Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Altera Triple-Speed Ethernet MAC driver
   3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
   4 *
   5 * Contributors:
   6 *   Dalon Westergreen
   7 *   Thomas Chou
   8 *   Ian Abbott
   9 *   Yuriy Kozlov
  10 *   Tobias Klauser
  11 *   Andriy Smolskyy
  12 *   Roman Bulgakov
  13 *   Dmytro Mytarchuk
  14 *   Matthew Gerlach
  15 *
  16 * Original driver contributed by SLS.
  17 * Major updates contributed by GlobalLogic
 
 
 
 
 
 
 
 
 
 
 
 
  18 */
  19
  20#include <linux/atomic.h>
  21#include <linux/delay.h>
  22#include <linux/etherdevice.h>
  23#include <linux/if_vlan.h>
  24#include <linux/init.h>
  25#include <linux/interrupt.h>
  26#include <linux/io.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/mii.h>
  30#include <linux/mdio/mdio-regmap.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
  33#include <linux/of_mdio.h>
  34#include <linux/of_net.h>
  35#include <linux/pcs-lynx.h>
  36#include <linux/phy.h>
  37#include <linux/platform_device.h>
  38#include <linux/property.h>
  39#include <linux/regmap.h>
  40#include <linux/skbuff.h>
  41#include <asm/cacheflush.h>
  42
  43#include "altera_utils.h"
  44#include "altera_tse.h"
  45#include "altera_sgdma.h"
  46#include "altera_msgdma.h"
  47
  48static atomic_t instance_count = ATOMIC_INIT(~0);
  49/* Module parameters */
  50static int debug = -1;
  51module_param(debug, int, 0644);
  52MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  53
  54static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  55					NETIF_MSG_LINK | NETIF_MSG_IFUP |
  56					NETIF_MSG_IFDOWN);
  57
  58#define RX_DESCRIPTORS 64
  59static int dma_rx_num = RX_DESCRIPTORS;
  60module_param(dma_rx_num, int, 0644);
  61MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
  62
  63#define TX_DESCRIPTORS 64
  64static int dma_tx_num = TX_DESCRIPTORS;
  65module_param(dma_tx_num, int, 0644);
  66MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
  67
  68
  69#define POLL_PHY (-1)
  70
  71/* Make sure DMA buffer size is larger than the max frame size
  72 * plus some alignment offset and a VLAN header. If the max frame size is
  73 * 1518, a VLAN header would be additional 4 bytes and additional
  74 * headroom for alignment is 2 bytes, 2048 is just fine.
  75 */
  76#define ALTERA_RXDMABUFFER_SIZE	2048
  77
  78/* Allow network stack to resume queuing packets after we've
  79 * finished transmitting at least 1/4 of the packets in the queue.
  80 */
  81#define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
  82
  83#define TXQUEUESTOP_THRESHHOLD	2
  84
 
 
  85static inline u32 tse_tx_avail(struct altera_tse_private *priv)
  86{
  87	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
  88}
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90/* MDIO specific functions
  91 */
  92static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  93{
  94	struct net_device *ndev = bus->priv;
  95	struct altera_tse_private *priv = netdev_priv(ndev);
  96
  97	/* set MDIO address */
  98	csrwr32((mii_id & 0x1f), priv->mac_dev,
  99		tse_csroffs(mdio_phy1_addr));
 100
 101	/* get the data */
 102	return csrrd32(priv->mac_dev,
 103		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
 104}
 105
 106static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 107				 u16 value)
 108{
 109	struct net_device *ndev = bus->priv;
 110	struct altera_tse_private *priv = netdev_priv(ndev);
 111
 112	/* set MDIO address */
 113	csrwr32((mii_id & 0x1f), priv->mac_dev,
 114		tse_csroffs(mdio_phy1_addr));
 115
 116	/* write the data */
 117	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
 118	return 0;
 119}
 120
 121static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
 122{
 123	struct altera_tse_private *priv = netdev_priv(dev);
 
 124	struct device_node *mdio_node = NULL;
 125	struct device_node *child_node = NULL;
 126	struct mii_bus *mdio = NULL;
 127	int ret;
 128
 129	for_each_child_of_node(priv->device->of_node, child_node) {
 130		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
 131			mdio_node = child_node;
 132			break;
 133		}
 134	}
 135
 136	if (mdio_node) {
 137		netdev_dbg(dev, "FOUND MDIO subnode\n");
 138	} else {
 139		netdev_dbg(dev, "NO MDIO subnode\n");
 140		return 0;
 141	}
 142
 143	mdio = mdiobus_alloc();
 144	if (mdio == NULL) {
 145		netdev_err(dev, "Error allocating MDIO bus\n");
 146		ret = -ENOMEM;
 147		goto put_node;
 148	}
 149
 150	mdio->name = ALTERA_TSE_RESOURCE_NAME;
 151	mdio->read = &altera_tse_mdio_read;
 152	mdio->write = &altera_tse_mdio_write;
 153	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
 154
 155	mdio->priv = dev;
 156	mdio->parent = priv->device;
 157
 158	ret = of_mdiobus_register(mdio, mdio_node);
 159	if (ret != 0) {
 160		netdev_err(dev, "Cannot register MDIO bus %s\n",
 161			   mdio->id);
 162		goto out_free_mdio;
 163	}
 164	of_node_put(mdio_node);
 165
 166	if (netif_msg_drv(priv))
 167		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
 168
 169	priv->mdio = mdio;
 170	return 0;
 171out_free_mdio:
 172	mdiobus_free(mdio);
 173	mdio = NULL;
 174put_node:
 175	of_node_put(mdio_node);
 176	return ret;
 177}
 178
 179static void altera_tse_mdio_destroy(struct net_device *dev)
 180{
 181	struct altera_tse_private *priv = netdev_priv(dev);
 182
 183	if (priv->mdio == NULL)
 184		return;
 185
 186	if (netif_msg_drv(priv))
 187		netdev_info(dev, "MDIO bus %s: removed\n",
 188			    priv->mdio->id);
 189
 190	mdiobus_unregister(priv->mdio);
 191	mdiobus_free(priv->mdio);
 192	priv->mdio = NULL;
 193}
 194
 195static int tse_init_rx_buffer(struct altera_tse_private *priv,
 196			      struct tse_buffer *rxbuffer, int len)
 197{
 198	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
 199	if (!rxbuffer->skb)
 200		return -ENOMEM;
 201
 202	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
 203						len,
 204						DMA_FROM_DEVICE);
 205
 206	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
 207		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 208		dev_kfree_skb_any(rxbuffer->skb);
 209		return -EINVAL;
 210	}
 211	rxbuffer->dma_addr &= (dma_addr_t)~3;
 212	rxbuffer->len = len;
 213	return 0;
 214}
 215
 216static void tse_free_rx_buffer(struct altera_tse_private *priv,
 217			       struct tse_buffer *rxbuffer)
 218{
 219	dma_addr_t dma_addr = rxbuffer->dma_addr;
 220	struct sk_buff *skb = rxbuffer->skb;
 
 221
 222	if (skb != NULL) {
 223		if (dma_addr)
 224			dma_unmap_single(priv->device, dma_addr,
 225					 rxbuffer->len,
 226					 DMA_FROM_DEVICE);
 227		dev_kfree_skb_any(skb);
 228		rxbuffer->skb = NULL;
 229		rxbuffer->dma_addr = 0;
 230	}
 231}
 232
 233/* Unmap and free Tx buffer resources
 234 */
 235static void tse_free_tx_buffer(struct altera_tse_private *priv,
 236			       struct tse_buffer *buffer)
 237{
 238	if (buffer->dma_addr) {
 239		if (buffer->mapped_as_page)
 240			dma_unmap_page(priv->device, buffer->dma_addr,
 241				       buffer->len, DMA_TO_DEVICE);
 242		else
 243			dma_unmap_single(priv->device, buffer->dma_addr,
 244					 buffer->len, DMA_TO_DEVICE);
 245		buffer->dma_addr = 0;
 246	}
 247	if (buffer->skb) {
 248		dev_kfree_skb_any(buffer->skb);
 249		buffer->skb = NULL;
 250	}
 251}
 252
 253static int alloc_init_skbufs(struct altera_tse_private *priv)
 254{
 255	unsigned int rx_descs = priv->rx_ring_size;
 256	unsigned int tx_descs = priv->tx_ring_size;
 257	int ret = -ENOMEM;
 258	int i;
 259
 260	/* Create Rx ring buffer */
 261	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
 262				GFP_KERNEL);
 263	if (!priv->rx_ring)
 264		goto err_rx_ring;
 265
 266	/* Create Tx ring buffer */
 267	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
 268				GFP_KERNEL);
 269	if (!priv->tx_ring)
 270		goto err_tx_ring;
 271
 272	priv->tx_cons = 0;
 273	priv->tx_prod = 0;
 274
 275	/* Init Rx ring */
 276	for (i = 0; i < rx_descs; i++) {
 277		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
 278					 priv->rx_dma_buf_sz);
 279		if (ret)
 280			goto err_init_rx_buffers;
 281	}
 282
 283	priv->rx_cons = 0;
 284	priv->rx_prod = 0;
 285
 286	return 0;
 287err_init_rx_buffers:
 288	while (--i >= 0)
 289		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 290	kfree(priv->tx_ring);
 291err_tx_ring:
 292	kfree(priv->rx_ring);
 293err_rx_ring:
 294	return ret;
 295}
 296
 297static void free_skbufs(struct net_device *dev)
 298{
 299	struct altera_tse_private *priv = netdev_priv(dev);
 300	unsigned int rx_descs = priv->rx_ring_size;
 301	unsigned int tx_descs = priv->tx_ring_size;
 302	int i;
 303
 304	/* Release the DMA TX/RX socket buffers */
 305	for (i = 0; i < rx_descs; i++)
 306		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 307	for (i = 0; i < tx_descs; i++)
 308		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
 309
 310
 311	kfree(priv->tx_ring);
 312}
 313
 314/* Reallocate the skb for the reception process
 315 */
 316static inline void tse_rx_refill(struct altera_tse_private *priv)
 317{
 318	unsigned int rxsize = priv->rx_ring_size;
 319	unsigned int entry;
 320	int ret;
 321
 322	for (; priv->rx_cons - priv->rx_prod > 0;
 323			priv->rx_prod++) {
 324		entry = priv->rx_prod % rxsize;
 325		if (likely(priv->rx_ring[entry].skb == NULL)) {
 326			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
 327				priv->rx_dma_buf_sz);
 328			if (unlikely(ret != 0))
 329				break;
 330			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
 331		}
 332	}
 333}
 334
 335/* Pull out the VLAN tag and fix up the packet
 336 */
 337static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
 338{
 339	struct ethhdr *eth_hdr;
 340	u16 vid;
 341
 342	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 343	    !__vlan_get_tag(skb, &vid)) {
 344		eth_hdr = (struct ethhdr *)skb->data;
 345		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
 346		skb_pull(skb, VLAN_HLEN);
 347		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 348	}
 349}
 350
 351/* Receive a packet: retrieve and pass over to upper levels
 352 */
 353static int tse_rx(struct altera_tse_private *priv, int limit)
 354{
 355	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
 356	unsigned int next_entry;
 357	unsigned int count = 0;
 
 358	struct sk_buff *skb;
 
 359	u32 rxstatus;
 360	u16 pktlength;
 361	u16 pktstatus;
 362
 363	/* Check for count < limit first as get_rx_status is changing
 364	* the response-fifo so we must process the next packet
 365	* after calling get_rx_status if a response is pending.
 366	* (reading the last byte of the response pops the value from the fifo.)
 367	*/
 368	while ((count < limit) &&
 369	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
 370		pktstatus = rxstatus >> 16;
 371		pktlength = rxstatus & 0xffff;
 372
 373		if ((pktstatus & 0xFF) || (pktlength == 0))
 374			netdev_err(priv->dev,
 375				   "RCV pktstatus %08X pktlength %08X\n",
 376				   pktstatus, pktlength);
 377
 378		/* DMA transfer from TSE starts with 2 additional bytes for
 379		 * IP payload alignment. Status returned by get_rx_status()
 380		 * contains DMA transfer length. Packet is 2 bytes shorter.
 381		 */
 382		pktlength -= 2;
 383
 384		count++;
 385		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
 386
 387		skb = priv->rx_ring[entry].skb;
 388		if (unlikely(!skb)) {
 389			netdev_err(priv->dev,
 390				   "%s: Inconsistent Rx descriptor chain\n",
 391				   __func__);
 392			priv->dev->stats.rx_dropped++;
 393			break;
 394		}
 395		priv->rx_ring[entry].skb = NULL;
 396
 397		skb_put(skb, pktlength);
 398
 399		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
 400				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
 401
 402		if (netif_msg_pktdata(priv)) {
 403			netdev_info(priv->dev, "frame received %d bytes\n",
 404				    pktlength);
 405			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
 406				       16, 1, skb->data, pktlength, true);
 407		}
 408
 409		tse_rx_vlan(priv->dev, skb);
 410
 411		skb->protocol = eth_type_trans(skb, priv->dev);
 412		skb_checksum_none_assert(skb);
 413
 414		napi_gro_receive(&priv->napi, skb);
 415
 416		priv->dev->stats.rx_packets++;
 417		priv->dev->stats.rx_bytes += pktlength;
 418
 419		entry = next_entry;
 420
 421		tse_rx_refill(priv);
 422	}
 423
 424	return count;
 425}
 426
 427/* Reclaim resources after transmission completes
 428 */
 429static int tse_tx_complete(struct altera_tse_private *priv)
 430{
 431	unsigned int txsize = priv->tx_ring_size;
 432	struct tse_buffer *tx_buff;
 433	unsigned int entry;
 
 434	int txcomplete = 0;
 435	u32 ready;
 436
 437	spin_lock(&priv->tx_lock);
 438
 439	ready = priv->dmaops->tx_completions(priv);
 440
 441	/* Free sent buffers */
 442	while (ready && (priv->tx_cons != priv->tx_prod)) {
 443		entry = priv->tx_cons % txsize;
 444		tx_buff = &priv->tx_ring[entry];
 445
 446		if (netif_msg_tx_done(priv))
 447			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
 448				   __func__, priv->tx_prod, priv->tx_cons);
 449
 450		if (likely(tx_buff->skb))
 451			priv->dev->stats.tx_packets++;
 452
 453		tse_free_tx_buffer(priv, tx_buff);
 454		priv->tx_cons++;
 455
 456		txcomplete++;
 457		ready--;
 458	}
 459
 460	if (unlikely(netif_queue_stopped(priv->dev) &&
 461		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
 462		if (netif_queue_stopped(priv->dev) &&
 463		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
 464			if (netif_msg_tx_done(priv))
 465				netdev_dbg(priv->dev, "%s: restart transmit\n",
 466					   __func__);
 467			netif_wake_queue(priv->dev);
 468		}
 469	}
 470
 471	spin_unlock(&priv->tx_lock);
 472	return txcomplete;
 473}
 474
 475/* NAPI polling function
 476 */
 477static int tse_poll(struct napi_struct *napi, int budget)
 478{
 479	struct altera_tse_private *priv =
 480			container_of(napi, struct altera_tse_private, napi);
 481	unsigned long int flags;
 482	int rxcomplete = 0;
 
 483
 484	tse_tx_complete(priv);
 485
 486	rxcomplete = tse_rx(priv, budget);
 487
 488	if (rxcomplete < budget) {
 489
 490		napi_complete_done(napi, rxcomplete);
 491
 492		netdev_dbg(priv->dev,
 493			   "NAPI Complete, did %d packets with budget %d\n",
 494			   rxcomplete, budget);
 495
 496		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
 497		priv->dmaops->enable_rxirq(priv);
 498		priv->dmaops->enable_txirq(priv);
 499		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
 500	}
 501	return rxcomplete;
 502}
 503
 504/* DMA TX & RX FIFO interrupt routing
 505 */
 506static irqreturn_t altera_isr(int irq, void *dev_id)
 507{
 508	struct net_device *dev = dev_id;
 509	struct altera_tse_private *priv;
 510
 511	if (unlikely(!dev)) {
 512		pr_err("%s: invalid dev pointer\n", __func__);
 513		return IRQ_NONE;
 514	}
 515	priv = netdev_priv(dev);
 516
 517	spin_lock(&priv->rxdma_irq_lock);
 518	/* reset IRQs */
 519	priv->dmaops->clear_rxirq(priv);
 520	priv->dmaops->clear_txirq(priv);
 521	spin_unlock(&priv->rxdma_irq_lock);
 522
 523	if (likely(napi_schedule_prep(&priv->napi))) {
 524		spin_lock(&priv->rxdma_irq_lock);
 525		priv->dmaops->disable_rxirq(priv);
 526		priv->dmaops->disable_txirq(priv);
 527		spin_unlock(&priv->rxdma_irq_lock);
 528		__napi_schedule(&priv->napi);
 529	}
 530
 531
 532	return IRQ_HANDLED;
 533}
 534
 535/* Transmit a packet (called by the kernel). Dispatches
 536 * either the SGDMA method for transmitting or the
 537 * MSGDMA method, assumes no scatter/gather support,
 538 * implying an assumption that there's only one
 539 * physically contiguous fragment starting at
 540 * skb->data, for length of skb_headlen(skb).
 541 */
 542static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
 543{
 544	struct altera_tse_private *priv = netdev_priv(dev);
 545	unsigned int nopaged_len = skb_headlen(skb);
 546	unsigned int txsize = priv->tx_ring_size;
 547	int nfrags = skb_shinfo(skb)->nr_frags;
 548	struct tse_buffer *buffer = NULL;
 549	netdev_tx_t ret = NETDEV_TX_OK;
 
 
 550	dma_addr_t dma_addr;
 551	unsigned int entry;
 552
 553	spin_lock_bh(&priv->tx_lock);
 554
 555	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
 556		if (!netif_queue_stopped(dev)) {
 557			netif_stop_queue(dev);
 558			/* This is a hard error, log it. */
 559			netdev_err(priv->dev,
 560				   "%s: Tx list full when queue awake\n",
 561				   __func__);
 562		}
 563		ret = NETDEV_TX_BUSY;
 564		goto out;
 565	}
 566
 567	/* Map the first skb fragment */
 568	entry = priv->tx_prod % txsize;
 569	buffer = &priv->tx_ring[entry];
 570
 571	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
 572				  DMA_TO_DEVICE);
 573	if (dma_mapping_error(priv->device, dma_addr)) {
 574		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 575		ret = NETDEV_TX_OK;
 576		goto out;
 577	}
 578
 579	buffer->skb = skb;
 580	buffer->dma_addr = dma_addr;
 581	buffer->len = nopaged_len;
 582
 583	priv->dmaops->tx_buffer(priv, buffer);
 584
 585	skb_tx_timestamp(skb);
 586
 587	priv->tx_prod++;
 588	dev->stats.tx_bytes += skb->len;
 589
 590	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
 591		if (netif_msg_hw(priv))
 592			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
 593				   __func__);
 594		netif_stop_queue(dev);
 595	}
 596
 597out:
 598	spin_unlock_bh(&priv->tx_lock);
 599
 600	return ret;
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
 604{
 605	struct altera_tse_private *priv = netdev_priv(dev);
 606	struct device_node *np = priv->device->of_node;
 607	int ret;
 608
 609	ret = of_get_phy_mode(np, &priv->phy_iface);
 610
 611	/* Avoid get phy addr and create mdio if no phy is present */
 612	if (ret)
 613		return 0;
 614
 615	/* try to get PHY address from device tree, use PHY autodetection if
 616	 * no valid address is given
 617	 */
 618
 619	if (of_property_read_u32(priv->device->of_node, "phy-addr",
 620			 &priv->phy_addr)) {
 621		priv->phy_addr = POLL_PHY;
 622	}
 623
 624	if (!((priv->phy_addr == POLL_PHY) ||
 625		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
 626		netdev_err(dev, "invalid phy-addr specified %d\n",
 627			priv->phy_addr);
 628		return -ENODEV;
 629	}
 630
 631	/* Create/attach to MDIO bus */
 632	ret = altera_tse_mdio_create(dev,
 633					 atomic_add_return(1, &instance_count));
 634
 635	if (ret)
 636		return -ENODEV;
 637
 638	return 0;
 639}
 640
 641static void tse_update_mac_addr(struct altera_tse_private *priv, const u8 *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642{
 643	u32 msb;
 644	u32 lsb;
 645
 646	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
 647	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
 648
 649	/* Set primary MAC address */
 650	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
 651	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
 652}
 653
 654/* MAC software reset.
 655 * When reset is triggered, the MAC function completes the current
 656 * transmission or reception, and subsequently disables the transmit and
 657 * receive logic, flushes the receive FIFO buffer, and resets the statistics
 658 * counters.
 659 */
 660static int reset_mac(struct altera_tse_private *priv)
 661{
 662	int counter;
 663	u32 dat;
 664
 665	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 666	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
 667	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
 668	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 669
 670	counter = 0;
 671	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 672		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
 673				     MAC_CMDCFG_SW_RESET))
 674			break;
 675		udelay(1);
 676	}
 677
 678	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 679		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 680		dat &= ~MAC_CMDCFG_SW_RESET;
 681		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 682		return -1;
 683	}
 684	return 0;
 685}
 686
 687/* Initialize MAC core registers
 688*/
 689static int init_mac(struct altera_tse_private *priv)
 690{
 691	unsigned int cmd = 0;
 692	u32 frm_length;
 693
 694	/* Setup Rx FIFO */
 695	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
 696		priv->mac_dev, tse_csroffs(rx_section_empty));
 697
 698	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
 699		tse_csroffs(rx_section_full));
 700
 701	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
 702		tse_csroffs(rx_almost_empty));
 703
 704	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
 705		tse_csroffs(rx_almost_full));
 706
 707	/* Setup Tx FIFO */
 708	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
 709		priv->mac_dev, tse_csroffs(tx_section_empty));
 710
 711	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
 712		tse_csroffs(tx_section_full));
 713
 714	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
 715		tse_csroffs(tx_almost_empty));
 716
 717	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
 718		tse_csroffs(tx_almost_full));
 719
 720	/* MAC Address Configuration */
 721	tse_update_mac_addr(priv, priv->dev->dev_addr);
 722
 723	/* MAC Function Configuration */
 724	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
 725	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
 726
 727	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
 728		tse_csroffs(tx_ipg_length));
 729
 730	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
 731	 * start address
 732	 */
 733	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
 734		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
 735
 736	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
 737		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
 738		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
 739
 740	/* Set the MAC options */
 741	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 742	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
 743	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
 744	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
 745					 * with CRC errors
 746					 */
 747	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
 748	cmd &= ~MAC_CMDCFG_TX_ENA;
 749	cmd &= ~MAC_CMDCFG_RX_ENA;
 750
 751	/* Default speed and duplex setting, full/100 */
 752	cmd &= ~MAC_CMDCFG_HD_ENA;
 753	cmd &= ~MAC_CMDCFG_ETH_SPEED;
 754	cmd &= ~MAC_CMDCFG_ENA_10;
 755
 756	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
 757
 758	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
 759		tse_csroffs(pause_quanta));
 760
 761	if (netif_msg_hw(priv))
 762		dev_dbg(priv->device,
 763			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
 764
 765	return 0;
 766}
 767
 768/* Start/stop MAC transmission logic
 769 */
 770static void tse_set_mac(struct altera_tse_private *priv, bool enable)
 771{
 772	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 773
 774	if (enable)
 775		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
 776	else
 777		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
 778
 779	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
 780}
 781
 782/* Change the MTU
 783 */
 784static int tse_change_mtu(struct net_device *dev, int new_mtu)
 785{
 786	if (netif_running(dev)) {
 787		netdev_err(dev, "must be stopped to change its MTU\n");
 788		return -EBUSY;
 789	}
 790
 791	dev->mtu = new_mtu;
 792	netdev_update_features(dev);
 793
 794	return 0;
 795}
 796
 797static void altera_tse_set_mcfilter(struct net_device *dev)
 798{
 799	struct altera_tse_private *priv = netdev_priv(dev);
 800	struct netdev_hw_addr *ha;
 801	int i;
 
 802
 803	/* clear the hash filter */
 804	for (i = 0; i < 64; i++)
 805		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
 806
 807	netdev_for_each_mc_addr(ha, dev) {
 808		unsigned int hash = 0;
 809		int mac_octet;
 810
 811		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
 812			unsigned char xor_bit = 0;
 813			unsigned char octet = ha->addr[mac_octet];
 814			unsigned int bitshift;
 815
 816			for (bitshift = 0; bitshift < 8; bitshift++)
 817				xor_bit ^= ((octet >> bitshift) & 0x01);
 818
 819			hash = (hash << 1) | xor_bit;
 820		}
 821		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
 822	}
 823}
 824
 825
 826static void altera_tse_set_mcfilterall(struct net_device *dev)
 827{
 828	struct altera_tse_private *priv = netdev_priv(dev);
 829	int i;
 830
 831	/* set the hash filter */
 832	for (i = 0; i < 64; i++)
 833		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
 834}
 835
 836/* Set or clear the multicast filter for this adapter
 837 */
 838static void tse_set_rx_mode_hashfilter(struct net_device *dev)
 839{
 840	struct altera_tse_private *priv = netdev_priv(dev);
 841
 842	spin_lock(&priv->mac_cfg_lock);
 843
 844	if (dev->flags & IFF_PROMISC)
 845		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
 846			    MAC_CMDCFG_PROMIS_EN);
 847
 848	if (dev->flags & IFF_ALLMULTI)
 849		altera_tse_set_mcfilterall(dev);
 850	else
 851		altera_tse_set_mcfilter(dev);
 852
 853	spin_unlock(&priv->mac_cfg_lock);
 854}
 855
 856/* Set or clear the multicast filter for this adapter
 857 */
 858static void tse_set_rx_mode(struct net_device *dev)
 859{
 860	struct altera_tse_private *priv = netdev_priv(dev);
 861
 862	spin_lock(&priv->mac_cfg_lock);
 863
 864	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
 865	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
 866		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
 867			    MAC_CMDCFG_PROMIS_EN);
 868	else
 869		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
 870			      MAC_CMDCFG_PROMIS_EN);
 871
 872	spin_unlock(&priv->mac_cfg_lock);
 873}
 874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875/* Open and initialize the interface
 876 */
 877static int tse_open(struct net_device *dev)
 878{
 879	struct altera_tse_private *priv = netdev_priv(dev);
 880	unsigned long flags;
 881	int ret = 0;
 882	int i;
 
 883
 884	/* Reset and configure TSE MAC and probe associated PHY */
 885	ret = priv->dmaops->init_dma(priv);
 886	if (ret != 0) {
 887		netdev_err(dev, "Cannot initialize DMA\n");
 888		goto phy_error;
 889	}
 890
 891	if (netif_msg_ifup(priv))
 892		netdev_warn(dev, "device MAC address %pM\n",
 893			    dev->dev_addr);
 894
 895	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
 896		netdev_warn(dev, "TSE revision %x\n", priv->revision);
 897
 898	spin_lock(&priv->mac_cfg_lock);
 
 
 
 
 
 
 
 
 899
 900	ret = reset_mac(priv);
 901	/* Note that reset_mac will fail if the clocks are gated by the PHY
 902	 * due to the PHY being put into isolation or power down mode.
 903	 * This is not an error if reset fails due to no clock.
 904	 */
 905	if (ret)
 906		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
 907
 908	ret = init_mac(priv);
 909	spin_unlock(&priv->mac_cfg_lock);
 910	if (ret) {
 911		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
 912		goto alloc_skbuf_error;
 913	}
 914
 915	priv->dmaops->reset_dma(priv);
 916
 917	/* Create and initialize the TX/RX descriptors chains. */
 918	priv->rx_ring_size = dma_rx_num;
 919	priv->tx_ring_size = dma_tx_num;
 920	ret = alloc_init_skbufs(priv);
 921	if (ret) {
 922		netdev_err(dev, "DMA descriptors initialization failed\n");
 923		goto alloc_skbuf_error;
 924	}
 925
 926
 927	/* Register RX interrupt */
 928	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
 929			  dev->name, dev);
 930	if (ret) {
 931		netdev_err(dev, "Unable to register RX interrupt %d\n",
 932			   priv->rx_irq);
 933		goto init_error;
 934	}
 935
 936	/* Register TX interrupt */
 937	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
 938			  dev->name, dev);
 939	if (ret) {
 940		netdev_err(dev, "Unable to register TX interrupt %d\n",
 941			   priv->tx_irq);
 942		goto tx_request_irq_error;
 943	}
 944
 945	/* Enable DMA interrupts */
 946	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
 947	priv->dmaops->enable_rxirq(priv);
 948	priv->dmaops->enable_txirq(priv);
 949
 950	/* Setup RX descriptor chain */
 951	for (i = 0; i < priv->rx_ring_size; i++)
 952		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
 953
 954	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
 955
 956	ret = phylink_of_phy_connect(priv->phylink, priv->device->of_node, 0);
 957	if (ret) {
 958		netdev_err(dev, "could not connect phylink (%d)\n", ret);
 959		goto tx_request_irq_error;
 960	}
 961	phylink_start(priv->phylink);
 962
 963	napi_enable(&priv->napi);
 964	netif_start_queue(dev);
 965
 966	priv->dmaops->start_rxdma(priv);
 967
 968	/* Start MAC Rx/Tx */
 969	spin_lock(&priv->mac_cfg_lock);
 970	tse_set_mac(priv, true);
 971	spin_unlock(&priv->mac_cfg_lock);
 972
 973	return 0;
 974
 975tx_request_irq_error:
 976	free_irq(priv->rx_irq, dev);
 977init_error:
 978	free_skbufs(dev);
 979alloc_skbuf_error:
 980phy_error:
 981	return ret;
 982}
 983
 984/* Stop TSE MAC interface and put the device in an inactive state
 985 */
 986static int tse_shutdown(struct net_device *dev)
 987{
 988	struct altera_tse_private *priv = netdev_priv(dev);
 989	unsigned long int flags;
 990	int ret;
 
 
 
 
 
 991
 992	phylink_stop(priv->phylink);
 993	phylink_disconnect_phy(priv->phylink);
 994	netif_stop_queue(dev);
 995	napi_disable(&priv->napi);
 996
 997	/* Disable DMA interrupts */
 998	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
 999	priv->dmaops->disable_rxirq(priv);
1000	priv->dmaops->disable_txirq(priv);
1001	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1002
1003	/* Free the IRQ lines */
1004	free_irq(priv->rx_irq, dev);
1005	free_irq(priv->tx_irq, dev);
1006
1007	/* disable and reset the MAC, empties fifo */
1008	spin_lock(&priv->mac_cfg_lock);
1009	spin_lock(&priv->tx_lock);
1010
1011	ret = reset_mac(priv);
1012	/* Note that reset_mac will fail if the clocks are gated by the PHY
1013	 * due to the PHY being put into isolation or power down mode.
1014	 * This is not an error if reset fails due to no clock.
1015	 */
1016	if (ret)
1017		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1018	priv->dmaops->reset_dma(priv);
1019	free_skbufs(dev);
1020
1021	spin_unlock(&priv->tx_lock);
1022	spin_unlock(&priv->mac_cfg_lock);
1023
1024	priv->dmaops->uninit_dma(priv);
1025
1026	return 0;
1027}
1028
1029static struct net_device_ops altera_tse_netdev_ops = {
1030	.ndo_open		= tse_open,
1031	.ndo_stop		= tse_shutdown,
1032	.ndo_start_xmit		= tse_start_xmit,
1033	.ndo_set_mac_address	= eth_mac_addr,
1034	.ndo_set_rx_mode	= tse_set_rx_mode,
1035	.ndo_change_mtu		= tse_change_mtu,
1036	.ndo_validate_addr	= eth_validate_addr,
1037};
1038
1039static void alt_tse_mac_config(struct phylink_config *config, unsigned int mode,
1040			       const struct phylink_link_state *state)
1041{
1042	struct net_device *ndev = to_net_dev(config->dev);
1043	struct altera_tse_private *priv = netdev_priv(ndev);
1044
1045	spin_lock(&priv->mac_cfg_lock);
1046	reset_mac(priv);
1047	tse_set_mac(priv, true);
1048	spin_unlock(&priv->mac_cfg_lock);
1049}
1050
1051static void alt_tse_mac_link_down(struct phylink_config *config,
1052				  unsigned int mode, phy_interface_t interface)
1053{
1054}
1055
1056static void alt_tse_mac_link_up(struct phylink_config *config,
1057				struct phy_device *phy, unsigned int mode,
1058				phy_interface_t interface, int speed,
1059				int duplex, bool tx_pause, bool rx_pause)
1060{
1061	struct net_device *ndev = to_net_dev(config->dev);
1062	struct altera_tse_private *priv = netdev_priv(ndev);
1063	u32 ctrl;
1064
1065	ctrl = csrrd32(priv->mac_dev, tse_csroffs(command_config));
1066	ctrl &= ~(MAC_CMDCFG_ENA_10 | MAC_CMDCFG_ETH_SPEED | MAC_CMDCFG_HD_ENA);
1067
1068	if (duplex == DUPLEX_HALF)
1069		ctrl |= MAC_CMDCFG_HD_ENA;
1070
1071	if (speed == SPEED_1000)
1072		ctrl |= MAC_CMDCFG_ETH_SPEED;
1073	else if (speed == SPEED_10)
1074		ctrl |= MAC_CMDCFG_ENA_10;
1075
1076	spin_lock(&priv->mac_cfg_lock);
1077	csrwr32(ctrl, priv->mac_dev, tse_csroffs(command_config));
1078	spin_unlock(&priv->mac_cfg_lock);
1079}
1080
1081static struct phylink_pcs *alt_tse_select_pcs(struct phylink_config *config,
1082					      phy_interface_t interface)
1083{
1084	struct net_device *ndev = to_net_dev(config->dev);
1085	struct altera_tse_private *priv = netdev_priv(ndev);
1086
1087	if (interface == PHY_INTERFACE_MODE_SGMII ||
1088	    interface == PHY_INTERFACE_MODE_1000BASEX)
1089		return priv->pcs;
1090	else
1091		return NULL;
1092}
1093
1094static const struct phylink_mac_ops alt_tse_phylink_ops = {
1095	.mac_config = alt_tse_mac_config,
1096	.mac_link_down = alt_tse_mac_link_down,
1097	.mac_link_up = alt_tse_mac_link_up,
1098	.mac_select_pcs = alt_tse_select_pcs,
1099};
1100
1101static int request_and_map(struct platform_device *pdev, const char *name,
1102			   struct resource **res, void __iomem **ptr)
1103{
1104	struct device *device = &pdev->dev;
1105	struct resource *region;
 
1106
1107	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1108	if (*res == NULL) {
1109		dev_err(device, "resource %s not defined\n", name);
1110		return -ENODEV;
1111	}
1112
1113	region = devm_request_mem_region(device, (*res)->start,
1114					 resource_size(*res), dev_name(device));
1115	if (region == NULL) {
1116		dev_err(device, "unable to request %s\n", name);
1117		return -EBUSY;
1118	}
1119
1120	*ptr = devm_ioremap(device, region->start,
1121				    resource_size(region));
1122	if (*ptr == NULL) {
1123		dev_err(device, "ioremap of %s failed!", name);
1124		return -ENOMEM;
1125	}
1126
1127	return 0;
1128}
1129
1130/* Probe Altera TSE MAC device
1131 */
1132static int altera_tse_probe(struct platform_device *pdev)
1133{
1134	struct regmap_config pcs_regmap_cfg;
1135	struct altera_tse_private *priv;
1136	struct mdio_regmap_config mrc;
1137	struct resource *control_port;
1138	struct regmap *pcs_regmap;
1139	struct resource *dma_res;
1140	struct resource *pcs_res;
1141	struct mii_bus *pcs_bus;
1142	struct net_device *ndev;
1143	void __iomem *descmap;
1144	int ret = -ENODEV;
1145
1146	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1147	if (!ndev) {
1148		dev_err(&pdev->dev, "Could not allocate network device\n");
1149		return -ENODEV;
1150	}
1151
1152	SET_NETDEV_DEV(ndev, &pdev->dev);
1153
1154	priv = netdev_priv(ndev);
1155	priv->device = &pdev->dev;
1156	priv->dev = ndev;
1157	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1158
1159	priv->dmaops = device_get_match_data(&pdev->dev);
 
 
 
 
1160
1161	if (priv->dmaops &&
1162	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1163		/* Get the mapped address to the SGDMA descriptor memory */
1164		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1165		if (ret)
1166			goto err_free_netdev;
1167
1168		/* Start of that memory is for transmit descriptors */
1169		priv->tx_dma_desc = descmap;
1170
1171		/* First half is for tx descriptors, other half for tx */
1172		priv->txdescmem = resource_size(dma_res)/2;
1173
1174		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1175
1176		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1177						     priv->txdescmem));
1178		priv->rxdescmem = resource_size(dma_res)/2;
1179		priv->rxdescmem_busaddr = dma_res->start;
1180		priv->rxdescmem_busaddr += priv->txdescmem;
1181
1182		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1183			dev_dbg(priv->device,
1184				"SGDMA bus addresses greater than 32-bits\n");
1185			ret = -EINVAL;
1186			goto err_free_netdev;
1187		}
1188		if (upper_32_bits(priv->txdescmem_busaddr)) {
1189			dev_dbg(priv->device,
1190				"SGDMA bus addresses greater than 32-bits\n");
1191			ret = -EINVAL;
1192			goto err_free_netdev;
1193		}
1194	} else if (priv->dmaops &&
1195		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1196		ret = request_and_map(pdev, "rx_resp", &dma_res,
1197				      &priv->rx_dma_resp);
1198		if (ret)
1199			goto err_free_netdev;
1200
1201		ret = request_and_map(pdev, "tx_desc", &dma_res,
1202				      &priv->tx_dma_desc);
1203		if (ret)
1204			goto err_free_netdev;
1205
1206		priv->txdescmem = resource_size(dma_res);
1207		priv->txdescmem_busaddr = dma_res->start;
1208
1209		ret = request_and_map(pdev, "rx_desc", &dma_res,
1210				      &priv->rx_dma_desc);
1211		if (ret)
1212			goto err_free_netdev;
1213
1214		priv->rxdescmem = resource_size(dma_res);
1215		priv->rxdescmem_busaddr = dma_res->start;
1216
1217	} else {
1218		ret = -ENODEV;
1219		goto err_free_netdev;
1220	}
1221
1222	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) {
1223		dma_set_coherent_mask(priv->device,
1224				      DMA_BIT_MASK(priv->dmaops->dmamask));
1225	} else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) {
1226		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1227	} else {
1228		ret = -EIO;
1229		goto err_free_netdev;
1230	}
1231
1232	/* MAC address space */
1233	ret = request_and_map(pdev, "control_port", &control_port,
1234			      (void __iomem **)&priv->mac_dev);
1235	if (ret)
1236		goto err_free_netdev;
1237
1238	/* xSGDMA Rx Dispatcher address space */
1239	ret = request_and_map(pdev, "rx_csr", &dma_res,
1240			      &priv->rx_dma_csr);
1241	if (ret)
1242		goto err_free_netdev;
1243
1244
1245	/* xSGDMA Tx Dispatcher address space */
1246	ret = request_and_map(pdev, "tx_csr", &dma_res,
1247			      &priv->tx_dma_csr);
1248	if (ret)
1249		goto err_free_netdev;
1250
1251	memset(&pcs_regmap_cfg, 0, sizeof(pcs_regmap_cfg));
1252	memset(&mrc, 0, sizeof(mrc));
1253	/* SGMII PCS address space. The location can vary depending on how the
1254	 * IP is integrated. We can have a resource dedicated to it at a specific
1255	 * address space, but if it's not the case, we fallback to the mdiophy0
1256	 * from the MAC's address space
1257	 */
1258	ret = request_and_map(pdev, "pcs", &pcs_res, &priv->pcs_base);
1259	if (ret) {
1260		/* If we can't find a dedicated resource for the PCS, fallback
1261		 * to the internal PCS, that has a different address stride
1262		 */
1263		priv->pcs_base = priv->mac_dev + tse_csroffs(mdio_phy0);
1264		pcs_regmap_cfg.reg_bits = 32;
1265		/* Values are MDIO-like values, on 16 bits */
1266		pcs_regmap_cfg.val_bits = 16;
1267		pcs_regmap_cfg.reg_shift = REGMAP_UPSHIFT(2);
1268	} else {
1269		pcs_regmap_cfg.reg_bits = 16;
1270		pcs_regmap_cfg.val_bits = 16;
1271		pcs_regmap_cfg.reg_shift = REGMAP_UPSHIFT(1);
1272	}
1273
1274	/* Create a regmap for the PCS so that it can be used by the PCS driver */
1275	pcs_regmap = devm_regmap_init_mmio(&pdev->dev, priv->pcs_base,
1276					   &pcs_regmap_cfg);
1277	if (IS_ERR(pcs_regmap)) {
1278		ret = PTR_ERR(pcs_regmap);
1279		goto err_free_netdev;
1280	}
1281	mrc.regmap = pcs_regmap;
1282	mrc.parent = &pdev->dev;
1283	mrc.valid_addr = 0x0;
1284	mrc.autoscan = false;
1285
1286	/* Rx IRQ */
1287	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1288	if (priv->rx_irq == -ENXIO) {
1289		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1290		ret = -ENXIO;
1291		goto err_free_netdev;
1292	}
1293
1294	/* Tx IRQ */
1295	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1296	if (priv->tx_irq == -ENXIO) {
1297		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1298		ret = -ENXIO;
1299		goto err_free_netdev;
1300	}
1301
1302	/* get FIFO depths from device tree */
1303	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1304				 &priv->rx_fifo_depth)) {
1305		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1306		ret = -ENXIO;
1307		goto err_free_netdev;
1308	}
1309
1310	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1311				 &priv->tx_fifo_depth)) {
1312		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1313		ret = -ENXIO;
1314		goto err_free_netdev;
1315	}
1316
1317	/* get hash filter settings for this instance */
1318	priv->hash_filter =
1319		of_property_read_bool(pdev->dev.of_node,
1320				      "altr,has-hash-multicast-filter");
1321
1322	/* Set hash filter to not set for now until the
1323	 * multicast filter receive issue is debugged
1324	 */
1325	priv->hash_filter = 0;
1326
1327	/* get supplemental address settings for this instance */
1328	priv->added_unicast =
1329		of_property_read_bool(pdev->dev.of_node,
1330				      "altr,has-supplementary-unicast");
1331
1332	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1333	/* Max MTU is 1500, ETH_DATA_LEN */
1334	priv->dev->max_mtu = ETH_DATA_LEN;
1335
1336	/* Get the max mtu from the device tree. Note that the
1337	 * "max-frame-size" parameter is actually max mtu. Definition
1338	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1339	 */
1340	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1341			     &priv->dev->max_mtu);
1342
1343	/* The DMA buffer size already accounts for an alignment bias
1344	 * to avoid unaligned access exceptions for the NIOS processor,
1345	 */
1346	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1347
1348	/* get default MAC address from device tree */
1349	ret = of_get_ethdev_address(pdev->dev.of_node, ndev);
1350	if (ret)
 
 
1351		eth_hw_addr_random(ndev);
1352
1353	/* get phy addr and create mdio */
1354	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1355
1356	if (ret)
1357		goto err_free_netdev;
1358
1359	/* initialize netdev */
1360	ndev->mem_start = control_port->start;
1361	ndev->mem_end = control_port->end;
1362	ndev->netdev_ops = &altera_tse_netdev_ops;
1363	altera_tse_set_ethtool_ops(ndev);
1364
1365	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1366
1367	if (priv->hash_filter)
1368		altera_tse_netdev_ops.ndo_set_rx_mode =
1369			tse_set_rx_mode_hashfilter;
1370
1371	/* Scatter/gather IO is not supported,
1372	 * so it is turned off
1373	 */
1374	ndev->hw_features &= ~NETIF_F_SG;
1375	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1376
1377	/* VLAN offloading of tagging, stripping and filtering is not
1378	 * supported by hardware, but driver will accommodate the
1379	 * extra 4-byte VLAN tag for processing by upper layers
1380	 */
1381	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1382
1383	/* setup NAPI interface */
1384	netif_napi_add(ndev, &priv->napi, tse_poll);
1385
1386	spin_lock_init(&priv->mac_cfg_lock);
1387	spin_lock_init(&priv->tx_lock);
1388	spin_lock_init(&priv->rxdma_irq_lock);
1389
1390	netif_carrier_off(ndev);
1391	ret = register_netdev(ndev);
1392	if (ret) {
1393		dev_err(&pdev->dev, "failed to register TSE net device\n");
1394		goto err_register_netdev;
1395	}
1396
1397	platform_set_drvdata(pdev, ndev);
1398
1399	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1400
1401	if (netif_msg_probe(priv))
1402		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1403			 (priv->revision >> 8) & 0xff,
1404			 priv->revision & 0xff,
1405			 (unsigned long) control_port->start, priv->rx_irq,
1406			 priv->tx_irq);
1407
1408	snprintf(mrc.name, MII_BUS_ID_SIZE, "%s-pcs-mii", ndev->name);
1409	pcs_bus = devm_mdio_regmap_register(&pdev->dev, &mrc);
1410	if (IS_ERR(pcs_bus)) {
1411		ret = PTR_ERR(pcs_bus);
1412		goto err_init_pcs;
1413	}
1414
1415	priv->pcs = lynx_pcs_create_mdiodev(pcs_bus, 0);
1416	if (IS_ERR(priv->pcs)) {
1417		ret = PTR_ERR(priv->pcs);
1418		goto err_init_pcs;
1419	}
1420
1421	priv->phylink_config.dev = &ndev->dev;
1422	priv->phylink_config.type = PHYLINK_NETDEV;
1423	priv->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
1424						MAC_100 | MAC_1000FD;
1425
1426	phy_interface_set_rgmii(priv->phylink_config.supported_interfaces);
1427	__set_bit(PHY_INTERFACE_MODE_MII,
1428		  priv->phylink_config.supported_interfaces);
1429	__set_bit(PHY_INTERFACE_MODE_GMII,
1430		  priv->phylink_config.supported_interfaces);
1431	__set_bit(PHY_INTERFACE_MODE_SGMII,
1432		  priv->phylink_config.supported_interfaces);
1433	__set_bit(PHY_INTERFACE_MODE_1000BASEX,
1434		  priv->phylink_config.supported_interfaces);
1435
1436	priv->phylink = phylink_create(&priv->phylink_config,
1437				       of_fwnode_handle(priv->device->of_node),
1438				       priv->phy_iface, &alt_tse_phylink_ops);
1439	if (IS_ERR(priv->phylink)) {
1440		dev_err(&pdev->dev, "failed to create phylink\n");
1441		ret = PTR_ERR(priv->phylink);
1442		goto err_init_phylink;
1443	}
1444
1445	return 0;
1446err_init_phylink:
1447	lynx_pcs_destroy(priv->pcs);
1448err_init_pcs:
1449	unregister_netdev(ndev);
1450err_register_netdev:
1451	netif_napi_del(&priv->napi);
1452	altera_tse_mdio_destroy(ndev);
1453err_free_netdev:
1454	free_netdev(ndev);
1455	return ret;
1456}
1457
1458/* Remove Altera TSE MAC device
1459 */
1460static void altera_tse_remove(struct platform_device *pdev)
1461{
1462	struct net_device *ndev = platform_get_drvdata(pdev);
1463	struct altera_tse_private *priv = netdev_priv(ndev);
1464
 
 
 
 
 
 
 
1465	platform_set_drvdata(pdev, NULL);
1466	altera_tse_mdio_destroy(ndev);
1467	unregister_netdev(ndev);
1468	phylink_destroy(priv->phylink);
1469	lynx_pcs_destroy(priv->pcs);
1470
1471	free_netdev(ndev);
 
 
1472}
1473
1474static const struct altera_dmaops altera_dtype_sgdma = {
1475	.altera_dtype = ALTERA_DTYPE_SGDMA,
1476	.dmamask = 32,
1477	.reset_dma = sgdma_reset,
1478	.enable_txirq = sgdma_enable_txirq,
1479	.enable_rxirq = sgdma_enable_rxirq,
1480	.disable_txirq = sgdma_disable_txirq,
1481	.disable_rxirq = sgdma_disable_rxirq,
1482	.clear_txirq = sgdma_clear_txirq,
1483	.clear_rxirq = sgdma_clear_rxirq,
1484	.tx_buffer = sgdma_tx_buffer,
1485	.tx_completions = sgdma_tx_completions,
1486	.add_rx_desc = sgdma_add_rx_desc,
1487	.get_rx_status = sgdma_rx_status,
1488	.init_dma = sgdma_initialize,
1489	.uninit_dma = sgdma_uninitialize,
1490	.start_rxdma = sgdma_start_rxdma,
1491};
1492
1493static const struct altera_dmaops altera_dtype_msgdma = {
1494	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1495	.dmamask = 64,
1496	.reset_dma = msgdma_reset,
1497	.enable_txirq = msgdma_enable_txirq,
1498	.enable_rxirq = msgdma_enable_rxirq,
1499	.disable_txirq = msgdma_disable_txirq,
1500	.disable_rxirq = msgdma_disable_rxirq,
1501	.clear_txirq = msgdma_clear_txirq,
1502	.clear_rxirq = msgdma_clear_rxirq,
1503	.tx_buffer = msgdma_tx_buffer,
1504	.tx_completions = msgdma_tx_completions,
1505	.add_rx_desc = msgdma_add_rx_desc,
1506	.get_rx_status = msgdma_rx_status,
1507	.init_dma = msgdma_initialize,
1508	.uninit_dma = msgdma_uninitialize,
1509	.start_rxdma = msgdma_start_rxdma,
1510};
1511
1512static const struct of_device_id altera_tse_ids[] = {
1513	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1514	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1515	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1516	{},
1517};
1518MODULE_DEVICE_TABLE(of, altera_tse_ids);
1519
1520static struct platform_driver altera_tse_driver = {
1521	.probe		= altera_tse_probe,
1522	.remove_new	= altera_tse_remove,
1523	.suspend	= NULL,
1524	.resume		= NULL,
1525	.driver		= {
1526		.name	= ALTERA_TSE_RESOURCE_NAME,
1527		.of_match_table = altera_tse_ids,
1528	},
1529};
1530
1531module_platform_driver(altera_tse_driver);
1532
1533MODULE_AUTHOR("Altera Corporation");
1534MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1535MODULE_LICENSE("GPL v2");
v4.17
 
   1/* Altera Triple-Speed Ethernet MAC driver
   2 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
   3 *
   4 * Contributors:
   5 *   Dalon Westergreen
   6 *   Thomas Chou
   7 *   Ian Abbott
   8 *   Yuriy Kozlov
   9 *   Tobias Klauser
  10 *   Andriy Smolskyy
  11 *   Roman Bulgakov
  12 *   Dmytro Mytarchuk
  13 *   Matthew Gerlach
  14 *
  15 * Original driver contributed by SLS.
  16 * Major updates contributed by GlobalLogic
  17 *
  18 * This program is free software; you can redistribute it and/or modify it
  19 * under the terms and conditions of the GNU General Public License,
  20 * version 2, as published by the Free Software Foundation.
  21 *
  22 * This program is distributed in the hope it will be useful, but WITHOUT
  23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  24 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  25 * more details.
  26 *
  27 * You should have received a copy of the GNU General Public License along with
  28 * this program.  If not, see <http://www.gnu.org/licenses/>.
  29 */
  30
  31#include <linux/atomic.h>
  32#include <linux/delay.h>
  33#include <linux/etherdevice.h>
  34#include <linux/if_vlan.h>
  35#include <linux/init.h>
  36#include <linux/interrupt.h>
  37#include <linux/io.h>
  38#include <linux/kernel.h>
  39#include <linux/module.h>
  40#include <linux/mii.h>
 
  41#include <linux/netdevice.h>
  42#include <linux/of_device.h>
  43#include <linux/of_mdio.h>
  44#include <linux/of_net.h>
  45#include <linux/of_platform.h>
  46#include <linux/phy.h>
  47#include <linux/platform_device.h>
 
 
  48#include <linux/skbuff.h>
  49#include <asm/cacheflush.h>
  50
  51#include "altera_utils.h"
  52#include "altera_tse.h"
  53#include "altera_sgdma.h"
  54#include "altera_msgdma.h"
  55
  56static atomic_t instance_count = ATOMIC_INIT(~0);
  57/* Module parameters */
  58static int debug = -1;
  59module_param(debug, int, 0644);
  60MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  61
  62static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  63					NETIF_MSG_LINK | NETIF_MSG_IFUP |
  64					NETIF_MSG_IFDOWN);
  65
  66#define RX_DESCRIPTORS 64
  67static int dma_rx_num = RX_DESCRIPTORS;
  68module_param(dma_rx_num, int, 0644);
  69MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
  70
  71#define TX_DESCRIPTORS 64
  72static int dma_tx_num = TX_DESCRIPTORS;
  73module_param(dma_tx_num, int, 0644);
  74MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
  75
  76
  77#define POLL_PHY (-1)
  78
  79/* Make sure DMA buffer size is larger than the max frame size
  80 * plus some alignment offset and a VLAN header. If the max frame size is
  81 * 1518, a VLAN header would be additional 4 bytes and additional
  82 * headroom for alignment is 2 bytes, 2048 is just fine.
  83 */
  84#define ALTERA_RXDMABUFFER_SIZE	2048
  85
  86/* Allow network stack to resume queueing packets after we've
  87 * finished transmitting at least 1/4 of the packets in the queue.
  88 */
  89#define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
  90
  91#define TXQUEUESTOP_THRESHHOLD	2
  92
  93static const struct of_device_id altera_tse_ids[];
  94
  95static inline u32 tse_tx_avail(struct altera_tse_private *priv)
  96{
  97	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
  98}
  99
 100/* PCS Register read/write functions
 101 */
 102static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
 103{
 104	return csrrd32(priv->mac_dev,
 105		       tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
 106}
 107
 108static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
 109				u16 value)
 110{
 111	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
 112}
 113
 114/* Check PCS scratch memory */
 115static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
 116{
 117	sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
 118	return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
 119}
 120
 121/* MDIO specific functions
 122 */
 123static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 124{
 125	struct net_device *ndev = bus->priv;
 126	struct altera_tse_private *priv = netdev_priv(ndev);
 127
 128	/* set MDIO address */
 129	csrwr32((mii_id & 0x1f), priv->mac_dev,
 130		tse_csroffs(mdio_phy1_addr));
 131
 132	/* get the data */
 133	return csrrd32(priv->mac_dev,
 134		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
 135}
 136
 137static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 138				 u16 value)
 139{
 140	struct net_device *ndev = bus->priv;
 141	struct altera_tse_private *priv = netdev_priv(ndev);
 142
 143	/* set MDIO address */
 144	csrwr32((mii_id & 0x1f), priv->mac_dev,
 145		tse_csroffs(mdio_phy1_addr));
 146
 147	/* write the data */
 148	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
 149	return 0;
 150}
 151
 152static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
 153{
 154	struct altera_tse_private *priv = netdev_priv(dev);
 155	int ret;
 156	struct device_node *mdio_node = NULL;
 
 157	struct mii_bus *mdio = NULL;
 158	struct device_node *child_node = NULL;
 159
 160	for_each_child_of_node(priv->device->of_node, child_node) {
 161		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
 162			mdio_node = child_node;
 163			break;
 164		}
 165	}
 166
 167	if (mdio_node) {
 168		netdev_dbg(dev, "FOUND MDIO subnode\n");
 169	} else {
 170		netdev_dbg(dev, "NO MDIO subnode\n");
 171		return 0;
 172	}
 173
 174	mdio = mdiobus_alloc();
 175	if (mdio == NULL) {
 176		netdev_err(dev, "Error allocating MDIO bus\n");
 177		return -ENOMEM;
 
 178	}
 179
 180	mdio->name = ALTERA_TSE_RESOURCE_NAME;
 181	mdio->read = &altera_tse_mdio_read;
 182	mdio->write = &altera_tse_mdio_write;
 183	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
 184
 185	mdio->priv = dev;
 186	mdio->parent = priv->device;
 187
 188	ret = of_mdiobus_register(mdio, mdio_node);
 189	if (ret != 0) {
 190		netdev_err(dev, "Cannot register MDIO bus %s\n",
 191			   mdio->id);
 192		goto out_free_mdio;
 193	}
 
 194
 195	if (netif_msg_drv(priv))
 196		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
 197
 198	priv->mdio = mdio;
 199	return 0;
 200out_free_mdio:
 201	mdiobus_free(mdio);
 202	mdio = NULL;
 
 
 203	return ret;
 204}
 205
 206static void altera_tse_mdio_destroy(struct net_device *dev)
 207{
 208	struct altera_tse_private *priv = netdev_priv(dev);
 209
 210	if (priv->mdio == NULL)
 211		return;
 212
 213	if (netif_msg_drv(priv))
 214		netdev_info(dev, "MDIO bus %s: removed\n",
 215			    priv->mdio->id);
 216
 217	mdiobus_unregister(priv->mdio);
 218	mdiobus_free(priv->mdio);
 219	priv->mdio = NULL;
 220}
 221
 222static int tse_init_rx_buffer(struct altera_tse_private *priv,
 223			      struct tse_buffer *rxbuffer, int len)
 224{
 225	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
 226	if (!rxbuffer->skb)
 227		return -ENOMEM;
 228
 229	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
 230						len,
 231						DMA_FROM_DEVICE);
 232
 233	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
 234		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 235		dev_kfree_skb_any(rxbuffer->skb);
 236		return -EINVAL;
 237	}
 238	rxbuffer->dma_addr &= (dma_addr_t)~3;
 239	rxbuffer->len = len;
 240	return 0;
 241}
 242
 243static void tse_free_rx_buffer(struct altera_tse_private *priv,
 244			       struct tse_buffer *rxbuffer)
 245{
 
 246	struct sk_buff *skb = rxbuffer->skb;
 247	dma_addr_t dma_addr = rxbuffer->dma_addr;
 248
 249	if (skb != NULL) {
 250		if (dma_addr)
 251			dma_unmap_single(priv->device, dma_addr,
 252					 rxbuffer->len,
 253					 DMA_FROM_DEVICE);
 254		dev_kfree_skb_any(skb);
 255		rxbuffer->skb = NULL;
 256		rxbuffer->dma_addr = 0;
 257	}
 258}
 259
 260/* Unmap and free Tx buffer resources
 261 */
 262static void tse_free_tx_buffer(struct altera_tse_private *priv,
 263			       struct tse_buffer *buffer)
 264{
 265	if (buffer->dma_addr) {
 266		if (buffer->mapped_as_page)
 267			dma_unmap_page(priv->device, buffer->dma_addr,
 268				       buffer->len, DMA_TO_DEVICE);
 269		else
 270			dma_unmap_single(priv->device, buffer->dma_addr,
 271					 buffer->len, DMA_TO_DEVICE);
 272		buffer->dma_addr = 0;
 273	}
 274	if (buffer->skb) {
 275		dev_kfree_skb_any(buffer->skb);
 276		buffer->skb = NULL;
 277	}
 278}
 279
 280static int alloc_init_skbufs(struct altera_tse_private *priv)
 281{
 282	unsigned int rx_descs = priv->rx_ring_size;
 283	unsigned int tx_descs = priv->tx_ring_size;
 284	int ret = -ENOMEM;
 285	int i;
 286
 287	/* Create Rx ring buffer */
 288	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
 289				GFP_KERNEL);
 290	if (!priv->rx_ring)
 291		goto err_rx_ring;
 292
 293	/* Create Tx ring buffer */
 294	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
 295				GFP_KERNEL);
 296	if (!priv->tx_ring)
 297		goto err_tx_ring;
 298
 299	priv->tx_cons = 0;
 300	priv->tx_prod = 0;
 301
 302	/* Init Rx ring */
 303	for (i = 0; i < rx_descs; i++) {
 304		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
 305					 priv->rx_dma_buf_sz);
 306		if (ret)
 307			goto err_init_rx_buffers;
 308	}
 309
 310	priv->rx_cons = 0;
 311	priv->rx_prod = 0;
 312
 313	return 0;
 314err_init_rx_buffers:
 315	while (--i >= 0)
 316		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 317	kfree(priv->tx_ring);
 318err_tx_ring:
 319	kfree(priv->rx_ring);
 320err_rx_ring:
 321	return ret;
 322}
 323
 324static void free_skbufs(struct net_device *dev)
 325{
 326	struct altera_tse_private *priv = netdev_priv(dev);
 327	unsigned int rx_descs = priv->rx_ring_size;
 328	unsigned int tx_descs = priv->tx_ring_size;
 329	int i;
 330
 331	/* Release the DMA TX/RX socket buffers */
 332	for (i = 0; i < rx_descs; i++)
 333		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 334	for (i = 0; i < tx_descs; i++)
 335		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
 336
 337
 338	kfree(priv->tx_ring);
 339}
 340
 341/* Reallocate the skb for the reception process
 342 */
 343static inline void tse_rx_refill(struct altera_tse_private *priv)
 344{
 345	unsigned int rxsize = priv->rx_ring_size;
 346	unsigned int entry;
 347	int ret;
 348
 349	for (; priv->rx_cons - priv->rx_prod > 0;
 350			priv->rx_prod++) {
 351		entry = priv->rx_prod % rxsize;
 352		if (likely(priv->rx_ring[entry].skb == NULL)) {
 353			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
 354				priv->rx_dma_buf_sz);
 355			if (unlikely(ret != 0))
 356				break;
 357			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
 358		}
 359	}
 360}
 361
 362/* Pull out the VLAN tag and fix up the packet
 363 */
 364static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
 365{
 366	struct ethhdr *eth_hdr;
 367	u16 vid;
 
 368	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 369	    !__vlan_get_tag(skb, &vid)) {
 370		eth_hdr = (struct ethhdr *)skb->data;
 371		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
 372		skb_pull(skb, VLAN_HLEN);
 373		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 374	}
 375}
 376
 377/* Receive a packet: retrieve and pass over to upper levels
 378 */
 379static int tse_rx(struct altera_tse_private *priv, int limit)
 380{
 
 
 381	unsigned int count = 0;
 382	unsigned int next_entry;
 383	struct sk_buff *skb;
 384	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
 385	u32 rxstatus;
 386	u16 pktlength;
 387	u16 pktstatus;
 388
 389	/* Check for count < limit first as get_rx_status is changing
 390	* the response-fifo so we must process the next packet
 391	* after calling get_rx_status if a response is pending.
 392	* (reading the last byte of the response pops the value from the fifo.)
 393	*/
 394	while ((count < limit) &&
 395	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
 396		pktstatus = rxstatus >> 16;
 397		pktlength = rxstatus & 0xffff;
 398
 399		if ((pktstatus & 0xFF) || (pktlength == 0))
 400			netdev_err(priv->dev,
 401				   "RCV pktstatus %08X pktlength %08X\n",
 402				   pktstatus, pktlength);
 403
 404		/* DMA trasfer from TSE starts with 2 aditional bytes for
 405		 * IP payload alignment. Status returned by get_rx_status()
 406		 * contains DMA transfer length. Packet is 2 bytes shorter.
 407		 */
 408		pktlength -= 2;
 409
 410		count++;
 411		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
 412
 413		skb = priv->rx_ring[entry].skb;
 414		if (unlikely(!skb)) {
 415			netdev_err(priv->dev,
 416				   "%s: Inconsistent Rx descriptor chain\n",
 417				   __func__);
 418			priv->dev->stats.rx_dropped++;
 419			break;
 420		}
 421		priv->rx_ring[entry].skb = NULL;
 422
 423		skb_put(skb, pktlength);
 424
 425		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
 426				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
 427
 428		if (netif_msg_pktdata(priv)) {
 429			netdev_info(priv->dev, "frame received %d bytes\n",
 430				    pktlength);
 431			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
 432				       16, 1, skb->data, pktlength, true);
 433		}
 434
 435		tse_rx_vlan(priv->dev, skb);
 436
 437		skb->protocol = eth_type_trans(skb, priv->dev);
 438		skb_checksum_none_assert(skb);
 439
 440		napi_gro_receive(&priv->napi, skb);
 441
 442		priv->dev->stats.rx_packets++;
 443		priv->dev->stats.rx_bytes += pktlength;
 444
 445		entry = next_entry;
 446
 447		tse_rx_refill(priv);
 448	}
 449
 450	return count;
 451}
 452
 453/* Reclaim resources after transmission completes
 454 */
 455static int tse_tx_complete(struct altera_tse_private *priv)
 456{
 457	unsigned int txsize = priv->tx_ring_size;
 458	u32 ready;
 459	unsigned int entry;
 460	struct tse_buffer *tx_buff;
 461	int txcomplete = 0;
 
 462
 463	spin_lock(&priv->tx_lock);
 464
 465	ready = priv->dmaops->tx_completions(priv);
 466
 467	/* Free sent buffers */
 468	while (ready && (priv->tx_cons != priv->tx_prod)) {
 469		entry = priv->tx_cons % txsize;
 470		tx_buff = &priv->tx_ring[entry];
 471
 472		if (netif_msg_tx_done(priv))
 473			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
 474				   __func__, priv->tx_prod, priv->tx_cons);
 475
 476		if (likely(tx_buff->skb))
 477			priv->dev->stats.tx_packets++;
 478
 479		tse_free_tx_buffer(priv, tx_buff);
 480		priv->tx_cons++;
 481
 482		txcomplete++;
 483		ready--;
 484	}
 485
 486	if (unlikely(netif_queue_stopped(priv->dev) &&
 487		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
 488		if (netif_queue_stopped(priv->dev) &&
 489		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
 490			if (netif_msg_tx_done(priv))
 491				netdev_dbg(priv->dev, "%s: restart transmit\n",
 492					   __func__);
 493			netif_wake_queue(priv->dev);
 494		}
 495	}
 496
 497	spin_unlock(&priv->tx_lock);
 498	return txcomplete;
 499}
 500
 501/* NAPI polling function
 502 */
 503static int tse_poll(struct napi_struct *napi, int budget)
 504{
 505	struct altera_tse_private *priv =
 506			container_of(napi, struct altera_tse_private, napi);
 
 507	int rxcomplete = 0;
 508	unsigned long int flags;
 509
 510	tse_tx_complete(priv);
 511
 512	rxcomplete = tse_rx(priv, budget);
 513
 514	if (rxcomplete < budget) {
 515
 516		napi_complete_done(napi, rxcomplete);
 517
 518		netdev_dbg(priv->dev,
 519			   "NAPI Complete, did %d packets with budget %d\n",
 520			   rxcomplete, budget);
 521
 522		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
 523		priv->dmaops->enable_rxirq(priv);
 524		priv->dmaops->enable_txirq(priv);
 525		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
 526	}
 527	return rxcomplete;
 528}
 529
 530/* DMA TX & RX FIFO interrupt routing
 531 */
 532static irqreturn_t altera_isr(int irq, void *dev_id)
 533{
 534	struct net_device *dev = dev_id;
 535	struct altera_tse_private *priv;
 536
 537	if (unlikely(!dev)) {
 538		pr_err("%s: invalid dev pointer\n", __func__);
 539		return IRQ_NONE;
 540	}
 541	priv = netdev_priv(dev);
 542
 543	spin_lock(&priv->rxdma_irq_lock);
 544	/* reset IRQs */
 545	priv->dmaops->clear_rxirq(priv);
 546	priv->dmaops->clear_txirq(priv);
 547	spin_unlock(&priv->rxdma_irq_lock);
 548
 549	if (likely(napi_schedule_prep(&priv->napi))) {
 550		spin_lock(&priv->rxdma_irq_lock);
 551		priv->dmaops->disable_rxirq(priv);
 552		priv->dmaops->disable_txirq(priv);
 553		spin_unlock(&priv->rxdma_irq_lock);
 554		__napi_schedule(&priv->napi);
 555	}
 556
 557
 558	return IRQ_HANDLED;
 559}
 560
 561/* Transmit a packet (called by the kernel). Dispatches
 562 * either the SGDMA method for transmitting or the
 563 * MSGDMA method, assumes no scatter/gather support,
 564 * implying an assumption that there's only one
 565 * physically contiguous fragment starting at
 566 * skb->data, for length of skb_headlen(skb).
 567 */
 568static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
 569{
 570	struct altera_tse_private *priv = netdev_priv(dev);
 
 571	unsigned int txsize = priv->tx_ring_size;
 572	unsigned int entry;
 573	struct tse_buffer *buffer = NULL;
 574	int nfrags = skb_shinfo(skb)->nr_frags;
 575	unsigned int nopaged_len = skb_headlen(skb);
 576	enum netdev_tx ret = NETDEV_TX_OK;
 577	dma_addr_t dma_addr;
 
 578
 579	spin_lock_bh(&priv->tx_lock);
 580
 581	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
 582		if (!netif_queue_stopped(dev)) {
 583			netif_stop_queue(dev);
 584			/* This is a hard error, log it. */
 585			netdev_err(priv->dev,
 586				   "%s: Tx list full when queue awake\n",
 587				   __func__);
 588		}
 589		ret = NETDEV_TX_BUSY;
 590		goto out;
 591	}
 592
 593	/* Map the first skb fragment */
 594	entry = priv->tx_prod % txsize;
 595	buffer = &priv->tx_ring[entry];
 596
 597	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
 598				  DMA_TO_DEVICE);
 599	if (dma_mapping_error(priv->device, dma_addr)) {
 600		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 601		ret = NETDEV_TX_OK;
 602		goto out;
 603	}
 604
 605	buffer->skb = skb;
 606	buffer->dma_addr = dma_addr;
 607	buffer->len = nopaged_len;
 608
 609	priv->dmaops->tx_buffer(priv, buffer);
 610
 611	skb_tx_timestamp(skb);
 612
 613	priv->tx_prod++;
 614	dev->stats.tx_bytes += skb->len;
 615
 616	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
 617		if (netif_msg_hw(priv))
 618			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
 619				   __func__);
 620		netif_stop_queue(dev);
 621	}
 622
 623out:
 624	spin_unlock_bh(&priv->tx_lock);
 625
 626	return ret;
 627}
 628
 629/* Called every time the controller might need to be made
 630 * aware of new link state.  The PHY code conveys this
 631 * information through variables in the phydev structure, and this
 632 * function converts those variables into the appropriate
 633 * register values, and can bring down the device if needed.
 634 */
 635static void altera_tse_adjust_link(struct net_device *dev)
 636{
 637	struct altera_tse_private *priv = netdev_priv(dev);
 638	struct phy_device *phydev = dev->phydev;
 639	int new_state = 0;
 640
 641	/* only change config if there is a link */
 642	spin_lock(&priv->mac_cfg_lock);
 643	if (phydev->link) {
 644		/* Read old config */
 645		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
 646
 647		/* Check duplex */
 648		if (phydev->duplex != priv->oldduplex) {
 649			new_state = 1;
 650			if (!(phydev->duplex))
 651				cfg_reg |= MAC_CMDCFG_HD_ENA;
 652			else
 653				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
 654
 655			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
 656				   dev->name, phydev->duplex);
 657
 658			priv->oldduplex = phydev->duplex;
 659		}
 660
 661		/* Check speed */
 662		if (phydev->speed != priv->oldspeed) {
 663			new_state = 1;
 664			switch (phydev->speed) {
 665			case 1000:
 666				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
 667				cfg_reg &= ~MAC_CMDCFG_ENA_10;
 668				break;
 669			case 100:
 670				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
 671				cfg_reg &= ~MAC_CMDCFG_ENA_10;
 672				break;
 673			case 10:
 674				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
 675				cfg_reg |= MAC_CMDCFG_ENA_10;
 676				break;
 677			default:
 678				if (netif_msg_link(priv))
 679					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
 680						    phydev->speed);
 681				break;
 682			}
 683			priv->oldspeed = phydev->speed;
 684		}
 685		iowrite32(cfg_reg, &priv->mac_dev->command_config);
 686
 687		if (!priv->oldlink) {
 688			new_state = 1;
 689			priv->oldlink = 1;
 690		}
 691	} else if (priv->oldlink) {
 692		new_state = 1;
 693		priv->oldlink = 0;
 694		priv->oldspeed = 0;
 695		priv->oldduplex = -1;
 696	}
 697
 698	if (new_state && netif_msg_link(priv))
 699		phy_print_status(phydev);
 700
 701	spin_unlock(&priv->mac_cfg_lock);
 702}
 703static struct phy_device *connect_local_phy(struct net_device *dev)
 704{
 705	struct altera_tse_private *priv = netdev_priv(dev);
 706	struct phy_device *phydev = NULL;
 707	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
 708
 709	if (priv->phy_addr != POLL_PHY) {
 710		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
 711			 priv->mdio->id, priv->phy_addr);
 712
 713		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
 714
 715		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
 716				     priv->phy_iface);
 717		if (IS_ERR(phydev))
 718			netdev_err(dev, "Could not attach to PHY\n");
 719
 720	} else {
 721		int ret;
 722		phydev = phy_find_first(priv->mdio);
 723		if (phydev == NULL) {
 724			netdev_err(dev, "No PHY found\n");
 725			return phydev;
 726		}
 727
 728		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
 729				priv->phy_iface);
 730		if (ret != 0) {
 731			netdev_err(dev, "Could not attach to PHY\n");
 732			phydev = NULL;
 733		}
 734	}
 735	return phydev;
 736}
 737
 738static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
 739{
 740	struct altera_tse_private *priv = netdev_priv(dev);
 741	struct device_node *np = priv->device->of_node;
 742	int ret = 0;
 743
 744	priv->phy_iface = of_get_phy_mode(np);
 745
 746	/* Avoid get phy addr and create mdio if no phy is present */
 747	if (!priv->phy_iface)
 748		return 0;
 749
 750	/* try to get PHY address from device tree, use PHY autodetection if
 751	 * no valid address is given
 752	 */
 753
 754	if (of_property_read_u32(priv->device->of_node, "phy-addr",
 755			 &priv->phy_addr)) {
 756		priv->phy_addr = POLL_PHY;
 757	}
 758
 759	if (!((priv->phy_addr == POLL_PHY) ||
 760		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
 761		netdev_err(dev, "invalid phy-addr specified %d\n",
 762			priv->phy_addr);
 763		return -ENODEV;
 764	}
 765
 766	/* Create/attach to MDIO bus */
 767	ret = altera_tse_mdio_create(dev,
 768					 atomic_add_return(1, &instance_count));
 769
 770	if (ret)
 771		return -ENODEV;
 772
 773	return 0;
 774}
 775
 776/* Initialize driver's PHY state, and attach to the PHY
 777 */
 778static int init_phy(struct net_device *dev)
 779{
 780	struct altera_tse_private *priv = netdev_priv(dev);
 781	struct phy_device *phydev;
 782	struct device_node *phynode;
 783	bool fixed_link = false;
 784	int rc = 0;
 785
 786	/* Avoid init phy in case of no phy present */
 787	if (!priv->phy_iface)
 788		return 0;
 789
 790	priv->oldlink = 0;
 791	priv->oldspeed = 0;
 792	priv->oldduplex = -1;
 793
 794	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
 795
 796	if (!phynode) {
 797		/* check if a fixed-link is defined in device-tree */
 798		if (of_phy_is_fixed_link(priv->device->of_node)) {
 799			rc = of_phy_register_fixed_link(priv->device->of_node);
 800			if (rc < 0) {
 801				netdev_err(dev, "cannot register fixed PHY\n");
 802				return rc;
 803			}
 804
 805			/* In the case of a fixed PHY, the DT node associated
 806			 * to the PHY is the Ethernet MAC DT node.
 807			 */
 808			phynode = of_node_get(priv->device->of_node);
 809			fixed_link = true;
 810
 811			netdev_dbg(dev, "fixed-link detected\n");
 812			phydev = of_phy_connect(dev, phynode,
 813						&altera_tse_adjust_link,
 814						0, priv->phy_iface);
 815		} else {
 816			netdev_dbg(dev, "no phy-handle found\n");
 817			if (!priv->mdio) {
 818				netdev_err(dev, "No phy-handle nor local mdio specified\n");
 819				return -ENODEV;
 820			}
 821			phydev = connect_local_phy(dev);
 822		}
 823	} else {
 824		netdev_dbg(dev, "phy-handle found\n");
 825		phydev = of_phy_connect(dev, phynode,
 826			&altera_tse_adjust_link, 0, priv->phy_iface);
 827	}
 828	of_node_put(phynode);
 829
 830	if (!phydev) {
 831		netdev_err(dev, "Could not find the PHY\n");
 832		if (fixed_link)
 833			of_phy_deregister_fixed_link(priv->device->of_node);
 834		return -ENODEV;
 835	}
 836
 837	/* Stop Advertising 1000BASE Capability if interface is not GMII
 838	 * Note: Checkpatch throws CHECKs for the camel case defines below,
 839	 * it's ok to ignore.
 840	 */
 841	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
 842	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
 843		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
 844					 SUPPORTED_1000baseT_Full);
 845
 846	/* Broken HW is sometimes missing the pull-up resistor on the
 847	 * MDIO line, which results in reads to non-existent devices returning
 848	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
 849	 * device as well. If a fixed-link is used the phy_id is always 0.
 850	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
 851	 */
 852	if ((phydev->phy_id == 0) && !fixed_link) {
 853		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
 854		phy_disconnect(phydev);
 855		return -ENODEV;
 856	}
 857
 858	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
 859		   phydev->mdio.addr, phydev->phy_id, phydev->link);
 860
 861	return 0;
 862}
 863
 864static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
 865{
 866	u32 msb;
 867	u32 lsb;
 868
 869	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
 870	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
 871
 872	/* Set primary MAC address */
 873	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
 874	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
 875}
 876
 877/* MAC software reset.
 878 * When reset is triggered, the MAC function completes the current
 879 * transmission or reception, and subsequently disables the transmit and
 880 * receive logic, flushes the receive FIFO buffer, and resets the statistics
 881 * counters.
 882 */
 883static int reset_mac(struct altera_tse_private *priv)
 884{
 885	int counter;
 886	u32 dat;
 887
 888	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 889	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
 890	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
 891	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 892
 893	counter = 0;
 894	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 895		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
 896				     MAC_CMDCFG_SW_RESET))
 897			break;
 898		udelay(1);
 899	}
 900
 901	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 902		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 903		dat &= ~MAC_CMDCFG_SW_RESET;
 904		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 905		return -1;
 906	}
 907	return 0;
 908}
 909
 910/* Initialize MAC core registers
 911*/
 912static int init_mac(struct altera_tse_private *priv)
 913{
 914	unsigned int cmd = 0;
 915	u32 frm_length;
 916
 917	/* Setup Rx FIFO */
 918	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
 919		priv->mac_dev, tse_csroffs(rx_section_empty));
 920
 921	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
 922		tse_csroffs(rx_section_full));
 923
 924	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
 925		tse_csroffs(rx_almost_empty));
 926
 927	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
 928		tse_csroffs(rx_almost_full));
 929
 930	/* Setup Tx FIFO */
 931	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
 932		priv->mac_dev, tse_csroffs(tx_section_empty));
 933
 934	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
 935		tse_csroffs(tx_section_full));
 936
 937	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
 938		tse_csroffs(tx_almost_empty));
 939
 940	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
 941		tse_csroffs(tx_almost_full));
 942
 943	/* MAC Address Configuration */
 944	tse_update_mac_addr(priv, priv->dev->dev_addr);
 945
 946	/* MAC Function Configuration */
 947	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
 948	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
 949
 950	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
 951		tse_csroffs(tx_ipg_length));
 952
 953	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
 954	 * start address
 955	 */
 956	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
 957		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
 958
 959	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
 960		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
 961		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
 962
 963	/* Set the MAC options */
 964	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 965	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
 966	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
 967	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
 968					 * with CRC errors
 969					 */
 970	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
 971	cmd &= ~MAC_CMDCFG_TX_ENA;
 972	cmd &= ~MAC_CMDCFG_RX_ENA;
 973
 974	/* Default speed and duplex setting, full/100 */
 975	cmd &= ~MAC_CMDCFG_HD_ENA;
 976	cmd &= ~MAC_CMDCFG_ETH_SPEED;
 977	cmd &= ~MAC_CMDCFG_ENA_10;
 978
 979	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
 980
 981	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
 982		tse_csroffs(pause_quanta));
 983
 984	if (netif_msg_hw(priv))
 985		dev_dbg(priv->device,
 986			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
 987
 988	return 0;
 989}
 990
 991/* Start/stop MAC transmission logic
 992 */
 993static void tse_set_mac(struct altera_tse_private *priv, bool enable)
 994{
 995	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 996
 997	if (enable)
 998		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
 999	else
1000		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1001
1002	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1003}
1004
1005/* Change the MTU
1006 */
1007static int tse_change_mtu(struct net_device *dev, int new_mtu)
1008{
1009	if (netif_running(dev)) {
1010		netdev_err(dev, "must be stopped to change its MTU\n");
1011		return -EBUSY;
1012	}
1013
1014	dev->mtu = new_mtu;
1015	netdev_update_features(dev);
1016
1017	return 0;
1018}
1019
1020static void altera_tse_set_mcfilter(struct net_device *dev)
1021{
1022	struct altera_tse_private *priv = netdev_priv(dev);
 
1023	int i;
1024	struct netdev_hw_addr *ha;
1025
1026	/* clear the hash filter */
1027	for (i = 0; i < 64; i++)
1028		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1029
1030	netdev_for_each_mc_addr(ha, dev) {
1031		unsigned int hash = 0;
1032		int mac_octet;
1033
1034		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1035			unsigned char xor_bit = 0;
1036			unsigned char octet = ha->addr[mac_octet];
1037			unsigned int bitshift;
1038
1039			for (bitshift = 0; bitshift < 8; bitshift++)
1040				xor_bit ^= ((octet >> bitshift) & 0x01);
1041
1042			hash = (hash << 1) | xor_bit;
1043		}
1044		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1045	}
1046}
1047
1048
1049static void altera_tse_set_mcfilterall(struct net_device *dev)
1050{
1051	struct altera_tse_private *priv = netdev_priv(dev);
1052	int i;
1053
1054	/* set the hash filter */
1055	for (i = 0; i < 64; i++)
1056		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1057}
1058
1059/* Set or clear the multicast filter for this adaptor
1060 */
1061static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1062{
1063	struct altera_tse_private *priv = netdev_priv(dev);
1064
1065	spin_lock(&priv->mac_cfg_lock);
1066
1067	if (dev->flags & IFF_PROMISC)
1068		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1069			    MAC_CMDCFG_PROMIS_EN);
1070
1071	if (dev->flags & IFF_ALLMULTI)
1072		altera_tse_set_mcfilterall(dev);
1073	else
1074		altera_tse_set_mcfilter(dev);
1075
1076	spin_unlock(&priv->mac_cfg_lock);
1077}
1078
1079/* Set or clear the multicast filter for this adaptor
1080 */
1081static void tse_set_rx_mode(struct net_device *dev)
1082{
1083	struct altera_tse_private *priv = netdev_priv(dev);
1084
1085	spin_lock(&priv->mac_cfg_lock);
1086
1087	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1088	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1089		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1090			    MAC_CMDCFG_PROMIS_EN);
1091	else
1092		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1093			      MAC_CMDCFG_PROMIS_EN);
1094
1095	spin_unlock(&priv->mac_cfg_lock);
1096}
1097
1098/* Initialise (if necessary) the SGMII PCS component
1099 */
1100static int init_sgmii_pcs(struct net_device *dev)
1101{
1102	struct altera_tse_private *priv = netdev_priv(dev);
1103	int n;
1104	unsigned int tmp_reg = 0;
1105
1106	if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1107		return 0; /* Nothing to do, not in SGMII mode */
1108
1109	/* The TSE SGMII PCS block looks a little like a PHY, it is
1110	 * mapped into the zeroth MDIO space of the MAC and it has
1111	 * ID registers like a PHY would.  Sadly this is often
1112	 * configured to zeroes, so don't be surprised if it does
1113	 * show 0x00000000.
1114	 */
1115
1116	if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1117		sgmii_pcs_scratch_test(priv, 0xffff) &&
1118		sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1119		sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1120		netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1121				sgmii_pcs_read(priv, MII_PHYSID1),
1122				sgmii_pcs_read(priv, MII_PHYSID2));
1123	} else {
1124		netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1125		return -ENOMEM;
1126	}
1127
1128	/* Starting on page 5-29 of the MegaCore Function User Guide
1129	 * Set SGMII Link timer to 1.6ms
1130	 */
1131	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1132	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1133
1134	/* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1135	sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1136
1137	/* Enable Autonegotiation */
1138	tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1139	tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1140	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1141
1142	/* Reset PCS block */
1143	tmp_reg |= BMCR_RESET;
1144	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1145	for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1146		if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1147			netdev_info(dev, "SGMII PCS block initialised OK\n");
1148			return 0;
1149		}
1150		udelay(1);
1151	}
1152
1153	/* We failed to reset the block, return a timeout */
1154	netdev_err(dev, "SGMII PCS block reset failed.\n");
1155	return -ETIMEDOUT;
1156}
1157
1158/* Open and initialize the interface
1159 */
1160static int tse_open(struct net_device *dev)
1161{
1162	struct altera_tse_private *priv = netdev_priv(dev);
 
1163	int ret = 0;
1164	int i;
1165	unsigned long int flags;
1166
1167	/* Reset and configure TSE MAC and probe associated PHY */
1168	ret = priv->dmaops->init_dma(priv);
1169	if (ret != 0) {
1170		netdev_err(dev, "Cannot initialize DMA\n");
1171		goto phy_error;
1172	}
1173
1174	if (netif_msg_ifup(priv))
1175		netdev_warn(dev, "device MAC address %pM\n",
1176			    dev->dev_addr);
1177
1178	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1179		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1180
1181	spin_lock(&priv->mac_cfg_lock);
1182	/* no-op if MAC not operating in SGMII mode*/
1183	ret = init_sgmii_pcs(dev);
1184	if (ret) {
1185		netdev_err(dev,
1186			   "Cannot init the SGMII PCS (error: %d)\n", ret);
1187		spin_unlock(&priv->mac_cfg_lock);
1188		goto phy_error;
1189	}
1190
1191	ret = reset_mac(priv);
1192	/* Note that reset_mac will fail if the clocks are gated by the PHY
1193	 * due to the PHY being put into isolation or power down mode.
1194	 * This is not an error if reset fails due to no clock.
1195	 */
1196	if (ret)
1197		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1198
1199	ret = init_mac(priv);
1200	spin_unlock(&priv->mac_cfg_lock);
1201	if (ret) {
1202		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1203		goto alloc_skbuf_error;
1204	}
1205
1206	priv->dmaops->reset_dma(priv);
1207
1208	/* Create and initialize the TX/RX descriptors chains. */
1209	priv->rx_ring_size = dma_rx_num;
1210	priv->tx_ring_size = dma_tx_num;
1211	ret = alloc_init_skbufs(priv);
1212	if (ret) {
1213		netdev_err(dev, "DMA descriptors initialization failed\n");
1214		goto alloc_skbuf_error;
1215	}
1216
1217
1218	/* Register RX interrupt */
1219	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1220			  dev->name, dev);
1221	if (ret) {
1222		netdev_err(dev, "Unable to register RX interrupt %d\n",
1223			   priv->rx_irq);
1224		goto init_error;
1225	}
1226
1227	/* Register TX interrupt */
1228	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1229			  dev->name, dev);
1230	if (ret) {
1231		netdev_err(dev, "Unable to register TX interrupt %d\n",
1232			   priv->tx_irq);
1233		goto tx_request_irq_error;
1234	}
1235
1236	/* Enable DMA interrupts */
1237	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1238	priv->dmaops->enable_rxirq(priv);
1239	priv->dmaops->enable_txirq(priv);
1240
1241	/* Setup RX descriptor chain */
1242	for (i = 0; i < priv->rx_ring_size; i++)
1243		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1244
1245	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1246
1247	if (dev->phydev)
1248		phy_start(dev->phydev);
 
 
 
 
1249
1250	napi_enable(&priv->napi);
1251	netif_start_queue(dev);
1252
1253	priv->dmaops->start_rxdma(priv);
1254
1255	/* Start MAC Rx/Tx */
1256	spin_lock(&priv->mac_cfg_lock);
1257	tse_set_mac(priv, true);
1258	spin_unlock(&priv->mac_cfg_lock);
1259
1260	return 0;
1261
1262tx_request_irq_error:
1263	free_irq(priv->rx_irq, dev);
1264init_error:
1265	free_skbufs(dev);
1266alloc_skbuf_error:
1267phy_error:
1268	return ret;
1269}
1270
1271/* Stop TSE MAC interface and put the device in an inactive state
1272 */
1273static int tse_shutdown(struct net_device *dev)
1274{
1275	struct altera_tse_private *priv = netdev_priv(dev);
 
1276	int ret;
1277	unsigned long int flags;
1278
1279	/* Stop the PHY */
1280	if (dev->phydev)
1281		phy_stop(dev->phydev);
1282
 
 
1283	netif_stop_queue(dev);
1284	napi_disable(&priv->napi);
1285
1286	/* Disable DMA interrupts */
1287	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1288	priv->dmaops->disable_rxirq(priv);
1289	priv->dmaops->disable_txirq(priv);
1290	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1291
1292	/* Free the IRQ lines */
1293	free_irq(priv->rx_irq, dev);
1294	free_irq(priv->tx_irq, dev);
1295
1296	/* disable and reset the MAC, empties fifo */
1297	spin_lock(&priv->mac_cfg_lock);
1298	spin_lock(&priv->tx_lock);
1299
1300	ret = reset_mac(priv);
1301	/* Note that reset_mac will fail if the clocks are gated by the PHY
1302	 * due to the PHY being put into isolation or power down mode.
1303	 * This is not an error if reset fails due to no clock.
1304	 */
1305	if (ret)
1306		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1307	priv->dmaops->reset_dma(priv);
1308	free_skbufs(dev);
1309
1310	spin_unlock(&priv->tx_lock);
1311	spin_unlock(&priv->mac_cfg_lock);
1312
1313	priv->dmaops->uninit_dma(priv);
1314
1315	return 0;
1316}
1317
1318static struct net_device_ops altera_tse_netdev_ops = {
1319	.ndo_open		= tse_open,
1320	.ndo_stop		= tse_shutdown,
1321	.ndo_start_xmit		= tse_start_xmit,
1322	.ndo_set_mac_address	= eth_mac_addr,
1323	.ndo_set_rx_mode	= tse_set_rx_mode,
1324	.ndo_change_mtu		= tse_change_mtu,
1325	.ndo_validate_addr	= eth_validate_addr,
1326};
1327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328static int request_and_map(struct platform_device *pdev, const char *name,
1329			   struct resource **res, void __iomem **ptr)
1330{
 
1331	struct resource *region;
1332	struct device *device = &pdev->dev;
1333
1334	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1335	if (*res == NULL) {
1336		dev_err(device, "resource %s not defined\n", name);
1337		return -ENODEV;
1338	}
1339
1340	region = devm_request_mem_region(device, (*res)->start,
1341					 resource_size(*res), dev_name(device));
1342	if (region == NULL) {
1343		dev_err(device, "unable to request %s\n", name);
1344		return -EBUSY;
1345	}
1346
1347	*ptr = devm_ioremap_nocache(device, region->start,
1348				    resource_size(region));
1349	if (*ptr == NULL) {
1350		dev_err(device, "ioremap_nocache of %s failed!", name);
1351		return -ENOMEM;
1352	}
1353
1354	return 0;
1355}
1356
1357/* Probe Altera TSE MAC device
1358 */
1359static int altera_tse_probe(struct platform_device *pdev)
1360{
1361	struct net_device *ndev;
1362	int ret = -ENODEV;
 
1363	struct resource *control_port;
 
1364	struct resource *dma_res;
1365	struct altera_tse_private *priv;
1366	const unsigned char *macaddr;
 
1367	void __iomem *descmap;
1368	const struct of_device_id *of_id = NULL;
1369
1370	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1371	if (!ndev) {
1372		dev_err(&pdev->dev, "Could not allocate network device\n");
1373		return -ENODEV;
1374	}
1375
1376	SET_NETDEV_DEV(ndev, &pdev->dev);
1377
1378	priv = netdev_priv(ndev);
1379	priv->device = &pdev->dev;
1380	priv->dev = ndev;
1381	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1382
1383	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1384
1385	if (of_id)
1386		priv->dmaops = (struct altera_dmaops *)of_id->data;
1387
1388
1389	if (priv->dmaops &&
1390	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1391		/* Get the mapped address to the SGDMA descriptor memory */
1392		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1393		if (ret)
1394			goto err_free_netdev;
1395
1396		/* Start of that memory is for transmit descriptors */
1397		priv->tx_dma_desc = descmap;
1398
1399		/* First half is for tx descriptors, other half for tx */
1400		priv->txdescmem = resource_size(dma_res)/2;
1401
1402		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1403
1404		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1405						     priv->txdescmem));
1406		priv->rxdescmem = resource_size(dma_res)/2;
1407		priv->rxdescmem_busaddr = dma_res->start;
1408		priv->rxdescmem_busaddr += priv->txdescmem;
1409
1410		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1411			dev_dbg(priv->device,
1412				"SGDMA bus addresses greater than 32-bits\n");
1413			ret = -EINVAL;
1414			goto err_free_netdev;
1415		}
1416		if (upper_32_bits(priv->txdescmem_busaddr)) {
1417			dev_dbg(priv->device,
1418				"SGDMA bus addresses greater than 32-bits\n");
1419			ret = -EINVAL;
1420			goto err_free_netdev;
1421		}
1422	} else if (priv->dmaops &&
1423		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1424		ret = request_and_map(pdev, "rx_resp", &dma_res,
1425				      &priv->rx_dma_resp);
1426		if (ret)
1427			goto err_free_netdev;
1428
1429		ret = request_and_map(pdev, "tx_desc", &dma_res,
1430				      &priv->tx_dma_desc);
1431		if (ret)
1432			goto err_free_netdev;
1433
1434		priv->txdescmem = resource_size(dma_res);
1435		priv->txdescmem_busaddr = dma_res->start;
1436
1437		ret = request_and_map(pdev, "rx_desc", &dma_res,
1438				      &priv->rx_dma_desc);
1439		if (ret)
1440			goto err_free_netdev;
1441
1442		priv->rxdescmem = resource_size(dma_res);
1443		priv->rxdescmem_busaddr = dma_res->start;
1444
1445	} else {
 
1446		goto err_free_netdev;
1447	}
1448
1449	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1450		dma_set_coherent_mask(priv->device,
1451				      DMA_BIT_MASK(priv->dmaops->dmamask));
1452	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1453		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1454	else
 
1455		goto err_free_netdev;
 
1456
1457	/* MAC address space */
1458	ret = request_and_map(pdev, "control_port", &control_port,
1459			      (void __iomem **)&priv->mac_dev);
1460	if (ret)
1461		goto err_free_netdev;
1462
1463	/* xSGDMA Rx Dispatcher address space */
1464	ret = request_and_map(pdev, "rx_csr", &dma_res,
1465			      &priv->rx_dma_csr);
1466	if (ret)
1467		goto err_free_netdev;
1468
1469
1470	/* xSGDMA Tx Dispatcher address space */
1471	ret = request_and_map(pdev, "tx_csr", &dma_res,
1472			      &priv->tx_dma_csr);
1473	if (ret)
1474		goto err_free_netdev;
1475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476
1477	/* Rx IRQ */
1478	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1479	if (priv->rx_irq == -ENXIO) {
1480		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1481		ret = -ENXIO;
1482		goto err_free_netdev;
1483	}
1484
1485	/* Tx IRQ */
1486	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1487	if (priv->tx_irq == -ENXIO) {
1488		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1489		ret = -ENXIO;
1490		goto err_free_netdev;
1491	}
1492
1493	/* get FIFO depths from device tree */
1494	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1495				 &priv->rx_fifo_depth)) {
1496		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1497		ret = -ENXIO;
1498		goto err_free_netdev;
1499	}
1500
1501	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1502				 &priv->tx_fifo_depth)) {
1503		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1504		ret = -ENXIO;
1505		goto err_free_netdev;
1506	}
1507
1508	/* get hash filter settings for this instance */
1509	priv->hash_filter =
1510		of_property_read_bool(pdev->dev.of_node,
1511				      "altr,has-hash-multicast-filter");
1512
1513	/* Set hash filter to not set for now until the
1514	 * multicast filter receive issue is debugged
1515	 */
1516	priv->hash_filter = 0;
1517
1518	/* get supplemental address settings for this instance */
1519	priv->added_unicast =
1520		of_property_read_bool(pdev->dev.of_node,
1521				      "altr,has-supplementary-unicast");
1522
1523	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1524	/* Max MTU is 1500, ETH_DATA_LEN */
1525	priv->dev->max_mtu = ETH_DATA_LEN;
1526
1527	/* Get the max mtu from the device tree. Note that the
1528	 * "max-frame-size" parameter is actually max mtu. Definition
1529	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1530	 */
1531	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1532			     &priv->dev->max_mtu);
1533
1534	/* The DMA buffer size already accounts for an alignment bias
1535	 * to avoid unaligned access exceptions for the NIOS processor,
1536	 */
1537	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1538
1539	/* get default MAC address from device tree */
1540	macaddr = of_get_mac_address(pdev->dev.of_node);
1541	if (macaddr)
1542		ether_addr_copy(ndev->dev_addr, macaddr);
1543	else
1544		eth_hw_addr_random(ndev);
1545
1546	/* get phy addr and create mdio */
1547	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1548
1549	if (ret)
1550		goto err_free_netdev;
1551
1552	/* initialize netdev */
1553	ndev->mem_start = control_port->start;
1554	ndev->mem_end = control_port->end;
1555	ndev->netdev_ops = &altera_tse_netdev_ops;
1556	altera_tse_set_ethtool_ops(ndev);
1557
1558	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1559
1560	if (priv->hash_filter)
1561		altera_tse_netdev_ops.ndo_set_rx_mode =
1562			tse_set_rx_mode_hashfilter;
1563
1564	/* Scatter/gather IO is not supported,
1565	 * so it is turned off
1566	 */
1567	ndev->hw_features &= ~NETIF_F_SG;
1568	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1569
1570	/* VLAN offloading of tagging, stripping and filtering is not
1571	 * supported by hardware, but driver will accommodate the
1572	 * extra 4-byte VLAN tag for processing by upper layers
1573	 */
1574	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1575
1576	/* setup NAPI interface */
1577	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1578
1579	spin_lock_init(&priv->mac_cfg_lock);
1580	spin_lock_init(&priv->tx_lock);
1581	spin_lock_init(&priv->rxdma_irq_lock);
1582
1583	netif_carrier_off(ndev);
1584	ret = register_netdev(ndev);
1585	if (ret) {
1586		dev_err(&pdev->dev, "failed to register TSE net device\n");
1587		goto err_register_netdev;
1588	}
1589
1590	platform_set_drvdata(pdev, ndev);
1591
1592	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1593
1594	if (netif_msg_probe(priv))
1595		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1596			 (priv->revision >> 8) & 0xff,
1597			 priv->revision & 0xff,
1598			 (unsigned long) control_port->start, priv->rx_irq,
1599			 priv->tx_irq);
1600
1601	ret = init_phy(ndev);
1602	if (ret != 0) {
1603		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1604		goto err_init_phy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	}
 
1606	return 0;
1607
1608err_init_phy:
 
1609	unregister_netdev(ndev);
1610err_register_netdev:
1611	netif_napi_del(&priv->napi);
1612	altera_tse_mdio_destroy(ndev);
1613err_free_netdev:
1614	free_netdev(ndev);
1615	return ret;
1616}
1617
1618/* Remove Altera TSE MAC device
1619 */
1620static int altera_tse_remove(struct platform_device *pdev)
1621{
1622	struct net_device *ndev = platform_get_drvdata(pdev);
1623	struct altera_tse_private *priv = netdev_priv(ndev);
1624
1625	if (ndev->phydev) {
1626		phy_disconnect(ndev->phydev);
1627
1628		if (of_phy_is_fixed_link(priv->device->of_node))
1629			of_phy_deregister_fixed_link(priv->device->of_node);
1630	}
1631
1632	platform_set_drvdata(pdev, NULL);
1633	altera_tse_mdio_destroy(ndev);
1634	unregister_netdev(ndev);
 
 
 
1635	free_netdev(ndev);
1636
1637	return 0;
1638}
1639
1640static const struct altera_dmaops altera_dtype_sgdma = {
1641	.altera_dtype = ALTERA_DTYPE_SGDMA,
1642	.dmamask = 32,
1643	.reset_dma = sgdma_reset,
1644	.enable_txirq = sgdma_enable_txirq,
1645	.enable_rxirq = sgdma_enable_rxirq,
1646	.disable_txirq = sgdma_disable_txirq,
1647	.disable_rxirq = sgdma_disable_rxirq,
1648	.clear_txirq = sgdma_clear_txirq,
1649	.clear_rxirq = sgdma_clear_rxirq,
1650	.tx_buffer = sgdma_tx_buffer,
1651	.tx_completions = sgdma_tx_completions,
1652	.add_rx_desc = sgdma_add_rx_desc,
1653	.get_rx_status = sgdma_rx_status,
1654	.init_dma = sgdma_initialize,
1655	.uninit_dma = sgdma_uninitialize,
1656	.start_rxdma = sgdma_start_rxdma,
1657};
1658
1659static const struct altera_dmaops altera_dtype_msgdma = {
1660	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1661	.dmamask = 64,
1662	.reset_dma = msgdma_reset,
1663	.enable_txirq = msgdma_enable_txirq,
1664	.enable_rxirq = msgdma_enable_rxirq,
1665	.disable_txirq = msgdma_disable_txirq,
1666	.disable_rxirq = msgdma_disable_rxirq,
1667	.clear_txirq = msgdma_clear_txirq,
1668	.clear_rxirq = msgdma_clear_rxirq,
1669	.tx_buffer = msgdma_tx_buffer,
1670	.tx_completions = msgdma_tx_completions,
1671	.add_rx_desc = msgdma_add_rx_desc,
1672	.get_rx_status = msgdma_rx_status,
1673	.init_dma = msgdma_initialize,
1674	.uninit_dma = msgdma_uninitialize,
1675	.start_rxdma = msgdma_start_rxdma,
1676};
1677
1678static const struct of_device_id altera_tse_ids[] = {
1679	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1680	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1681	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1682	{},
1683};
1684MODULE_DEVICE_TABLE(of, altera_tse_ids);
1685
1686static struct platform_driver altera_tse_driver = {
1687	.probe		= altera_tse_probe,
1688	.remove		= altera_tse_remove,
1689	.suspend	= NULL,
1690	.resume		= NULL,
1691	.driver		= {
1692		.name	= ALTERA_TSE_RESOURCE_NAME,
1693		.of_match_table = altera_tse_ids,
1694	},
1695};
1696
1697module_platform_driver(altera_tse_driver);
1698
1699MODULE_AUTHOR("Altera Corporation");
1700MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1701MODULE_LICENSE("GPL v2");