects these in little endian so we reverse the byte
1843	 * order from network order (big endian) to little endian
1844	 */
1845	rar_low = ((u32)addr[0] |
1846		   ((u32)addr[1] << 8) |
1847		   ((u32)addr[2] << 16) |
1848		   ((u32)addr[3] << 24));
1849	/*
1850	 * Some parts put the VMDq setting in the extra RAH bits,
1851	 * so save everything except the lower 16 bits that hold part
1852	 * of the address and the address valid bit.
1853	 */
1854	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858	if (enable_addr != 0)
1859		rar_high |= IXGBE_RAH_AV;
1860
1861	/* Record lower 32 bits of MAC address and then make
1862	 * sure that write is flushed to hardware before writing
1863	 * the upper 16 bits and setting the valid bit.
1864	 */
1865	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866	IXGBE_WRITE_FLUSH(hw);
1867	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869	return 0;
1870}
1871
1872/**
1873 *  ixgbe_clear_rar_generic - Remove Rx address register
1874 *  @hw: pointer to hardware structure
1875 *  @index: Receive address register to write
1876 *
1877 *  Clears an ethernet address from a receive address register.
1878 **/
1879s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880{
1881	u32 rar_high;
1882	u32 rar_entries = hw->mac.num_rar_entries;
1883
1884	/* Make sure we are using a valid rar index range */
1885	if (index >= rar_entries) {
1886		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887		return -EINVAL;
1888	}
1889
1890	/*
1891	 * Some parts put the VMDq setting in the extra RAH bits,
1892	 * so save everything except the lower 16 bits that hold part
1893	 * of the address and the address valid bit.
1894	 */
1895	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898	/* Clear the address valid bit and upper 16 bits of the address
1899	 * before clearing the lower bits. This way we aren't updating
1900	 * a live filter.
1901	 */
1902	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903	IXGBE_WRITE_FLUSH(hw);
1904	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 
1905
1906	/* clear VMDq pool/queue selection for this RAR */
1907	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909	return 0;
1910}
1911
1912/**
1913 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 *  @hw: pointer to hardware structure
1915 *
1916 *  Places the MAC address in receive address register 0 and clears the rest
1917 *  of the receive address registers. Clears the multicast table. Assumes
1918 *  the receiver is in reset when the routine is called.
1919 **/
1920s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921{
1922	u32 i;
1923	u32 rar_entries = hw->mac.num_rar_entries;
1924
1925	/*
1926	 * If the current mac address is valid, assume it is a software override
1927	 * to the permanent address.
1928	 * Otherwise, use the permanent address from the eeprom.
1929	 */
1930	if (!is_valid_ether_addr(hw->mac.addr)) {
 
1931		/* Get the MAC address from the RAR0 for later reference */
1932		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935	} else {
1936		/* Setup the receive address. */
1937		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941	}
1942
1943	/*  clear VMDq pool/queue selection for RAR 0 */
1944	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
 
 
 
1946	hw->addr_ctrl.overflow_promisc = 0;
1947
1948	hw->addr_ctrl.rar_used_count = 1;
1949
1950	/* Zero out the other receive addresses. */
1951	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952	for (i = 1; i < rar_entries; i++) {
1953		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955	}
1956
1957	/* Clear the MTA */
1958	hw->addr_ctrl.mta_in_use = 0;
1959	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961	hw_dbg(hw, " Clearing MTA\n");
1962	for (i = 0; i < hw->mac.mcft_size; i++)
1963		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965	if (hw->mac.ops.init_uta_tables)
1966		hw->mac.ops.init_uta_tables(hw);
1967
1968	return 0;
1969}
1970
1971/**
1972 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 *  @hw: pointer to hardware structure
1974 *  @mc_addr: the multicast address
1975 *
1976 *  Extracts the 12 bits, from a multicast address, to determine which
1977 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 *  incoming rx multicast addresses, to determine the bit-vector to check in
1979 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 *  to mc_filter_type.
1982 **/
1983static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984{
1985	u32 vector = 0;
1986
1987	switch (hw->mac.mc_filter_type) {
1988	case 0:   /* use bits [47:36] of the address */
1989		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990		break;
1991	case 1:   /* use bits [46:35] of the address */
1992		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993		break;
1994	case 2:   /* use bits [45:34] of the address */
1995		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996		break;
1997	case 3:   /* use bits [43:32] of the address */
1998		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999		break;
2000	default:  /* Invalid mc_filter_type */
2001		hw_dbg(hw, "MC filter type param set incorrectly\n");
2002		break;
2003	}
2004
2005	/* vector can only be 12-bits or boundary will be exceeded */
2006	vector &= 0xFFF;
2007	return vector;
2008}
2009
2010/**
2011 *  ixgbe_set_mta - Set bit-vector in multicast table
2012 *  @hw: pointer to hardware structure
2013 *  @mc_addr: Multicast address
2014 *
2015 *  Sets the bit-vector in the multicast table.
2016 **/
2017static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018{
2019	u32 vector;
2020	u32 vector_bit;
2021	u32 vector_reg;
2022
2023	hw->addr_ctrl.mta_in_use++;
2024
2025	vector = ixgbe_mta_vector(hw, mc_addr);
2026	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028	/*
2029	 * The MTA is a register array of 128 32-bit registers. It is treated
2030	 * like an array of 4096 bits.  We want to set bit
2031	 * BitArray[vector_value]. So we figure out what register the bit is
2032	 * in, read it, OR in the new bit, then write back the new value.  The
2033	 * register is determined by the upper 7 bits of the vector value and
2034	 * the bit within that register are determined by the lower 5 bits of
2035	 * the value.
2036	 */
2037	vector_reg = (vector >> 5) & 0x7F;
2038	vector_bit = vector & 0x1F;
2039	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040}
2041
2042/**
2043 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 *  @hw: pointer to hardware structure
2045 *  @netdev: pointer to net device structure
2046 *
2047 *  The given list replaces any existing list. Clears the MC addrs from receive
2048 *  address registers and the multicast table. Uses unused receive address
2049 *  registers for the first multicast addresses, and hashes the rest into the
2050 *  multicast table.
2051 **/
2052s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053				      struct net_device *netdev)
2054{
2055	struct netdev_hw_addr *ha;
2056	u32 i;
2057
2058	/*
2059	 * Set the new number of MC addresses that we are being requested to
2060	 * use.
2061	 */
2062	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063	hw->addr_ctrl.mta_in_use = 0;
2064
2065	/* Clear mta_shadow */
2066	hw_dbg(hw, " Clearing MTA\n");
2067	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069	/* Update mta shadow */
2070	netdev_for_each_mc_addr(ha, netdev) {
2071		hw_dbg(hw, " Adding the multicast addresses:\n");
2072		ixgbe_set_mta(hw, ha->addr);
2073	}
2074
2075	/* Enable mta */
2076	for (i = 0; i < hw->mac.mcft_size; i++)
2077		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078				      hw->mac.mta_shadow[i]);
2079
2080	if (hw->addr_ctrl.mta_in_use > 0)
2081		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085	return 0;
2086}
2087
2088/**
2089 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 *  @hw: pointer to hardware structure
2091 *
2092 *  Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
2094s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095{
2096	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098	if (a->mta_in_use > 0)
2099		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100				hw->mac.mc_filter_type);
2101
2102	return 0;
2103}
2104
2105/**
2106 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 *  @hw: pointer to hardware structure
2108 *
2109 *  Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
2111s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112{
2113	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115	if (a->mta_in_use > 0)
2116		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118	return 0;
2119}
2120
2121/**
2122 *  ixgbe_fc_enable_generic - Enable flow control
2123 *  @hw: pointer to hardware structure
2124 *
2125 *  Enable flow control according to the current settings.
2126 **/
2127s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128{
 
2129	u32 mflcn_reg, fccfg_reg;
2130	u32 reg;
2131	u32 fcrtl, fcrth;
2132	int i;
2133
2134	/* Validate the water mark configuration. */
2135	if (!hw->fc.pause_time)
2136		return -EINVAL;
2137
2138	/* Low water mark of zero causes XOFF floods */
2139	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141		    hw->fc.high_water[i]) {
2142			if (!hw->fc.low_water[i] ||
2143			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144				hw_dbg(hw, "Invalid water mark configuration\n");
2145				return -EINVAL;
2146			}
2147		}
2148	}
2149
2150	/* Negotiate the fc mode to use */
2151	hw->mac.ops.fc_autoneg(hw);
2152
2153	/* Disable any previous flow control settings */
2154	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160	/*
2161	 * The possible values of fc.current_mode are:
2162	 * 0: Flow control is completely disabled
2163	 * 1: Rx flow control is enabled (we can receive pause frames,
2164	 *    but not send pause frames).
2165	 * 2: Tx flow control is enabled (we can send pause frames but
2166	 *    we do not support receiving pause frames).
2167	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168	 * other: Invalid.
2169	 */
2170	switch (hw->fc.current_mode) {
2171	case ixgbe_fc_none:
2172		/*
2173		 * Flow control is disabled by software override or autoneg.
2174		 * The code below will actually disable it in the HW.
2175		 */
2176		break;
2177	case ixgbe_fc_rx_pause:
2178		/*
2179		 * Rx Flow control is enabled and Tx Flow control is
2180		 * disabled by software override. Since there really
2181		 * isn't a way to advertise that we are capable of RX
2182		 * Pause ONLY, we will advertise that we support both
2183		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2184		 * disable the adapter's ability to send PAUSE frames.
2185		 */
2186		mflcn_reg |= IXGBE_MFLCN_RFCE;
2187		break;
2188	case ixgbe_fc_tx_pause:
2189		/*
2190		 * Tx Flow control is enabled, and Rx Flow control is
2191		 * disabled by software override.
2192		 */
2193		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194		break;
2195	case ixgbe_fc_full:
2196		/* Flow control (both Rx and Tx) is enabled by SW override. */
2197		mflcn_reg |= IXGBE_MFLCN_RFCE;
2198		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199		break;
2200	default:
2201		hw_dbg(hw, "Flow control param set incorrectly\n");
2202		return -EIO;
 
 
2203	}
2204
2205	/* Set 802.3x based flow control settings. */
2206	mflcn_reg |= IXGBE_MFLCN_DPF;
2207	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
 
 
2210	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213		    hw->fc.high_water[i]) {
2214			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217		} else {
2218			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219			/*
2220			 * In order to prevent Tx hangs when the internal Tx
2221			 * switch is enabled we must set the high water mark
2222			 * to the Rx packet buffer size - 24KB.  This allows
2223			 * the Tx switch to function even under heavy Rx
2224			 * workloads.
2225			 */
2226			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227		}
2228
2229		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230	}
2231
2232	/* Configure pause time (2 TCs per register) */
2233	reg = hw->fc.pause_time * 0x00010001U;
2234	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239	return 0;
 
2240}
2241
2242/**
2243 *  ixgbe_negotiate_fc - Negotiate flow control
2244 *  @hw: pointer to hardware structure
2245 *  @adv_reg: flow control advertised settings
2246 *  @lp_reg: link partner's flow control settings
2247 *  @adv_sym: symmetric pause bit in advertisement
2248 *  @adv_asm: asymmetric pause bit in advertisement
2249 *  @lp_sym: symmetric pause bit in link partner advertisement
2250 *  @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 *  Find the intersection between advertised settings and link partner's
2253 *  advertised settings
2254 **/
2255s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257{
2258	if ((!(adv_reg)) ||  (!(lp_reg)))
2259		return -EINVAL;
2260
2261	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262		/*
2263		 * Now we need to check if the user selected Rx ONLY
2264		 * of pause frames.  In this case, we had to advertise
2265		 * FULL flow control because we could not advertise RX
2266		 * ONLY. Hence, we must now check to see if we need to
2267		 * turn OFF the TRANSMISSION of PAUSE frames.
2268		 */
2269		if (hw->fc.requested_mode == ixgbe_fc_full) {
2270			hw->fc.current_mode = ixgbe_fc_full;
2271			hw_dbg(hw, "Flow Control = FULL.\n");
2272		} else {
2273			hw->fc.current_mode = ixgbe_fc_rx_pause;
2274			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275		}
2276	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278		hw->fc.current_mode = ixgbe_fc_tx_pause;
2279		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282		hw->fc.current_mode = ixgbe_fc_rx_pause;
2283		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284	} else {
2285		hw->fc.current_mode = ixgbe_fc_none;
2286		hw_dbg(hw, "Flow Control = NONE.\n");
2287	}
2288	return 0;
2289}
2290
2291/**
2292 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 *  @hw: pointer to hardware structure
2294 *
2295 *  Enable flow control according on 1 gig fiber.
2296 **/
2297static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298{
2299	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300	s32 ret_val;
2301
2302	/*
2303	 * On multispeed fiber at 1g, bail out if
2304	 * - link is up but AN did not complete, or if
2305	 * - link is up and AN completed but timed out
2306	 */
2307
2308	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311		return -EIO;
2312
2313	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318			       IXGBE_PCS1GANA_ASM_PAUSE,
2319			       IXGBE_PCS1GANA_SYM_PAUSE,
2320			       IXGBE_PCS1GANA_ASM_PAUSE);
2321
 
2322	return ret_val;
2323}
2324
2325/**
2326 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Enable flow control according to IEEE clause 37.
2330 **/
2331static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332{
2333	u32 links2, anlp1_reg, autoc_reg, links;
2334	s32 ret_val;
2335
2336	/*
2337	 * On backplane, bail out if
2338	 * - backplane autoneg was not completed, or if
2339	 * - we are 82599 and link partner is not AN enabled
2340	 */
2341	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343		return -EIO;
2344
2345	if (hw->mac.type == ixgbe_mac_82599EB) {
2346		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348			return -EIO;
2349	}
2350	/*
2351	 * Read the 10g AN autoc and LP ability registers and resolve
2352	 * local flow control settings accordingly
2353	 */
2354	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
 
2361	return ret_val;
2362}
2363
2364/**
2365 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 *  @hw: pointer to hardware structure
2367 *
2368 *  Enable flow control according to IEEE clause 37.
2369 **/
2370static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371{
2372	u16 technology_ability_reg = 0;
2373	u16 lp_technology_ability_reg = 0;
2374
2375	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376			     MDIO_MMD_AN,
2377			     &technology_ability_reg);
2378	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379			     MDIO_MMD_AN,
2380			     &lp_technology_ability_reg);
2381
2382	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383				  (u32)lp_technology_ability_reg,
2384				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386}
2387
2388/**
2389 *  ixgbe_fc_autoneg - Configure flow control
2390 *  @hw: pointer to hardware structure
2391 *
2392 *  Compares our advertised flow control capabilities to those advertised by
2393 *  our link partner, and determines the proper flow control mode to use.
2394 **/
2395void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396{
 
2397	ixgbe_link_speed speed;
2398	s32 ret_val = -EIO;
2399	bool link_up;
2400
2401	/*
2402	 * AN should have completed when the cable was plugged in.
2403	 * Look for reasons to bail out.  Bail out if:
2404	 * - FC autoneg is disabled, or if
2405	 * - link is not up.
2406	 *
2407	 * Since we're being called from an LSC, link is already known to be up.
2408	 * So use link_up_wait_to_complete=false.
2409	 */
2410	if (hw->fc.disable_fc_autoneg)
2411		goto out;
2412
2413	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414	if (!link_up)
2415		goto out;
2416
2417	switch (hw->phy.media_type) {
2418	/* Autoneg flow control on fiber adapters */
2419	case ixgbe_media_type_fiber:
2420		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421			ret_val = ixgbe_fc_autoneg_fiber(hw);
2422		break;
2423
2424	/* Autoneg flow control on backplane adapters */
2425	case ixgbe_media_type_backplane:
2426		ret_val = ixgbe_fc_autoneg_backplane(hw);
2427		break;
2428
2429	/* Autoneg flow control on copper adapters */
2430	case ixgbe_media_type_copper:
2431		if (ixgbe_device_supports_autoneg_fc(hw))
2432			ret_val = ixgbe_fc_autoneg_copper(hw);
2433		break;
2434
2435	default:
2436		break;
2437	}
2438
2439out:
2440	if (ret_val == 0) {
2441		hw->fc.fc_was_autonegged = true;
2442	} else {
2443		hw->fc.fc_was_autonegged = false;
2444		hw->fc.current_mode = hw->fc.requested_mode;
2445	}
2446}
2447
2448/**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 *  Add 10% to specified maximum and return the number of times to poll for
2455 *  completion timeout, in units of 100 microsec.  Never return less than
2456 *  800 = 80 millisec.
2457 **/
2458static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459{
2460	s16 devctl2;
2461	u32 pollcnt;
2462
2463	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466	switch (devctl2) {
2467	case IXGBE_PCIDEVCTRL2_65_130ms:
2468		 pollcnt = 1300;         /* 130 millisec */
2469		break;
2470	case IXGBE_PCIDEVCTRL2_260_520ms:
2471		pollcnt = 5200;         /* 520 millisec */
2472		break;
2473	case IXGBE_PCIDEVCTRL2_1_2s:
2474		pollcnt = 20000;        /* 2 sec */
2475		break;
2476	case IXGBE_PCIDEVCTRL2_4_8s:
2477		pollcnt = 80000;        /* 8 sec */
2478		break;
2479	case IXGBE_PCIDEVCTRL2_17_34s:
2480		pollcnt = 34000;        /* 34 sec */
2481		break;
2482	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2483	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2484	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2485	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2486	default:
2487		pollcnt = 800;          /* 80 millisec minimum */
2488		break;
2489	}
2490
2491	/* add 10% to spec maximum */
2492	return (pollcnt * 11) / 10;
2493}
2494
2495/**
2496 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Disables PCI-Express primary access and verifies there are no pending
2500 *  requests. -EALREADY is returned if primary disable
2501 *  bit hasn't caused the primary requests to be disabled, else 0
2502 *  is returned signifying primary requests disabled.
2503 **/
2504static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505{
2506	u32 i, poll;
 
 
2507	u16 value;
2508
2509	/* Always set this bit to ensure any future transactions are blocked */
2510	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512	/* Poll for bit to read as set */
2513	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515			break;
2516		usleep_range(100, 120);
2517	}
2518	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520		goto gio_disable_fail;
2521	}
2522
2523	/* Exit if primary requests are blocked */
2524	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525	    ixgbe_removed(hw->hw_addr))
2526		return 0;
2527
2528	/* Poll for primary request bit to clear */
2529	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530		udelay(100);
2531		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532			return 0;
2533	}
2534
2535	/*
2536	 * Two consecutive resets are required via CTRL.RST per datasheet
2537	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2538	 * of this need.  The first reset prevents new primary requests from
2539	 * being issued by our device.  We then must wait 1usec or more for any
2540	 * remaining completions from the PCIe bus to trickle in, and then reset
2541	 * again to clear out any effects they may have had on our device.
2542	 */
2543	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544gio_disable_fail:
2545	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547	if (hw->mac.type >= ixgbe_mac_X550)
2548		return 0;
2549
2550	/*
2551	 * Before proceeding, make sure that the PCIe block does not have
2552	 * transactions pending.
2553	 */
2554	poll = ixgbe_pcie_timeout_poll(hw);
2555	for (i = 0; i < poll; i++) {
2556		udelay(100);
2557		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558		if (ixgbe_removed(hw->hw_addr))
2559			return 0;
2560		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561			return 0;
2562	}
2563
2564	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565	return -EALREADY;
 
 
 
2566}
2567
2568/**
2569 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 *  @hw: pointer to hardware structure
2571 *  @mask: Mask to specify which semaphore to acquire
2572 *
2573 *  Acquires the SWFW semaphore through the GSSR register for the specified
2574 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577{
2578	u32 gssr = 0;
2579	u32 swmask = mask;
2580	u32 fwmask = mask << 5;
2581	u32 timeout = 200;
2582	u32 i;
2583
2584	for (i = 0; i < timeout; i++) {
2585		/*
2586		 * SW NVM semaphore bit is used for access to all
2587		 * SW_FW_SYNC bits (not just NVM)
2588		 */
2589		if (ixgbe_get_eeprom_semaphore(hw))
2590			return -EBUSY;
2591
2592		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593		if (!(gssr & (fwmask | swmask))) {
2594			gssr |= swmask;
2595			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596			ixgbe_release_eeprom_semaphore(hw);
2597			return 0;
2598		} else {
2599			/* Resource is currently in use by FW or SW */
2600			ixgbe_release_eeprom_semaphore(hw);
2601			usleep_range(5000, 10000);
2602		}
 
 
 
 
 
2603	}
2604
2605	/* If time expired clear the bits holding the lock and retry */
2606	if (gssr & (fwmask | swmask))
2607		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609	usleep_range(5000, 10000);
2610	return -EBUSY;
2611}
2612
2613/**
2614 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2615 *  @hw: pointer to hardware structure
2616 *  @mask: Mask to specify which semaphore to release
2617 *
2618 *  Releases the SWFW semaphore through the GSSR register for the specified
2619 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
2621void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622{
2623	u32 gssr;
2624	u32 swmask = mask;
2625
2626	ixgbe_get_eeprom_semaphore(hw);
2627
2628	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629	gssr &= ~swmask;
2630	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632	ixgbe_release_eeprom_semaphore(hw);
2633}
2634
2635/**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2640 *	    true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
2644s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645{
2646	*locked = false;
2647	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648	return 0;
2649}
2650
2651/**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 *	    previous read.
2657 **/
2658s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659{
2660	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661	return 0;
2662}
2663
2664/**
2665 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 *  @hw: pointer to hardware structure
2667 *
2668 *  Stops the receive data path and waits for the HW to internally
2669 *  empty the Rx security block.
2670 **/
2671s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672{
2673#define IXGBE_MAX_SECRX_POLL 40
2674	int i;
2675	int secrxreg;
2676
2677	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683			break;
2684		else
2685			/* Use interrupt-safe sleep just in case */
2686			udelay(1000);
2687	}
2688
2689	/* For informational purposes only */
2690	if (i >= IXGBE_MAX_SECRX_POLL)
2691		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
 
2692
2693	return 0;
2694
2695}
2696
2697/**
2698 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 *  @hw: pointer to hardware structure
2700 *
2701 *  Enables the receive data path
2702 **/
2703s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704{
2705	u32 secrxreg;
2706
2707	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710	IXGBE_WRITE_FLUSH(hw);
2711
2712	return 0;
2713}
2714
2715/**
2716 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 *  @hw: pointer to hardware structure
2718 *  @regval: register value to write to RXCTRL
2719 *
2720 *  Enables the Rx DMA unit
2721 **/
2722s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723{
2724	if (regval & IXGBE_RXCTRL_RXEN)
2725		hw->mac.ops.enable_rx(hw);
2726	else
2727		hw->mac.ops.disable_rx(hw);
2728
2729	return 0;
2730}
2731
2732/**
2733 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2734 *  @hw: pointer to hardware structure
2735 *  @index: led number to blink
2736 **/
2737s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738{
2739	ixgbe_link_speed speed = 0;
2740	bool link_up = false;
2741	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2742	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2743	bool locked = false;
2744	s32 ret_val;
2745
2746	if (index > 3)
2747		return -EINVAL;
2748
2749	/*
2750	 * Link must be up to auto-blink the LEDs;
2751	 * Force it if link is down.
2752	 */
2753	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755	if (!link_up) {
2756		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757		if (ret_val)
2758			return ret_val;
2759
2760		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761		autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764		if (ret_val)
2765			return ret_val;
2766
2767		IXGBE_WRITE_FLUSH(hw);
2768
2769		usleep_range(10000, 20000);
2770	}
2771
2772	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773	led_reg |= IXGBE_LED_BLINK(index);
2774	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775	IXGBE_WRITE_FLUSH(hw);
2776
2777	return 0;
2778}
2779
2780/**
2781 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 *  @hw: pointer to hardware structure
2783 *  @index: led number to stop blinking
2784 **/
2785s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786{
2787	u32 autoc_reg = 0;
2788	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2789	bool locked = false;
2790	s32 ret_val;
2791
2792	if (index > 3)
2793		return -EINVAL;
2794
2795	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796	if (ret_val)
2797		return ret_val;
2798
2799	autoc_reg &= ~IXGBE_AUTOC_FLU;
2800	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803	if (ret_val)
2804		return ret_val;
2805
2806	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807	led_reg &= ~IXGBE_LED_BLINK(index);
2808	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810	IXGBE_WRITE_FLUSH(hw);
2811
2812	return 0;
2813}
2814
2815/**
2816 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 *  @hw: pointer to hardware structure
2818 *  @san_mac_offset: SAN MAC address offset
2819 *
2820 *  This function will read the EEPROM location for the SAN MAC address
2821 *  pointer, and returns the value at that location.  This is used in both
2822 *  get and set mac_addr routines.
2823 **/
2824static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825					u16 *san_mac_offset)
2826{
2827	s32 ret_val;
2828
2829	/*
2830	 * First read the EEPROM pointer to see if the MAC addresses are
2831	 * available.
2832	 */
2833	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834				      san_mac_offset);
2835	if (ret_val)
2836		hw_err(hw, "eeprom read at offset %d failed\n",
2837		       IXGBE_SAN_MAC_ADDR_PTR);
2838
2839	return ret_val;
2840}
2841
2842/**
2843 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 *  @hw: pointer to hardware structure
2845 *  @san_mac_addr: SAN MAC address
2846 *
2847 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2848 *  per-port, so set_lan_id() must be called before reading the addresses.
2849 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 *  upon for non-SFP connections, so we must call it here.
2851 **/
2852s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853{
2854	u16 san_mac_data, san_mac_offset;
2855	u8 i;
2856	s32 ret_val;
2857
2858	/*
2859	 * First read the EEPROM pointer to see if the MAC addresses are
2860	 * available.  If they're not, no point in calling set_lan_id() here.
2861	 */
2862	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
 
 
 
 
 
 
 
2864
2865		goto san_mac_addr_clr;
 
2866
2867	/* make sure we know which port we need to program */
2868	hw->mac.ops.set_lan_id(hw);
2869	/* apply the port offset to the address offset */
2870	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872	for (i = 0; i < 3; i++) {
2873		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874					      &san_mac_data);
2875		if (ret_val) {
2876			hw_err(hw, "eeprom read at offset %d failed\n",
2877			       san_mac_offset);
2878			goto san_mac_addr_clr;
2879		}
2880		san_mac_addr[i * 2] = (u8)(san_mac_data);
2881		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882		san_mac_offset++;
2883	}
2884	return 0;
2885
2886san_mac_addr_clr:
2887	/* No addresses available in this EEPROM.  It's not necessarily an
2888	 * error though, so just wipe the local address and return.
2889	 */
2890	for (i = 0; i < 6; i++)
2891		san_mac_addr[i] = 0xFF;
2892	return ret_val;
2893}
2894
2895/**
2896 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 *  @hw: pointer to hardware structure
2898 *
2899 *  Read PCIe configuration space, and get the MSI-X vector count from
2900 *  the capabilities table.
2901 **/
2902u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903{
2904	u16 msix_count;
 
2905	u16 max_msix_count;
2906	u16 pcie_offset;
2907
2908	switch (hw->mac.type) {
2909	case ixgbe_mac_82598EB:
2910		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912		break;
2913	case ixgbe_mac_82599EB:
2914	case ixgbe_mac_X540:
2915	case ixgbe_mac_X550:
2916	case ixgbe_mac_X550EM_x:
2917	case ixgbe_mac_x550em_a:
2918		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920		break;
2921	default:
2922		return 1;
2923	}
2924
2925	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926	if (ixgbe_removed(hw->hw_addr))
2927		msix_count = 0;
2928	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930	/* MSI-X count is zero-based in HW */
2931	msix_count++;
2932
2933	if (msix_count > max_msix_count)
2934		msix_count = max_msix_count;
2935
2936	return msix_count;
2937}
2938
2939/**
2940 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 *  @hw: pointer to hardware struct
2942 *  @rar: receive address register index to disassociate
2943 *  @vmdq: VMDq pool index to remove from the rar
2944 **/
2945s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946{
2947	u32 mpsar_lo, mpsar_hi;
2948	u32 rar_entries = hw->mac.num_rar_entries;
2949
2950	/* Make sure we are using a valid rar index range */
2951	if (rar >= rar_entries) {
2952		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953		return -EINVAL;
2954	}
2955
2956	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959	if (ixgbe_removed(hw->hw_addr))
2960		return 0;
2961
2962	if (!mpsar_lo && !mpsar_hi)
2963		return 0;
2964
2965	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966		if (mpsar_lo) {
2967			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968			mpsar_lo = 0;
2969		}
2970		if (mpsar_hi) {
2971			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972			mpsar_hi = 0;
2973		}
2974	} else if (vmdq < 32) {
2975		mpsar_lo &= ~BIT(vmdq);
2976		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977	} else {
2978		mpsar_hi &= ~BIT(vmdq - 32);
2979		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980	}
2981
2982	/* was that the last pool using this rar? */
2983	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2985		hw->mac.ops.clear_rar(hw, rar);
2986
2987	return 0;
2988}
2989
2990/**
2991 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 *  @hw: pointer to hardware struct
2993 *  @rar: receive address register index to associate with a VMDq index
2994 *  @vmdq: VMDq pool index
2995 **/
2996s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997{
2998	u32 mpsar;
2999	u32 rar_entries = hw->mac.num_rar_entries;
3000
3001	/* Make sure we are using a valid rar index range */
3002	if (rar >= rar_entries) {
3003		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004		return -EINVAL;
3005	}
3006
3007	if (vmdq < 32) {
3008		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009		mpsar |= BIT(vmdq);
3010		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011	} else {
3012		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013		mpsar |= BIT(vmdq - 32);
3014		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015	}
3016	return 0;
3017}
3018
3019/**
3020 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 *  @hw: pointer to hardware struct
3022 *  @vmdq: VMDq pool index
3023 *
3024 *  This function should only be involved in the IOV mode.
3025 *  In IOV mode, Default pool is next pool after the number of
3026 *  VFs advertized and not 0.
3027 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3028 **/
3029s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030{
3031	u32 rar = hw->mac.san_mac_rar_index;
3032
3033	if (vmdq < 32) {
3034		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036	} else {
3037		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039	}
3040
3041	return 0;
3042}
3043
3044/**
3045 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 *  @hw: pointer to hardware structure
3047 **/
3048s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049{
3050	int i;
3051
3052	for (i = 0; i < 128; i++)
3053		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055	return 0;
3056}
3057
3058/**
3059 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 *  @hw: pointer to hardware structure
3061 *  @vlan: VLAN id to write to VLAN filter
3062 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 *		  vlanid not found
3064 *
3065 *  return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
3068static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069{
3070	s32 regindex, first_empty_slot;
3071	u32 bits;
 
3072
3073	/* short cut the special case */
3074	if (vlan == 0)
3075		return 0;
3076
3077	/* if vlvf_bypass is set we don't want to use an empty slot, we
3078	 * will simply bypass the VLVF if there are no entries present in the
3079	 * VLVF that contain our VLAN
3080	 */
3081	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083	/* add VLAN enable bit for comparison */
3084	vlan |= IXGBE_VLVF_VIEN;
3085
3086	/* Search for the vlan id in the VLVF entries. Save off the first empty
3087	 * slot found along the way.
3088	 *
3089	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090	 */
3091	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093		if (bits == vlan)
3094			return regindex;
3095		if (!first_empty_slot && !bits)
3096			first_empty_slot = regindex;
 
 
3097	}
3098
3099	/* If we are here then we didn't find the VLAN.  Return first empty
3100	 * slot we found during our search, else error.
3101	 */
3102	if (!first_empty_slot)
3103		hw_dbg(hw, "No space in VLVF.\n");
 
 
 
 
 
 
 
 
3104
3105	return first_empty_slot ? : -ENOSPC;
3106}
3107
3108/**
3109 *  ixgbe_set_vfta_generic - Set VLAN filter table
3110 *  @hw: pointer to hardware structure
3111 *  @vlan: VLAN id to write to VLAN filter
3112 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 *  Turn on/off specified VLAN in the VLAN filter table.
3117 **/
3118s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119			   bool vlan_on, bool vlvf_bypass)
3120{
3121	u32 regidx, vfta_delta, vfta, bits;
3122	s32 vlvf_index;
 
 
 
 
 
3123
3124	if ((vlan > 4095) || (vind > 63))
3125		return -EINVAL;
3126
3127	/*
3128	 * this is a 2 part operation - first the VFTA, then the
3129	 * VLVF and VLVFB if VT Mode is set
3130	 * We don't write the VFTA until we know the VLVF part succeeded.
3131	 */
3132
3133	/* Part 1
3134	 * The VFTA is a bitstring made up of 128 32-bit registers
3135	 * that enable the particular VLAN id, much like the MTA:
3136	 *    bits[11-5]: which register
3137	 *    bits[4-0]:  which bit in the register
3138	 */
3139	regidx = vlan / 32;
3140	vfta_delta = BIT(vlan % 32);
3141	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143	/* vfta_delta represents the difference between the current value
3144	 * of vfta and the value we want in the register.  Since the diff
3145	 * is an XOR mask we can just update vfta using an XOR.
3146	 */
3147	vfta_delta &= vlan_on ? ~vfta : vfta;
3148	vfta ^= vfta_delta;
 
 
 
 
 
 
3149
3150	/* Part 2
3151	 * If VT Mode is set
3152	 *   Either vlan_on
3153	 *     make sure the vlan is in VLVF
3154	 *     set the vind bit in the matching VLVFB
3155	 *   Or !vlan_on
3156	 *     clear the pool bit and possibly the vind
3157	 */
3158	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159		goto vfta_update;
3160
3161	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162	if (vlvf_index < 0) {
3163		if (vlvf_bypass)
3164			goto vfta_update;
3165		return vlvf_index;
3166	}
3167
3168	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170	/* set the pool bit */
3171	bits |= BIT(vind % 32);
3172	if (vlan_on)
3173		goto vlvf_update;
3174
3175	/* clear the pool bit */
3176	bits ^= BIT(vind % 32);
3177
3178	if (!bits &&
3179	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180		/* Clear VFTA first, then disable VLVF.  Otherwise
3181		 * we run the risk of stray packets leaking into
3182		 * the PF via the default pool
3183		 */
3184		if (vfta_delta)
3185			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187		/* disable VLVF and clear remaining bit from pool */
3188		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190
3191		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	}
3193
3194	/* If there are still bits set in the VLVFB registers
3195	 * for the VLAN ID indicated we need to see if the
3196	 * caller is requesting that we clear the VFTA entry bit.
3197	 * If the caller has requested that we clear the VFTA
3198	 * entry bit but there are still pools/VFs using this VLAN
3199	 * ID entry then ignore the request.  We're not worried
3200	 * about the case where we're turning the VFTA VLAN ID
3201	 * entry bit on, only when requested to turn it off as
3202	 * there may be multiple pools and/or VFs using the
3203	 * VLAN ID entry.  In that case we cannot clear the
3204	 * VFTA bit until all pools/VFs using that VLAN ID have also
3205	 * been cleared.  This will be indicated by "bits" being
3206	 * zero.
3207	 */
3208	vfta_delta = 0;
3209
3210vlvf_update:
3211	/* record pool change and enable VLAN ID if not already enabled */
3212	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215vfta_update:
3216	/* Update VFTA now that we are ready for traffic */
3217	if (vfta_delta)
3218		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220	return 0;
3221}
3222
3223/**
3224 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 *  @hw: pointer to hardware structure
3226 *
3227 *  Clears the VLAN filter table, and the VMDq index associated with the filter
3228 **/
3229s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230{
3231	u32 offset;
3232
3233	for (offset = 0; offset < hw->mac.vft_size; offset++)
3234		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240	}
3241
3242	return 0;
3243}
3244
3245/**
3246 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 *  @hw: pointer to hardware structure
3248 *
3249 *  Contains the logic to identify if we need to verify link for the
3250 *  crosstalk fix
3251 **/
3252static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253{
3254	/* Does FW say we need the fix */
3255	if (!hw->need_crosstalk_fix)
3256		return false;
3257
3258	/* Only consider SFP+ PHYs i.e. media type fiber */
3259	switch (hw->mac.ops.get_media_type(hw)) {
3260	case ixgbe_media_type_fiber:
3261	case ixgbe_media_type_fiber_qsfp:
3262		break;
3263	default:
3264		return false;
3265	}
3266
3267	return true;
3268}
3269
3270/**
3271 *  ixgbe_check_mac_link_generic - Determine link and speed status
3272 *  @hw: pointer to hardware structure
3273 *  @speed: pointer to link speed
3274 *  @link_up: true when link is up
3275 *  @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 *  Reads the links register to determine if link is up and the current speed
3278 **/
3279s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280				 bool *link_up, bool link_up_wait_to_complete)
3281{
3282	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283	u32 links_reg, links_orig;
3284	u32 i;
3285
3286	/* If Crosstalk fix enabled do the sanity check of making sure
3287	 * the SFP+ cage is full.
3288	 */
3289	if (crosstalk_fix_active) {
3290		u32 sfp_cage_full;
3291
3292		switch (hw->mac.type) {
3293		case ixgbe_mac_82599EB:
3294			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295					IXGBE_ESDP_SDP2;
3296			break;
3297		case ixgbe_mac_X550EM_x:
3298		case ixgbe_mac_x550em_a:
3299			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300					IXGBE_ESDP_SDP0;
3301			break;
3302		default:
3303			/* sanity check - No SFP+ devices here */
3304			sfp_cage_full = false;
3305			break;
3306		}
3307
3308		if (!sfp_cage_full) {
3309			*link_up = false;
3310			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3311			return 0;
3312		}
3313	}
3314
3315	/* clear the old state */
3316	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317
3318	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320	if (links_orig != links_reg) {
3321		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322		       links_orig, links_reg);
3323	}
3324
3325	if (link_up_wait_to_complete) {
3326		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327			if (links_reg & IXGBE_LINKS_UP) {
3328				*link_up = true;
3329				break;
3330			} else {
3331				*link_up = false;
3332			}
3333			msleep(100);
3334			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335		}
3336	} else {
3337		if (links_reg & IXGBE_LINKS_UP) {
3338			if (crosstalk_fix_active) {
3339				/* Check the link state again after a delay
3340				 * to filter out spurious link up
3341				 * notifications.
3342				 */
3343				mdelay(5);
3344				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345				if (!(links_reg & IXGBE_LINKS_UP)) {
3346					*link_up = false;
3347					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3348					return 0;
3349				}
3350			}
3351			*link_up = true;
3352		} else {
3353			*link_up = false;
3354		}
3355	}
3356
3357	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358	case IXGBE_LINKS_SPEED_10G_82599:
3359		if ((hw->mac.type >= ixgbe_mac_X550) &&
3360		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362		else
3363			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3364		break;
3365	case IXGBE_LINKS_SPEED_1G_82599:
3366		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3367		break;
3368	case IXGBE_LINKS_SPEED_100_82599:
3369		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3372		else
3373			*speed = IXGBE_LINK_SPEED_100_FULL;
3374		break;
3375	case IXGBE_LINKS_SPEED_10_X550EM_A:
3376		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3377		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379			*speed = IXGBE_LINK_SPEED_10_FULL;
3380		}
3381		break;
3382	default:
3383		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3384	}
3385
3386	return 0;
3387}
3388
3389/**
3390 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391 *  the EEPROM
3392 *  @hw: pointer to hardware structure
3393 *  @wwnn_prefix: the alternative WWNN prefix
3394 *  @wwpn_prefix: the alternative WWPN prefix
3395 *
3396 *  This function will read the EEPROM from the alternative SAN MAC address
3397 *  block to check the support for the alternative WWNN/WWPN prefix support.
3398 **/
3399s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400					u16 *wwpn_prefix)
3401{
3402	u16 offset, caps;
3403	u16 alt_san_mac_blk_offset;
3404
3405	/* clear output first */
3406	*wwnn_prefix = 0xFFFF;
3407	*wwpn_prefix = 0xFFFF;
3408
3409	/* check if alternative SAN MAC is supported */
3410	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412		goto wwn_prefix_err;
3413
3414	if ((alt_san_mac_blk_offset == 0) ||
3415	    (alt_san_mac_blk_offset == 0xFFFF))
3416		return 0;
3417
3418	/* check capability in alternative san mac address block */
3419	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420	if (hw->eeprom.ops.read(hw, offset, &caps))
3421		goto wwn_prefix_err;
3422	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423		return 0;
3424
3425	/* get the corresponding prefix for WWNN/WWPN */
3426	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429
3430	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432		goto wwn_prefix_err;
3433
3434	return 0;
3435
3436wwn_prefix_err:
3437	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438	return 0;
3439}
3440
3441/**
3442 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 *  @hw: pointer to hardware structure
3444 *  @enable: enable or disable switch for MAC anti-spoofing
3445 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 *
3447 **/
3448void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449{
3450	int vf_target_reg = vf >> 3;
3451	int vf_target_shift = vf % 8;
3452	u32 pfvfspoof;
 
3453
3454	if (hw->mac.type == ixgbe_mac_82598EB)
3455		return;
3456
3457	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458	if (enable)
3459		pfvfspoof |= BIT(vf_target_shift);
3460	else
3461		pfvfspoof &= ~BIT(vf_target_shift);
3462	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463}
3464
3465/**
3466 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 *  @hw: pointer to hardware structure
3468 *  @enable: enable or disable switch for VLAN anti-spoofing
3469 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 *
3471 **/
3472void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473{
3474	int vf_target_reg = vf >> 3;
3475	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476	u32 pfvfspoof;
3477
3478	if (hw->mac.type == ixgbe_mac_82598EB)
3479		return;
3480
3481	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482	if (enable)
3483		pfvfspoof |= BIT(vf_target_shift);
3484	else
3485		pfvfspoof &= ~BIT(vf_target_shift);
3486	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487}
3488
3489/**
3490 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3491 *  @hw: pointer to hardware structure
3492 *  @device_caps: the EEPROM word with the extra device capabilities
3493 *
3494 *  This function will read the EEPROM location for the device capabilities,
3495 *  and return the word through device_caps.
3496 **/
3497s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498{
3499	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500
3501	return 0;
3502}
3503
3504/**
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3510 **/
3511void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512			     int num_pb,
3513			     u32 headroom,
3514			     int strategy)
3515{
3516	u32 pbsize = hw->mac.rx_pb_size;
3517	int i = 0;
3518	u32 rxpktsize, txpktsize, txpbthresh;
3519
3520	/* Reserve headroom */
3521	pbsize -= headroom;
3522
3523	if (!num_pb)
3524		num_pb = 1;
3525
3526	/* Divide remaining packet buffer space amongst the number
3527	 * of packet buffers requested using supplied strategy.
3528	 */
3529	switch (strategy) {
3530	case (PBA_STRATEGY_WEIGHTED):
3531		/* pba_80_48 strategy weight first half of packet buffer with
3532		 * 5/8 of the packet buffer space.
3533		 */
3534		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535		pbsize -= rxpktsize * (num_pb / 2);
3536		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537		for (; i < (num_pb / 2); i++)
3538			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539		fallthrough; /* configure remaining packet buffers */
3540	case (PBA_STRATEGY_EQUAL):
3541		/* Divide the remaining Rx packet buffer evenly among the TCs */
3542		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543		for (; i < num_pb; i++)
3544			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545		break;
3546	default:
3547		break;
3548	}
3549
3550	/*
3551	 * Setup Tx packet buffer and threshold equally for all TCs
3552	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553	 * 10 since the largest packet we support is just over 9K.
3554	 */
3555	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557	for (i = 0; i < num_pb; i++) {
3558		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560	}
3561
3562	/* Clear unused TCs, if any, to zero buffer size*/
3563	for (; i < IXGBE_MAX_PB; i++) {
3564		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567	}
3568}
3569
3570/**
3571 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3572 *  @buffer: pointer to EEPROM
3573 *  @length: size of EEPROM to calculate a checksum for
3574 *
3575 *  Calculates the checksum for some buffer on a specified length.  The
3576 *  checksum calculated is returned.
3577 **/
3578u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579{
3580	u32 i;
3581	u8 sum = 0;
3582
3583	if (!buffer)
3584		return 0;
3585
3586	for (i = 0; i < length; i++)
3587		sum += buffer[i];
3588
3589	return (u8) (0 - sum);
3590}
3591
3592/**
3593 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 *  @hw: pointer to the HW structure
3595 *  @buffer: command to write and where the return status will be placed
 
3596 *  @length: length of buffer, must be multiple of 4 bytes
3597 *  @timeout: time in ms to wait for command completion
3598 *
3599 *  Communicates with the manageability block. On success return 0
3600 *  else returns semaphore error when encountering an error acquiring
3601 *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602 *  command fails.
3603 *
3604 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605 *  by the caller.
3606 **/
3607s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608		       u32 timeout)
3609{
3610	u32 hicr, i, fwsts;
3611	u16 dword_len;
 
3612
3613	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615		return -EINVAL;
3616	}
3617
3618	/* Set bit 9 of FWSTS clearing FW reset indication */
3619	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
 
 
 
3621
3622	/* Check that the host interface is enabled. */
3623	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624	if (!(hicr & IXGBE_HICR_EN)) {
3625		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626		return -EIO;
3627	}
3628
3629	/* Calculate length in DWORDs. We must be DWORD aligned */
3630	if (length % sizeof(u32)) {
3631		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632		return -EINVAL;
3633	}
3634
 
3635	dword_len = length >> 2;
3636
3637	/* The device driver writes the relevant command block
 
3638	 * into the ram area.
3639	 */
3640	for (i = 0; i < dword_len; i++)
3641		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642				      i, (__force u32)cpu_to_le32(buffer[i]));
3643
3644	/* Setting this bit tells the ARC that a new command is pending. */
3645	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646
3647	for (i = 0; i < timeout; i++) {
3648		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649		if (!(hicr & IXGBE_HICR_C))
3650			break;
3651		usleep_range(1000, 2000);
3652	}
3653
3654	/* Check command successful completion. */
3655	if ((timeout && i == timeout) ||
3656	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657		return -EIO;
3658
3659	return 0;
3660}
3661
3662/**
3663 *  ixgbe_host_interface_command - Issue command to manageability block
3664 *  @hw: pointer to the HW structure
3665 *  @buffer: contains the command to write and where the return status will
3666 *           be placed
3667 *  @length: length of buffer, must be multiple of 4 bytes
3668 *  @timeout: time in ms to wait for command completion
3669 *  @return_data: read and return data from the buffer (true) or not (false)
3670 *  Needed because FW structures are big endian and decoding of
3671 *  these fields can be 8 bit or 16 bit based on command. Decoding
3672 *  is not easily understood without making a table of commands.
3673 *  So we will leave this up to the caller to read back the data
3674 *  in these cases.
3675 *
3676 *  Communicates with the manageability block.  On success return 0
3677 *  else return -EIO or -EINVAL.
3678 **/
3679s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680				 u32 length, u32 timeout,
3681				 bool return_data)
3682{
3683	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684	struct ixgbe_hic_hdr *hdr = buffer;
3685	u32 *u32arr = buffer;
3686	u16 buf_len, dword_len;
3687	s32 status;
3688	u32 bi;
3689
3690	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692		return -EINVAL;
3693	}
3694	/* Take management host interface semaphore */
3695	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696	if (status)
3697		return status;
3698
3699	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700	if (status)
3701		goto rel_out;
3702
3703	if (!return_data)
3704		goto rel_out;
3705
3706	/* Calculate length in DWORDs */
3707	dword_len = hdr_size >> 2;
3708
3709	/* first pull in the header so we know the buffer length */
3710	for (bi = 0; bi < dword_len; bi++) {
3711		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712		le32_to_cpus(&u32arr[bi]);
3713	}
3714
3715	/* If there is any thing in data position pull it in */
3716	buf_len = hdr->buf_len;
3717	if (!buf_len)
3718		goto rel_out;
3719
3720	if (length < round_up(buf_len, 4) + hdr_size) {
3721		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722		status = -EIO;
3723		goto rel_out;
3724	}
3725
3726	/* Calculate length in DWORDs, add 3 for odd lengths */
3727	dword_len = (buf_len + 3) >> 2;
3728
3729	/* Pull in the rest of the buffer (bi is where we left off) */
3730	for (; bi <= dword_len; bi++) {
3731		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732		le32_to_cpus(&u32arr[bi]);
3733	}
3734
3735rel_out:
3736	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737
3738	return status;
3739}
3740
3741/**
3742 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 *  @hw: pointer to the HW structure
3744 *  @maj: driver version major number
3745 *  @min: driver version minor number
3746 *  @build: driver version build number
3747 *  @sub: driver version sub build number
3748 *  @len: length of driver_ver string
3749 *  @driver_ver: driver string
3750 *
3751 *  Sends driver version number to firmware through the manageability
3752 *  block.  On success return 0
3753 *  else returns -EBUSY when encountering an error acquiring
3754 *  semaphore or -EIO when command fails.
3755 **/
3756s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757				 u8 build, u8 sub, __always_unused u16 len,
3758				 __always_unused const char *driver_ver)
3759{
3760	struct ixgbe_hic_drv_info fw_cmd;
3761	int i;
3762	s32 ret_val;
 
 
 
 
 
3763
3764	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767	fw_cmd.port_num = hw->bus.func;
3768	fw_cmd.ver_maj = maj;
3769	fw_cmd.ver_min = min;
3770	fw_cmd.ver_build = build;
3771	fw_cmd.ver_sub = sub;
3772	fw_cmd.hdr.checksum = 0;
3773	fw_cmd.pad = 0;
3774	fw_cmd.pad2 = 0;
3775	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
 
 
3777
3778	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780						       sizeof(fw_cmd),
3781						       IXGBE_HI_COMMAND_TIMEOUT,
3782						       true);
3783		if (ret_val != 0)
3784			continue;
3785
3786		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787		    FW_CEM_RESP_STATUS_SUCCESS)
3788			ret_val = 0;
3789		else
3790			ret_val = -EIO;
3791
3792		break;
3793	}
3794
 
 
3795	return ret_val;
3796}
3797
3798/**
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3801 *
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs.  This function prevents this by flushing the PCIe
3804 * buffers on the system.
3805 **/
3806void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807{
3808	u32 gcr_ext, hlreg0, i, poll;
3809	u16 value;
3810
3811	/*
3812	 * If double reset is not requested then all transactions should
3813	 * already be clear and as such there is no work to do
3814	 */
3815	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816		return;
3817
3818	/*
3819	 * Set loopback enable to prevent any transmits from being sent
3820	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3821	 * has already been cleared.
3822	 */
3823	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825
3826	/* wait for a last completion before clearing buffers */
3827	IXGBE_WRITE_FLUSH(hw);
3828	usleep_range(3000, 6000);
3829
3830	/* Before proceeding, make sure that the PCIe block does not have
3831	 * transactions pending.
3832	 */
3833	poll = ixgbe_pcie_timeout_poll(hw);
3834	for (i = 0; i < poll; i++) {
3835		usleep_range(100, 200);
3836		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837		if (ixgbe_removed(hw->hw_addr))
3838			break;
3839		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840			break;
3841	}
3842
3843	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3844	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847
3848	/* Flush all writes and allow 20usec for all transactions to clear */
3849	IXGBE_WRITE_FLUSH(hw);
3850	udelay(20);
3851
3852	/* restore previous register values */
3853	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855}
3856
3857static const u8 ixgbe_emc_temp_data[4] = {
3858	IXGBE_EMC_INTERNAL_DATA,
3859	IXGBE_EMC_DIODE1_DATA,
3860	IXGBE_EMC_DIODE2_DATA,
3861	IXGBE_EMC_DIODE3_DATA
3862};
3863static const u8 ixgbe_emc_therm_limit[4] = {
3864	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865	IXGBE_EMC_DIODE1_THERM_LIMIT,
3866	IXGBE_EMC_DIODE2_THERM_LIMIT,
3867	IXGBE_EMC_DIODE3_THERM_LIMIT
3868};
3869
3870/**
3871 *  ixgbe_get_ets_data - Extracts the ETS bit data
3872 *  @hw: pointer to hardware structure
3873 *  @ets_cfg: extected ETS data
3874 *  @ets_offset: offset of ETS data
3875 *
3876 *  Returns error code.
3877 **/
3878static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879			      u16 *ets_offset)
3880{
3881	s32 status;
3882
3883	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884	if (status)
3885		return status;
3886
3887	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888		return -EOPNOTSUPP;
 
 
3889
3890	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891	if (status)
3892		return status;
3893
3894	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895		return -EOPNOTSUPP;
 
 
3896
3897	return 0;
 
3898}
3899
3900/**
3901 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 *  @hw: pointer to hardware structure
3903 *
3904 *  Returns the thermal sensor data structure
3905 **/
3906s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907{
3908	s32 status;
3909	u16 ets_offset;
3910	u16 ets_cfg;
3911	u16 ets_sensor;
3912	u8  num_sensors;
3913	u8  i;
3914	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915
3916	/* Only support thermal sensors attached to physical port 0 */
3917	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918		return -EOPNOTSUPP;
 
 
3919
3920	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921	if (status)
3922		return status;
3923
3924	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925	if (num_sensors > IXGBE_MAX_SENSORS)
3926		num_sensors = IXGBE_MAX_SENSORS;
3927
3928	for (i = 0; i < num_sensors; i++) {
3929		u8  sensor_index;
3930		u8  sensor_location;
3931
3932		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933					     &ets_sensor);
3934		if (status)
3935			return status;
3936
3937		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938					 ets_sensor);
3939		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940					    ets_sensor);
3941
3942		if (sensor_location != 0) {
3943			status = hw->phy.ops.read_i2c_byte(hw,
3944					ixgbe_emc_temp_data[sensor_index],
3945					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946					&data->sensor[i].temp);
3947			if (status)
3948				return status;
3949		}
3950	}
3951
3952	return 0;
3953}
3954
3955/**
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3958 *
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3961 **/
3962s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963{
3964	s32 status;
3965	u16 ets_offset;
3966	u16 ets_cfg;
3967	u16 ets_sensor;
3968	u8  low_thresh_delta;
3969	u8  num_sensors;
3970	u8  therm_limit;
3971	u8  i;
3972	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3973
3974	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975
3976	/* Only support thermal sensors attached to physical port 0 */
3977	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978		return -EOPNOTSUPP;
 
 
3979
3980	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981	if (status)
3982		return status;
3983
3984	low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
 
3985	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986	if (num_sensors > IXGBE_MAX_SENSORS)
3987		num_sensors = IXGBE_MAX_SENSORS;
3988
3989	for (i = 0; i < num_sensors; i++) {
3990		u8  sensor_index;
3991		u8  sensor_location;
3992
3993		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994			hw_err(hw, "eeprom read at offset %d failed\n",
3995			       ets_offset + 1 + i);
3996			continue;
3997		}
3998		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999					 ets_sensor);
4000		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001					    ets_sensor);
4002		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004		hw->phy.ops.write_i2c_byte(hw,
4005			ixgbe_emc_therm_limit[sensor_index],
4006			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008		if (sensor_location == 0)
4009			continue;
4010
4011		data->sensor[i].location = sensor_location;
4012		data->sensor[i].caution_thresh = therm_limit;
4013		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014	}
4015
4016	return 0;
4017}
4018
4019/**
4020 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021 *
4022 *  @hw: pointer to hardware structure
4023 *  @nvm_ver: pointer to output structure
4024 *
4025 *  if valid option ROM version, nvm_ver->or_valid set to true
4026 *  else nvm_ver->or_valid is false.
4027 **/
4028void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029			    struct ixgbe_nvm_version *nvm_ver)
4030{
4031	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033	nvm_ver->or_valid = false;
4034	/* Option Rom may or may not be present.  Start with pointer */
4035	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037	/* make sure offset is valid */
4038	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039		return;
4040
4041	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044	/* option rom exists and is valid */
4045	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4047	    eeprom_cfg_blkh == NVM_VER_INVALID)
4048		return;
4049
4050	nvm_ver->or_valid = true;
4051	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055}
4056
4057/**
4058 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059 *  @hw: pointer to hardware structure
4060 *  @nvm_ver: pointer to output structure
4061 *
4062 *  if valid OEM product version, nvm_ver->oem_valid set to true
4063 *  else nvm_ver->oem_valid is false.
4064 **/
4065void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066				struct ixgbe_nvm_version *nvm_ver)
4067{
4068	u16 rel_num, prod_ver, mod_len, cap, offset;
4069
4070	nvm_ver->oem_valid = false;
4071	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072
4073	/* Return is offset to OEM Product Version block is invalid */
4074	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075		return;
4076
4077	/* Read product version block */
4078	hw->eeprom.ops.read(hw, offset, &mod_len);
4079	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080
4081	/* Return if OEM product version block is invalid */
4082	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084		return;
4085
4086	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088
4089	/* Return if version is invalid */
4090	if ((rel_num | prod_ver) == 0x0 ||
4091	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092		return;
4093
4094	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096	nvm_ver->oem_release = rel_num;
4097	nvm_ver->oem_valid = true;
4098}
4099
4100/**
4101 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102 *
4103 *  @hw: pointer to hardware structure
4104 *  @nvm_ver: pointer to output structure
4105 *
4106 *  word read errors will return 0xFFFF
4107 **/
4108void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109		      struct ixgbe_nvm_version *nvm_ver)
4110{
4111	u16 etk_id_l, etk_id_h;
4112
4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114		etk_id_l = NVM_VER_INVALID;
4115	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116		etk_id_h = NVM_VER_INVALID;
4117
4118	/* The word order for the version format is determined by high order
4119	 * word bit 15.
4120	 */
4121	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122		nvm_ver->etk_id = etk_id_h;
4123		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124	} else {
4125		nvm_ver->etk_id = etk_id_l;
4126		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127	}
4128}
4129
4130void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131{
4132	u32 rxctrl;
4133
4134	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136		if (hw->mac.type != ixgbe_mac_82598EB) {
4137			u32 pfdtxgswc;
4138
4139			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143				hw->mac.set_lben = true;
4144			} else {
4145				hw->mac.set_lben = false;
4146			}
4147		}
4148		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150	}
4151}
4152
4153void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154{
4155	u32 rxctrl;
4156
4157	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159
4160	if (hw->mac.type != ixgbe_mac_82598EB) {
4161		if (hw->mac.set_lben) {
4162			u32 pfdtxgswc;
4163
4164			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167			hw->mac.set_lben = false;
4168		}
4169	}
4170}
4171
4172/** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4174 **/
4175bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176{
4177	u32 fwsm;
4178
4179	if (hw->mac.type < ixgbe_mac_82599EB)
4180		return false;
4181
4182	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183
4184	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185}
4186
4187/**
4188 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 *  @hw: pointer to hardware structure
4190 *  @speed: new link speed
4191 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192 *
4193 *  Set the link speed in the MAC and/or PHY register and restarts link.
4194 */
4195s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196					  ixgbe_link_speed speed,
4197					  bool autoneg_wait_to_complete)
4198{
4199	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201	s32 status = 0;
4202	u32 speedcnt = 0;
4203	u32 i = 0;
4204	bool autoneg, link_up = false;
4205
4206	/* Mask off requested but non-supported speeds */
4207	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208	if (status)
4209		return status;
4210
4211	speed &= link_speed;
4212
4213	/* Try each speed one by one, highest priority first.  We do this in
4214	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215	 */
4216	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217		speedcnt++;
4218		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219
4220		/* Set the module link speed */
4221		switch (hw->phy.media_type) {
4222		case ixgbe_media_type_fiber:
4223			hw->mac.ops.set_rate_select_speed(hw,
4224						    IXGBE_LINK_SPEED_10GB_FULL);
4225			break;
4226		case ixgbe_media_type_fiber_qsfp:
4227			/* QSFP module automatically detects MAC link speed */
4228			break;
4229		default:
4230			hw_dbg(hw, "Unexpected media type\n");
4231			break;
4232		}
4233
4234		/* Allow module to change analog characteristics (1G->10G) */
4235		msleep(40);
4236
4237		status = hw->mac.ops.setup_mac_link(hw,
4238						    IXGBE_LINK_SPEED_10GB_FULL,
4239						    autoneg_wait_to_complete);
4240		if (status)
4241			return status;
4242
4243		/* Flap the Tx laser if it has not already been done */
4244		if (hw->mac.ops.flap_tx_laser)
4245			hw->mac.ops.flap_tx_laser(hw);
4246
4247		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249		 * attempted.  82599 uses the same timing for 10g SFI.
4250		 */
4251		for (i = 0; i < 5; i++) {
4252			/* Wait for the link partner to also set speed */
4253			msleep(100);
4254
4255			/* If we have link, just jump out */
4256			status = hw->mac.ops.check_link(hw, &link_speed,
4257							&link_up, false);
4258			if (status)
4259				return status;
4260
4261			if (link_up)
4262				goto out;
4263		}
4264	}
4265
4266	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267		speedcnt++;
4268		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270
4271		/* Set the module link speed */
4272		switch (hw->phy.media_type) {
4273		case ixgbe_media_type_fiber:
4274			hw->mac.ops.set_rate_select_speed(hw,
4275						     IXGBE_LINK_SPEED_1GB_FULL);
4276			break;
4277		case ixgbe_media_type_fiber_qsfp:
4278			/* QSFP module automatically detects link speed */
4279			break;
4280		default:
4281			hw_dbg(hw, "Unexpected media type\n");
4282			break;
4283		}
4284
4285		/* Allow module to change analog characteristics (10G->1G) */
4286		msleep(40);
4287
4288		status = hw->mac.ops.setup_mac_link(hw,
4289						    IXGBE_LINK_SPEED_1GB_FULL,
4290						    autoneg_wait_to_complete);
4291		if (status)
4292			return status;
4293
4294		/* Flap the Tx laser if it has not already been done */
4295		if (hw->mac.ops.flap_tx_laser)
4296			hw->mac.ops.flap_tx_laser(hw);
4297
4298		/* Wait for the link partner to also set speed */
4299		msleep(100);
4300
4301		/* If we have link, just jump out */
4302		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303						false);
4304		if (status)
4305			return status;
4306
4307		if (link_up)
4308			goto out;
4309	}
4310
4311	/* We didn't get link.  Configure back to the highest speed we tried,
4312	 * (if there was more than one).  We call ourselves back with just the
4313	 * single highest speed that the user requested.
4314	 */
4315	if (speedcnt > 1)
4316		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317						      highest_link_speed,
4318						      autoneg_wait_to_complete);
4319
4320out:
4321	/* Set autoneg_advertised value based on input link speed */
4322	hw->phy.autoneg_advertised = 0;
4323
4324	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326
4327	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329
4330	return status;
4331}
4332
4333/**
4334 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335 *  @hw: pointer to hardware structure
4336 *  @speed: link speed to set
4337 *
4338 *  Set module link speed via the soft rate select.
4339 */
4340void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341				      ixgbe_link_speed speed)
4342{
4343	s32 status;
4344	u8 rs, eeprom_data;
4345
4346	switch (speed) {
4347	case IXGBE_LINK_SPEED_10GB_FULL:
4348		/* one bit mask same as setting on */
4349		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350		break;
4351	case IXGBE_LINK_SPEED_1GB_FULL:
4352		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353		break;
4354	default:
4355		hw_dbg(hw, "Invalid fixed module speed\n");
4356		return;
4357	}
4358
4359	/* Set RS0 */
4360	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362					   &eeprom_data);
4363	if (status) {
4364		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365		return;
4366	}
4367
4368	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369
4370	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372					    eeprom_data);
4373	if (status) {
4374		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375		return;
4376	}
4377
4378	/* Set RS1 */
4379	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381					   &eeprom_data);
4382	if (status) {
4383		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384		return;
4385	}
4386
4387	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388
4389	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391					    eeprom_data);
4392	if (status) {
4393		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394		return;
4395	}
4396}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31#include <linux/netdevice.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_common.h"
  35#include "ixgbe_phy.h"
  36
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48
  49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  52					     u16 words, u16 *data);
  53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  54					     u16 words, u16 *data);
  55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  56						 u16 offset);
  57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
 
 
 
 
 
  58
  59/**
  60 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  61 *  control
  62 *  @hw: pointer to hardware structure
  63 *
  64 *  There are several phys that do not support autoneg flow control. This
  65 *  function check the device id to see if the associated phy supports
  66 *  autoneg flow control.
  67 **/
  68static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  69{
 
 
 
  70
  71	switch (hw->device_id) {
  72	case IXGBE_DEV_ID_X540T:
  73		return 0;
  74	case IXGBE_DEV_ID_82599_T3_LOM:
  75		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76	default:
  77		return IXGBE_ERR_FC_NOT_SUPPORTED;
  78	}
 
 
 
 
 
 
  79}
  80
  81/**
  82 *  ixgbe_setup_fc - Set up flow control
  83 *  @hw: pointer to hardware structure
  84 *
  85 *  Called at init time to set up flow control.
  86 **/
  87static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
  88{
  89	s32 ret_val = 0;
  90	u32 reg = 0, reg_bp = 0;
  91	u16 reg_cu = 0;
 
  92
  93	/*
  94	 * Validate the requested mode.  Strict IEEE mode does not allow
  95	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
  96	 */
  97	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
  98		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
  99		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 100		goto out;
 101	}
 102
 103	/*
 104	 * 10gig parts do not have a word in the EEPROM to determine the
 105	 * default flow control setting, so we explicitly set it to full.
 106	 */
 107	if (hw->fc.requested_mode == ixgbe_fc_default)
 108		hw->fc.requested_mode = ixgbe_fc_full;
 109
 110	/*
 111	 * Set up the 1G and 10G flow control advertisement registers so the
 112	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 113	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 114	 */
 115	switch (hw->phy.media_type) {
 
 
 
 
 
 
 
 116	case ixgbe_media_type_fiber:
 117	case ixgbe_media_type_backplane:
 118		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 119		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 120		break;
 121	case ixgbe_media_type_copper:
 122		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 123					MDIO_MMD_AN, &reg_cu);
 124		break;
 125	default:
 126		break;
 127	}
 128
 129	/*
 130	 * The possible values of fc.requested_mode are:
 131	 * 0: Flow control is completely disabled
 132	 * 1: Rx flow control is enabled (we can receive pause frames,
 133	 *    but not send pause frames).
 134	 * 2: Tx flow control is enabled (we can send pause frames but
 135	 *    we do not support receiving pause frames).
 136	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 137	 * other: Invalid.
 138	 */
 139	switch (hw->fc.requested_mode) {
 140	case ixgbe_fc_none:
 141		/* Flow control completely disabled by software override. */
 142		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 143		if (hw->phy.media_type == ixgbe_media_type_backplane)
 144			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 145				    IXGBE_AUTOC_ASM_PAUSE);
 146		else if (hw->phy.media_type == ixgbe_media_type_copper)
 147			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 148		break;
 149	case ixgbe_fc_tx_pause:
 150		/*
 151		 * Tx Flow control is enabled, and Rx Flow control is
 152		 * disabled by software override.
 153		 */
 154		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 155		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 156		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 157			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 158			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 159		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 160			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 161			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 162		}
 163		break;
 164	case ixgbe_fc_rx_pause:
 165		/*
 166		 * Rx Flow control is enabled and Tx Flow control is
 167		 * disabled by software override. Since there really
 168		 * isn't a way to advertise that we are capable of RX
 169		 * Pause ONLY, we will advertise that we support both
 170		 * symmetric and asymmetric Rx PAUSE, as such we fall
 171		 * through to the fc_full statement.  Later, we will
 172		 * disable the adapter's ability to send PAUSE frames.
 173		 */
 174	case ixgbe_fc_full:
 175		/* Flow control (both Rx and Tx) is enabled by SW override. */
 176		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 177		if (hw->phy.media_type == ixgbe_media_type_backplane)
 178			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 179				  IXGBE_AUTOC_ASM_PAUSE;
 180		else if (hw->phy.media_type == ixgbe_media_type_copper)
 181			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 182		break;
 183	default:
 184		hw_dbg(hw, "Flow control param set incorrectly\n");
 185		ret_val = IXGBE_ERR_CONFIG;
 186		goto out;
 187		break;
 188	}
 189
 190	if (hw->mac.type != ixgbe_mac_X540) {
 191		/*
 192		 * Enable auto-negotiation between the MAC & PHY;
 193		 * the MAC will advertise clause 37 flow control.
 194		 */
 195		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 196		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 197
 198		/* Disable AN timeout */
 199		if (hw->fc.strict_ieee)
 200			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 201
 202		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 203		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 204	}
 205
 206	/*
 207	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 208	 * and copper. There is no need to set the PCS1GCTL register.
 209	 *
 210	 */
 211	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 212		reg_bp |= IXGBE_AUTOC_AN_RESTART;
 213		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
 
 
 
 
 
 
 214	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 215		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
 216		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 217				      MDIO_MMD_AN, reg_cu);
 218	}
 219
 220	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 221out:
 222	return ret_val;
 223}
 224
 225/**
 226 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 227 *  @hw: pointer to hardware structure
 228 *
 229 *  Starts the hardware by filling the bus info structure and media type, clears
 230 *  all on chip counters, initializes receive address registers, multicast
 231 *  table, VLAN filter table, calls routine to set up link and flow control
 232 *  settings, and leaves transmit and receive units disabled and uninitialized
 233 **/
 234s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 235{
 
 236	u32 ctrl_ext;
 
 237
 238	/* Set the media type */
 239	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 240
 241	/* Identify the PHY */
 242	hw->phy.ops.identify(hw);
 243
 244	/* Clear the VLAN filter table */
 245	hw->mac.ops.clear_vfta(hw);
 246
 247	/* Clear statistics registers */
 248	hw->mac.ops.clear_hw_cntrs(hw);
 249
 250	/* Set No Snoop Disable */
 251	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 252	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 253	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 254	IXGBE_WRITE_FLUSH(hw);
 255
 256	/* Setup flow control */
 257	ixgbe_setup_fc(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	/* Clear adapter stopped flag */
 260	hw->adapter_stopped = false;
 261
 262	return 0;
 263}
 264
 265/**
 266 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 267 *  @hw: pointer to hw structure
 268 *
 269 * Performs the init sequence common to the second generation
 270 * of 10 GbE devices.
 271 * Devices in the second generation:
 272 *     82599
 273 *     X540
 274 **/
 275s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 276{
 277	u32 i;
 278	u32 regval;
 279
 280	/* Clear the rate limiters */
 281	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 282		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 283		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 284	}
 285	IXGBE_WRITE_FLUSH(hw);
 286
 287	/* Disable relaxed ordering */
 288	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 289		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 290		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 291		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 292	}
 293
 294	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 295		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 296		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 297			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 298		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 299	}
 300
 301	return 0;
 302}
 303
 304/**
 305 *  ixgbe_init_hw_generic - Generic hardware initialization
 306 *  @hw: pointer to hardware structure
 307 *
 308 *  Initialize the hardware by resetting the hardware, filling the bus info
 309 *  structure and media type, clears all on chip counters, initializes receive
 310 *  address registers, multicast table, VLAN filter table, calls routine to set
 311 *  up link and flow control settings, and leaves transmit and receive units
 312 *  disabled and uninitialized
 313 **/
 314s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 315{
 316	s32 status;
 317
 318	/* Reset the hardware */
 319	status = hw->mac.ops.reset_hw(hw);
 320
 321	if (status == 0) {
 322		/* Start the HW */
 323		status = hw->mac.ops.start_hw(hw);
 324	}
 325
 
 
 
 
 326	return status;
 327}
 328
 329/**
 330 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 331 *  @hw: pointer to hardware structure
 332 *
 333 *  Clears all hardware statistics counters by reading them from the hardware
 334 *  Statistics counters are clear on read.
 335 **/
 336s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 337{
 338	u16 i = 0;
 339
 340	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 341	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 342	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 343	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 344	for (i = 0; i < 8; i++)
 345		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 346
 347	IXGBE_READ_REG(hw, IXGBE_MLFC);
 348	IXGBE_READ_REG(hw, IXGBE_MRFC);
 349	IXGBE_READ_REG(hw, IXGBE_RLEC);
 350	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 351	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 352	if (hw->mac.type >= ixgbe_mac_82599EB) {
 353		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 354		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 355	} else {
 356		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 357		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 358	}
 359
 360	for (i = 0; i < 8; i++) {
 361		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 362		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 363		if (hw->mac.type >= ixgbe_mac_82599EB) {
 364			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 365			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 366		} else {
 367			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 368			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 369		}
 370	}
 371	if (hw->mac.type >= ixgbe_mac_82599EB)
 372		for (i = 0; i < 8; i++)
 373			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 374	IXGBE_READ_REG(hw, IXGBE_PRC64);
 375	IXGBE_READ_REG(hw, IXGBE_PRC127);
 376	IXGBE_READ_REG(hw, IXGBE_PRC255);
 377	IXGBE_READ_REG(hw, IXGBE_PRC511);
 378	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 379	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 380	IXGBE_READ_REG(hw, IXGBE_GPRC);
 381	IXGBE_READ_REG(hw, IXGBE_BPRC);
 382	IXGBE_READ_REG(hw, IXGBE_MPRC);
 383	IXGBE_READ_REG(hw, IXGBE_GPTC);
 384	IXGBE_READ_REG(hw, IXGBE_GORCL);
 385	IXGBE_READ_REG(hw, IXGBE_GORCH);
 386	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 387	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 388	if (hw->mac.type == ixgbe_mac_82598EB)
 389		for (i = 0; i < 8; i++)
 390			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 391	IXGBE_READ_REG(hw, IXGBE_RUC);
 392	IXGBE_READ_REG(hw, IXGBE_RFC);
 393	IXGBE_READ_REG(hw, IXGBE_ROC);
 394	IXGBE_READ_REG(hw, IXGBE_RJC);
 395	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 396	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 397	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 398	IXGBE_READ_REG(hw, IXGBE_TORL);
 399	IXGBE_READ_REG(hw, IXGBE_TORH);
 400	IXGBE_READ_REG(hw, IXGBE_TPR);
 401	IXGBE_READ_REG(hw, IXGBE_TPT);
 402	IXGBE_READ_REG(hw, IXGBE_PTC64);
 403	IXGBE_READ_REG(hw, IXGBE_PTC127);
 404	IXGBE_READ_REG(hw, IXGBE_PTC255);
 405	IXGBE_READ_REG(hw, IXGBE_PTC511);
 406	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 407	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 408	IXGBE_READ_REG(hw, IXGBE_MPTC);
 409	IXGBE_READ_REG(hw, IXGBE_BPTC);
 410	for (i = 0; i < 16; i++) {
 411		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 412		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 413		if (hw->mac.type >= ixgbe_mac_82599EB) {
 414			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 415			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 416			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 417			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 418			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 419		} else {
 420			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 421			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 422		}
 423	}
 424
 425	if (hw->mac.type == ixgbe_mac_X540) {
 426		if (hw->phy.id == 0)
 427			hw->phy.ops.identify(hw);
 428		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 429		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 430		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 431		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 432	}
 433
 434	return 0;
 435}
 436
 437/**
 438 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 439 *  @hw: pointer to hardware structure
 440 *  @pba_num: stores the part number string from the EEPROM
 441 *  @pba_num_size: part number string buffer length
 442 *
 443 *  Reads the part number string from the EEPROM.
 444 **/
 445s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 446                                  u32 pba_num_size)
 447{
 448	s32 ret_val;
 449	u16 data;
 450	u16 pba_ptr;
 451	u16 offset;
 452	u16 length;
 453
 454	if (pba_num == NULL) {
 455		hw_dbg(hw, "PBA string buffer was null\n");
 456		return IXGBE_ERR_INVALID_ARGUMENT;
 457	}
 458
 459	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 460	if (ret_val) {
 461		hw_dbg(hw, "NVM Read Error\n");
 462		return ret_val;
 463	}
 464
 465	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 466	if (ret_val) {
 467		hw_dbg(hw, "NVM Read Error\n");
 468		return ret_val;
 469	}
 470
 471	/*
 472	 * if data is not ptr guard the PBA must be in legacy format which
 473	 * means pba_ptr is actually our second data word for the PBA number
 474	 * and we can decode it into an ascii string
 475	 */
 476	if (data != IXGBE_PBANUM_PTR_GUARD) {
 477		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 478
 479		/* we will need 11 characters to store the PBA */
 480		if (pba_num_size < 11) {
 481			hw_dbg(hw, "PBA string buffer too small\n");
 482			return IXGBE_ERR_NO_SPACE;
 483		}
 484
 485		/* extract hex string from data and pba_ptr */
 486		pba_num[0] = (data >> 12) & 0xF;
 487		pba_num[1] = (data >> 8) & 0xF;
 488		pba_num[2] = (data >> 4) & 0xF;
 489		pba_num[3] = data & 0xF;
 490		pba_num[4] = (pba_ptr >> 12) & 0xF;
 491		pba_num[5] = (pba_ptr >> 8) & 0xF;
 492		pba_num[6] = '-';
 493		pba_num[7] = 0;
 494		pba_num[8] = (pba_ptr >> 4) & 0xF;
 495		pba_num[9] = pba_ptr & 0xF;
 496
 497		/* put a null character on the end of our string */
 498		pba_num[10] = '\0';
 499
 500		/* switch all the data but the '-' to hex char */
 501		for (offset = 0; offset < 10; offset++) {
 502			if (pba_num[offset] < 0xA)
 503				pba_num[offset] += '0';
 504			else if (pba_num[offset] < 0x10)
 505				pba_num[offset] += 'A' - 0xA;
 506		}
 507
 508		return 0;
 509	}
 510
 511	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 512	if (ret_val) {
 513		hw_dbg(hw, "NVM Read Error\n");
 514		return ret_val;
 515	}
 516
 517	if (length == 0xFFFF || length == 0) {
 518		hw_dbg(hw, "NVM PBA number section invalid length\n");
 519		return IXGBE_ERR_PBA_SECTION;
 520	}
 521
 522	/* check if pba_num buffer is big enough */
 523	if (pba_num_size  < (((u32)length * 2) - 1)) {
 524		hw_dbg(hw, "PBA string buffer too small\n");
 525		return IXGBE_ERR_NO_SPACE;
 526	}
 527
 528	/* trim pba length from start of string */
 529	pba_ptr++;
 530	length--;
 531
 532	for (offset = 0; offset < length; offset++) {
 533		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 534		if (ret_val) {
 535			hw_dbg(hw, "NVM Read Error\n");
 536			return ret_val;
 537		}
 538		pba_num[offset * 2] = (u8)(data >> 8);
 539		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 540	}
 541	pba_num[offset * 2] = '\0';
 542
 543	return 0;
 544}
 545
 546/**
 547 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 548 *  @hw: pointer to hardware structure
 549 *  @mac_addr: Adapter MAC address
 550 *
 551 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 552 *  A reset of the adapter must be performed prior to calling this function
 553 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 554 **/
 555s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 556{
 557	u32 rar_high;
 558	u32 rar_low;
 559	u16 i;
 560
 561	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 562	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 563
 564	for (i = 0; i < 4; i++)
 565		mac_addr[i] = (u8)(rar_low >> (i*8));
 566
 567	for (i = 0; i < 2; i++)
 568		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 569
 570	return 0;
 571}
 572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573/**
 574 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 575 *  @hw: pointer to hardware structure
 576 *
 577 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 578 **/
 579s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 580{
 581	struct ixgbe_adapter *adapter = hw->back;
 582	struct ixgbe_mac_info *mac = &hw->mac;
 583	u16 link_status;
 584
 585	hw->bus.type = ixgbe_bus_type_pci_express;
 586
 587	/* Get the negotiated link width and speed from PCI config space */
 588	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 589	                     &link_status);
 590
 591	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 592	case IXGBE_PCI_LINK_WIDTH_1:
 593		hw->bus.width = ixgbe_bus_width_pcie_x1;
 594		break;
 595	case IXGBE_PCI_LINK_WIDTH_2:
 596		hw->bus.width = ixgbe_bus_width_pcie_x2;
 597		break;
 598	case IXGBE_PCI_LINK_WIDTH_4:
 599		hw->bus.width = ixgbe_bus_width_pcie_x4;
 600		break;
 601	case IXGBE_PCI_LINK_WIDTH_8:
 602		hw->bus.width = ixgbe_bus_width_pcie_x8;
 603		break;
 604	default:
 605		hw->bus.width = ixgbe_bus_width_unknown;
 606		break;
 607	}
 608
 609	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 610	case IXGBE_PCI_LINK_SPEED_2500:
 611		hw->bus.speed = ixgbe_bus_speed_2500;
 612		break;
 613	case IXGBE_PCI_LINK_SPEED_5000:
 614		hw->bus.speed = ixgbe_bus_speed_5000;
 615		break;
 616	default:
 617		hw->bus.speed = ixgbe_bus_speed_unknown;
 618		break;
 619	}
 620
 621	mac->ops.set_lan_id(hw);
 622
 623	return 0;
 624}
 625
 626/**
 627 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 628 *  @hw: pointer to the HW structure
 629 *
 630 *  Determines the LAN function id by reading memory-mapped registers
 631 *  and swaps the port value if requested.
 632 **/
 633void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 634{
 635	struct ixgbe_bus_info *bus = &hw->bus;
 
 636	u32 reg;
 637
 638	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 639	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 640	bus->lan_id = bus->func;
 641
 642	/* check for a port swap */
 643	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 644	if (reg & IXGBE_FACTPS_LFS)
 645		bus->func ^= 0x1;
 
 
 
 
 
 
 
 646}
 647
 648/**
 649 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 650 *  @hw: pointer to hardware structure
 651 *
 652 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 653 *  disables transmit and receive units. The adapter_stopped flag is used by
 654 *  the shared code and drivers to determine if the adapter is in a stopped
 655 *  state and should not touch the hardware.
 656 **/
 657s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 658{
 659	u32 reg_val;
 660	u16 i;
 661
 662	/*
 663	 * Set the adapter_stopped flag so other driver functions stop touching
 664	 * the hardware
 665	 */
 666	hw->adapter_stopped = true;
 667
 668	/* Disable the receive unit */
 669	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 670
 671	/* Clear interrupt mask to stop interrupts from being generated */
 672	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 673
 674	/* Clear any pending interrupts, flush previous writes */
 675	IXGBE_READ_REG(hw, IXGBE_EICR);
 676
 677	/* Disable the transmit unit.  Each queue must be disabled. */
 678	for (i = 0; i < hw->mac.max_tx_queues; i++)
 679		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 680
 681	/* Disable the receive unit by stopping each queue */
 682	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 683		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 684		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 685		reg_val |= IXGBE_RXDCTL_SWFLSH;
 686		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 687	}
 688
 689	/* flush all queues disables */
 690	IXGBE_WRITE_FLUSH(hw);
 691	usleep_range(1000, 2000);
 692
 693	/*
 694	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 695	 * access and verify no pending requests
 696	 */
 697	return ixgbe_disable_pcie_master(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700/**
 701 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 702 *  @hw: pointer to hardware structure
 703 *  @index: led number to turn on
 704 **/
 705s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 706{
 707	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 708
 
 
 
 709	/* To turn on the LED, set mode to ON. */
 710	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 711	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 712	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 713	IXGBE_WRITE_FLUSH(hw);
 714
 715	return 0;
 716}
 717
 718/**
 719 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 720 *  @hw: pointer to hardware structure
 721 *  @index: led number to turn off
 722 **/
 723s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 724{
 725	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 726
 
 
 
 727	/* To turn off the LED, set mode to OFF. */
 728	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 729	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 730	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 731	IXGBE_WRITE_FLUSH(hw);
 732
 733	return 0;
 734}
 735
 736/**
 737 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 738 *  @hw: pointer to hardware structure
 739 *
 740 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 741 *  ixgbe_hw struct in order to set up EEPROM access.
 742 **/
 743s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 744{
 745	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 746	u32 eec;
 747	u16 eeprom_size;
 748
 749	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 750		eeprom->type = ixgbe_eeprom_none;
 751		/* Set default semaphore delay to 10ms which is a well
 752		 * tested value */
 753		eeprom->semaphore_delay = 10;
 754		/* Clear EEPROM page size, it will be initialized as needed */
 755		eeprom->word_page_size = 0;
 756
 757		/*
 758		 * Check for EEPROM present first.
 759		 * If not present leave as none
 760		 */
 761		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 762		if (eec & IXGBE_EEC_PRES) {
 763			eeprom->type = ixgbe_eeprom_spi;
 764
 765			/*
 766			 * SPI EEPROM is assumed here.  This code would need to
 767			 * change if a future EEPROM is not SPI.
 768			 */
 769			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 770					    IXGBE_EEC_SIZE_SHIFT);
 771			eeprom->word_size = 1 << (eeprom_size +
 772						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 773		}
 774
 775		if (eec & IXGBE_EEC_ADDR_SIZE)
 776			eeprom->address_bits = 16;
 777		else
 778			eeprom->address_bits = 8;
 779		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 780			  "%d\n", eeprom->type, eeprom->word_size,
 781			  eeprom->address_bits);
 782	}
 783
 784	return 0;
 785}
 786
 787/**
 788 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 789 *  @hw: pointer to hardware structure
 790 *  @offset: offset within the EEPROM to write
 791 *  @words: number of words
 792 *  @data: 16 bit word(s) to write to EEPROM
 793 *
 794 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 795 **/
 796s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 797					       u16 words, u16 *data)
 798{
 799	s32 status = 0;
 800	u16 i, count;
 801
 802	hw->eeprom.ops.init_params(hw);
 803
 804	if (words == 0) {
 805		status = IXGBE_ERR_INVALID_ARGUMENT;
 806		goto out;
 807	}
 808
 809	if (offset + words > hw->eeprom.word_size) {
 810		status = IXGBE_ERR_EEPROM;
 811		goto out;
 812	}
 813
 814	/*
 815	 * The EEPROM page size cannot be queried from the chip. We do lazy
 816	 * initialization. It is worth to do that when we write large buffer.
 817	 */
 818	if ((hw->eeprom.word_page_size == 0) &&
 819	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 820		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 821
 822	/*
 823	 * We cannot hold synchronization semaphores for too long
 824	 * to avoid other entity starvation. However it is more efficient
 825	 * to read in bursts than synchronizing access for each word.
 826	 */
 827	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 828		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 829			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 830		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 831							    count, &data[i]);
 832
 833		if (status != 0)
 834			break;
 835	}
 836
 837out:
 838	return status;
 839}
 840
 841/**
 842 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 843 *  @hw: pointer to hardware structure
 844 *  @offset: offset within the EEPROM to be written to
 845 *  @words: number of word(s)
 846 *  @data: 16 bit word(s) to be written to the EEPROM
 847 *
 848 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 849 *  EEPROM will most likely contain an invalid checksum.
 850 **/
 851static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 852					      u16 words, u16 *data)
 853{
 854	s32 status;
 855	u16 word;
 856	u16 page_size;
 857	u16 i;
 858	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 859
 860	/* Prepare the EEPROM for writing  */
 861	status = ixgbe_acquire_eeprom(hw);
 
 
 862
 863	if (status == 0) {
 864		if (ixgbe_ready_eeprom(hw) != 0) {
 865			ixgbe_release_eeprom(hw);
 866			status = IXGBE_ERR_EEPROM;
 867		}
 868	}
 869
 870	if (status == 0) {
 871		for (i = 0; i < words; i++) {
 872			ixgbe_standby_eeprom(hw);
 
 
 
 
 
 
 873
 874			/*  Send the WRITE ENABLE command (8 bit opcode )  */
 875			ixgbe_shift_out_eeprom_bits(hw,
 876						  IXGBE_EEPROM_WREN_OPCODE_SPI,
 877						  IXGBE_EEPROM_OPCODE_BITS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878
 879			ixgbe_standby_eeprom(hw);
 
 880
 881			/*
 882			 * Some SPI eeproms use the 8th address bit embedded
 883			 * in the opcode
 884			 */
 885			if ((hw->eeprom.address_bits == 8) &&
 886			    ((offset + i) >= 128))
 887				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 888
 889			/* Send the Write command (8-bit opcode + addr) */
 890			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 891						    IXGBE_EEPROM_OPCODE_BITS);
 892			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 893						    hw->eeprom.address_bits);
 894
 895			page_size = hw->eeprom.word_page_size;
 896
 897			/* Send the data in burst via SPI*/
 898			do {
 899				word = data[i];
 900				word = (word >> 8) | (word << 8);
 901				ixgbe_shift_out_eeprom_bits(hw, word, 16);
 902
 903				if (page_size == 0)
 904					break;
 905
 906				/* do not wrap around page */
 907				if (((offset + i) & (page_size - 1)) ==
 908				    (page_size - 1))
 909					break;
 910			} while (++i < words);
 911
 912			ixgbe_standby_eeprom(hw);
 913			usleep_range(10000, 20000);
 914		}
 915		/* Done with writing - release the EEPROM */
 916		ixgbe_release_eeprom(hw);
 917	}
 
 
 918
 919	return status;
 920}
 921
 922/**
 923 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 924 *  @hw: pointer to hardware structure
 925 *  @offset: offset within the EEPROM to be written to
 926 *  @data: 16 bit word to be written to the EEPROM
 927 *
 928 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 929 *  EEPROM will most likely contain an invalid checksum.
 930 **/
 931s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 932{
 933	s32 status;
 934
 935	hw->eeprom.ops.init_params(hw);
 936
 937	if (offset >= hw->eeprom.word_size) {
 938		status = IXGBE_ERR_EEPROM;
 939		goto out;
 940	}
 941
 942	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 943
 944out:
 945	return status;
 946}
 947
 948/**
 949 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 950 *  @hw: pointer to hardware structure
 951 *  @offset: offset within the EEPROM to be read
 952 *  @words: number of word(s)
 953 *  @data: read 16 bit words(s) from EEPROM
 954 *
 955 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 956 **/
 957s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 958					      u16 words, u16 *data)
 959{
 960	s32 status = 0;
 961	u16 i, count;
 962
 963	hw->eeprom.ops.init_params(hw);
 964
 965	if (words == 0) {
 966		status = IXGBE_ERR_INVALID_ARGUMENT;
 967		goto out;
 968	}
 969
 970	if (offset + words > hw->eeprom.word_size) {
 971		status = IXGBE_ERR_EEPROM;
 972		goto out;
 973	}
 974
 975	/*
 976	 * We cannot hold synchronization semaphores for too long
 977	 * to avoid other entity starvation. However it is more efficient
 978	 * to read in bursts than synchronizing access for each word.
 979	 */
 980	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 981		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 982			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 983
 984		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
 985							   count, &data[i]);
 986
 987		if (status != 0)
 988			break;
 989	}
 990
 991out:
 992	return status;
 993}
 994
 995/**
 996 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 997 *  @hw: pointer to hardware structure
 998 *  @offset: offset within the EEPROM to be read
 999 *  @words: number of word(s)
1000 *  @data: read 16 bit word(s) from EEPROM
1001 *
1002 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1003 **/
1004static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1005					     u16 words, u16 *data)
1006{
1007	s32 status;
1008	u16 word_in;
1009	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1010	u16 i;
1011
1012	/* Prepare the EEPROM for reading  */
1013	status = ixgbe_acquire_eeprom(hw);
 
 
1014
1015	if (status == 0) {
1016		if (ixgbe_ready_eeprom(hw) != 0) {
1017			ixgbe_release_eeprom(hw);
1018			status = IXGBE_ERR_EEPROM;
1019		}
1020	}
1021
1022	if (status == 0) {
1023		for (i = 0; i < words; i++) {
1024			ixgbe_standby_eeprom(hw);
1025			/*
1026			 * Some SPI eeproms use the 8th address bit embedded
1027			 * in the opcode
1028			 */
1029			if ((hw->eeprom.address_bits == 8) &&
1030			    ((offset + i) >= 128))
1031				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1032
1033			/* Send the READ command (opcode + addr) */
1034			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1035						    IXGBE_EEPROM_OPCODE_BITS);
1036			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1037						    hw->eeprom.address_bits);
1038
1039			/* Read the data. */
1040			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1041			data[i] = (word_in >> 8) | (word_in << 8);
1042		}
1043
1044		/* End this read operation */
1045		ixgbe_release_eeprom(hw);
1046	}
1047
1048	return status;
1049}
1050
1051/**
1052 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1053 *  @hw: pointer to hardware structure
1054 *  @offset: offset within the EEPROM to be read
1055 *  @data: read 16 bit value from EEPROM
1056 *
1057 *  Reads 16 bit value from EEPROM through bit-bang method
1058 **/
1059s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1060				       u16 *data)
1061{
1062	s32 status;
1063
1064	hw->eeprom.ops.init_params(hw);
1065
1066	if (offset >= hw->eeprom.word_size) {
1067		status = IXGBE_ERR_EEPROM;
1068		goto out;
1069	}
1070
1071	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1072
1073out:
1074	return status;
1075}
1076
1077/**
1078 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1079 *  @hw: pointer to hardware structure
1080 *  @offset: offset of word in the EEPROM to read
1081 *  @words: number of word(s)
1082 *  @data: 16 bit word(s) from the EEPROM
1083 *
1084 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1085 **/
1086s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1087				   u16 words, u16 *data)
1088{
1089	u32 eerd;
1090	s32 status = 0;
1091	u32 i;
1092
1093	hw->eeprom.ops.init_params(hw);
1094
1095	if (words == 0) {
1096		status = IXGBE_ERR_INVALID_ARGUMENT;
1097		goto out;
1098	}
1099
1100	if (offset >= hw->eeprom.word_size) {
1101		status = IXGBE_ERR_EEPROM;
1102		goto out;
1103	}
1104
1105	for (i = 0; i < words; i++) {
1106		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1107		       IXGBE_EEPROM_RW_REG_START;
1108
1109		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1110		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1111
1112		if (status == 0) {
1113			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1114				   IXGBE_EEPROM_RW_REG_DATA);
1115		} else {
1116			hw_dbg(hw, "Eeprom read timed out\n");
1117			goto out;
1118		}
1119	}
1120out:
1121	return status;
1122}
1123
1124/**
1125 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1126 *  @hw: pointer to hardware structure
1127 *  @offset: offset within the EEPROM to be used as a scratch pad
1128 *
1129 *  Discover EEPROM page size by writing marching data at given offset.
1130 *  This function is called only when we are writing a new large buffer
1131 *  at given offset so the data would be overwritten anyway.
1132 **/
1133static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1134						 u16 offset)
1135{
1136	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1137	s32 status = 0;
1138	u16 i;
1139
1140	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1141		data[i] = i;
1142
1143	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1144	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1145					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1146	hw->eeprom.word_page_size = 0;
1147	if (status != 0)
1148		goto out;
1149
1150	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1151	if (status != 0)
1152		goto out;
1153
1154	/*
1155	 * When writing in burst more than the actual page size
1156	 * EEPROM address wraps around current page.
1157	 */
1158	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1159
1160	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1161	       hw->eeprom.word_page_size);
1162out:
1163	return status;
1164}
1165
1166/**
1167 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1168 *  @hw: pointer to hardware structure
1169 *  @offset: offset of  word in the EEPROM to read
1170 *  @data: word read from the EEPROM
1171 *
1172 *  Reads a 16 bit word from the EEPROM using the EERD register.
1173 **/
1174s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1175{
1176	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1177}
1178
1179/**
1180 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1181 *  @hw: pointer to hardware structure
1182 *  @offset: offset of  word in the EEPROM to write
1183 *  @words: number of words
1184 *  @data: word(s) write to the EEPROM
1185 *
1186 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1187 **/
1188s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1189				    u16 words, u16 *data)
1190{
1191	u32 eewr;
1192	s32 status = 0;
1193	u16 i;
1194
1195	hw->eeprom.ops.init_params(hw);
1196
1197	if (words == 0) {
1198		status = IXGBE_ERR_INVALID_ARGUMENT;
1199		goto out;
1200	}
1201
1202	if (offset >= hw->eeprom.word_size) {
1203		status = IXGBE_ERR_EEPROM;
1204		goto out;
1205	}
1206
1207	for (i = 0; i < words; i++) {
1208		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1209		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1210		       IXGBE_EEPROM_RW_REG_START;
1211
1212		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1213		if (status != 0) {
1214			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1215			goto out;
1216		}
1217
1218		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1219
1220		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221		if (status != 0) {
1222			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223			goto out;
1224		}
1225	}
1226
1227out:
1228	return status;
1229}
1230
1231/**
1232 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1233 *  @hw: pointer to hardware structure
1234 *  @offset: offset of  word in the EEPROM to write
1235 *  @data: word write to the EEPROM
1236 *
1237 *  Write a 16 bit word to the EEPROM using the EEWR register.
1238 **/
1239s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1240{
1241	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1242}
1243
1244/**
1245 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1246 *  @hw: pointer to hardware structure
1247 *  @ee_reg: EEPROM flag for polling
1248 *
1249 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1250 *  read or write is done respectively.
1251 **/
1252static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1253{
1254	u32 i;
1255	u32 reg;
1256	s32 status = IXGBE_ERR_EEPROM;
1257
1258	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1259		if (ee_reg == IXGBE_NVM_POLL_READ)
1260			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1261		else
1262			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1263
1264		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1265			status = 0;
1266			break;
1267		}
1268		udelay(5);
1269	}
1270	return status;
1271}
1272
1273/**
1274 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1275 *  @hw: pointer to hardware structure
1276 *
1277 *  Prepares EEPROM for access using bit-bang method. This function should
1278 *  be called before issuing a command to the EEPROM.
1279 **/
1280static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1281{
1282	s32 status = 0;
1283	u32 eec;
1284	u32 i;
1285
1286	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1287		status = IXGBE_ERR_SWFW_SYNC;
1288
1289	if (status == 0) {
1290		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1291
1292		/* Request EEPROM Access */
1293		eec |= IXGBE_EEC_REQ;
1294		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1295
1296		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1297			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1298			if (eec & IXGBE_EEC_GNT)
1299				break;
1300			udelay(5);
1301		}
1302
1303		/* Release if grant not acquired */
1304		if (!(eec & IXGBE_EEC_GNT)) {
1305			eec &= ~IXGBE_EEC_REQ;
1306			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1307			hw_dbg(hw, "Could not acquire EEPROM grant\n");
 
1308
1309			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1310			status = IXGBE_ERR_EEPROM;
1311		}
 
 
 
 
 
 
1312
1313		/* Setup EEPROM for Read/Write */
1314		if (status == 0) {
1315			/* Clear CS and SK */
1316			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1317			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1318			IXGBE_WRITE_FLUSH(hw);
1319			udelay(1);
1320		}
1321	}
1322	return status;
1323}
1324
1325/**
1326 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327 *  @hw: pointer to hardware structure
1328 *
1329 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330 **/
1331static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332{
1333	s32 status = IXGBE_ERR_EEPROM;
1334	u32 timeout = 2000;
1335	u32 i;
1336	u32 swsm;
1337
1338	/* Get SMBI software semaphore between device drivers first */
1339	for (i = 0; i < timeout; i++) {
1340		/*
1341		 * If the SMBI bit is 0 when we read it, then the bit will be
1342		 * set and we have the semaphore
1343		 */
1344		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1345		if (!(swsm & IXGBE_SWSM_SMBI)) {
1346			status = 0;
1347			break;
1348		}
1349		udelay(50);
1350	}
1351
1352	if (i == timeout) {
1353		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1354		       "not granted.\n");
1355		/*
1356		 * this release is particularly important because our attempts
1357		 * above to get the semaphore may have succeeded, and if there
1358		 * was a timeout, we should unconditionally clear the semaphore
1359		 * bits to free the driver to make progress
1360		 */
1361		ixgbe_release_eeprom_semaphore(hw);
1362
1363		udelay(50);
1364		/*
1365		 * one last try
1366		 * If the SMBI bit is 0 when we read it, then the bit will be
1367		 * set and we have the semaphore
1368		 */
1369		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370		if (!(swsm & IXGBE_SWSM_SMBI))
1371			status = 0;
 
 
1372	}
1373
1374	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1375	if (status == 0) {
1376		for (i = 0; i < timeout; i++) {
1377			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1378
1379			/* Set the SW EEPROM semaphore bit to request access */
1380			swsm |= IXGBE_SWSM_SWESMBI;
1381			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1382
1383			/*
1384			 * If we set the bit successfully then we got the
1385			 * semaphore.
1386			 */
1387			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1388			if (swsm & IXGBE_SWSM_SWESMBI)
1389				break;
1390
1391			udelay(50);
1392		}
1393
1394		/*
1395		 * Release semaphores and return error if SW EEPROM semaphore
1396		 * was not granted because we don't have access to the EEPROM
1397		 */
1398		if (i >= timeout) {
1399			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1400			       "not granted.\n");
1401			ixgbe_release_eeprom_semaphore(hw);
1402			status = IXGBE_ERR_EEPROM;
1403		}
1404	} else {
1405		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1406		       "not granted.\n");
1407	}
1408
1409	return status;
1410}
1411
1412/**
1413 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1414 *  @hw: pointer to hardware structure
1415 *
1416 *  This function clears hardware semaphore bits.
1417 **/
1418static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1419{
1420	u32 swsm;
1421
1422	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1423
1424	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1425	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1426	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1427	IXGBE_WRITE_FLUSH(hw);
1428}
1429
1430/**
1431 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1432 *  @hw: pointer to hardware structure
1433 **/
1434static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1435{
1436	s32 status = 0;
1437	u16 i;
1438	u8 spi_stat_reg;
1439
1440	/*
1441	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1442	 * EEPROM will signal that the command has been completed by clearing
1443	 * bit 0 of the internal status register.  If it's not cleared within
1444	 * 5 milliseconds, then error out.
1445	 */
1446	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1447		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1448		                            IXGBE_EEPROM_OPCODE_BITS);
1449		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1450		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1451			break;
1452
1453		udelay(5);
1454		ixgbe_standby_eeprom(hw);
1455	}
1456
1457	/*
1458	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1459	 * devices (and only 0-5mSec on 5V devices)
1460	 */
1461	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1462		hw_dbg(hw, "SPI EEPROM Status error\n");
1463		status = IXGBE_ERR_EEPROM;
1464	}
1465
1466	return status;
1467}
1468
1469/**
1470 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1471 *  @hw: pointer to hardware structure
1472 **/
1473static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1474{
1475	u32 eec;
1476
1477	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1478
1479	/* Toggle CS to flush commands */
1480	eec |= IXGBE_EEC_CS;
1481	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482	IXGBE_WRITE_FLUSH(hw);
1483	udelay(1);
1484	eec &= ~IXGBE_EEC_CS;
1485	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1486	IXGBE_WRITE_FLUSH(hw);
1487	udelay(1);
1488}
1489
1490/**
1491 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1492 *  @hw: pointer to hardware structure
1493 *  @data: data to send to the EEPROM
1494 *  @count: number of bits to shift out
1495 **/
1496static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1497                                        u16 count)
1498{
1499	u32 eec;
1500	u32 mask;
1501	u32 i;
1502
1503	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1504
1505	/*
1506	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1507	 * one bit at a time.  Determine the starting bit based on count
1508	 */
1509	mask = 0x01 << (count - 1);
1510
1511	for (i = 0; i < count; i++) {
1512		/*
1513		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1514		 * "1", and then raising and then lowering the clock (the SK
1515		 * bit controls the clock input to the EEPROM).  A "0" is
1516		 * shifted out to the EEPROM by setting "DI" to "0" and then
1517		 * raising and then lowering the clock.
1518		 */
1519		if (data & mask)
1520			eec |= IXGBE_EEC_DI;
1521		else
1522			eec &= ~IXGBE_EEC_DI;
1523
1524		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1525		IXGBE_WRITE_FLUSH(hw);
1526
1527		udelay(1);
1528
1529		ixgbe_raise_eeprom_clk(hw, &eec);
1530		ixgbe_lower_eeprom_clk(hw, &eec);
1531
1532		/*
1533		 * Shift mask to signify next bit of data to shift in to the
1534		 * EEPROM
1535		 */
1536		mask = mask >> 1;
1537	}
1538
1539	/* We leave the "DI" bit set to "0" when we leave this routine. */
1540	eec &= ~IXGBE_EEC_DI;
1541	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1542	IXGBE_WRITE_FLUSH(hw);
1543}
1544
1545/**
1546 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1547 *  @hw: pointer to hardware structure
 
1548 **/
1549static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1550{
1551	u32 eec;
1552	u32 i;
1553	u16 data = 0;
1554
1555	/*
1556	 * In order to read a register from the EEPROM, we need to shift
1557	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1558	 * the clock input to the EEPROM (setting the SK bit), and then reading
1559	 * the value of the "DO" bit.  During this "shifting in" process the
1560	 * "DI" bit should always be clear.
1561	 */
1562	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1563
1564	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1565
1566	for (i = 0; i < count; i++) {
1567		data = data << 1;
1568		ixgbe_raise_eeprom_clk(hw, &eec);
1569
1570		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1571
1572		eec &= ~(IXGBE_EEC_DI);
1573		if (eec & IXGBE_EEC_DO)
1574			data |= 1;
1575
1576		ixgbe_lower_eeprom_clk(hw, &eec);
1577	}
1578
1579	return data;
1580}
1581
1582/**
1583 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1584 *  @hw: pointer to hardware structure
1585 *  @eec: EEC register's current value
1586 **/
1587static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1588{
1589	/*
1590	 * Raise the clock input to the EEPROM
1591	 * (setting the SK bit), then delay
1592	 */
1593	*eec = *eec | IXGBE_EEC_SK;
1594	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1595	IXGBE_WRITE_FLUSH(hw);
1596	udelay(1);
1597}
1598
1599/**
1600 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1601 *  @hw: pointer to hardware structure
1602 *  @eecd: EECD's current value
1603 **/
1604static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1605{
1606	/*
1607	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1608	 * delay
1609	 */
1610	*eec = *eec & ~IXGBE_EEC_SK;
1611	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1612	IXGBE_WRITE_FLUSH(hw);
1613	udelay(1);
1614}
1615
1616/**
1617 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1618 *  @hw: pointer to hardware structure
1619 **/
1620static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1621{
1622	u32 eec;
1623
1624	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1625
1626	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1627	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1628
1629	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1630	IXGBE_WRITE_FLUSH(hw);
1631
1632	udelay(1);
1633
1634	/* Stop requesting EEPROM access */
1635	eec &= ~IXGBE_EEC_REQ;
1636	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1637
1638	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1639
1640	/*
1641	 * Delay before attempt to obtain semaphore again to allow FW
1642	 * access. semaphore_delay is in ms we need us for usleep_range
1643	 */
1644	usleep_range(hw->eeprom.semaphore_delay * 1000,
1645		     hw->eeprom.semaphore_delay * 2000);
1646}
1647
1648/**
1649 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1650 *  @hw: pointer to hardware structure
1651 **/
1652u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1653{
1654	u16 i;
1655	u16 j;
1656	u16 checksum = 0;
1657	u16 length = 0;
1658	u16 pointer = 0;
1659	u16 word = 0;
1660
1661	/* Include 0x0-0x3F in the checksum */
1662	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1663		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1664			hw_dbg(hw, "EEPROM read failed\n");
1665			break;
1666		}
1667		checksum += word;
1668	}
1669
1670	/* Include all data from pointers except for the fw pointer */
1671	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1672		hw->eeprom.ops.read(hw, i, &pointer);
 
 
 
 
 
 
 
1673
1674		/* Make sure the pointer seems valid */
1675		if (pointer != 0xFFFF && pointer != 0) {
1676			hw->eeprom.ops.read(hw, pointer, &length);
1677
1678			if (length != 0xFFFF && length != 0) {
1679				for (j = pointer+1; j <= pointer+length; j++) {
1680					hw->eeprom.ops.read(hw, j, &word);
1681					checksum += word;
1682				}
 
 
 
1683			}
 
1684		}
1685	}
1686
1687	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1688
1689	return checksum;
1690}
1691
1692/**
1693 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1694 *  @hw: pointer to hardware structure
1695 *  @checksum_val: calculated checksum
1696 *
1697 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1698 *  caller does not need checksum_val, the value can be NULL.
1699 **/
1700s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1701                                           u16 *checksum_val)
1702{
1703	s32 status;
1704	u16 checksum;
1705	u16 read_checksum = 0;
1706
1707	/*
1708	 * Read the first word from the EEPROM. If this times out or fails, do
1709	 * not continue or we could be in for a very long wait while every
1710	 * EEPROM read fails
1711	 */
1712	status = hw->eeprom.ops.read(hw, 0, &checksum);
 
 
 
 
1713
1714	if (status == 0) {
1715		checksum = hw->eeprom.ops.calc_checksum(hw);
1716
1717		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1718
1719		/*
1720		 * Verify read checksum from EEPROM is the same as
1721		 * calculated checksum
1722		 */
1723		if (read_checksum != checksum)
1724			status = IXGBE_ERR_EEPROM_CHECKSUM;
1725
1726		/* If the user cares, return the calculated checksum */
1727		if (checksum_val)
1728			*checksum_val = checksum;
1729	} else {
1730		hw_dbg(hw, "EEPROM read failed\n");
 
1731	}
1732
 
 
 
 
 
 
 
 
 
 
1733	return status;
1734}
1735
1736/**
1737 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1738 *  @hw: pointer to hardware structure
1739 **/
1740s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1741{
1742	s32 status;
1743	u16 checksum;
1744
1745	/*
1746	 * Read the first word from the EEPROM. If this times out or fails, do
1747	 * not continue or we could be in for a very long wait while every
1748	 * EEPROM read fails
1749	 */
1750	status = hw->eeprom.ops.read(hw, 0, &checksum);
1751
1752	if (status == 0) {
1753		checksum = hw->eeprom.ops.calc_checksum(hw);
1754		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1755					      checksum);
1756	} else {
1757		hw_dbg(hw, "EEPROM read failed\n");
 
1758	}
1759
1760	return status;
1761}
 
1762
1763/**
1764 *  ixgbe_validate_mac_addr - Validate MAC address
1765 *  @mac_addr: pointer to MAC address.
1766 *
1767 *  Tests a MAC address to ensure it is a valid Individual Address
1768 **/
1769s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1770{
1771	s32 status = 0;
1772
1773	/* Make sure it is not a multicast address */
1774	if (IXGBE_IS_MULTICAST(mac_addr))
1775		status = IXGBE_ERR_INVALID_MAC_ADDR;
1776	/* Not a broadcast address */
1777	else if (IXGBE_IS_BROADCAST(mac_addr))
1778		status = IXGBE_ERR_INVALID_MAC_ADDR;
1779	/* Reject the zero address */
1780	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1781	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1782		status = IXGBE_ERR_INVALID_MAC_ADDR;
1783
1784	return status;
1785}
1786
1787/**
1788 *  ixgbe_set_rar_generic - Set Rx address register
1789 *  @hw: pointer to hardware structure
1790 *  @index: Receive address register to write
1791 *  @addr: Address to put into receive address register
1792 *  @vmdq: VMDq "set" or "pool" index
1793 *  @enable_addr: set flag that address is active
1794 *
1795 *  Puts an ethernet address into a receive address register.
1796 **/
1797s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1798                          u32 enable_addr)
1799{
1800	u32 rar_low, rar_high;
1801	u32 rar_entries = hw->mac.num_rar_entries;
1802
1803	/* Make sure we are using a valid rar index range */
1804	if (index >= rar_entries) {
1805		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1806		return IXGBE_ERR_INVALID_ARGUMENT;
1807	}
1808
1809	/* setup VMDq pool selection before this RAR gets enabled */
1810	hw->mac.ops.set_vmdq(hw, index, vmdq);
1811
1812	/*
1813	 * HW expects these in little endian so we reverse the byte
1814	 * order from network order (big endian) to little endian
1815	 */
1816	rar_low = ((u32)addr[0] |
1817		   ((u32)addr[1] << 8) |
1818		   ((u32)addr[2] << 16) |
1819		   ((u32)addr[3] << 24));
1820	/*
1821	 * Some parts put the VMDq setting in the extra RAH bits,
1822	 * so save everything except the lower 16 bits that hold part
1823	 * of the address and the address valid bit.
1824	 */
1825	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1826	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1827	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1828
1829	if (enable_addr != 0)
1830		rar_high |= IXGBE_RAH_AV;
1831
 
 
 
 
1832	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 
1833	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1834
1835	return 0;
1836}
1837
1838/**
1839 *  ixgbe_clear_rar_generic - Remove Rx address register
1840 *  @hw: pointer to hardware structure
1841 *  @index: Receive address register to write
1842 *
1843 *  Clears an ethernet address from a receive address register.
1844 **/
1845s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1846{
1847	u32 rar_high;
1848	u32 rar_entries = hw->mac.num_rar_entries;
1849
1850	/* Make sure we are using a valid rar index range */
1851	if (index >= rar_entries) {
1852		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1853		return IXGBE_ERR_INVALID_ARGUMENT;
1854	}
1855
1856	/*
1857	 * Some parts put the VMDq setting in the extra RAH bits,
1858	 * so save everything except the lower 16 bits that hold part
1859	 * of the address and the address valid bit.
1860	 */
1861	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1862	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1863
 
 
 
 
 
 
1864	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1865	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1866
1867	/* clear VMDq pool/queue selection for this RAR */
1868	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1869
1870	return 0;
1871}
1872
1873/**
1874 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1875 *  @hw: pointer to hardware structure
1876 *
1877 *  Places the MAC address in receive address register 0 and clears the rest
1878 *  of the receive address registers. Clears the multicast table. Assumes
1879 *  the receiver is in reset when the routine is called.
1880 **/
1881s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1882{
1883	u32 i;
1884	u32 rar_entries = hw->mac.num_rar_entries;
1885
1886	/*
1887	 * If the current mac address is valid, assume it is a software override
1888	 * to the permanent address.
1889	 * Otherwise, use the permanent address from the eeprom.
1890	 */
1891	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1892	    IXGBE_ERR_INVALID_MAC_ADDR) {
1893		/* Get the MAC address from the RAR0 for later reference */
1894		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1895
1896		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897	} else {
1898		/* Setup the receive address. */
1899		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1901
1902		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
 
 
 
 
1903
1904		/*  clear VMDq pool/queue selection for RAR 0 */
1905		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906	}
1907	hw->addr_ctrl.overflow_promisc = 0;
1908
1909	hw->addr_ctrl.rar_used_count = 1;
1910
1911	/* Zero out the other receive addresses. */
1912	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913	for (i = 1; i < rar_entries; i++) {
1914		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916	}
1917
1918	/* Clear the MTA */
1919	hw->addr_ctrl.mta_in_use = 0;
1920	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921
1922	hw_dbg(hw, " Clearing MTA\n");
1923	for (i = 0; i < hw->mac.mcft_size; i++)
1924		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925
1926	if (hw->mac.ops.init_uta_tables)
1927		hw->mac.ops.init_uta_tables(hw);
1928
1929	return 0;
1930}
1931
1932/**
1933 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 *  @hw: pointer to hardware structure
1935 *  @mc_addr: the multicast address
1936 *
1937 *  Extracts the 12 bits, from a multicast address, to determine which
1938 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 *  incoming rx multicast addresses, to determine the bit-vector to check in
1940 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 *  to mc_filter_type.
1943 **/
1944static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945{
1946	u32 vector = 0;
1947
1948	switch (hw->mac.mc_filter_type) {
1949	case 0:   /* use bits [47:36] of the address */
1950		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951		break;
1952	case 1:   /* use bits [46:35] of the address */
1953		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954		break;
1955	case 2:   /* use bits [45:34] of the address */
1956		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957		break;
1958	case 3:   /* use bits [43:32] of the address */
1959		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960		break;
1961	default:  /* Invalid mc_filter_type */
1962		hw_dbg(hw, "MC filter type param set incorrectly\n");
1963		break;
1964	}
1965
1966	/* vector can only be 12-bits or boundary will be exceeded */
1967	vector &= 0xFFF;
1968	return vector;
1969}
1970
1971/**
1972 *  ixgbe_set_mta - Set bit-vector in multicast table
1973 *  @hw: pointer to hardware structure
1974 *  @hash_value: Multicast address hash value
1975 *
1976 *  Sets the bit-vector in the multicast table.
1977 **/
1978static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979{
1980	u32 vector;
1981	u32 vector_bit;
1982	u32 vector_reg;
1983
1984	hw->addr_ctrl.mta_in_use++;
1985
1986	vector = ixgbe_mta_vector(hw, mc_addr);
1987	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988
1989	/*
1990	 * The MTA is a register array of 128 32-bit registers. It is treated
1991	 * like an array of 4096 bits.  We want to set bit
1992	 * BitArray[vector_value]. So we figure out what register the bit is
1993	 * in, read it, OR in the new bit, then write back the new value.  The
1994	 * register is determined by the upper 7 bits of the vector value and
1995	 * the bit within that register are determined by the lower 5 bits of
1996	 * the value.
1997	 */
1998	vector_reg = (vector >> 5) & 0x7F;
1999	vector_bit = vector & 0x1F;
2000	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2001}
2002
2003/**
2004 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005 *  @hw: pointer to hardware structure
2006 *  @netdev: pointer to net device structure
2007 *
2008 *  The given list replaces any existing list. Clears the MC addrs from receive
2009 *  address registers and the multicast table. Uses unused receive address
2010 *  registers for the first multicast addresses, and hashes the rest into the
2011 *  multicast table.
2012 **/
2013s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014				      struct net_device *netdev)
2015{
2016	struct netdev_hw_addr *ha;
2017	u32 i;
2018
2019	/*
2020	 * Set the new number of MC addresses that we are being requested to
2021	 * use.
2022	 */
2023	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024	hw->addr_ctrl.mta_in_use = 0;
2025
2026	/* Clear mta_shadow */
2027	hw_dbg(hw, " Clearing MTA\n");
2028	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029
2030	/* Update mta shadow */
2031	netdev_for_each_mc_addr(ha, netdev) {
2032		hw_dbg(hw, " Adding the multicast addresses:\n");
2033		ixgbe_set_mta(hw, ha->addr);
2034	}
2035
2036	/* Enable mta */
2037	for (i = 0; i < hw->mac.mcft_size; i++)
2038		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039				      hw->mac.mta_shadow[i]);
2040
2041	if (hw->addr_ctrl.mta_in_use > 0)
2042		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044
2045	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046	return 0;
2047}
2048
2049/**
2050 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 *  @hw: pointer to hardware structure
2052 *
2053 *  Enables multicast address in RAR and the use of the multicast hash table.
2054 **/
2055s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056{
2057	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058
2059	if (a->mta_in_use > 0)
2060		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061		                hw->mac.mc_filter_type);
2062
2063	return 0;
2064}
2065
2066/**
2067 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 *  @hw: pointer to hardware structure
2069 *
2070 *  Disables multicast address in RAR and the use of the multicast hash table.
2071 **/
2072s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073{
2074	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075
2076	if (a->mta_in_use > 0)
2077		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078
2079	return 0;
2080}
2081
2082/**
2083 *  ixgbe_fc_enable_generic - Enable flow control
2084 *  @hw: pointer to hardware structure
2085 *
2086 *  Enable flow control according to the current settings.
2087 **/
2088s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089{
2090	s32 ret_val = 0;
2091	u32 mflcn_reg, fccfg_reg;
2092	u32 reg;
2093	u32 fcrtl, fcrth;
2094	int i;
2095
2096	/*
2097	 * Validate the water mark configuration for packet buffer 0.  Zero
2098	 * water marks indicate that the packet buffer was not configured
2099	 * and the watermarks for packet buffer 0 should always be configured.
2100	 */
2101	if (!hw->fc.low_water ||
2102	    !hw->fc.high_water[0] ||
2103	    !hw->fc.pause_time) {
2104		hw_dbg(hw, "Invalid water mark configuration\n");
2105		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106		goto out;
 
 
 
2107	}
2108
2109	/* Negotiate the fc mode to use */
2110	ixgbe_fc_autoneg(hw);
2111
2112	/* Disable any previous flow control settings */
2113	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2115
2116	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2118
2119	/*
2120	 * The possible values of fc.current_mode are:
2121	 * 0: Flow control is completely disabled
2122	 * 1: Rx flow control is enabled (we can receive pause frames,
2123	 *    but not send pause frames).
2124	 * 2: Tx flow control is enabled (we can send pause frames but
2125	 *    we do not support receiving pause frames).
2126	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127	 * other: Invalid.
2128	 */
2129	switch (hw->fc.current_mode) {
2130	case ixgbe_fc_none:
2131		/*
2132		 * Flow control is disabled by software override or autoneg.
2133		 * The code below will actually disable it in the HW.
2134		 */
2135		break;
2136	case ixgbe_fc_rx_pause:
2137		/*
2138		 * Rx Flow control is enabled and Tx Flow control is
2139		 * disabled by software override. Since there really
2140		 * isn't a way to advertise that we are capable of RX
2141		 * Pause ONLY, we will advertise that we support both
2142		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2143		 * disable the adapter's ability to send PAUSE frames.
2144		 */
2145		mflcn_reg |= IXGBE_MFLCN_RFCE;
2146		break;
2147	case ixgbe_fc_tx_pause:
2148		/*
2149		 * Tx Flow control is enabled, and Rx Flow control is
2150		 * disabled by software override.
2151		 */
2152		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153		break;
2154	case ixgbe_fc_full:
2155		/* Flow control (both Rx and Tx) is enabled by SW override. */
2156		mflcn_reg |= IXGBE_MFLCN_RFCE;
2157		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158		break;
2159	default:
2160		hw_dbg(hw, "Flow control param set incorrectly\n");
2161		ret_val = IXGBE_ERR_CONFIG;
2162		goto out;
2163		break;
2164	}
2165
2166	/* Set 802.3x based flow control settings. */
2167	mflcn_reg |= IXGBE_MFLCN_DPF;
2168	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170
2171	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2172
2173	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176		    hw->fc.high_water[i]) {
 
2177			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179		} else {
2180			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2181			/*
2182			 * In order to prevent Tx hangs when the internal Tx
2183			 * switch is enabled we must set the high water mark
2184			 * to the maximum FCRTH value.  This allows the Tx
2185			 * switch to function even under heavy Rx workloads.
 
2186			 */
2187			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2188		}
2189
2190		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191	}
2192
2193	/* Configure pause time (2 TCs per register) */
2194	reg = hw->fc.pause_time * 0x00010001;
2195	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197
2198	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199
2200out:
2201	return ret_val;
2202}
2203
2204/**
2205 *  ixgbe_negotiate_fc - Negotiate flow control
2206 *  @hw: pointer to hardware structure
2207 *  @adv_reg: flow control advertised settings
2208 *  @lp_reg: link partner's flow control settings
2209 *  @adv_sym: symmetric pause bit in advertisement
2210 *  @adv_asm: asymmetric pause bit in advertisement
2211 *  @lp_sym: symmetric pause bit in link partner advertisement
2212 *  @lp_asm: asymmetric pause bit in link partner advertisement
2213 *
2214 *  Find the intersection between advertised settings and link partner's
2215 *  advertised settings
2216 **/
2217static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2219{
2220	if ((!(adv_reg)) ||  (!(lp_reg)))
2221		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2222
2223	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2224		/*
2225		 * Now we need to check if the user selected Rx ONLY
2226		 * of pause frames.  In this case, we had to advertise
2227		 * FULL flow control because we could not advertise RX
2228		 * ONLY. Hence, we must now check to see if we need to
2229		 * turn OFF the TRANSMISSION of PAUSE frames.
2230		 */
2231		if (hw->fc.requested_mode == ixgbe_fc_full) {
2232			hw->fc.current_mode = ixgbe_fc_full;
2233			hw_dbg(hw, "Flow Control = FULL.\n");
2234		} else {
2235			hw->fc.current_mode = ixgbe_fc_rx_pause;
2236			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2237		}
2238	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240		hw->fc.current_mode = ixgbe_fc_tx_pause;
2241		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244		hw->fc.current_mode = ixgbe_fc_rx_pause;
2245		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246	} else {
2247		hw->fc.current_mode = ixgbe_fc_none;
2248		hw_dbg(hw, "Flow Control = NONE.\n");
2249	}
2250	return 0;
2251}
2252
2253/**
2254 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255 *  @hw: pointer to hardware structure
2256 *
2257 *  Enable flow control according on 1 gig fiber.
2258 **/
2259static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2260{
2261	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2263
2264	/*
2265	 * On multispeed fiber at 1g, bail out if
2266	 * - link is up but AN did not complete, or if
2267	 * - link is up and AN completed but timed out
2268	 */
2269
2270	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273		goto out;
2274
2275	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2277
2278	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280			       IXGBE_PCS1GANA_ASM_PAUSE,
2281			       IXGBE_PCS1GANA_SYM_PAUSE,
2282			       IXGBE_PCS1GANA_ASM_PAUSE);
2283
2284out:
2285	return ret_val;
2286}
2287
2288/**
2289 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290 *  @hw: pointer to hardware structure
2291 *
2292 *  Enable flow control according to IEEE clause 37.
2293 **/
2294static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2295{
2296	u32 links2, anlp1_reg, autoc_reg, links;
2297	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2298
2299	/*
2300	 * On backplane, bail out if
2301	 * - backplane autoneg was not completed, or if
2302	 * - we are 82599 and link partner is not AN enabled
2303	 */
2304	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306		goto out;
2307
2308	if (hw->mac.type == ixgbe_mac_82599EB) {
2309		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311			goto out;
2312	}
2313	/*
2314	 * Read the 10g AN autoc and LP ability registers and resolve
2315	 * local flow control settings accordingly
2316	 */
2317	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2319
2320	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2323
2324out:
2325	return ret_val;
2326}
2327
2328/**
2329 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330 *  @hw: pointer to hardware structure
2331 *
2332 *  Enable flow control according to IEEE clause 37.
2333 **/
2334static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2335{
2336	u16 technology_ability_reg = 0;
2337	u16 lp_technology_ability_reg = 0;
2338
2339	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340			     MDIO_MMD_AN,
2341			     &technology_ability_reg);
2342	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343			     MDIO_MMD_AN,
2344			     &lp_technology_ability_reg);
2345
2346	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347				  (u32)lp_technology_ability_reg,
2348				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2350}
2351
2352/**
2353 *  ixgbe_fc_autoneg - Configure flow control
2354 *  @hw: pointer to hardware structure
2355 *
2356 *  Compares our advertised flow control capabilities to those advertised by
2357 *  our link partner, and determines the proper flow control mode to use.
2358 **/
2359void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2360{
2361	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362	ixgbe_link_speed speed;
 
2363	bool link_up;
2364
2365	/*
2366	 * AN should have completed when the cable was plugged in.
2367	 * Look for reasons to bail out.  Bail out if:
2368	 * - FC autoneg is disabled, or if
2369	 * - link is not up.
2370	 *
2371	 * Since we're being called from an LSC, link is already known to be up.
2372	 * So use link_up_wait_to_complete=false.
2373	 */
2374	if (hw->fc.disable_fc_autoneg)
2375		goto out;
2376
2377	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378	if (!link_up)
2379		goto out;
2380
2381	switch (hw->phy.media_type) {
2382	/* Autoneg flow control on fiber adapters */
2383	case ixgbe_media_type_fiber:
2384		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385			ret_val = ixgbe_fc_autoneg_fiber(hw);
2386		break;
2387
2388	/* Autoneg flow control on backplane adapters */
2389	case ixgbe_media_type_backplane:
2390		ret_val = ixgbe_fc_autoneg_backplane(hw);
2391		break;
2392
2393	/* Autoneg flow control on copper adapters */
2394	case ixgbe_media_type_copper:
2395		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396			ret_val = ixgbe_fc_autoneg_copper(hw);
2397		break;
2398
2399	default:
2400		break;
2401	}
2402
2403out:
2404	if (ret_val == 0) {
2405		hw->fc.fc_was_autonegged = true;
2406	} else {
2407		hw->fc.fc_was_autonegged = false;
2408		hw->fc.current_mode = hw->fc.requested_mode;
2409	}
2410}
2411
2412/**
2413 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414 *  @hw: pointer to hardware structure
2415 *
2416 *  Disables PCI-Express master access and verifies there are no pending
2417 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418 *  bit hasn't caused the master requests to be disabled, else 0
2419 *  is returned signifying master requests disabled.
2420 **/
2421static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2422{
2423	struct ixgbe_adapter *adapter = hw->back;
2424	s32 status = 0;
2425	u32 i;
2426	u16 value;
2427
2428	/* Always set this bit to ensure any future transactions are blocked */
2429	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2430
2431	/* Exit if master requests are blocked */
2432	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2434
2435	/* Poll for master request bit to clear */
2436	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437		udelay(100);
2438		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439			goto out;
2440	}
2441
2442	/*
2443	 * Two consecutive resets are required via CTRL.RST per datasheet
2444	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2445	 * of this need.  The first reset prevents new master requests from
2446	 * being issued by our device.  We then must wait 1usec or more for any
2447	 * remaining completions from the PCIe bus to trickle in, and then reset
2448	 * again to clear out any effects they may have had on our device.
2449	 */
2450	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
 
2451	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2452
 
 
 
2453	/*
2454	 * Before proceeding, make sure that the PCIe block does not have
2455	 * transactions pending.
2456	 */
2457	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
 
2458		udelay(100);
2459		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460							 &value);
 
2461		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462			goto out;
2463	}
2464
2465	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2467
2468out:
2469	return status;
2470}
2471
2472/**
2473 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474 *  @hw: pointer to hardware structure
2475 *  @mask: Mask to specify which semaphore to acquire
2476 *
2477 *  Acquires the SWFW semaphore through the GSSR register for the specified
2478 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2479 **/
2480s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2481{
2482	u32 gssr;
2483	u32 swmask = mask;
2484	u32 fwmask = mask << 5;
2485	s32 timeout = 200;
 
2486
2487	while (timeout) {
2488		/*
2489		 * SW EEPROM semaphore bit is used for access to all
2490		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2491		 */
2492		if (ixgbe_get_eeprom_semaphore(hw))
2493			return IXGBE_ERR_SWFW_SYNC;
2494
2495		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496		if (!(gssr & (fwmask | swmask)))
2497			break;
2498
2499		/*
2500		 * Firmware currently using resource (fwmask) or other software
2501		 * thread currently using resource (swmask)
2502		 */
2503		ixgbe_release_eeprom_semaphore(hw);
2504		usleep_range(5000, 10000);
2505		timeout--;
2506	}
2507
2508	if (!timeout) {
2509		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510		return IXGBE_ERR_SWFW_SYNC;
2511	}
2512
2513	gssr |= swmask;
2514	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
 
2515
2516	ixgbe_release_eeprom_semaphore(hw);
2517	return 0;
2518}
2519
2520/**
2521 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2522 *  @hw: pointer to hardware structure
2523 *  @mask: Mask to specify which semaphore to release
2524 *
2525 *  Releases the SWFW semaphore through the GSSR register for the specified
2526 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2527 **/
2528void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2529{
2530	u32 gssr;
2531	u32 swmask = mask;
2532
2533	ixgbe_get_eeprom_semaphore(hw);
2534
2535	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536	gssr &= ~swmask;
2537	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2538
2539	ixgbe_release_eeprom_semaphore(hw);
2540}
2541
2542/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2544 *  @hw: pointer to hardware structure
2545 *
2546 *  Stops the receive data path and waits for the HW to internally
2547 *  empty the Rx security block.
2548 **/
2549s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2550{
2551#define IXGBE_MAX_SECRX_POLL 40
2552	int i;
2553	int secrxreg;
2554
2555	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561			break;
2562		else
2563			/* Use interrupt-safe sleep just in case */
2564			udelay(1000);
2565	}
2566
2567	/* For informational purposes only */
2568	if (i >= IXGBE_MAX_SECRX_POLL)
2569		hw_dbg(hw, "Rx unit being enabled before security "
2570		       "path fully disabled.  Continuing with init.\n");
2571
2572	return 0;
2573
2574}
2575
2576/**
2577 *  ixgbe_enable_rx_buff - Enables the receive data path
2578 *  @hw: pointer to hardware structure
2579 *
2580 *  Enables the receive data path
2581 **/
2582s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2583{
2584	int secrxreg;
2585
2586	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589	IXGBE_WRITE_FLUSH(hw);
2590
2591	return 0;
2592}
2593
2594/**
2595 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596 *  @hw: pointer to hardware structure
2597 *  @regval: register value to write to RXCTRL
2598 *
2599 *  Enables the Rx DMA unit
2600 **/
2601s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2602{
2603	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
 
 
 
2604
2605	return 0;
2606}
2607
2608/**
2609 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2610 *  @hw: pointer to hardware structure
2611 *  @index: led number to blink
2612 **/
2613s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2614{
2615	ixgbe_link_speed speed = 0;
2616	bool link_up = false;
2617	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 
 
 
 
 
2619
2620	/*
2621	 * Link must be up to auto-blink the LEDs;
2622	 * Force it if link is down.
2623	 */
2624	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2625
2626	if (!link_up) {
 
 
 
 
2627		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2628		autoc_reg |= IXGBE_AUTOC_FLU;
2629		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 
 
 
 
2630		IXGBE_WRITE_FLUSH(hw);
 
2631		usleep_range(10000, 20000);
2632	}
2633
2634	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2635	led_reg |= IXGBE_LED_BLINK(index);
2636	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2637	IXGBE_WRITE_FLUSH(hw);
2638
2639	return 0;
2640}
2641
2642/**
2643 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2644 *  @hw: pointer to hardware structure
2645 *  @index: led number to stop blinking
2646 **/
2647s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2648{
2649	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2650	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 
 
 
 
 
 
 
 
 
2651
2652	autoc_reg &= ~IXGBE_AUTOC_FLU;
2653	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2654	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 
 
 
2655
2656	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2657	led_reg &= ~IXGBE_LED_BLINK(index);
2658	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2659	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2660	IXGBE_WRITE_FLUSH(hw);
2661
2662	return 0;
2663}
2664
2665/**
2666 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2667 *  @hw: pointer to hardware structure
2668 *  @san_mac_offset: SAN MAC address offset
2669 *
2670 *  This function will read the EEPROM location for the SAN MAC address
2671 *  pointer, and returns the value at that location.  This is used in both
2672 *  get and set mac_addr routines.
2673 **/
2674static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2675                                        u16 *san_mac_offset)
2676{
 
 
2677	/*
2678	 * First read the EEPROM pointer to see if the MAC addresses are
2679	 * available.
2680	 */
2681	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
 
 
 
 
2682
2683	return 0;
2684}
2685
2686/**
2687 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2688 *  @hw: pointer to hardware structure
2689 *  @san_mac_addr: SAN MAC address
2690 *
2691 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2692 *  per-port, so set_lan_id() must be called before reading the addresses.
2693 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2694 *  upon for non-SFP connections, so we must call it here.
2695 **/
2696s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2697{
2698	u16 san_mac_data, san_mac_offset;
2699	u8 i;
 
2700
2701	/*
2702	 * First read the EEPROM pointer to see if the MAC addresses are
2703	 * available.  If they're not, no point in calling set_lan_id() here.
2704	 */
2705	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2706
2707	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2708		/*
2709		 * No addresses available in this EEPROM.  It's not an
2710		 * error though, so just wipe the local address and return.
2711		 */
2712		for (i = 0; i < 6; i++)
2713			san_mac_addr[i] = 0xFF;
2714
2715		goto san_mac_addr_out;
2716	}
2717
2718	/* make sure we know which port we need to program */
2719	hw->mac.ops.set_lan_id(hw);
2720	/* apply the port offset to the address offset */
2721	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2722	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2723	for (i = 0; i < 3; i++) {
2724		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
 
 
 
 
 
 
2725		san_mac_addr[i * 2] = (u8)(san_mac_data);
2726		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2727		san_mac_offset++;
2728	}
 
2729
2730san_mac_addr_out:
2731	return 0;
 
 
 
 
 
2732}
2733
2734/**
2735 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2736 *  @hw: pointer to hardware structure
2737 *
2738 *  Read PCIe configuration space, and get the MSI-X vector count from
2739 *  the capabilities table.
2740 **/
2741u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2742{
2743	struct ixgbe_adapter *adapter = hw->back;
2744	u16 msix_count = 1;
2745	u16 max_msix_count;
2746	u16 pcie_offset;
2747
2748	switch (hw->mac.type) {
2749	case ixgbe_mac_82598EB:
2750		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2751		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2752		break;
2753	case ixgbe_mac_82599EB:
2754	case ixgbe_mac_X540:
 
 
 
2755		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2756		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2757		break;
2758	default:
2759		return msix_count;
2760	}
2761
2762	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
 
 
2763	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2764
2765	/* MSI-X count is zero-based in HW */
2766	msix_count++;
2767
2768	if (msix_count > max_msix_count)
2769		msix_count = max_msix_count;
2770
2771	return msix_count;
2772}
2773
2774/**
2775 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2776 *  @hw: pointer to hardware struct
2777 *  @rar: receive address register index to disassociate
2778 *  @vmdq: VMDq pool index to remove from the rar
2779 **/
2780s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2781{
2782	u32 mpsar_lo, mpsar_hi;
2783	u32 rar_entries = hw->mac.num_rar_entries;
2784
2785	/* Make sure we are using a valid rar index range */
2786	if (rar >= rar_entries) {
2787		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2788		return IXGBE_ERR_INVALID_ARGUMENT;
2789	}
2790
2791	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2792	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2793
 
 
 
2794	if (!mpsar_lo && !mpsar_hi)
2795		goto done;
2796
2797	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2798		if (mpsar_lo) {
2799			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2800			mpsar_lo = 0;
2801		}
2802		if (mpsar_hi) {
2803			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2804			mpsar_hi = 0;
2805		}
2806	} else if (vmdq < 32) {
2807		mpsar_lo &= ~(1 << vmdq);
2808		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2809	} else {
2810		mpsar_hi &= ~(1 << (vmdq - 32));
2811		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2812	}
2813
2814	/* was that the last pool using this rar? */
2815	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
 
2816		hw->mac.ops.clear_rar(hw, rar);
2817done:
2818	return 0;
2819}
2820
2821/**
2822 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2823 *  @hw: pointer to hardware struct
2824 *  @rar: receive address register index to associate with a VMDq index
2825 *  @vmdq: VMDq pool index
2826 **/
2827s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2828{
2829	u32 mpsar;
2830	u32 rar_entries = hw->mac.num_rar_entries;
2831
2832	/* Make sure we are using a valid rar index range */
2833	if (rar >= rar_entries) {
2834		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2835		return IXGBE_ERR_INVALID_ARGUMENT;
2836	}
2837
2838	if (vmdq < 32) {
2839		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2840		mpsar |= 1 << vmdq;
2841		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2842	} else {
2843		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2844		mpsar |= 1 << (vmdq - 32);
2845		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2846	}
2847	return 0;
2848}
2849
2850/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2852 *  @hw: pointer to hardware structure
2853 **/
2854s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2855{
2856	int i;
2857
2858	for (i = 0; i < 128; i++)
2859		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2860
2861	return 0;
2862}
2863
2864/**
2865 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2866 *  @hw: pointer to hardware structure
2867 *  @vlan: VLAN id to write to VLAN filter
 
 
2868 *
2869 *  return the VLVF index where this VLAN id should be placed
2870 *
2871 **/
2872static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2873{
2874	u32 bits = 0;
2875	u32 first_empty_slot = 0;
2876	s32 regindex;
2877
2878	/* short cut the special case */
2879	if (vlan == 0)
2880		return 0;
2881
2882	/*
2883	  * Search for the vlan id in the VLVF entries. Save off the first empty
2884	  * slot found along the way
2885	  */
2886	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
 
 
 
 
 
 
 
 
 
 
2887		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2888		if (!bits && !(first_empty_slot))
 
 
2889			first_empty_slot = regindex;
2890		else if ((bits & 0x0FFF) == vlan)
2891			break;
2892	}
2893
2894	/*
2895	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2896	  * in the VLVF. Else use the first empty VLVF register for this
2897	  * vlan id.
2898	  */
2899	if (regindex >= IXGBE_VLVF_ENTRIES) {
2900		if (first_empty_slot)
2901			regindex = first_empty_slot;
2902		else {
2903			hw_dbg(hw, "No space in VLVF.\n");
2904			regindex = IXGBE_ERR_NO_SPACE;
2905		}
2906	}
2907
2908	return regindex;
2909}
2910
2911/**
2912 *  ixgbe_set_vfta_generic - Set VLAN filter table
2913 *  @hw: pointer to hardware structure
2914 *  @vlan: VLAN id to write to VLAN filter
2915 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2916 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 
2917 *
2918 *  Turn on/off specified VLAN in the VLAN filter table.
2919 **/
2920s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2921                           bool vlan_on)
2922{
2923	s32 regindex;
2924	u32 bitindex;
2925	u32 vfta;
2926	u32 bits;
2927	u32 vt;
2928	u32 targetbit;
2929	bool vfta_changed = false;
2930
2931	if (vlan > 4095)
2932		return IXGBE_ERR_PARAM;
2933
2934	/*
2935	 * this is a 2 part operation - first the VFTA, then the
2936	 * VLVF and VLVFB if VT Mode is set
2937	 * We don't write the VFTA until we know the VLVF part succeeded.
2938	 */
2939
2940	/* Part 1
2941	 * The VFTA is a bitstring made up of 128 32-bit registers
2942	 * that enable the particular VLAN id, much like the MTA:
2943	 *    bits[11-5]: which register
2944	 *    bits[4-0]:  which bit in the register
2945	 */
2946	regindex = (vlan >> 5) & 0x7F;
2947	bitindex = vlan & 0x1F;
2948	targetbit = (1 << bitindex);
2949	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2950
2951	if (vlan_on) {
2952		if (!(vfta & targetbit)) {
2953			vfta |= targetbit;
2954			vfta_changed = true;
2955		}
2956	} else {
2957		if ((vfta & targetbit)) {
2958			vfta &= ~targetbit;
2959			vfta_changed = true;
2960		}
2961	}
2962
2963	/* Part 2
2964	 * If VT Mode is set
2965	 *   Either vlan_on
2966	 *     make sure the vlan is in VLVF
2967	 *     set the vind bit in the matching VLVFB
2968	 *   Or !vlan_on
2969	 *     clear the pool bit and possibly the vind
2970	 */
2971	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2972	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2973		s32 vlvf_index;
2974
2975		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2976		if (vlvf_index < 0)
2977			return vlvf_index;
2978
2979		if (vlan_on) {
2980			/* set the pool bit */
2981			if (vind < 32) {
2982				bits = IXGBE_READ_REG(hw,
2983						IXGBE_VLVFB(vlvf_index*2));
2984				bits |= (1 << vind);
2985				IXGBE_WRITE_REG(hw,
2986						IXGBE_VLVFB(vlvf_index*2),
2987						bits);
2988			} else {
2989				bits = IXGBE_READ_REG(hw,
2990						IXGBE_VLVFB((vlvf_index*2)+1));
2991				bits |= (1 << (vind-32));
2992				IXGBE_WRITE_REG(hw,
2993						IXGBE_VLVFB((vlvf_index*2)+1),
2994						bits);
2995			}
2996		} else {
2997			/* clear the pool bit */
2998			if (vind < 32) {
2999				bits = IXGBE_READ_REG(hw,
3000						IXGBE_VLVFB(vlvf_index*2));
3001				bits &= ~(1 << vind);
3002				IXGBE_WRITE_REG(hw,
3003						IXGBE_VLVFB(vlvf_index*2),
3004						bits);
3005				bits |= IXGBE_READ_REG(hw,
3006						IXGBE_VLVFB((vlvf_index*2)+1));
3007			} else {
3008				bits = IXGBE_READ_REG(hw,
3009						IXGBE_VLVFB((vlvf_index*2)+1));
3010				bits &= ~(1 << (vind-32));
3011				IXGBE_WRITE_REG(hw,
3012						IXGBE_VLVFB((vlvf_index*2)+1),
3013						bits);
3014				bits |= IXGBE_READ_REG(hw,
3015						IXGBE_VLVFB(vlvf_index*2));
3016			}
3017		}
3018
3019		/*
3020		 * If there are still bits set in the VLVFB registers
3021		 * for the VLAN ID indicated we need to see if the
3022		 * caller is requesting that we clear the VFTA entry bit.
3023		 * If the caller has requested that we clear the VFTA
3024		 * entry bit but there are still pools/VFs using this VLAN
3025		 * ID entry then ignore the request.  We're not worried
3026		 * about the case where we're turning the VFTA VLAN ID
3027		 * entry bit on, only when requested to turn it off as
3028		 * there may be multiple pools and/or VFs using the
3029		 * VLAN ID entry.  In that case we cannot clear the
3030		 * VFTA bit until all pools/VFs using that VLAN ID have also
3031		 * been cleared.  This will be indicated by "bits" being
3032		 * zero.
3033		 */
3034		if (bits) {
3035			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3036					(IXGBE_VLVF_VIEN | vlan));
3037			if (!vlan_on) {
3038				/* someone wants to clear the vfta entry
3039				 * but some pools/VFs are still using it.
3040				 * Ignore it. */
3041				vfta_changed = false;
3042			}
3043		}
3044		else
3045			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3046	}
3047
3048	if (vfta_changed)
3049		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3050
3051	return 0;
3052}
3053
3054/**
3055 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3056 *  @hw: pointer to hardware structure
3057 *
3058 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3059 **/
3060s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3061{
3062	u32 offset;
3063
3064	for (offset = 0; offset < hw->mac.vft_size; offset++)
3065		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3066
3067	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3068		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3069		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3070		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3071	}
3072
3073	return 0;
3074}
3075
3076/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3077 *  ixgbe_check_mac_link_generic - Determine link and speed status
3078 *  @hw: pointer to hardware structure
3079 *  @speed: pointer to link speed
3080 *  @link_up: true when link is up
3081 *  @link_up_wait_to_complete: bool used to wait for link up or not
3082 *
3083 *  Reads the links register to determine if link is up and the current speed
3084 **/
3085s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3086				 bool *link_up, bool link_up_wait_to_complete)
3087{
 
3088	u32 links_reg, links_orig;
3089	u32 i;
3090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	/* clear the old state */
3092	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3093
3094	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3095
3096	if (links_orig != links_reg) {
3097		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3098		       links_orig, links_reg);
3099	}
3100
3101	if (link_up_wait_to_complete) {
3102		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3103			if (links_reg & IXGBE_LINKS_UP) {
3104				*link_up = true;
3105				break;
3106			} else {
3107				*link_up = false;
3108			}
3109			msleep(100);
3110			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3111		}
3112	} else {
3113		if (links_reg & IXGBE_LINKS_UP)
 
 
 
 
 
 
 
 
 
 
 
 
 
3114			*link_up = true;
3115		else
3116			*link_up = false;
 
3117	}
3118
3119	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3120	    IXGBE_LINKS_SPEED_10G_82599)
3121		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3122	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3123		 IXGBE_LINKS_SPEED_1G_82599)
 
 
 
 
3124		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3125	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3126		 IXGBE_LINKS_SPEED_100_82599)
3127		*speed = IXGBE_LINK_SPEED_100_FULL;
3128	else
 
 
 
 
 
 
 
 
 
 
 
 
3129		*speed = IXGBE_LINK_SPEED_UNKNOWN;
 
3130
3131	return 0;
3132}
3133
3134/**
3135 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3136 *  the EEPROM
3137 *  @hw: pointer to hardware structure
3138 *  @wwnn_prefix: the alternative WWNN prefix
3139 *  @wwpn_prefix: the alternative WWPN prefix
3140 *
3141 *  This function will read the EEPROM from the alternative SAN MAC address
3142 *  block to check the support for the alternative WWNN/WWPN prefix support.
3143 **/
3144s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3145                                        u16 *wwpn_prefix)
3146{
3147	u16 offset, caps;
3148	u16 alt_san_mac_blk_offset;
3149
3150	/* clear output first */
3151	*wwnn_prefix = 0xFFFF;
3152	*wwpn_prefix = 0xFFFF;
3153
3154	/* check if alternative SAN MAC is supported */
3155	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3156	                    &alt_san_mac_blk_offset);
 
3157
3158	if ((alt_san_mac_blk_offset == 0) ||
3159	    (alt_san_mac_blk_offset == 0xFFFF))
3160		goto wwn_prefix_out;
3161
3162	/* check capability in alternative san mac address block */
3163	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3164	hw->eeprom.ops.read(hw, offset, &caps);
 
3165	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3166		goto wwn_prefix_out;
3167
3168	/* get the corresponding prefix for WWNN/WWPN */
3169	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3170	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
 
3171
3172	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3173	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
 
 
 
3174
3175wwn_prefix_out:
 
3176	return 0;
3177}
3178
3179/**
3180 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3181 *  @hw: pointer to hardware structure
3182 *  @enable: enable or disable switch for anti-spoofing
3183 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3184 *
3185 **/
3186void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3187{
3188	int j;
3189	int pf_target_reg = pf >> 3;
3190	int pf_target_shift = pf % 8;
3191	u32 pfvfspoof = 0;
3192
3193	if (hw->mac.type == ixgbe_mac_82598EB)
3194		return;
3195
 
3196	if (enable)
3197		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3198
3199	/*
3200	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3201	 * MAC anti-spoof enables in each register array element.
3202	 */
3203	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3204		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3205
3206	/* If not enabling anti-spoofing then done */
3207	if (!enable)
3208		return;
3209
3210	/*
3211	 * The PF should be allowed to spoof so that it can support
3212	 * emulation mode NICs.  Reset the bit assigned to the PF
3213	 */
3214	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3215	pfvfspoof ^= (1 << pf_target_shift);
3216	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3217}
3218
3219/**
3220 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3221 *  @hw: pointer to hardware structure
3222 *  @enable: enable or disable switch for VLAN anti-spoofing
3223 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3224 *
3225 **/
3226void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3227{
3228	int vf_target_reg = vf >> 3;
3229	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3230	u32 pfvfspoof;
3231
3232	if (hw->mac.type == ixgbe_mac_82598EB)
3233		return;
3234
3235	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3236	if (enable)
3237		pfvfspoof |= (1 << vf_target_shift);
3238	else
3239		pfvfspoof &= ~(1 << vf_target_shift);
3240	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3241}
3242
3243/**
3244 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3245 *  @hw: pointer to hardware structure
3246 *  @device_caps: the EEPROM word with the extra device capabilities
3247 *
3248 *  This function will read the EEPROM location for the device capabilities,
3249 *  and return the word through device_caps.
3250 **/
3251s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3252{
3253	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3254
3255	return 0;
3256}
3257
3258/**
3259 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3260 * @hw: pointer to hardware structure
3261 * @num_pb: number of packet buffers to allocate
3262 * @headroom: reserve n KB of headroom
3263 * @strategy: packet buffer allocation strategy
3264 **/
3265void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3266			     int num_pb,
3267			     u32 headroom,
3268			     int strategy)
3269{
3270	u32 pbsize = hw->mac.rx_pb_size;
3271	int i = 0;
3272	u32 rxpktsize, txpktsize, txpbthresh;
3273
3274	/* Reserve headroom */
3275	pbsize -= headroom;
3276
3277	if (!num_pb)
3278		num_pb = 1;
3279
3280	/* Divide remaining packet buffer space amongst the number
3281	 * of packet buffers requested using supplied strategy.
3282	 */
3283	switch (strategy) {
3284	case (PBA_STRATEGY_WEIGHTED):
3285		/* pba_80_48 strategy weight first half of packet buffer with
3286		 * 5/8 of the packet buffer space.
3287		 */
3288		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3289		pbsize -= rxpktsize * (num_pb / 2);
3290		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3291		for (; i < (num_pb / 2); i++)
3292			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3293		/* Fall through to configure remaining packet buffers */
3294	case (PBA_STRATEGY_EQUAL):
3295		/* Divide the remaining Rx packet buffer evenly among the TCs */
3296		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3297		for (; i < num_pb; i++)
3298			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3299		break;
3300	default:
3301		break;
3302	}
3303
3304	/*
3305	 * Setup Tx packet buffer and threshold equally for all TCs
3306	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3307	 * 10 since the largest packet we support is just over 9K.
3308	 */
3309	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3310	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3311	for (i = 0; i < num_pb; i++) {
3312		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3313		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3314	}
3315
3316	/* Clear unused TCs, if any, to zero buffer size*/
3317	for (; i < IXGBE_MAX_PB; i++) {
3318		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3319		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3320		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3321	}
3322}
3323
3324/**
3325 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3326 *  @buffer: pointer to EEPROM
3327 *  @length: size of EEPROM to calculate a checksum for
 
3328 *  Calculates the checksum for some buffer on a specified length.  The
3329 *  checksum calculated is returned.
3330 **/
3331static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3332{
3333	u32 i;
3334	u8 sum = 0;
3335
3336	if (!buffer)
3337		return 0;
3338
3339	for (i = 0; i < length; i++)
3340		sum += buffer[i];
3341
3342	return (u8) (0 - sum);
3343}
3344
3345/**
3346 *  ixgbe_host_interface_command - Issue command to manageability block
3347 *  @hw: pointer to the HW structure
3348 *  @buffer: contains the command to write and where the return status will
3349 *           be placed
3350 *  @length: length of buffer, must be multiple of 4 bytes
 
 
 
 
 
 
3351 *
3352 *  Communicates with the manageability block.  On success return 0
3353 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3354 **/
3355static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3356					u32 length)
3357{
3358	u32 hicr, i, bi;
3359	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3360	u8 buf_len, dword_len;
3361
3362	s32 ret_val = 0;
 
 
 
3363
3364	if (length == 0 || length & 0x3 ||
3365	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3366		hw_dbg(hw, "Buffer length failure.\n");
3367		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3368		goto out;
3369	}
3370
3371	/* Check that the host interface is enabled. */
3372	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3373	if ((hicr & IXGBE_HICR_EN) == 0) {
3374		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3375		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3376		goto out;
 
 
 
 
 
3377	}
3378
3379	/* Calculate length in DWORDs */
3380	dword_len = length >> 2;
3381
3382	/*
3383	 * The device driver writes the relevant command block
3384	 * into the ram area.
3385	 */
3386	for (i = 0; i < dword_len; i++)
3387		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3388				      i, cpu_to_le32(buffer[i]));
3389
3390	/* Setting this bit tells the ARC that a new command is pending. */
3391	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3392
3393	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3394		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3395		if (!(hicr & IXGBE_HICR_C))
3396			break;
3397		usleep_range(1000, 2000);
3398	}
3399
3400	/* Check command successful completion. */
3401	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3402	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3403		hw_dbg(hw, "Command has failed with no status valid.\n");
3404		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3405		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406	}
 
 
 
 
 
 
 
 
 
 
 
3407
3408	/* Calculate length in DWORDs */
3409	dword_len = hdr_size >> 2;
3410
3411	/* first pull in the header so we know the buffer length */
3412	for (bi = 0; bi < dword_len; bi++) {
3413		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3414		le32_to_cpus(&buffer[bi]);
3415	}
3416
3417	/* If there is any thing in data position pull it in */
3418	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3419	if (buf_len == 0)
3420		goto out;
3421
3422	if (length < (buf_len + hdr_size)) {
3423		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3424		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3425		goto out;
3426	}
3427
3428	/* Calculate length in DWORDs, add 3 for odd lengths */
3429	dword_len = (buf_len + 3) >> 2;
3430
3431	/* Pull in the rest of the buffer (bi is where we left off)*/
3432	for (; bi <= dword_len; bi++) {
3433		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3434		le32_to_cpus(&buffer[bi]);
3435	}
3436
3437out:
3438	return ret_val;
 
 
3439}
3440
3441/**
3442 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3443 *  @hw: pointer to the HW structure
3444 *  @maj: driver version major number
3445 *  @min: driver version minor number
3446 *  @build: driver version build number
3447 *  @sub: driver version sub build number
 
 
3448 *
3449 *  Sends driver version number to firmware through the manageability
3450 *  block.  On success return 0
3451 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3452 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3453 **/
3454s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3455				 u8 build, u8 sub)
 
3456{
3457	struct ixgbe_hic_drv_info fw_cmd;
3458	int i;
3459	s32 ret_val = 0;
3460
3461	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3462		ret_val = IXGBE_ERR_SWFW_SYNC;
3463		goto out;
3464	}
3465
3466	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3467	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3468	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3469	fw_cmd.port_num = (u8)hw->bus.func;
3470	fw_cmd.ver_maj = maj;
3471	fw_cmd.ver_min = min;
3472	fw_cmd.ver_build = build;
3473	fw_cmd.ver_sub = sub;
3474	fw_cmd.hdr.checksum = 0;
 
 
3475	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3476				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3477	fw_cmd.pad = 0;
3478	fw_cmd.pad2 = 0;
3479
3480	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3481		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3482						       sizeof(fw_cmd));
 
 
3483		if (ret_val != 0)
3484			continue;
3485
3486		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3487		    FW_CEM_RESP_STATUS_SUCCESS)
3488			ret_val = 0;
3489		else
3490			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3491
3492		break;
3493	}
3494
3495	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3496out:
3497	return ret_val;
3498}
3499
3500/**
3501 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3502 * @hw: pointer to the hardware structure
3503 *
3504 * The 82599 and x540 MACs can experience issues if TX work is still pending
3505 * when a reset occurs.  This function prevents this by flushing the PCIe
3506 * buffers on the system.
3507 **/
3508void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3509{
3510	u32 gcr_ext, hlreg0;
 
3511
3512	/*
3513	 * If double reset is not requested then all transactions should
3514	 * already be clear and as such there is no work to do
3515	 */
3516	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3517		return;
3518
3519	/*
3520	 * Set loopback enable to prevent any transmits from being sent
3521	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3522	 * has already been cleared.
3523	 */
3524	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3525	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3528	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3529	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3530			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3531
3532	/* Flush all writes and allow 20usec for all transactions to clear */
3533	IXGBE_WRITE_FLUSH(hw);
3534	udelay(20);
3535
3536	/* restore previous register values */
3537	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3538	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3539}
3540
3541static const u8 ixgbe_emc_temp_data[4] = {
3542	IXGBE_EMC_INTERNAL_DATA,
3543	IXGBE_EMC_DIODE1_DATA,
3544	IXGBE_EMC_DIODE2_DATA,
3545	IXGBE_EMC_DIODE3_DATA
3546};
3547static const u8 ixgbe_emc_therm_limit[4] = {
3548	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3549	IXGBE_EMC_DIODE1_THERM_LIMIT,
3550	IXGBE_EMC_DIODE2_THERM_LIMIT,
3551	IXGBE_EMC_DIODE3_THERM_LIMIT
3552};
3553
3554/**
3555 *  ixgbe_get_ets_data - Extracts the ETS bit data
3556 *  @hw: pointer to hardware structure
3557 *  @ets_cfg: extected ETS data
3558 *  @ets_offset: offset of ETS data
3559 *
3560 *  Returns error code.
3561 **/
3562static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3563			      u16 *ets_offset)
3564{
3565	s32 status = 0;
3566
3567	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3568	if (status)
3569		goto out;
3570
3571	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3572		status = IXGBE_NOT_IMPLEMENTED;
3573		goto out;
3574	}
3575
3576	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3577	if (status)
3578		goto out;
3579
3580	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3581		status = IXGBE_NOT_IMPLEMENTED;
3582		goto out;
3583	}
3584
3585out:
3586	return status;
3587}
3588
3589/**
3590 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3591 *  @hw: pointer to hardware structure
3592 *
3593 *  Returns the thermal sensor data structure
3594 **/
3595s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3596{
3597	s32 status = 0;
3598	u16 ets_offset;
3599	u16 ets_cfg;
3600	u16 ets_sensor;
3601	u8  num_sensors;
3602	u8  i;
3603	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3604
3605	/* Only support thermal sensors attached to physical port 0 */
3606	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3607		status = IXGBE_NOT_IMPLEMENTED;
3608		goto out;
3609	}
3610
3611	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3612	if (status)
3613		goto out;
3614
3615	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3616	if (num_sensors > IXGBE_MAX_SENSORS)
3617		num_sensors = IXGBE_MAX_SENSORS;
3618
3619	for (i = 0; i < num_sensors; i++) {
3620		u8  sensor_index;
3621		u8  sensor_location;
3622
3623		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3624					     &ets_sensor);
3625		if (status)
3626			goto out;
3627
3628		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3629				IXGBE_ETS_DATA_INDEX_SHIFT);
3630		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3631				   IXGBE_ETS_DATA_LOC_SHIFT);
3632
3633		if (sensor_location != 0) {
3634			status = hw->phy.ops.read_i2c_byte(hw,
3635					ixgbe_emc_temp_data[sensor_index],
3636					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3637					&data->sensor[i].temp);
3638			if (status)
3639				goto out;
3640		}
3641	}
3642out:
3643	return status;
3644}
3645
3646/**
3647 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3648 * @hw: pointer to hardware structure
3649 *
3650 * Inits the thermal sensor thresholds according to the NVM map
3651 * and save off the threshold and location values into mac.thermal_sensor_data
3652 **/
3653s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3654{
3655	s32 status = 0;
3656	u16 ets_offset;
3657	u16 ets_cfg;
3658	u16 ets_sensor;
3659	u8  low_thresh_delta;
3660	u8  num_sensors;
3661	u8  therm_limit;
3662	u8  i;
3663	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3664
3665	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3666
3667	/* Only support thermal sensors attached to physical port 0 */
3668	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3669		status = IXGBE_NOT_IMPLEMENTED;
3670		goto out;
3671	}
3672
3673	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3674	if (status)
3675		goto out;
3676
3677	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3678			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3679	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3680	if (num_sensors > IXGBE_MAX_SENSORS)
3681		num_sensors = IXGBE_MAX_SENSORS;
3682
3683	for (i = 0; i < num_sensors; i++) {
3684		u8  sensor_index;
3685		u8  sensor_location;
3686
3687		hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3688		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3689				IXGBE_ETS_DATA_INDEX_SHIFT);
3690		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3691				   IXGBE_ETS_DATA_LOC_SHIFT);
 
 
 
 
3692		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3693
3694		hw->phy.ops.write_i2c_byte(hw,
3695			ixgbe_emc_therm_limit[sensor_index],
3696			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3697
3698		if (sensor_location == 0)
3699			continue;
3700
3701		data->sensor[i].location = sensor_location;
3702		data->sensor[i].caution_thresh = therm_limit;
3703		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3704	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3705out:
 
 
 
 
 
 
 
 
 
3706	return status;
3707}
3708