Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
 
 
 
 
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
 
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
 
 
 
 
 
  49#define SIZE_IN_WORDS(x)	((x) >> 2)
  50
  51/* AES flags */
  52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
 
 
 
 
 
 
  58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  61
  62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  63				 AES_FLAGS_ENCRYPT |		\
  64				 AES_FLAGS_GTAGEN)
  65
  66#define AES_FLAGS_BUSY		BIT(3)
  67#define AES_FLAGS_DUMP_REG	BIT(4)
  68#define AES_FLAGS_OWN_SHA	BIT(5)
  69
  70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  71
  72#define ATMEL_AES_QUEUE_LENGTH	50
  73
  74#define ATMEL_AES_DMA_THRESHOLD		256
  75
  76
  77struct atmel_aes_caps {
  78	bool			has_dualbuff;
 
 
  79	bool			has_gcm;
  80	bool			has_xts;
  81	bool			has_authenc;
  82	u32			max_burst_size;
  83};
  84
  85struct atmel_aes_dev;
  86
  87
  88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  89
  90
  91struct atmel_aes_base_ctx {
  92	struct atmel_aes_dev	*dd;
  93	atmel_aes_fn_t		start;
  94	int			keylen;
  95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
  96	u16			block_size;
  97	bool			is_aead;
  98};
  99
 100struct atmel_aes_ctx {
 101	struct atmel_aes_base_ctx	base;
 102};
 103
 104struct atmel_aes_ctr_ctx {
 105	struct atmel_aes_base_ctx	base;
 106
 107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 108	size_t			offset;
 109	struct scatterlist	src[2];
 110	struct scatterlist	dst[2];
 111	u32			blocks;
 112};
 113
 114struct atmel_aes_gcm_ctx {
 115	struct atmel_aes_base_ctx	base;
 116
 117	struct scatterlist	src[2];
 118	struct scatterlist	dst[2];
 119
 120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 123	size_t			textlen;
 124
 125	const __be32		*ghash_in;
 126	__be32			*ghash_out;
 127	atmel_aes_fn_t		ghash_resume;
 128};
 129
 130struct atmel_aes_xts_ctx {
 131	struct atmel_aes_base_ctx	base;
 132
 133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 134	struct crypto_skcipher *fallback_tfm;
 135};
 136
 137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 138struct atmel_aes_authenc_ctx {
 139	struct atmel_aes_base_ctx	base;
 140	struct atmel_sha_authenc_ctx	*auth;
 141};
 142#endif
 143
 144struct atmel_aes_reqctx {
 145	unsigned long		mode;
 146	u8			lastc[AES_BLOCK_SIZE];
 147	struct skcipher_request fallback_req;
 148};
 149
 150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 151struct atmel_aes_authenc_reqctx {
 152	struct atmel_aes_reqctx	base;
 153
 154	struct scatterlist	src[2];
 155	struct scatterlist	dst[2];
 156	size_t			textlen;
 157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 158
 159	/* auth_req MUST be place last. */
 160	struct ahash_request	auth_req;
 161};
 162#endif
 163
 164struct atmel_aes_dma {
 165	struct dma_chan		*chan;
 166	struct scatterlist	*sg;
 167	int			nents;
 168	unsigned int		remainder;
 169	unsigned int		sg_len;
 170};
 171
 172struct atmel_aes_dev {
 173	struct list_head	list;
 174	unsigned long		phys_base;
 175	void __iomem		*io_base;
 176
 177	struct crypto_async_request	*areq;
 178	struct atmel_aes_base_ctx	*ctx;
 179
 180	bool			is_async;
 181	atmel_aes_fn_t		resume;
 182	atmel_aes_fn_t		cpu_transfer_complete;
 183
 184	struct device		*dev;
 185	struct clk		*iclk;
 186	int			irq;
 187
 188	unsigned long		flags;
 189
 190	spinlock_t		lock;
 191	struct crypto_queue	queue;
 192
 193	struct tasklet_struct	done_task;
 194	struct tasklet_struct	queue_task;
 195
 196	size_t			total;
 197	size_t			datalen;
 198	u32			*data;
 199
 200	struct atmel_aes_dma	src;
 201	struct atmel_aes_dma	dst;
 202
 203	size_t			buflen;
 204	void			*buf;
 205	struct scatterlist	aligned_sg;
 206	struct scatterlist	*real_dst;
 207
 208	struct atmel_aes_caps	caps;
 209
 210	u32			hw_version;
 211};
 212
 213struct atmel_aes_drv {
 214	struct list_head	dev_list;
 215	spinlock_t		lock;
 216};
 217
 218static struct atmel_aes_drv atmel_aes = {
 219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 221};
 222
 223#ifdef VERBOSE_DEBUG
 224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 225{
 226	switch (offset) {
 227	case AES_CR:
 228		return "CR";
 229
 230	case AES_MR:
 231		return "MR";
 232
 233	case AES_ISR:
 234		return "ISR";
 235
 236	case AES_IMR:
 237		return "IMR";
 238
 239	case AES_IER:
 240		return "IER";
 241
 242	case AES_IDR:
 243		return "IDR";
 244
 245	case AES_KEYWR(0):
 246	case AES_KEYWR(1):
 247	case AES_KEYWR(2):
 248	case AES_KEYWR(3):
 249	case AES_KEYWR(4):
 250	case AES_KEYWR(5):
 251	case AES_KEYWR(6):
 252	case AES_KEYWR(7):
 253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 254		break;
 255
 256	case AES_IDATAR(0):
 257	case AES_IDATAR(1):
 258	case AES_IDATAR(2):
 259	case AES_IDATAR(3):
 260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 261		break;
 262
 263	case AES_ODATAR(0):
 264	case AES_ODATAR(1):
 265	case AES_ODATAR(2):
 266	case AES_ODATAR(3):
 267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 268		break;
 269
 270	case AES_IVR(0):
 271	case AES_IVR(1):
 272	case AES_IVR(2):
 273	case AES_IVR(3):
 274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 275		break;
 276
 277	case AES_AADLENR:
 278		return "AADLENR";
 279
 280	case AES_CLENR:
 281		return "CLENR";
 282
 283	case AES_GHASHR(0):
 284	case AES_GHASHR(1):
 285	case AES_GHASHR(2):
 286	case AES_GHASHR(3):
 287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 288		break;
 289
 290	case AES_TAGR(0):
 291	case AES_TAGR(1):
 292	case AES_TAGR(2):
 293	case AES_TAGR(3):
 294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 295		break;
 296
 297	case AES_CTRR:
 298		return "CTRR";
 299
 300	case AES_GCMHR(0):
 301	case AES_GCMHR(1):
 302	case AES_GCMHR(2):
 303	case AES_GCMHR(3):
 304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 305		break;
 306
 307	case AES_EMR:
 308		return "EMR";
 309
 310	case AES_TWR(0):
 311	case AES_TWR(1):
 312	case AES_TWR(2):
 313	case AES_TWR(3):
 314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 315		break;
 316
 317	case AES_ALPHAR(0):
 318	case AES_ALPHAR(1):
 319	case AES_ALPHAR(2):
 320	case AES_ALPHAR(3):
 321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 322		break;
 323
 324	default:
 325		snprintf(tmp, sz, "0x%02x", offset);
 326		break;
 327	}
 328
 329	return tmp;
 330}
 331#endif /* VERBOSE_DEBUG */
 332
 333/* Shared functions */
 334
 335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 336{
 337	u32 value = readl_relaxed(dd->io_base + offset);
 338
 339#ifdef VERBOSE_DEBUG
 340	if (dd->flags & AES_FLAGS_DUMP_REG) {
 341		char tmp[16];
 342
 343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 345	}
 346#endif /* VERBOSE_DEBUG */
 347
 348	return value;
 349}
 350
 351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 352					u32 offset, u32 value)
 353{
 354#ifdef VERBOSE_DEBUG
 355	if (dd->flags & AES_FLAGS_DUMP_REG) {
 356		char tmp[16];
 357
 358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 360	}
 361#endif /* VERBOSE_DEBUG */
 362
 363	writel_relaxed(value, dd->io_base + offset);
 364}
 365
 366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 367					u32 *value, int count)
 368{
 369	for (; count--; value++, offset += 4)
 370		*value = atmel_aes_read(dd, offset);
 371}
 372
 373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 374			      const u32 *value, int count)
 375{
 376	for (; count--; value++, offset += 4)
 377		atmel_aes_write(dd, offset, *value);
 378}
 379
 380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 381					void *value)
 382{
 383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 384}
 385
 386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 387					 const void *value)
 388{
 389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 390}
 391
 392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 393						atmel_aes_fn_t resume)
 394{
 395	u32 isr = atmel_aes_read(dd, AES_ISR);
 396
 397	if (unlikely(isr & AES_INT_DATARDY))
 398		return resume(dd);
 399
 400	dd->resume = resume;
 401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 402	return -EINPROGRESS;
 403}
 404
 405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 406{
 407	len &= block_size - 1;
 408	return len ? block_size - len : 0;
 409}
 410
 411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 412{
 413	struct atmel_aes_dev *aes_dd;
 
 414
 415	spin_lock_bh(&atmel_aes.lock);
 416	/* One AES IP per SoC. */
 417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 418					  struct atmel_aes_dev, list);
 
 
 
 
 
 
 
 419	spin_unlock_bh(&atmel_aes.lock);
 
 420	return aes_dd;
 421}
 422
 423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 424{
 425	int err;
 426
 427	err = clk_enable(dd->iclk);
 428	if (err)
 429		return err;
 430
 431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 433
 434	return 0;
 435}
 436
 437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 438{
 439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 440}
 441
 442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = atmel_aes_hw_init(dd);
 447	if (err)
 448		return err;
 449
 450	dd->hw_version = atmel_aes_get_version(dd);
 451
 452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 453
 454	clk_disable(dd->iclk);
 455	return 0;
 456}
 457
 458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 459				      const struct atmel_aes_reqctx *rctx)
 460{
 461	/* Clear all but persistent flags and set request flags. */
 462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 463}
 464
 465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 466{
 467	return (dd->flags & AES_FLAGS_ENCRYPT);
 468}
 469
 470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 472#endif
 473
 474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 475{
 476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 480
 481	if (req->cryptlen < ivsize)
 482		return;
 483
 484	if (rctx->mode & AES_FLAGS_ENCRYPT)
 485		scatterwalk_map_and_copy(req->iv, req->dst,
 486					 req->cryptlen - ivsize, ivsize, 0);
 487	else
 488		memcpy(req->iv, rctx->lastc, ivsize);
 489}
 490
 491static inline struct atmel_aes_ctr_ctx *
 492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 493{
 494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 495}
 496
 497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 498{
 499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 503	int i;
 504
 505	/*
 506	 * The CTR transfer works in fragments of data of maximum 1 MByte
 507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 508	 * here, ctx->blocks contains the number of blocks of the last fragment
 509	 * processed, there is no need to explicit cast it to u16.
 510	 */
 511	for (i = 0; i < ctx->blocks; i++)
 512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 513
 514	memcpy(req->iv, ctx->iv, ivsize);
 515}
 516
 517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 518{
 519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 521
 522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 523	if (dd->ctx->is_aead)
 524		atmel_aes_authenc_complete(dd, err);
 525#endif
 526
 527	clk_disable(dd->iclk);
 528	dd->flags &= ~AES_FLAGS_BUSY;
 529
 530	if (!err && !dd->ctx->is_aead &&
 531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 534		else
 535			atmel_aes_ctr_update_req_iv(dd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 536	}
 537
 538	if (dd->is_async)
 539		crypto_request_complete(dd->areq, err);
 540
 541	tasklet_schedule(&dd->queue_task);
 542
 543	return err;
 544}
 545
 546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 547				     const __be32 *iv, const u32 *key, int keylen)
 548{
 549	u32 valmr = 0;
 550
 551	/* MR register must be set before IV registers */
 552	if (keylen == AES_KEYSIZE_128)
 553		valmr |= AES_MR_KEYSIZE_128;
 554	else if (keylen == AES_KEYSIZE_192)
 555		valmr |= AES_MR_KEYSIZE_192;
 556	else
 557		valmr |= AES_MR_KEYSIZE_256;
 558
 559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 560
 561	if (use_dma) {
 562		valmr |= AES_MR_SMOD_IDATAR0;
 563		if (dd->caps.has_dualbuff)
 564			valmr |= AES_MR_DUALBUFF;
 565	} else {
 566		valmr |= AES_MR_SMOD_AUTO;
 567	}
 568
 569	atmel_aes_write(dd, AES_MR, valmr);
 570
 571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 572
 573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 574		atmel_aes_write_block(dd, AES_IVR(0), iv);
 575}
 576
 577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 578					const __be32 *iv)
 579
 580{
 581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 582				 dd->ctx->key, dd->ctx->keylen);
 583}
 584
 585/* CPU transfer */
 586
 587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 588{
 589	int err = 0;
 590	u32 isr;
 591
 592	for (;;) {
 593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 594		dd->data += 4;
 595		dd->datalen -= AES_BLOCK_SIZE;
 596
 597		if (dd->datalen < AES_BLOCK_SIZE)
 598			break;
 599
 600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 601
 602		isr = atmel_aes_read(dd, AES_ISR);
 603		if (!(isr & AES_INT_DATARDY)) {
 604			dd->resume = atmel_aes_cpu_transfer;
 605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 606			return -EINPROGRESS;
 607		}
 608	}
 609
 610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 611				 dd->buf, dd->total))
 612		err = -EINVAL;
 613
 614	if (err)
 615		return atmel_aes_complete(dd, err);
 616
 617	return dd->cpu_transfer_complete(dd);
 618}
 619
 620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 621			       struct scatterlist *src,
 622			       struct scatterlist *dst,
 623			       size_t len,
 624			       atmel_aes_fn_t resume)
 625{
 626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 627
 628	if (unlikely(len == 0))
 629		return -EINVAL;
 630
 631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 632
 633	dd->total = len;
 634	dd->real_dst = dst;
 635	dd->cpu_transfer_complete = resume;
 636	dd->datalen = len + padlen;
 637	dd->data = (u32 *)dd->buf;
 638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 640}
 641
 642
 643/* DMA transfer */
 644
 645static void atmel_aes_dma_callback(void *data);
 646
 647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 648				    struct scatterlist *sg,
 649				    size_t len,
 650				    struct atmel_aes_dma *dma)
 651{
 652	int nents;
 653
 654	if (!IS_ALIGNED(len, dd->ctx->block_size))
 655		return false;
 656
 657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 659			return false;
 660
 661		if (len <= sg->length) {
 662			if (!IS_ALIGNED(len, dd->ctx->block_size))
 663				return false;
 664
 665			dma->nents = nents+1;
 666			dma->remainder = sg->length - len;
 667			sg->length = len;
 668			return true;
 669		}
 670
 671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 672			return false;
 673
 674		len -= sg->length;
 675	}
 676
 677	return false;
 678}
 679
 680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 681{
 682	struct scatterlist *sg = dma->sg;
 683	int nents = dma->nents;
 684
 685	if (!dma->remainder)
 686		return;
 687
 688	while (--nents > 0 && sg)
 689		sg = sg_next(sg);
 690
 691	if (!sg)
 692		return;
 693
 694	sg->length += dma->remainder;
 695}
 696
 697static int atmel_aes_map(struct atmel_aes_dev *dd,
 698			 struct scatterlist *src,
 699			 struct scatterlist *dst,
 700			 size_t len)
 701{
 702	bool src_aligned, dst_aligned;
 703	size_t padlen;
 704
 705	dd->total = len;
 706	dd->src.sg = src;
 707	dd->dst.sg = dst;
 708	dd->real_dst = dst;
 709
 710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 711	if (src == dst)
 712		dst_aligned = src_aligned;
 713	else
 714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 715	if (!src_aligned || !dst_aligned) {
 716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 717
 718		if (dd->buflen < len + padlen)
 719			return -ENOMEM;
 720
 721		if (!src_aligned) {
 722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 723			dd->src.sg = &dd->aligned_sg;
 724			dd->src.nents = 1;
 725			dd->src.remainder = 0;
 726		}
 727
 728		if (!dst_aligned) {
 729			dd->dst.sg = &dd->aligned_sg;
 730			dd->dst.nents = 1;
 731			dd->dst.remainder = 0;
 732		}
 733
 734		sg_init_table(&dd->aligned_sg, 1);
 735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 736	}
 737
 738	if (dd->src.sg == dd->dst.sg) {
 739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 740					    DMA_BIDIRECTIONAL);
 741		dd->dst.sg_len = dd->src.sg_len;
 742		if (!dd->src.sg_len)
 743			return -EFAULT;
 744	} else {
 745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 746					    DMA_TO_DEVICE);
 747		if (!dd->src.sg_len)
 748			return -EFAULT;
 749
 750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 751					    DMA_FROM_DEVICE);
 752		if (!dd->dst.sg_len) {
 753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 754				     DMA_TO_DEVICE);
 755			return -EFAULT;
 756		}
 757	}
 758
 759	return 0;
 760}
 761
 762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 763{
 764	if (dd->src.sg == dd->dst.sg) {
 765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 766			     DMA_BIDIRECTIONAL);
 767
 768		if (dd->src.sg != &dd->aligned_sg)
 769			atmel_aes_restore_sg(&dd->src);
 770	} else {
 771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 772			     DMA_FROM_DEVICE);
 773
 774		if (dd->dst.sg != &dd->aligned_sg)
 775			atmel_aes_restore_sg(&dd->dst);
 776
 777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 778			     DMA_TO_DEVICE);
 779
 780		if (dd->src.sg != &dd->aligned_sg)
 781			atmel_aes_restore_sg(&dd->src);
 782	}
 783
 784	if (dd->dst.sg == &dd->aligned_sg)
 785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 786				    dd->buf, dd->total);
 787}
 788
 789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 790					enum dma_slave_buswidth addr_width,
 791					enum dma_transfer_direction dir,
 792					u32 maxburst)
 793{
 794	struct dma_async_tx_descriptor *desc;
 795	struct dma_slave_config config;
 796	dma_async_tx_callback callback;
 797	struct atmel_aes_dma *dma;
 798	int err;
 799
 800	memset(&config, 0, sizeof(config));
 
 801	config.src_addr_width = addr_width;
 802	config.dst_addr_width = addr_width;
 803	config.src_maxburst = maxburst;
 804	config.dst_maxburst = maxburst;
 805
 806	switch (dir) {
 807	case DMA_MEM_TO_DEV:
 808		dma = &dd->src;
 809		callback = NULL;
 810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 811		break;
 812
 813	case DMA_DEV_TO_MEM:
 814		dma = &dd->dst;
 815		callback = atmel_aes_dma_callback;
 816		config.src_addr = dd->phys_base + AES_ODATAR(0);
 817		break;
 818
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	err = dmaengine_slave_config(dma->chan, &config);
 824	if (err)
 825		return err;
 826
 827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 829	if (!desc)
 830		return -ENOMEM;
 831
 832	desc->callback = callback;
 833	desc->callback_param = dd;
 834	dmaengine_submit(desc);
 835	dma_async_issue_pending(dma->chan);
 836
 837	return 0;
 838}
 839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 841			       struct scatterlist *src,
 842			       struct scatterlist *dst,
 843			       size_t len,
 844			       atmel_aes_fn_t resume)
 845{
 846	enum dma_slave_buswidth addr_width;
 847	u32 maxburst;
 848	int err;
 849
 850	switch (dd->ctx->block_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	case AES_BLOCK_SIZE:
 852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 853		maxburst = dd->caps.max_burst_size;
 854		break;
 855
 856	default:
 857		err = -EINVAL;
 858		goto exit;
 859	}
 860
 861	err = atmel_aes_map(dd, src, dst, len);
 862	if (err)
 863		goto exit;
 864
 865	dd->resume = resume;
 866
 867	/* Set output DMA transfer first */
 868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 869					   maxburst);
 870	if (err)
 871		goto unmap;
 872
 873	/* Then set input DMA transfer */
 874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 875					   maxburst);
 876	if (err)
 877		goto output_transfer_stop;
 878
 879	return -EINPROGRESS;
 880
 881output_transfer_stop:
 882	dmaengine_terminate_sync(dd->dst.chan);
 883unmap:
 884	atmel_aes_unmap(dd);
 885exit:
 886	return atmel_aes_complete(dd, err);
 887}
 888
 
 
 
 
 
 
 
 889static void atmel_aes_dma_callback(void *data)
 890{
 891	struct atmel_aes_dev *dd = data;
 892
 893	atmel_aes_unmap(dd);
 894	dd->is_async = true;
 895	(void)dd->resume(dd);
 896}
 897
 898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 899				  struct crypto_async_request *new_areq)
 900{
 901	struct crypto_async_request *areq, *backlog;
 902	struct atmel_aes_base_ctx *ctx;
 903	unsigned long flags;
 904	bool start_async;
 905	int err, ret = 0;
 906
 907	spin_lock_irqsave(&dd->lock, flags);
 908	if (new_areq)
 909		ret = crypto_enqueue_request(&dd->queue, new_areq);
 910	if (dd->flags & AES_FLAGS_BUSY) {
 911		spin_unlock_irqrestore(&dd->lock, flags);
 912		return ret;
 913	}
 914	backlog = crypto_get_backlog(&dd->queue);
 915	areq = crypto_dequeue_request(&dd->queue);
 916	if (areq)
 917		dd->flags |= AES_FLAGS_BUSY;
 918	spin_unlock_irqrestore(&dd->lock, flags);
 919
 920	if (!areq)
 921		return ret;
 922
 923	if (backlog)
 924		crypto_request_complete(backlog, -EINPROGRESS);
 925
 926	ctx = crypto_tfm_ctx(areq->tfm);
 927
 928	dd->areq = areq;
 929	dd->ctx = ctx;
 930	start_async = (areq != new_areq);
 931	dd->is_async = start_async;
 932
 933	/* WARNING: ctx->start() MAY change dd->is_async. */
 934	err = ctx->start(dd);
 935	return (start_async) ? ret : err;
 936}
 937
 938
 939/* AES async block ciphers */
 940
 941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 942{
 943	return atmel_aes_complete(dd, 0);
 944}
 945
 946static int atmel_aes_start(struct atmel_aes_dev *dd)
 947{
 948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 951			dd->ctx->block_size != AES_BLOCK_SIZE);
 952	int err;
 953
 954	atmel_aes_set_mode(dd, rctx);
 955
 956	err = atmel_aes_hw_init(dd);
 957	if (err)
 958		return atmel_aes_complete(dd, err);
 959
 960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 961	if (use_dma)
 962		return atmel_aes_dma_start(dd, req->src, req->dst,
 963					   req->cryptlen,
 964					   atmel_aes_transfer_complete);
 965
 966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
 967				   atmel_aes_transfer_complete);
 968}
 969
 
 
 
 
 
 
 970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 971{
 972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 974	struct scatterlist *src, *dst;
 
 975	size_t datalen;
 976	u32 ctr;
 977	u16 start, end;
 978	bool use_dma, fragmented = false;
 979
 980	/* Check for transfer completion. */
 981	ctx->offset += dd->total;
 982	if (ctx->offset >= req->cryptlen)
 983		return atmel_aes_transfer_complete(dd);
 984
 985	/* Compute data length. */
 986	datalen = req->cryptlen - ctx->offset;
 987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 988	ctr = be32_to_cpu(ctx->iv[3]);
 989
 990	/* Check 16bit counter overflow. */
 991	start = ctr & 0xffff;
 992	end = start + ctx->blocks - 1;
 993
 994	if (ctx->blocks >> 16 || end < start) {
 995		ctr |= 0xffff;
 996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
 997		fragmented = true;
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
 
 
 
 
 
 
 
1089	ctx->is_aead = false;
1090
1091	rctx = skcipher_request_ctx(req);
 
 
 
 
1092	rctx->mode = mode;
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
 
1115		return -EINVAL;
 
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1212},
1213{
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1226},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227};
1228
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
 
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
1536
 
 
 
 
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
 
1551		return -EINVAL;
 
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
 
 
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
 
 
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
 
 
 
 
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
 
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
 
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
 
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
 
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
 
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
 
 
 
 
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
 
 
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
 
 
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
 
 
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
 
 
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
 
 
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
 
 
 
 
 
 
 
 
 
 
 
 
 
2137{
2138	int ret;
 
 
 
 
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
 
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
 
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
 
 
 
2243
 
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
 
 
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
 
 
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
 
 
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
 
 
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
 
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
 
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
 
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
 
 
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
2360		goto err_tasklet_kill;
 
 
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
 
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
 
 
 
 
 
 
 
2384	}
2385
2386	err = clk_prepare(aes_dd->iclk);
2387	if (err)
2388		goto err_tasklet_kill;
2389
2390	err = atmel_aes_hw_version_init(aes_dd);
2391	if (err)
2392		goto err_iclk_unprepare;
2393
2394	atmel_aes_get_cap(aes_dd);
2395
2396#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2397	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2398		err = -EPROBE_DEFER;
2399		goto err_iclk_unprepare;
2400	}
2401#endif
2402
2403	err = atmel_aes_buff_init(aes_dd);
2404	if (err)
2405		goto err_iclk_unprepare;
2406
2407	err = atmel_aes_dma_init(aes_dd);
2408	if (err)
2409		goto err_buff_cleanup;
2410
2411	spin_lock(&atmel_aes.lock);
2412	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2413	spin_unlock(&atmel_aes.lock);
2414
2415	err = atmel_aes_register_algs(aes_dd);
2416	if (err)
2417		goto err_algs;
2418
2419	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2420			dma_chan_name(aes_dd->src.chan),
2421			dma_chan_name(aes_dd->dst.chan));
2422
2423	return 0;
2424
2425err_algs:
2426	spin_lock(&atmel_aes.lock);
2427	list_del(&aes_dd->list);
2428	spin_unlock(&atmel_aes.lock);
2429	atmel_aes_dma_cleanup(aes_dd);
2430err_buff_cleanup:
2431	atmel_aes_buff_cleanup(aes_dd);
2432err_iclk_unprepare:
 
2433	clk_unprepare(aes_dd->iclk);
2434err_tasklet_kill:
2435	tasklet_kill(&aes_dd->done_task);
2436	tasklet_kill(&aes_dd->queue_task);
 
 
 
2437
2438	return err;
2439}
2440
2441static void atmel_aes_remove(struct platform_device *pdev)
2442{
2443	struct atmel_aes_dev *aes_dd;
2444
2445	aes_dd = platform_get_drvdata(pdev);
2446
 
2447	spin_lock(&atmel_aes.lock);
2448	list_del(&aes_dd->list);
2449	spin_unlock(&atmel_aes.lock);
2450
2451	atmel_aes_unregister_algs(aes_dd);
2452
2453	tasklet_kill(&aes_dd->done_task);
2454	tasklet_kill(&aes_dd->queue_task);
2455
2456	atmel_aes_dma_cleanup(aes_dd);
2457	atmel_aes_buff_cleanup(aes_dd);
2458
2459	clk_unprepare(aes_dd->iclk);
 
 
2460}
2461
2462static struct platform_driver atmel_aes_driver = {
2463	.probe		= atmel_aes_probe,
2464	.remove_new	= atmel_aes_remove,
2465	.driver		= {
2466		.name	= "atmel_aes",
2467		.of_match_table = atmel_aes_dt_ids,
2468	},
2469};
2470
2471module_platform_driver(atmel_aes_driver);
2472
2473MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2474MODULE_LICENSE("GPL v2");
2475MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v4.17
 
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL AES HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-aes.c driver.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
 
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <crypto/scatterwalk.h>
  37#include <crypto/algapi.h>
  38#include <crypto/aes.h>
  39#include <crypto/gcm.h>
  40#include <crypto/xts.h>
  41#include <crypto/internal/aead.h>
  42#include <linux/platform_data/crypto-atmel.h>
  43#include <dt-bindings/dma/at91.h>
  44#include "atmel-aes-regs.h"
  45#include "atmel-authenc.h"
  46
  47#define ATMEL_AES_PRIORITY	300
  48
  49#define ATMEL_AES_BUFFER_ORDER	2
  50#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  51
  52#define CFB8_BLOCK_SIZE		1
  53#define CFB16_BLOCK_SIZE	2
  54#define CFB32_BLOCK_SIZE	4
  55#define CFB64_BLOCK_SIZE	8
  56
  57#define SIZE_IN_WORDS(x)	((x) >> 2)
  58
  59/* AES flags */
  60/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  61#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  62#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  63#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  64#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  65#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  66#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  67#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  68#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  69#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  70#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  71#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  72#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  73#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  74#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  75
  76#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  77				 AES_FLAGS_ENCRYPT |		\
  78				 AES_FLAGS_GTAGEN)
  79
  80#define AES_FLAGS_BUSY		BIT(3)
  81#define AES_FLAGS_DUMP_REG	BIT(4)
  82#define AES_FLAGS_OWN_SHA	BIT(5)
  83
  84#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  85
  86#define ATMEL_AES_QUEUE_LENGTH	50
  87
  88#define ATMEL_AES_DMA_THRESHOLD		256
  89
  90
  91struct atmel_aes_caps {
  92	bool			has_dualbuff;
  93	bool			has_cfb64;
  94	bool			has_ctr32;
  95	bool			has_gcm;
  96	bool			has_xts;
  97	bool			has_authenc;
  98	u32			max_burst_size;
  99};
 100
 101struct atmel_aes_dev;
 102
 103
 104typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 105
 106
 107struct atmel_aes_base_ctx {
 108	struct atmel_aes_dev	*dd;
 109	atmel_aes_fn_t		start;
 110	int			keylen;
 111	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 112	u16			block_size;
 113	bool			is_aead;
 114};
 115
 116struct atmel_aes_ctx {
 117	struct atmel_aes_base_ctx	base;
 118};
 119
 120struct atmel_aes_ctr_ctx {
 121	struct atmel_aes_base_ctx	base;
 122
 123	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 124	size_t			offset;
 125	struct scatterlist	src[2];
 126	struct scatterlist	dst[2];
 
 127};
 128
 129struct atmel_aes_gcm_ctx {
 130	struct atmel_aes_base_ctx	base;
 131
 132	struct scatterlist	src[2];
 133	struct scatterlist	dst[2];
 134
 135	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 136	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 137	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 138	size_t			textlen;
 139
 140	const u32		*ghash_in;
 141	u32			*ghash_out;
 142	atmel_aes_fn_t		ghash_resume;
 143};
 144
 145struct atmel_aes_xts_ctx {
 146	struct atmel_aes_base_ctx	base;
 147
 148	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 
 149};
 150
 151#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 152struct atmel_aes_authenc_ctx {
 153	struct atmel_aes_base_ctx	base;
 154	struct atmel_sha_authenc_ctx	*auth;
 155};
 156#endif
 157
 158struct atmel_aes_reqctx {
 159	unsigned long		mode;
 160	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
 
 161};
 162
 163#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 164struct atmel_aes_authenc_reqctx {
 165	struct atmel_aes_reqctx	base;
 166
 167	struct scatterlist	src[2];
 168	struct scatterlist	dst[2];
 169	size_t			textlen;
 170	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 171
 172	/* auth_req MUST be place last. */
 173	struct ahash_request	auth_req;
 174};
 175#endif
 176
 177struct atmel_aes_dma {
 178	struct dma_chan		*chan;
 179	struct scatterlist	*sg;
 180	int			nents;
 181	unsigned int		remainder;
 182	unsigned int		sg_len;
 183};
 184
 185struct atmel_aes_dev {
 186	struct list_head	list;
 187	unsigned long		phys_base;
 188	void __iomem		*io_base;
 189
 190	struct crypto_async_request	*areq;
 191	struct atmel_aes_base_ctx	*ctx;
 192
 193	bool			is_async;
 194	atmel_aes_fn_t		resume;
 195	atmel_aes_fn_t		cpu_transfer_complete;
 196
 197	struct device		*dev;
 198	struct clk		*iclk;
 199	int			irq;
 200
 201	unsigned long		flags;
 202
 203	spinlock_t		lock;
 204	struct crypto_queue	queue;
 205
 206	struct tasklet_struct	done_task;
 207	struct tasklet_struct	queue_task;
 208
 209	size_t			total;
 210	size_t			datalen;
 211	u32			*data;
 212
 213	struct atmel_aes_dma	src;
 214	struct atmel_aes_dma	dst;
 215
 216	size_t			buflen;
 217	void			*buf;
 218	struct scatterlist	aligned_sg;
 219	struct scatterlist	*real_dst;
 220
 221	struct atmel_aes_caps	caps;
 222
 223	u32			hw_version;
 224};
 225
 226struct atmel_aes_drv {
 227	struct list_head	dev_list;
 228	spinlock_t		lock;
 229};
 230
 231static struct atmel_aes_drv atmel_aes = {
 232	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 233	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 234};
 235
 236#ifdef VERBOSE_DEBUG
 237static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 238{
 239	switch (offset) {
 240	case AES_CR:
 241		return "CR";
 242
 243	case AES_MR:
 244		return "MR";
 245
 246	case AES_ISR:
 247		return "ISR";
 248
 249	case AES_IMR:
 250		return "IMR";
 251
 252	case AES_IER:
 253		return "IER";
 254
 255	case AES_IDR:
 256		return "IDR";
 257
 258	case AES_KEYWR(0):
 259	case AES_KEYWR(1):
 260	case AES_KEYWR(2):
 261	case AES_KEYWR(3):
 262	case AES_KEYWR(4):
 263	case AES_KEYWR(5):
 264	case AES_KEYWR(6):
 265	case AES_KEYWR(7):
 266		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 267		break;
 268
 269	case AES_IDATAR(0):
 270	case AES_IDATAR(1):
 271	case AES_IDATAR(2):
 272	case AES_IDATAR(3):
 273		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 274		break;
 275
 276	case AES_ODATAR(0):
 277	case AES_ODATAR(1):
 278	case AES_ODATAR(2):
 279	case AES_ODATAR(3):
 280		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 281		break;
 282
 283	case AES_IVR(0):
 284	case AES_IVR(1):
 285	case AES_IVR(2):
 286	case AES_IVR(3):
 287		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 288		break;
 289
 290	case AES_AADLENR:
 291		return "AADLENR";
 292
 293	case AES_CLENR:
 294		return "CLENR";
 295
 296	case AES_GHASHR(0):
 297	case AES_GHASHR(1):
 298	case AES_GHASHR(2):
 299	case AES_GHASHR(3):
 300		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 301		break;
 302
 303	case AES_TAGR(0):
 304	case AES_TAGR(1):
 305	case AES_TAGR(2):
 306	case AES_TAGR(3):
 307		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 308		break;
 309
 310	case AES_CTRR:
 311		return "CTRR";
 312
 313	case AES_GCMHR(0):
 314	case AES_GCMHR(1):
 315	case AES_GCMHR(2):
 316	case AES_GCMHR(3):
 317		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 318		break;
 319
 320	case AES_EMR:
 321		return "EMR";
 322
 323	case AES_TWR(0):
 324	case AES_TWR(1):
 325	case AES_TWR(2):
 326	case AES_TWR(3):
 327		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 328		break;
 329
 330	case AES_ALPHAR(0):
 331	case AES_ALPHAR(1):
 332	case AES_ALPHAR(2):
 333	case AES_ALPHAR(3):
 334		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 335		break;
 336
 337	default:
 338		snprintf(tmp, sz, "0x%02x", offset);
 339		break;
 340	}
 341
 342	return tmp;
 343}
 344#endif /* VERBOSE_DEBUG */
 345
 346/* Shared functions */
 347
 348static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 349{
 350	u32 value = readl_relaxed(dd->io_base + offset);
 351
 352#ifdef VERBOSE_DEBUG
 353	if (dd->flags & AES_FLAGS_DUMP_REG) {
 354		char tmp[16];
 355
 356		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 357			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 358	}
 359#endif /* VERBOSE_DEBUG */
 360
 361	return value;
 362}
 363
 364static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 365					u32 offset, u32 value)
 366{
 367#ifdef VERBOSE_DEBUG
 368	if (dd->flags & AES_FLAGS_DUMP_REG) {
 369		char tmp[16];
 370
 371		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 372			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 373	}
 374#endif /* VERBOSE_DEBUG */
 375
 376	writel_relaxed(value, dd->io_base + offset);
 377}
 378
 379static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 380					u32 *value, int count)
 381{
 382	for (; count--; value++, offset += 4)
 383		*value = atmel_aes_read(dd, offset);
 384}
 385
 386static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 387			      const u32 *value, int count)
 388{
 389	for (; count--; value++, offset += 4)
 390		atmel_aes_write(dd, offset, *value);
 391}
 392
 393static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 394					u32 *value)
 395{
 396	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 397}
 398
 399static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 400					 const u32 *value)
 401{
 402	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 403}
 404
 405static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 406						atmel_aes_fn_t resume)
 407{
 408	u32 isr = atmel_aes_read(dd, AES_ISR);
 409
 410	if (unlikely(isr & AES_INT_DATARDY))
 411		return resume(dd);
 412
 413	dd->resume = resume;
 414	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 415	return -EINPROGRESS;
 416}
 417
 418static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 419{
 420	len &= block_size - 1;
 421	return len ? block_size - len : 0;
 422}
 423
 424static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 425{
 426	struct atmel_aes_dev *aes_dd = NULL;
 427	struct atmel_aes_dev *tmp;
 428
 429	spin_lock_bh(&atmel_aes.lock);
 430	if (!ctx->dd) {
 431		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 432			aes_dd = tmp;
 433			break;
 434		}
 435		ctx->dd = aes_dd;
 436	} else {
 437		aes_dd = ctx->dd;
 438	}
 439
 440	spin_unlock_bh(&atmel_aes.lock);
 441
 442	return aes_dd;
 443}
 444
 445static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 446{
 447	int err;
 448
 449	err = clk_enable(dd->iclk);
 450	if (err)
 451		return err;
 452
 453	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 454	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 455
 456	return 0;
 457}
 458
 459static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 460{
 461	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 462}
 463
 464static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 465{
 466	int err;
 467
 468	err = atmel_aes_hw_init(dd);
 469	if (err)
 470		return err;
 471
 472	dd->hw_version = atmel_aes_get_version(dd);
 473
 474	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 475
 476	clk_disable(dd->iclk);
 477	return 0;
 478}
 479
 480static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 481				      const struct atmel_aes_reqctx *rctx)
 482{
 483	/* Clear all but persistent flags and set request flags. */
 484	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 485}
 486
 487static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 488{
 489	return (dd->flags & AES_FLAGS_ENCRYPT);
 490}
 491
 492#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 493static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 494#endif
 495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 497{
 498#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 
 
 
 499	if (dd->ctx->is_aead)
 500		atmel_aes_authenc_complete(dd, err);
 501#endif
 502
 503	clk_disable(dd->iclk);
 504	dd->flags &= ~AES_FLAGS_BUSY;
 505
 506	if (!dd->ctx->is_aead) {
 507		struct ablkcipher_request *req =
 508			ablkcipher_request_cast(dd->areq);
 509		struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 510		struct crypto_ablkcipher *ablkcipher =
 511			crypto_ablkcipher_reqtfm(req);
 512		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 513
 514		if (rctx->mode & AES_FLAGS_ENCRYPT) {
 515			scatterwalk_map_and_copy(req->info, req->dst,
 516				req->nbytes - ivsize, ivsize, 0);
 517		} else {
 518			if (req->src == req->dst) {
 519				memcpy(req->info, rctx->lastc, ivsize);
 520			} else {
 521				scatterwalk_map_and_copy(req->info, req->src,
 522					req->nbytes - ivsize, ivsize, 0);
 523			}
 524		}
 525	}
 526
 527	if (dd->is_async)
 528		dd->areq->complete(dd->areq, err);
 529
 530	tasklet_schedule(&dd->queue_task);
 531
 532	return err;
 533}
 534
 535static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 536				     const u32 *iv, const u32 *key, int keylen)
 537{
 538	u32 valmr = 0;
 539
 540	/* MR register must be set before IV registers */
 541	if (keylen == AES_KEYSIZE_128)
 542		valmr |= AES_MR_KEYSIZE_128;
 543	else if (keylen == AES_KEYSIZE_192)
 544		valmr |= AES_MR_KEYSIZE_192;
 545	else
 546		valmr |= AES_MR_KEYSIZE_256;
 547
 548	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 549
 550	if (use_dma) {
 551		valmr |= AES_MR_SMOD_IDATAR0;
 552		if (dd->caps.has_dualbuff)
 553			valmr |= AES_MR_DUALBUFF;
 554	} else {
 555		valmr |= AES_MR_SMOD_AUTO;
 556	}
 557
 558	atmel_aes_write(dd, AES_MR, valmr);
 559
 560	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 561
 562	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 563		atmel_aes_write_block(dd, AES_IVR(0), iv);
 564}
 565
 566static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 567					const u32 *iv)
 568
 569{
 570	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 571				 dd->ctx->key, dd->ctx->keylen);
 572}
 573
 574/* CPU transfer */
 575
 576static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 577{
 578	int err = 0;
 579	u32 isr;
 580
 581	for (;;) {
 582		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 583		dd->data += 4;
 584		dd->datalen -= AES_BLOCK_SIZE;
 585
 586		if (dd->datalen < AES_BLOCK_SIZE)
 587			break;
 588
 589		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 590
 591		isr = atmel_aes_read(dd, AES_ISR);
 592		if (!(isr & AES_INT_DATARDY)) {
 593			dd->resume = atmel_aes_cpu_transfer;
 594			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 595			return -EINPROGRESS;
 596		}
 597	}
 598
 599	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 600				 dd->buf, dd->total))
 601		err = -EINVAL;
 602
 603	if (err)
 604		return atmel_aes_complete(dd, err);
 605
 606	return dd->cpu_transfer_complete(dd);
 607}
 608
 609static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 610			       struct scatterlist *src,
 611			       struct scatterlist *dst,
 612			       size_t len,
 613			       atmel_aes_fn_t resume)
 614{
 615	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 616
 617	if (unlikely(len == 0))
 618		return -EINVAL;
 619
 620	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 621
 622	dd->total = len;
 623	dd->real_dst = dst;
 624	dd->cpu_transfer_complete = resume;
 625	dd->datalen = len + padlen;
 626	dd->data = (u32 *)dd->buf;
 627	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 628	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 629}
 630
 631
 632/* DMA transfer */
 633
 634static void atmel_aes_dma_callback(void *data);
 635
 636static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 637				    struct scatterlist *sg,
 638				    size_t len,
 639				    struct atmel_aes_dma *dma)
 640{
 641	int nents;
 642
 643	if (!IS_ALIGNED(len, dd->ctx->block_size))
 644		return false;
 645
 646	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 647		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 648			return false;
 649
 650		if (len <= sg->length) {
 651			if (!IS_ALIGNED(len, dd->ctx->block_size))
 652				return false;
 653
 654			dma->nents = nents+1;
 655			dma->remainder = sg->length - len;
 656			sg->length = len;
 657			return true;
 658		}
 659
 660		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 661			return false;
 662
 663		len -= sg->length;
 664	}
 665
 666	return false;
 667}
 668
 669static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 670{
 671	struct scatterlist *sg = dma->sg;
 672	int nents = dma->nents;
 673
 674	if (!dma->remainder)
 675		return;
 676
 677	while (--nents > 0 && sg)
 678		sg = sg_next(sg);
 679
 680	if (!sg)
 681		return;
 682
 683	sg->length += dma->remainder;
 684}
 685
 686static int atmel_aes_map(struct atmel_aes_dev *dd,
 687			 struct scatterlist *src,
 688			 struct scatterlist *dst,
 689			 size_t len)
 690{
 691	bool src_aligned, dst_aligned;
 692	size_t padlen;
 693
 694	dd->total = len;
 695	dd->src.sg = src;
 696	dd->dst.sg = dst;
 697	dd->real_dst = dst;
 698
 699	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 700	if (src == dst)
 701		dst_aligned = src_aligned;
 702	else
 703		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 704	if (!src_aligned || !dst_aligned) {
 705		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 706
 707		if (dd->buflen < len + padlen)
 708			return -ENOMEM;
 709
 710		if (!src_aligned) {
 711			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 712			dd->src.sg = &dd->aligned_sg;
 713			dd->src.nents = 1;
 714			dd->src.remainder = 0;
 715		}
 716
 717		if (!dst_aligned) {
 718			dd->dst.sg = &dd->aligned_sg;
 719			dd->dst.nents = 1;
 720			dd->dst.remainder = 0;
 721		}
 722
 723		sg_init_table(&dd->aligned_sg, 1);
 724		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 725	}
 726
 727	if (dd->src.sg == dd->dst.sg) {
 728		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 729					    DMA_BIDIRECTIONAL);
 730		dd->dst.sg_len = dd->src.sg_len;
 731		if (!dd->src.sg_len)
 732			return -EFAULT;
 733	} else {
 734		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 735					    DMA_TO_DEVICE);
 736		if (!dd->src.sg_len)
 737			return -EFAULT;
 738
 739		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 740					    DMA_FROM_DEVICE);
 741		if (!dd->dst.sg_len) {
 742			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 743				     DMA_TO_DEVICE);
 744			return -EFAULT;
 745		}
 746	}
 747
 748	return 0;
 749}
 750
 751static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 752{
 753	if (dd->src.sg == dd->dst.sg) {
 754		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 755			     DMA_BIDIRECTIONAL);
 756
 757		if (dd->src.sg != &dd->aligned_sg)
 758			atmel_aes_restore_sg(&dd->src);
 759	} else {
 760		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 761			     DMA_FROM_DEVICE);
 762
 763		if (dd->dst.sg != &dd->aligned_sg)
 764			atmel_aes_restore_sg(&dd->dst);
 765
 766		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 767			     DMA_TO_DEVICE);
 768
 769		if (dd->src.sg != &dd->aligned_sg)
 770			atmel_aes_restore_sg(&dd->src);
 771	}
 772
 773	if (dd->dst.sg == &dd->aligned_sg)
 774		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 775				    dd->buf, dd->total);
 776}
 777
 778static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 779					enum dma_slave_buswidth addr_width,
 780					enum dma_transfer_direction dir,
 781					u32 maxburst)
 782{
 783	struct dma_async_tx_descriptor *desc;
 784	struct dma_slave_config config;
 785	dma_async_tx_callback callback;
 786	struct atmel_aes_dma *dma;
 787	int err;
 788
 789	memset(&config, 0, sizeof(config));
 790	config.direction = dir;
 791	config.src_addr_width = addr_width;
 792	config.dst_addr_width = addr_width;
 793	config.src_maxburst = maxburst;
 794	config.dst_maxburst = maxburst;
 795
 796	switch (dir) {
 797	case DMA_MEM_TO_DEV:
 798		dma = &dd->src;
 799		callback = NULL;
 800		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 801		break;
 802
 803	case DMA_DEV_TO_MEM:
 804		dma = &dd->dst;
 805		callback = atmel_aes_dma_callback;
 806		config.src_addr = dd->phys_base + AES_ODATAR(0);
 807		break;
 808
 809	default:
 810		return -EINVAL;
 811	}
 812
 813	err = dmaengine_slave_config(dma->chan, &config);
 814	if (err)
 815		return err;
 816
 817	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 818				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 819	if (!desc)
 820		return -ENOMEM;
 821
 822	desc->callback = callback;
 823	desc->callback_param = dd;
 824	dmaengine_submit(desc);
 825	dma_async_issue_pending(dma->chan);
 826
 827	return 0;
 828}
 829
 830static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
 831					enum dma_transfer_direction dir)
 832{
 833	struct atmel_aes_dma *dma;
 834
 835	switch (dir) {
 836	case DMA_MEM_TO_DEV:
 837		dma = &dd->src;
 838		break;
 839
 840	case DMA_DEV_TO_MEM:
 841		dma = &dd->dst;
 842		break;
 843
 844	default:
 845		return;
 846	}
 847
 848	dmaengine_terminate_all(dma->chan);
 849}
 850
 851static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 852			       struct scatterlist *src,
 853			       struct scatterlist *dst,
 854			       size_t len,
 855			       atmel_aes_fn_t resume)
 856{
 857	enum dma_slave_buswidth addr_width;
 858	u32 maxburst;
 859	int err;
 860
 861	switch (dd->ctx->block_size) {
 862	case CFB8_BLOCK_SIZE:
 863		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 864		maxburst = 1;
 865		break;
 866
 867	case CFB16_BLOCK_SIZE:
 868		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 869		maxburst = 1;
 870		break;
 871
 872	case CFB32_BLOCK_SIZE:
 873	case CFB64_BLOCK_SIZE:
 874		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 875		maxburst = 1;
 876		break;
 877
 878	case AES_BLOCK_SIZE:
 879		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 880		maxburst = dd->caps.max_burst_size;
 881		break;
 882
 883	default:
 884		err = -EINVAL;
 885		goto exit;
 886	}
 887
 888	err = atmel_aes_map(dd, src, dst, len);
 889	if (err)
 890		goto exit;
 891
 892	dd->resume = resume;
 893
 894	/* Set output DMA transfer first */
 895	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 896					   maxburst);
 897	if (err)
 898		goto unmap;
 899
 900	/* Then set input DMA transfer */
 901	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 902					   maxburst);
 903	if (err)
 904		goto output_transfer_stop;
 905
 906	return -EINPROGRESS;
 907
 908output_transfer_stop:
 909	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 910unmap:
 911	atmel_aes_unmap(dd);
 912exit:
 913	return atmel_aes_complete(dd, err);
 914}
 915
 916static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
 917{
 918	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
 919	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 920	atmel_aes_unmap(dd);
 921}
 922
 923static void atmel_aes_dma_callback(void *data)
 924{
 925	struct atmel_aes_dev *dd = data;
 926
 927	atmel_aes_dma_stop(dd);
 928	dd->is_async = true;
 929	(void)dd->resume(dd);
 930}
 931
 932static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 933				  struct crypto_async_request *new_areq)
 934{
 935	struct crypto_async_request *areq, *backlog;
 936	struct atmel_aes_base_ctx *ctx;
 937	unsigned long flags;
 938	bool start_async;
 939	int err, ret = 0;
 940
 941	spin_lock_irqsave(&dd->lock, flags);
 942	if (new_areq)
 943		ret = crypto_enqueue_request(&dd->queue, new_areq);
 944	if (dd->flags & AES_FLAGS_BUSY) {
 945		spin_unlock_irqrestore(&dd->lock, flags);
 946		return ret;
 947	}
 948	backlog = crypto_get_backlog(&dd->queue);
 949	areq = crypto_dequeue_request(&dd->queue);
 950	if (areq)
 951		dd->flags |= AES_FLAGS_BUSY;
 952	spin_unlock_irqrestore(&dd->lock, flags);
 953
 954	if (!areq)
 955		return ret;
 956
 957	if (backlog)
 958		backlog->complete(backlog, -EINPROGRESS);
 959
 960	ctx = crypto_tfm_ctx(areq->tfm);
 961
 962	dd->areq = areq;
 963	dd->ctx = ctx;
 964	start_async = (areq != new_areq);
 965	dd->is_async = start_async;
 966
 967	/* WARNING: ctx->start() MAY change dd->is_async. */
 968	err = ctx->start(dd);
 969	return (start_async) ? ret : err;
 970}
 971
 972
 973/* AES async block ciphers */
 974
 975static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 976{
 977	return atmel_aes_complete(dd, 0);
 978}
 979
 980static int atmel_aes_start(struct atmel_aes_dev *dd)
 981{
 982	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
 983	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 984	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
 985			dd->ctx->block_size != AES_BLOCK_SIZE);
 986	int err;
 987
 988	atmel_aes_set_mode(dd, rctx);
 989
 990	err = atmel_aes_hw_init(dd);
 991	if (err)
 992		return atmel_aes_complete(dd, err);
 993
 994	atmel_aes_write_ctrl(dd, use_dma, req->info);
 995	if (use_dma)
 996		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
 997					   atmel_aes_transfer_complete);
 998
 999	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1000				   atmel_aes_transfer_complete);
1001}
1002
1003static inline struct atmel_aes_ctr_ctx *
1004atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1005{
1006	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1007}
1008
1009static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1010{
1011	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1012	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1013	struct scatterlist *src, *dst;
1014	u32 ctr, blocks;
1015	size_t datalen;
 
 
1016	bool use_dma, fragmented = false;
1017
1018	/* Check for transfer completion. */
1019	ctx->offset += dd->total;
1020	if (ctx->offset >= req->nbytes)
1021		return atmel_aes_transfer_complete(dd);
1022
1023	/* Compute data length. */
1024	datalen = req->nbytes - ctx->offset;
1025	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1026	ctr = be32_to_cpu(ctx->iv[3]);
1027	if (dd->caps.has_ctr32) {
1028		/* Check 32bit counter overflow. */
1029		u32 start = ctr;
1030		u32 end = start + blocks - 1;
1031
1032		if (end < start) {
1033			ctr |= 0xffffffff;
1034			datalen = AES_BLOCK_SIZE * -start;
1035			fragmented = true;
1036		}
1037	} else {
1038		/* Check 16bit counter overflow. */
1039		u16 start = ctr & 0xffff;
1040		u16 end = start + (u16)blocks - 1;
1041
1042		if (blocks >> 16 || end < start) {
1043			ctr |= 0xffff;
1044			datalen = AES_BLOCK_SIZE * (0x10000-start);
1045			fragmented = true;
1046		}
1047	}
 
1048	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1049
1050	/* Jump to offset. */
1051	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1052	dst = ((req->src == req->dst) ? src :
1053	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1054
1055	/* Configure hardware. */
1056	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1057	if (unlikely(fragmented)) {
1058		/*
1059		 * Increment the counter manually to cope with the hardware
1060		 * counter overflow.
1061		 */
1062		ctx->iv[3] = cpu_to_be32(ctr);
1063		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1064	}
1065
1066	if (use_dma)
1067		return atmel_aes_dma_start(dd, src, dst, datalen,
1068					   atmel_aes_ctr_transfer);
1069
1070	return atmel_aes_cpu_start(dd, src, dst, datalen,
1071				   atmel_aes_ctr_transfer);
1072}
1073
1074static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1075{
1076	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1077	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1078	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1079	int err;
1080
1081	atmel_aes_set_mode(dd, rctx);
1082
1083	err = atmel_aes_hw_init(dd);
1084	if (err)
1085		return atmel_aes_complete(dd, err);
1086
1087	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1088	ctx->offset = 0;
1089	dd->total = 0;
1090	return atmel_aes_ctr_transfer(dd);
1091}
1092
1093static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094{
1095	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1096	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1097	struct atmel_aes_reqctx *rctx;
1098	struct atmel_aes_dev *dd;
1099
1100	switch (mode & AES_FLAGS_OPMODE_MASK) {
1101	case AES_FLAGS_CFB8:
1102		ctx->block_size = CFB8_BLOCK_SIZE;
1103		break;
 
 
 
 
1104
1105	case AES_FLAGS_CFB16:
1106		ctx->block_size = CFB16_BLOCK_SIZE;
1107		break;
 
 
 
1108
1109	case AES_FLAGS_CFB32:
1110		ctx->block_size = CFB32_BLOCK_SIZE;
1111		break;
1112
1113	case AES_FLAGS_CFB64:
1114		ctx->block_size = CFB64_BLOCK_SIZE;
1115		break;
1116
1117	default:
1118		ctx->block_size = AES_BLOCK_SIZE;
1119		break;
1120	}
1121	ctx->is_aead = false;
1122
1123	dd = atmel_aes_find_dev(ctx);
1124	if (!dd)
1125		return -ENODEV;
1126
1127	rctx = ablkcipher_request_ctx(req);
1128	rctx->mode = mode;
1129
1130	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1131		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 
1132
1133		scatterwalk_map_and_copy(rctx->lastc, req->src,
1134			(req->nbytes - ivsize), ivsize, 0);
 
 
1135	}
1136
1137	return atmel_aes_handle_queue(dd, &req->base);
1138}
1139
1140static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1141			   unsigned int keylen)
1142{
1143	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1144
1145	if (keylen != AES_KEYSIZE_128 &&
1146	    keylen != AES_KEYSIZE_192 &&
1147	    keylen != AES_KEYSIZE_256) {
1148		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1149		return -EINVAL;
1150	}
1151
1152	memcpy(ctx->key, key, keylen);
1153	ctx->keylen = keylen;
1154
1155	return 0;
1156}
1157
1158static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1159{
1160	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1161}
1162
1163static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1164{
1165	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1166}
1167
1168static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1169{
1170	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1171}
1172
1173static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1174{
1175	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1176}
1177
1178static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1179{
1180	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1181}
1182
1183static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1184{
1185	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1186}
1187
1188static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1189{
1190	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1191}
1192
1193static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1194{
1195	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1196}
1197
1198static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1199{
1200	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1201}
1202
1203static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1204{
1205	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1206}
1207
1208static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1209{
1210	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1211}
1212
1213static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1214{
1215	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1216}
1217
1218static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1219{
1220	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1221}
1222
1223static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1224{
1225	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1226}
1227
1228static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1229{
1230	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1231}
1232
1233static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1234{
1235	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1236}
1237
1238static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1239{
1240	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1241}
1242
1243static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1244{
1245	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1246}
1247
1248static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1249{
1250	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
1251
1252	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
1253	ctx->base.start = atmel_aes_start;
1254
1255	return 0;
1256}
1257
1258static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1259{
1260	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
1261
1262	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
1263	ctx->base.start = atmel_aes_ctr_start;
1264
1265	return 0;
1266}
1267
1268static struct crypto_alg aes_algs[] = {
1269{
1270	.cra_name		= "ecb(aes)",
1271	.cra_driver_name	= "atmel-ecb-aes",
1272	.cra_priority		= ATMEL_AES_PRIORITY,
1273	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1274	.cra_blocksize		= AES_BLOCK_SIZE,
1275	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1276	.cra_alignmask		= 0xf,
1277	.cra_type		= &crypto_ablkcipher_type,
1278	.cra_module		= THIS_MODULE,
1279	.cra_init		= atmel_aes_cra_init,
1280	.cra_u.ablkcipher = {
1281		.min_keysize	= AES_MIN_KEY_SIZE,
1282		.max_keysize	= AES_MAX_KEY_SIZE,
1283		.setkey		= atmel_aes_setkey,
1284		.encrypt	= atmel_aes_ecb_encrypt,
1285		.decrypt	= atmel_aes_ecb_decrypt,
1286	}
1287},
1288{
1289	.cra_name		= "cbc(aes)",
1290	.cra_driver_name	= "atmel-cbc-aes",
1291	.cra_priority		= ATMEL_AES_PRIORITY,
1292	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1293	.cra_blocksize		= AES_BLOCK_SIZE,
1294	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1295	.cra_alignmask		= 0xf,
1296	.cra_type		= &crypto_ablkcipher_type,
1297	.cra_module		= THIS_MODULE,
1298	.cra_init		= atmel_aes_cra_init,
1299	.cra_u.ablkcipher = {
1300		.min_keysize	= AES_MIN_KEY_SIZE,
1301		.max_keysize	= AES_MAX_KEY_SIZE,
1302		.ivsize		= AES_BLOCK_SIZE,
1303		.setkey		= atmel_aes_setkey,
1304		.encrypt	= atmel_aes_cbc_encrypt,
1305		.decrypt	= atmel_aes_cbc_decrypt,
1306	}
1307},
1308{
1309	.cra_name		= "ofb(aes)",
1310	.cra_driver_name	= "atmel-ofb-aes",
1311	.cra_priority		= ATMEL_AES_PRIORITY,
1312	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1313	.cra_blocksize		= AES_BLOCK_SIZE,
1314	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1315	.cra_alignmask		= 0xf,
1316	.cra_type		= &crypto_ablkcipher_type,
1317	.cra_module		= THIS_MODULE,
1318	.cra_init		= atmel_aes_cra_init,
1319	.cra_u.ablkcipher = {
1320		.min_keysize	= AES_MIN_KEY_SIZE,
1321		.max_keysize	= AES_MAX_KEY_SIZE,
1322		.ivsize		= AES_BLOCK_SIZE,
1323		.setkey		= atmel_aes_setkey,
1324		.encrypt	= atmel_aes_ofb_encrypt,
1325		.decrypt	= atmel_aes_ofb_decrypt,
1326	}
1327},
1328{
1329	.cra_name		= "cfb(aes)",
1330	.cra_driver_name	= "atmel-cfb-aes",
1331	.cra_priority		= ATMEL_AES_PRIORITY,
1332	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1333	.cra_blocksize		= AES_BLOCK_SIZE,
1334	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1335	.cra_alignmask		= 0xf,
1336	.cra_type		= &crypto_ablkcipher_type,
1337	.cra_module		= THIS_MODULE,
1338	.cra_init		= atmel_aes_cra_init,
1339	.cra_u.ablkcipher = {
1340		.min_keysize	= AES_MIN_KEY_SIZE,
1341		.max_keysize	= AES_MAX_KEY_SIZE,
1342		.ivsize		= AES_BLOCK_SIZE,
1343		.setkey		= atmel_aes_setkey,
1344		.encrypt	= atmel_aes_cfb_encrypt,
1345		.decrypt	= atmel_aes_cfb_decrypt,
1346	}
1347},
1348{
1349	.cra_name		= "cfb32(aes)",
1350	.cra_driver_name	= "atmel-cfb32-aes",
1351	.cra_priority		= ATMEL_AES_PRIORITY,
1352	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1353	.cra_blocksize		= CFB32_BLOCK_SIZE,
1354	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1355	.cra_alignmask		= 0x3,
1356	.cra_type		= &crypto_ablkcipher_type,
1357	.cra_module		= THIS_MODULE,
1358	.cra_init		= atmel_aes_cra_init,
1359	.cra_u.ablkcipher = {
1360		.min_keysize	= AES_MIN_KEY_SIZE,
1361		.max_keysize	= AES_MAX_KEY_SIZE,
1362		.ivsize		= AES_BLOCK_SIZE,
1363		.setkey		= atmel_aes_setkey,
1364		.encrypt	= atmel_aes_cfb32_encrypt,
1365		.decrypt	= atmel_aes_cfb32_decrypt,
1366	}
1367},
1368{
1369	.cra_name		= "cfb16(aes)",
1370	.cra_driver_name	= "atmel-cfb16-aes",
1371	.cra_priority		= ATMEL_AES_PRIORITY,
1372	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1373	.cra_blocksize		= CFB16_BLOCK_SIZE,
1374	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1375	.cra_alignmask		= 0x1,
1376	.cra_type		= &crypto_ablkcipher_type,
1377	.cra_module		= THIS_MODULE,
1378	.cra_init		= atmel_aes_cra_init,
1379	.cra_u.ablkcipher = {
1380		.min_keysize	= AES_MIN_KEY_SIZE,
1381		.max_keysize	= AES_MAX_KEY_SIZE,
1382		.ivsize		= AES_BLOCK_SIZE,
1383		.setkey		= atmel_aes_setkey,
1384		.encrypt	= atmel_aes_cfb16_encrypt,
1385		.decrypt	= atmel_aes_cfb16_decrypt,
1386	}
1387},
1388{
1389	.cra_name		= "cfb8(aes)",
1390	.cra_driver_name	= "atmel-cfb8-aes",
1391	.cra_priority		= ATMEL_AES_PRIORITY,
1392	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1393	.cra_blocksize		= CFB8_BLOCK_SIZE,
1394	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1395	.cra_alignmask		= 0x0,
1396	.cra_type		= &crypto_ablkcipher_type,
1397	.cra_module		= THIS_MODULE,
1398	.cra_init		= atmel_aes_cra_init,
1399	.cra_u.ablkcipher = {
1400		.min_keysize	= AES_MIN_KEY_SIZE,
1401		.max_keysize	= AES_MAX_KEY_SIZE,
1402		.ivsize		= AES_BLOCK_SIZE,
1403		.setkey		= atmel_aes_setkey,
1404		.encrypt	= atmel_aes_cfb8_encrypt,
1405		.decrypt	= atmel_aes_cfb8_decrypt,
1406	}
1407},
1408{
1409	.cra_name		= "ctr(aes)",
1410	.cra_driver_name	= "atmel-ctr-aes",
1411	.cra_priority		= ATMEL_AES_PRIORITY,
1412	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1413	.cra_blocksize		= 1,
1414	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1415	.cra_alignmask		= 0xf,
1416	.cra_type		= &crypto_ablkcipher_type,
1417	.cra_module		= THIS_MODULE,
1418	.cra_init		= atmel_aes_ctr_cra_init,
1419	.cra_u.ablkcipher = {
1420		.min_keysize	= AES_MIN_KEY_SIZE,
1421		.max_keysize	= AES_MAX_KEY_SIZE,
1422		.ivsize		= AES_BLOCK_SIZE,
1423		.setkey		= atmel_aes_setkey,
1424		.encrypt	= atmel_aes_ctr_encrypt,
1425		.decrypt	= atmel_aes_ctr_decrypt,
1426	}
1427},
1428};
1429
1430static struct crypto_alg aes_cfb64_alg = {
1431	.cra_name		= "cfb64(aes)",
1432	.cra_driver_name	= "atmel-cfb64-aes",
1433	.cra_priority		= ATMEL_AES_PRIORITY,
1434	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1435	.cra_blocksize		= CFB64_BLOCK_SIZE,
1436	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1437	.cra_alignmask		= 0x7,
1438	.cra_type		= &crypto_ablkcipher_type,
1439	.cra_module		= THIS_MODULE,
1440	.cra_init		= atmel_aes_cra_init,
1441	.cra_u.ablkcipher = {
1442		.min_keysize	= AES_MIN_KEY_SIZE,
1443		.max_keysize	= AES_MAX_KEY_SIZE,
1444		.ivsize		= AES_BLOCK_SIZE,
1445		.setkey		= atmel_aes_setkey,
1446		.encrypt	= atmel_aes_cfb64_encrypt,
1447		.decrypt	= atmel_aes_cfb64_decrypt,
1448	}
1449};
1450
1451
1452/* gcm aead functions */
1453
1454static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1455			       const u32 *data, size_t datalen,
1456			       const u32 *ghash_in, u32 *ghash_out,
1457			       atmel_aes_fn_t resume);
1458static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1459static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1460
1461static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1462static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1463static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1464static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1465static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1466static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1467static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1468
1469static inline struct atmel_aes_gcm_ctx *
1470atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1471{
1472	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1473}
1474
1475static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1476			       const u32 *data, size_t datalen,
1477			       const u32 *ghash_in, u32 *ghash_out,
1478			       atmel_aes_fn_t resume)
1479{
1480	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1481
1482	dd->data = (u32 *)data;
1483	dd->datalen = datalen;
1484	ctx->ghash_in = ghash_in;
1485	ctx->ghash_out = ghash_out;
1486	ctx->ghash_resume = resume;
1487
1488	atmel_aes_write_ctrl(dd, false, NULL);
1489	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1490}
1491
1492static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1493{
1494	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1495
1496	/* Set the data length. */
1497	atmel_aes_write(dd, AES_AADLENR, dd->total);
1498	atmel_aes_write(dd, AES_CLENR, 0);
1499
1500	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1501	if (ctx->ghash_in)
1502		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1503
1504	return atmel_aes_gcm_ghash_finalize(dd);
1505}
1506
1507static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1508{
1509	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1510	u32 isr;
1511
1512	/* Write data into the Input Data Registers. */
1513	while (dd->datalen > 0) {
1514		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1515		dd->data += 4;
1516		dd->datalen -= AES_BLOCK_SIZE;
1517
1518		isr = atmel_aes_read(dd, AES_ISR);
1519		if (!(isr & AES_INT_DATARDY)) {
1520			dd->resume = atmel_aes_gcm_ghash_finalize;
1521			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1522			return -EINPROGRESS;
1523		}
1524	}
1525
1526	/* Read the computed hash from GHASHRx. */
1527	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1528
1529	return ctx->ghash_resume(dd);
1530}
1531
1532
1533static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1534{
1535	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536	struct aead_request *req = aead_request_cast(dd->areq);
1537	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1538	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1539	size_t ivsize = crypto_aead_ivsize(tfm);
1540	size_t datalen, padlen;
1541	const void *iv = req->iv;
1542	u8 *data = dd->buf;
1543	int err;
1544
1545	atmel_aes_set_mode(dd, rctx);
1546
1547	err = atmel_aes_hw_init(dd);
1548	if (err)
1549		return atmel_aes_complete(dd, err);
1550
1551	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1552		memcpy(ctx->j0, iv, ivsize);
1553		ctx->j0[3] = cpu_to_be32(1);
1554		return atmel_aes_gcm_process(dd);
1555	}
1556
1557	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1558	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1559	if (datalen > dd->buflen)
1560		return atmel_aes_complete(dd, -EINVAL);
1561
1562	memcpy(data, iv, ivsize);
1563	memset(data + ivsize, 0, padlen + sizeof(u64));
1564	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1565
1566	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1567				   NULL, ctx->j0, atmel_aes_gcm_process);
1568}
1569
1570static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1571{
1572	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573	struct aead_request *req = aead_request_cast(dd->areq);
1574	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1575	bool enc = atmel_aes_is_encrypt(dd);
1576	u32 authsize;
1577
1578	/* Compute text length. */
1579	authsize = crypto_aead_authsize(tfm);
1580	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1581
1582	/*
1583	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1584	 * fails when both the message and its associated data are empty.
1585	 */
1586	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1587		dd->flags |= AES_FLAGS_GTAGEN;
1588
1589	atmel_aes_write_ctrl(dd, false, NULL);
1590	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1591}
1592
1593static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1594{
1595	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1596	struct aead_request *req = aead_request_cast(dd->areq);
1597	u32 j0_lsw, *j0 = ctx->j0;
1598	size_t padlen;
1599
1600	/* Write incr32(J0) into IV. */
1601	j0_lsw = j0[3];
1602	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1603	atmel_aes_write_block(dd, AES_IVR(0), j0);
1604	j0[3] = j0_lsw;
1605
1606	/* Set aad and text lengths. */
1607	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1608	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1609
1610	/* Check whether AAD are present. */
1611	if (unlikely(req->assoclen == 0)) {
1612		dd->datalen = 0;
1613		return atmel_aes_gcm_data(dd);
1614	}
1615
1616	/* Copy assoc data and add padding. */
1617	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1618	if (unlikely(req->assoclen + padlen > dd->buflen))
1619		return atmel_aes_complete(dd, -EINVAL);
1620	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1621
1622	/* Write assoc data into the Input Data register. */
1623	dd->data = (u32 *)dd->buf;
1624	dd->datalen = req->assoclen + padlen;
1625	return atmel_aes_gcm_data(dd);
1626}
1627
1628static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1629{
1630	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1631	struct aead_request *req = aead_request_cast(dd->areq);
1632	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1633	struct scatterlist *src, *dst;
1634	u32 isr, mr;
1635
1636	/* Write AAD first. */
1637	while (dd->datalen > 0) {
1638		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1639		dd->data += 4;
1640		dd->datalen -= AES_BLOCK_SIZE;
1641
1642		isr = atmel_aes_read(dd, AES_ISR);
1643		if (!(isr & AES_INT_DATARDY)) {
1644			dd->resume = atmel_aes_gcm_data;
1645			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1646			return -EINPROGRESS;
1647		}
1648	}
1649
1650	/* GMAC only. */
1651	if (unlikely(ctx->textlen == 0))
1652		return atmel_aes_gcm_tag_init(dd);
1653
1654	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1655	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1656	dst = ((req->src == req->dst) ? src :
1657	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1658
1659	if (use_dma) {
1660		/* Update the Mode Register for DMA transfers. */
1661		mr = atmel_aes_read(dd, AES_MR);
1662		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1663		mr |= AES_MR_SMOD_IDATAR0;
1664		if (dd->caps.has_dualbuff)
1665			mr |= AES_MR_DUALBUFF;
1666		atmel_aes_write(dd, AES_MR, mr);
1667
1668		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1669					   atmel_aes_gcm_tag_init);
1670	}
1671
1672	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1673				   atmel_aes_gcm_tag_init);
1674}
1675
1676static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1677{
1678	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1679	struct aead_request *req = aead_request_cast(dd->areq);
1680	u64 *data = dd->buf;
1681
1682	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1683		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1684			dd->resume = atmel_aes_gcm_tag_init;
1685			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1686			return -EINPROGRESS;
1687		}
1688
1689		return atmel_aes_gcm_finalize(dd);
1690	}
1691
1692	/* Read the GCM Intermediate Hash Word Registers. */
1693	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1694
1695	data[0] = cpu_to_be64(req->assoclen * 8);
1696	data[1] = cpu_to_be64(ctx->textlen * 8);
1697
1698	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1699				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1700}
1701
1702static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1703{
1704	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1705	unsigned long flags;
1706
1707	/*
1708	 * Change mode to CTR to complete the tag generation.
1709	 * Use J0 as Initialization Vector.
1710	 */
1711	flags = dd->flags;
1712	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1713	dd->flags |= AES_FLAGS_CTR;
1714	atmel_aes_write_ctrl(dd, false, ctx->j0);
1715	dd->flags = flags;
1716
1717	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1718	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1719}
1720
1721static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1722{
1723	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1724	struct aead_request *req = aead_request_cast(dd->areq);
1725	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1726	bool enc = atmel_aes_is_encrypt(dd);
1727	u32 offset, authsize, itag[4], *otag = ctx->tag;
1728	int err;
1729
1730	/* Read the computed tag. */
1731	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1732		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1733	else
1734		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1735
1736	offset = req->assoclen + ctx->textlen;
1737	authsize = crypto_aead_authsize(tfm);
1738	if (enc) {
1739		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1740		err = 0;
1741	} else {
1742		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1743		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1744	}
1745
1746	return atmel_aes_complete(dd, err);
1747}
1748
1749static int atmel_aes_gcm_crypt(struct aead_request *req,
1750			       unsigned long mode)
1751{
1752	struct atmel_aes_base_ctx *ctx;
1753	struct atmel_aes_reqctx *rctx;
1754	struct atmel_aes_dev *dd;
1755
1756	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1757	ctx->block_size = AES_BLOCK_SIZE;
1758	ctx->is_aead = true;
1759
1760	dd = atmel_aes_find_dev(ctx);
1761	if (!dd)
1762		return -ENODEV;
1763
1764	rctx = aead_request_ctx(req);
1765	rctx->mode = AES_FLAGS_GCM | mode;
1766
1767	return atmel_aes_handle_queue(dd, &req->base);
1768}
1769
1770static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1771				unsigned int keylen)
1772{
1773	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1774
1775	if (keylen != AES_KEYSIZE_256 &&
1776	    keylen != AES_KEYSIZE_192 &&
1777	    keylen != AES_KEYSIZE_128) {
1778		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1779		return -EINVAL;
1780	}
1781
1782	memcpy(ctx->key, key, keylen);
1783	ctx->keylen = keylen;
1784
1785	return 0;
1786}
1787
1788static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1789				     unsigned int authsize)
1790{
1791	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1792	switch (authsize) {
1793	case 4:
1794	case 8:
1795	case 12:
1796	case 13:
1797	case 14:
1798	case 15:
1799	case 16:
1800		break;
1801	default:
1802		return -EINVAL;
1803	}
1804
1805	return 0;
1806}
1807
1808static int atmel_aes_gcm_encrypt(struct aead_request *req)
1809{
1810	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1811}
1812
1813static int atmel_aes_gcm_decrypt(struct aead_request *req)
1814{
1815	return atmel_aes_gcm_crypt(req, 0);
1816}
1817
1818static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1819{
1820	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
 
 
 
 
 
1821
1822	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1823	ctx->base.start = atmel_aes_gcm_start;
1824
1825	return 0;
1826}
1827
1828static struct aead_alg aes_gcm_alg = {
1829	.setkey		= atmel_aes_gcm_setkey,
1830	.setauthsize	= atmel_aes_gcm_setauthsize,
1831	.encrypt	= atmel_aes_gcm_encrypt,
1832	.decrypt	= atmel_aes_gcm_decrypt,
1833	.init		= atmel_aes_gcm_init,
1834	.ivsize		= GCM_AES_IV_SIZE,
1835	.maxauthsize	= AES_BLOCK_SIZE,
1836
1837	.base = {
1838		.cra_name		= "gcm(aes)",
1839		.cra_driver_name	= "atmel-gcm-aes",
1840		.cra_priority		= ATMEL_AES_PRIORITY,
1841		.cra_flags		= CRYPTO_ALG_ASYNC,
1842		.cra_blocksize		= 1,
1843		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1844		.cra_alignmask		= 0xf,
1845		.cra_module		= THIS_MODULE,
1846	},
1847};
1848
1849
1850/* xts functions */
1851
1852static inline struct atmel_aes_xts_ctx *
1853atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1854{
1855	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1856}
1857
1858static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1859
1860static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1861{
1862	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1863	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1864	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1865	unsigned long flags;
1866	int err;
1867
1868	atmel_aes_set_mode(dd, rctx);
1869
1870	err = atmel_aes_hw_init(dd);
1871	if (err)
1872		return atmel_aes_complete(dd, err);
1873
1874	/* Compute the tweak value from req->info with ecb(aes). */
1875	flags = dd->flags;
1876	dd->flags &= ~AES_FLAGS_MODE_MASK;
1877	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1878	atmel_aes_write_ctrl_key(dd, false, NULL,
1879				 ctx->key2, ctx->base.keylen);
1880	dd->flags = flags;
1881
1882	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1883	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1884}
1885
1886static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1887{
1888	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1889	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1890	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1891	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1892	u8 *tweak_bytes = (u8 *)tweak;
1893	int i;
1894
1895	/* Read the computed ciphered tweak value. */
1896	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1897	/*
1898	 * Hardware quirk:
1899	 * the order of the ciphered tweak bytes need to be reversed before
1900	 * writing them into the ODATARx registers.
1901	 */
1902	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1903		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1904
1905		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1906		tweak_bytes[i] = tmp;
1907	}
1908
1909	/* Process the data. */
1910	atmel_aes_write_ctrl(dd, use_dma, NULL);
1911	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1912	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1913	if (use_dma)
1914		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
1915					   atmel_aes_transfer_complete);
1916
1917	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1918				   atmel_aes_transfer_complete);
1919}
1920
1921static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1922				unsigned int keylen)
1923{
1924	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1925	int err;
1926
1927	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
 
 
 
 
 
 
 
1928	if (err)
1929		return err;
1930
1931	memcpy(ctx->base.key, key, keylen/2);
1932	memcpy(ctx->key2, key + keylen/2, keylen/2);
1933	ctx->base.keylen = keylen/2;
1934
1935	return 0;
1936}
1937
1938static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1939{
1940	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1941}
1942
1943static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1944{
1945	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1946}
1947
1948static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1949{
1950	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
1951
1952	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
 
 
 
 
 
 
 
 
 
 
1953	ctx->base.start = atmel_aes_xts_start;
1954
1955	return 0;
1956}
1957
1958static struct crypto_alg aes_xts_alg = {
1959	.cra_name		= "xts(aes)",
1960	.cra_driver_name	= "atmel-xts-aes",
1961	.cra_priority		= ATMEL_AES_PRIORITY,
1962	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1963	.cra_blocksize		= AES_BLOCK_SIZE,
1964	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1965	.cra_alignmask		= 0xf,
1966	.cra_type		= &crypto_ablkcipher_type,
1967	.cra_module		= THIS_MODULE,
1968	.cra_init		= atmel_aes_xts_cra_init,
1969	.cra_u.ablkcipher = {
1970		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1971		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1972		.ivsize		= AES_BLOCK_SIZE,
1973		.setkey		= atmel_aes_xts_setkey,
1974		.encrypt	= atmel_aes_xts_encrypt,
1975		.decrypt	= atmel_aes_xts_decrypt,
1976	}
 
 
 
1977};
1978
1979#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1980/* authenc aead functions */
1981
1982static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1983static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1984				  bool is_async);
1985static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1986				      bool is_async);
1987static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1988static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1989				   bool is_async);
1990
1991static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1992{
1993	struct aead_request *req = aead_request_cast(dd->areq);
1994	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1995
1996	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1997		atmel_sha_authenc_abort(&rctx->auth_req);
1998	dd->flags &= ~AES_FLAGS_OWN_SHA;
1999}
2000
2001static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
2002{
2003	struct aead_request *req = aead_request_cast(dd->areq);
2004	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2005	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2006	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2007	int err;
2008
2009	atmel_aes_set_mode(dd, &rctx->base);
2010
2011	err = atmel_aes_hw_init(dd);
2012	if (err)
2013		return atmel_aes_complete(dd, err);
2014
2015	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2016					  atmel_aes_authenc_init, dd);
2017}
2018
2019static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2020				  bool is_async)
2021{
2022	struct aead_request *req = aead_request_cast(dd->areq);
2023	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2024
2025	if (is_async)
2026		dd->is_async = true;
2027	if (err)
2028		return atmel_aes_complete(dd, err);
2029
2030	/* If here, we've got the ownership of the SHA device. */
2031	dd->flags |= AES_FLAGS_OWN_SHA;
2032
2033	/* Configure the SHA device. */
2034	return atmel_sha_authenc_init(&rctx->auth_req,
2035				      req->src, req->assoclen,
2036				      rctx->textlen,
2037				      atmel_aes_authenc_transfer, dd);
2038}
2039
2040static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2041				      bool is_async)
2042{
2043	struct aead_request *req = aead_request_cast(dd->areq);
2044	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2045	bool enc = atmel_aes_is_encrypt(dd);
2046	struct scatterlist *src, *dst;
2047	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2048	u32 emr;
2049
2050	if (is_async)
2051		dd->is_async = true;
2052	if (err)
2053		return atmel_aes_complete(dd, err);
2054
2055	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2056	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2057	dst = src;
2058
2059	if (req->src != req->dst)
2060		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2061
2062	/* Configure the AES device. */
2063	memcpy(iv, req->iv, sizeof(iv));
2064
2065	/*
2066	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2067	 * 'true' even if the data transfer is actually performed by the CPU (so
2068	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2069	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2070	 * must be set to *_MR_SMOD_IDATAR0.
2071	 */
2072	atmel_aes_write_ctrl(dd, true, iv);
2073	emr = AES_EMR_PLIPEN;
2074	if (!enc)
2075		emr |= AES_EMR_PLIPD;
2076	atmel_aes_write(dd, AES_EMR, emr);
2077
2078	/* Transfer data. */
2079	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2080				   atmel_aes_authenc_digest);
2081}
2082
2083static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2084{
2085	struct aead_request *req = aead_request_cast(dd->areq);
2086	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2087
2088	/* atmel_sha_authenc_final() releases the SHA device. */
2089	dd->flags &= ~AES_FLAGS_OWN_SHA;
2090	return atmel_sha_authenc_final(&rctx->auth_req,
2091				       rctx->digest, sizeof(rctx->digest),
2092				       atmel_aes_authenc_final, dd);
2093}
2094
2095static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2096				   bool is_async)
2097{
2098	struct aead_request *req = aead_request_cast(dd->areq);
2099	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2100	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2101	bool enc = atmel_aes_is_encrypt(dd);
2102	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2103	u32 offs, authsize;
2104
2105	if (is_async)
2106		dd->is_async = true;
2107	if (err)
2108		goto complete;
2109
2110	offs = req->assoclen + rctx->textlen;
2111	authsize = crypto_aead_authsize(tfm);
2112	if (enc) {
2113		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2114	} else {
2115		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2116		if (crypto_memneq(idigest, odigest, authsize))
2117			err = -EBADMSG;
2118	}
2119
2120complete:
2121	return atmel_aes_complete(dd, err);
2122}
2123
2124static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2125				    unsigned int keylen)
2126{
2127	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2128	struct crypto_authenc_keys keys;
2129	u32 flags;
2130	int err;
2131
2132	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2133		goto badkey;
2134
2135	if (keys.enckeylen > sizeof(ctx->base.key))
2136		goto badkey;
2137
2138	/* Save auth key. */
2139	flags = crypto_aead_get_flags(tfm);
2140	err = atmel_sha_authenc_setkey(ctx->auth,
2141				       keys.authkey, keys.authkeylen,
2142				       &flags);
2143	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2144	if (err) {
2145		memzero_explicit(&keys, sizeof(keys));
2146		return err;
2147	}
2148
2149	/* Save enc key. */
2150	ctx->base.keylen = keys.enckeylen;
2151	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2152
2153	memzero_explicit(&keys, sizeof(keys));
2154	return 0;
2155
2156badkey:
2157	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2158	memzero_explicit(&keys, sizeof(keys));
2159	return -EINVAL;
2160}
2161
2162static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2163				      unsigned long auth_mode)
2164{
2165	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2166	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
 
 
 
 
 
2167
2168	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2169	if (IS_ERR(ctx->auth))
2170		return PTR_ERR(ctx->auth);
2171
2172	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2173				      auth_reqsize));
 
2174	ctx->base.start = atmel_aes_authenc_start;
2175
2176	return 0;
2177}
2178
2179static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2180{
2181	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2182}
2183
2184static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2185{
2186	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2187}
2188
2189static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2190{
2191	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2192}
2193
2194static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2195{
2196	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2197}
2198
2199static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2200{
2201	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2202}
2203
2204static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2205{
2206	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2207
2208	atmel_sha_authenc_free(ctx->auth);
2209}
2210
2211static int atmel_aes_authenc_crypt(struct aead_request *req,
2212				   unsigned long mode)
2213{
2214	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2215	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2216	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2217	u32 authsize = crypto_aead_authsize(tfm);
2218	bool enc = (mode & AES_FLAGS_ENCRYPT);
2219	struct atmel_aes_dev *dd;
2220
2221	/* Compute text length. */
2222	if (!enc && req->cryptlen < authsize)
2223		return -EINVAL;
2224	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2225
2226	/*
2227	 * Currently, empty messages are not supported yet:
2228	 * the SHA auto-padding can be used only on non-empty messages.
2229	 * Hence a special case needs to be implemented for empty message.
2230	 */
2231	if (!rctx->textlen && !req->assoclen)
2232		return -EINVAL;
2233
2234	rctx->base.mode = mode;
2235	ctx->block_size = AES_BLOCK_SIZE;
2236	ctx->is_aead = true;
2237
2238	dd = atmel_aes_find_dev(ctx);
2239	if (!dd)
2240		return -ENODEV;
2241
2242	return atmel_aes_handle_queue(dd, &req->base);
2243}
2244
2245static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2246{
2247	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2248}
2249
2250static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2251{
2252	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2253}
2254
2255static struct aead_alg aes_authenc_algs[] = {
2256{
2257	.setkey		= atmel_aes_authenc_setkey,
2258	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2259	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2260	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2261	.exit		= atmel_aes_authenc_exit_tfm,
2262	.ivsize		= AES_BLOCK_SIZE,
2263	.maxauthsize	= SHA1_DIGEST_SIZE,
2264
2265	.base = {
2266		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2267		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2268		.cra_priority		= ATMEL_AES_PRIORITY,
2269		.cra_flags		= CRYPTO_ALG_ASYNC,
2270		.cra_blocksize		= AES_BLOCK_SIZE,
2271		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2272		.cra_alignmask		= 0xf,
2273		.cra_module		= THIS_MODULE,
2274	},
2275},
2276{
2277	.setkey		= atmel_aes_authenc_setkey,
2278	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2279	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2280	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2281	.exit		= atmel_aes_authenc_exit_tfm,
2282	.ivsize		= AES_BLOCK_SIZE,
2283	.maxauthsize	= SHA224_DIGEST_SIZE,
2284
2285	.base = {
2286		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2287		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2288		.cra_priority		= ATMEL_AES_PRIORITY,
2289		.cra_flags		= CRYPTO_ALG_ASYNC,
2290		.cra_blocksize		= AES_BLOCK_SIZE,
2291		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2292		.cra_alignmask		= 0xf,
2293		.cra_module		= THIS_MODULE,
2294	},
2295},
2296{
2297	.setkey		= atmel_aes_authenc_setkey,
2298	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2299	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2300	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2301	.exit		= atmel_aes_authenc_exit_tfm,
2302	.ivsize		= AES_BLOCK_SIZE,
2303	.maxauthsize	= SHA256_DIGEST_SIZE,
2304
2305	.base = {
2306		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2307		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2308		.cra_priority		= ATMEL_AES_PRIORITY,
2309		.cra_flags		= CRYPTO_ALG_ASYNC,
2310		.cra_blocksize		= AES_BLOCK_SIZE,
2311		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2312		.cra_alignmask		= 0xf,
2313		.cra_module		= THIS_MODULE,
2314	},
2315},
2316{
2317	.setkey		= atmel_aes_authenc_setkey,
2318	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2319	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2320	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2321	.exit		= atmel_aes_authenc_exit_tfm,
2322	.ivsize		= AES_BLOCK_SIZE,
2323	.maxauthsize	= SHA384_DIGEST_SIZE,
2324
2325	.base = {
2326		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2327		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2328		.cra_priority		= ATMEL_AES_PRIORITY,
2329		.cra_flags		= CRYPTO_ALG_ASYNC,
2330		.cra_blocksize		= AES_BLOCK_SIZE,
2331		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2332		.cra_alignmask		= 0xf,
2333		.cra_module		= THIS_MODULE,
2334	},
2335},
2336{
2337	.setkey		= atmel_aes_authenc_setkey,
2338	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2339	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2340	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2341	.exit		= atmel_aes_authenc_exit_tfm,
2342	.ivsize		= AES_BLOCK_SIZE,
2343	.maxauthsize	= SHA512_DIGEST_SIZE,
2344
2345	.base = {
2346		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2347		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2348		.cra_priority		= ATMEL_AES_PRIORITY,
2349		.cra_flags		= CRYPTO_ALG_ASYNC,
2350		.cra_blocksize		= AES_BLOCK_SIZE,
2351		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2352		.cra_alignmask		= 0xf,
2353		.cra_module		= THIS_MODULE,
2354	},
2355},
2356};
2357#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2358
2359/* Probe functions */
2360
2361static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2362{
2363	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2364	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2365	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2366
2367	if (!dd->buf) {
2368		dev_err(dd->dev, "unable to alloc pages.\n");
2369		return -ENOMEM;
2370	}
2371
2372	return 0;
2373}
2374
2375static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2376{
2377	free_page((unsigned long)dd->buf);
2378}
2379
2380static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2381{
2382	struct at_dma_slave	*sl = slave;
2383
2384	if (sl && sl->dma_dev == chan->device->dev) {
2385		chan->private = sl;
2386		return true;
2387	} else {
2388		return false;
2389	}
2390}
2391
2392static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2393			      struct crypto_platform_data *pdata)
2394{
2395	struct at_dma_slave *slave;
2396	dma_cap_mask_t mask;
2397
2398	dma_cap_zero(mask);
2399	dma_cap_set(DMA_SLAVE, mask);
2400
2401	/* Try to grab 2 DMA channels */
2402	slave = &pdata->dma_slave->rxdata;
2403	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2404							slave, dd->dev, "tx");
2405	if (!dd->src.chan)
2406		goto err_dma_in;
 
2407
2408	slave = &pdata->dma_slave->txdata;
2409	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2410							slave, dd->dev, "rx");
2411	if (!dd->dst.chan)
2412		goto err_dma_out;
 
2413
2414	return 0;
2415
2416err_dma_out:
2417	dma_release_channel(dd->src.chan);
2418err_dma_in:
2419	dev_warn(dd->dev, "no DMA channel available\n");
2420	return -ENODEV;
2421}
2422
2423static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2424{
2425	dma_release_channel(dd->dst.chan);
2426	dma_release_channel(dd->src.chan);
2427}
2428
2429static void atmel_aes_queue_task(unsigned long data)
2430{
2431	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2432
2433	atmel_aes_handle_queue(dd, NULL);
2434}
2435
2436static void atmel_aes_done_task(unsigned long data)
2437{
2438	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2439
2440	dd->is_async = true;
2441	(void)dd->resume(dd);
2442}
2443
2444static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2445{
2446	struct atmel_aes_dev *aes_dd = dev_id;
2447	u32 reg;
2448
2449	reg = atmel_aes_read(aes_dd, AES_ISR);
2450	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2451		atmel_aes_write(aes_dd, AES_IDR, reg);
2452		if (AES_FLAGS_BUSY & aes_dd->flags)
2453			tasklet_schedule(&aes_dd->done_task);
2454		else
2455			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2456		return IRQ_HANDLED;
2457	}
2458
2459	return IRQ_NONE;
2460}
2461
2462static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2463{
2464	int i;
2465
2466#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2467	if (dd->caps.has_authenc)
2468		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2469			crypto_unregister_aead(&aes_authenc_algs[i]);
2470#endif
2471
2472	if (dd->caps.has_xts)
2473		crypto_unregister_alg(&aes_xts_alg);
2474
2475	if (dd->caps.has_gcm)
2476		crypto_unregister_aead(&aes_gcm_alg);
2477
2478	if (dd->caps.has_cfb64)
2479		crypto_unregister_alg(&aes_cfb64_alg);
 
2480
2481	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2482		crypto_unregister_alg(&aes_algs[i]);
 
 
 
 
2483}
2484
2485static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2486{
2487	int err, i, j;
2488
2489	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2490		err = crypto_register_alg(&aes_algs[i]);
 
 
2491		if (err)
2492			goto err_aes_algs;
2493	}
2494
2495	if (dd->caps.has_cfb64) {
2496		err = crypto_register_alg(&aes_cfb64_alg);
2497		if (err)
2498			goto err_aes_cfb64_alg;
2499	}
2500
2501	if (dd->caps.has_gcm) {
2502		err = crypto_register_aead(&aes_gcm_alg);
2503		if (err)
2504			goto err_aes_gcm_alg;
2505	}
2506
2507	if (dd->caps.has_xts) {
2508		err = crypto_register_alg(&aes_xts_alg);
 
 
2509		if (err)
2510			goto err_aes_xts_alg;
2511	}
2512
2513#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2514	if (dd->caps.has_authenc) {
2515		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
 
 
2516			err = crypto_register_aead(&aes_authenc_algs[i]);
2517			if (err)
2518				goto err_aes_authenc_alg;
2519		}
2520	}
2521#endif
2522
2523	return 0;
2524
2525#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2526	/* i = ARRAY_SIZE(aes_authenc_algs); */
2527err_aes_authenc_alg:
2528	for (j = 0; j < i; j++)
2529		crypto_unregister_aead(&aes_authenc_algs[j]);
2530	crypto_unregister_alg(&aes_xts_alg);
2531#endif
2532err_aes_xts_alg:
2533	crypto_unregister_aead(&aes_gcm_alg);
2534err_aes_gcm_alg:
2535	crypto_unregister_alg(&aes_cfb64_alg);
2536err_aes_cfb64_alg:
2537	i = ARRAY_SIZE(aes_algs);
2538err_aes_algs:
2539	for (j = 0; j < i; j++)
2540		crypto_unregister_alg(&aes_algs[j]);
2541
2542	return err;
2543}
2544
2545static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2546{
2547	dd->caps.has_dualbuff = 0;
2548	dd->caps.has_cfb64 = 0;
2549	dd->caps.has_ctr32 = 0;
2550	dd->caps.has_gcm = 0;
2551	dd->caps.has_xts = 0;
2552	dd->caps.has_authenc = 0;
2553	dd->caps.max_burst_size = 1;
2554
2555	/* keep only major version number */
2556	switch (dd->hw_version & 0xff0) {
 
 
2557	case 0x500:
2558		dd->caps.has_dualbuff = 1;
2559		dd->caps.has_cfb64 = 1;
2560		dd->caps.has_ctr32 = 1;
2561		dd->caps.has_gcm = 1;
2562		dd->caps.has_xts = 1;
2563		dd->caps.has_authenc = 1;
2564		dd->caps.max_burst_size = 4;
2565		break;
2566	case 0x200:
2567		dd->caps.has_dualbuff = 1;
2568		dd->caps.has_cfb64 = 1;
2569		dd->caps.has_ctr32 = 1;
2570		dd->caps.has_gcm = 1;
2571		dd->caps.max_burst_size = 4;
2572		break;
2573	case 0x130:
2574		dd->caps.has_dualbuff = 1;
2575		dd->caps.has_cfb64 = 1;
2576		dd->caps.max_burst_size = 4;
2577		break;
2578	case 0x120:
2579		break;
2580	default:
2581		dev_warn(dd->dev,
2582				"Unmanaged aes version, set minimum capabilities\n");
2583		break;
2584	}
2585}
2586
2587#if defined(CONFIG_OF)
2588static const struct of_device_id atmel_aes_dt_ids[] = {
2589	{ .compatible = "atmel,at91sam9g46-aes" },
2590	{ /* sentinel */ }
2591};
2592MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2593
2594static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2595{
2596	struct device_node *np = pdev->dev.of_node;
2597	struct crypto_platform_data *pdata;
2598
2599	if (!np) {
2600		dev_err(&pdev->dev, "device node not found\n");
2601		return ERR_PTR(-EINVAL);
2602	}
2603
2604	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2605	if (!pdata)
2606		return ERR_PTR(-ENOMEM);
2607
2608	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2609					sizeof(*(pdata->dma_slave)),
2610					GFP_KERNEL);
2611	if (!pdata->dma_slave) {
2612		devm_kfree(&pdev->dev, pdata);
2613		return ERR_PTR(-ENOMEM);
2614	}
2615
2616	return pdata;
2617}
2618#else
2619static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2620{
2621	return ERR_PTR(-EINVAL);
2622}
2623#endif
2624
2625static int atmel_aes_probe(struct platform_device *pdev)
2626{
2627	struct atmel_aes_dev *aes_dd;
2628	struct crypto_platform_data *pdata;
2629	struct device *dev = &pdev->dev;
2630	struct resource *aes_res;
2631	int err;
2632
2633	pdata = pdev->dev.platform_data;
2634	if (!pdata) {
2635		pdata = atmel_aes_of_init(pdev);
2636		if (IS_ERR(pdata)) {
2637			err = PTR_ERR(pdata);
2638			goto aes_dd_err;
2639		}
2640	}
2641
2642	if (!pdata->dma_slave) {
2643		err = -ENXIO;
2644		goto aes_dd_err;
2645	}
2646
2647	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2648	if (aes_dd == NULL) {
2649		err = -ENOMEM;
2650		goto aes_dd_err;
2651	}
2652
2653	aes_dd->dev = dev;
2654
2655	platform_set_drvdata(pdev, aes_dd);
2656
2657	INIT_LIST_HEAD(&aes_dd->list);
2658	spin_lock_init(&aes_dd->lock);
2659
2660	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2661					(unsigned long)aes_dd);
2662	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2663					(unsigned long)aes_dd);
2664
2665	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2666
2667	/* Get the base address */
2668	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2669	if (!aes_res) {
2670		dev_err(dev, "no MEM resource info\n");
2671		err = -ENODEV;
2672		goto res_err;
2673	}
2674	aes_dd->phys_base = aes_res->start;
2675
2676	/* Get the IRQ */
2677	aes_dd->irq = platform_get_irq(pdev,  0);
2678	if (aes_dd->irq < 0) {
2679		dev_err(dev, "no IRQ resource info\n");
2680		err = aes_dd->irq;
2681		goto res_err;
2682	}
2683
2684	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2685			       IRQF_SHARED, "atmel-aes", aes_dd);
2686	if (err) {
2687		dev_err(dev, "unable to request aes irq.\n");
2688		goto res_err;
2689	}
2690
2691	/* Initializing the clock */
2692	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2693	if (IS_ERR(aes_dd->iclk)) {
2694		dev_err(dev, "clock initialization failed.\n");
2695		err = PTR_ERR(aes_dd->iclk);
2696		goto res_err;
2697	}
2698
2699	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2700	if (IS_ERR(aes_dd->io_base)) {
2701		dev_err(dev, "can't ioremap\n");
2702		err = PTR_ERR(aes_dd->io_base);
2703		goto res_err;
2704	}
2705
2706	err = clk_prepare(aes_dd->iclk);
2707	if (err)
2708		goto res_err;
2709
2710	err = atmel_aes_hw_version_init(aes_dd);
2711	if (err)
2712		goto iclk_unprepare;
2713
2714	atmel_aes_get_cap(aes_dd);
2715
2716#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2717	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2718		err = -EPROBE_DEFER;
2719		goto iclk_unprepare;
2720	}
2721#endif
2722
2723	err = atmel_aes_buff_init(aes_dd);
2724	if (err)
2725		goto err_aes_buff;
2726
2727	err = atmel_aes_dma_init(aes_dd, pdata);
2728	if (err)
2729		goto err_aes_dma;
2730
2731	spin_lock(&atmel_aes.lock);
2732	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2733	spin_unlock(&atmel_aes.lock);
2734
2735	err = atmel_aes_register_algs(aes_dd);
2736	if (err)
2737		goto err_algs;
2738
2739	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2740			dma_chan_name(aes_dd->src.chan),
2741			dma_chan_name(aes_dd->dst.chan));
2742
2743	return 0;
2744
2745err_algs:
2746	spin_lock(&atmel_aes.lock);
2747	list_del(&aes_dd->list);
2748	spin_unlock(&atmel_aes.lock);
2749	atmel_aes_dma_cleanup(aes_dd);
2750err_aes_dma:
2751	atmel_aes_buff_cleanup(aes_dd);
2752err_aes_buff:
2753iclk_unprepare:
2754	clk_unprepare(aes_dd->iclk);
2755res_err:
2756	tasklet_kill(&aes_dd->done_task);
2757	tasklet_kill(&aes_dd->queue_task);
2758aes_dd_err:
2759	if (err != -EPROBE_DEFER)
2760		dev_err(dev, "initialization failed.\n");
2761
2762	return err;
2763}
2764
2765static int atmel_aes_remove(struct platform_device *pdev)
2766{
2767	struct atmel_aes_dev *aes_dd;
2768
2769	aes_dd = platform_get_drvdata(pdev);
2770	if (!aes_dd)
2771		return -ENODEV;
2772	spin_lock(&atmel_aes.lock);
2773	list_del(&aes_dd->list);
2774	spin_unlock(&atmel_aes.lock);
2775
2776	atmel_aes_unregister_algs(aes_dd);
2777
2778	tasklet_kill(&aes_dd->done_task);
2779	tasklet_kill(&aes_dd->queue_task);
2780
2781	atmel_aes_dma_cleanup(aes_dd);
2782	atmel_aes_buff_cleanup(aes_dd);
2783
2784	clk_unprepare(aes_dd->iclk);
2785
2786	return 0;
2787}
2788
2789static struct platform_driver atmel_aes_driver = {
2790	.probe		= atmel_aes_probe,
2791	.remove		= atmel_aes_remove,
2792	.driver		= {
2793		.name	= "atmel_aes",
2794		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2795	},
2796};
2797
2798module_platform_driver(atmel_aes_driver);
2799
2800MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2801MODULE_LICENSE("GPL v2");
2802MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");