Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v6.8.
  1/*
  2 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
  3 *
  4 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
  5 *
  6 * This file add support for MD5 and SHA1.
  7 *
  8 * You could find the datasheet in Documentation/arm/sunxi/README
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License as published by
 12 * the Free Software Foundation; either version 2 of the License, or
 13 * (at your option) any later version.
 14 */
 15#include "sun4i-ss.h"
 16#include <linux/scatterlist.h>
 17
 18/* This is a totally arbitrary value */
 19#define SS_TIMEOUT 100
 20
 21int sun4i_hash_crainit(struct crypto_tfm *tfm)
 22{
 23	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
 24	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
 25	struct sun4i_ss_alg_template *algt;
 26
 27	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
 28
 29	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 30	op->ss = algt->ss;
 31
 32	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 33				 sizeof(struct sun4i_req_ctx));
 34	return 0;
 35}
 36
 37/* sun4i_hash_init: initialize request context */
 38int sun4i_hash_init(struct ahash_request *areq)
 39{
 40	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 41	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
 42	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
 43	struct sun4i_ss_alg_template *algt;
 44
 45	memset(op, 0, sizeof(struct sun4i_req_ctx));
 46
 47	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 48	op->mode = algt->mode;
 49
 50	return 0;
 51}
 52
 53int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
 54{
 55	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 56	struct md5_state *octx = out;
 57	int i;
 58
 59	octx->byte_count = op->byte_count + op->len;
 60
 61	memcpy(octx->block, op->buf, op->len);
 62
 63	if (op->byte_count) {
 64		for (i = 0; i < 4; i++)
 65			octx->hash[i] = op->hash[i];
 66	} else {
 67		octx->hash[0] = SHA1_H0;
 68		octx->hash[1] = SHA1_H1;
 69		octx->hash[2] = SHA1_H2;
 70		octx->hash[3] = SHA1_H3;
 71	}
 72
 73	return 0;
 74}
 75
 76int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
 77{
 78	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 79	const struct md5_state *ictx = in;
 80	int i;
 81
 82	sun4i_hash_init(areq);
 83
 84	op->byte_count = ictx->byte_count & ~0x3F;
 85	op->len = ictx->byte_count & 0x3F;
 86
 87	memcpy(op->buf, ictx->block, op->len);
 88
 89	for (i = 0; i < 4; i++)
 90		op->hash[i] = ictx->hash[i];
 91
 92	return 0;
 93}
 94
 95int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
 96{
 97	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 98	struct sha1_state *octx = out;
 99	int i;
100
101	octx->count = op->byte_count + op->len;
102
103	memcpy(octx->buffer, op->buf, op->len);
104
105	if (op->byte_count) {
106		for (i = 0; i < 5; i++)
107			octx->state[i] = op->hash[i];
108	} else {
109		octx->state[0] = SHA1_H0;
110		octx->state[1] = SHA1_H1;
111		octx->state[2] = SHA1_H2;
112		octx->state[3] = SHA1_H3;
113		octx->state[4] = SHA1_H4;
114	}
115
116	return 0;
117}
118
119int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
120{
121	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
122	const struct sha1_state *ictx = in;
123	int i;
124
125	sun4i_hash_init(areq);
126
127	op->byte_count = ictx->count & ~0x3F;
128	op->len = ictx->count & 0x3F;
129
130	memcpy(op->buf, ictx->buffer, op->len);
131
132	for (i = 0; i < 5; i++)
133		op->hash[i] = ictx->state[i];
134
135	return 0;
136}
137
138#define SS_HASH_UPDATE 1
139#define SS_HASH_FINAL 2
140
141/*
142 * sun4i_hash_update: update hash engine
143 *
144 * Could be used for both SHA1 and MD5
145 * Write data by step of 32bits and put then in the SS.
146 *
147 * Since we cannot leave partial data and hash state in the engine,
148 * we need to get the hash state at the end of this function.
149 * We can get the hash state every 64 bytes
150 *
151 * So the first work is to get the number of bytes to write to SS modulo 64
152 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
153 *
154 * So at the begin of update()
155 * if op->len + areq->nbytes < 64
156 * => all data will be written to wait buffer (op->buf) and end=0
157 * if not, write all data from op->buf to the device and position end to
158 * complete to 64bytes
159 *
160 * example 1:
161 * update1 60o => op->len=60
162 * update2 60o => need one more word to have 64 bytes
163 * end=4
164 * so write all data from op->buf and one word of SGs
165 * write remaining data in op->buf
166 * final state op->len=56
167 */
168static int sun4i_hash(struct ahash_request *areq)
169{
170	/*
171	 * i is the total bytes read from SGs, to be compared to areq->nbytes
172	 * i is important because we cannot rely on SG length since the sum of
173	 * SG->length could be greater than areq->nbytes
174	 *
175	 * end is the position when we need to stop writing to the device,
176	 * to be compared to i
177	 *
178	 * in_i: advancement in the current SG
179	 */
180	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
181	unsigned int in_i = 0;
182	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
183	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
184	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
185	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
186	struct sun4i_ss_ctx *ss = tfmctx->ss;
187	struct scatterlist *in_sg = areq->src;
188	struct sg_mapping_iter mi;
189	int in_r, err = 0;
190	size_t copied = 0;
191
192	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
193		__func__, crypto_tfm_alg_name(areq->base.tfm),
194		op->byte_count, areq->nbytes, op->mode,
195		op->len, op->hash[0]);
196
197	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
198		return 0;
199
200	/* protect against overflow */
201	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
202		dev_err(ss->dev, "Cannot process too large request\n");
203		return -EINVAL;
204	}
205
206	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
207		/* linearize data to op->buf */
208		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
209					    op->buf + op->len, areq->nbytes, 0);
210		op->len += copied;
211		return 0;
212	}
213
214	spin_lock_bh(&ss->slock);
215
216	/*
217	 * if some data have been processed before,
218	 * we need to restore the partial hash state
219	 */
220	if (op->byte_count) {
221		ivmode = SS_IV_ARBITRARY;
222		for (i = 0; i < 5; i++)
223			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
224	}
225	/* Enable the device */
226	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
227
228	if (!(op->flags & SS_HASH_UPDATE))
229		goto hash_final;
230
231	/* start of handling data */
232	if (!(op->flags & SS_HASH_FINAL)) {
233		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
234
235		if (end > areq->nbytes || areq->nbytes - end > 63) {
236			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
237				end, areq->nbytes);
238			err = -EINVAL;
239			goto release_ss;
240		}
241	} else {
242		/* Since we have the flag final, we can go up to modulo 4 */
243		end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
244	}
245
246	/* TODO if SGlen % 4 and !op->len then DMA */
247	i = 1;
248	while (in_sg && i == 1) {
249		if (in_sg->length % 4)
250			i = 0;
251		in_sg = sg_next(in_sg);
252	}
253	if (i == 1 && !op->len && areq->nbytes)
254		dev_dbg(ss->dev, "We can DMA\n");
255
256	i = 0;
257	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
258		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
259	sg_miter_next(&mi);
260	in_i = 0;
261
262	do {
263		/*
264		 * we need to linearize in two case:
265		 * - the buffer is already used
266		 * - the SG does not have enough byte remaining ( < 4)
267		 */
268		if (op->len || (mi.length - in_i) < 4) {
269			/*
270			 * if we have entered here we have two reason to stop
271			 * - the buffer is full
272			 * - reach the end
273			 */
274			while (op->len < 64 && i < end) {
275				/* how many bytes we can read from current SG */
276				in_r = min3(mi.length - in_i, end - i,
277					    64 - op->len);
278				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
279				op->len += in_r;
280				i += in_r;
281				in_i += in_r;
282				if (in_i == mi.length) {
283					sg_miter_next(&mi);
284					in_i = 0;
285				}
286			}
287			if (op->len > 3 && !(op->len % 4)) {
288				/* write buf to the device */
289				writesl(ss->base + SS_RXFIFO, op->buf,
290					op->len / 4);
291				op->byte_count += op->len;
292				op->len = 0;
293			}
294		}
295		if (mi.length - in_i > 3 && i < end) {
296			/* how many bytes we can read from current SG */
297			in_r = min3(mi.length - in_i, areq->nbytes - i,
298				    ((mi.length - in_i) / 4) * 4);
299			/* how many bytes we can write in the device*/
300			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
301			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
302			op->byte_count += todo * 4;
303			i += todo * 4;
304			in_i += todo * 4;
305			rx_cnt -= todo;
306			if (!rx_cnt) {
307				spaces = readl(ss->base + SS_FCSR);
308				rx_cnt = SS_RXFIFO_SPACES(spaces);
309			}
310			if (in_i == mi.length) {
311				sg_miter_next(&mi);
312				in_i = 0;
313			}
314		}
315	} while (i < end);
316
317	/*
318	 * Now we have written to the device all that we can,
319	 * store the remaining bytes in op->buf
320	 */
321	if ((areq->nbytes - i) < 64) {
322		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
323			/* how many bytes we can read from current SG */
324			in_r = min3(mi.length - in_i, areq->nbytes - i,
325				    64 - op->len);
326			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
327			op->len += in_r;
328			i += in_r;
329			in_i += in_r;
330			if (in_i == mi.length) {
331				sg_miter_next(&mi);
332				in_i = 0;
333			}
334		}
335	}
336
337	sg_miter_stop(&mi);
338
339	/*
340	 * End of data process
341	 * Now if we have the flag final go to finalize part
342	 * If not, store the partial hash
343	 */
344	if (op->flags & SS_HASH_FINAL)
345		goto hash_final;
346
347	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
348	i = 0;
349	do {
350		v = readl(ss->base + SS_CTL);
351		i++;
352	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
353	if (unlikely(i >= SS_TIMEOUT)) {
354		dev_err_ratelimited(ss->dev,
355				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
356				    i, SS_TIMEOUT, v, areq->nbytes);
357		err = -EIO;
358		goto release_ss;
359	}
360
361	/*
362	 * The datasheet isn't very clear about when to retrieve the digest. The
363	 * bit SS_DATA_END is cleared when the engine has processed the data and
364	 * when the digest is computed *but* it doesn't mean the digest is
365	 * available in the digest registers. Hence the delay to be sure we can
366	 * read it.
367	 */
368	ndelay(1);
369
370	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
371		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
372
373	goto release_ss;
374
375/*
376 * hash_final: finalize hashing operation
377 *
378 * If we have some remaining bytes, we write them.
379 * Then ask the SS for finalizing the hashing operation
380 *
381 * I do not check RX FIFO size in this function since the size is 32
382 * after each enabling and this function neither write more than 32 words.
383 * If we come from the update part, we cannot have more than
384 * 3 remaining bytes to write and SS is fast enough to not care about it.
385 */
386
387hash_final:
388
389	/* write the remaining words of the wait buffer */
390	if (op->len) {
391		nwait = op->len / 4;
392		if (nwait) {
393			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
394			op->byte_count += 4 * nwait;
395		}
396
397		nbw = op->len - 4 * nwait;
398		if (nbw) {
399			wb = *(u32 *)(op->buf + nwait * 4);
400			wb &= GENMASK((nbw * 8) - 1, 0);
401
402			op->byte_count += nbw;
403		}
404	}
405
406	/* write the remaining bytes of the nbw buffer */
407	wb |= ((1 << 7) << (nbw * 8));
408	bf[j++] = wb;
409
410	/*
411	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
412	 * I take the operations from other MD5/SHA1 implementations
413	 */
414
415	/* last block size */
416	fill = 64 - (op->byte_count % 64);
417	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
418
419	/* if we can't fill all data, jump to the next 64 block */
420	if (fill < min_fill)
421		fill += 64;
422
423	j += (fill - min_fill) / sizeof(u32);
424
425	/* write the length of data */
426	if (op->mode == SS_OP_SHA1) {
427		__be64 bits = cpu_to_be64(op->byte_count << 3);
428		bf[j++] = lower_32_bits(bits);
429		bf[j++] = upper_32_bits(bits);
430	} else {
431		__le64 bits = op->byte_count << 3;
432		bf[j++] = lower_32_bits(bits);
433		bf[j++] = upper_32_bits(bits);
434	}
435	writesl(ss->base + SS_RXFIFO, bf, j);
436
437	/* Tell the SS to stop the hashing */
438	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
439
440	/*
441	 * Wait for SS to finish the hash.
442	 * The timeout could happen only in case of bad overclocking
443	 * or driver bug.
444	 */
445	i = 0;
446	do {
447		v = readl(ss->base + SS_CTL);
448		i++;
449	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
450	if (unlikely(i >= SS_TIMEOUT)) {
451		dev_err_ratelimited(ss->dev,
452				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
453				    i, SS_TIMEOUT, v, areq->nbytes);
454		err = -EIO;
455		goto release_ss;
456	}
457
458	/*
459	 * The datasheet isn't very clear about when to retrieve the digest. The
460	 * bit SS_DATA_END is cleared when the engine has processed the data and
461	 * when the digest is computed *but* it doesn't mean the digest is
462	 * available in the digest registers. Hence the delay to be sure we can
463	 * read it.
464	 */
465	ndelay(1);
466
467	/* Get the hash from the device */
468	if (op->mode == SS_OP_SHA1) {
469		for (i = 0; i < 5; i++) {
470			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
471			memcpy(areq->result + i * 4, &v, 4);
472		}
473	} else {
474		for (i = 0; i < 4; i++) {
475			v = readl(ss->base + SS_MD0 + i * 4);
476			memcpy(areq->result + i * 4, &v, 4);
477		}
478	}
479
480release_ss:
481	writel(0, ss->base + SS_CTL);
482	spin_unlock_bh(&ss->slock);
483	return err;
484}
485
486int sun4i_hash_final(struct ahash_request *areq)
487{
488	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
489
490	op->flags = SS_HASH_FINAL;
491	return sun4i_hash(areq);
492}
493
494int sun4i_hash_update(struct ahash_request *areq)
495{
496	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
497
498	op->flags = SS_HASH_UPDATE;
499	return sun4i_hash(areq);
500}
501
502/* sun4i_hash_finup: finalize hashing operation after an update */
503int sun4i_hash_finup(struct ahash_request *areq)
504{
505	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
506
507	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
508	return sun4i_hash(areq);
509}
510
511/* combo of init/update/final functions */
512int sun4i_hash_digest(struct ahash_request *areq)
513{
514	int err;
515	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
516
517	err = sun4i_hash_init(areq);
518	if (err)
519		return err;
520
521	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
522	return sun4i_hash(areq);
523}