Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/kstrtox.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_address.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/sched/clock.h>
  27#include <linux/sched_clock.h>
  28#include <linux/acpi.h>
  29#include <linux/arm-smccc.h>
  30#include <linux/ptp_kvm.h>
  31
  32#include <asm/arch_timer.h>
  33#include <asm/virt.h>
  34
  35#include <clocksource/arm_arch_timer.h>
  36
  37#define CNTTIDR		0x08
  38#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  39
  40#define CNTACR(n)	(0x40 + ((n) * 4))
  41#define CNTACR_RPCT	BIT(0)
  42#define CNTACR_RVCT	BIT(1)
  43#define CNTACR_RFRQ	BIT(2)
  44#define CNTACR_RVOFF	BIT(3)
  45#define CNTACR_RWVT	BIT(4)
  46#define CNTACR_RWPT	BIT(5)
  47
  48#define CNTPCT_LO	0x00
  49#define CNTVCT_LO	0x08
 
  50#define CNTFRQ		0x10
  51#define CNTP_CVAL_LO	0x20
  52#define CNTP_CTL	0x2c
  53#define CNTV_CVAL_LO	0x30
  54#define CNTV_CTL	0x3c
  55
  56/*
  57 * The minimum amount of time a generic counter is guaranteed to not roll over
  58 * (40 years)
  59 */
  60#define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
  61
  62static unsigned arch_timers_present __initdata;
  63
 
 
  64struct arch_timer {
  65	void __iomem *base;
  66	struct clock_event_device evt;
  67};
  68
  69static struct arch_timer *arch_timer_mem __ro_after_init;
  70
  71#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  72
  73static u32 arch_timer_rate __ro_after_init;
  74static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  75
  76static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  77	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  78	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  79	[ARCH_TIMER_VIRT_PPI]		= "virt",
  80	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  81	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  82};
  83
  84static struct clock_event_device __percpu *arch_timer_evt;
  85
  86static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  87static bool arch_timer_c3stop __ro_after_init;
  88static bool arch_timer_mem_use_virtual __ro_after_init;
  89static bool arch_counter_suspend_stop __ro_after_init;
  90#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  91static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  92#else
  93static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  94#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  95
  96static cpumask_t evtstrm_available = CPU_MASK_NONE;
  97static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  98
  99static int __init early_evtstrm_cfg(char *buf)
 100{
 101	return kstrtobool(buf, &evtstrm_enable);
 102}
 103early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
 104
 105/*
 106 * Makes an educated guess at a valid counter width based on the Generic Timer
 107 * specification. Of note:
 108 *   1) the system counter is at least 56 bits wide
 109 *   2) a roll-over time of not less than 40 years
 110 *
 111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
 112 */
 113static int arch_counter_get_width(void)
 114{
 115	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
 116
 117	/* guarantee the returned width is within the valid range */
 118	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
 119}
 120
 121/*
 122 * Architected system timer support.
 123 */
 124
 125static __always_inline
 126void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
 127			  struct clock_event_device *clk)
 128{
 129	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 130		struct arch_timer *timer = to_arch_timer(clk);
 131		switch (reg) {
 132		case ARCH_TIMER_REG_CTRL:
 133			writel_relaxed((u32)val, timer->base + CNTP_CTL);
 134			break;
 135		case ARCH_TIMER_REG_CVAL:
 136			/*
 137			 * Not guaranteed to be atomic, so the timer
 138			 * must be disabled at this point.
 139			 */
 140			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
 141			break;
 142		default:
 143			BUILD_BUG();
 144		}
 145	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 146		struct arch_timer *timer = to_arch_timer(clk);
 147		switch (reg) {
 148		case ARCH_TIMER_REG_CTRL:
 149			writel_relaxed((u32)val, timer->base + CNTV_CTL);
 150			break;
 151		case ARCH_TIMER_REG_CVAL:
 152			/* Same restriction as above */
 153			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
 154			break;
 155		default:
 156			BUILD_BUG();
 157		}
 158	} else {
 159		arch_timer_reg_write_cp15(access, reg, val);
 160	}
 161}
 162
 163static __always_inline
 164u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 165			struct clock_event_device *clk)
 166{
 167	u32 val;
 168
 169	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 170		struct arch_timer *timer = to_arch_timer(clk);
 171		switch (reg) {
 172		case ARCH_TIMER_REG_CTRL:
 173			val = readl_relaxed(timer->base + CNTP_CTL);
 174			break;
 175		default:
 176			BUILD_BUG();
 
 177		}
 178	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 179		struct arch_timer *timer = to_arch_timer(clk);
 180		switch (reg) {
 181		case ARCH_TIMER_REG_CTRL:
 182			val = readl_relaxed(timer->base + CNTV_CTL);
 183			break;
 184		default:
 185			BUILD_BUG();
 
 186		}
 187	} else {
 188		val = arch_timer_reg_read_cp15(access, reg);
 189	}
 190
 191	return val;
 192}
 193
 194static noinstr u64 raw_counter_get_cntpct_stable(void)
 195{
 196	return __arch_counter_get_cntpct_stable();
 197}
 198
 199static notrace u64 arch_counter_get_cntpct_stable(void)
 200{
 201	u64 val;
 202	preempt_disable_notrace();
 203	val = __arch_counter_get_cntpct_stable();
 204	preempt_enable_notrace();
 205	return val;
 206}
 207
 208static noinstr u64 arch_counter_get_cntpct(void)
 209{
 210	return __arch_counter_get_cntpct();
 211}
 212
 213static noinstr u64 raw_counter_get_cntvct_stable(void)
 214{
 215	return __arch_counter_get_cntvct_stable();
 216}
 217
 218static notrace u64 arch_counter_get_cntvct_stable(void)
 219{
 220	u64 val;
 221	preempt_disable_notrace();
 222	val = __arch_counter_get_cntvct_stable();
 223	preempt_enable_notrace();
 224	return val;
 225}
 226
 227static noinstr u64 arch_counter_get_cntvct(void)
 228{
 229	return __arch_counter_get_cntvct();
 230}
 231
 232/*
 233 * Default to cp15 based access because arm64 uses this function for
 234 * sched_clock() before DT is probed and the cp15 method is guaranteed
 235 * to exist on arm64. arm doesn't use this before DT is probed so even
 236 * if we don't have the cp15 accessors we won't have a problem.
 237 */
 238u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 239EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 240
 241static u64 arch_counter_read(struct clocksource *cs)
 242{
 243	return arch_timer_read_counter();
 244}
 245
 246static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 247{
 248	return arch_timer_read_counter();
 249}
 250
 251static struct clocksource clocksource_counter = {
 252	.name	= "arch_sys_counter",
 253	.id	= CSID_ARM_ARCH_COUNTER,
 254	.rating	= 400,
 255	.read	= arch_counter_read,
 
 256	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 257};
 258
 259static struct cyclecounter cyclecounter __ro_after_init = {
 260	.read	= arch_counter_read_cc,
 
 261};
 262
 263struct ate_acpi_oem_info {
 264	char oem_id[ACPI_OEM_ID_SIZE + 1];
 265	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 266	u32 oem_revision;
 267};
 268
 269#ifdef CONFIG_FSL_ERRATUM_A008585
 270/*
 271 * The number of retries is an arbitrary value well beyond the highest number
 272 * of iterations the loop has been observed to take.
 273 */
 274#define __fsl_a008585_read_reg(reg) ({			\
 275	u64 _old, _new;					\
 276	int _retries = 200;				\
 277							\
 278	do {						\
 279		_old = read_sysreg(reg);		\
 280		_new = read_sysreg(reg);		\
 281		_retries--;				\
 282	} while (unlikely(_old != _new) && _retries);	\
 283							\
 284	WARN_ON_ONCE(!_retries);			\
 285	_new;						\
 286})
 287
 
 
 
 
 
 
 
 
 
 
 288static u64 notrace fsl_a008585_read_cntpct_el0(void)
 289{
 290	return __fsl_a008585_read_reg(cntpct_el0);
 291}
 292
 293static u64 notrace fsl_a008585_read_cntvct_el0(void)
 294{
 295	return __fsl_a008585_read_reg(cntvct_el0);
 296}
 297#endif
 298
 299#ifdef CONFIG_HISILICON_ERRATUM_161010101
 300/*
 301 * Verify whether the value of the second read is larger than the first by
 302 * less than 32 is the only way to confirm the value is correct, so clear the
 303 * lower 5 bits to check whether the difference is greater than 32 or not.
 304 * Theoretically the erratum should not occur more than twice in succession
 305 * when reading the system counter, but it is possible that some interrupts
 306 * may lead to more than twice read errors, triggering the warning, so setting
 307 * the number of retries far beyond the number of iterations the loop has been
 308 * observed to take.
 309 */
 310#define __hisi_161010101_read_reg(reg) ({				\
 311	u64 _old, _new;						\
 312	int _retries = 50;					\
 313								\
 314	do {							\
 315		_old = read_sysreg(reg);			\
 316		_new = read_sysreg(reg);			\
 317		_retries--;					\
 318	} while (unlikely((_new - _old) >> 5) && _retries);	\
 319								\
 320	WARN_ON_ONCE(!_retries);				\
 321	_new;							\
 322})
 323
 
 
 
 
 
 
 
 
 
 
 324static u64 notrace hisi_161010101_read_cntpct_el0(void)
 325{
 326	return __hisi_161010101_read_reg(cntpct_el0);
 327}
 328
 329static u64 notrace hisi_161010101_read_cntvct_el0(void)
 330{
 331	return __hisi_161010101_read_reg(cntvct_el0);
 332}
 333
 334static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 335	/*
 336	 * Note that trailing spaces are required to properly match
 337	 * the OEM table information.
 338	 */
 339	{
 340		.oem_id		= "HISI  ",
 341		.oem_table_id	= "HIP05   ",
 342		.oem_revision	= 0,
 343	},
 344	{
 345		.oem_id		= "HISI  ",
 346		.oem_table_id	= "HIP06   ",
 347		.oem_revision	= 0,
 348	},
 349	{
 350		.oem_id		= "HISI  ",
 351		.oem_table_id	= "HIP07   ",
 352		.oem_revision	= 0,
 353	},
 354	{ /* Sentinel indicating the end of the OEM array */ },
 355};
 356#endif
 357
 358#ifdef CONFIG_ARM64_ERRATUM_858921
 359static u64 notrace arm64_858921_read_cntpct_el0(void)
 360{
 361	u64 old, new;
 362
 363	old = read_sysreg(cntpct_el0);
 364	new = read_sysreg(cntpct_el0);
 365	return (((old ^ new) >> 32) & 1) ? old : new;
 366}
 367
 368static u64 notrace arm64_858921_read_cntvct_el0(void)
 369{
 370	u64 old, new;
 371
 372	old = read_sysreg(cntvct_el0);
 373	new = read_sysreg(cntvct_el0);
 374	return (((old ^ new) >> 32) & 1) ? old : new;
 375}
 376#endif
 377
 378#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 379/*
 380 * The low bits of the counter registers are indeterminate while bit 10 or
 381 * greater is rolling over. Since the counter value can jump both backward
 382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 385 */
 386#define __sun50i_a64_read_reg(reg) ({					\
 387	u64 _val;							\
 388	int _retries = 150;						\
 389									\
 390	do {								\
 391		_val = read_sysreg(reg);				\
 392		_retries--;						\
 393	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 394									\
 395	WARN_ON_ONCE(!_retries);					\
 396	_val;								\
 397})
 398
 399static u64 notrace sun50i_a64_read_cntpct_el0(void)
 400{
 401	return __sun50i_a64_read_reg(cntpct_el0);
 402}
 403
 404static u64 notrace sun50i_a64_read_cntvct_el0(void)
 405{
 406	return __sun50i_a64_read_reg(cntvct_el0);
 407}
 
 
 
 
 
 
 
 
 
 
 408#endif
 409
 410#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 411DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 412EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 413
 414static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 415
 416/*
 417 * Force the inlining of this function so that the register accesses
 418 * can be themselves correctly inlined.
 419 */
 420static __always_inline
 421void erratum_set_next_event_generic(const int access, unsigned long evt,
 422				    struct clock_event_device *clk)
 423{
 424	unsigned long ctrl;
 425	u64 cval;
 426
 427	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 428	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 429	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 430
 431	if (access == ARCH_TIMER_PHYS_ACCESS) {
 432		cval = evt + arch_counter_get_cntpct_stable();
 433		write_sysreg(cval, cntp_cval_el0);
 434	} else {
 435		cval = evt + arch_counter_get_cntvct_stable();
 436		write_sysreg(cval, cntv_cval_el0);
 437	}
 438
 439	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 440}
 441
 442static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
 443					    struct clock_event_device *clk)
 444{
 445	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 446	return 0;
 447}
 448
 449static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
 450					    struct clock_event_device *clk)
 451{
 452	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 453	return 0;
 454}
 455
 456static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 457#ifdef CONFIG_FSL_ERRATUM_A008585
 458	{
 459		.match_type = ate_match_dt,
 460		.id = "fsl,erratum-a008585",
 461		.desc = "Freescale erratum a005858",
 
 
 462		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 463		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 464		.set_next_event_phys = erratum_set_next_event_phys,
 465		.set_next_event_virt = erratum_set_next_event_virt,
 466	},
 467#endif
 468#ifdef CONFIG_HISILICON_ERRATUM_161010101
 469	{
 470		.match_type = ate_match_dt,
 471		.id = "hisilicon,erratum-161010101",
 472		.desc = "HiSilicon erratum 161010101",
 
 
 473		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 474		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 475		.set_next_event_phys = erratum_set_next_event_phys,
 476		.set_next_event_virt = erratum_set_next_event_virt,
 477	},
 478	{
 479		.match_type = ate_match_acpi_oem_info,
 480		.id = hisi_161010101_oem_info,
 481		.desc = "HiSilicon erratum 161010101",
 
 
 482		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 483		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 484		.set_next_event_phys = erratum_set_next_event_phys,
 485		.set_next_event_virt = erratum_set_next_event_virt,
 486	},
 487#endif
 488#ifdef CONFIG_ARM64_ERRATUM_858921
 489	{
 490		.match_type = ate_match_local_cap_id,
 491		.id = (void *)ARM64_WORKAROUND_858921,
 492		.desc = "ARM erratum 858921",
 493		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 494		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 495		.set_next_event_phys = erratum_set_next_event_phys,
 496		.set_next_event_virt = erratum_set_next_event_virt,
 497	},
 498#endif
 499#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 500	{
 501		.match_type = ate_match_dt,
 502		.id = "allwinner,erratum-unknown1",
 503		.desc = "Allwinner erratum UNKNOWN1",
 
 
 504		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 505		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 506		.set_next_event_phys = erratum_set_next_event_phys,
 507		.set_next_event_virt = erratum_set_next_event_virt,
 508	},
 509#endif
 510#ifdef CONFIG_ARM64_ERRATUM_1418040
 511	{
 512		.match_type = ate_match_local_cap_id,
 513		.id = (void *)ARM64_WORKAROUND_1418040,
 514		.desc = "ARM erratum 1418040",
 515		.disable_compat_vdso = true,
 516	},
 517#endif
 518};
 519
 520typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 521			       const void *);
 522
 523static
 524bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 525				 const void *arg)
 526{
 527	const struct device_node *np = arg;
 528
 529	return of_property_read_bool(np, wa->id);
 530}
 531
 532static
 533bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 534					const void *arg)
 535{
 536	return this_cpu_has_cap((uintptr_t)wa->id);
 537}
 538
 539
 540static
 541bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 542				       const void *arg)
 543{
 544	static const struct ate_acpi_oem_info empty_oem_info = {};
 545	const struct ate_acpi_oem_info *info = wa->id;
 546	const struct acpi_table_header *table = arg;
 547
 548	/* Iterate over the ACPI OEM info array, looking for a match */
 549	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 550		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 551		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 552		    info->oem_revision == table->oem_revision)
 553			return true;
 554
 555		info++;
 556	}
 557
 558	return false;
 559}
 560
 561static const struct arch_timer_erratum_workaround *
 562arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 563			  ate_match_fn_t match_fn,
 564			  void *arg)
 565{
 566	int i;
 567
 568	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 569		if (ool_workarounds[i].match_type != type)
 570			continue;
 571
 572		if (match_fn(&ool_workarounds[i], arg))
 573			return &ool_workarounds[i];
 574	}
 575
 576	return NULL;
 577}
 578
 579static
 580void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 581				  bool local)
 582{
 583	int i;
 584
 585	if (local) {
 586		__this_cpu_write(timer_unstable_counter_workaround, wa);
 587	} else {
 588		for_each_possible_cpu(i)
 589			per_cpu(timer_unstable_counter_workaround, i) = wa;
 590	}
 591
 592	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 593		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 594
 595	/*
 596	 * Don't use the vdso fastpath if errata require using the
 597	 * out-of-line counter accessor. We may change our mind pretty
 598	 * late in the game (with a per-CPU erratum, for example), so
 599	 * change both the default value and the vdso itself.
 600	 */
 601	if (wa->read_cntvct_el0) {
 602		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 603		vdso_default = VDSO_CLOCKMODE_NONE;
 604	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 605		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 606		clocksource_counter.vdso_clock_mode = vdso_default;
 607	}
 608}
 609
 610static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 611					    void *arg)
 612{
 613	const struct arch_timer_erratum_workaround *wa, *__wa;
 614	ate_match_fn_t match_fn = NULL;
 615	bool local = false;
 616
 617	switch (type) {
 618	case ate_match_dt:
 619		match_fn = arch_timer_check_dt_erratum;
 620		break;
 621	case ate_match_local_cap_id:
 622		match_fn = arch_timer_check_local_cap_erratum;
 623		local = true;
 624		break;
 625	case ate_match_acpi_oem_info:
 626		match_fn = arch_timer_check_acpi_oem_erratum;
 627		break;
 628	default:
 629		WARN_ON(1);
 630		return;
 631	}
 632
 633	wa = arch_timer_iterate_errata(type, match_fn, arg);
 634	if (!wa)
 635		return;
 636
 637	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 638	if (__wa && wa != __wa)
 639		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 640			wa->desc, __wa->desc);
 641
 642	if (__wa)
 643		return;
 644
 645	arch_timer_enable_workaround(wa, local);
 646	pr_info("Enabling %s workaround for %s\n",
 647		local ? "local" : "global", wa->desc);
 648}
 649
 650static bool arch_timer_this_cpu_has_cntvct_wa(void)
 651{
 652	return has_erratum_handler(read_cntvct_el0);
 653}
 654
 655static bool arch_timer_counter_has_wa(void)
 656{
 657	return atomic_read(&timer_unstable_counter_workaround_in_use);
 658}
 659#else
 660#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 661#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 662#define arch_timer_counter_has_wa()			({false;})
 663#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 664
 665static __always_inline irqreturn_t timer_handler(const int access,
 666					struct clock_event_device *evt)
 667{
 668	unsigned long ctrl;
 669
 670	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 671	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 672		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 673		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 674		evt->event_handler(evt);
 675		return IRQ_HANDLED;
 676	}
 677
 678	return IRQ_NONE;
 679}
 680
 681static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 682{
 683	struct clock_event_device *evt = dev_id;
 684
 685	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 686}
 687
 688static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 689{
 690	struct clock_event_device *evt = dev_id;
 691
 692	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 693}
 694
 695static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 696{
 697	struct clock_event_device *evt = dev_id;
 698
 699	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 700}
 701
 702static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 703{
 704	struct clock_event_device *evt = dev_id;
 705
 706	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 707}
 708
 709static __always_inline int arch_timer_shutdown(const int access,
 710					       struct clock_event_device *clk)
 711{
 712	unsigned long ctrl;
 713
 714	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 715	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 716	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 717
 718	return 0;
 719}
 720
 721static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 722{
 723	return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 724}
 725
 726static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 727{
 728	return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 729}
 730
 731static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 732{
 733	return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 734}
 735
 736static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 737{
 738	return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 739}
 740
 741static __always_inline void set_next_event(const int access, unsigned long evt,
 742					   struct clock_event_device *clk)
 743{
 744	unsigned long ctrl;
 745	u64 cnt;
 746
 747	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 748	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 749	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 750
 751	if (access == ARCH_TIMER_PHYS_ACCESS)
 752		cnt = __arch_counter_get_cntpct();
 753	else
 754		cnt = __arch_counter_get_cntvct();
 755
 756	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
 757	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 758}
 759
 760static int arch_timer_set_next_event_virt(unsigned long evt,
 761					  struct clock_event_device *clk)
 762{
 763	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 764	return 0;
 765}
 766
 767static int arch_timer_set_next_event_phys(unsigned long evt,
 768					  struct clock_event_device *clk)
 769{
 770	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 771	return 0;
 772}
 773
 774static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
 775{
 776	u32 cnt_lo, cnt_hi, tmp_hi;
 777
 778	do {
 779		cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
 780		cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
 781		tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
 782	} while (cnt_hi != tmp_hi);
 783
 784	return ((u64) cnt_hi << 32) | cnt_lo;
 785}
 786
 787static __always_inline void set_next_event_mem(const int access, unsigned long evt,
 788					   struct clock_event_device *clk)
 789{
 790	struct arch_timer *timer = to_arch_timer(clk);
 791	unsigned long ctrl;
 792	u64 cnt;
 793
 794	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 795
 796	/* Timer must be disabled before programming CVAL */
 797	if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
 798		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 799		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 800	}
 801
 802	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 803	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 804
 805	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
 806		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
 807	else
 808		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
 809
 810	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
 811	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 812}
 813
 814static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 815					      struct clock_event_device *clk)
 816{
 817	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 818	return 0;
 819}
 820
 821static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 822					      struct clock_event_device *clk)
 823{
 824	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 825	return 0;
 826}
 827
 828static u64 __arch_timer_check_delta(void)
 829{
 830#ifdef CONFIG_ARM64
 831	const struct midr_range broken_cval_midrs[] = {
 832		/*
 833		 * XGene-1 implements CVAL in terms of TVAL, meaning
 834		 * that the maximum timer range is 32bit. Shame on them.
 835		 *
 836		 * Note that TVAL is signed, thus has only 31 of its
 837		 * 32 bits to express magnitude.
 838		 */
 839		MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
 840					      APM_CPU_PART_XGENE),
 841			       APM_CPU_VAR_POTENZA, 0x0, 0xf),
 842		{},
 843	};
 844
 845	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
 846		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
 847		return CLOCKSOURCE_MASK(31);
 848	}
 849#endif
 850	return CLOCKSOURCE_MASK(arch_counter_get_width());
 851}
 852
 853static void __arch_timer_setup(unsigned type,
 854			       struct clock_event_device *clk)
 855{
 856	u64 max_delta;
 857
 858	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 859
 860	if (type == ARCH_TIMER_TYPE_CP15) {
 861		typeof(clk->set_next_event) sne;
 862
 863		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 864
 865		if (arch_timer_c3stop)
 866			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 867		clk->name = "arch_sys_timer";
 868		clk->rating = 450;
 869		clk->cpumask = cpumask_of(smp_processor_id());
 870		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 871		switch (arch_timer_uses_ppi) {
 872		case ARCH_TIMER_VIRT_PPI:
 873			clk->set_state_shutdown = arch_timer_shutdown_virt;
 874			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 875			sne = erratum_handler(set_next_event_virt);
 876			break;
 877		case ARCH_TIMER_PHYS_SECURE_PPI:
 878		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 879		case ARCH_TIMER_HYP_PPI:
 880			clk->set_state_shutdown = arch_timer_shutdown_phys;
 881			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 882			sne = erratum_handler(set_next_event_phys);
 883			break;
 884		default:
 885			BUG();
 886		}
 887
 888		clk->set_next_event = sne;
 889		max_delta = __arch_timer_check_delta();
 890	} else {
 891		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 892		clk->name = "arch_mem_timer";
 893		clk->rating = 400;
 894		clk->cpumask = cpu_possible_mask;
 895		if (arch_timer_mem_use_virtual) {
 896			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 897			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 898			clk->set_next_event =
 899				arch_timer_set_next_event_virt_mem;
 900		} else {
 901			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 902			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 903			clk->set_next_event =
 904				arch_timer_set_next_event_phys_mem;
 905		}
 906
 907		max_delta = CLOCKSOURCE_MASK(56);
 908	}
 909
 910	clk->set_state_shutdown(clk);
 911
 912	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
 913}
 914
 915static void arch_timer_evtstrm_enable(unsigned int divider)
 916{
 917	u32 cntkctl = arch_timer_get_cntkctl();
 918
 919#ifdef CONFIG_ARM64
 920	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
 921	if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
 922		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
 923		divider -= 8;
 924	}
 925#endif
 926
 927	divider = min(divider, 15U);
 928	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 929	/* Set the divider and enable virtual event stream */
 930	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 931			| ARCH_TIMER_VIRT_EVT_EN;
 932	arch_timer_set_cntkctl(cntkctl);
 933	arch_timer_set_evtstrm_feature();
 934	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 935}
 936
 937static void arch_timer_configure_evtstream(void)
 938{
 939	int evt_stream_div, lsb;
 940
 941	/*
 942	 * As the event stream can at most be generated at half the frequency
 943	 * of the counter, use half the frequency when computing the divider.
 944	 */
 945	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 946
 947	/*
 948	 * Find the closest power of two to the divisor. If the adjacent bit
 949	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 950	 */
 951	lsb = fls(evt_stream_div) - 1;
 952	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 953		lsb++;
 954
 955	/* enable event stream */
 956	arch_timer_evtstrm_enable(max(0, lsb));
 957}
 958
 959static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
 960{
 961	arch_timer_configure_evtstream();
 962	return 0;
 963}
 964
 965static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
 966{
 967	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 968	return 0;
 969}
 970
 971static int __init arch_timer_evtstrm_register(void)
 972{
 973	if (!arch_timer_evt || !evtstrm_enable)
 974		return 0;
 975
 976	return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
 977				 "clockevents/arm/arch_timer_evtstrm:starting",
 978				 arch_timer_evtstrm_starting_cpu,
 979				 arch_timer_evtstrm_dying_cpu);
 980}
 981core_initcall(arch_timer_evtstrm_register);
 982
 983static void arch_counter_set_user_access(void)
 984{
 985	u32 cntkctl = arch_timer_get_cntkctl();
 986
 987	/* Disable user access to the timers and both counters */
 988	/* Also disable virtual event stream */
 989	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 990			| ARCH_TIMER_USR_VT_ACCESS_EN
 991		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 992			| ARCH_TIMER_VIRT_EVT_EN
 993			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 994
 995	/*
 996	 * Enable user access to the virtual counter if it doesn't
 997	 * need to be workaround. The vdso may have been already
 998	 * disabled though.
 999	 */
1000	if (arch_timer_this_cpu_has_cntvct_wa())
1001		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
1002	else
1003		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
1004
1005	arch_timer_set_cntkctl(cntkctl);
1006}
1007
1008static bool arch_timer_has_nonsecure_ppi(void)
1009{
1010	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
1011		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1012}
1013
1014static u32 check_ppi_trigger(int irq)
1015{
1016	u32 flags = irq_get_trigger_type(irq);
1017
1018	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
1019		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
1020		pr_warn("WARNING: Please fix your firmware\n");
1021		flags = IRQF_TRIGGER_LOW;
1022	}
1023
1024	return flags;
1025}
1026
1027static int arch_timer_starting_cpu(unsigned int cpu)
1028{
1029	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1030	u32 flags;
1031
1032	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1033
1034	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1035	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1036
1037	if (arch_timer_has_nonsecure_ppi()) {
1038		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1039		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1040				  flags);
1041	}
1042
1043	arch_counter_set_user_access();
 
 
1044
1045	return 0;
1046}
1047
1048static int validate_timer_rate(void)
1049{
1050	if (!arch_timer_rate)
1051		return -EINVAL;
1052
1053	/* Arch timer frequency < 1MHz can cause trouble */
1054	WARN_ON(arch_timer_rate < 1000000);
1055
1056	return 0;
1057}
1058
1059/*
1060 * For historical reasons, when probing with DT we use whichever (non-zero)
1061 * rate was probed first, and don't verify that others match. If the first node
1062 * probed has a clock-frequency property, this overrides the HW register.
1063 */
1064static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1065{
1066	/* Who has more than one independent system counter? */
1067	if (arch_timer_rate)
1068		return;
1069
1070	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1071		arch_timer_rate = rate;
1072
1073	/* Check the timer frequency. */
1074	if (validate_timer_rate())
1075		pr_warn("frequency not available\n");
1076}
1077
1078static void __init arch_timer_banner(unsigned type)
1079{
1080	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1081		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1082		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1083			" and " : "",
1084		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1085		(unsigned long)arch_timer_rate / 1000000,
1086		(unsigned long)(arch_timer_rate / 10000) % 100,
1087		type & ARCH_TIMER_TYPE_CP15 ?
1088			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1089			"",
1090		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1091		type & ARCH_TIMER_TYPE_MEM ?
1092			arch_timer_mem_use_virtual ? "virt" : "phys" :
1093			"");
1094}
1095
1096u32 arch_timer_get_rate(void)
1097{
1098	return arch_timer_rate;
1099}
1100
1101bool arch_timer_evtstrm_available(void)
1102{
1103	/*
1104	 * We might get called from a preemptible context. This is fine
1105	 * because availability of the event stream should be always the same
1106	 * for a preemptible context and context where we might resume a task.
1107	 */
1108	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1109}
1110
1111static noinstr u64 arch_counter_get_cntvct_mem(void)
1112{
1113	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
 
 
 
 
 
 
 
 
1114}
1115
1116static struct arch_timer_kvm_info arch_timer_kvm_info;
1117
1118struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1119{
1120	return &arch_timer_kvm_info;
1121}
1122
1123static void __init arch_counter_register(unsigned type)
1124{
1125	u64 (*scr)(void);
1126	u64 start_count;
1127	int width;
1128
1129	/* Register the CP15 based counter if we have one */
1130	if (type & ARCH_TIMER_TYPE_CP15) {
1131		u64 (*rd)(void);
1132
1133		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1134		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1135			if (arch_timer_counter_has_wa()) {
1136				rd = arch_counter_get_cntvct_stable;
1137				scr = raw_counter_get_cntvct_stable;
1138			} else {
1139				rd = arch_counter_get_cntvct;
1140				scr = arch_counter_get_cntvct;
1141			}
1142		} else {
1143			if (arch_timer_counter_has_wa()) {
1144				rd = arch_counter_get_cntpct_stable;
1145				scr = raw_counter_get_cntpct_stable;
1146			} else {
1147				rd = arch_counter_get_cntpct;
1148				scr = arch_counter_get_cntpct;
1149			}
1150		}
1151
1152		arch_timer_read_counter = rd;
1153		clocksource_counter.vdso_clock_mode = vdso_default;
1154	} else {
1155		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1156		scr = arch_counter_get_cntvct_mem;
1157	}
1158
1159	width = arch_counter_get_width();
1160	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1161	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1162
1163	if (!arch_counter_suspend_stop)
1164		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1165	start_count = arch_timer_read_counter();
1166	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1167	cyclecounter.mult = clocksource_counter.mult;
1168	cyclecounter.shift = clocksource_counter.shift;
1169	timecounter_init(&arch_timer_kvm_info.timecounter,
1170			 &cyclecounter, start_count);
1171
1172	sched_clock_register(scr, width, arch_timer_rate);
 
1173}
1174
1175static void arch_timer_stop(struct clock_event_device *clk)
1176{
1177	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1178
1179	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1180	if (arch_timer_has_nonsecure_ppi())
1181		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1182
1183	clk->set_state_shutdown(clk);
1184}
1185
1186static int arch_timer_dying_cpu(unsigned int cpu)
1187{
1188	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1189
 
 
1190	arch_timer_stop(clk);
1191	return 0;
1192}
1193
1194#ifdef CONFIG_CPU_PM
1195static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1196static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1197				    unsigned long action, void *hcpu)
1198{
1199	if (action == CPU_PM_ENTER) {
1200		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1201
1202		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1203	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1204		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1205
1206		if (arch_timer_have_evtstrm_feature())
1207			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1208	}
1209	return NOTIFY_OK;
1210}
1211
1212static struct notifier_block arch_timer_cpu_pm_notifier = {
1213	.notifier_call = arch_timer_cpu_pm_notify,
1214};
1215
1216static int __init arch_timer_cpu_pm_init(void)
1217{
1218	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1219}
1220
1221static void __init arch_timer_cpu_pm_deinit(void)
1222{
1223	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1224}
1225
1226#else
1227static int __init arch_timer_cpu_pm_init(void)
1228{
1229	return 0;
1230}
1231
1232static void __init arch_timer_cpu_pm_deinit(void)
1233{
1234}
1235#endif
1236
1237static int __init arch_timer_register(void)
1238{
1239	int err;
1240	int ppi;
1241
1242	arch_timer_evt = alloc_percpu(struct clock_event_device);
1243	if (!arch_timer_evt) {
1244		err = -ENOMEM;
1245		goto out;
1246	}
1247
1248	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1249	switch (arch_timer_uses_ppi) {
1250	case ARCH_TIMER_VIRT_PPI:
1251		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1252					 "arch_timer", arch_timer_evt);
1253		break;
1254	case ARCH_TIMER_PHYS_SECURE_PPI:
1255	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1256		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1257					 "arch_timer", arch_timer_evt);
1258		if (!err && arch_timer_has_nonsecure_ppi()) {
1259			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1260			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1261						 "arch_timer", arch_timer_evt);
1262			if (err)
1263				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1264						arch_timer_evt);
1265		}
1266		break;
1267	case ARCH_TIMER_HYP_PPI:
1268		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1269					 "arch_timer", arch_timer_evt);
1270		break;
1271	default:
1272		BUG();
1273	}
1274
1275	if (err) {
1276		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1277		goto out_free;
1278	}
1279
1280	err = arch_timer_cpu_pm_init();
1281	if (err)
1282		goto out_unreg_notify;
1283
1284	/* Register and immediately configure the timer on the boot CPU */
1285	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1286				"clockevents/arm/arch_timer:starting",
1287				arch_timer_starting_cpu, arch_timer_dying_cpu);
1288	if (err)
1289		goto out_unreg_cpupm;
1290	return 0;
1291
1292out_unreg_cpupm:
1293	arch_timer_cpu_pm_deinit();
1294
1295out_unreg_notify:
1296	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1297	if (arch_timer_has_nonsecure_ppi())
1298		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1299				arch_timer_evt);
1300
1301out_free:
1302	free_percpu(arch_timer_evt);
1303	arch_timer_evt = NULL;
1304out:
1305	return err;
1306}
1307
1308static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1309{
1310	int ret;
1311	irq_handler_t func;
 
1312
1313	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1314	if (!arch_timer_mem)
1315		return -ENOMEM;
1316
1317	arch_timer_mem->base = base;
1318	arch_timer_mem->evt.irq = irq;
1319	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1320
1321	if (arch_timer_mem_use_virtual)
1322		func = arch_timer_handler_virt_mem;
1323	else
1324		func = arch_timer_handler_phys_mem;
1325
1326	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1327	if (ret) {
1328		pr_err("Failed to request mem timer irq\n");
1329		kfree(arch_timer_mem);
1330		arch_timer_mem = NULL;
1331	}
1332
1333	return ret;
1334}
1335
1336static const struct of_device_id arch_timer_of_match[] __initconst = {
1337	{ .compatible   = "arm,armv7-timer",    },
1338	{ .compatible   = "arm,armv8-timer",    },
1339	{},
1340};
1341
1342static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1343	{ .compatible   = "arm,armv7-timer-mem", },
1344	{},
1345};
1346
1347static bool __init arch_timer_needs_of_probing(void)
1348{
1349	struct device_node *dn;
1350	bool needs_probing = false;
1351	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1352
1353	/* We have two timers, and both device-tree nodes are probed. */
1354	if ((arch_timers_present & mask) == mask)
1355		return false;
1356
1357	/*
1358	 * Only one type of timer is probed,
1359	 * check if we have another type of timer node in device-tree.
1360	 */
1361	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1362		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1363	else
1364		dn = of_find_matching_node(NULL, arch_timer_of_match);
1365
1366	if (dn && of_device_is_available(dn))
1367		needs_probing = true;
1368
1369	of_node_put(dn);
1370
1371	return needs_probing;
1372}
1373
1374static int __init arch_timer_common_init(void)
1375{
1376	arch_timer_banner(arch_timers_present);
1377	arch_counter_register(arch_timers_present);
1378	return arch_timer_arch_init();
1379}
1380
1381/**
1382 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1383 *
1384 * If HYP mode is available, we know that the physical timer
1385 * has been configured to be accessible from PL1. Use it, so
1386 * that a guest can use the virtual timer instead.
1387 *
1388 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1389 * accesses to CNTP_*_EL1 registers are silently redirected to
1390 * their CNTHP_*_EL2 counterparts, and use a different PPI
1391 * number.
1392 *
1393 * If no interrupt provided for virtual timer, we'll have to
1394 * stick to the physical timer. It'd better be accessible...
1395 * For arm64 we never use the secure interrupt.
1396 *
1397 * Return: a suitable PPI type for the current system.
1398 */
1399static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1400{
1401	if (is_kernel_in_hyp_mode())
1402		return ARCH_TIMER_HYP_PPI;
1403
1404	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1405		return ARCH_TIMER_VIRT_PPI;
1406
1407	if (IS_ENABLED(CONFIG_ARM64))
1408		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1409
1410	return ARCH_TIMER_PHYS_SECURE_PPI;
1411}
1412
1413static void __init arch_timer_populate_kvm_info(void)
1414{
1415	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1416	if (is_kernel_in_hyp_mode())
1417		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1418}
1419
1420static int __init arch_timer_of_init(struct device_node *np)
1421{
1422	int i, irq, ret;
1423	u32 rate;
1424	bool has_names;
1425
1426	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1427		pr_warn("multiple nodes in dt, skipping\n");
1428		return 0;
1429	}
1430
1431	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1432
1433	has_names = of_property_read_bool(np, "interrupt-names");
1434
1435	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1436		if (has_names)
1437			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1438		else
1439			irq = of_irq_get(np, i);
1440		if (irq > 0)
1441			arch_timer_ppi[i] = irq;
1442	}
1443
1444	arch_timer_populate_kvm_info();
1445
1446	rate = arch_timer_get_cntfrq();
1447	arch_timer_of_configure_rate(rate, np);
1448
1449	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1450
1451	/* Check for globally applicable workarounds */
1452	arch_timer_check_ool_workaround(ate_match_dt, np);
1453
1454	/*
1455	 * If we cannot rely on firmware initializing the timer registers then
1456	 * we should use the physical timers instead.
1457	 */
1458	if (IS_ENABLED(CONFIG_ARM) &&
1459	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1460		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1461	else
1462		arch_timer_uses_ppi = arch_timer_select_ppi();
1463
1464	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1465		pr_err("No interrupt available, giving up\n");
1466		return -EINVAL;
1467	}
1468
1469	/* On some systems, the counter stops ticking when in suspend. */
1470	arch_counter_suspend_stop = of_property_read_bool(np,
1471							 "arm,no-tick-in-suspend");
1472
1473	ret = arch_timer_register();
1474	if (ret)
1475		return ret;
1476
1477	if (arch_timer_needs_of_probing())
1478		return 0;
1479
1480	return arch_timer_common_init();
1481}
1482TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1483TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1484
1485static u32 __init
1486arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1487{
1488	void __iomem *base;
1489	u32 rate;
1490
1491	base = ioremap(frame->cntbase, frame->size);
1492	if (!base) {
1493		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1494		return 0;
1495	}
1496
1497	rate = readl_relaxed(base + CNTFRQ);
1498
1499	iounmap(base);
1500
1501	return rate;
1502}
1503
1504static struct arch_timer_mem_frame * __init
1505arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1506{
1507	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1508	void __iomem *cntctlbase;
1509	u32 cnttidr;
1510	int i;
1511
1512	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1513	if (!cntctlbase) {
1514		pr_err("Can't map CNTCTLBase @ %pa\n",
1515			&timer_mem->cntctlbase);
1516		return NULL;
1517	}
1518
1519	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1520
1521	/*
1522	 * Try to find a virtual capable frame. Otherwise fall back to a
1523	 * physical capable frame.
1524	 */
1525	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1526		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1527			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1528
1529		frame = &timer_mem->frame[i];
1530		if (!frame->valid)
1531			continue;
1532
1533		/* Try enabling everything, and see what sticks */
1534		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1535		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1536
1537		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1538		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1539			best_frame = frame;
1540			arch_timer_mem_use_virtual = true;
1541			break;
1542		}
1543
1544		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1545			continue;
1546
1547		best_frame = frame;
1548	}
1549
1550	iounmap(cntctlbase);
1551
1552	return best_frame;
1553}
1554
1555static int __init
1556arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1557{
1558	void __iomem *base;
1559	int ret, irq = 0;
1560
1561	if (arch_timer_mem_use_virtual)
1562		irq = frame->virt_irq;
1563	else
1564		irq = frame->phys_irq;
1565
1566	if (!irq) {
1567		pr_err("Frame missing %s irq.\n",
1568		       arch_timer_mem_use_virtual ? "virt" : "phys");
1569		return -EINVAL;
1570	}
1571
1572	if (!request_mem_region(frame->cntbase, frame->size,
1573				"arch_mem_timer"))
1574		return -EBUSY;
1575
1576	base = ioremap(frame->cntbase, frame->size);
1577	if (!base) {
1578		pr_err("Can't map frame's registers\n");
1579		return -ENXIO;
1580	}
1581
1582	ret = arch_timer_mem_register(base, irq);
1583	if (ret) {
1584		iounmap(base);
1585		return ret;
1586	}
1587
 
1588	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1589
1590	return 0;
1591}
1592
1593static int __init arch_timer_mem_of_init(struct device_node *np)
1594{
1595	struct arch_timer_mem *timer_mem;
1596	struct arch_timer_mem_frame *frame;
1597	struct device_node *frame_node;
1598	struct resource res;
1599	int ret = -EINVAL;
1600	u32 rate;
1601
1602	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1603	if (!timer_mem)
1604		return -ENOMEM;
1605
1606	if (of_address_to_resource(np, 0, &res))
1607		goto out;
1608	timer_mem->cntctlbase = res.start;
1609	timer_mem->size = resource_size(&res);
1610
1611	for_each_available_child_of_node(np, frame_node) {
1612		u32 n;
1613		struct arch_timer_mem_frame *frame;
1614
1615		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1616			pr_err(FW_BUG "Missing frame-number.\n");
1617			of_node_put(frame_node);
1618			goto out;
1619		}
1620		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1621			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1622			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1623			of_node_put(frame_node);
1624			goto out;
1625		}
1626		frame = &timer_mem->frame[n];
1627
1628		if (frame->valid) {
1629			pr_err(FW_BUG "Duplicated frame-number.\n");
1630			of_node_put(frame_node);
1631			goto out;
1632		}
1633
1634		if (of_address_to_resource(frame_node, 0, &res)) {
1635			of_node_put(frame_node);
1636			goto out;
1637		}
1638		frame->cntbase = res.start;
1639		frame->size = resource_size(&res);
1640
1641		frame->virt_irq = irq_of_parse_and_map(frame_node,
1642						       ARCH_TIMER_VIRT_SPI);
1643		frame->phys_irq = irq_of_parse_and_map(frame_node,
1644						       ARCH_TIMER_PHYS_SPI);
1645
1646		frame->valid = true;
1647	}
1648
1649	frame = arch_timer_mem_find_best_frame(timer_mem);
1650	if (!frame) {
1651		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1652			&timer_mem->cntctlbase);
1653		ret = -EINVAL;
1654		goto out;
1655	}
1656
1657	rate = arch_timer_mem_frame_get_cntfrq(frame);
1658	arch_timer_of_configure_rate(rate, np);
1659
1660	ret = arch_timer_mem_frame_register(frame);
1661	if (!ret && !arch_timer_needs_of_probing())
1662		ret = arch_timer_common_init();
1663out:
1664	kfree(timer_mem);
1665	return ret;
1666}
1667TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1668		       arch_timer_mem_of_init);
1669
1670#ifdef CONFIG_ACPI_GTDT
1671static int __init
1672arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1673{
1674	struct arch_timer_mem_frame *frame;
1675	u32 rate;
1676	int i;
1677
1678	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1679		frame = &timer_mem->frame[i];
1680
1681		if (!frame->valid)
1682			continue;
1683
1684		rate = arch_timer_mem_frame_get_cntfrq(frame);
1685		if (rate == arch_timer_rate)
1686			continue;
1687
1688		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1689			&frame->cntbase,
1690			(unsigned long)rate, (unsigned long)arch_timer_rate);
1691
1692		return -EINVAL;
1693	}
1694
1695	return 0;
1696}
1697
1698static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1699{
1700	struct arch_timer_mem *timers, *timer;
1701	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1702	int timer_count, i, ret = 0;
1703
1704	timers = kcalloc(platform_timer_count, sizeof(*timers),
1705			    GFP_KERNEL);
1706	if (!timers)
1707		return -ENOMEM;
1708
1709	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1710	if (ret || !timer_count)
1711		goto out;
1712
1713	/*
1714	 * While unlikely, it's theoretically possible that none of the frames
1715	 * in a timer expose the combination of feature we want.
1716	 */
1717	for (i = 0; i < timer_count; i++) {
1718		timer = &timers[i];
1719
1720		frame = arch_timer_mem_find_best_frame(timer);
1721		if (!best_frame)
1722			best_frame = frame;
1723
1724		ret = arch_timer_mem_verify_cntfrq(timer);
1725		if (ret) {
1726			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1727			goto out;
1728		}
1729
1730		if (!best_frame) /* implies !frame */
1731			/*
1732			 * Only complain about missing suitable frames if we
1733			 * haven't already found one in a previous iteration.
1734			 */
1735			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1736				&timer->cntctlbase);
1737	}
1738
1739	if (best_frame)
1740		ret = arch_timer_mem_frame_register(best_frame);
1741out:
1742	kfree(timers);
1743	return ret;
1744}
1745
1746/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1747static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1748{
1749	int ret, platform_timer_count;
1750
1751	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1752		pr_warn("already initialized, skipping\n");
1753		return -EINVAL;
1754	}
1755
1756	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1757
1758	ret = acpi_gtdt_init(table, &platform_timer_count);
1759	if (ret)
1760		return ret;
1761
1762	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1763		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1764
1765	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1766		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1767
1768	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1769		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1770
1771	arch_timer_populate_kvm_info();
1772
1773	/*
1774	 * When probing via ACPI, we have no mechanism to override the sysreg
1775	 * CNTFRQ value. This *must* be correct.
1776	 */
1777	arch_timer_rate = arch_timer_get_cntfrq();
1778	ret = validate_timer_rate();
1779	if (ret) {
1780		pr_err(FW_BUG "frequency not available.\n");
1781		return ret;
1782	}
1783
1784	arch_timer_uses_ppi = arch_timer_select_ppi();
1785	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1786		pr_err("No interrupt available, giving up\n");
1787		return -EINVAL;
1788	}
1789
1790	/* Always-on capability */
1791	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1792
1793	/* Check for globally applicable workarounds */
1794	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1795
1796	ret = arch_timer_register();
1797	if (ret)
1798		return ret;
1799
1800	if (platform_timer_count &&
1801	    arch_timer_mem_acpi_init(platform_timer_count))
1802		pr_err("Failed to initialize memory-mapped timer.\n");
1803
1804	return arch_timer_common_init();
1805}
1806TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1807#endif
1808
1809int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1810				 struct clocksource **cs)
1811{
1812	struct arm_smccc_res hvc_res;
1813	u32 ptp_counter;
1814	ktime_t ktime;
1815
1816	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1817		return -EOPNOTSUPP;
1818
1819	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1820		ptp_counter = KVM_PTP_VIRT_COUNTER;
1821	else
1822		ptp_counter = KVM_PTP_PHYS_COUNTER;
1823
1824	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1825			     ptp_counter, &hvc_res);
1826
1827	if ((int)(hvc_res.a0) < 0)
1828		return -EOPNOTSUPP;
1829
1830	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1831	*ts = ktime_to_timespec64(ktime);
1832	if (cycle)
1833		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1834	if (cs)
1835		*cs = &clocksource_counter;
1836
1837	return 0;
1838}
1839EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
 
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/sched/clock.h>
  26#include <linux/sched_clock.h>
  27#include <linux/acpi.h>
  28#include <linux/arm-smccc.h>
  29#include <linux/ptp_kvm.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#define CNTTIDR		0x08
  37#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  38
  39#define CNTACR(n)	(0x40 + ((n) * 4))
  40#define CNTACR_RPCT	BIT(0)
  41#define CNTACR_RVCT	BIT(1)
  42#define CNTACR_RFRQ	BIT(2)
  43#define CNTACR_RVOFF	BIT(3)
  44#define CNTACR_RWVT	BIT(4)
  45#define CNTACR_RWPT	BIT(5)
  46
 
  47#define CNTVCT_LO	0x08
  48#define CNTVCT_HI	0x0c
  49#define CNTFRQ		0x10
  50#define CNTP_TVAL	0x28
  51#define CNTP_CTL	0x2c
  52#define CNTV_TVAL	0x38
  53#define CNTV_CTL	0x3c
  54
 
 
 
 
 
 
  55static unsigned arch_timers_present __initdata;
  56
  57static void __iomem *arch_counter_base __ro_after_init;
  58
  59struct arch_timer {
  60	void __iomem *base;
  61	struct clock_event_device evt;
  62};
  63
 
 
  64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  65
  66static u32 arch_timer_rate __ro_after_init;
  67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  68
  69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  70	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  71	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  72	[ARCH_TIMER_VIRT_PPI]		= "virt",
  73	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  74	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  75};
  76
  77static struct clock_event_device __percpu *arch_timer_evt;
  78
  79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  80static bool arch_timer_c3stop __ro_after_init;
  81static bool arch_timer_mem_use_virtual __ro_after_init;
  82static bool arch_counter_suspend_stop __ro_after_init;
  83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  85#else
  86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  88
  89static cpumask_t evtstrm_available = CPU_MASK_NONE;
  90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  91
  92static int __init early_evtstrm_cfg(char *buf)
  93{
  94	return strtobool(buf, &evtstrm_enable);
  95}
  96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  97
  98/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99 * Architected system timer support.
 100 */
 101
 102static __always_inline
 103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 104			  struct clock_event_device *clk)
 105{
 106	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 107		struct arch_timer *timer = to_arch_timer(clk);
 108		switch (reg) {
 109		case ARCH_TIMER_REG_CTRL:
 110			writel_relaxed(val, timer->base + CNTP_CTL);
 111			break;
 112		case ARCH_TIMER_REG_TVAL:
 113			writel_relaxed(val, timer->base + CNTP_TVAL);
 
 
 
 
 114			break;
 
 
 115		}
 116	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 117		struct arch_timer *timer = to_arch_timer(clk);
 118		switch (reg) {
 119		case ARCH_TIMER_REG_CTRL:
 120			writel_relaxed(val, timer->base + CNTV_CTL);
 121			break;
 122		case ARCH_TIMER_REG_TVAL:
 123			writel_relaxed(val, timer->base + CNTV_TVAL);
 
 124			break;
 
 
 125		}
 126	} else {
 127		arch_timer_reg_write_cp15(access, reg, val);
 128	}
 129}
 130
 131static __always_inline
 132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 133			struct clock_event_device *clk)
 134{
 135	u32 val;
 136
 137	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 138		struct arch_timer *timer = to_arch_timer(clk);
 139		switch (reg) {
 140		case ARCH_TIMER_REG_CTRL:
 141			val = readl_relaxed(timer->base + CNTP_CTL);
 142			break;
 143		case ARCH_TIMER_REG_TVAL:
 144			val = readl_relaxed(timer->base + CNTP_TVAL);
 145			break;
 146		}
 147	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 148		struct arch_timer *timer = to_arch_timer(clk);
 149		switch (reg) {
 150		case ARCH_TIMER_REG_CTRL:
 151			val = readl_relaxed(timer->base + CNTV_CTL);
 152			break;
 153		case ARCH_TIMER_REG_TVAL:
 154			val = readl_relaxed(timer->base + CNTV_TVAL);
 155			break;
 156		}
 157	} else {
 158		val = arch_timer_reg_read_cp15(access, reg);
 159	}
 160
 161	return val;
 162}
 163
 
 
 
 
 
 164static notrace u64 arch_counter_get_cntpct_stable(void)
 165{
 166	return __arch_counter_get_cntpct_stable();
 
 
 
 
 167}
 168
 169static notrace u64 arch_counter_get_cntpct(void)
 170{
 171	return __arch_counter_get_cntpct();
 172}
 173
 
 
 
 
 
 174static notrace u64 arch_counter_get_cntvct_stable(void)
 175{
 176	return __arch_counter_get_cntvct_stable();
 
 
 
 
 177}
 178
 179static notrace u64 arch_counter_get_cntvct(void)
 180{
 181	return __arch_counter_get_cntvct();
 182}
 183
 184/*
 185 * Default to cp15 based access because arm64 uses this function for
 186 * sched_clock() before DT is probed and the cp15 method is guaranteed
 187 * to exist on arm64. arm doesn't use this before DT is probed so even
 188 * if we don't have the cp15 accessors we won't have a problem.
 189 */
 190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 192
 193static u64 arch_counter_read(struct clocksource *cs)
 194{
 195	return arch_timer_read_counter();
 196}
 197
 198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 199{
 200	return arch_timer_read_counter();
 201}
 202
 203static struct clocksource clocksource_counter = {
 204	.name	= "arch_sys_counter",
 205	.id	= CSID_ARM_ARCH_COUNTER,
 206	.rating	= 400,
 207	.read	= arch_counter_read,
 208	.mask	= CLOCKSOURCE_MASK(56),
 209	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 210};
 211
 212static struct cyclecounter cyclecounter __ro_after_init = {
 213	.read	= arch_counter_read_cc,
 214	.mask	= CLOCKSOURCE_MASK(56),
 215};
 216
 217struct ate_acpi_oem_info {
 218	char oem_id[ACPI_OEM_ID_SIZE + 1];
 219	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 220	u32 oem_revision;
 221};
 222
 223#ifdef CONFIG_FSL_ERRATUM_A008585
 224/*
 225 * The number of retries is an arbitrary value well beyond the highest number
 226 * of iterations the loop has been observed to take.
 227 */
 228#define __fsl_a008585_read_reg(reg) ({			\
 229	u64 _old, _new;					\
 230	int _retries = 200;				\
 231							\
 232	do {						\
 233		_old = read_sysreg(reg);		\
 234		_new = read_sysreg(reg);		\
 235		_retries--;				\
 236	} while (unlikely(_old != _new) && _retries);	\
 237							\
 238	WARN_ON_ONCE(!_retries);			\
 239	_new;						\
 240})
 241
 242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 243{
 244	return __fsl_a008585_read_reg(cntp_tval_el0);
 245}
 246
 247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 248{
 249	return __fsl_a008585_read_reg(cntv_tval_el0);
 250}
 251
 252static u64 notrace fsl_a008585_read_cntpct_el0(void)
 253{
 254	return __fsl_a008585_read_reg(cntpct_el0);
 255}
 256
 257static u64 notrace fsl_a008585_read_cntvct_el0(void)
 258{
 259	return __fsl_a008585_read_reg(cntvct_el0);
 260}
 261#endif
 262
 263#ifdef CONFIG_HISILICON_ERRATUM_161010101
 264/*
 265 * Verify whether the value of the second read is larger than the first by
 266 * less than 32 is the only way to confirm the value is correct, so clear the
 267 * lower 5 bits to check whether the difference is greater than 32 or not.
 268 * Theoretically the erratum should not occur more than twice in succession
 269 * when reading the system counter, but it is possible that some interrupts
 270 * may lead to more than twice read errors, triggering the warning, so setting
 271 * the number of retries far beyond the number of iterations the loop has been
 272 * observed to take.
 273 */
 274#define __hisi_161010101_read_reg(reg) ({				\
 275	u64 _old, _new;						\
 276	int _retries = 50;					\
 277								\
 278	do {							\
 279		_old = read_sysreg(reg);			\
 280		_new = read_sysreg(reg);			\
 281		_retries--;					\
 282	} while (unlikely((_new - _old) >> 5) && _retries);	\
 283								\
 284	WARN_ON_ONCE(!_retries);				\
 285	_new;							\
 286})
 287
 288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 289{
 290	return __hisi_161010101_read_reg(cntp_tval_el0);
 291}
 292
 293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 294{
 295	return __hisi_161010101_read_reg(cntv_tval_el0);
 296}
 297
 298static u64 notrace hisi_161010101_read_cntpct_el0(void)
 299{
 300	return __hisi_161010101_read_reg(cntpct_el0);
 301}
 302
 303static u64 notrace hisi_161010101_read_cntvct_el0(void)
 304{
 305	return __hisi_161010101_read_reg(cntvct_el0);
 306}
 307
 308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 309	/*
 310	 * Note that trailing spaces are required to properly match
 311	 * the OEM table information.
 312	 */
 313	{
 314		.oem_id		= "HISI  ",
 315		.oem_table_id	= "HIP05   ",
 316		.oem_revision	= 0,
 317	},
 318	{
 319		.oem_id		= "HISI  ",
 320		.oem_table_id	= "HIP06   ",
 321		.oem_revision	= 0,
 322	},
 323	{
 324		.oem_id		= "HISI  ",
 325		.oem_table_id	= "HIP07   ",
 326		.oem_revision	= 0,
 327	},
 328	{ /* Sentinel indicating the end of the OEM array */ },
 329};
 330#endif
 331
 332#ifdef CONFIG_ARM64_ERRATUM_858921
 333static u64 notrace arm64_858921_read_cntpct_el0(void)
 334{
 335	u64 old, new;
 336
 337	old = read_sysreg(cntpct_el0);
 338	new = read_sysreg(cntpct_el0);
 339	return (((old ^ new) >> 32) & 1) ? old : new;
 340}
 341
 342static u64 notrace arm64_858921_read_cntvct_el0(void)
 343{
 344	u64 old, new;
 345
 346	old = read_sysreg(cntvct_el0);
 347	new = read_sysreg(cntvct_el0);
 348	return (((old ^ new) >> 32) & 1) ? old : new;
 349}
 350#endif
 351
 352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 353/*
 354 * The low bits of the counter registers are indeterminate while bit 10 or
 355 * greater is rolling over. Since the counter value can jump both backward
 356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 359 */
 360#define __sun50i_a64_read_reg(reg) ({					\
 361	u64 _val;							\
 362	int _retries = 150;						\
 363									\
 364	do {								\
 365		_val = read_sysreg(reg);				\
 366		_retries--;						\
 367	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 368									\
 369	WARN_ON_ONCE(!_retries);					\
 370	_val;								\
 371})
 372
 373static u64 notrace sun50i_a64_read_cntpct_el0(void)
 374{
 375	return __sun50i_a64_read_reg(cntpct_el0);
 376}
 377
 378static u64 notrace sun50i_a64_read_cntvct_el0(void)
 379{
 380	return __sun50i_a64_read_reg(cntvct_el0);
 381}
 382
 383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 384{
 385	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 386}
 387
 388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 389{
 390	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 391}
 392#endif
 393
 394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 397
 398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 399
 400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 401						struct clock_event_device *clk)
 
 
 
 
 
 402{
 403	unsigned long ctrl;
 404	u64 cval;
 405
 406	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 407	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 408	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 409
 410	if (access == ARCH_TIMER_PHYS_ACCESS) {
 411		cval = evt + arch_counter_get_cntpct_stable();
 412		write_sysreg(cval, cntp_cval_el0);
 413	} else {
 414		cval = evt + arch_counter_get_cntvct_stable();
 415		write_sysreg(cval, cntv_cval_el0);
 416	}
 417
 418	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 419}
 420
 421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 422					    struct clock_event_device *clk)
 423{
 424	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 425	return 0;
 426}
 427
 428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 429					    struct clock_event_device *clk)
 430{
 431	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 432	return 0;
 433}
 434
 435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 436#ifdef CONFIG_FSL_ERRATUM_A008585
 437	{
 438		.match_type = ate_match_dt,
 439		.id = "fsl,erratum-a008585",
 440		.desc = "Freescale erratum a005858",
 441		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 442		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 443		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 444		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 445		.set_next_event_phys = erratum_set_next_event_tval_phys,
 446		.set_next_event_virt = erratum_set_next_event_tval_virt,
 447	},
 448#endif
 449#ifdef CONFIG_HISILICON_ERRATUM_161010101
 450	{
 451		.match_type = ate_match_dt,
 452		.id = "hisilicon,erratum-161010101",
 453		.desc = "HiSilicon erratum 161010101",
 454		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 455		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 456		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 457		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 458		.set_next_event_phys = erratum_set_next_event_tval_phys,
 459		.set_next_event_virt = erratum_set_next_event_tval_virt,
 460	},
 461	{
 462		.match_type = ate_match_acpi_oem_info,
 463		.id = hisi_161010101_oem_info,
 464		.desc = "HiSilicon erratum 161010101",
 465		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 466		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 467		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 468		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 469		.set_next_event_phys = erratum_set_next_event_tval_phys,
 470		.set_next_event_virt = erratum_set_next_event_tval_virt,
 471	},
 472#endif
 473#ifdef CONFIG_ARM64_ERRATUM_858921
 474	{
 475		.match_type = ate_match_local_cap_id,
 476		.id = (void *)ARM64_WORKAROUND_858921,
 477		.desc = "ARM erratum 858921",
 478		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 479		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 
 
 480	},
 481#endif
 482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 483	{
 484		.match_type = ate_match_dt,
 485		.id = "allwinner,erratum-unknown1",
 486		.desc = "Allwinner erratum UNKNOWN1",
 487		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 488		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 489		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 490		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 491		.set_next_event_phys = erratum_set_next_event_tval_phys,
 492		.set_next_event_virt = erratum_set_next_event_tval_virt,
 493	},
 494#endif
 495#ifdef CONFIG_ARM64_ERRATUM_1418040
 496	{
 497		.match_type = ate_match_local_cap_id,
 498		.id = (void *)ARM64_WORKAROUND_1418040,
 499		.desc = "ARM erratum 1418040",
 500		.disable_compat_vdso = true,
 501	},
 502#endif
 503};
 504
 505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 506			       const void *);
 507
 508static
 509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 510				 const void *arg)
 511{
 512	const struct device_node *np = arg;
 513
 514	return of_property_read_bool(np, wa->id);
 515}
 516
 517static
 518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 519					const void *arg)
 520{
 521	return this_cpu_has_cap((uintptr_t)wa->id);
 522}
 523
 524
 525static
 526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 527				       const void *arg)
 528{
 529	static const struct ate_acpi_oem_info empty_oem_info = {};
 530	const struct ate_acpi_oem_info *info = wa->id;
 531	const struct acpi_table_header *table = arg;
 532
 533	/* Iterate over the ACPI OEM info array, looking for a match */
 534	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 535		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 536		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 537		    info->oem_revision == table->oem_revision)
 538			return true;
 539
 540		info++;
 541	}
 542
 543	return false;
 544}
 545
 546static const struct arch_timer_erratum_workaround *
 547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 548			  ate_match_fn_t match_fn,
 549			  void *arg)
 550{
 551	int i;
 552
 553	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 554		if (ool_workarounds[i].match_type != type)
 555			continue;
 556
 557		if (match_fn(&ool_workarounds[i], arg))
 558			return &ool_workarounds[i];
 559	}
 560
 561	return NULL;
 562}
 563
 564static
 565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 566				  bool local)
 567{
 568	int i;
 569
 570	if (local) {
 571		__this_cpu_write(timer_unstable_counter_workaround, wa);
 572	} else {
 573		for_each_possible_cpu(i)
 574			per_cpu(timer_unstable_counter_workaround, i) = wa;
 575	}
 576
 577	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 578		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 579
 580	/*
 581	 * Don't use the vdso fastpath if errata require using the
 582	 * out-of-line counter accessor. We may change our mind pretty
 583	 * late in the game (with a per-CPU erratum, for example), so
 584	 * change both the default value and the vdso itself.
 585	 */
 586	if (wa->read_cntvct_el0) {
 587		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 588		vdso_default = VDSO_CLOCKMODE_NONE;
 589	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 590		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 591		clocksource_counter.vdso_clock_mode = vdso_default;
 592	}
 593}
 594
 595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 596					    void *arg)
 597{
 598	const struct arch_timer_erratum_workaround *wa, *__wa;
 599	ate_match_fn_t match_fn = NULL;
 600	bool local = false;
 601
 602	switch (type) {
 603	case ate_match_dt:
 604		match_fn = arch_timer_check_dt_erratum;
 605		break;
 606	case ate_match_local_cap_id:
 607		match_fn = arch_timer_check_local_cap_erratum;
 608		local = true;
 609		break;
 610	case ate_match_acpi_oem_info:
 611		match_fn = arch_timer_check_acpi_oem_erratum;
 612		break;
 613	default:
 614		WARN_ON(1);
 615		return;
 616	}
 617
 618	wa = arch_timer_iterate_errata(type, match_fn, arg);
 619	if (!wa)
 620		return;
 621
 622	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 623	if (__wa && wa != __wa)
 624		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 625			wa->desc, __wa->desc);
 626
 627	if (__wa)
 628		return;
 629
 630	arch_timer_enable_workaround(wa, local);
 631	pr_info("Enabling %s workaround for %s\n",
 632		local ? "local" : "global", wa->desc);
 633}
 634
 635static bool arch_timer_this_cpu_has_cntvct_wa(void)
 636{
 637	return has_erratum_handler(read_cntvct_el0);
 638}
 639
 640static bool arch_timer_counter_has_wa(void)
 641{
 642	return atomic_read(&timer_unstable_counter_workaround_in_use);
 643}
 644#else
 645#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 646#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 647#define arch_timer_counter_has_wa()			({false;})
 648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 649
 650static __always_inline irqreturn_t timer_handler(const int access,
 651					struct clock_event_device *evt)
 652{
 653	unsigned long ctrl;
 654
 655	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 656	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 657		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 658		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 659		evt->event_handler(evt);
 660		return IRQ_HANDLED;
 661	}
 662
 663	return IRQ_NONE;
 664}
 665
 666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 667{
 668	struct clock_event_device *evt = dev_id;
 669
 670	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 671}
 672
 673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 674{
 675	struct clock_event_device *evt = dev_id;
 676
 677	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 678}
 679
 680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 681{
 682	struct clock_event_device *evt = dev_id;
 683
 684	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 685}
 686
 687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 688{
 689	struct clock_event_device *evt = dev_id;
 690
 691	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 692}
 693
 694static __always_inline int timer_shutdown(const int access,
 695					  struct clock_event_device *clk)
 696{
 697	unsigned long ctrl;
 698
 699	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 700	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 701	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 702
 703	return 0;
 704}
 705
 706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 707{
 708	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 709}
 710
 711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 712{
 713	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 714}
 715
 716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 717{
 718	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 719}
 720
 721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 722{
 723	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 724}
 725
 726static __always_inline void set_next_event(const int access, unsigned long evt,
 727					   struct clock_event_device *clk)
 728{
 729	unsigned long ctrl;
 
 
 730	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 731	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 732	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 733	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 
 
 
 
 
 
 734	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 735}
 736
 737static int arch_timer_set_next_event_virt(unsigned long evt,
 738					  struct clock_event_device *clk)
 739{
 740	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 741	return 0;
 742}
 743
 744static int arch_timer_set_next_event_phys(unsigned long evt,
 745					  struct clock_event_device *clk)
 746{
 747	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 748	return 0;
 749}
 750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 752					      struct clock_event_device *clk)
 753{
 754	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 755	return 0;
 756}
 757
 758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 759					      struct clock_event_device *clk)
 760{
 761	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 762	return 0;
 763}
 764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765static void __arch_timer_setup(unsigned type,
 766			       struct clock_event_device *clk)
 767{
 
 
 768	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 769
 770	if (type == ARCH_TIMER_TYPE_CP15) {
 771		typeof(clk->set_next_event) sne;
 772
 773		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 774
 775		if (arch_timer_c3stop)
 776			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 777		clk->name = "arch_sys_timer";
 778		clk->rating = 450;
 779		clk->cpumask = cpumask_of(smp_processor_id());
 780		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 781		switch (arch_timer_uses_ppi) {
 782		case ARCH_TIMER_VIRT_PPI:
 783			clk->set_state_shutdown = arch_timer_shutdown_virt;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 785			sne = erratum_handler(set_next_event_virt);
 786			break;
 787		case ARCH_TIMER_PHYS_SECURE_PPI:
 788		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 789		case ARCH_TIMER_HYP_PPI:
 790			clk->set_state_shutdown = arch_timer_shutdown_phys;
 791			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 792			sne = erratum_handler(set_next_event_phys);
 793			break;
 794		default:
 795			BUG();
 796		}
 797
 798		clk->set_next_event = sne;
 
 799	} else {
 800		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 801		clk->name = "arch_mem_timer";
 802		clk->rating = 400;
 803		clk->cpumask = cpu_possible_mask;
 804		if (arch_timer_mem_use_virtual) {
 805			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 806			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 807			clk->set_next_event =
 808				arch_timer_set_next_event_virt_mem;
 809		} else {
 810			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 811			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 812			clk->set_next_event =
 813				arch_timer_set_next_event_phys_mem;
 814		}
 
 
 815	}
 816
 817	clk->set_state_shutdown(clk);
 818
 819	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 820}
 821
 822static void arch_timer_evtstrm_enable(int divider)
 823{
 824	u32 cntkctl = arch_timer_get_cntkctl();
 825
 
 
 
 
 
 
 
 
 
 826	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 827	/* Set the divider and enable virtual event stream */
 828	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 829			| ARCH_TIMER_VIRT_EVT_EN;
 830	arch_timer_set_cntkctl(cntkctl);
 831	arch_timer_set_evtstrm_feature();
 832	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 833}
 834
 835static void arch_timer_configure_evtstream(void)
 836{
 837	int evt_stream_div, lsb;
 838
 839	/*
 840	 * As the event stream can at most be generated at half the frequency
 841	 * of the counter, use half the frequency when computing the divider.
 842	 */
 843	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 844
 845	/*
 846	 * Find the closest power of two to the divisor. If the adjacent bit
 847	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 848	 */
 849	lsb = fls(evt_stream_div) - 1;
 850	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 851		lsb++;
 852
 853	/* enable event stream */
 854	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 855}
 856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857static void arch_counter_set_user_access(void)
 858{
 859	u32 cntkctl = arch_timer_get_cntkctl();
 860
 861	/* Disable user access to the timers and both counters */
 862	/* Also disable virtual event stream */
 863	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 864			| ARCH_TIMER_USR_VT_ACCESS_EN
 865		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 866			| ARCH_TIMER_VIRT_EVT_EN
 867			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 868
 869	/*
 870	 * Enable user access to the virtual counter if it doesn't
 871	 * need to be workaround. The vdso may have been already
 872	 * disabled though.
 873	 */
 874	if (arch_timer_this_cpu_has_cntvct_wa())
 875		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 876	else
 877		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 878
 879	arch_timer_set_cntkctl(cntkctl);
 880}
 881
 882static bool arch_timer_has_nonsecure_ppi(void)
 883{
 884	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 885		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 886}
 887
 888static u32 check_ppi_trigger(int irq)
 889{
 890	u32 flags = irq_get_trigger_type(irq);
 891
 892	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 893		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 894		pr_warn("WARNING: Please fix your firmware\n");
 895		flags = IRQF_TRIGGER_LOW;
 896	}
 897
 898	return flags;
 899}
 900
 901static int arch_timer_starting_cpu(unsigned int cpu)
 902{
 903	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 904	u32 flags;
 905
 906	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 907
 908	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 909	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 910
 911	if (arch_timer_has_nonsecure_ppi()) {
 912		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 913		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 914				  flags);
 915	}
 916
 917	arch_counter_set_user_access();
 918	if (evtstrm_enable)
 919		arch_timer_configure_evtstream();
 920
 921	return 0;
 922}
 923
 924static int validate_timer_rate(void)
 925{
 926	if (!arch_timer_rate)
 927		return -EINVAL;
 928
 929	/* Arch timer frequency < 1MHz can cause trouble */
 930	WARN_ON(arch_timer_rate < 1000000);
 931
 932	return 0;
 933}
 934
 935/*
 936 * For historical reasons, when probing with DT we use whichever (non-zero)
 937 * rate was probed first, and don't verify that others match. If the first node
 938 * probed has a clock-frequency property, this overrides the HW register.
 939 */
 940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 941{
 942	/* Who has more than one independent system counter? */
 943	if (arch_timer_rate)
 944		return;
 945
 946	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 947		arch_timer_rate = rate;
 948
 949	/* Check the timer frequency. */
 950	if (validate_timer_rate())
 951		pr_warn("frequency not available\n");
 952}
 953
 954static void __init arch_timer_banner(unsigned type)
 955{
 956	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 957		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 958		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 959			" and " : "",
 960		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 961		(unsigned long)arch_timer_rate / 1000000,
 962		(unsigned long)(arch_timer_rate / 10000) % 100,
 963		type & ARCH_TIMER_TYPE_CP15 ?
 964			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 965			"",
 966		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 967		type & ARCH_TIMER_TYPE_MEM ?
 968			arch_timer_mem_use_virtual ? "virt" : "phys" :
 969			"");
 970}
 971
 972u32 arch_timer_get_rate(void)
 973{
 974	return arch_timer_rate;
 975}
 976
 977bool arch_timer_evtstrm_available(void)
 978{
 979	/*
 980	 * We might get called from a preemptible context. This is fine
 981	 * because availability of the event stream should be always the same
 982	 * for a preemptible context and context where we might resume a task.
 983	 */
 984	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 985}
 986
 987static u64 arch_counter_get_cntvct_mem(void)
 988{
 989	u32 vct_lo, vct_hi, tmp_hi;
 990
 991	do {
 992		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 993		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 994		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 995	} while (vct_hi != tmp_hi);
 996
 997	return ((u64) vct_hi << 32) | vct_lo;
 998}
 999
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004	return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
 
1009	u64 start_count;
 
1010
1011	/* Register the CP15 based counter if we have one */
1012	if (type & ARCH_TIMER_TYPE_CP15) {
1013		u64 (*rd)(void);
1014
1015		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017			if (arch_timer_counter_has_wa())
1018				rd = arch_counter_get_cntvct_stable;
1019			else
 
1020				rd = arch_counter_get_cntvct;
 
 
1021		} else {
1022			if (arch_timer_counter_has_wa())
1023				rd = arch_counter_get_cntpct_stable;
1024			else
 
1025				rd = arch_counter_get_cntpct;
 
 
1026		}
1027
1028		arch_timer_read_counter = rd;
1029		clocksource_counter.vdso_clock_mode = vdso_default;
1030	} else {
1031		arch_timer_read_counter = arch_counter_get_cntvct_mem;
 
1032	}
1033
 
 
 
 
1034	if (!arch_counter_suspend_stop)
1035		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036	start_count = arch_timer_read_counter();
1037	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038	cyclecounter.mult = clocksource_counter.mult;
1039	cyclecounter.shift = clocksource_counter.shift;
1040	timecounter_init(&arch_timer_kvm_info.timecounter,
1041			 &cyclecounter, start_count);
1042
1043	/* 56 bits minimum, so we assume worst case rollover */
1044	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052	if (arch_timer_has_nonsecure_ppi())
1053		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055	clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064	arch_timer_stop(clk);
1065	return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071				    unsigned long action, void *hcpu)
1072{
1073	if (action == CPU_PM_ENTER) {
1074		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080		if (arch_timer_have_evtstrm_feature())
1081			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082	}
1083	return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087	.notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103	return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113	int err;
1114	int ppi;
1115
1116	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117	if (!arch_timer_evt) {
1118		err = -ENOMEM;
1119		goto out;
1120	}
1121
1122	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123	switch (arch_timer_uses_ppi) {
1124	case ARCH_TIMER_VIRT_PPI:
1125		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126					 "arch_timer", arch_timer_evt);
1127		break;
1128	case ARCH_TIMER_PHYS_SECURE_PPI:
1129	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131					 "arch_timer", arch_timer_evt);
1132		if (!err && arch_timer_has_nonsecure_ppi()) {
1133			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135						 "arch_timer", arch_timer_evt);
1136			if (err)
1137				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138						arch_timer_evt);
1139		}
1140		break;
1141	case ARCH_TIMER_HYP_PPI:
1142		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143					 "arch_timer", arch_timer_evt);
1144		break;
1145	default:
1146		BUG();
1147	}
1148
1149	if (err) {
1150		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151		goto out_free;
1152	}
1153
1154	err = arch_timer_cpu_pm_init();
1155	if (err)
1156		goto out_unreg_notify;
1157
1158	/* Register and immediately configure the timer on the boot CPU */
1159	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160				"clockevents/arm/arch_timer:starting",
1161				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162	if (err)
1163		goto out_unreg_cpupm;
1164	return 0;
1165
1166out_unreg_cpupm:
1167	arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171	if (arch_timer_has_nonsecure_ppi())
1172		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173				arch_timer_evt);
1174
1175out_free:
1176	free_percpu(arch_timer_evt);
 
1177out:
1178	return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183	int ret;
1184	irq_handler_t func;
1185	struct arch_timer *t;
1186
1187	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188	if (!t)
1189		return -ENOMEM;
1190
1191	t->base = base;
1192	t->evt.irq = irq;
1193	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195	if (arch_timer_mem_use_virtual)
1196		func = arch_timer_handler_virt_mem;
1197	else
1198		func = arch_timer_handler_phys_mem;
1199
1200	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201	if (ret) {
1202		pr_err("Failed to request mem timer irq\n");
1203		kfree(t);
 
1204	}
1205
1206	return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210	{ .compatible   = "arm,armv7-timer",    },
1211	{ .compatible   = "arm,armv8-timer",    },
1212	{},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216	{ .compatible   = "arm,armv7-timer-mem", },
1217	{},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
1221{
1222	struct device_node *dn;
1223	bool needs_probing = false;
1224	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226	/* We have two timers, and both device-tree nodes are probed. */
1227	if ((arch_timers_present & mask) == mask)
1228		return false;
1229
1230	/*
1231	 * Only one type of timer is probed,
1232	 * check if we have another type of timer node in device-tree.
1233	 */
1234	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236	else
1237		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239	if (dn && of_device_is_available(dn))
1240		needs_probing = true;
1241
1242	of_node_put(dn);
1243
1244	return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
1249	arch_timer_banner(arch_timers_present);
1250	arch_counter_register(arch_timers_present);
1251	return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274	if (is_kernel_in_hyp_mode())
1275		return ARCH_TIMER_HYP_PPI;
1276
1277	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278		return ARCH_TIMER_VIRT_PPI;
1279
1280	if (IS_ENABLED(CONFIG_ARM64))
1281		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283	return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289	if (is_kernel_in_hyp_mode())
1290		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295	int i, irq, ret;
1296	u32 rate;
1297	bool has_names;
1298
1299	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300		pr_warn("multiple nodes in dt, skipping\n");
1301		return 0;
1302	}
1303
1304	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306	has_names = of_property_read_bool(np, "interrupt-names");
1307
1308	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309		if (has_names)
1310			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311		else
1312			irq = of_irq_get(np, i);
1313		if (irq > 0)
1314			arch_timer_ppi[i] = irq;
1315	}
1316
1317	arch_timer_populate_kvm_info();
1318
1319	rate = arch_timer_get_cntfrq();
1320	arch_timer_of_configure_rate(rate, np);
1321
1322	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324	/* Check for globally applicable workarounds */
1325	arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327	/*
1328	 * If we cannot rely on firmware initializing the timer registers then
1329	 * we should use the physical timers instead.
1330	 */
1331	if (IS_ENABLED(CONFIG_ARM) &&
1332	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334	else
1335		arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338		pr_err("No interrupt available, giving up\n");
1339		return -EINVAL;
1340	}
1341
1342	/* On some systems, the counter stops ticking when in suspend. */
1343	arch_counter_suspend_stop = of_property_read_bool(np,
1344							 "arm,no-tick-in-suspend");
1345
1346	ret = arch_timer_register();
1347	if (ret)
1348		return ret;
1349
1350	if (arch_timer_needs_of_probing())
1351		return 0;
1352
1353	return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361	void __iomem *base;
1362	u32 rate;
1363
1364	base = ioremap(frame->cntbase, frame->size);
1365	if (!base) {
1366		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367		return 0;
1368	}
1369
1370	rate = readl_relaxed(base + CNTFRQ);
1371
1372	iounmap(base);
1373
1374	return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381	void __iomem *cntctlbase;
1382	u32 cnttidr;
1383	int i;
1384
1385	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386	if (!cntctlbase) {
1387		pr_err("Can't map CNTCTLBase @ %pa\n",
1388			&timer_mem->cntctlbase);
1389		return NULL;
1390	}
1391
1392	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394	/*
1395	 * Try to find a virtual capable frame. Otherwise fall back to a
1396	 * physical capable frame.
1397	 */
1398	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402		frame = &timer_mem->frame[i];
1403		if (!frame->valid)
1404			continue;
1405
1406		/* Try enabling everything, and see what sticks */
1407		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412			best_frame = frame;
1413			arch_timer_mem_use_virtual = true;
1414			break;
1415		}
1416
1417		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418			continue;
1419
1420		best_frame = frame;
1421	}
1422
1423	iounmap(cntctlbase);
1424
1425	return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431	void __iomem *base;
1432	int ret, irq = 0;
1433
1434	if (arch_timer_mem_use_virtual)
1435		irq = frame->virt_irq;
1436	else
1437		irq = frame->phys_irq;
1438
1439	if (!irq) {
1440		pr_err("Frame missing %s irq.\n",
1441		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442		return -EINVAL;
1443	}
1444
1445	if (!request_mem_region(frame->cntbase, frame->size,
1446				"arch_mem_timer"))
1447		return -EBUSY;
1448
1449	base = ioremap(frame->cntbase, frame->size);
1450	if (!base) {
1451		pr_err("Can't map frame's registers\n");
1452		return -ENXIO;
1453	}
1454
1455	ret = arch_timer_mem_register(base, irq);
1456	if (ret) {
1457		iounmap(base);
1458		return ret;
1459	}
1460
1461	arch_counter_base = base;
1462	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464	return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469	struct arch_timer_mem *timer_mem;
1470	struct arch_timer_mem_frame *frame;
1471	struct device_node *frame_node;
1472	struct resource res;
1473	int ret = -EINVAL;
1474	u32 rate;
1475
1476	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477	if (!timer_mem)
1478		return -ENOMEM;
1479
1480	if (of_address_to_resource(np, 0, &res))
1481		goto out;
1482	timer_mem->cntctlbase = res.start;
1483	timer_mem->size = resource_size(&res);
1484
1485	for_each_available_child_of_node(np, frame_node) {
1486		u32 n;
1487		struct arch_timer_mem_frame *frame;
1488
1489		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490			pr_err(FW_BUG "Missing frame-number.\n");
1491			of_node_put(frame_node);
1492			goto out;
1493		}
1494		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497			of_node_put(frame_node);
1498			goto out;
1499		}
1500		frame = &timer_mem->frame[n];
1501
1502		if (frame->valid) {
1503			pr_err(FW_BUG "Duplicated frame-number.\n");
1504			of_node_put(frame_node);
1505			goto out;
1506		}
1507
1508		if (of_address_to_resource(frame_node, 0, &res)) {
1509			of_node_put(frame_node);
1510			goto out;
1511		}
1512		frame->cntbase = res.start;
1513		frame->size = resource_size(&res);
1514
1515		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516						       ARCH_TIMER_VIRT_SPI);
1517		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518						       ARCH_TIMER_PHYS_SPI);
1519
1520		frame->valid = true;
1521	}
1522
1523	frame = arch_timer_mem_find_best_frame(timer_mem);
1524	if (!frame) {
1525		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526			&timer_mem->cntctlbase);
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532	arch_timer_of_configure_rate(rate, np);
1533
1534	ret = arch_timer_mem_frame_register(frame);
1535	if (!ret && !arch_timer_needs_of_probing())
1536		ret = arch_timer_common_init();
1537out:
1538	kfree(timer_mem);
1539	return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542		       arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548	struct arch_timer_mem_frame *frame;
1549	u32 rate;
1550	int i;
1551
1552	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553		frame = &timer_mem->frame[i];
1554
1555		if (!frame->valid)
1556			continue;
1557
1558		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559		if (rate == arch_timer_rate)
1560			continue;
1561
1562		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563			&frame->cntbase,
1564			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566		return -EINVAL;
1567	}
1568
1569	return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574	struct arch_timer_mem *timers, *timer;
1575	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576	int timer_count, i, ret = 0;
1577
1578	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579			    GFP_KERNEL);
1580	if (!timers)
1581		return -ENOMEM;
1582
1583	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584	if (ret || !timer_count)
1585		goto out;
1586
1587	/*
1588	 * While unlikely, it's theoretically possible that none of the frames
1589	 * in a timer expose the combination of feature we want.
1590	 */
1591	for (i = 0; i < timer_count; i++) {
1592		timer = &timers[i];
1593
1594		frame = arch_timer_mem_find_best_frame(timer);
1595		if (!best_frame)
1596			best_frame = frame;
1597
1598		ret = arch_timer_mem_verify_cntfrq(timer);
1599		if (ret) {
1600			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601			goto out;
1602		}
1603
1604		if (!best_frame) /* implies !frame */
1605			/*
1606			 * Only complain about missing suitable frames if we
1607			 * haven't already found one in a previous iteration.
1608			 */
1609			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610				&timer->cntctlbase);
1611	}
1612
1613	if (best_frame)
1614		ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616	kfree(timers);
1617	return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623	int ret, platform_timer_count;
1624
1625	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626		pr_warn("already initialized, skipping\n");
1627		return -EINVAL;
1628	}
1629
1630	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632	ret = acpi_gtdt_init(table, &platform_timer_count);
1633	if (ret)
1634		return ret;
1635
1636	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645	arch_timer_populate_kvm_info();
1646
1647	/*
1648	 * When probing via ACPI, we have no mechanism to override the sysreg
1649	 * CNTFRQ value. This *must* be correct.
1650	 */
1651	arch_timer_rate = arch_timer_get_cntfrq();
1652	ret = validate_timer_rate();
1653	if (ret) {
1654		pr_err(FW_BUG "frequency not available.\n");
1655		return ret;
1656	}
1657
1658	arch_timer_uses_ppi = arch_timer_select_ppi();
1659	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660		pr_err("No interrupt available, giving up\n");
1661		return -EINVAL;
1662	}
1663
1664	/* Always-on capability */
1665	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667	/* Check for globally applicable workarounds */
1668	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670	ret = arch_timer_register();
1671	if (ret)
1672		return ret;
1673
1674	if (platform_timer_count &&
1675	    arch_timer_mem_acpi_init(platform_timer_count))
1676		pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678	return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684				 struct clocksource **cs)
1685{
1686	struct arm_smccc_res hvc_res;
1687	u32 ptp_counter;
1688	ktime_t ktime;
1689
1690	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691		return -EOPNOTSUPP;
1692
1693	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695	else
1696		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699			     ptp_counter, &hvc_res);
1700
1701	if ((int)(hvc_res.a0) < 0)
1702		return -EOPNOTSUPP;
1703
1704	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705	*ts = ktime_to_timespec64(ktime);
1706	if (cycle)
1707		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708	if (cs)
1709		*cs = &clocksource_counter;
1710
1711	return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);