Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/kstrtox.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_address.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/sched/clock.h>
  27#include <linux/sched_clock.h>
  28#include <linux/acpi.h>
  29#include <linux/arm-smccc.h>
  30#include <linux/ptp_kvm.h>
  31
  32#include <asm/arch_timer.h>
  33#include <asm/virt.h>
  34
  35#include <clocksource/arm_arch_timer.h>
  36
 
 
 
  37#define CNTTIDR		0x08
  38#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  39
  40#define CNTACR(n)	(0x40 + ((n) * 4))
  41#define CNTACR_RPCT	BIT(0)
  42#define CNTACR_RVCT	BIT(1)
  43#define CNTACR_RFRQ	BIT(2)
  44#define CNTACR_RVOFF	BIT(3)
  45#define CNTACR_RWVT	BIT(4)
  46#define CNTACR_RWPT	BIT(5)
  47
  48#define CNTPCT_LO	0x00
  49#define CNTVCT_LO	0x08
 
  50#define CNTFRQ		0x10
  51#define CNTP_CVAL_LO	0x20
  52#define CNTP_CTL	0x2c
  53#define CNTV_CVAL_LO	0x30
  54#define CNTV_CTL	0x3c
  55
  56/*
  57 * The minimum amount of time a generic counter is guaranteed to not roll over
  58 * (40 years)
  59 */
  60#define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
  61
  62static unsigned arch_timers_present __initdata;
  63
 
 
  64struct arch_timer {
  65	void __iomem *base;
  66	struct clock_event_device evt;
  67};
  68
  69static struct arch_timer *arch_timer_mem __ro_after_init;
  70
  71#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  72
  73static u32 arch_timer_rate __ro_after_init;
  74static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  75
  76static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  77	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  78	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  79	[ARCH_TIMER_VIRT_PPI]		= "virt",
  80	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  81	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  82};
  83
  84static struct clock_event_device __percpu *arch_timer_evt;
  85
  86static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  87static bool arch_timer_c3stop __ro_after_init;
  88static bool arch_timer_mem_use_virtual __ro_after_init;
  89static bool arch_counter_suspend_stop __ro_after_init;
  90#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  91static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  92#else
  93static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  94#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  95
  96static cpumask_t evtstrm_available = CPU_MASK_NONE;
  97static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  98
  99static int __init early_evtstrm_cfg(char *buf)
 100{
 101	return kstrtobool(buf, &evtstrm_enable);
 102}
 103early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
 104
 105/*
 106 * Makes an educated guess at a valid counter width based on the Generic Timer
 107 * specification. Of note:
 108 *   1) the system counter is at least 56 bits wide
 109 *   2) a roll-over time of not less than 40 years
 110 *
 111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
 112 */
 113static int arch_counter_get_width(void)
 114{
 115	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
 116
 117	/* guarantee the returned width is within the valid range */
 118	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
 119}
 120
 121/*
 122 * Architected system timer support.
 123 */
 124
 125static __always_inline
 126void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
 127			  struct clock_event_device *clk)
 128{
 129	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 130		struct arch_timer *timer = to_arch_timer(clk);
 131		switch (reg) {
 132		case ARCH_TIMER_REG_CTRL:
 133			writel_relaxed((u32)val, timer->base + CNTP_CTL);
 134			break;
 135		case ARCH_TIMER_REG_CVAL:
 136			/*
 137			 * Not guaranteed to be atomic, so the timer
 138			 * must be disabled at this point.
 139			 */
 140			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
 141			break;
 142		default:
 143			BUILD_BUG();
 144		}
 145	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 146		struct arch_timer *timer = to_arch_timer(clk);
 147		switch (reg) {
 148		case ARCH_TIMER_REG_CTRL:
 149			writel_relaxed((u32)val, timer->base + CNTV_CTL);
 150			break;
 151		case ARCH_TIMER_REG_CVAL:
 152			/* Same restriction as above */
 153			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
 154			break;
 155		default:
 156			BUILD_BUG();
 157		}
 158	} else {
 159		arch_timer_reg_write_cp15(access, reg, val);
 160	}
 161}
 162
 163static __always_inline
 164u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 165			struct clock_event_device *clk)
 166{
 167	u32 val;
 168
 169	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 170		struct arch_timer *timer = to_arch_timer(clk);
 171		switch (reg) {
 172		case ARCH_TIMER_REG_CTRL:
 173			val = readl_relaxed(timer->base + CNTP_CTL);
 174			break;
 175		default:
 176			BUILD_BUG();
 
 177		}
 178	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 179		struct arch_timer *timer = to_arch_timer(clk);
 180		switch (reg) {
 181		case ARCH_TIMER_REG_CTRL:
 182			val = readl_relaxed(timer->base + CNTV_CTL);
 183			break;
 184		default:
 185			BUILD_BUG();
 
 186		}
 187	} else {
 188		val = arch_timer_reg_read_cp15(access, reg);
 189	}
 190
 191	return val;
 192}
 193
 194static noinstr u64 raw_counter_get_cntpct_stable(void)
 195{
 196	return __arch_counter_get_cntpct_stable();
 197}
 198
 199static notrace u64 arch_counter_get_cntpct_stable(void)
 200{
 201	u64 val;
 202	preempt_disable_notrace();
 203	val = __arch_counter_get_cntpct_stable();
 204	preempt_enable_notrace();
 205	return val;
 206}
 207
 208static noinstr u64 arch_counter_get_cntpct(void)
 209{
 210	return __arch_counter_get_cntpct();
 211}
 212
 213static noinstr u64 raw_counter_get_cntvct_stable(void)
 214{
 215	return __arch_counter_get_cntvct_stable();
 216}
 217
 218static notrace u64 arch_counter_get_cntvct_stable(void)
 219{
 220	u64 val;
 221	preempt_disable_notrace();
 222	val = __arch_counter_get_cntvct_stable();
 223	preempt_enable_notrace();
 224	return val;
 225}
 226
 227static noinstr u64 arch_counter_get_cntvct(void)
 228{
 229	return __arch_counter_get_cntvct();
 230}
 231
 232/*
 233 * Default to cp15 based access because arm64 uses this function for
 234 * sched_clock() before DT is probed and the cp15 method is guaranteed
 235 * to exist on arm64. arm doesn't use this before DT is probed so even
 236 * if we don't have the cp15 accessors we won't have a problem.
 237 */
 238u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 239EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 240
 241static u64 arch_counter_read(struct clocksource *cs)
 242{
 243	return arch_timer_read_counter();
 244}
 245
 246static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 247{
 248	return arch_timer_read_counter();
 249}
 250
 251static struct clocksource clocksource_counter = {
 252	.name	= "arch_sys_counter",
 253	.id	= CSID_ARM_ARCH_COUNTER,
 254	.rating	= 400,
 255	.read	= arch_counter_read,
 
 256	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 257};
 258
 259static struct cyclecounter cyclecounter __ro_after_init = {
 260	.read	= arch_counter_read_cc,
 
 261};
 262
 263struct ate_acpi_oem_info {
 264	char oem_id[ACPI_OEM_ID_SIZE + 1];
 265	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 266	u32 oem_revision;
 267};
 268
 269#ifdef CONFIG_FSL_ERRATUM_A008585
 270/*
 271 * The number of retries is an arbitrary value well beyond the highest number
 272 * of iterations the loop has been observed to take.
 273 */
 274#define __fsl_a008585_read_reg(reg) ({			\
 275	u64 _old, _new;					\
 276	int _retries = 200;				\
 277							\
 278	do {						\
 279		_old = read_sysreg(reg);		\
 280		_new = read_sysreg(reg);		\
 281		_retries--;				\
 282	} while (unlikely(_old != _new) && _retries);	\
 283							\
 284	WARN_ON_ONCE(!_retries);			\
 285	_new;						\
 286})
 287
 
 
 
 
 
 
 
 
 
 
 288static u64 notrace fsl_a008585_read_cntpct_el0(void)
 289{
 290	return __fsl_a008585_read_reg(cntpct_el0);
 291}
 292
 293static u64 notrace fsl_a008585_read_cntvct_el0(void)
 294{
 295	return __fsl_a008585_read_reg(cntvct_el0);
 296}
 297#endif
 298
 299#ifdef CONFIG_HISILICON_ERRATUM_161010101
 300/*
 301 * Verify whether the value of the second read is larger than the first by
 302 * less than 32 is the only way to confirm the value is correct, so clear the
 303 * lower 5 bits to check whether the difference is greater than 32 or not.
 304 * Theoretically the erratum should not occur more than twice in succession
 305 * when reading the system counter, but it is possible that some interrupts
 306 * may lead to more than twice read errors, triggering the warning, so setting
 307 * the number of retries far beyond the number of iterations the loop has been
 308 * observed to take.
 309 */
 310#define __hisi_161010101_read_reg(reg) ({				\
 311	u64 _old, _new;						\
 312	int _retries = 50;					\
 313								\
 314	do {							\
 315		_old = read_sysreg(reg);			\
 316		_new = read_sysreg(reg);			\
 317		_retries--;					\
 318	} while (unlikely((_new - _old) >> 5) && _retries);	\
 319								\
 320	WARN_ON_ONCE(!_retries);				\
 321	_new;							\
 322})
 323
 
 
 
 
 
 
 
 
 
 
 324static u64 notrace hisi_161010101_read_cntpct_el0(void)
 325{
 326	return __hisi_161010101_read_reg(cntpct_el0);
 327}
 328
 329static u64 notrace hisi_161010101_read_cntvct_el0(void)
 330{
 331	return __hisi_161010101_read_reg(cntvct_el0);
 332}
 333
 334static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 335	/*
 336	 * Note that trailing spaces are required to properly match
 337	 * the OEM table information.
 338	 */
 339	{
 340		.oem_id		= "HISI  ",
 341		.oem_table_id	= "HIP05   ",
 342		.oem_revision	= 0,
 343	},
 344	{
 345		.oem_id		= "HISI  ",
 346		.oem_table_id	= "HIP06   ",
 347		.oem_revision	= 0,
 348	},
 349	{
 350		.oem_id		= "HISI  ",
 351		.oem_table_id	= "HIP07   ",
 352		.oem_revision	= 0,
 353	},
 354	{ /* Sentinel indicating the end of the OEM array */ },
 355};
 356#endif
 357
 358#ifdef CONFIG_ARM64_ERRATUM_858921
 359static u64 notrace arm64_858921_read_cntpct_el0(void)
 360{
 361	u64 old, new;
 362
 363	old = read_sysreg(cntpct_el0);
 364	new = read_sysreg(cntpct_el0);
 365	return (((old ^ new) >> 32) & 1) ? old : new;
 366}
 367
 368static u64 notrace arm64_858921_read_cntvct_el0(void)
 369{
 370	u64 old, new;
 371
 372	old = read_sysreg(cntvct_el0);
 373	new = read_sysreg(cntvct_el0);
 374	return (((old ^ new) >> 32) & 1) ? old : new;
 375}
 376#endif
 377
 378#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 379/*
 380 * The low bits of the counter registers are indeterminate while bit 10 or
 381 * greater is rolling over. Since the counter value can jump both backward
 382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 385 */
 386#define __sun50i_a64_read_reg(reg) ({					\
 387	u64 _val;							\
 388	int _retries = 150;						\
 389									\
 390	do {								\
 391		_val = read_sysreg(reg);				\
 392		_retries--;						\
 393	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 394									\
 395	WARN_ON_ONCE(!_retries);					\
 396	_val;								\
 397})
 398
 399static u64 notrace sun50i_a64_read_cntpct_el0(void)
 400{
 401	return __sun50i_a64_read_reg(cntpct_el0);
 402}
 403
 404static u64 notrace sun50i_a64_read_cntvct_el0(void)
 405{
 406	return __sun50i_a64_read_reg(cntvct_el0);
 407}
 408#endif
 409
 410#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 411DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 412EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 413
 414static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 
 415
 416/*
 417 * Force the inlining of this function so that the register accesses
 418 * can be themselves correctly inlined.
 419 */
 420static __always_inline
 421void erratum_set_next_event_generic(const int access, unsigned long evt,
 422				    struct clock_event_device *clk)
 423{
 424	unsigned long ctrl;
 425	u64 cval;
 426
 427	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 428	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 429	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 430
 431	if (access == ARCH_TIMER_PHYS_ACCESS) {
 432		cval = evt + arch_counter_get_cntpct_stable();
 433		write_sysreg(cval, cntp_cval_el0);
 434	} else {
 435		cval = evt + arch_counter_get_cntvct_stable();
 436		write_sysreg(cval, cntv_cval_el0);
 437	}
 438
 439	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 440}
 441
 442static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
 443					    struct clock_event_device *clk)
 444{
 445	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 446	return 0;
 447}
 448
 449static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
 450					    struct clock_event_device *clk)
 451{
 452	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 453	return 0;
 454}
 455
 456static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 457#ifdef CONFIG_FSL_ERRATUM_A008585
 458	{
 459		.match_type = ate_match_dt,
 460		.id = "fsl,erratum-a008585",
 461		.desc = "Freescale erratum a005858",
 
 
 462		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 463		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 464		.set_next_event_phys = erratum_set_next_event_phys,
 465		.set_next_event_virt = erratum_set_next_event_virt,
 466	},
 467#endif
 468#ifdef CONFIG_HISILICON_ERRATUM_161010101
 469	{
 470		.match_type = ate_match_dt,
 471		.id = "hisilicon,erratum-161010101",
 472		.desc = "HiSilicon erratum 161010101",
 
 
 473		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 474		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 475		.set_next_event_phys = erratum_set_next_event_phys,
 476		.set_next_event_virt = erratum_set_next_event_virt,
 477	},
 478	{
 479		.match_type = ate_match_acpi_oem_info,
 480		.id = hisi_161010101_oem_info,
 481		.desc = "HiSilicon erratum 161010101",
 
 
 482		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 483		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 484		.set_next_event_phys = erratum_set_next_event_phys,
 485		.set_next_event_virt = erratum_set_next_event_virt,
 486	},
 487#endif
 488#ifdef CONFIG_ARM64_ERRATUM_858921
 489	{
 490		.match_type = ate_match_local_cap_id,
 491		.id = (void *)ARM64_WORKAROUND_858921,
 492		.desc = "ARM erratum 858921",
 493		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 494		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 495		.set_next_event_phys = erratum_set_next_event_phys,
 496		.set_next_event_virt = erratum_set_next_event_virt,
 497	},
 498#endif
 499#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 500	{
 501		.match_type = ate_match_dt,
 502		.id = "allwinner,erratum-unknown1",
 503		.desc = "Allwinner erratum UNKNOWN1",
 504		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 505		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 506		.set_next_event_phys = erratum_set_next_event_phys,
 507		.set_next_event_virt = erratum_set_next_event_virt,
 508	},
 509#endif
 510#ifdef CONFIG_ARM64_ERRATUM_1418040
 511	{
 512		.match_type = ate_match_local_cap_id,
 513		.id = (void *)ARM64_WORKAROUND_1418040,
 514		.desc = "ARM erratum 1418040",
 515		.disable_compat_vdso = true,
 516	},
 517#endif
 518};
 519
 520typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 521			       const void *);
 522
 523static
 524bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 525				 const void *arg)
 526{
 527	const struct device_node *np = arg;
 528
 529	return of_property_read_bool(np, wa->id);
 530}
 531
 532static
 533bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 534					const void *arg)
 535{
 536	return this_cpu_has_cap((uintptr_t)wa->id);
 537}
 538
 539
 540static
 541bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 542				       const void *arg)
 543{
 544	static const struct ate_acpi_oem_info empty_oem_info = {};
 545	const struct ate_acpi_oem_info *info = wa->id;
 546	const struct acpi_table_header *table = arg;
 547
 548	/* Iterate over the ACPI OEM info array, looking for a match */
 549	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 550		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 551		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 552		    info->oem_revision == table->oem_revision)
 553			return true;
 554
 555		info++;
 556	}
 557
 558	return false;
 559}
 560
 561static const struct arch_timer_erratum_workaround *
 562arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 563			  ate_match_fn_t match_fn,
 564			  void *arg)
 565{
 566	int i;
 567
 568	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 569		if (ool_workarounds[i].match_type != type)
 570			continue;
 571
 572		if (match_fn(&ool_workarounds[i], arg))
 573			return &ool_workarounds[i];
 574	}
 575
 576	return NULL;
 577}
 578
 579static
 580void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 581				  bool local)
 582{
 583	int i;
 584
 585	if (local) {
 586		__this_cpu_write(timer_unstable_counter_workaround, wa);
 587	} else {
 588		for_each_possible_cpu(i)
 589			per_cpu(timer_unstable_counter_workaround, i) = wa;
 590	}
 591
 592	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 593		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 
 
 
 594
 595	/*
 596	 * Don't use the vdso fastpath if errata require using the
 597	 * out-of-line counter accessor. We may change our mind pretty
 598	 * late in the game (with a per-CPU erratum, for example), so
 599	 * change both the default value and the vdso itself.
 600	 */
 601	if (wa->read_cntvct_el0) {
 602		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 603		vdso_default = VDSO_CLOCKMODE_NONE;
 604	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 605		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 606		clocksource_counter.vdso_clock_mode = vdso_default;
 607	}
 608}
 609
 610static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 611					    void *arg)
 612{
 613	const struct arch_timer_erratum_workaround *wa, *__wa;
 614	ate_match_fn_t match_fn = NULL;
 615	bool local = false;
 616
 617	switch (type) {
 618	case ate_match_dt:
 619		match_fn = arch_timer_check_dt_erratum;
 620		break;
 621	case ate_match_local_cap_id:
 622		match_fn = arch_timer_check_local_cap_erratum;
 623		local = true;
 624		break;
 625	case ate_match_acpi_oem_info:
 626		match_fn = arch_timer_check_acpi_oem_erratum;
 627		break;
 628	default:
 629		WARN_ON(1);
 630		return;
 631	}
 632
 633	wa = arch_timer_iterate_errata(type, match_fn, arg);
 634	if (!wa)
 635		return;
 636
 637	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 638	if (__wa && wa != __wa)
 639		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 640			wa->desc, __wa->desc);
 
 
 641
 642	if (__wa)
 643		return;
 
 644
 645	arch_timer_enable_workaround(wa, local);
 646	pr_info("Enabling %s workaround for %s\n",
 647		local ? "local" : "global", wa->desc);
 648}
 649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650static bool arch_timer_this_cpu_has_cntvct_wa(void)
 651{
 652	return has_erratum_handler(read_cntvct_el0);
 653}
 654
 655static bool arch_timer_counter_has_wa(void)
 656{
 657	return atomic_read(&timer_unstable_counter_workaround_in_use);
 658}
 659#else
 660#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 
 
 
 661#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 662#define arch_timer_counter_has_wa()			({false;})
 663#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 664
 665static __always_inline irqreturn_t timer_handler(const int access,
 666					struct clock_event_device *evt)
 667{
 668	unsigned long ctrl;
 669
 670	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 671	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 672		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 673		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 674		evt->event_handler(evt);
 675		return IRQ_HANDLED;
 676	}
 677
 678	return IRQ_NONE;
 679}
 680
 681static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 682{
 683	struct clock_event_device *evt = dev_id;
 684
 685	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 686}
 687
 688static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 689{
 690	struct clock_event_device *evt = dev_id;
 691
 692	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 693}
 694
 695static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 696{
 697	struct clock_event_device *evt = dev_id;
 698
 699	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 700}
 701
 702static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 703{
 704	struct clock_event_device *evt = dev_id;
 705
 706	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 707}
 708
 709static __always_inline int arch_timer_shutdown(const int access,
 710					       struct clock_event_device *clk)
 711{
 712	unsigned long ctrl;
 713
 714	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 715	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 716	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 717
 718	return 0;
 719}
 720
 721static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 722{
 723	return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 724}
 725
 726static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 727{
 728	return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 729}
 730
 731static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 732{
 733	return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 734}
 735
 736static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 737{
 738	return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 739}
 740
 741static __always_inline void set_next_event(const int access, unsigned long evt,
 742					   struct clock_event_device *clk)
 743{
 744	unsigned long ctrl;
 745	u64 cnt;
 746
 747	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 748	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 749	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 750
 751	if (access == ARCH_TIMER_PHYS_ACCESS)
 752		cnt = __arch_counter_get_cntpct();
 753	else
 754		cnt = __arch_counter_get_cntvct();
 755
 756	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
 757	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 758}
 759
 760static int arch_timer_set_next_event_virt(unsigned long evt,
 761					  struct clock_event_device *clk)
 762{
 
 
 
 
 
 763	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 764	return 0;
 765}
 766
 767static int arch_timer_set_next_event_phys(unsigned long evt,
 768					  struct clock_event_device *clk)
 769{
 770	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 771	return 0;
 772}
 773
 774static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
 775{
 776	u32 cnt_lo, cnt_hi, tmp_hi;
 777
 778	do {
 779		cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
 780		cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
 781		tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
 782	} while (cnt_hi != tmp_hi);
 783
 784	return ((u64) cnt_hi << 32) | cnt_lo;
 785}
 786
 787static __always_inline void set_next_event_mem(const int access, unsigned long evt,
 788					   struct clock_event_device *clk)
 789{
 790	struct arch_timer *timer = to_arch_timer(clk);
 791	unsigned long ctrl;
 792	u64 cnt;
 793
 794	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 795
 796	/* Timer must be disabled before programming CVAL */
 797	if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
 798		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 799		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 800	}
 801
 802	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 803	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 804
 805	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
 806		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
 807	else
 808		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
 809
 810	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
 811	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 812}
 813
 814static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 815					      struct clock_event_device *clk)
 816{
 817	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 818	return 0;
 819}
 820
 821static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 822					      struct clock_event_device *clk)
 823{
 824	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 825	return 0;
 826}
 827
 828static u64 __arch_timer_check_delta(void)
 829{
 830#ifdef CONFIG_ARM64
 831	const struct midr_range broken_cval_midrs[] = {
 832		/*
 833		 * XGene-1 implements CVAL in terms of TVAL, meaning
 834		 * that the maximum timer range is 32bit. Shame on them.
 835		 *
 836		 * Note that TVAL is signed, thus has only 31 of its
 837		 * 32 bits to express magnitude.
 838		 */
 839		MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
 840					      APM_CPU_PART_XGENE),
 841			       APM_CPU_VAR_POTENZA, 0x0, 0xf),
 842		{},
 843	};
 844
 845	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
 846		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
 847		return CLOCKSOURCE_MASK(31);
 848	}
 849#endif
 850	return CLOCKSOURCE_MASK(arch_counter_get_width());
 851}
 852
 853static void __arch_timer_setup(unsigned type,
 854			       struct clock_event_device *clk)
 855{
 856	u64 max_delta;
 857
 858	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 859
 860	if (type == ARCH_TIMER_TYPE_CP15) {
 861		typeof(clk->set_next_event) sne;
 862
 863		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 864
 865		if (arch_timer_c3stop)
 866			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 867		clk->name = "arch_sys_timer";
 868		clk->rating = 450;
 869		clk->cpumask = cpumask_of(smp_processor_id());
 870		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 871		switch (arch_timer_uses_ppi) {
 872		case ARCH_TIMER_VIRT_PPI:
 873			clk->set_state_shutdown = arch_timer_shutdown_virt;
 874			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 875			sne = erratum_handler(set_next_event_virt);
 876			break;
 877		case ARCH_TIMER_PHYS_SECURE_PPI:
 878		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 879		case ARCH_TIMER_HYP_PPI:
 880			clk->set_state_shutdown = arch_timer_shutdown_phys;
 881			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 882			sne = erratum_handler(set_next_event_phys);
 883			break;
 884		default:
 885			BUG();
 886		}
 887
 888		clk->set_next_event = sne;
 889		max_delta = __arch_timer_check_delta();
 890	} else {
 891		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 892		clk->name = "arch_mem_timer";
 893		clk->rating = 400;
 894		clk->cpumask = cpu_possible_mask;
 895		if (arch_timer_mem_use_virtual) {
 896			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 897			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 898			clk->set_next_event =
 899				arch_timer_set_next_event_virt_mem;
 900		} else {
 901			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 902			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 903			clk->set_next_event =
 904				arch_timer_set_next_event_phys_mem;
 905		}
 906
 907		max_delta = CLOCKSOURCE_MASK(56);
 908	}
 909
 910	clk->set_state_shutdown(clk);
 911
 912	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
 913}
 914
 915static void arch_timer_evtstrm_enable(unsigned int divider)
 916{
 917	u32 cntkctl = arch_timer_get_cntkctl();
 918
 919#ifdef CONFIG_ARM64
 920	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
 921	if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
 922		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
 923		divider -= 8;
 924	}
 925#endif
 926
 927	divider = min(divider, 15U);
 928	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 929	/* Set the divider and enable virtual event stream */
 930	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 931			| ARCH_TIMER_VIRT_EVT_EN;
 932	arch_timer_set_cntkctl(cntkctl);
 933	arch_timer_set_evtstrm_feature();
 
 
 
 934	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 935}
 936
 937static void arch_timer_configure_evtstream(void)
 938{
 939	int evt_stream_div, lsb;
 940
 941	/*
 942	 * As the event stream can at most be generated at half the frequency
 943	 * of the counter, use half the frequency when computing the divider.
 944	 */
 945	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 946
 947	/*
 948	 * Find the closest power of two to the divisor. If the adjacent bit
 949	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 950	 */
 951	lsb = fls(evt_stream_div) - 1;
 952	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 953		lsb++;
 954
 
 
 
 
 
 955	/* enable event stream */
 956	arch_timer_evtstrm_enable(max(0, lsb));
 957}
 958
 959static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
 960{
 961	arch_timer_configure_evtstream();
 962	return 0;
 963}
 964
 965static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
 966{
 967	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 968	return 0;
 969}
 970
 971static int __init arch_timer_evtstrm_register(void)
 972{
 973	if (!arch_timer_evt || !evtstrm_enable)
 974		return 0;
 975
 976	return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
 977				 "clockevents/arm/arch_timer_evtstrm:starting",
 978				 arch_timer_evtstrm_starting_cpu,
 979				 arch_timer_evtstrm_dying_cpu);
 980}
 981core_initcall(arch_timer_evtstrm_register);
 982
 983static void arch_counter_set_user_access(void)
 984{
 985	u32 cntkctl = arch_timer_get_cntkctl();
 986
 987	/* Disable user access to the timers and both counters */
 988	/* Also disable virtual event stream */
 989	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 990			| ARCH_TIMER_USR_VT_ACCESS_EN
 991		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 992			| ARCH_TIMER_VIRT_EVT_EN
 993			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 994
 995	/*
 996	 * Enable user access to the virtual counter if it doesn't
 997	 * need to be workaround. The vdso may have been already
 998	 * disabled though.
 999	 */
1000	if (arch_timer_this_cpu_has_cntvct_wa())
1001		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
1002	else
1003		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
1004
1005	arch_timer_set_cntkctl(cntkctl);
1006}
1007
1008static bool arch_timer_has_nonsecure_ppi(void)
1009{
1010	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
1011		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1012}
1013
1014static u32 check_ppi_trigger(int irq)
1015{
1016	u32 flags = irq_get_trigger_type(irq);
1017
1018	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
1019		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
1020		pr_warn("WARNING: Please fix your firmware\n");
1021		flags = IRQF_TRIGGER_LOW;
1022	}
1023
1024	return flags;
1025}
1026
1027static int arch_timer_starting_cpu(unsigned int cpu)
1028{
1029	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1030	u32 flags;
1031
1032	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1033
1034	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1035	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1036
1037	if (arch_timer_has_nonsecure_ppi()) {
1038		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1039		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1040				  flags);
1041	}
1042
1043	arch_counter_set_user_access();
1044
1045	return 0;
1046}
1047
1048static int validate_timer_rate(void)
1049{
1050	if (!arch_timer_rate)
1051		return -EINVAL;
1052
1053	/* Arch timer frequency < 1MHz can cause trouble */
1054	WARN_ON(arch_timer_rate < 1000000);
1055
1056	return 0;
1057}
1058
1059/*
1060 * For historical reasons, when probing with DT we use whichever (non-zero)
1061 * rate was probed first, and don't verify that others match. If the first node
1062 * probed has a clock-frequency property, this overrides the HW register.
1063 */
1064static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1065{
1066	/* Who has more than one independent system counter? */
1067	if (arch_timer_rate)
1068		return;
1069
1070	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1071		arch_timer_rate = rate;
1072
1073	/* Check the timer frequency. */
1074	if (validate_timer_rate())
1075		pr_warn("frequency not available\n");
1076}
1077
1078static void __init arch_timer_banner(unsigned type)
1079{
1080	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1081		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1082		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1083			" and " : "",
1084		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1085		(unsigned long)arch_timer_rate / 1000000,
1086		(unsigned long)(arch_timer_rate / 10000) % 100,
1087		type & ARCH_TIMER_TYPE_CP15 ?
1088			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1089			"",
1090		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1091		type & ARCH_TIMER_TYPE_MEM ?
1092			arch_timer_mem_use_virtual ? "virt" : "phys" :
1093			"");
1094}
1095
1096u32 arch_timer_get_rate(void)
1097{
1098	return arch_timer_rate;
1099}
1100
1101bool arch_timer_evtstrm_available(void)
1102{
1103	/*
1104	 * We might get called from a preemptible context. This is fine
1105	 * because availability of the event stream should be always the same
1106	 * for a preemptible context and context where we might resume a task.
1107	 */
1108	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1109}
1110
1111static noinstr u64 arch_counter_get_cntvct_mem(void)
1112{
1113	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
 
 
 
 
 
 
 
 
1114}
1115
1116static struct arch_timer_kvm_info arch_timer_kvm_info;
1117
1118struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1119{
1120	return &arch_timer_kvm_info;
1121}
1122
1123static void __init arch_counter_register(unsigned type)
1124{
1125	u64 (*scr)(void);
1126	u64 start_count;
1127	int width;
1128
1129	/* Register the CP15 based counter if we have one */
1130	if (type & ARCH_TIMER_TYPE_CP15) {
1131		u64 (*rd)(void);
1132
1133		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1134		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1135			if (arch_timer_counter_has_wa()) {
1136				rd = arch_counter_get_cntvct_stable;
1137				scr = raw_counter_get_cntvct_stable;
1138			} else {
1139				rd = arch_counter_get_cntvct;
1140				scr = arch_counter_get_cntvct;
1141			}
1142		} else {
1143			if (arch_timer_counter_has_wa()) {
1144				rd = arch_counter_get_cntpct_stable;
1145				scr = raw_counter_get_cntpct_stable;
1146			} else {
1147				rd = arch_counter_get_cntpct;
1148				scr = arch_counter_get_cntpct;
1149			}
1150		}
1151
1152		arch_timer_read_counter = rd;
1153		clocksource_counter.vdso_clock_mode = vdso_default;
1154	} else {
1155		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1156		scr = arch_counter_get_cntvct_mem;
1157	}
1158
1159	width = arch_counter_get_width();
1160	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1161	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1162
1163	if (!arch_counter_suspend_stop)
1164		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1165	start_count = arch_timer_read_counter();
1166	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1167	cyclecounter.mult = clocksource_counter.mult;
1168	cyclecounter.shift = clocksource_counter.shift;
1169	timecounter_init(&arch_timer_kvm_info.timecounter,
1170			 &cyclecounter, start_count);
1171
1172	sched_clock_register(scr, width, arch_timer_rate);
 
1173}
1174
1175static void arch_timer_stop(struct clock_event_device *clk)
1176{
1177	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1178
1179	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1180	if (arch_timer_has_nonsecure_ppi())
1181		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1182
1183	clk->set_state_shutdown(clk);
1184}
1185
1186static int arch_timer_dying_cpu(unsigned int cpu)
1187{
1188	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1189
 
 
1190	arch_timer_stop(clk);
1191	return 0;
1192}
1193
1194#ifdef CONFIG_CPU_PM
1195static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1196static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1197				    unsigned long action, void *hcpu)
1198{
1199	if (action == CPU_PM_ENTER) {
1200		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1201
1202		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1203	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1204		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1205
1206		if (arch_timer_have_evtstrm_feature())
1207			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1208	}
1209	return NOTIFY_OK;
1210}
1211
1212static struct notifier_block arch_timer_cpu_pm_notifier = {
1213	.notifier_call = arch_timer_cpu_pm_notify,
1214};
1215
1216static int __init arch_timer_cpu_pm_init(void)
1217{
1218	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1219}
1220
1221static void __init arch_timer_cpu_pm_deinit(void)
1222{
1223	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1224}
1225
1226#else
1227static int __init arch_timer_cpu_pm_init(void)
1228{
1229	return 0;
1230}
1231
1232static void __init arch_timer_cpu_pm_deinit(void)
1233{
1234}
1235#endif
1236
1237static int __init arch_timer_register(void)
1238{
1239	int err;
1240	int ppi;
1241
1242	arch_timer_evt = alloc_percpu(struct clock_event_device);
1243	if (!arch_timer_evt) {
1244		err = -ENOMEM;
1245		goto out;
1246	}
1247
1248	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1249	switch (arch_timer_uses_ppi) {
1250	case ARCH_TIMER_VIRT_PPI:
1251		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1252					 "arch_timer", arch_timer_evt);
1253		break;
1254	case ARCH_TIMER_PHYS_SECURE_PPI:
1255	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1256		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1257					 "arch_timer", arch_timer_evt);
1258		if (!err && arch_timer_has_nonsecure_ppi()) {
1259			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1260			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1261						 "arch_timer", arch_timer_evt);
1262			if (err)
1263				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1264						arch_timer_evt);
1265		}
1266		break;
1267	case ARCH_TIMER_HYP_PPI:
1268		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1269					 "arch_timer", arch_timer_evt);
1270		break;
1271	default:
1272		BUG();
1273	}
1274
1275	if (err) {
1276		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1277		goto out_free;
1278	}
1279
1280	err = arch_timer_cpu_pm_init();
1281	if (err)
1282		goto out_unreg_notify;
1283
1284	/* Register and immediately configure the timer on the boot CPU */
1285	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1286				"clockevents/arm/arch_timer:starting",
1287				arch_timer_starting_cpu, arch_timer_dying_cpu);
1288	if (err)
1289		goto out_unreg_cpupm;
1290	return 0;
1291
1292out_unreg_cpupm:
1293	arch_timer_cpu_pm_deinit();
1294
1295out_unreg_notify:
1296	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1297	if (arch_timer_has_nonsecure_ppi())
1298		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1299				arch_timer_evt);
1300
1301out_free:
1302	free_percpu(arch_timer_evt);
1303	arch_timer_evt = NULL;
1304out:
1305	return err;
1306}
1307
1308static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1309{
1310	int ret;
1311	irq_handler_t func;
 
1312
1313	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1314	if (!arch_timer_mem)
1315		return -ENOMEM;
1316
1317	arch_timer_mem->base = base;
1318	arch_timer_mem->evt.irq = irq;
1319	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1320
1321	if (arch_timer_mem_use_virtual)
1322		func = arch_timer_handler_virt_mem;
1323	else
1324		func = arch_timer_handler_phys_mem;
1325
1326	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1327	if (ret) {
1328		pr_err("Failed to request mem timer irq\n");
1329		kfree(arch_timer_mem);
1330		arch_timer_mem = NULL;
1331	}
1332
1333	return ret;
1334}
1335
1336static const struct of_device_id arch_timer_of_match[] __initconst = {
1337	{ .compatible   = "arm,armv7-timer",    },
1338	{ .compatible   = "arm,armv8-timer",    },
1339	{},
1340};
1341
1342static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1343	{ .compatible   = "arm,armv7-timer-mem", },
1344	{},
1345};
1346
1347static bool __init arch_timer_needs_of_probing(void)
1348{
1349	struct device_node *dn;
1350	bool needs_probing = false;
1351	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1352
1353	/* We have two timers, and both device-tree nodes are probed. */
1354	if ((arch_timers_present & mask) == mask)
1355		return false;
1356
1357	/*
1358	 * Only one type of timer is probed,
1359	 * check if we have another type of timer node in device-tree.
1360	 */
1361	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1362		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1363	else
1364		dn = of_find_matching_node(NULL, arch_timer_of_match);
1365
1366	if (dn && of_device_is_available(dn))
1367		needs_probing = true;
1368
1369	of_node_put(dn);
1370
1371	return needs_probing;
1372}
1373
1374static int __init arch_timer_common_init(void)
1375{
1376	arch_timer_banner(arch_timers_present);
1377	arch_counter_register(arch_timers_present);
1378	return arch_timer_arch_init();
1379}
1380
1381/**
1382 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1383 *
1384 * If HYP mode is available, we know that the physical timer
1385 * has been configured to be accessible from PL1. Use it, so
1386 * that a guest can use the virtual timer instead.
1387 *
1388 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1389 * accesses to CNTP_*_EL1 registers are silently redirected to
1390 * their CNTHP_*_EL2 counterparts, and use a different PPI
1391 * number.
1392 *
1393 * If no interrupt provided for virtual timer, we'll have to
1394 * stick to the physical timer. It'd better be accessible...
1395 * For arm64 we never use the secure interrupt.
1396 *
1397 * Return: a suitable PPI type for the current system.
1398 */
1399static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1400{
1401	if (is_kernel_in_hyp_mode())
1402		return ARCH_TIMER_HYP_PPI;
1403
1404	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1405		return ARCH_TIMER_VIRT_PPI;
1406
1407	if (IS_ENABLED(CONFIG_ARM64))
1408		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1409
1410	return ARCH_TIMER_PHYS_SECURE_PPI;
1411}
1412
1413static void __init arch_timer_populate_kvm_info(void)
1414{
1415	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1416	if (is_kernel_in_hyp_mode())
1417		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1418}
1419
1420static int __init arch_timer_of_init(struct device_node *np)
1421{
1422	int i, irq, ret;
1423	u32 rate;
1424	bool has_names;
1425
1426	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1427		pr_warn("multiple nodes in dt, skipping\n");
1428		return 0;
1429	}
1430
1431	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
 
 
1432
1433	has_names = of_property_read_bool(np, "interrupt-names");
1434
1435	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1436		if (has_names)
1437			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1438		else
1439			irq = of_irq_get(np, i);
1440		if (irq > 0)
1441			arch_timer_ppi[i] = irq;
1442	}
1443
1444	arch_timer_populate_kvm_info();
1445
1446	rate = arch_timer_get_cntfrq();
1447	arch_timer_of_configure_rate(rate, np);
1448
1449	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1450
1451	/* Check for globally applicable workarounds */
1452	arch_timer_check_ool_workaround(ate_match_dt, np);
1453
1454	/*
1455	 * If we cannot rely on firmware initializing the timer registers then
1456	 * we should use the physical timers instead.
1457	 */
1458	if (IS_ENABLED(CONFIG_ARM) &&
1459	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1460		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1461	else
1462		arch_timer_uses_ppi = arch_timer_select_ppi();
1463
1464	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1465		pr_err("No interrupt available, giving up\n");
1466		return -EINVAL;
1467	}
1468
1469	/* On some systems, the counter stops ticking when in suspend. */
1470	arch_counter_suspend_stop = of_property_read_bool(np,
1471							 "arm,no-tick-in-suspend");
1472
1473	ret = arch_timer_register();
1474	if (ret)
1475		return ret;
1476
1477	if (arch_timer_needs_of_probing())
1478		return 0;
1479
1480	return arch_timer_common_init();
1481}
1482TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1483TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1484
1485static u32 __init
1486arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1487{
1488	void __iomem *base;
1489	u32 rate;
1490
1491	base = ioremap(frame->cntbase, frame->size);
1492	if (!base) {
1493		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1494		return 0;
1495	}
1496
1497	rate = readl_relaxed(base + CNTFRQ);
1498
1499	iounmap(base);
1500
1501	return rate;
1502}
1503
1504static struct arch_timer_mem_frame * __init
1505arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1506{
1507	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1508	void __iomem *cntctlbase;
1509	u32 cnttidr;
1510	int i;
1511
1512	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1513	if (!cntctlbase) {
1514		pr_err("Can't map CNTCTLBase @ %pa\n",
1515			&timer_mem->cntctlbase);
1516		return NULL;
1517	}
1518
1519	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1520
1521	/*
1522	 * Try to find a virtual capable frame. Otherwise fall back to a
1523	 * physical capable frame.
1524	 */
1525	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1526		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1527			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1528
1529		frame = &timer_mem->frame[i];
1530		if (!frame->valid)
1531			continue;
1532
1533		/* Try enabling everything, and see what sticks */
1534		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1535		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1536
1537		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1538		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1539			best_frame = frame;
1540			arch_timer_mem_use_virtual = true;
1541			break;
1542		}
1543
1544		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1545			continue;
1546
1547		best_frame = frame;
1548	}
1549
1550	iounmap(cntctlbase);
1551
1552	return best_frame;
1553}
1554
1555static int __init
1556arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1557{
1558	void __iomem *base;
1559	int ret, irq = 0;
1560
1561	if (arch_timer_mem_use_virtual)
1562		irq = frame->virt_irq;
1563	else
1564		irq = frame->phys_irq;
1565
1566	if (!irq) {
1567		pr_err("Frame missing %s irq.\n",
1568		       arch_timer_mem_use_virtual ? "virt" : "phys");
1569		return -EINVAL;
1570	}
1571
1572	if (!request_mem_region(frame->cntbase, frame->size,
1573				"arch_mem_timer"))
1574		return -EBUSY;
1575
1576	base = ioremap(frame->cntbase, frame->size);
1577	if (!base) {
1578		pr_err("Can't map frame's registers\n");
1579		return -ENXIO;
1580	}
1581
1582	ret = arch_timer_mem_register(base, irq);
1583	if (ret) {
1584		iounmap(base);
1585		return ret;
1586	}
1587
 
1588	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1589
1590	return 0;
1591}
1592
1593static int __init arch_timer_mem_of_init(struct device_node *np)
1594{
1595	struct arch_timer_mem *timer_mem;
1596	struct arch_timer_mem_frame *frame;
1597	struct device_node *frame_node;
1598	struct resource res;
1599	int ret = -EINVAL;
1600	u32 rate;
1601
1602	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1603	if (!timer_mem)
1604		return -ENOMEM;
1605
1606	if (of_address_to_resource(np, 0, &res))
1607		goto out;
1608	timer_mem->cntctlbase = res.start;
1609	timer_mem->size = resource_size(&res);
1610
1611	for_each_available_child_of_node(np, frame_node) {
1612		u32 n;
1613		struct arch_timer_mem_frame *frame;
1614
1615		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1616			pr_err(FW_BUG "Missing frame-number.\n");
1617			of_node_put(frame_node);
1618			goto out;
1619		}
1620		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1621			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1622			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1623			of_node_put(frame_node);
1624			goto out;
1625		}
1626		frame = &timer_mem->frame[n];
1627
1628		if (frame->valid) {
1629			pr_err(FW_BUG "Duplicated frame-number.\n");
1630			of_node_put(frame_node);
1631			goto out;
1632		}
1633
1634		if (of_address_to_resource(frame_node, 0, &res)) {
1635			of_node_put(frame_node);
1636			goto out;
1637		}
1638		frame->cntbase = res.start;
1639		frame->size = resource_size(&res);
1640
1641		frame->virt_irq = irq_of_parse_and_map(frame_node,
1642						       ARCH_TIMER_VIRT_SPI);
1643		frame->phys_irq = irq_of_parse_and_map(frame_node,
1644						       ARCH_TIMER_PHYS_SPI);
1645
1646		frame->valid = true;
1647	}
1648
1649	frame = arch_timer_mem_find_best_frame(timer_mem);
1650	if (!frame) {
1651		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1652			&timer_mem->cntctlbase);
1653		ret = -EINVAL;
1654		goto out;
1655	}
1656
1657	rate = arch_timer_mem_frame_get_cntfrq(frame);
1658	arch_timer_of_configure_rate(rate, np);
1659
1660	ret = arch_timer_mem_frame_register(frame);
1661	if (!ret && !arch_timer_needs_of_probing())
1662		ret = arch_timer_common_init();
1663out:
1664	kfree(timer_mem);
1665	return ret;
1666}
1667TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1668		       arch_timer_mem_of_init);
1669
1670#ifdef CONFIG_ACPI_GTDT
1671static int __init
1672arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1673{
1674	struct arch_timer_mem_frame *frame;
1675	u32 rate;
1676	int i;
1677
1678	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1679		frame = &timer_mem->frame[i];
1680
1681		if (!frame->valid)
1682			continue;
1683
1684		rate = arch_timer_mem_frame_get_cntfrq(frame);
1685		if (rate == arch_timer_rate)
1686			continue;
1687
1688		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1689			&frame->cntbase,
1690			(unsigned long)rate, (unsigned long)arch_timer_rate);
1691
1692		return -EINVAL;
1693	}
1694
1695	return 0;
1696}
1697
1698static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1699{
1700	struct arch_timer_mem *timers, *timer;
1701	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1702	int timer_count, i, ret = 0;
1703
1704	timers = kcalloc(platform_timer_count, sizeof(*timers),
1705			    GFP_KERNEL);
1706	if (!timers)
1707		return -ENOMEM;
1708
1709	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1710	if (ret || !timer_count)
1711		goto out;
1712
1713	/*
1714	 * While unlikely, it's theoretically possible that none of the frames
1715	 * in a timer expose the combination of feature we want.
1716	 */
1717	for (i = 0; i < timer_count; i++) {
1718		timer = &timers[i];
1719
1720		frame = arch_timer_mem_find_best_frame(timer);
1721		if (!best_frame)
1722			best_frame = frame;
1723
1724		ret = arch_timer_mem_verify_cntfrq(timer);
1725		if (ret) {
1726			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1727			goto out;
1728		}
1729
1730		if (!best_frame) /* implies !frame */
1731			/*
1732			 * Only complain about missing suitable frames if we
1733			 * haven't already found one in a previous iteration.
1734			 */
1735			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1736				&timer->cntctlbase);
1737	}
1738
1739	if (best_frame)
1740		ret = arch_timer_mem_frame_register(best_frame);
1741out:
1742	kfree(timers);
1743	return ret;
1744}
1745
1746/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1747static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1748{
1749	int ret, platform_timer_count;
1750
1751	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1752		pr_warn("already initialized, skipping\n");
1753		return -EINVAL;
1754	}
1755
1756	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1757
1758	ret = acpi_gtdt_init(table, &platform_timer_count);
1759	if (ret)
 
1760		return ret;
 
1761
1762	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1763		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1764
1765	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1766		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1767
1768	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1769		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1770
1771	arch_timer_populate_kvm_info();
1772
1773	/*
1774	 * When probing via ACPI, we have no mechanism to override the sysreg
1775	 * CNTFRQ value. This *must* be correct.
1776	 */
1777	arch_timer_rate = arch_timer_get_cntfrq();
1778	ret = validate_timer_rate();
1779	if (ret) {
1780		pr_err(FW_BUG "frequency not available.\n");
1781		return ret;
1782	}
1783
1784	arch_timer_uses_ppi = arch_timer_select_ppi();
1785	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1786		pr_err("No interrupt available, giving up\n");
1787		return -EINVAL;
1788	}
1789
1790	/* Always-on capability */
1791	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1792
1793	/* Check for globally applicable workarounds */
1794	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1795
1796	ret = arch_timer_register();
1797	if (ret)
1798		return ret;
1799
1800	if (platform_timer_count &&
1801	    arch_timer_mem_acpi_init(platform_timer_count))
1802		pr_err("Failed to initialize memory-mapped timer.\n");
1803
1804	return arch_timer_common_init();
1805}
1806TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1807#endif
1808
1809int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1810				 struct clocksource **cs)
1811{
1812	struct arm_smccc_res hvc_res;
1813	u32 ptp_counter;
1814	ktime_t ktime;
1815
1816	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1817		return -EOPNOTSUPP;
1818
1819	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1820		ptp_counter = KVM_PTP_VIRT_COUNTER;
1821	else
1822		ptp_counter = KVM_PTP_PHYS_COUNTER;
1823
1824	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1825			     ptp_counter, &hvc_res);
1826
1827	if ((int)(hvc_res.a0) < 0)
1828		return -EOPNOTSUPP;
1829
1830	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1831	*ts = ktime_to_timespec64(ktime);
1832	if (cycle)
1833		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1834	if (cs)
1835		*cs = &clocksource_counter;
1836
1837	return 0;
1838}
1839EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
v4.17
 
   1/*
   2 *  linux/drivers/clocksource/arm_arch_timer.c
   3 *
   4 *  Copyright (C) 2011 ARM Ltd.
   5 *  All Rights Reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)	"arm_arch_timer: " fmt
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/device.h>
  17#include <linux/smp.h>
  18#include <linux/cpu.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/clockchips.h>
  21#include <linux/clocksource.h>
 
  22#include <linux/interrupt.h>
 
  23#include <linux/of_irq.h>
  24#include <linux/of_address.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
  27#include <linux/sched/clock.h>
  28#include <linux/sched_clock.h>
  29#include <linux/acpi.h>
 
 
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#undef pr_fmt
  37#define pr_fmt(fmt) "arch_timer: " fmt
  38
  39#define CNTTIDR		0x08
  40#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  41
  42#define CNTACR(n)	(0x40 + ((n) * 4))
  43#define CNTACR_RPCT	BIT(0)
  44#define CNTACR_RVCT	BIT(1)
  45#define CNTACR_RFRQ	BIT(2)
  46#define CNTACR_RVOFF	BIT(3)
  47#define CNTACR_RWVT	BIT(4)
  48#define CNTACR_RWPT	BIT(5)
  49
 
  50#define CNTVCT_LO	0x08
  51#define CNTVCT_HI	0x0c
  52#define CNTFRQ		0x10
  53#define CNTP_TVAL	0x28
  54#define CNTP_CTL	0x2c
  55#define CNTV_TVAL	0x38
  56#define CNTV_CTL	0x3c
  57
 
 
 
 
 
 
  58static unsigned arch_timers_present __initdata;
  59
  60static void __iomem *arch_counter_base;
  61
  62struct arch_timer {
  63	void __iomem *base;
  64	struct clock_event_device evt;
  65};
  66
 
 
  67#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  68
  69static u32 arch_timer_rate;
  70static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
 
 
 
 
 
 
 
 
  71
  72static struct clock_event_device __percpu *arch_timer_evt;
  73
  74static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  75static bool arch_timer_c3stop;
  76static bool arch_timer_mem_use_virtual;
  77static bool arch_counter_suspend_stop;
  78static bool vdso_default = true;
 
 
 
 
  79
  80static cpumask_t evtstrm_available = CPU_MASK_NONE;
  81static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  82
  83static int __init early_evtstrm_cfg(char *buf)
  84{
  85	return strtobool(buf, &evtstrm_enable);
  86}
  87early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  88
  89/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90 * Architected system timer support.
  91 */
  92
  93static __always_inline
  94void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  95			  struct clock_event_device *clk)
  96{
  97	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  98		struct arch_timer *timer = to_arch_timer(clk);
  99		switch (reg) {
 100		case ARCH_TIMER_REG_CTRL:
 101			writel_relaxed(val, timer->base + CNTP_CTL);
 102			break;
 103		case ARCH_TIMER_REG_TVAL:
 104			writel_relaxed(val, timer->base + CNTP_TVAL);
 
 
 
 
 105			break;
 
 
 106		}
 107	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 108		struct arch_timer *timer = to_arch_timer(clk);
 109		switch (reg) {
 110		case ARCH_TIMER_REG_CTRL:
 111			writel_relaxed(val, timer->base + CNTV_CTL);
 112			break;
 113		case ARCH_TIMER_REG_TVAL:
 114			writel_relaxed(val, timer->base + CNTV_TVAL);
 
 115			break;
 
 
 116		}
 117	} else {
 118		arch_timer_reg_write_cp15(access, reg, val);
 119	}
 120}
 121
 122static __always_inline
 123u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 124			struct clock_event_device *clk)
 125{
 126	u32 val;
 127
 128	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 129		struct arch_timer *timer = to_arch_timer(clk);
 130		switch (reg) {
 131		case ARCH_TIMER_REG_CTRL:
 132			val = readl_relaxed(timer->base + CNTP_CTL);
 133			break;
 134		case ARCH_TIMER_REG_TVAL:
 135			val = readl_relaxed(timer->base + CNTP_TVAL);
 136			break;
 137		}
 138	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 139		struct arch_timer *timer = to_arch_timer(clk);
 140		switch (reg) {
 141		case ARCH_TIMER_REG_CTRL:
 142			val = readl_relaxed(timer->base + CNTV_CTL);
 143			break;
 144		case ARCH_TIMER_REG_TVAL:
 145			val = readl_relaxed(timer->base + CNTV_TVAL);
 146			break;
 147		}
 148	} else {
 149		val = arch_timer_reg_read_cp15(access, reg);
 150	}
 151
 152	return val;
 153}
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155/*
 156 * Default to cp15 based access because arm64 uses this function for
 157 * sched_clock() before DT is probed and the cp15 method is guaranteed
 158 * to exist on arm64. arm doesn't use this before DT is probed so even
 159 * if we don't have the cp15 accessors we won't have a problem.
 160 */
 161u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 162EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 163
 164static u64 arch_counter_read(struct clocksource *cs)
 165{
 166	return arch_timer_read_counter();
 167}
 168
 169static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 170{
 171	return arch_timer_read_counter();
 172}
 173
 174static struct clocksource clocksource_counter = {
 175	.name	= "arch_sys_counter",
 
 176	.rating	= 400,
 177	.read	= arch_counter_read,
 178	.mask	= CLOCKSOURCE_MASK(56),
 179	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 180};
 181
 182static struct cyclecounter cyclecounter __ro_after_init = {
 183	.read	= arch_counter_read_cc,
 184	.mask	= CLOCKSOURCE_MASK(56),
 185};
 186
 187struct ate_acpi_oem_info {
 188	char oem_id[ACPI_OEM_ID_SIZE + 1];
 189	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 190	u32 oem_revision;
 191};
 192
 193#ifdef CONFIG_FSL_ERRATUM_A008585
 194/*
 195 * The number of retries is an arbitrary value well beyond the highest number
 196 * of iterations the loop has been observed to take.
 197 */
 198#define __fsl_a008585_read_reg(reg) ({			\
 199	u64 _old, _new;					\
 200	int _retries = 200;				\
 201							\
 202	do {						\
 203		_old = read_sysreg(reg);		\
 204		_new = read_sysreg(reg);		\
 205		_retries--;				\
 206	} while (unlikely(_old != _new) && _retries);	\
 207							\
 208	WARN_ON_ONCE(!_retries);			\
 209	_new;						\
 210})
 211
 212static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 213{
 214	return __fsl_a008585_read_reg(cntp_tval_el0);
 215}
 216
 217static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 218{
 219	return __fsl_a008585_read_reg(cntv_tval_el0);
 220}
 221
 222static u64 notrace fsl_a008585_read_cntpct_el0(void)
 223{
 224	return __fsl_a008585_read_reg(cntpct_el0);
 225}
 226
 227static u64 notrace fsl_a008585_read_cntvct_el0(void)
 228{
 229	return __fsl_a008585_read_reg(cntvct_el0);
 230}
 231#endif
 232
 233#ifdef CONFIG_HISILICON_ERRATUM_161010101
 234/*
 235 * Verify whether the value of the second read is larger than the first by
 236 * less than 32 is the only way to confirm the value is correct, so clear the
 237 * lower 5 bits to check whether the difference is greater than 32 or not.
 238 * Theoretically the erratum should not occur more than twice in succession
 239 * when reading the system counter, but it is possible that some interrupts
 240 * may lead to more than twice read errors, triggering the warning, so setting
 241 * the number of retries far beyond the number of iterations the loop has been
 242 * observed to take.
 243 */
 244#define __hisi_161010101_read_reg(reg) ({				\
 245	u64 _old, _new;						\
 246	int _retries = 50;					\
 247								\
 248	do {							\
 249		_old = read_sysreg(reg);			\
 250		_new = read_sysreg(reg);			\
 251		_retries--;					\
 252	} while (unlikely((_new - _old) >> 5) && _retries);	\
 253								\
 254	WARN_ON_ONCE(!_retries);				\
 255	_new;							\
 256})
 257
 258static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 259{
 260	return __hisi_161010101_read_reg(cntp_tval_el0);
 261}
 262
 263static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 264{
 265	return __hisi_161010101_read_reg(cntv_tval_el0);
 266}
 267
 268static u64 notrace hisi_161010101_read_cntpct_el0(void)
 269{
 270	return __hisi_161010101_read_reg(cntpct_el0);
 271}
 272
 273static u64 notrace hisi_161010101_read_cntvct_el0(void)
 274{
 275	return __hisi_161010101_read_reg(cntvct_el0);
 276}
 277
 278static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 279	/*
 280	 * Note that trailing spaces are required to properly match
 281	 * the OEM table information.
 282	 */
 283	{
 284		.oem_id		= "HISI  ",
 285		.oem_table_id	= "HIP05   ",
 286		.oem_revision	= 0,
 287	},
 288	{
 289		.oem_id		= "HISI  ",
 290		.oem_table_id	= "HIP06   ",
 291		.oem_revision	= 0,
 292	},
 293	{
 294		.oem_id		= "HISI  ",
 295		.oem_table_id	= "HIP07   ",
 296		.oem_revision	= 0,
 297	},
 298	{ /* Sentinel indicating the end of the OEM array */ },
 299};
 300#endif
 301
 302#ifdef CONFIG_ARM64_ERRATUM_858921
 303static u64 notrace arm64_858921_read_cntpct_el0(void)
 304{
 305	u64 old, new;
 306
 307	old = read_sysreg(cntpct_el0);
 308	new = read_sysreg(cntpct_el0);
 309	return (((old ^ new) >> 32) & 1) ? old : new;
 310}
 311
 312static u64 notrace arm64_858921_read_cntvct_el0(void)
 313{
 314	u64 old, new;
 315
 316	old = read_sysreg(cntvct_el0);
 317	new = read_sysreg(cntvct_el0);
 318	return (((old ^ new) >> 32) & 1) ? old : new;
 319}
 320#endif
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 323DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 324EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 325
 326DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
 327EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
 328
 329static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 330						struct clock_event_device *clk)
 
 
 
 
 
 331{
 332	unsigned long ctrl;
 333	u64 cval;
 334
 335	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 336	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 337	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 338
 339	if (access == ARCH_TIMER_PHYS_ACCESS) {
 340		cval = evt + arch_counter_get_cntpct();
 341		write_sysreg(cval, cntp_cval_el0);
 342	} else {
 343		cval = evt + arch_counter_get_cntvct();
 344		write_sysreg(cval, cntv_cval_el0);
 345	}
 346
 347	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 348}
 349
 350static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 351					    struct clock_event_device *clk)
 352{
 353	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 354	return 0;
 355}
 356
 357static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 358					    struct clock_event_device *clk)
 359{
 360	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 361	return 0;
 362}
 363
 364static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 365#ifdef CONFIG_FSL_ERRATUM_A008585
 366	{
 367		.match_type = ate_match_dt,
 368		.id = "fsl,erratum-a008585",
 369		.desc = "Freescale erratum a005858",
 370		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 371		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 372		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 373		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 374		.set_next_event_phys = erratum_set_next_event_tval_phys,
 375		.set_next_event_virt = erratum_set_next_event_tval_virt,
 376	},
 377#endif
 378#ifdef CONFIG_HISILICON_ERRATUM_161010101
 379	{
 380		.match_type = ate_match_dt,
 381		.id = "hisilicon,erratum-161010101",
 382		.desc = "HiSilicon erratum 161010101",
 383		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 384		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 385		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 386		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 387		.set_next_event_phys = erratum_set_next_event_tval_phys,
 388		.set_next_event_virt = erratum_set_next_event_tval_virt,
 389	},
 390	{
 391		.match_type = ate_match_acpi_oem_info,
 392		.id = hisi_161010101_oem_info,
 393		.desc = "HiSilicon erratum 161010101",
 394		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 395		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 396		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 397		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 398		.set_next_event_phys = erratum_set_next_event_tval_phys,
 399		.set_next_event_virt = erratum_set_next_event_tval_virt,
 400	},
 401#endif
 402#ifdef CONFIG_ARM64_ERRATUM_858921
 403	{
 404		.match_type = ate_match_local_cap_id,
 405		.id = (void *)ARM64_WORKAROUND_858921,
 406		.desc = "ARM erratum 858921",
 407		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 408		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409	},
 410#endif
 411};
 412
 413typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 414			       const void *);
 415
 416static
 417bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 418				 const void *arg)
 419{
 420	const struct device_node *np = arg;
 421
 422	return of_property_read_bool(np, wa->id);
 423}
 424
 425static
 426bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 427					const void *arg)
 428{
 429	return this_cpu_has_cap((uintptr_t)wa->id);
 430}
 431
 432
 433static
 434bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 435				       const void *arg)
 436{
 437	static const struct ate_acpi_oem_info empty_oem_info = {};
 438	const struct ate_acpi_oem_info *info = wa->id;
 439	const struct acpi_table_header *table = arg;
 440
 441	/* Iterate over the ACPI OEM info array, looking for a match */
 442	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 443		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 444		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 445		    info->oem_revision == table->oem_revision)
 446			return true;
 447
 448		info++;
 449	}
 450
 451	return false;
 452}
 453
 454static const struct arch_timer_erratum_workaround *
 455arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 456			  ate_match_fn_t match_fn,
 457			  void *arg)
 458{
 459	int i;
 460
 461	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 462		if (ool_workarounds[i].match_type != type)
 463			continue;
 464
 465		if (match_fn(&ool_workarounds[i], arg))
 466			return &ool_workarounds[i];
 467	}
 468
 469	return NULL;
 470}
 471
 472static
 473void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 474				  bool local)
 475{
 476	int i;
 477
 478	if (local) {
 479		__this_cpu_write(timer_unstable_counter_workaround, wa);
 480	} else {
 481		for_each_possible_cpu(i)
 482			per_cpu(timer_unstable_counter_workaround, i) = wa;
 483	}
 484
 485	/*
 486	 * Use the locked version, as we're called from the CPU
 487	 * hotplug framework. Otherwise, we end-up in deadlock-land.
 488	 */
 489	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
 490
 491	/*
 492	 * Don't use the vdso fastpath if errata require using the
 493	 * out-of-line counter accessor. We may change our mind pretty
 494	 * late in the game (with a per-CPU erratum, for example), so
 495	 * change both the default value and the vdso itself.
 496	 */
 497	if (wa->read_cntvct_el0) {
 498		clocksource_counter.archdata.vdso_direct = false;
 499		vdso_default = false;
 
 
 
 500	}
 501}
 502
 503static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 504					    void *arg)
 505{
 506	const struct arch_timer_erratum_workaround *wa;
 507	ate_match_fn_t match_fn = NULL;
 508	bool local = false;
 509
 510	switch (type) {
 511	case ate_match_dt:
 512		match_fn = arch_timer_check_dt_erratum;
 513		break;
 514	case ate_match_local_cap_id:
 515		match_fn = arch_timer_check_local_cap_erratum;
 516		local = true;
 517		break;
 518	case ate_match_acpi_oem_info:
 519		match_fn = arch_timer_check_acpi_oem_erratum;
 520		break;
 521	default:
 522		WARN_ON(1);
 523		return;
 524	}
 525
 526	wa = arch_timer_iterate_errata(type, match_fn, arg);
 527	if (!wa)
 528		return;
 529
 530	if (needs_unstable_timer_counter_workaround()) {
 531		const struct arch_timer_erratum_workaround *__wa;
 532		__wa = __this_cpu_read(timer_unstable_counter_workaround);
 533		if (__wa && wa != __wa)
 534			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 535				wa->desc, __wa->desc);
 536
 537		if (__wa)
 538			return;
 539	}
 540
 541	arch_timer_enable_workaround(wa, local);
 542	pr_info("Enabling %s workaround for %s\n",
 543		local ? "local" : "global", wa->desc);
 544}
 545
 546#define erratum_handler(fn, r, ...)					\
 547({									\
 548	bool __val;							\
 549	if (needs_unstable_timer_counter_workaround()) {		\
 550		const struct arch_timer_erratum_workaround *__wa;	\
 551		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
 552		if (__wa && __wa->fn) {					\
 553			r = __wa->fn(__VA_ARGS__);			\
 554			__val = true;					\
 555		} else {						\
 556			__val = false;					\
 557		}							\
 558	} else {							\
 559		__val = false;						\
 560	}								\
 561	__val;								\
 562})
 563
 564static bool arch_timer_this_cpu_has_cntvct_wa(void)
 565{
 566	const struct arch_timer_erratum_workaround *wa;
 
 567
 568	wa = __this_cpu_read(timer_unstable_counter_workaround);
 569	return wa && wa->read_cntvct_el0;
 
 570}
 571#else
 572#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 573#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
 574#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
 575#define erratum_handler(fn, r, ...)			({false;})
 576#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 
 577#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 578
 579static __always_inline irqreturn_t timer_handler(const int access,
 580					struct clock_event_device *evt)
 581{
 582	unsigned long ctrl;
 583
 584	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 585	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 586		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 587		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 588		evt->event_handler(evt);
 589		return IRQ_HANDLED;
 590	}
 591
 592	return IRQ_NONE;
 593}
 594
 595static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 596{
 597	struct clock_event_device *evt = dev_id;
 598
 599	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 600}
 601
 602static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 603{
 604	struct clock_event_device *evt = dev_id;
 605
 606	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 607}
 608
 609static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 610{
 611	struct clock_event_device *evt = dev_id;
 612
 613	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 614}
 615
 616static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 617{
 618	struct clock_event_device *evt = dev_id;
 619
 620	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 621}
 622
 623static __always_inline int timer_shutdown(const int access,
 624					  struct clock_event_device *clk)
 625{
 626	unsigned long ctrl;
 627
 628	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 629	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 630	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 631
 632	return 0;
 633}
 634
 635static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 636{
 637	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 638}
 639
 640static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 641{
 642	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 643}
 644
 645static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 646{
 647	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 648}
 649
 650static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 651{
 652	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 653}
 654
 655static __always_inline void set_next_event(const int access, unsigned long evt,
 656					   struct clock_event_device *clk)
 657{
 658	unsigned long ctrl;
 
 
 659	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 660	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 661	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 662	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 
 
 
 
 
 
 663	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 664}
 665
 666static int arch_timer_set_next_event_virt(unsigned long evt,
 667					  struct clock_event_device *clk)
 668{
 669	int ret;
 670
 671	if (erratum_handler(set_next_event_virt, ret, evt, clk))
 672		return ret;
 673
 674	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 675	return 0;
 676}
 677
 678static int arch_timer_set_next_event_phys(unsigned long evt,
 679					  struct clock_event_device *clk)
 680{
 681	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683	if (erratum_handler(set_next_event_phys, ret, evt, clk))
 684		return ret;
 
 
 685
 686	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 687	return 0;
 688}
 689
 690static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 691					      struct clock_event_device *clk)
 692{
 693	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 694	return 0;
 695}
 696
 697static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 698					      struct clock_event_device *clk)
 699{
 700	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 701	return 0;
 702}
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704static void __arch_timer_setup(unsigned type,
 705			       struct clock_event_device *clk)
 706{
 
 
 707	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 708
 709	if (type == ARCH_TIMER_TYPE_CP15) {
 
 
 
 
 710		if (arch_timer_c3stop)
 711			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 712		clk->name = "arch_sys_timer";
 713		clk->rating = 450;
 714		clk->cpumask = cpumask_of(smp_processor_id());
 715		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 716		switch (arch_timer_uses_ppi) {
 717		case ARCH_TIMER_VIRT_PPI:
 718			clk->set_state_shutdown = arch_timer_shutdown_virt;
 719			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 720			clk->set_next_event = arch_timer_set_next_event_virt;
 721			break;
 722		case ARCH_TIMER_PHYS_SECURE_PPI:
 723		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 724		case ARCH_TIMER_HYP_PPI:
 725			clk->set_state_shutdown = arch_timer_shutdown_phys;
 726			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 727			clk->set_next_event = arch_timer_set_next_event_phys;
 728			break;
 729		default:
 730			BUG();
 731		}
 732
 733		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 
 734	} else {
 735		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 736		clk->name = "arch_mem_timer";
 737		clk->rating = 400;
 738		clk->cpumask = cpu_all_mask;
 739		if (arch_timer_mem_use_virtual) {
 740			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 741			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 742			clk->set_next_event =
 743				arch_timer_set_next_event_virt_mem;
 744		} else {
 745			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 746			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 747			clk->set_next_event =
 748				arch_timer_set_next_event_phys_mem;
 749		}
 
 
 750	}
 751
 752	clk->set_state_shutdown(clk);
 753
 754	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 755}
 756
 757static void arch_timer_evtstrm_enable(int divider)
 758{
 759	u32 cntkctl = arch_timer_get_cntkctl();
 760
 
 
 
 
 
 
 
 
 
 761	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 762	/* Set the divider and enable virtual event stream */
 763	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 764			| ARCH_TIMER_VIRT_EVT_EN;
 765	arch_timer_set_cntkctl(cntkctl);
 766	elf_hwcap |= HWCAP_EVTSTRM;
 767#ifdef CONFIG_COMPAT
 768	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
 769#endif
 770	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 771}
 772
 773static void arch_timer_configure_evtstream(void)
 774{
 775	int evt_stream_div, pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777	/* Find the closest power of two to the divisor */
 778	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 779	pos = fls(evt_stream_div);
 780	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 781		pos--;
 782	/* enable event stream */
 783	arch_timer_evtstrm_enable(min(pos, 15));
 
 
 
 
 
 
 
 
 
 
 
 
 784}
 785
 
 
 
 
 
 
 
 
 
 
 
 
 786static void arch_counter_set_user_access(void)
 787{
 788	u32 cntkctl = arch_timer_get_cntkctl();
 789
 790	/* Disable user access to the timers and both counters */
 791	/* Also disable virtual event stream */
 792	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 793			| ARCH_TIMER_USR_VT_ACCESS_EN
 794		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 795			| ARCH_TIMER_VIRT_EVT_EN
 796			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 797
 798	/*
 799	 * Enable user access to the virtual counter if it doesn't
 800	 * need to be workaround. The vdso may have been already
 801	 * disabled though.
 802	 */
 803	if (arch_timer_this_cpu_has_cntvct_wa())
 804		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 805	else
 806		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 807
 808	arch_timer_set_cntkctl(cntkctl);
 809}
 810
 811static bool arch_timer_has_nonsecure_ppi(void)
 812{
 813	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 814		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 815}
 816
 817static u32 check_ppi_trigger(int irq)
 818{
 819	u32 flags = irq_get_trigger_type(irq);
 820
 821	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 822		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 823		pr_warn("WARNING: Please fix your firmware\n");
 824		flags = IRQF_TRIGGER_LOW;
 825	}
 826
 827	return flags;
 828}
 829
 830static int arch_timer_starting_cpu(unsigned int cpu)
 831{
 832	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 833	u32 flags;
 834
 835	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 836
 837	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 838	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 839
 840	if (arch_timer_has_nonsecure_ppi()) {
 841		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 842		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 843				  flags);
 844	}
 845
 846	arch_counter_set_user_access();
 847	if (evtstrm_enable)
 848		arch_timer_configure_evtstream();
 
 
 
 
 
 
 
 
 
 849
 850	return 0;
 851}
 852
 853/*
 854 * For historical reasons, when probing with DT we use whichever (non-zero)
 855 * rate was probed first, and don't verify that others match. If the first node
 856 * probed has a clock-frequency property, this overrides the HW register.
 857 */
 858static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 859{
 860	/* Who has more than one independent system counter? */
 861	if (arch_timer_rate)
 862		return;
 863
 864	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 865		arch_timer_rate = rate;
 866
 867	/* Check the timer frequency. */
 868	if (arch_timer_rate == 0)
 869		pr_warn("frequency not available\n");
 870}
 871
 872static void arch_timer_banner(unsigned type)
 873{
 874	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 875		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 876		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 877			" and " : "",
 878		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 879		(unsigned long)arch_timer_rate / 1000000,
 880		(unsigned long)(arch_timer_rate / 10000) % 100,
 881		type & ARCH_TIMER_TYPE_CP15 ?
 882			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 883			"",
 884		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 885		type & ARCH_TIMER_TYPE_MEM ?
 886			arch_timer_mem_use_virtual ? "virt" : "phys" :
 887			"");
 888}
 889
 890u32 arch_timer_get_rate(void)
 891{
 892	return arch_timer_rate;
 893}
 894
 895bool arch_timer_evtstrm_available(void)
 896{
 897	/*
 898	 * We might get called from a preemptible context. This is fine
 899	 * because availability of the event stream should be always the same
 900	 * for a preemptible context and context where we might resume a task.
 901	 */
 902	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 903}
 904
 905static u64 arch_counter_get_cntvct_mem(void)
 906{
 907	u32 vct_lo, vct_hi, tmp_hi;
 908
 909	do {
 910		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 911		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 912		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 913	} while (vct_hi != tmp_hi);
 914
 915	return ((u64) vct_hi << 32) | vct_lo;
 916}
 917
 918static struct arch_timer_kvm_info arch_timer_kvm_info;
 919
 920struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 921{
 922	return &arch_timer_kvm_info;
 923}
 924
 925static void __init arch_counter_register(unsigned type)
 926{
 
 927	u64 start_count;
 
 928
 929	/* Register the CP15 based counter if we have one */
 930	if (type & ARCH_TIMER_TYPE_CP15) {
 
 
 931		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 932		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
 933			arch_timer_read_counter = arch_counter_get_cntvct;
 934		else
 935			arch_timer_read_counter = arch_counter_get_cntpct;
 
 
 
 
 
 
 
 
 
 
 
 
 
 936
 937		clocksource_counter.archdata.vdso_direct = vdso_default;
 
 938	} else {
 939		arch_timer_read_counter = arch_counter_get_cntvct_mem;
 
 940	}
 941
 
 
 
 
 942	if (!arch_counter_suspend_stop)
 943		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 944	start_count = arch_timer_read_counter();
 945	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 946	cyclecounter.mult = clocksource_counter.mult;
 947	cyclecounter.shift = clocksource_counter.shift;
 948	timecounter_init(&arch_timer_kvm_info.timecounter,
 949			 &cyclecounter, start_count);
 950
 951	/* 56 bits minimum, so we assume worst case rollover */
 952	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 953}
 954
 955static void arch_timer_stop(struct clock_event_device *clk)
 956{
 957	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
 958
 959	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
 960	if (arch_timer_has_nonsecure_ppi())
 961		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 962
 963	clk->set_state_shutdown(clk);
 964}
 965
 966static int arch_timer_dying_cpu(unsigned int cpu)
 967{
 968	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 969
 970	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 971
 972	arch_timer_stop(clk);
 973	return 0;
 974}
 975
 976#ifdef CONFIG_CPU_PM
 977static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
 978static int arch_timer_cpu_pm_notify(struct notifier_block *self,
 979				    unsigned long action, void *hcpu)
 980{
 981	if (action == CPU_PM_ENTER) {
 982		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
 983
 984		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 985	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
 986		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
 987
 988		if (elf_hwcap & HWCAP_EVTSTRM)
 989			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 990	}
 991	return NOTIFY_OK;
 992}
 993
 994static struct notifier_block arch_timer_cpu_pm_notifier = {
 995	.notifier_call = arch_timer_cpu_pm_notify,
 996};
 997
 998static int __init arch_timer_cpu_pm_init(void)
 999{
1000	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001}
1002
1003static void __init arch_timer_cpu_pm_deinit(void)
1004{
1005	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006}
1007
1008#else
1009static int __init arch_timer_cpu_pm_init(void)
1010{
1011	return 0;
1012}
1013
1014static void __init arch_timer_cpu_pm_deinit(void)
1015{
1016}
1017#endif
1018
1019static int __init arch_timer_register(void)
1020{
1021	int err;
1022	int ppi;
1023
1024	arch_timer_evt = alloc_percpu(struct clock_event_device);
1025	if (!arch_timer_evt) {
1026		err = -ENOMEM;
1027		goto out;
1028	}
1029
1030	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031	switch (arch_timer_uses_ppi) {
1032	case ARCH_TIMER_VIRT_PPI:
1033		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034					 "arch_timer", arch_timer_evt);
1035		break;
1036	case ARCH_TIMER_PHYS_SECURE_PPI:
1037	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039					 "arch_timer", arch_timer_evt);
1040		if (!err && arch_timer_has_nonsecure_ppi()) {
1041			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043						 "arch_timer", arch_timer_evt);
1044			if (err)
1045				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046						arch_timer_evt);
1047		}
1048		break;
1049	case ARCH_TIMER_HYP_PPI:
1050		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051					 "arch_timer", arch_timer_evt);
1052		break;
1053	default:
1054		BUG();
1055	}
1056
1057	if (err) {
1058		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059		goto out_free;
1060	}
1061
1062	err = arch_timer_cpu_pm_init();
1063	if (err)
1064		goto out_unreg_notify;
1065
1066	/* Register and immediately configure the timer on the boot CPU */
1067	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068				"clockevents/arm/arch_timer:starting",
1069				arch_timer_starting_cpu, arch_timer_dying_cpu);
1070	if (err)
1071		goto out_unreg_cpupm;
1072	return 0;
1073
1074out_unreg_cpupm:
1075	arch_timer_cpu_pm_deinit();
1076
1077out_unreg_notify:
1078	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079	if (arch_timer_has_nonsecure_ppi())
1080		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081				arch_timer_evt);
1082
1083out_free:
1084	free_percpu(arch_timer_evt);
 
1085out:
1086	return err;
1087}
1088
1089static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090{
1091	int ret;
1092	irq_handler_t func;
1093	struct arch_timer *t;
1094
1095	t = kzalloc(sizeof(*t), GFP_KERNEL);
1096	if (!t)
1097		return -ENOMEM;
1098
1099	t->base = base;
1100	t->evt.irq = irq;
1101	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103	if (arch_timer_mem_use_virtual)
1104		func = arch_timer_handler_virt_mem;
1105	else
1106		func = arch_timer_handler_phys_mem;
1107
1108	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109	if (ret) {
1110		pr_err("Failed to request mem timer irq\n");
1111		kfree(t);
 
1112	}
1113
1114	return ret;
1115}
1116
1117static const struct of_device_id arch_timer_of_match[] __initconst = {
1118	{ .compatible   = "arm,armv7-timer",    },
1119	{ .compatible   = "arm,armv8-timer",    },
1120	{},
1121};
1122
1123static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124	{ .compatible   = "arm,armv7-timer-mem", },
1125	{},
1126};
1127
1128static bool __init arch_timer_needs_of_probing(void)
1129{
1130	struct device_node *dn;
1131	bool needs_probing = false;
1132	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134	/* We have two timers, and both device-tree nodes are probed. */
1135	if ((arch_timers_present & mask) == mask)
1136		return false;
1137
1138	/*
1139	 * Only one type of timer is probed,
1140	 * check if we have another type of timer node in device-tree.
1141	 */
1142	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144	else
1145		dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147	if (dn && of_device_is_available(dn))
1148		needs_probing = true;
1149
1150	of_node_put(dn);
1151
1152	return needs_probing;
1153}
1154
1155static int __init arch_timer_common_init(void)
1156{
1157	arch_timer_banner(arch_timers_present);
1158	arch_counter_register(arch_timers_present);
1159	return arch_timer_arch_init();
1160}
1161
1162/**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
1180static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181{
1182	if (is_kernel_in_hyp_mode())
1183		return ARCH_TIMER_HYP_PPI;
1184
1185	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186		return ARCH_TIMER_VIRT_PPI;
1187
1188	if (IS_ENABLED(CONFIG_ARM64))
1189		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191	return ARCH_TIMER_PHYS_SECURE_PPI;
1192}
1193
 
 
 
 
 
 
 
1194static int __init arch_timer_of_init(struct device_node *np)
1195{
1196	int i, ret;
1197	u32 rate;
 
1198
1199	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200		pr_warn("multiple nodes in dt, skipping\n");
1201		return 0;
1202	}
1203
1204	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
 
 
 
 
 
 
 
 
 
 
 
1209
1210	rate = arch_timer_get_cntfrq();
1211	arch_timer_of_configure_rate(rate, np);
1212
1213	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215	/* Check for globally applicable workarounds */
1216	arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218	/*
1219	 * If we cannot rely on firmware initializing the timer registers then
1220	 * we should use the physical timers instead.
1221	 */
1222	if (IS_ENABLED(CONFIG_ARM) &&
1223	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225	else
1226		arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229		pr_err("No interrupt available, giving up\n");
1230		return -EINVAL;
1231	}
1232
1233	/* On some systems, the counter stops ticking when in suspend. */
1234	arch_counter_suspend_stop = of_property_read_bool(np,
1235							 "arm,no-tick-in-suspend");
1236
1237	ret = arch_timer_register();
1238	if (ret)
1239		return ret;
1240
1241	if (arch_timer_needs_of_probing())
1242		return 0;
1243
1244	return arch_timer_common_init();
1245}
1246TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249static u32 __init
1250arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251{
1252	void __iomem *base;
1253	u32 rate;
1254
1255	base = ioremap(frame->cntbase, frame->size);
1256	if (!base) {
1257		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258		return 0;
1259	}
1260
1261	rate = readl_relaxed(base + CNTFRQ);
1262
1263	iounmap(base);
1264
1265	return rate;
1266}
1267
1268static struct arch_timer_mem_frame * __init
1269arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270{
1271	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272	void __iomem *cntctlbase;
1273	u32 cnttidr;
1274	int i;
1275
1276	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277	if (!cntctlbase) {
1278		pr_err("Can't map CNTCTLBase @ %pa\n",
1279			&timer_mem->cntctlbase);
1280		return NULL;
1281	}
1282
1283	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285	/*
1286	 * Try to find a virtual capable frame. Otherwise fall back to a
1287	 * physical capable frame.
1288	 */
1289	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293		frame = &timer_mem->frame[i];
1294		if (!frame->valid)
1295			continue;
1296
1297		/* Try enabling everything, and see what sticks */
1298		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303			best_frame = frame;
1304			arch_timer_mem_use_virtual = true;
1305			break;
1306		}
1307
1308		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309			continue;
1310
1311		best_frame = frame;
1312	}
1313
1314	iounmap(cntctlbase);
1315
1316	return best_frame;
1317}
1318
1319static int __init
1320arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321{
1322	void __iomem *base;
1323	int ret, irq = 0;
1324
1325	if (arch_timer_mem_use_virtual)
1326		irq = frame->virt_irq;
1327	else
1328		irq = frame->phys_irq;
1329
1330	if (!irq) {
1331		pr_err("Frame missing %s irq.\n",
1332		       arch_timer_mem_use_virtual ? "virt" : "phys");
1333		return -EINVAL;
1334	}
1335
1336	if (!request_mem_region(frame->cntbase, frame->size,
1337				"arch_mem_timer"))
1338		return -EBUSY;
1339
1340	base = ioremap(frame->cntbase, frame->size);
1341	if (!base) {
1342		pr_err("Can't map frame's registers\n");
1343		return -ENXIO;
1344	}
1345
1346	ret = arch_timer_mem_register(base, irq);
1347	if (ret) {
1348		iounmap(base);
1349		return ret;
1350	}
1351
1352	arch_counter_base = base;
1353	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355	return 0;
1356}
1357
1358static int __init arch_timer_mem_of_init(struct device_node *np)
1359{
1360	struct arch_timer_mem *timer_mem;
1361	struct arch_timer_mem_frame *frame;
1362	struct device_node *frame_node;
1363	struct resource res;
1364	int ret = -EINVAL;
1365	u32 rate;
1366
1367	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368	if (!timer_mem)
1369		return -ENOMEM;
1370
1371	if (of_address_to_resource(np, 0, &res))
1372		goto out;
1373	timer_mem->cntctlbase = res.start;
1374	timer_mem->size = resource_size(&res);
1375
1376	for_each_available_child_of_node(np, frame_node) {
1377		u32 n;
1378		struct arch_timer_mem_frame *frame;
1379
1380		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381			pr_err(FW_BUG "Missing frame-number.\n");
1382			of_node_put(frame_node);
1383			goto out;
1384		}
1385		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388			of_node_put(frame_node);
1389			goto out;
1390		}
1391		frame = &timer_mem->frame[n];
1392
1393		if (frame->valid) {
1394			pr_err(FW_BUG "Duplicated frame-number.\n");
1395			of_node_put(frame_node);
1396			goto out;
1397		}
1398
1399		if (of_address_to_resource(frame_node, 0, &res)) {
1400			of_node_put(frame_node);
1401			goto out;
1402		}
1403		frame->cntbase = res.start;
1404		frame->size = resource_size(&res);
1405
1406		frame->virt_irq = irq_of_parse_and_map(frame_node,
1407						       ARCH_TIMER_VIRT_SPI);
1408		frame->phys_irq = irq_of_parse_and_map(frame_node,
1409						       ARCH_TIMER_PHYS_SPI);
1410
1411		frame->valid = true;
1412	}
1413
1414	frame = arch_timer_mem_find_best_frame(timer_mem);
1415	if (!frame) {
1416		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417			&timer_mem->cntctlbase);
1418		ret = -EINVAL;
1419		goto out;
1420	}
1421
1422	rate = arch_timer_mem_frame_get_cntfrq(frame);
1423	arch_timer_of_configure_rate(rate, np);
1424
1425	ret = arch_timer_mem_frame_register(frame);
1426	if (!ret && !arch_timer_needs_of_probing())
1427		ret = arch_timer_common_init();
1428out:
1429	kfree(timer_mem);
1430	return ret;
1431}
1432TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433		       arch_timer_mem_of_init);
1434
1435#ifdef CONFIG_ACPI_GTDT
1436static int __init
1437arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438{
1439	struct arch_timer_mem_frame *frame;
1440	u32 rate;
1441	int i;
1442
1443	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444		frame = &timer_mem->frame[i];
1445
1446		if (!frame->valid)
1447			continue;
1448
1449		rate = arch_timer_mem_frame_get_cntfrq(frame);
1450		if (rate == arch_timer_rate)
1451			continue;
1452
1453		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454			&frame->cntbase,
1455			(unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457		return -EINVAL;
1458	}
1459
1460	return 0;
1461}
1462
1463static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464{
1465	struct arch_timer_mem *timers, *timer;
1466	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467	int timer_count, i, ret = 0;
1468
1469	timers = kcalloc(platform_timer_count, sizeof(*timers),
1470			    GFP_KERNEL);
1471	if (!timers)
1472		return -ENOMEM;
1473
1474	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475	if (ret || !timer_count)
1476		goto out;
1477
1478	/*
1479	 * While unlikely, it's theoretically possible that none of the frames
1480	 * in a timer expose the combination of feature we want.
1481	 */
1482	for (i = 0; i < timer_count; i++) {
1483		timer = &timers[i];
1484
1485		frame = arch_timer_mem_find_best_frame(timer);
1486		if (!best_frame)
1487			best_frame = frame;
1488
1489		ret = arch_timer_mem_verify_cntfrq(timer);
1490		if (ret) {
1491			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492			goto out;
1493		}
1494
1495		if (!best_frame) /* implies !frame */
1496			/*
1497			 * Only complain about missing suitable frames if we
1498			 * haven't already found one in a previous iteration.
1499			 */
1500			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501				&timer->cntctlbase);
1502	}
1503
1504	if (best_frame)
1505		ret = arch_timer_mem_frame_register(best_frame);
1506out:
1507	kfree(timers);
1508	return ret;
1509}
1510
1511/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513{
1514	int ret, platform_timer_count;
1515
1516	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517		pr_warn("already initialized, skipping\n");
1518		return -EINVAL;
1519	}
1520
1521	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523	ret = acpi_gtdt_init(table, &platform_timer_count);
1524	if (ret) {
1525		pr_err("Failed to init GTDT table.\n");
1526		return ret;
1527	}
1528
1529	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540	/*
1541	 * When probing via ACPI, we have no mechanism to override the sysreg
1542	 * CNTFRQ value. This *must* be correct.
1543	 */
1544	arch_timer_rate = arch_timer_get_cntfrq();
1545	if (!arch_timer_rate) {
 
1546		pr_err(FW_BUG "frequency not available.\n");
1547		return -EINVAL;
1548	}
1549
1550	arch_timer_uses_ppi = arch_timer_select_ppi();
1551	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552		pr_err("No interrupt available, giving up\n");
1553		return -EINVAL;
1554	}
1555
1556	/* Always-on capability */
1557	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559	/* Check for globally applicable workarounds */
1560	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562	ret = arch_timer_register();
1563	if (ret)
1564		return ret;
1565
1566	if (platform_timer_count &&
1567	    arch_timer_mem_acpi_init(platform_timer_count))
1568		pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570	return arch_timer_common_init();
1571}
1572TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573#endif