Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Altera Triple-Speed Ethernet MAC driver
3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
4 *
5 * Contributors:
6 * Dalon Westergreen
7 * Thomas Chou
8 * Ian Abbott
9 * Yuriy Kozlov
10 * Tobias Klauser
11 * Andriy Smolskyy
12 * Roman Bulgakov
13 * Dmytro Mytarchuk
14 * Matthew Gerlach
15 *
16 * Original driver contributed by SLS.
17 * Major updates contributed by GlobalLogic
18 */
19
20#include <linux/atomic.h>
21#include <linux/delay.h>
22#include <linux/etherdevice.h>
23#include <linux/if_vlan.h>
24#include <linux/init.h>
25#include <linux/interrupt.h>
26#include <linux/io.h>
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/mii.h>
30#include <linux/mdio/mdio-regmap.h>
31#include <linux/netdevice.h>
32#include <linux/of.h>
33#include <linux/of_mdio.h>
34#include <linux/of_net.h>
35#include <linux/pcs-lynx.h>
36#include <linux/phy.h>
37#include <linux/platform_device.h>
38#include <linux/property.h>
39#include <linux/regmap.h>
40#include <linux/skbuff.h>
41#include <asm/cacheflush.h>
42
43#include "altera_utils.h"
44#include "altera_tse.h"
45#include "altera_sgdma.h"
46#include "altera_msgdma.h"
47
48static atomic_t instance_count = ATOMIC_INIT(~0);
49/* Module parameters */
50static int debug = -1;
51module_param(debug, int, 0644);
52MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
53
54static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 NETIF_MSG_IFDOWN);
57
58#define RX_DESCRIPTORS 64
59static int dma_rx_num = RX_DESCRIPTORS;
60module_param(dma_rx_num, int, 0644);
61MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
62
63#define TX_DESCRIPTORS 64
64static int dma_tx_num = TX_DESCRIPTORS;
65module_param(dma_tx_num, int, 0644);
66MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
67
68
69#define POLL_PHY (-1)
70
71/* Make sure DMA buffer size is larger than the max frame size
72 * plus some alignment offset and a VLAN header. If the max frame size is
73 * 1518, a VLAN header would be additional 4 bytes and additional
74 * headroom for alignment is 2 bytes, 2048 is just fine.
75 */
76#define ALTERA_RXDMABUFFER_SIZE 2048
77
78/* Allow network stack to resume queuing packets after we've
79 * finished transmitting at least 1/4 of the packets in the queue.
80 */
81#define TSE_TX_THRESH(x) (x->tx_ring_size / 4)
82
83#define TXQUEUESTOP_THRESHHOLD 2
84
85static inline u32 tse_tx_avail(struct altera_tse_private *priv)
86{
87 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
88}
89
90/* MDIO specific functions
91 */
92static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
93{
94 struct net_device *ndev = bus->priv;
95 struct altera_tse_private *priv = netdev_priv(ndev);
96
97 /* set MDIO address */
98 csrwr32((mii_id & 0x1f), priv->mac_dev,
99 tse_csroffs(mdio_phy1_addr));
100
101 /* get the data */
102 return csrrd32(priv->mac_dev,
103 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
104}
105
106static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
107 u16 value)
108{
109 struct net_device *ndev = bus->priv;
110 struct altera_tse_private *priv = netdev_priv(ndev);
111
112 /* set MDIO address */
113 csrwr32((mii_id & 0x1f), priv->mac_dev,
114 tse_csroffs(mdio_phy1_addr));
115
116 /* write the data */
117 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
118 return 0;
119}
120
121static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
122{
123 struct altera_tse_private *priv = netdev_priv(dev);
124 struct device_node *mdio_node = NULL;
125 struct device_node *child_node = NULL;
126 struct mii_bus *mdio = NULL;
127 int ret;
128
129 for_each_child_of_node(priv->device->of_node, child_node) {
130 if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
131 mdio_node = child_node;
132 break;
133 }
134 }
135
136 if (mdio_node) {
137 netdev_dbg(dev, "FOUND MDIO subnode\n");
138 } else {
139 netdev_dbg(dev, "NO MDIO subnode\n");
140 return 0;
141 }
142
143 mdio = mdiobus_alloc();
144 if (mdio == NULL) {
145 netdev_err(dev, "Error allocating MDIO bus\n");
146 ret = -ENOMEM;
147 goto put_node;
148 }
149
150 mdio->name = ALTERA_TSE_RESOURCE_NAME;
151 mdio->read = &altera_tse_mdio_read;
152 mdio->write = &altera_tse_mdio_write;
153 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
154
155 mdio->priv = dev;
156 mdio->parent = priv->device;
157
158 ret = of_mdiobus_register(mdio, mdio_node);
159 if (ret != 0) {
160 netdev_err(dev, "Cannot register MDIO bus %s\n",
161 mdio->id);
162 goto out_free_mdio;
163 }
164 of_node_put(mdio_node);
165
166 if (netif_msg_drv(priv))
167 netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
168
169 priv->mdio = mdio;
170 return 0;
171out_free_mdio:
172 mdiobus_free(mdio);
173 mdio = NULL;
174put_node:
175 of_node_put(mdio_node);
176 return ret;
177}
178
179static void altera_tse_mdio_destroy(struct net_device *dev)
180{
181 struct altera_tse_private *priv = netdev_priv(dev);
182
183 if (priv->mdio == NULL)
184 return;
185
186 if (netif_msg_drv(priv))
187 netdev_info(dev, "MDIO bus %s: removed\n",
188 priv->mdio->id);
189
190 mdiobus_unregister(priv->mdio);
191 mdiobus_free(priv->mdio);
192 priv->mdio = NULL;
193}
194
195static int tse_init_rx_buffer(struct altera_tse_private *priv,
196 struct tse_buffer *rxbuffer, int len)
197{
198 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
199 if (!rxbuffer->skb)
200 return -ENOMEM;
201
202 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
203 len,
204 DMA_FROM_DEVICE);
205
206 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
207 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
208 dev_kfree_skb_any(rxbuffer->skb);
209 return -EINVAL;
210 }
211 rxbuffer->dma_addr &= (dma_addr_t)~3;
212 rxbuffer->len = len;
213 return 0;
214}
215
216static void tse_free_rx_buffer(struct altera_tse_private *priv,
217 struct tse_buffer *rxbuffer)
218{
219 dma_addr_t dma_addr = rxbuffer->dma_addr;
220 struct sk_buff *skb = rxbuffer->skb;
221
222 if (skb != NULL) {
223 if (dma_addr)
224 dma_unmap_single(priv->device, dma_addr,
225 rxbuffer->len,
226 DMA_FROM_DEVICE);
227 dev_kfree_skb_any(skb);
228 rxbuffer->skb = NULL;
229 rxbuffer->dma_addr = 0;
230 }
231}
232
233/* Unmap and free Tx buffer resources
234 */
235static void tse_free_tx_buffer(struct altera_tse_private *priv,
236 struct tse_buffer *buffer)
237{
238 if (buffer->dma_addr) {
239 if (buffer->mapped_as_page)
240 dma_unmap_page(priv->device, buffer->dma_addr,
241 buffer->len, DMA_TO_DEVICE);
242 else
243 dma_unmap_single(priv->device, buffer->dma_addr,
244 buffer->len, DMA_TO_DEVICE);
245 buffer->dma_addr = 0;
246 }
247 if (buffer->skb) {
248 dev_kfree_skb_any(buffer->skb);
249 buffer->skb = NULL;
250 }
251}
252
253static int alloc_init_skbufs(struct altera_tse_private *priv)
254{
255 unsigned int rx_descs = priv->rx_ring_size;
256 unsigned int tx_descs = priv->tx_ring_size;
257 int ret = -ENOMEM;
258 int i;
259
260 /* Create Rx ring buffer */
261 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
262 GFP_KERNEL);
263 if (!priv->rx_ring)
264 goto err_rx_ring;
265
266 /* Create Tx ring buffer */
267 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
268 GFP_KERNEL);
269 if (!priv->tx_ring)
270 goto err_tx_ring;
271
272 priv->tx_cons = 0;
273 priv->tx_prod = 0;
274
275 /* Init Rx ring */
276 for (i = 0; i < rx_descs; i++) {
277 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
278 priv->rx_dma_buf_sz);
279 if (ret)
280 goto err_init_rx_buffers;
281 }
282
283 priv->rx_cons = 0;
284 priv->rx_prod = 0;
285
286 return 0;
287err_init_rx_buffers:
288 while (--i >= 0)
289 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
290 kfree(priv->tx_ring);
291err_tx_ring:
292 kfree(priv->rx_ring);
293err_rx_ring:
294 return ret;
295}
296
297static void free_skbufs(struct net_device *dev)
298{
299 struct altera_tse_private *priv = netdev_priv(dev);
300 unsigned int rx_descs = priv->rx_ring_size;
301 unsigned int tx_descs = priv->tx_ring_size;
302 int i;
303
304 /* Release the DMA TX/RX socket buffers */
305 for (i = 0; i < rx_descs; i++)
306 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
307 for (i = 0; i < tx_descs; i++)
308 tse_free_tx_buffer(priv, &priv->tx_ring[i]);
309
310
311 kfree(priv->tx_ring);
312}
313
314/* Reallocate the skb for the reception process
315 */
316static inline void tse_rx_refill(struct altera_tse_private *priv)
317{
318 unsigned int rxsize = priv->rx_ring_size;
319 unsigned int entry;
320 int ret;
321
322 for (; priv->rx_cons - priv->rx_prod > 0;
323 priv->rx_prod++) {
324 entry = priv->rx_prod % rxsize;
325 if (likely(priv->rx_ring[entry].skb == NULL)) {
326 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
327 priv->rx_dma_buf_sz);
328 if (unlikely(ret != 0))
329 break;
330 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
331 }
332 }
333}
334
335/* Pull out the VLAN tag and fix up the packet
336 */
337static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
338{
339 struct ethhdr *eth_hdr;
340 u16 vid;
341
342 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
343 !__vlan_get_tag(skb, &vid)) {
344 eth_hdr = (struct ethhdr *)skb->data;
345 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
346 skb_pull(skb, VLAN_HLEN);
347 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
348 }
349}
350
351/* Receive a packet: retrieve and pass over to upper levels
352 */
353static int tse_rx(struct altera_tse_private *priv, int limit)
354{
355 unsigned int entry = priv->rx_cons % priv->rx_ring_size;
356 unsigned int next_entry;
357 unsigned int count = 0;
358 struct sk_buff *skb;
359 u32 rxstatus;
360 u16 pktlength;
361 u16 pktstatus;
362
363 /* Check for count < limit first as get_rx_status is changing
364 * the response-fifo so we must process the next packet
365 * after calling get_rx_status if a response is pending.
366 * (reading the last byte of the response pops the value from the fifo.)
367 */
368 while ((count < limit) &&
369 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
370 pktstatus = rxstatus >> 16;
371 pktlength = rxstatus & 0xffff;
372
373 if ((pktstatus & 0xFF) || (pktlength == 0))
374 netdev_err(priv->dev,
375 "RCV pktstatus %08X pktlength %08X\n",
376 pktstatus, pktlength);
377
378 /* DMA transfer from TSE starts with 2 additional bytes for
379 * IP payload alignment. Status returned by get_rx_status()
380 * contains DMA transfer length. Packet is 2 bytes shorter.
381 */
382 pktlength -= 2;
383
384 count++;
385 next_entry = (++priv->rx_cons) % priv->rx_ring_size;
386
387 skb = priv->rx_ring[entry].skb;
388 if (unlikely(!skb)) {
389 netdev_err(priv->dev,
390 "%s: Inconsistent Rx descriptor chain\n",
391 __func__);
392 priv->dev->stats.rx_dropped++;
393 break;
394 }
395 priv->rx_ring[entry].skb = NULL;
396
397 skb_put(skb, pktlength);
398
399 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
400 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
401
402 if (netif_msg_pktdata(priv)) {
403 netdev_info(priv->dev, "frame received %d bytes\n",
404 pktlength);
405 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
406 16, 1, skb->data, pktlength, true);
407 }
408
409 tse_rx_vlan(priv->dev, skb);
410
411 skb->protocol = eth_type_trans(skb, priv->dev);
412 skb_checksum_none_assert(skb);
413
414 napi_gro_receive(&priv->napi, skb);
415
416 priv->dev->stats.rx_packets++;
417 priv->dev->stats.rx_bytes += pktlength;
418
419 entry = next_entry;
420
421 tse_rx_refill(priv);
422 }
423
424 return count;
425}
426
427/* Reclaim resources after transmission completes
428 */
429static int tse_tx_complete(struct altera_tse_private *priv)
430{
431 unsigned int txsize = priv->tx_ring_size;
432 struct tse_buffer *tx_buff;
433 unsigned int entry;
434 int txcomplete = 0;
435 u32 ready;
436
437 spin_lock(&priv->tx_lock);
438
439 ready = priv->dmaops->tx_completions(priv);
440
441 /* Free sent buffers */
442 while (ready && (priv->tx_cons != priv->tx_prod)) {
443 entry = priv->tx_cons % txsize;
444 tx_buff = &priv->tx_ring[entry];
445
446 if (netif_msg_tx_done(priv))
447 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
448 __func__, priv->tx_prod, priv->tx_cons);
449
450 if (likely(tx_buff->skb))
451 priv->dev->stats.tx_packets++;
452
453 tse_free_tx_buffer(priv, tx_buff);
454 priv->tx_cons++;
455
456 txcomplete++;
457 ready--;
458 }
459
460 if (unlikely(netif_queue_stopped(priv->dev) &&
461 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
462 if (netif_queue_stopped(priv->dev) &&
463 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
464 if (netif_msg_tx_done(priv))
465 netdev_dbg(priv->dev, "%s: restart transmit\n",
466 __func__);
467 netif_wake_queue(priv->dev);
468 }
469 }
470
471 spin_unlock(&priv->tx_lock);
472 return txcomplete;
473}
474
475/* NAPI polling function
476 */
477static int tse_poll(struct napi_struct *napi, int budget)
478{
479 struct altera_tse_private *priv =
480 container_of(napi, struct altera_tse_private, napi);
481 unsigned long int flags;
482 int rxcomplete = 0;
483
484 tse_tx_complete(priv);
485
486 rxcomplete = tse_rx(priv, budget);
487
488 if (rxcomplete < budget) {
489
490 napi_complete_done(napi, rxcomplete);
491
492 netdev_dbg(priv->dev,
493 "NAPI Complete, did %d packets with budget %d\n",
494 rxcomplete, budget);
495
496 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
497 priv->dmaops->enable_rxirq(priv);
498 priv->dmaops->enable_txirq(priv);
499 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
500 }
501 return rxcomplete;
502}
503
504/* DMA TX & RX FIFO interrupt routing
505 */
506static irqreturn_t altera_isr(int irq, void *dev_id)
507{
508 struct net_device *dev = dev_id;
509 struct altera_tse_private *priv;
510
511 if (unlikely(!dev)) {
512 pr_err("%s: invalid dev pointer\n", __func__);
513 return IRQ_NONE;
514 }
515 priv = netdev_priv(dev);
516
517 spin_lock(&priv->rxdma_irq_lock);
518 /* reset IRQs */
519 priv->dmaops->clear_rxirq(priv);
520 priv->dmaops->clear_txirq(priv);
521 spin_unlock(&priv->rxdma_irq_lock);
522
523 if (likely(napi_schedule_prep(&priv->napi))) {
524 spin_lock(&priv->rxdma_irq_lock);
525 priv->dmaops->disable_rxirq(priv);
526 priv->dmaops->disable_txirq(priv);
527 spin_unlock(&priv->rxdma_irq_lock);
528 __napi_schedule(&priv->napi);
529 }
530
531
532 return IRQ_HANDLED;
533}
534
535/* Transmit a packet (called by the kernel). Dispatches
536 * either the SGDMA method for transmitting or the
537 * MSGDMA method, assumes no scatter/gather support,
538 * implying an assumption that there's only one
539 * physically contiguous fragment starting at
540 * skb->data, for length of skb_headlen(skb).
541 */
542static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
543{
544 struct altera_tse_private *priv = netdev_priv(dev);
545 unsigned int nopaged_len = skb_headlen(skb);
546 unsigned int txsize = priv->tx_ring_size;
547 int nfrags = skb_shinfo(skb)->nr_frags;
548 struct tse_buffer *buffer = NULL;
549 netdev_tx_t ret = NETDEV_TX_OK;
550 dma_addr_t dma_addr;
551 unsigned int entry;
552
553 spin_lock_bh(&priv->tx_lock);
554
555 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
556 if (!netif_queue_stopped(dev)) {
557 netif_stop_queue(dev);
558 /* This is a hard error, log it. */
559 netdev_err(priv->dev,
560 "%s: Tx list full when queue awake\n",
561 __func__);
562 }
563 ret = NETDEV_TX_BUSY;
564 goto out;
565 }
566
567 /* Map the first skb fragment */
568 entry = priv->tx_prod % txsize;
569 buffer = &priv->tx_ring[entry];
570
571 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
572 DMA_TO_DEVICE);
573 if (dma_mapping_error(priv->device, dma_addr)) {
574 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
575 ret = NETDEV_TX_OK;
576 goto out;
577 }
578
579 buffer->skb = skb;
580 buffer->dma_addr = dma_addr;
581 buffer->len = nopaged_len;
582
583 priv->dmaops->tx_buffer(priv, buffer);
584
585 skb_tx_timestamp(skb);
586
587 priv->tx_prod++;
588 dev->stats.tx_bytes += skb->len;
589
590 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
591 if (netif_msg_hw(priv))
592 netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
593 __func__);
594 netif_stop_queue(dev);
595 }
596
597out:
598 spin_unlock_bh(&priv->tx_lock);
599
600 return ret;
601}
602
603static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
604{
605 struct altera_tse_private *priv = netdev_priv(dev);
606 struct device_node *np = priv->device->of_node;
607 int ret;
608
609 ret = of_get_phy_mode(np, &priv->phy_iface);
610
611 /* Avoid get phy addr and create mdio if no phy is present */
612 if (ret)
613 return 0;
614
615 /* try to get PHY address from device tree, use PHY autodetection if
616 * no valid address is given
617 */
618
619 if (of_property_read_u32(priv->device->of_node, "phy-addr",
620 &priv->phy_addr)) {
621 priv->phy_addr = POLL_PHY;
622 }
623
624 if (!((priv->phy_addr == POLL_PHY) ||
625 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
626 netdev_err(dev, "invalid phy-addr specified %d\n",
627 priv->phy_addr);
628 return -ENODEV;
629 }
630
631 /* Create/attach to MDIO bus */
632 ret = altera_tse_mdio_create(dev,
633 atomic_add_return(1, &instance_count));
634
635 if (ret)
636 return -ENODEV;
637
638 return 0;
639}
640
641static void tse_update_mac_addr(struct altera_tse_private *priv, const u8 *addr)
642{
643 u32 msb;
644 u32 lsb;
645
646 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
647 lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
648
649 /* Set primary MAC address */
650 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
651 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
652}
653
654/* MAC software reset.
655 * When reset is triggered, the MAC function completes the current
656 * transmission or reception, and subsequently disables the transmit and
657 * receive logic, flushes the receive FIFO buffer, and resets the statistics
658 * counters.
659 */
660static int reset_mac(struct altera_tse_private *priv)
661{
662 int counter;
663 u32 dat;
664
665 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
666 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
667 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
668 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
669
670 counter = 0;
671 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
672 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
673 MAC_CMDCFG_SW_RESET))
674 break;
675 udelay(1);
676 }
677
678 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
679 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
680 dat &= ~MAC_CMDCFG_SW_RESET;
681 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
682 return -1;
683 }
684 return 0;
685}
686
687/* Initialize MAC core registers
688*/
689static int init_mac(struct altera_tse_private *priv)
690{
691 unsigned int cmd = 0;
692 u32 frm_length;
693
694 /* Setup Rx FIFO */
695 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
696 priv->mac_dev, tse_csroffs(rx_section_empty));
697
698 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
699 tse_csroffs(rx_section_full));
700
701 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
702 tse_csroffs(rx_almost_empty));
703
704 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
705 tse_csroffs(rx_almost_full));
706
707 /* Setup Tx FIFO */
708 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
709 priv->mac_dev, tse_csroffs(tx_section_empty));
710
711 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
712 tse_csroffs(tx_section_full));
713
714 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
715 tse_csroffs(tx_almost_empty));
716
717 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
718 tse_csroffs(tx_almost_full));
719
720 /* MAC Address Configuration */
721 tse_update_mac_addr(priv, priv->dev->dev_addr);
722
723 /* MAC Function Configuration */
724 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
725 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
726
727 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
728 tse_csroffs(tx_ipg_length));
729
730 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
731 * start address
732 */
733 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
734 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
735
736 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
737 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
738 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
739
740 /* Set the MAC options */
741 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
742 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */
743 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */
744 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames
745 * with CRC errors
746 */
747 cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
748 cmd &= ~MAC_CMDCFG_TX_ENA;
749 cmd &= ~MAC_CMDCFG_RX_ENA;
750
751 /* Default speed and duplex setting, full/100 */
752 cmd &= ~MAC_CMDCFG_HD_ENA;
753 cmd &= ~MAC_CMDCFG_ETH_SPEED;
754 cmd &= ~MAC_CMDCFG_ENA_10;
755
756 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
757
758 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
759 tse_csroffs(pause_quanta));
760
761 if (netif_msg_hw(priv))
762 dev_dbg(priv->device,
763 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
764
765 return 0;
766}
767
768/* Start/stop MAC transmission logic
769 */
770static void tse_set_mac(struct altera_tse_private *priv, bool enable)
771{
772 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
773
774 if (enable)
775 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
776 else
777 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
778
779 csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
780}
781
782/* Change the MTU
783 */
784static int tse_change_mtu(struct net_device *dev, int new_mtu)
785{
786 if (netif_running(dev)) {
787 netdev_err(dev, "must be stopped to change its MTU\n");
788 return -EBUSY;
789 }
790
791 dev->mtu = new_mtu;
792 netdev_update_features(dev);
793
794 return 0;
795}
796
797static void altera_tse_set_mcfilter(struct net_device *dev)
798{
799 struct altera_tse_private *priv = netdev_priv(dev);
800 struct netdev_hw_addr *ha;
801 int i;
802
803 /* clear the hash filter */
804 for (i = 0; i < 64; i++)
805 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
806
807 netdev_for_each_mc_addr(ha, dev) {
808 unsigned int hash = 0;
809 int mac_octet;
810
811 for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
812 unsigned char xor_bit = 0;
813 unsigned char octet = ha->addr[mac_octet];
814 unsigned int bitshift;
815
816 for (bitshift = 0; bitshift < 8; bitshift++)
817 xor_bit ^= ((octet >> bitshift) & 0x01);
818
819 hash = (hash << 1) | xor_bit;
820 }
821 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
822 }
823}
824
825
826static void altera_tse_set_mcfilterall(struct net_device *dev)
827{
828 struct altera_tse_private *priv = netdev_priv(dev);
829 int i;
830
831 /* set the hash filter */
832 for (i = 0; i < 64; i++)
833 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
834}
835
836/* Set or clear the multicast filter for this adapter
837 */
838static void tse_set_rx_mode_hashfilter(struct net_device *dev)
839{
840 struct altera_tse_private *priv = netdev_priv(dev);
841
842 spin_lock(&priv->mac_cfg_lock);
843
844 if (dev->flags & IFF_PROMISC)
845 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
846 MAC_CMDCFG_PROMIS_EN);
847
848 if (dev->flags & IFF_ALLMULTI)
849 altera_tse_set_mcfilterall(dev);
850 else
851 altera_tse_set_mcfilter(dev);
852
853 spin_unlock(&priv->mac_cfg_lock);
854}
855
856/* Set or clear the multicast filter for this adapter
857 */
858static void tse_set_rx_mode(struct net_device *dev)
859{
860 struct altera_tse_private *priv = netdev_priv(dev);
861
862 spin_lock(&priv->mac_cfg_lock);
863
864 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
865 !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
866 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
867 MAC_CMDCFG_PROMIS_EN);
868 else
869 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
870 MAC_CMDCFG_PROMIS_EN);
871
872 spin_unlock(&priv->mac_cfg_lock);
873}
874
875/* Open and initialize the interface
876 */
877static int tse_open(struct net_device *dev)
878{
879 struct altera_tse_private *priv = netdev_priv(dev);
880 unsigned long flags;
881 int ret = 0;
882 int i;
883
884 /* Reset and configure TSE MAC and probe associated PHY */
885 ret = priv->dmaops->init_dma(priv);
886 if (ret != 0) {
887 netdev_err(dev, "Cannot initialize DMA\n");
888 goto phy_error;
889 }
890
891 if (netif_msg_ifup(priv))
892 netdev_warn(dev, "device MAC address %pM\n",
893 dev->dev_addr);
894
895 if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
896 netdev_warn(dev, "TSE revision %x\n", priv->revision);
897
898 spin_lock(&priv->mac_cfg_lock);
899
900 ret = reset_mac(priv);
901 /* Note that reset_mac will fail if the clocks are gated by the PHY
902 * due to the PHY being put into isolation or power down mode.
903 * This is not an error if reset fails due to no clock.
904 */
905 if (ret)
906 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
907
908 ret = init_mac(priv);
909 spin_unlock(&priv->mac_cfg_lock);
910 if (ret) {
911 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
912 goto alloc_skbuf_error;
913 }
914
915 priv->dmaops->reset_dma(priv);
916
917 /* Create and initialize the TX/RX descriptors chains. */
918 priv->rx_ring_size = dma_rx_num;
919 priv->tx_ring_size = dma_tx_num;
920 ret = alloc_init_skbufs(priv);
921 if (ret) {
922 netdev_err(dev, "DMA descriptors initialization failed\n");
923 goto alloc_skbuf_error;
924 }
925
926
927 /* Register RX interrupt */
928 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
929 dev->name, dev);
930 if (ret) {
931 netdev_err(dev, "Unable to register RX interrupt %d\n",
932 priv->rx_irq);
933 goto init_error;
934 }
935
936 /* Register TX interrupt */
937 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
938 dev->name, dev);
939 if (ret) {
940 netdev_err(dev, "Unable to register TX interrupt %d\n",
941 priv->tx_irq);
942 goto tx_request_irq_error;
943 }
944
945 /* Enable DMA interrupts */
946 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
947 priv->dmaops->enable_rxirq(priv);
948 priv->dmaops->enable_txirq(priv);
949
950 /* Setup RX descriptor chain */
951 for (i = 0; i < priv->rx_ring_size; i++)
952 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
953
954 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
955
956 ret = phylink_of_phy_connect(priv->phylink, priv->device->of_node, 0);
957 if (ret) {
958 netdev_err(dev, "could not connect phylink (%d)\n", ret);
959 goto tx_request_irq_error;
960 }
961 phylink_start(priv->phylink);
962
963 napi_enable(&priv->napi);
964 netif_start_queue(dev);
965
966 priv->dmaops->start_rxdma(priv);
967
968 /* Start MAC Rx/Tx */
969 spin_lock(&priv->mac_cfg_lock);
970 tse_set_mac(priv, true);
971 spin_unlock(&priv->mac_cfg_lock);
972
973 return 0;
974
975tx_request_irq_error:
976 free_irq(priv->rx_irq, dev);
977init_error:
978 free_skbufs(dev);
979alloc_skbuf_error:
980phy_error:
981 return ret;
982}
983
984/* Stop TSE MAC interface and put the device in an inactive state
985 */
986static int tse_shutdown(struct net_device *dev)
987{
988 struct altera_tse_private *priv = netdev_priv(dev);
989 unsigned long int flags;
990 int ret;
991
992 phylink_stop(priv->phylink);
993 phylink_disconnect_phy(priv->phylink);
994 netif_stop_queue(dev);
995 napi_disable(&priv->napi);
996
997 /* Disable DMA interrupts */
998 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
999 priv->dmaops->disable_rxirq(priv);
1000 priv->dmaops->disable_txirq(priv);
1001 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1002
1003 /* Free the IRQ lines */
1004 free_irq(priv->rx_irq, dev);
1005 free_irq(priv->tx_irq, dev);
1006
1007 /* disable and reset the MAC, empties fifo */
1008 spin_lock(&priv->mac_cfg_lock);
1009 spin_lock(&priv->tx_lock);
1010
1011 ret = reset_mac(priv);
1012 /* Note that reset_mac will fail if the clocks are gated by the PHY
1013 * due to the PHY being put into isolation or power down mode.
1014 * This is not an error if reset fails due to no clock.
1015 */
1016 if (ret)
1017 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1018 priv->dmaops->reset_dma(priv);
1019 free_skbufs(dev);
1020
1021 spin_unlock(&priv->tx_lock);
1022 spin_unlock(&priv->mac_cfg_lock);
1023
1024 priv->dmaops->uninit_dma(priv);
1025
1026 return 0;
1027}
1028
1029static struct net_device_ops altera_tse_netdev_ops = {
1030 .ndo_open = tse_open,
1031 .ndo_stop = tse_shutdown,
1032 .ndo_start_xmit = tse_start_xmit,
1033 .ndo_set_mac_address = eth_mac_addr,
1034 .ndo_set_rx_mode = tse_set_rx_mode,
1035 .ndo_change_mtu = tse_change_mtu,
1036 .ndo_validate_addr = eth_validate_addr,
1037};
1038
1039static void alt_tse_mac_config(struct phylink_config *config, unsigned int mode,
1040 const struct phylink_link_state *state)
1041{
1042 struct net_device *ndev = to_net_dev(config->dev);
1043 struct altera_tse_private *priv = netdev_priv(ndev);
1044
1045 spin_lock(&priv->mac_cfg_lock);
1046 reset_mac(priv);
1047 tse_set_mac(priv, true);
1048 spin_unlock(&priv->mac_cfg_lock);
1049}
1050
1051static void alt_tse_mac_link_down(struct phylink_config *config,
1052 unsigned int mode, phy_interface_t interface)
1053{
1054}
1055
1056static void alt_tse_mac_link_up(struct phylink_config *config,
1057 struct phy_device *phy, unsigned int mode,
1058 phy_interface_t interface, int speed,
1059 int duplex, bool tx_pause, bool rx_pause)
1060{
1061 struct net_device *ndev = to_net_dev(config->dev);
1062 struct altera_tse_private *priv = netdev_priv(ndev);
1063 u32 ctrl;
1064
1065 ctrl = csrrd32(priv->mac_dev, tse_csroffs(command_config));
1066 ctrl &= ~(MAC_CMDCFG_ENA_10 | MAC_CMDCFG_ETH_SPEED | MAC_CMDCFG_HD_ENA);
1067
1068 if (duplex == DUPLEX_HALF)
1069 ctrl |= MAC_CMDCFG_HD_ENA;
1070
1071 if (speed == SPEED_1000)
1072 ctrl |= MAC_CMDCFG_ETH_SPEED;
1073 else if (speed == SPEED_10)
1074 ctrl |= MAC_CMDCFG_ENA_10;
1075
1076 spin_lock(&priv->mac_cfg_lock);
1077 csrwr32(ctrl, priv->mac_dev, tse_csroffs(command_config));
1078 spin_unlock(&priv->mac_cfg_lock);
1079}
1080
1081static struct phylink_pcs *alt_tse_select_pcs(struct phylink_config *config,
1082 phy_interface_t interface)
1083{
1084 struct net_device *ndev = to_net_dev(config->dev);
1085 struct altera_tse_private *priv = netdev_priv(ndev);
1086
1087 if (interface == PHY_INTERFACE_MODE_SGMII ||
1088 interface == PHY_INTERFACE_MODE_1000BASEX)
1089 return priv->pcs;
1090 else
1091 return NULL;
1092}
1093
1094static const struct phylink_mac_ops alt_tse_phylink_ops = {
1095 .mac_config = alt_tse_mac_config,
1096 .mac_link_down = alt_tse_mac_link_down,
1097 .mac_link_up = alt_tse_mac_link_up,
1098 .mac_select_pcs = alt_tse_select_pcs,
1099};
1100
1101static int request_and_map(struct platform_device *pdev, const char *name,
1102 struct resource **res, void __iomem **ptr)
1103{
1104 struct device *device = &pdev->dev;
1105 struct resource *region;
1106
1107 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1108 if (*res == NULL) {
1109 dev_err(device, "resource %s not defined\n", name);
1110 return -ENODEV;
1111 }
1112
1113 region = devm_request_mem_region(device, (*res)->start,
1114 resource_size(*res), dev_name(device));
1115 if (region == NULL) {
1116 dev_err(device, "unable to request %s\n", name);
1117 return -EBUSY;
1118 }
1119
1120 *ptr = devm_ioremap(device, region->start,
1121 resource_size(region));
1122 if (*ptr == NULL) {
1123 dev_err(device, "ioremap of %s failed!", name);
1124 return -ENOMEM;
1125 }
1126
1127 return 0;
1128}
1129
1130/* Probe Altera TSE MAC device
1131 */
1132static int altera_tse_probe(struct platform_device *pdev)
1133{
1134 struct regmap_config pcs_regmap_cfg;
1135 struct altera_tse_private *priv;
1136 struct mdio_regmap_config mrc;
1137 struct resource *control_port;
1138 struct regmap *pcs_regmap;
1139 struct resource *dma_res;
1140 struct resource *pcs_res;
1141 struct mii_bus *pcs_bus;
1142 struct net_device *ndev;
1143 void __iomem *descmap;
1144 int ret = -ENODEV;
1145
1146 ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1147 if (!ndev) {
1148 dev_err(&pdev->dev, "Could not allocate network device\n");
1149 return -ENODEV;
1150 }
1151
1152 SET_NETDEV_DEV(ndev, &pdev->dev);
1153
1154 priv = netdev_priv(ndev);
1155 priv->device = &pdev->dev;
1156 priv->dev = ndev;
1157 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1158
1159 priv->dmaops = device_get_match_data(&pdev->dev);
1160
1161 if (priv->dmaops &&
1162 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1163 /* Get the mapped address to the SGDMA descriptor memory */
1164 ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1165 if (ret)
1166 goto err_free_netdev;
1167
1168 /* Start of that memory is for transmit descriptors */
1169 priv->tx_dma_desc = descmap;
1170
1171 /* First half is for tx descriptors, other half for tx */
1172 priv->txdescmem = resource_size(dma_res)/2;
1173
1174 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1175
1176 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1177 priv->txdescmem));
1178 priv->rxdescmem = resource_size(dma_res)/2;
1179 priv->rxdescmem_busaddr = dma_res->start;
1180 priv->rxdescmem_busaddr += priv->txdescmem;
1181
1182 if (upper_32_bits(priv->rxdescmem_busaddr)) {
1183 dev_dbg(priv->device,
1184 "SGDMA bus addresses greater than 32-bits\n");
1185 ret = -EINVAL;
1186 goto err_free_netdev;
1187 }
1188 if (upper_32_bits(priv->txdescmem_busaddr)) {
1189 dev_dbg(priv->device,
1190 "SGDMA bus addresses greater than 32-bits\n");
1191 ret = -EINVAL;
1192 goto err_free_netdev;
1193 }
1194 } else if (priv->dmaops &&
1195 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1196 ret = request_and_map(pdev, "rx_resp", &dma_res,
1197 &priv->rx_dma_resp);
1198 if (ret)
1199 goto err_free_netdev;
1200
1201 ret = request_and_map(pdev, "tx_desc", &dma_res,
1202 &priv->tx_dma_desc);
1203 if (ret)
1204 goto err_free_netdev;
1205
1206 priv->txdescmem = resource_size(dma_res);
1207 priv->txdescmem_busaddr = dma_res->start;
1208
1209 ret = request_and_map(pdev, "rx_desc", &dma_res,
1210 &priv->rx_dma_desc);
1211 if (ret)
1212 goto err_free_netdev;
1213
1214 priv->rxdescmem = resource_size(dma_res);
1215 priv->rxdescmem_busaddr = dma_res->start;
1216
1217 } else {
1218 ret = -ENODEV;
1219 goto err_free_netdev;
1220 }
1221
1222 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) {
1223 dma_set_coherent_mask(priv->device,
1224 DMA_BIT_MASK(priv->dmaops->dmamask));
1225 } else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) {
1226 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1227 } else {
1228 ret = -EIO;
1229 goto err_free_netdev;
1230 }
1231
1232 /* MAC address space */
1233 ret = request_and_map(pdev, "control_port", &control_port,
1234 (void __iomem **)&priv->mac_dev);
1235 if (ret)
1236 goto err_free_netdev;
1237
1238 /* xSGDMA Rx Dispatcher address space */
1239 ret = request_and_map(pdev, "rx_csr", &dma_res,
1240 &priv->rx_dma_csr);
1241 if (ret)
1242 goto err_free_netdev;
1243
1244
1245 /* xSGDMA Tx Dispatcher address space */
1246 ret = request_and_map(pdev, "tx_csr", &dma_res,
1247 &priv->tx_dma_csr);
1248 if (ret)
1249 goto err_free_netdev;
1250
1251 memset(&pcs_regmap_cfg, 0, sizeof(pcs_regmap_cfg));
1252 memset(&mrc, 0, sizeof(mrc));
1253 /* SGMII PCS address space. The location can vary depending on how the
1254 * IP is integrated. We can have a resource dedicated to it at a specific
1255 * address space, but if it's not the case, we fallback to the mdiophy0
1256 * from the MAC's address space
1257 */
1258 ret = request_and_map(pdev, "pcs", &pcs_res, &priv->pcs_base);
1259 if (ret) {
1260 /* If we can't find a dedicated resource for the PCS, fallback
1261 * to the internal PCS, that has a different address stride
1262 */
1263 priv->pcs_base = priv->mac_dev + tse_csroffs(mdio_phy0);
1264 pcs_regmap_cfg.reg_bits = 32;
1265 /* Values are MDIO-like values, on 16 bits */
1266 pcs_regmap_cfg.val_bits = 16;
1267 pcs_regmap_cfg.reg_shift = REGMAP_UPSHIFT(2);
1268 } else {
1269 pcs_regmap_cfg.reg_bits = 16;
1270 pcs_regmap_cfg.val_bits = 16;
1271 pcs_regmap_cfg.reg_shift = REGMAP_UPSHIFT(1);
1272 }
1273
1274 /* Create a regmap for the PCS so that it can be used by the PCS driver */
1275 pcs_regmap = devm_regmap_init_mmio(&pdev->dev, priv->pcs_base,
1276 &pcs_regmap_cfg);
1277 if (IS_ERR(pcs_regmap)) {
1278 ret = PTR_ERR(pcs_regmap);
1279 goto err_free_netdev;
1280 }
1281 mrc.regmap = pcs_regmap;
1282 mrc.parent = &pdev->dev;
1283 mrc.valid_addr = 0x0;
1284 mrc.autoscan = false;
1285
1286 /* Rx IRQ */
1287 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1288 if (priv->rx_irq == -ENXIO) {
1289 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1290 ret = -ENXIO;
1291 goto err_free_netdev;
1292 }
1293
1294 /* Tx IRQ */
1295 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1296 if (priv->tx_irq == -ENXIO) {
1297 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1298 ret = -ENXIO;
1299 goto err_free_netdev;
1300 }
1301
1302 /* get FIFO depths from device tree */
1303 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1304 &priv->rx_fifo_depth)) {
1305 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1306 ret = -ENXIO;
1307 goto err_free_netdev;
1308 }
1309
1310 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1311 &priv->tx_fifo_depth)) {
1312 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1313 ret = -ENXIO;
1314 goto err_free_netdev;
1315 }
1316
1317 /* get hash filter settings for this instance */
1318 priv->hash_filter =
1319 of_property_read_bool(pdev->dev.of_node,
1320 "altr,has-hash-multicast-filter");
1321
1322 /* Set hash filter to not set for now until the
1323 * multicast filter receive issue is debugged
1324 */
1325 priv->hash_filter = 0;
1326
1327 /* get supplemental address settings for this instance */
1328 priv->added_unicast =
1329 of_property_read_bool(pdev->dev.of_node,
1330 "altr,has-supplementary-unicast");
1331
1332 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1333 /* Max MTU is 1500, ETH_DATA_LEN */
1334 priv->dev->max_mtu = ETH_DATA_LEN;
1335
1336 /* Get the max mtu from the device tree. Note that the
1337 * "max-frame-size" parameter is actually max mtu. Definition
1338 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1339 */
1340 of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1341 &priv->dev->max_mtu);
1342
1343 /* The DMA buffer size already accounts for an alignment bias
1344 * to avoid unaligned access exceptions for the NIOS processor,
1345 */
1346 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1347
1348 /* get default MAC address from device tree */
1349 ret = of_get_ethdev_address(pdev->dev.of_node, ndev);
1350 if (ret)
1351 eth_hw_addr_random(ndev);
1352
1353 /* get phy addr and create mdio */
1354 ret = altera_tse_phy_get_addr_mdio_create(ndev);
1355
1356 if (ret)
1357 goto err_free_netdev;
1358
1359 /* initialize netdev */
1360 ndev->mem_start = control_port->start;
1361 ndev->mem_end = control_port->end;
1362 ndev->netdev_ops = &altera_tse_netdev_ops;
1363 altera_tse_set_ethtool_ops(ndev);
1364
1365 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1366
1367 if (priv->hash_filter)
1368 altera_tse_netdev_ops.ndo_set_rx_mode =
1369 tse_set_rx_mode_hashfilter;
1370
1371 /* Scatter/gather IO is not supported,
1372 * so it is turned off
1373 */
1374 ndev->hw_features &= ~NETIF_F_SG;
1375 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1376
1377 /* VLAN offloading of tagging, stripping and filtering is not
1378 * supported by hardware, but driver will accommodate the
1379 * extra 4-byte VLAN tag for processing by upper layers
1380 */
1381 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1382
1383 /* setup NAPI interface */
1384 netif_napi_add(ndev, &priv->napi, tse_poll);
1385
1386 spin_lock_init(&priv->mac_cfg_lock);
1387 spin_lock_init(&priv->tx_lock);
1388 spin_lock_init(&priv->rxdma_irq_lock);
1389
1390 netif_carrier_off(ndev);
1391 ret = register_netdev(ndev);
1392 if (ret) {
1393 dev_err(&pdev->dev, "failed to register TSE net device\n");
1394 goto err_register_netdev;
1395 }
1396
1397 platform_set_drvdata(pdev, ndev);
1398
1399 priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1400
1401 if (netif_msg_probe(priv))
1402 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1403 (priv->revision >> 8) & 0xff,
1404 priv->revision & 0xff,
1405 (unsigned long) control_port->start, priv->rx_irq,
1406 priv->tx_irq);
1407
1408 snprintf(mrc.name, MII_BUS_ID_SIZE, "%s-pcs-mii", ndev->name);
1409 pcs_bus = devm_mdio_regmap_register(&pdev->dev, &mrc);
1410 if (IS_ERR(pcs_bus)) {
1411 ret = PTR_ERR(pcs_bus);
1412 goto err_init_pcs;
1413 }
1414
1415 priv->pcs = lynx_pcs_create_mdiodev(pcs_bus, 0);
1416 if (IS_ERR(priv->pcs)) {
1417 ret = PTR_ERR(priv->pcs);
1418 goto err_init_pcs;
1419 }
1420
1421 priv->phylink_config.dev = &ndev->dev;
1422 priv->phylink_config.type = PHYLINK_NETDEV;
1423 priv->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
1424 MAC_100 | MAC_1000FD;
1425
1426 phy_interface_set_rgmii(priv->phylink_config.supported_interfaces);
1427 __set_bit(PHY_INTERFACE_MODE_MII,
1428 priv->phylink_config.supported_interfaces);
1429 __set_bit(PHY_INTERFACE_MODE_GMII,
1430 priv->phylink_config.supported_interfaces);
1431 __set_bit(PHY_INTERFACE_MODE_SGMII,
1432 priv->phylink_config.supported_interfaces);
1433 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
1434 priv->phylink_config.supported_interfaces);
1435
1436 priv->phylink = phylink_create(&priv->phylink_config,
1437 of_fwnode_handle(priv->device->of_node),
1438 priv->phy_iface, &alt_tse_phylink_ops);
1439 if (IS_ERR(priv->phylink)) {
1440 dev_err(&pdev->dev, "failed to create phylink\n");
1441 ret = PTR_ERR(priv->phylink);
1442 goto err_init_phylink;
1443 }
1444
1445 return 0;
1446err_init_phylink:
1447 lynx_pcs_destroy(priv->pcs);
1448err_init_pcs:
1449 unregister_netdev(ndev);
1450err_register_netdev:
1451 netif_napi_del(&priv->napi);
1452 altera_tse_mdio_destroy(ndev);
1453err_free_netdev:
1454 free_netdev(ndev);
1455 return ret;
1456}
1457
1458/* Remove Altera TSE MAC device
1459 */
1460static void altera_tse_remove(struct platform_device *pdev)
1461{
1462 struct net_device *ndev = platform_get_drvdata(pdev);
1463 struct altera_tse_private *priv = netdev_priv(ndev);
1464
1465 platform_set_drvdata(pdev, NULL);
1466 altera_tse_mdio_destroy(ndev);
1467 unregister_netdev(ndev);
1468 phylink_destroy(priv->phylink);
1469 lynx_pcs_destroy(priv->pcs);
1470
1471 free_netdev(ndev);
1472}
1473
1474static const struct altera_dmaops altera_dtype_sgdma = {
1475 .altera_dtype = ALTERA_DTYPE_SGDMA,
1476 .dmamask = 32,
1477 .reset_dma = sgdma_reset,
1478 .enable_txirq = sgdma_enable_txirq,
1479 .enable_rxirq = sgdma_enable_rxirq,
1480 .disable_txirq = sgdma_disable_txirq,
1481 .disable_rxirq = sgdma_disable_rxirq,
1482 .clear_txirq = sgdma_clear_txirq,
1483 .clear_rxirq = sgdma_clear_rxirq,
1484 .tx_buffer = sgdma_tx_buffer,
1485 .tx_completions = sgdma_tx_completions,
1486 .add_rx_desc = sgdma_add_rx_desc,
1487 .get_rx_status = sgdma_rx_status,
1488 .init_dma = sgdma_initialize,
1489 .uninit_dma = sgdma_uninitialize,
1490 .start_rxdma = sgdma_start_rxdma,
1491};
1492
1493static const struct altera_dmaops altera_dtype_msgdma = {
1494 .altera_dtype = ALTERA_DTYPE_MSGDMA,
1495 .dmamask = 64,
1496 .reset_dma = msgdma_reset,
1497 .enable_txirq = msgdma_enable_txirq,
1498 .enable_rxirq = msgdma_enable_rxirq,
1499 .disable_txirq = msgdma_disable_txirq,
1500 .disable_rxirq = msgdma_disable_rxirq,
1501 .clear_txirq = msgdma_clear_txirq,
1502 .clear_rxirq = msgdma_clear_rxirq,
1503 .tx_buffer = msgdma_tx_buffer,
1504 .tx_completions = msgdma_tx_completions,
1505 .add_rx_desc = msgdma_add_rx_desc,
1506 .get_rx_status = msgdma_rx_status,
1507 .init_dma = msgdma_initialize,
1508 .uninit_dma = msgdma_uninitialize,
1509 .start_rxdma = msgdma_start_rxdma,
1510};
1511
1512static const struct of_device_id altera_tse_ids[] = {
1513 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1514 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1515 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1516 {},
1517};
1518MODULE_DEVICE_TABLE(of, altera_tse_ids);
1519
1520static struct platform_driver altera_tse_driver = {
1521 .probe = altera_tse_probe,
1522 .remove_new = altera_tse_remove,
1523 .suspend = NULL,
1524 .resume = NULL,
1525 .driver = {
1526 .name = ALTERA_TSE_RESOURCE_NAME,
1527 .of_match_table = altera_tse_ids,
1528 },
1529};
1530
1531module_platform_driver(altera_tse_driver);
1532
1533MODULE_AUTHOR("Altera Corporation");
1534MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1535MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/* Altera Triple-Speed Ethernet MAC driver
3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
4 *
5 * Contributors:
6 * Dalon Westergreen
7 * Thomas Chou
8 * Ian Abbott
9 * Yuriy Kozlov
10 * Tobias Klauser
11 * Andriy Smolskyy
12 * Roman Bulgakov
13 * Dmytro Mytarchuk
14 * Matthew Gerlach
15 *
16 * Original driver contributed by SLS.
17 * Major updates contributed by GlobalLogic
18 */
19
20#include <linux/atomic.h>
21#include <linux/delay.h>
22#include <linux/etherdevice.h>
23#include <linux/if_vlan.h>
24#include <linux/init.h>
25#include <linux/interrupt.h>
26#include <linux/io.h>
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/mii.h>
30#include <linux/netdevice.h>
31#include <linux/of_device.h>
32#include <linux/of_mdio.h>
33#include <linux/of_net.h>
34#include <linux/of_platform.h>
35#include <linux/phy.h>
36#include <linux/platform_device.h>
37#include <linux/skbuff.h>
38#include <asm/cacheflush.h>
39
40#include "altera_utils.h"
41#include "altera_tse.h"
42#include "altera_sgdma.h"
43#include "altera_msgdma.h"
44
45static atomic_t instance_count = ATOMIC_INIT(~0);
46/* Module parameters */
47static int debug = -1;
48module_param(debug, int, 0644);
49MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
50
51static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN);
54
55#define RX_DESCRIPTORS 64
56static int dma_rx_num = RX_DESCRIPTORS;
57module_param(dma_rx_num, int, 0644);
58MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
59
60#define TX_DESCRIPTORS 64
61static int dma_tx_num = TX_DESCRIPTORS;
62module_param(dma_tx_num, int, 0644);
63MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
64
65
66#define POLL_PHY (-1)
67
68/* Make sure DMA buffer size is larger than the max frame size
69 * plus some alignment offset and a VLAN header. If the max frame size is
70 * 1518, a VLAN header would be additional 4 bytes and additional
71 * headroom for alignment is 2 bytes, 2048 is just fine.
72 */
73#define ALTERA_RXDMABUFFER_SIZE 2048
74
75/* Allow network stack to resume queueing packets after we've
76 * finished transmitting at least 1/4 of the packets in the queue.
77 */
78#define TSE_TX_THRESH(x) (x->tx_ring_size / 4)
79
80#define TXQUEUESTOP_THRESHHOLD 2
81
82static const struct of_device_id altera_tse_ids[];
83
84static inline u32 tse_tx_avail(struct altera_tse_private *priv)
85{
86 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
87}
88
89/* PCS Register read/write functions
90 */
91static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
92{
93 return csrrd32(priv->mac_dev,
94 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
95}
96
97static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
98 u16 value)
99{
100 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
101}
102
103/* Check PCS scratch memory */
104static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
105{
106 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
107 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
108}
109
110/* MDIO specific functions
111 */
112static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
113{
114 struct net_device *ndev = bus->priv;
115 struct altera_tse_private *priv = netdev_priv(ndev);
116
117 /* set MDIO address */
118 csrwr32((mii_id & 0x1f), priv->mac_dev,
119 tse_csroffs(mdio_phy1_addr));
120
121 /* get the data */
122 return csrrd32(priv->mac_dev,
123 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
124}
125
126static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
127 u16 value)
128{
129 struct net_device *ndev = bus->priv;
130 struct altera_tse_private *priv = netdev_priv(ndev);
131
132 /* set MDIO address */
133 csrwr32((mii_id & 0x1f), priv->mac_dev,
134 tse_csroffs(mdio_phy1_addr));
135
136 /* write the data */
137 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
138 return 0;
139}
140
141static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
142{
143 struct altera_tse_private *priv = netdev_priv(dev);
144 int ret;
145 struct device_node *mdio_node = NULL;
146 struct mii_bus *mdio = NULL;
147 struct device_node *child_node = NULL;
148
149 for_each_child_of_node(priv->device->of_node, child_node) {
150 if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
151 mdio_node = child_node;
152 break;
153 }
154 }
155
156 if (mdio_node) {
157 netdev_dbg(dev, "FOUND MDIO subnode\n");
158 } else {
159 netdev_dbg(dev, "NO MDIO subnode\n");
160 return 0;
161 }
162
163 mdio = mdiobus_alloc();
164 if (mdio == NULL) {
165 netdev_err(dev, "Error allocating MDIO bus\n");
166 return -ENOMEM;
167 }
168
169 mdio->name = ALTERA_TSE_RESOURCE_NAME;
170 mdio->read = &altera_tse_mdio_read;
171 mdio->write = &altera_tse_mdio_write;
172 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
173
174 mdio->priv = dev;
175 mdio->parent = priv->device;
176
177 ret = of_mdiobus_register(mdio, mdio_node);
178 if (ret != 0) {
179 netdev_err(dev, "Cannot register MDIO bus %s\n",
180 mdio->id);
181 goto out_free_mdio;
182 }
183
184 if (netif_msg_drv(priv))
185 netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
186
187 priv->mdio = mdio;
188 return 0;
189out_free_mdio:
190 mdiobus_free(mdio);
191 mdio = NULL;
192 return ret;
193}
194
195static void altera_tse_mdio_destroy(struct net_device *dev)
196{
197 struct altera_tse_private *priv = netdev_priv(dev);
198
199 if (priv->mdio == NULL)
200 return;
201
202 if (netif_msg_drv(priv))
203 netdev_info(dev, "MDIO bus %s: removed\n",
204 priv->mdio->id);
205
206 mdiobus_unregister(priv->mdio);
207 mdiobus_free(priv->mdio);
208 priv->mdio = NULL;
209}
210
211static int tse_init_rx_buffer(struct altera_tse_private *priv,
212 struct tse_buffer *rxbuffer, int len)
213{
214 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
215 if (!rxbuffer->skb)
216 return -ENOMEM;
217
218 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
219 len,
220 DMA_FROM_DEVICE);
221
222 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
223 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
224 dev_kfree_skb_any(rxbuffer->skb);
225 return -EINVAL;
226 }
227 rxbuffer->dma_addr &= (dma_addr_t)~3;
228 rxbuffer->len = len;
229 return 0;
230}
231
232static void tse_free_rx_buffer(struct altera_tse_private *priv,
233 struct tse_buffer *rxbuffer)
234{
235 struct sk_buff *skb = rxbuffer->skb;
236 dma_addr_t dma_addr = rxbuffer->dma_addr;
237
238 if (skb != NULL) {
239 if (dma_addr)
240 dma_unmap_single(priv->device, dma_addr,
241 rxbuffer->len,
242 DMA_FROM_DEVICE);
243 dev_kfree_skb_any(skb);
244 rxbuffer->skb = NULL;
245 rxbuffer->dma_addr = 0;
246 }
247}
248
249/* Unmap and free Tx buffer resources
250 */
251static void tse_free_tx_buffer(struct altera_tse_private *priv,
252 struct tse_buffer *buffer)
253{
254 if (buffer->dma_addr) {
255 if (buffer->mapped_as_page)
256 dma_unmap_page(priv->device, buffer->dma_addr,
257 buffer->len, DMA_TO_DEVICE);
258 else
259 dma_unmap_single(priv->device, buffer->dma_addr,
260 buffer->len, DMA_TO_DEVICE);
261 buffer->dma_addr = 0;
262 }
263 if (buffer->skb) {
264 dev_kfree_skb_any(buffer->skb);
265 buffer->skb = NULL;
266 }
267}
268
269static int alloc_init_skbufs(struct altera_tse_private *priv)
270{
271 unsigned int rx_descs = priv->rx_ring_size;
272 unsigned int tx_descs = priv->tx_ring_size;
273 int ret = -ENOMEM;
274 int i;
275
276 /* Create Rx ring buffer */
277 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
278 GFP_KERNEL);
279 if (!priv->rx_ring)
280 goto err_rx_ring;
281
282 /* Create Tx ring buffer */
283 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
284 GFP_KERNEL);
285 if (!priv->tx_ring)
286 goto err_tx_ring;
287
288 priv->tx_cons = 0;
289 priv->tx_prod = 0;
290
291 /* Init Rx ring */
292 for (i = 0; i < rx_descs; i++) {
293 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
294 priv->rx_dma_buf_sz);
295 if (ret)
296 goto err_init_rx_buffers;
297 }
298
299 priv->rx_cons = 0;
300 priv->rx_prod = 0;
301
302 return 0;
303err_init_rx_buffers:
304 while (--i >= 0)
305 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
306 kfree(priv->tx_ring);
307err_tx_ring:
308 kfree(priv->rx_ring);
309err_rx_ring:
310 return ret;
311}
312
313static void free_skbufs(struct net_device *dev)
314{
315 struct altera_tse_private *priv = netdev_priv(dev);
316 unsigned int rx_descs = priv->rx_ring_size;
317 unsigned int tx_descs = priv->tx_ring_size;
318 int i;
319
320 /* Release the DMA TX/RX socket buffers */
321 for (i = 0; i < rx_descs; i++)
322 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
323 for (i = 0; i < tx_descs; i++)
324 tse_free_tx_buffer(priv, &priv->tx_ring[i]);
325
326
327 kfree(priv->tx_ring);
328}
329
330/* Reallocate the skb for the reception process
331 */
332static inline void tse_rx_refill(struct altera_tse_private *priv)
333{
334 unsigned int rxsize = priv->rx_ring_size;
335 unsigned int entry;
336 int ret;
337
338 for (; priv->rx_cons - priv->rx_prod > 0;
339 priv->rx_prod++) {
340 entry = priv->rx_prod % rxsize;
341 if (likely(priv->rx_ring[entry].skb == NULL)) {
342 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
343 priv->rx_dma_buf_sz);
344 if (unlikely(ret != 0))
345 break;
346 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
347 }
348 }
349}
350
351/* Pull out the VLAN tag and fix up the packet
352 */
353static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
354{
355 struct ethhdr *eth_hdr;
356 u16 vid;
357 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
358 !__vlan_get_tag(skb, &vid)) {
359 eth_hdr = (struct ethhdr *)skb->data;
360 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
361 skb_pull(skb, VLAN_HLEN);
362 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
363 }
364}
365
366/* Receive a packet: retrieve and pass over to upper levels
367 */
368static int tse_rx(struct altera_tse_private *priv, int limit)
369{
370 unsigned int count = 0;
371 unsigned int next_entry;
372 struct sk_buff *skb;
373 unsigned int entry = priv->rx_cons % priv->rx_ring_size;
374 u32 rxstatus;
375 u16 pktlength;
376 u16 pktstatus;
377
378 /* Check for count < limit first as get_rx_status is changing
379 * the response-fifo so we must process the next packet
380 * after calling get_rx_status if a response is pending.
381 * (reading the last byte of the response pops the value from the fifo.)
382 */
383 while ((count < limit) &&
384 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
385 pktstatus = rxstatus >> 16;
386 pktlength = rxstatus & 0xffff;
387
388 if ((pktstatus & 0xFF) || (pktlength == 0))
389 netdev_err(priv->dev,
390 "RCV pktstatus %08X pktlength %08X\n",
391 pktstatus, pktlength);
392
393 /* DMA trasfer from TSE starts with 2 aditional bytes for
394 * IP payload alignment. Status returned by get_rx_status()
395 * contains DMA transfer length. Packet is 2 bytes shorter.
396 */
397 pktlength -= 2;
398
399 count++;
400 next_entry = (++priv->rx_cons) % priv->rx_ring_size;
401
402 skb = priv->rx_ring[entry].skb;
403 if (unlikely(!skb)) {
404 netdev_err(priv->dev,
405 "%s: Inconsistent Rx descriptor chain\n",
406 __func__);
407 priv->dev->stats.rx_dropped++;
408 break;
409 }
410 priv->rx_ring[entry].skb = NULL;
411
412 skb_put(skb, pktlength);
413
414 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
415 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
416
417 if (netif_msg_pktdata(priv)) {
418 netdev_info(priv->dev, "frame received %d bytes\n",
419 pktlength);
420 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
421 16, 1, skb->data, pktlength, true);
422 }
423
424 tse_rx_vlan(priv->dev, skb);
425
426 skb->protocol = eth_type_trans(skb, priv->dev);
427 skb_checksum_none_assert(skb);
428
429 napi_gro_receive(&priv->napi, skb);
430
431 priv->dev->stats.rx_packets++;
432 priv->dev->stats.rx_bytes += pktlength;
433
434 entry = next_entry;
435
436 tse_rx_refill(priv);
437 }
438
439 return count;
440}
441
442/* Reclaim resources after transmission completes
443 */
444static int tse_tx_complete(struct altera_tse_private *priv)
445{
446 unsigned int txsize = priv->tx_ring_size;
447 u32 ready;
448 unsigned int entry;
449 struct tse_buffer *tx_buff;
450 int txcomplete = 0;
451
452 spin_lock(&priv->tx_lock);
453
454 ready = priv->dmaops->tx_completions(priv);
455
456 /* Free sent buffers */
457 while (ready && (priv->tx_cons != priv->tx_prod)) {
458 entry = priv->tx_cons % txsize;
459 tx_buff = &priv->tx_ring[entry];
460
461 if (netif_msg_tx_done(priv))
462 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
463 __func__, priv->tx_prod, priv->tx_cons);
464
465 if (likely(tx_buff->skb))
466 priv->dev->stats.tx_packets++;
467
468 tse_free_tx_buffer(priv, tx_buff);
469 priv->tx_cons++;
470
471 txcomplete++;
472 ready--;
473 }
474
475 if (unlikely(netif_queue_stopped(priv->dev) &&
476 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
477 if (netif_queue_stopped(priv->dev) &&
478 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
479 if (netif_msg_tx_done(priv))
480 netdev_dbg(priv->dev, "%s: restart transmit\n",
481 __func__);
482 netif_wake_queue(priv->dev);
483 }
484 }
485
486 spin_unlock(&priv->tx_lock);
487 return txcomplete;
488}
489
490/* NAPI polling function
491 */
492static int tse_poll(struct napi_struct *napi, int budget)
493{
494 struct altera_tse_private *priv =
495 container_of(napi, struct altera_tse_private, napi);
496 int rxcomplete = 0;
497 unsigned long int flags;
498
499 tse_tx_complete(priv);
500
501 rxcomplete = tse_rx(priv, budget);
502
503 if (rxcomplete < budget) {
504
505 napi_complete_done(napi, rxcomplete);
506
507 netdev_dbg(priv->dev,
508 "NAPI Complete, did %d packets with budget %d\n",
509 rxcomplete, budget);
510
511 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
512 priv->dmaops->enable_rxirq(priv);
513 priv->dmaops->enable_txirq(priv);
514 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
515 }
516 return rxcomplete;
517}
518
519/* DMA TX & RX FIFO interrupt routing
520 */
521static irqreturn_t altera_isr(int irq, void *dev_id)
522{
523 struct net_device *dev = dev_id;
524 struct altera_tse_private *priv;
525
526 if (unlikely(!dev)) {
527 pr_err("%s: invalid dev pointer\n", __func__);
528 return IRQ_NONE;
529 }
530 priv = netdev_priv(dev);
531
532 spin_lock(&priv->rxdma_irq_lock);
533 /* reset IRQs */
534 priv->dmaops->clear_rxirq(priv);
535 priv->dmaops->clear_txirq(priv);
536 spin_unlock(&priv->rxdma_irq_lock);
537
538 if (likely(napi_schedule_prep(&priv->napi))) {
539 spin_lock(&priv->rxdma_irq_lock);
540 priv->dmaops->disable_rxirq(priv);
541 priv->dmaops->disable_txirq(priv);
542 spin_unlock(&priv->rxdma_irq_lock);
543 __napi_schedule(&priv->napi);
544 }
545
546
547 return IRQ_HANDLED;
548}
549
550/* Transmit a packet (called by the kernel). Dispatches
551 * either the SGDMA method for transmitting or the
552 * MSGDMA method, assumes no scatter/gather support,
553 * implying an assumption that there's only one
554 * physically contiguous fragment starting at
555 * skb->data, for length of skb_headlen(skb).
556 */
557static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
558{
559 struct altera_tse_private *priv = netdev_priv(dev);
560 unsigned int txsize = priv->tx_ring_size;
561 unsigned int entry;
562 struct tse_buffer *buffer = NULL;
563 int nfrags = skb_shinfo(skb)->nr_frags;
564 unsigned int nopaged_len = skb_headlen(skb);
565 enum netdev_tx ret = NETDEV_TX_OK;
566 dma_addr_t dma_addr;
567
568 spin_lock_bh(&priv->tx_lock);
569
570 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
571 if (!netif_queue_stopped(dev)) {
572 netif_stop_queue(dev);
573 /* This is a hard error, log it. */
574 netdev_err(priv->dev,
575 "%s: Tx list full when queue awake\n",
576 __func__);
577 }
578 ret = NETDEV_TX_BUSY;
579 goto out;
580 }
581
582 /* Map the first skb fragment */
583 entry = priv->tx_prod % txsize;
584 buffer = &priv->tx_ring[entry];
585
586 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
587 DMA_TO_DEVICE);
588 if (dma_mapping_error(priv->device, dma_addr)) {
589 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
590 ret = NETDEV_TX_OK;
591 goto out;
592 }
593
594 buffer->skb = skb;
595 buffer->dma_addr = dma_addr;
596 buffer->len = nopaged_len;
597
598 priv->dmaops->tx_buffer(priv, buffer);
599
600 skb_tx_timestamp(skb);
601
602 priv->tx_prod++;
603 dev->stats.tx_bytes += skb->len;
604
605 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
606 if (netif_msg_hw(priv))
607 netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
608 __func__);
609 netif_stop_queue(dev);
610 }
611
612out:
613 spin_unlock_bh(&priv->tx_lock);
614
615 return ret;
616}
617
618/* Called every time the controller might need to be made
619 * aware of new link state. The PHY code conveys this
620 * information through variables in the phydev structure, and this
621 * function converts those variables into the appropriate
622 * register values, and can bring down the device if needed.
623 */
624static void altera_tse_adjust_link(struct net_device *dev)
625{
626 struct altera_tse_private *priv = netdev_priv(dev);
627 struct phy_device *phydev = dev->phydev;
628 int new_state = 0;
629
630 /* only change config if there is a link */
631 spin_lock(&priv->mac_cfg_lock);
632 if (phydev->link) {
633 /* Read old config */
634 u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
635
636 /* Check duplex */
637 if (phydev->duplex != priv->oldduplex) {
638 new_state = 1;
639 if (!(phydev->duplex))
640 cfg_reg |= MAC_CMDCFG_HD_ENA;
641 else
642 cfg_reg &= ~MAC_CMDCFG_HD_ENA;
643
644 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
645 dev->name, phydev->duplex);
646
647 priv->oldduplex = phydev->duplex;
648 }
649
650 /* Check speed */
651 if (phydev->speed != priv->oldspeed) {
652 new_state = 1;
653 switch (phydev->speed) {
654 case 1000:
655 cfg_reg |= MAC_CMDCFG_ETH_SPEED;
656 cfg_reg &= ~MAC_CMDCFG_ENA_10;
657 break;
658 case 100:
659 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
660 cfg_reg &= ~MAC_CMDCFG_ENA_10;
661 break;
662 case 10:
663 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
664 cfg_reg |= MAC_CMDCFG_ENA_10;
665 break;
666 default:
667 if (netif_msg_link(priv))
668 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
669 phydev->speed);
670 break;
671 }
672 priv->oldspeed = phydev->speed;
673 }
674 iowrite32(cfg_reg, &priv->mac_dev->command_config);
675
676 if (!priv->oldlink) {
677 new_state = 1;
678 priv->oldlink = 1;
679 }
680 } else if (priv->oldlink) {
681 new_state = 1;
682 priv->oldlink = 0;
683 priv->oldspeed = 0;
684 priv->oldduplex = -1;
685 }
686
687 if (new_state && netif_msg_link(priv))
688 phy_print_status(phydev);
689
690 spin_unlock(&priv->mac_cfg_lock);
691}
692static struct phy_device *connect_local_phy(struct net_device *dev)
693{
694 struct altera_tse_private *priv = netdev_priv(dev);
695 struct phy_device *phydev = NULL;
696 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
697
698 if (priv->phy_addr != POLL_PHY) {
699 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
700 priv->mdio->id, priv->phy_addr);
701
702 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
703
704 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
705 priv->phy_iface);
706 if (IS_ERR(phydev)) {
707 netdev_err(dev, "Could not attach to PHY\n");
708 phydev = NULL;
709 }
710
711 } else {
712 int ret;
713 phydev = phy_find_first(priv->mdio);
714 if (phydev == NULL) {
715 netdev_err(dev, "No PHY found\n");
716 return phydev;
717 }
718
719 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
720 priv->phy_iface);
721 if (ret != 0) {
722 netdev_err(dev, "Could not attach to PHY\n");
723 phydev = NULL;
724 }
725 }
726 return phydev;
727}
728
729static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
730{
731 struct altera_tse_private *priv = netdev_priv(dev);
732 struct device_node *np = priv->device->of_node;
733 int ret = 0;
734
735 priv->phy_iface = of_get_phy_mode(np);
736
737 /* Avoid get phy addr and create mdio if no phy is present */
738 if (!priv->phy_iface)
739 return 0;
740
741 /* try to get PHY address from device tree, use PHY autodetection if
742 * no valid address is given
743 */
744
745 if (of_property_read_u32(priv->device->of_node, "phy-addr",
746 &priv->phy_addr)) {
747 priv->phy_addr = POLL_PHY;
748 }
749
750 if (!((priv->phy_addr == POLL_PHY) ||
751 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
752 netdev_err(dev, "invalid phy-addr specified %d\n",
753 priv->phy_addr);
754 return -ENODEV;
755 }
756
757 /* Create/attach to MDIO bus */
758 ret = altera_tse_mdio_create(dev,
759 atomic_add_return(1, &instance_count));
760
761 if (ret)
762 return -ENODEV;
763
764 return 0;
765}
766
767/* Initialize driver's PHY state, and attach to the PHY
768 */
769static int init_phy(struct net_device *dev)
770{
771 struct altera_tse_private *priv = netdev_priv(dev);
772 struct phy_device *phydev;
773 struct device_node *phynode;
774 bool fixed_link = false;
775 int rc = 0;
776
777 /* Avoid init phy in case of no phy present */
778 if (!priv->phy_iface)
779 return 0;
780
781 priv->oldlink = 0;
782 priv->oldspeed = 0;
783 priv->oldduplex = -1;
784
785 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
786
787 if (!phynode) {
788 /* check if a fixed-link is defined in device-tree */
789 if (of_phy_is_fixed_link(priv->device->of_node)) {
790 rc = of_phy_register_fixed_link(priv->device->of_node);
791 if (rc < 0) {
792 netdev_err(dev, "cannot register fixed PHY\n");
793 return rc;
794 }
795
796 /* In the case of a fixed PHY, the DT node associated
797 * to the PHY is the Ethernet MAC DT node.
798 */
799 phynode = of_node_get(priv->device->of_node);
800 fixed_link = true;
801
802 netdev_dbg(dev, "fixed-link detected\n");
803 phydev = of_phy_connect(dev, phynode,
804 &altera_tse_adjust_link,
805 0, priv->phy_iface);
806 } else {
807 netdev_dbg(dev, "no phy-handle found\n");
808 if (!priv->mdio) {
809 netdev_err(dev, "No phy-handle nor local mdio specified\n");
810 return -ENODEV;
811 }
812 phydev = connect_local_phy(dev);
813 }
814 } else {
815 netdev_dbg(dev, "phy-handle found\n");
816 phydev = of_phy_connect(dev, phynode,
817 &altera_tse_adjust_link, 0, priv->phy_iface);
818 }
819 of_node_put(phynode);
820
821 if (!phydev) {
822 netdev_err(dev, "Could not find the PHY\n");
823 if (fixed_link)
824 of_phy_deregister_fixed_link(priv->device->of_node);
825 return -ENODEV;
826 }
827
828 /* Stop Advertising 1000BASE Capability if interface is not GMII
829 */
830 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
831 (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
832 phy_set_max_speed(phydev, SPEED_100);
833
834 /* Broken HW is sometimes missing the pull-up resistor on the
835 * MDIO line, which results in reads to non-existent devices returning
836 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
837 * device as well. If a fixed-link is used the phy_id is always 0.
838 * Note: phydev->phy_id is the result of reading the UID PHY registers.
839 */
840 if ((phydev->phy_id == 0) && !fixed_link) {
841 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
842 phy_disconnect(phydev);
843 return -ENODEV;
844 }
845
846 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
847 phydev->mdio.addr, phydev->phy_id, phydev->link);
848
849 return 0;
850}
851
852static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
853{
854 u32 msb;
855 u32 lsb;
856
857 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
858 lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
859
860 /* Set primary MAC address */
861 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
862 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
863}
864
865/* MAC software reset.
866 * When reset is triggered, the MAC function completes the current
867 * transmission or reception, and subsequently disables the transmit and
868 * receive logic, flushes the receive FIFO buffer, and resets the statistics
869 * counters.
870 */
871static int reset_mac(struct altera_tse_private *priv)
872{
873 int counter;
874 u32 dat;
875
876 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
877 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
878 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
879 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
880
881 counter = 0;
882 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
883 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
884 MAC_CMDCFG_SW_RESET))
885 break;
886 udelay(1);
887 }
888
889 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
890 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
891 dat &= ~MAC_CMDCFG_SW_RESET;
892 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
893 return -1;
894 }
895 return 0;
896}
897
898/* Initialize MAC core registers
899*/
900static int init_mac(struct altera_tse_private *priv)
901{
902 unsigned int cmd = 0;
903 u32 frm_length;
904
905 /* Setup Rx FIFO */
906 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
907 priv->mac_dev, tse_csroffs(rx_section_empty));
908
909 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
910 tse_csroffs(rx_section_full));
911
912 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
913 tse_csroffs(rx_almost_empty));
914
915 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
916 tse_csroffs(rx_almost_full));
917
918 /* Setup Tx FIFO */
919 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
920 priv->mac_dev, tse_csroffs(tx_section_empty));
921
922 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
923 tse_csroffs(tx_section_full));
924
925 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
926 tse_csroffs(tx_almost_empty));
927
928 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
929 tse_csroffs(tx_almost_full));
930
931 /* MAC Address Configuration */
932 tse_update_mac_addr(priv, priv->dev->dev_addr);
933
934 /* MAC Function Configuration */
935 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
936 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
937
938 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
939 tse_csroffs(tx_ipg_length));
940
941 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
942 * start address
943 */
944 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
945 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
946
947 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
948 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
949 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
950
951 /* Set the MAC options */
952 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
953 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */
954 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */
955 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames
956 * with CRC errors
957 */
958 cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
959 cmd &= ~MAC_CMDCFG_TX_ENA;
960 cmd &= ~MAC_CMDCFG_RX_ENA;
961
962 /* Default speed and duplex setting, full/100 */
963 cmd &= ~MAC_CMDCFG_HD_ENA;
964 cmd &= ~MAC_CMDCFG_ETH_SPEED;
965 cmd &= ~MAC_CMDCFG_ENA_10;
966
967 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
968
969 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
970 tse_csroffs(pause_quanta));
971
972 if (netif_msg_hw(priv))
973 dev_dbg(priv->device,
974 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
975
976 return 0;
977}
978
979/* Start/stop MAC transmission logic
980 */
981static void tse_set_mac(struct altera_tse_private *priv, bool enable)
982{
983 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
984
985 if (enable)
986 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
987 else
988 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
989
990 csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
991}
992
993/* Change the MTU
994 */
995static int tse_change_mtu(struct net_device *dev, int new_mtu)
996{
997 if (netif_running(dev)) {
998 netdev_err(dev, "must be stopped to change its MTU\n");
999 return -EBUSY;
1000 }
1001
1002 dev->mtu = new_mtu;
1003 netdev_update_features(dev);
1004
1005 return 0;
1006}
1007
1008static void altera_tse_set_mcfilter(struct net_device *dev)
1009{
1010 struct altera_tse_private *priv = netdev_priv(dev);
1011 int i;
1012 struct netdev_hw_addr *ha;
1013
1014 /* clear the hash filter */
1015 for (i = 0; i < 64; i++)
1016 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1017
1018 netdev_for_each_mc_addr(ha, dev) {
1019 unsigned int hash = 0;
1020 int mac_octet;
1021
1022 for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1023 unsigned char xor_bit = 0;
1024 unsigned char octet = ha->addr[mac_octet];
1025 unsigned int bitshift;
1026
1027 for (bitshift = 0; bitshift < 8; bitshift++)
1028 xor_bit ^= ((octet >> bitshift) & 0x01);
1029
1030 hash = (hash << 1) | xor_bit;
1031 }
1032 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1033 }
1034}
1035
1036
1037static void altera_tse_set_mcfilterall(struct net_device *dev)
1038{
1039 struct altera_tse_private *priv = netdev_priv(dev);
1040 int i;
1041
1042 /* set the hash filter */
1043 for (i = 0; i < 64; i++)
1044 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1045}
1046
1047/* Set or clear the multicast filter for this adaptor
1048 */
1049static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1050{
1051 struct altera_tse_private *priv = netdev_priv(dev);
1052
1053 spin_lock(&priv->mac_cfg_lock);
1054
1055 if (dev->flags & IFF_PROMISC)
1056 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1057 MAC_CMDCFG_PROMIS_EN);
1058
1059 if (dev->flags & IFF_ALLMULTI)
1060 altera_tse_set_mcfilterall(dev);
1061 else
1062 altera_tse_set_mcfilter(dev);
1063
1064 spin_unlock(&priv->mac_cfg_lock);
1065}
1066
1067/* Set or clear the multicast filter for this adaptor
1068 */
1069static void tse_set_rx_mode(struct net_device *dev)
1070{
1071 struct altera_tse_private *priv = netdev_priv(dev);
1072
1073 spin_lock(&priv->mac_cfg_lock);
1074
1075 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1076 !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1077 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1078 MAC_CMDCFG_PROMIS_EN);
1079 else
1080 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1081 MAC_CMDCFG_PROMIS_EN);
1082
1083 spin_unlock(&priv->mac_cfg_lock);
1084}
1085
1086/* Initialise (if necessary) the SGMII PCS component
1087 */
1088static int init_sgmii_pcs(struct net_device *dev)
1089{
1090 struct altera_tse_private *priv = netdev_priv(dev);
1091 int n;
1092 unsigned int tmp_reg = 0;
1093
1094 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1095 return 0; /* Nothing to do, not in SGMII mode */
1096
1097 /* The TSE SGMII PCS block looks a little like a PHY, it is
1098 * mapped into the zeroth MDIO space of the MAC and it has
1099 * ID registers like a PHY would. Sadly this is often
1100 * configured to zeroes, so don't be surprised if it does
1101 * show 0x00000000.
1102 */
1103
1104 if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1105 sgmii_pcs_scratch_test(priv, 0xffff) &&
1106 sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1107 sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1108 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1109 sgmii_pcs_read(priv, MII_PHYSID1),
1110 sgmii_pcs_read(priv, MII_PHYSID2));
1111 } else {
1112 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1113 return -ENOMEM;
1114 }
1115
1116 /* Starting on page 5-29 of the MegaCore Function User Guide
1117 * Set SGMII Link timer to 1.6ms
1118 */
1119 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1120 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1121
1122 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1123 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1124
1125 /* Enable Autonegotiation */
1126 tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1127 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1128 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1129
1130 /* Reset PCS block */
1131 tmp_reg |= BMCR_RESET;
1132 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1133 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1134 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1135 netdev_info(dev, "SGMII PCS block initialised OK\n");
1136 return 0;
1137 }
1138 udelay(1);
1139 }
1140
1141 /* We failed to reset the block, return a timeout */
1142 netdev_err(dev, "SGMII PCS block reset failed.\n");
1143 return -ETIMEDOUT;
1144}
1145
1146/* Open and initialize the interface
1147 */
1148static int tse_open(struct net_device *dev)
1149{
1150 struct altera_tse_private *priv = netdev_priv(dev);
1151 int ret = 0;
1152 int i;
1153 unsigned long int flags;
1154
1155 /* Reset and configure TSE MAC and probe associated PHY */
1156 ret = priv->dmaops->init_dma(priv);
1157 if (ret != 0) {
1158 netdev_err(dev, "Cannot initialize DMA\n");
1159 goto phy_error;
1160 }
1161
1162 if (netif_msg_ifup(priv))
1163 netdev_warn(dev, "device MAC address %pM\n",
1164 dev->dev_addr);
1165
1166 if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1167 netdev_warn(dev, "TSE revision %x\n", priv->revision);
1168
1169 spin_lock(&priv->mac_cfg_lock);
1170 /* no-op if MAC not operating in SGMII mode*/
1171 ret = init_sgmii_pcs(dev);
1172 if (ret) {
1173 netdev_err(dev,
1174 "Cannot init the SGMII PCS (error: %d)\n", ret);
1175 spin_unlock(&priv->mac_cfg_lock);
1176 goto phy_error;
1177 }
1178
1179 ret = reset_mac(priv);
1180 /* Note that reset_mac will fail if the clocks are gated by the PHY
1181 * due to the PHY being put into isolation or power down mode.
1182 * This is not an error if reset fails due to no clock.
1183 */
1184 if (ret)
1185 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1186
1187 ret = init_mac(priv);
1188 spin_unlock(&priv->mac_cfg_lock);
1189 if (ret) {
1190 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1191 goto alloc_skbuf_error;
1192 }
1193
1194 priv->dmaops->reset_dma(priv);
1195
1196 /* Create and initialize the TX/RX descriptors chains. */
1197 priv->rx_ring_size = dma_rx_num;
1198 priv->tx_ring_size = dma_tx_num;
1199 ret = alloc_init_skbufs(priv);
1200 if (ret) {
1201 netdev_err(dev, "DMA descriptors initialization failed\n");
1202 goto alloc_skbuf_error;
1203 }
1204
1205
1206 /* Register RX interrupt */
1207 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1208 dev->name, dev);
1209 if (ret) {
1210 netdev_err(dev, "Unable to register RX interrupt %d\n",
1211 priv->rx_irq);
1212 goto init_error;
1213 }
1214
1215 /* Register TX interrupt */
1216 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1217 dev->name, dev);
1218 if (ret) {
1219 netdev_err(dev, "Unable to register TX interrupt %d\n",
1220 priv->tx_irq);
1221 goto tx_request_irq_error;
1222 }
1223
1224 /* Enable DMA interrupts */
1225 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1226 priv->dmaops->enable_rxirq(priv);
1227 priv->dmaops->enable_txirq(priv);
1228
1229 /* Setup RX descriptor chain */
1230 for (i = 0; i < priv->rx_ring_size; i++)
1231 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1232
1233 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1234
1235 if (dev->phydev)
1236 phy_start(dev->phydev);
1237
1238 napi_enable(&priv->napi);
1239 netif_start_queue(dev);
1240
1241 priv->dmaops->start_rxdma(priv);
1242
1243 /* Start MAC Rx/Tx */
1244 spin_lock(&priv->mac_cfg_lock);
1245 tse_set_mac(priv, true);
1246 spin_unlock(&priv->mac_cfg_lock);
1247
1248 return 0;
1249
1250tx_request_irq_error:
1251 free_irq(priv->rx_irq, dev);
1252init_error:
1253 free_skbufs(dev);
1254alloc_skbuf_error:
1255phy_error:
1256 return ret;
1257}
1258
1259/* Stop TSE MAC interface and put the device in an inactive state
1260 */
1261static int tse_shutdown(struct net_device *dev)
1262{
1263 struct altera_tse_private *priv = netdev_priv(dev);
1264 int ret;
1265 unsigned long int flags;
1266
1267 /* Stop the PHY */
1268 if (dev->phydev)
1269 phy_stop(dev->phydev);
1270
1271 netif_stop_queue(dev);
1272 napi_disable(&priv->napi);
1273
1274 /* Disable DMA interrupts */
1275 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1276 priv->dmaops->disable_rxirq(priv);
1277 priv->dmaops->disable_txirq(priv);
1278 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1279
1280 /* Free the IRQ lines */
1281 free_irq(priv->rx_irq, dev);
1282 free_irq(priv->tx_irq, dev);
1283
1284 /* disable and reset the MAC, empties fifo */
1285 spin_lock(&priv->mac_cfg_lock);
1286 spin_lock(&priv->tx_lock);
1287
1288 ret = reset_mac(priv);
1289 /* Note that reset_mac will fail if the clocks are gated by the PHY
1290 * due to the PHY being put into isolation or power down mode.
1291 * This is not an error if reset fails due to no clock.
1292 */
1293 if (ret)
1294 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1295 priv->dmaops->reset_dma(priv);
1296 free_skbufs(dev);
1297
1298 spin_unlock(&priv->tx_lock);
1299 spin_unlock(&priv->mac_cfg_lock);
1300
1301 priv->dmaops->uninit_dma(priv);
1302
1303 return 0;
1304}
1305
1306static struct net_device_ops altera_tse_netdev_ops = {
1307 .ndo_open = tse_open,
1308 .ndo_stop = tse_shutdown,
1309 .ndo_start_xmit = tse_start_xmit,
1310 .ndo_set_mac_address = eth_mac_addr,
1311 .ndo_set_rx_mode = tse_set_rx_mode,
1312 .ndo_change_mtu = tse_change_mtu,
1313 .ndo_validate_addr = eth_validate_addr,
1314};
1315
1316static int request_and_map(struct platform_device *pdev, const char *name,
1317 struct resource **res, void __iomem **ptr)
1318{
1319 struct resource *region;
1320 struct device *device = &pdev->dev;
1321
1322 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1323 if (*res == NULL) {
1324 dev_err(device, "resource %s not defined\n", name);
1325 return -ENODEV;
1326 }
1327
1328 region = devm_request_mem_region(device, (*res)->start,
1329 resource_size(*res), dev_name(device));
1330 if (region == NULL) {
1331 dev_err(device, "unable to request %s\n", name);
1332 return -EBUSY;
1333 }
1334
1335 *ptr = devm_ioremap_nocache(device, region->start,
1336 resource_size(region));
1337 if (*ptr == NULL) {
1338 dev_err(device, "ioremap_nocache of %s failed!", name);
1339 return -ENOMEM;
1340 }
1341
1342 return 0;
1343}
1344
1345/* Probe Altera TSE MAC device
1346 */
1347static int altera_tse_probe(struct platform_device *pdev)
1348{
1349 struct net_device *ndev;
1350 int ret = -ENODEV;
1351 struct resource *control_port;
1352 struct resource *dma_res;
1353 struct altera_tse_private *priv;
1354 const unsigned char *macaddr;
1355 void __iomem *descmap;
1356 const struct of_device_id *of_id = NULL;
1357
1358 ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1359 if (!ndev) {
1360 dev_err(&pdev->dev, "Could not allocate network device\n");
1361 return -ENODEV;
1362 }
1363
1364 SET_NETDEV_DEV(ndev, &pdev->dev);
1365
1366 priv = netdev_priv(ndev);
1367 priv->device = &pdev->dev;
1368 priv->dev = ndev;
1369 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1370
1371 of_id = of_match_device(altera_tse_ids, &pdev->dev);
1372
1373 if (of_id)
1374 priv->dmaops = (struct altera_dmaops *)of_id->data;
1375
1376
1377 if (priv->dmaops &&
1378 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1379 /* Get the mapped address to the SGDMA descriptor memory */
1380 ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1381 if (ret)
1382 goto err_free_netdev;
1383
1384 /* Start of that memory is for transmit descriptors */
1385 priv->tx_dma_desc = descmap;
1386
1387 /* First half is for tx descriptors, other half for tx */
1388 priv->txdescmem = resource_size(dma_res)/2;
1389
1390 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1391
1392 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1393 priv->txdescmem));
1394 priv->rxdescmem = resource_size(dma_res)/2;
1395 priv->rxdescmem_busaddr = dma_res->start;
1396 priv->rxdescmem_busaddr += priv->txdescmem;
1397
1398 if (upper_32_bits(priv->rxdescmem_busaddr)) {
1399 dev_dbg(priv->device,
1400 "SGDMA bus addresses greater than 32-bits\n");
1401 ret = -EINVAL;
1402 goto err_free_netdev;
1403 }
1404 if (upper_32_bits(priv->txdescmem_busaddr)) {
1405 dev_dbg(priv->device,
1406 "SGDMA bus addresses greater than 32-bits\n");
1407 ret = -EINVAL;
1408 goto err_free_netdev;
1409 }
1410 } else if (priv->dmaops &&
1411 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1412 ret = request_and_map(pdev, "rx_resp", &dma_res,
1413 &priv->rx_dma_resp);
1414 if (ret)
1415 goto err_free_netdev;
1416
1417 ret = request_and_map(pdev, "tx_desc", &dma_res,
1418 &priv->tx_dma_desc);
1419 if (ret)
1420 goto err_free_netdev;
1421
1422 priv->txdescmem = resource_size(dma_res);
1423 priv->txdescmem_busaddr = dma_res->start;
1424
1425 ret = request_and_map(pdev, "rx_desc", &dma_res,
1426 &priv->rx_dma_desc);
1427 if (ret)
1428 goto err_free_netdev;
1429
1430 priv->rxdescmem = resource_size(dma_res);
1431 priv->rxdescmem_busaddr = dma_res->start;
1432
1433 } else {
1434 goto err_free_netdev;
1435 }
1436
1437 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1438 dma_set_coherent_mask(priv->device,
1439 DMA_BIT_MASK(priv->dmaops->dmamask));
1440 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1441 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1442 else
1443 goto err_free_netdev;
1444
1445 /* MAC address space */
1446 ret = request_and_map(pdev, "control_port", &control_port,
1447 (void __iomem **)&priv->mac_dev);
1448 if (ret)
1449 goto err_free_netdev;
1450
1451 /* xSGDMA Rx Dispatcher address space */
1452 ret = request_and_map(pdev, "rx_csr", &dma_res,
1453 &priv->rx_dma_csr);
1454 if (ret)
1455 goto err_free_netdev;
1456
1457
1458 /* xSGDMA Tx Dispatcher address space */
1459 ret = request_and_map(pdev, "tx_csr", &dma_res,
1460 &priv->tx_dma_csr);
1461 if (ret)
1462 goto err_free_netdev;
1463
1464
1465 /* Rx IRQ */
1466 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1467 if (priv->rx_irq == -ENXIO) {
1468 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1469 ret = -ENXIO;
1470 goto err_free_netdev;
1471 }
1472
1473 /* Tx IRQ */
1474 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1475 if (priv->tx_irq == -ENXIO) {
1476 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1477 ret = -ENXIO;
1478 goto err_free_netdev;
1479 }
1480
1481 /* get FIFO depths from device tree */
1482 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1483 &priv->rx_fifo_depth)) {
1484 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1485 ret = -ENXIO;
1486 goto err_free_netdev;
1487 }
1488
1489 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1490 &priv->tx_fifo_depth)) {
1491 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1492 ret = -ENXIO;
1493 goto err_free_netdev;
1494 }
1495
1496 /* get hash filter settings for this instance */
1497 priv->hash_filter =
1498 of_property_read_bool(pdev->dev.of_node,
1499 "altr,has-hash-multicast-filter");
1500
1501 /* Set hash filter to not set for now until the
1502 * multicast filter receive issue is debugged
1503 */
1504 priv->hash_filter = 0;
1505
1506 /* get supplemental address settings for this instance */
1507 priv->added_unicast =
1508 of_property_read_bool(pdev->dev.of_node,
1509 "altr,has-supplementary-unicast");
1510
1511 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1512 /* Max MTU is 1500, ETH_DATA_LEN */
1513 priv->dev->max_mtu = ETH_DATA_LEN;
1514
1515 /* Get the max mtu from the device tree. Note that the
1516 * "max-frame-size" parameter is actually max mtu. Definition
1517 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1518 */
1519 of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1520 &priv->dev->max_mtu);
1521
1522 /* The DMA buffer size already accounts for an alignment bias
1523 * to avoid unaligned access exceptions for the NIOS processor,
1524 */
1525 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1526
1527 /* get default MAC address from device tree */
1528 macaddr = of_get_mac_address(pdev->dev.of_node);
1529 if (!IS_ERR(macaddr))
1530 ether_addr_copy(ndev->dev_addr, macaddr);
1531 else
1532 eth_hw_addr_random(ndev);
1533
1534 /* get phy addr and create mdio */
1535 ret = altera_tse_phy_get_addr_mdio_create(ndev);
1536
1537 if (ret)
1538 goto err_free_netdev;
1539
1540 /* initialize netdev */
1541 ndev->mem_start = control_port->start;
1542 ndev->mem_end = control_port->end;
1543 ndev->netdev_ops = &altera_tse_netdev_ops;
1544 altera_tse_set_ethtool_ops(ndev);
1545
1546 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1547
1548 if (priv->hash_filter)
1549 altera_tse_netdev_ops.ndo_set_rx_mode =
1550 tse_set_rx_mode_hashfilter;
1551
1552 /* Scatter/gather IO is not supported,
1553 * so it is turned off
1554 */
1555 ndev->hw_features &= ~NETIF_F_SG;
1556 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1557
1558 /* VLAN offloading of tagging, stripping and filtering is not
1559 * supported by hardware, but driver will accommodate the
1560 * extra 4-byte VLAN tag for processing by upper layers
1561 */
1562 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1563
1564 /* setup NAPI interface */
1565 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1566
1567 spin_lock_init(&priv->mac_cfg_lock);
1568 spin_lock_init(&priv->tx_lock);
1569 spin_lock_init(&priv->rxdma_irq_lock);
1570
1571 netif_carrier_off(ndev);
1572 ret = register_netdev(ndev);
1573 if (ret) {
1574 dev_err(&pdev->dev, "failed to register TSE net device\n");
1575 goto err_register_netdev;
1576 }
1577
1578 platform_set_drvdata(pdev, ndev);
1579
1580 priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1581
1582 if (netif_msg_probe(priv))
1583 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1584 (priv->revision >> 8) & 0xff,
1585 priv->revision & 0xff,
1586 (unsigned long) control_port->start, priv->rx_irq,
1587 priv->tx_irq);
1588
1589 ret = init_phy(ndev);
1590 if (ret != 0) {
1591 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1592 goto err_init_phy;
1593 }
1594 return 0;
1595
1596err_init_phy:
1597 unregister_netdev(ndev);
1598err_register_netdev:
1599 netif_napi_del(&priv->napi);
1600 altera_tse_mdio_destroy(ndev);
1601err_free_netdev:
1602 free_netdev(ndev);
1603 return ret;
1604}
1605
1606/* Remove Altera TSE MAC device
1607 */
1608static int altera_tse_remove(struct platform_device *pdev)
1609{
1610 struct net_device *ndev = platform_get_drvdata(pdev);
1611 struct altera_tse_private *priv = netdev_priv(ndev);
1612
1613 if (ndev->phydev) {
1614 phy_disconnect(ndev->phydev);
1615
1616 if (of_phy_is_fixed_link(priv->device->of_node))
1617 of_phy_deregister_fixed_link(priv->device->of_node);
1618 }
1619
1620 platform_set_drvdata(pdev, NULL);
1621 altera_tse_mdio_destroy(ndev);
1622 unregister_netdev(ndev);
1623 free_netdev(ndev);
1624
1625 return 0;
1626}
1627
1628static const struct altera_dmaops altera_dtype_sgdma = {
1629 .altera_dtype = ALTERA_DTYPE_SGDMA,
1630 .dmamask = 32,
1631 .reset_dma = sgdma_reset,
1632 .enable_txirq = sgdma_enable_txirq,
1633 .enable_rxirq = sgdma_enable_rxirq,
1634 .disable_txirq = sgdma_disable_txirq,
1635 .disable_rxirq = sgdma_disable_rxirq,
1636 .clear_txirq = sgdma_clear_txirq,
1637 .clear_rxirq = sgdma_clear_rxirq,
1638 .tx_buffer = sgdma_tx_buffer,
1639 .tx_completions = sgdma_tx_completions,
1640 .add_rx_desc = sgdma_add_rx_desc,
1641 .get_rx_status = sgdma_rx_status,
1642 .init_dma = sgdma_initialize,
1643 .uninit_dma = sgdma_uninitialize,
1644 .start_rxdma = sgdma_start_rxdma,
1645};
1646
1647static const struct altera_dmaops altera_dtype_msgdma = {
1648 .altera_dtype = ALTERA_DTYPE_MSGDMA,
1649 .dmamask = 64,
1650 .reset_dma = msgdma_reset,
1651 .enable_txirq = msgdma_enable_txirq,
1652 .enable_rxirq = msgdma_enable_rxirq,
1653 .disable_txirq = msgdma_disable_txirq,
1654 .disable_rxirq = msgdma_disable_rxirq,
1655 .clear_txirq = msgdma_clear_txirq,
1656 .clear_rxirq = msgdma_clear_rxirq,
1657 .tx_buffer = msgdma_tx_buffer,
1658 .tx_completions = msgdma_tx_completions,
1659 .add_rx_desc = msgdma_add_rx_desc,
1660 .get_rx_status = msgdma_rx_status,
1661 .init_dma = msgdma_initialize,
1662 .uninit_dma = msgdma_uninitialize,
1663 .start_rxdma = msgdma_start_rxdma,
1664};
1665
1666static const struct of_device_id altera_tse_ids[] = {
1667 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1668 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1669 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1670 {},
1671};
1672MODULE_DEVICE_TABLE(of, altera_tse_ids);
1673
1674static struct platform_driver altera_tse_driver = {
1675 .probe = altera_tse_probe,
1676 .remove = altera_tse_remove,
1677 .suspend = NULL,
1678 .resume = NULL,
1679 .driver = {
1680 .name = ALTERA_TSE_RESOURCE_NAME,
1681 .of_match_table = altera_tse_ids,
1682 },
1683};
1684
1685module_platform_driver(altera_tse_driver);
1686
1687MODULE_AUTHOR("Altera Corporation");
1688MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1689MODULE_LICENSE("GPL v2");