Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
  4 *
  5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
  6 *
  7 * This file add support for MD5 and SHA1.
  8 *
  9 * You could find the datasheet in Documentation/arm/sunxi.rst
 10 */
 11#include "sun4i-ss.h"
 12#include <linux/scatterlist.h>
 13
 14/* This is a totally arbitrary value */
 15#define SS_TIMEOUT 100
 16
 17int sun4i_hash_crainit(struct crypto_tfm *tfm)
 18{
 19	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
 20	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
 21	struct sun4i_ss_alg_template *algt;
 22
 23	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
 24
 25	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 26	op->ss = algt->ss;
 27
 28	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 29				 sizeof(struct sun4i_req_ctx));
 30	return 0;
 31}
 32
 33/* sun4i_hash_init: initialize request context */
 34int sun4i_hash_init(struct ahash_request *areq)
 35{
 36	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 37	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
 38	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
 39	struct sun4i_ss_alg_template *algt;
 40
 41	memset(op, 0, sizeof(struct sun4i_req_ctx));
 42
 43	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 44	op->mode = algt->mode;
 45
 46	return 0;
 47}
 48
 49int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
 50{
 51	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 52	struct md5_state *octx = out;
 53	int i;
 54
 55	octx->byte_count = op->byte_count + op->len;
 56
 57	memcpy(octx->block, op->buf, op->len);
 58
 59	if (op->byte_count) {
 60		for (i = 0; i < 4; i++)
 61			octx->hash[i] = op->hash[i];
 62	} else {
 63		octx->hash[0] = SHA1_H0;
 64		octx->hash[1] = SHA1_H1;
 65		octx->hash[2] = SHA1_H2;
 66		octx->hash[3] = SHA1_H3;
 67	}
 68
 69	return 0;
 70}
 71
 72int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
 73{
 74	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 75	const struct md5_state *ictx = in;
 76	int i;
 77
 78	sun4i_hash_init(areq);
 79
 80	op->byte_count = ictx->byte_count & ~0x3F;
 81	op->len = ictx->byte_count & 0x3F;
 82
 83	memcpy(op->buf, ictx->block, op->len);
 84
 85	for (i = 0; i < 4; i++)
 86		op->hash[i] = ictx->hash[i];
 87
 88	return 0;
 89}
 90
 91int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
 92{
 93	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 94	struct sha1_state *octx = out;
 95	int i;
 96
 97	octx->count = op->byte_count + op->len;
 98
 99	memcpy(octx->buffer, op->buf, op->len);
100
101	if (op->byte_count) {
102		for (i = 0; i < 5; i++)
103			octx->state[i] = op->hash[i];
104	} else {
105		octx->state[0] = SHA1_H0;
106		octx->state[1] = SHA1_H1;
107		octx->state[2] = SHA1_H2;
108		octx->state[3] = SHA1_H3;
109		octx->state[4] = SHA1_H4;
110	}
111
112	return 0;
113}
114
115int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
116{
117	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
118	const struct sha1_state *ictx = in;
119	int i;
120
121	sun4i_hash_init(areq);
122
123	op->byte_count = ictx->count & ~0x3F;
124	op->len = ictx->count & 0x3F;
125
126	memcpy(op->buf, ictx->buffer, op->len);
127
128	for (i = 0; i < 5; i++)
129		op->hash[i] = ictx->state[i];
130
131	return 0;
132}
133
134#define SS_HASH_UPDATE 1
135#define SS_HASH_FINAL 2
136
137/*
138 * sun4i_hash_update: update hash engine
139 *
140 * Could be used for both SHA1 and MD5
141 * Write data by step of 32bits and put then in the SS.
142 *
143 * Since we cannot leave partial data and hash state in the engine,
144 * we need to get the hash state at the end of this function.
145 * We can get the hash state every 64 bytes
146 *
147 * So the first work is to get the number of bytes to write to SS modulo 64
148 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
149 *
150 * So at the begin of update()
151 * if op->len + areq->nbytes < 64
152 * => all data will be written to wait buffer (op->buf) and end=0
153 * if not, write all data from op->buf to the device and position end to
154 * complete to 64bytes
155 *
156 * example 1:
157 * update1 60o => op->len=60
158 * update2 60o => need one more word to have 64 bytes
159 * end=4
160 * so write all data from op->buf and one word of SGs
161 * write remaining data in op->buf
162 * final state op->len=56
163 */
164static int sun4i_hash(struct ahash_request *areq)
165{
166	/*
167	 * i is the total bytes read from SGs, to be compared to areq->nbytes
168	 * i is important because we cannot rely on SG length since the sum of
169	 * SG->length could be greater than areq->nbytes
170	 *
171	 * end is the position when we need to stop writing to the device,
172	 * to be compared to i
173	 *
174	 * in_i: advancement in the current SG
175	 */
176	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
177	unsigned int in_i = 0;
178	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
179	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
180	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
181	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
182	struct sun4i_ss_ctx *ss = tfmctx->ss;
183	struct scatterlist *in_sg = areq->src;
184	struct sg_mapping_iter mi;
185	int in_r, err = 0;
186	size_t copied = 0;
187
188	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
189		__func__, crypto_tfm_alg_name(areq->base.tfm),
190		op->byte_count, areq->nbytes, op->mode,
191		op->len, op->hash[0]);
192
193	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
194		return 0;
195
196	/* protect against overflow */
197	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
198		dev_err(ss->dev, "Cannot process too large request\n");
199		return -EINVAL;
200	}
201
202	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
203		/* linearize data to op->buf */
204		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
205					    op->buf + op->len, areq->nbytes, 0);
206		op->len += copied;
207		return 0;
208	}
209
210	spin_lock_bh(&ss->slock);
211
212	/*
213	 * if some data have been processed before,
214	 * we need to restore the partial hash state
215	 */
216	if (op->byte_count) {
217		ivmode = SS_IV_ARBITRARY;
218		for (i = 0; i < 5; i++)
219			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
220	}
221	/* Enable the device */
222	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
223
224	if (!(op->flags & SS_HASH_UPDATE))
225		goto hash_final;
226
227	/* start of handling data */
228	if (!(op->flags & SS_HASH_FINAL)) {
229		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
230
231		if (end > areq->nbytes || areq->nbytes - end > 63) {
232			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
233				end, areq->nbytes);
234			err = -EINVAL;
235			goto release_ss;
236		}
237	} else {
238		/* Since we have the flag final, we can go up to modulo 4 */
239		if (areq->nbytes < 4)
240			end = 0;
241		else
242			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
243	}
244
245	/* TODO if SGlen % 4 and !op->len then DMA */
246	i = 1;
247	while (in_sg && i == 1) {
248		if (in_sg->length % 4)
249			i = 0;
250		in_sg = sg_next(in_sg);
251	}
252	if (i == 1 && !op->len && areq->nbytes)
253		dev_dbg(ss->dev, "We can DMA\n");
254
255	i = 0;
256	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
257		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
258	sg_miter_next(&mi);
259	in_i = 0;
260
261	do {
262		/*
263		 * we need to linearize in two case:
264		 * - the buffer is already used
265		 * - the SG does not have enough byte remaining ( < 4)
266		 */
267		if (op->len || (mi.length - in_i) < 4) {
268			/*
269			 * if we have entered here we have two reason to stop
270			 * - the buffer is full
271			 * - reach the end
272			 */
273			while (op->len < 64 && i < end) {
274				/* how many bytes we can read from current SG */
275				in_r = min3(mi.length - in_i, end - i,
276					    64 - op->len);
277				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
278				op->len += in_r;
279				i += in_r;
280				in_i += in_r;
281				if (in_i == mi.length) {
282					sg_miter_next(&mi);
283					in_i = 0;
284				}
285			}
286			if (op->len > 3 && !(op->len % 4)) {
287				/* write buf to the device */
288				writesl(ss->base + SS_RXFIFO, op->buf,
289					op->len / 4);
290				op->byte_count += op->len;
291				op->len = 0;
292			}
293		}
294		if (mi.length - in_i > 3 && i < end) {
295			/* how many bytes we can read from current SG */
296			in_r = min3(mi.length - in_i, areq->nbytes - i,
297				    ((mi.length - in_i) / 4) * 4);
298			/* how many bytes we can write in the device*/
299			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
300			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
301			op->byte_count += todo * 4;
302			i += todo * 4;
303			in_i += todo * 4;
304			rx_cnt -= todo;
305			if (!rx_cnt) {
306				spaces = readl(ss->base + SS_FCSR);
307				rx_cnt = SS_RXFIFO_SPACES(spaces);
308			}
309			if (in_i == mi.length) {
310				sg_miter_next(&mi);
311				in_i = 0;
312			}
313		}
314	} while (i < end);
315
316	/*
317	 * Now we have written to the device all that we can,
318	 * store the remaining bytes in op->buf
319	 */
320	if ((areq->nbytes - i) < 64) {
321		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
322			/* how many bytes we can read from current SG */
323			in_r = min3(mi.length - in_i, areq->nbytes - i,
324				    64 - op->len);
325			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
326			op->len += in_r;
327			i += in_r;
328			in_i += in_r;
329			if (in_i == mi.length) {
330				sg_miter_next(&mi);
331				in_i = 0;
332			}
333		}
334	}
335
336	sg_miter_stop(&mi);
337
338	/*
339	 * End of data process
340	 * Now if we have the flag final go to finalize part
341	 * If not, store the partial hash
342	 */
343	if (op->flags & SS_HASH_FINAL)
344		goto hash_final;
345
346	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
347	i = 0;
348	do {
349		v = readl(ss->base + SS_CTL);
350		i++;
351	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
352	if (unlikely(i >= SS_TIMEOUT)) {
353		dev_err_ratelimited(ss->dev,
354				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
355				    i, SS_TIMEOUT, v, areq->nbytes);
356		err = -EIO;
357		goto release_ss;
358	}
359
360	/*
361	 * The datasheet isn't very clear about when to retrieve the digest. The
362	 * bit SS_DATA_END is cleared when the engine has processed the data and
363	 * when the digest is computed *but* it doesn't mean the digest is
364	 * available in the digest registers. Hence the delay to be sure we can
365	 * read it.
366	 */
367	ndelay(1);
368
369	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
370		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
371
372	goto release_ss;
373
374/*
375 * hash_final: finalize hashing operation
376 *
377 * If we have some remaining bytes, we write them.
378 * Then ask the SS for finalizing the hashing operation
379 *
380 * I do not check RX FIFO size in this function since the size is 32
381 * after each enabling and this function neither write more than 32 words.
382 * If we come from the update part, we cannot have more than
383 * 3 remaining bytes to write and SS is fast enough to not care about it.
384 */
385
386hash_final:
387
388	/* write the remaining words of the wait buffer */
389	if (op->len) {
390		nwait = op->len / 4;
391		if (nwait) {
392			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
393			op->byte_count += 4 * nwait;
394		}
395
396		nbw = op->len - 4 * nwait;
397		if (nbw) {
398			wb = *(u32 *)(op->buf + nwait * 4);
399			wb &= GENMASK((nbw * 8) - 1, 0);
400
401			op->byte_count += nbw;
402		}
403	}
404
405	/* write the remaining bytes of the nbw buffer */
406	wb |= ((1 << 7) << (nbw * 8));
407	bf[j++] = wb;
408
409	/*
410	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
411	 * I take the operations from other MD5/SHA1 implementations
412	 */
413
414	/* last block size */
415	fill = 64 - (op->byte_count % 64);
416	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
417
418	/* if we can't fill all data, jump to the next 64 block */
419	if (fill < min_fill)
420		fill += 64;
421
422	j += (fill - min_fill) / sizeof(u32);
423
424	/* write the length of data */
425	if (op->mode == SS_OP_SHA1) {
426		__be64 bits = cpu_to_be64(op->byte_count << 3);
427		bf[j++] = lower_32_bits(bits);
428		bf[j++] = upper_32_bits(bits);
429	} else {
430		__le64 bits = op->byte_count << 3;
431		bf[j++] = lower_32_bits(bits);
432		bf[j++] = upper_32_bits(bits);
433	}
434	writesl(ss->base + SS_RXFIFO, bf, j);
435
436	/* Tell the SS to stop the hashing */
437	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
438
439	/*
440	 * Wait for SS to finish the hash.
441	 * The timeout could happen only in case of bad overclocking
442	 * or driver bug.
443	 */
444	i = 0;
445	do {
446		v = readl(ss->base + SS_CTL);
447		i++;
448	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
449	if (unlikely(i >= SS_TIMEOUT)) {
450		dev_err_ratelimited(ss->dev,
451				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
452				    i, SS_TIMEOUT, v, areq->nbytes);
453		err = -EIO;
454		goto release_ss;
455	}
456
457	/*
458	 * The datasheet isn't very clear about when to retrieve the digest. The
459	 * bit SS_DATA_END is cleared when the engine has processed the data and
460	 * when the digest is computed *but* it doesn't mean the digest is
461	 * available in the digest registers. Hence the delay to be sure we can
462	 * read it.
463	 */
464	ndelay(1);
465
466	/* Get the hash from the device */
467	if (op->mode == SS_OP_SHA1) {
468		for (i = 0; i < 5; i++) {
469			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
470			memcpy(areq->result + i * 4, &v, 4);
471		}
472	} else {
473		for (i = 0; i < 4; i++) {
474			v = readl(ss->base + SS_MD0 + i * 4);
475			memcpy(areq->result + i * 4, &v, 4);
476		}
477	}
478
479release_ss:
480	writel(0, ss->base + SS_CTL);
481	spin_unlock_bh(&ss->slock);
482	return err;
483}
484
485int sun4i_hash_final(struct ahash_request *areq)
486{
487	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
488
489	op->flags = SS_HASH_FINAL;
490	return sun4i_hash(areq);
491}
492
493int sun4i_hash_update(struct ahash_request *areq)
494{
495	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
496
497	op->flags = SS_HASH_UPDATE;
498	return sun4i_hash(areq);
499}
500
501/* sun4i_hash_finup: finalize hashing operation after an update */
502int sun4i_hash_finup(struct ahash_request *areq)
503{
504	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
505
506	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
507	return sun4i_hash(areq);
508}
509
510/* combo of init/update/final functions */
511int sun4i_hash_digest(struct ahash_request *areq)
512{
513	int err;
514	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
515
516	err = sun4i_hash_init(areq);
517	if (err)
518		return err;
519
520	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
521	return sun4i_hash(areq);
522}