Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
  41	unsigned int **config_buf;
  42
  43	unsigned int irq_reg_stride;
  44
  45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  46				    unsigned int base, int index);
  47
  48	unsigned int clear_status:1;
  49};
  50
  51static inline const
  52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  53				     int irq)
  54{
  55	return &data->chip->irqs[irq];
  56}
  57
  58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  59{
  60	struct regmap *map = data->map;
  61
  62	/*
  63	 * While possible that a user-defined ->get_irq_reg() callback might
  64	 * be linear enough to support bulk reads, most of the time it won't.
  65	 * Therefore only allow them if the default callback is being used.
  66	 */
  67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  69	       !map->use_single_read;
  70}
  71
  72static void regmap_irq_lock(struct irq_data *data)
  73{
  74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75
  76	mutex_lock(&d->lock);
  77}
  78
 
 
 
 
 
 
 
 
 
 
  79static void regmap_irq_sync_unlock(struct irq_data *data)
  80{
  81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  82	struct regmap *map = d->map;
  83	int i, j, ret;
  84	u32 reg;
  85	u32 val;
  86
  87	if (d->chip->runtime_pm) {
  88		ret = pm_runtime_get_sync(map->dev);
  89		if (ret < 0)
  90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  91				ret);
  92	}
  93
  94	if (d->clear_status) {
  95		for (i = 0; i < d->chip->num_regs; i++) {
  96			reg = d->get_irq_reg(d, d->chip->status_base, i);
  97
  98			ret = regmap_read(map, reg, &val);
  99			if (ret)
 100				dev_err(d->map->dev,
 101					"Failed to clear the interrupt status bits\n");
 102		}
 103
 104		d->clear_status = false;
 105	}
 106
 107	/*
 108	 * If there's been a change in the mask write it back to the
 109	 * hardware.  We rely on the use of the regmap core cache to
 110	 * suppress pointless writes.
 111	 */
 112	for (i = 0; i < d->chip->num_regs; i++) {
 113		if (d->chip->handle_mask_sync)
 114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
 115						  d->mask_buf[i],
 116						  d->chip->irq_drv_data);
 117
 118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
 119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
 120			ret = regmap_update_bits(d->map, reg,
 121						 d->mask_buf_def[i],
 122						 d->mask_buf[i]);
 123			if (ret)
 124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
 125		}
 126
 127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
 128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
 129			ret = regmap_update_bits(d->map, reg,
 130					d->mask_buf_def[i], ~d->mask_buf[i]);
 131			if (ret)
 132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 
 133					reg);
 
 
 
 
 
 
 
 
 
 
 134		}
 
 
 
 135
 136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
 137		if (d->wake_buf) {
 138			if (d->chip->wake_invert)
 139				ret = regmap_update_bits(d->map, reg,
 140							 d->mask_buf_def[i],
 141							 ~d->wake_buf[i]);
 142			else
 143				ret = regmap_update_bits(d->map, reg,
 144							 d->mask_buf_def[i],
 145							 d->wake_buf[i]);
 146			if (ret != 0)
 147				dev_err(d->map->dev,
 148					"Failed to sync wakes in %x: %d\n",
 149					reg, ret);
 150		}
 151
 152		if (!d->chip->init_ack_masked)
 153			continue;
 154		/*
 155		 * Ack all the masked interrupts unconditionally,
 156		 * OR if there is masked interrupt which hasn't been Acked,
 157		 * it'll be ignored in irq handler, then may introduce irq storm
 158		 */
 159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 161
 162			/* some chips ack by write 0 */
 163			if (d->chip->ack_invert)
 164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 165			else
 166				ret = regmap_write(map, reg, d->mask_buf[i]);
 167			if (d->chip->clear_ack) {
 168				if (d->chip->ack_invert && !ret)
 169					ret = regmap_write(map, reg, UINT_MAX);
 170				else if (!ret)
 171					ret = regmap_write(map, reg, 0);
 172			}
 173			if (ret != 0)
 174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 175					reg, ret);
 176		}
 177	}
 178
 179	for (i = 0; i < d->chip->num_config_bases; i++) {
 180		for (j = 0; j < d->chip->num_config_regs; j++) {
 181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 182			ret = regmap_write(map, reg, d->config_buf[i][j]);
 183			if (ret)
 184				dev_err(d->map->dev,
 185					"Failed to write config %x: %d\n",
 186					reg, ret);
 187		}
 
 
 
 
 
 188	}
 189
 190	if (d->chip->runtime_pm)
 191		pm_runtime_put(map->dev);
 192
 193	/* If we've changed our wakeup count propagate it to the parent */
 194	if (d->wake_count < 0)
 195		for (i = d->wake_count; i < 0; i++)
 196			irq_set_irq_wake(d->irq, 0);
 197	else if (d->wake_count > 0)
 198		for (i = 0; i < d->wake_count; i++)
 199			irq_set_irq_wake(d->irq, 1);
 200
 201	d->wake_count = 0;
 202
 203	mutex_unlock(&d->lock);
 204}
 205
 206static void regmap_irq_enable(struct irq_data *data)
 207{
 208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 209	struct regmap *map = d->map;
 210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 212	unsigned int mask;
 213
 214	/*
 215	 * The type_in_mask flag means that the underlying hardware uses
 216	 * separate mask bits for each interrupt trigger type, but we want
 217	 * to have a single logical interrupt with a configurable type.
 218	 *
 219	 * If the interrupt we're enabling defines any supported types
 220	 * then instead of using the regular mask bits for this interrupt,
 221	 * use the value previously written to the type buffer at the
 222	 * corresponding offset in regmap_irq_set_type().
 223	 */
 224	if (d->chip->type_in_mask && irq_data->type.types_supported)
 225		mask = d->type_buf[reg] & irq_data->mask;
 226	else
 227		mask = irq_data->mask;
 228
 229	if (d->chip->clear_on_unmask)
 230		d->clear_status = true;
 231
 232	d->mask_buf[reg] &= ~mask;
 233}
 234
 235static void regmap_irq_disable(struct irq_data *data)
 236{
 237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 238	struct regmap *map = d->map;
 239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 240
 241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 242}
 243
 244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 245{
 246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 247	struct regmap *map = d->map;
 248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 249	int reg, ret;
 250	const struct regmap_irq_type *t = &irq_data->type;
 251
 252	if ((t->types_supported & type) != type)
 253		return 0;
 254
 255	reg = t->type_reg_offset / map->reg_stride;
 
 
 
 
 
 256
 257	if (d->chip->type_in_mask) {
 258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
 259							irq_data, reg, d->chip->irq_drv_data);
 260		if (ret)
 261			return ret;
 262	}
 263
 264	if (d->chip->set_type_config) {
 265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
 266					       reg, d->chip->irq_drv_data);
 267		if (ret)
 268			return ret;
 269	}
 270
 
 
 
 271	return 0;
 272}
 273
 274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	if (on) {
 281		if (d->wake_buf)
 282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 283				&= ~irq_data->mask;
 284		d->wake_count++;
 285	} else {
 286		if (d->wake_buf)
 287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 288				|= irq_data->mask;
 289		d->wake_count--;
 290	}
 291
 292	return 0;
 293}
 294
 295static const struct irq_chip regmap_irq_chip = {
 296	.irq_bus_lock		= regmap_irq_lock,
 297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 298	.irq_disable		= regmap_irq_disable,
 299	.irq_enable		= regmap_irq_enable,
 300	.irq_set_type		= regmap_irq_set_type,
 301	.irq_set_wake		= regmap_irq_set_wake,
 302};
 303
 304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 305					   unsigned int b)
 306{
 307	const struct regmap_irq_chip *chip = data->chip;
 308	struct regmap *map = data->map;
 309	struct regmap_irq_sub_irq_map *subreg;
 310	unsigned int reg;
 311	int i, ret = 0;
 312
 313	if (!chip->sub_reg_offsets) {
 314		reg = data->get_irq_reg(data, chip->status_base, b);
 315		ret = regmap_read(map, reg, &data->status_buf[b]);
 316	} else {
 317		/*
 318		 * Note we can't use ->get_irq_reg() here because the offsets
 319		 * in 'subreg' are *not* interchangeable with indices.
 320		 */
 321		subreg = &chip->sub_reg_offsets[b];
 322		for (i = 0; i < subreg->num_regs; i++) {
 323			unsigned int offset = subreg->offset[i];
 324			unsigned int index = offset / map->reg_stride;
 325
 326			ret = regmap_read(map, chip->status_base + offset,
 327					  &data->status_buf[index]);
 328			if (ret)
 329				break;
 330		}
 331	}
 332	return ret;
 333}
 334
 335static irqreturn_t regmap_irq_thread(int irq, void *d)
 336{
 337	struct regmap_irq_chip_data *data = d;
 338	const struct regmap_irq_chip *chip = data->chip;
 339	struct regmap *map = data->map;
 340	int ret, i;
 341	bool handled = false;
 342	u32 reg;
 343
 344	if (chip->handle_pre_irq)
 345		chip->handle_pre_irq(chip->irq_drv_data);
 346
 347	if (chip->runtime_pm) {
 348		ret = pm_runtime_get_sync(map->dev);
 349		if (ret < 0) {
 350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 351				ret);
 
 352			goto exit;
 353		}
 354	}
 355
 356	/*
 357	 * Read only registers with active IRQs if the chip has 'main status
 358	 * register'. Else read in the statuses, using a single bulk read if
 359	 * possible in order to reduce the I/O overheads.
 360	 */
 361
 362	if (chip->no_status) {
 363		/* no status register so default to all active */
 364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
 365	} else if (chip->num_main_regs) {
 366		unsigned int max_main_bits;
 367		unsigned long size;
 368
 369		size = chip->num_regs * sizeof(unsigned int);
 370
 371		max_main_bits = (chip->num_main_status_bits) ?
 372				 chip->num_main_status_bits : chip->num_regs;
 373		/* Clear the status buf as we don't read all status regs */
 374		memset(data->status_buf, 0, size);
 375
 376		/* We could support bulk read for main status registers
 377		 * but I don't expect to see devices with really many main
 378		 * status registers so let's only support single reads for the
 379		 * sake of simplicity. and add bulk reads only if needed
 380		 */
 381		for (i = 0; i < chip->num_main_regs; i++) {
 382			reg = data->get_irq_reg(data, chip->main_status, i);
 383			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 384			if (ret) {
 385				dev_err(map->dev,
 386					"Failed to read IRQ status %d\n",
 387					ret);
 388				goto exit;
 389			}
 390		}
 391
 392		/* Read sub registers with active IRQs */
 393		for (i = 0; i < chip->num_main_regs; i++) {
 394			unsigned int b;
 395			const unsigned long mreg = data->main_status_buf[i];
 396
 397			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 398				if (i * map->format.val_bytes * 8 + b >
 399				    max_main_bits)
 400					break;
 401				ret = read_sub_irq_data(data, b);
 402
 403				if (ret != 0) {
 404					dev_err(map->dev,
 405						"Failed to read IRQ status %d\n",
 406						ret);
 407					goto exit;
 408				}
 409			}
 410
 411		}
 412	} else if (regmap_irq_can_bulk_read_status(data)) {
 413
 414		u8 *buf8 = data->status_reg_buf;
 415		u16 *buf16 = data->status_reg_buf;
 416		u32 *buf32 = data->status_reg_buf;
 417
 418		BUG_ON(!data->status_reg_buf);
 419
 420		ret = regmap_bulk_read(map, chip->status_base,
 421				       data->status_reg_buf,
 422				       chip->num_regs);
 423		if (ret != 0) {
 424			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 425				ret);
 426			goto exit;
 427		}
 428
 429		for (i = 0; i < data->chip->num_regs; i++) {
 430			switch (map->format.val_bytes) {
 431			case 1:
 432				data->status_buf[i] = buf8[i];
 433				break;
 434			case 2:
 435				data->status_buf[i] = buf16[i];
 436				break;
 437			case 4:
 438				data->status_buf[i] = buf32[i];
 439				break;
 440			default:
 441				BUG();
 442				goto exit;
 443			}
 444		}
 445
 446	} else {
 447		for (i = 0; i < data->chip->num_regs; i++) {
 448			unsigned int reg = data->get_irq_reg(data,
 449					data->chip->status_base, i);
 450			ret = regmap_read(map, reg, &data->status_buf[i]);
 
 451
 452			if (ret != 0) {
 453				dev_err(map->dev,
 454					"Failed to read IRQ status: %d\n",
 455					ret);
 
 
 456				goto exit;
 457			}
 458		}
 459	}
 460
 461	if (chip->status_invert)
 462		for (i = 0; i < data->chip->num_regs; i++)
 463			data->status_buf[i] = ~data->status_buf[i];
 464
 465	/*
 466	 * Ignore masked IRQs and ack if we need to; we ack early so
 467	 * there is no race between handling and acknowledging the
 468	 * interrupt.  We assume that typically few of the interrupts
 469	 * will fire simultaneously so don't worry about overhead from
 470	 * doing a write per register.
 471	 */
 472	for (i = 0; i < data->chip->num_regs; i++) {
 473		data->status_buf[i] &= ~data->mask_buf[i];
 474
 475		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 476			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 477
 478			if (chip->ack_invert)
 479				ret = regmap_write(map, reg,
 480						~data->status_buf[i]);
 481			else
 482				ret = regmap_write(map, reg,
 483						data->status_buf[i]);
 484			if (chip->clear_ack) {
 485				if (chip->ack_invert && !ret)
 486					ret = regmap_write(map, reg, UINT_MAX);
 487				else if (!ret)
 488					ret = regmap_write(map, reg, 0);
 489			}
 490			if (ret != 0)
 491				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 492					reg, ret);
 493		}
 494	}
 495
 496	for (i = 0; i < chip->num_irqs; i++) {
 497		if (data->status_buf[chip->irqs[i].reg_offset /
 498				     map->reg_stride] & chip->irqs[i].mask) {
 499			handle_nested_irq(irq_find_mapping(data->domain, i));
 500			handled = true;
 501		}
 502	}
 503
 
 
 
 504exit:
 505	if (chip->handle_post_irq)
 506		chip->handle_post_irq(chip->irq_drv_data);
 507
 508	if (chip->runtime_pm)
 509		pm_runtime_put(map->dev);
 510
 511	if (handled)
 512		return IRQ_HANDLED;
 513	else
 514		return IRQ_NONE;
 515}
 516
 517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 518			  irq_hw_number_t hw)
 519{
 520	struct regmap_irq_chip_data *data = h->host_data;
 521
 522	irq_set_chip_data(virq, data);
 523	irq_set_chip(virq, &data->irq_chip);
 524	irq_set_nested_thread(virq, 1);
 525	irq_set_parent(virq, data->irq);
 526	irq_set_noprobe(virq);
 527
 528	return 0;
 529}
 530
 531static const struct irq_domain_ops regmap_domain_ops = {
 532	.map	= regmap_irq_map,
 533	.xlate	= irq_domain_xlate_onetwocell,
 534};
 535
 536/**
 537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 538 * @data: Data for the &struct regmap_irq_chip
 539 * @base: Base register
 540 * @index: Register index
 541 *
 542 * Returns the register address corresponding to the given @base and @index
 543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 544 */
 545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 546					   unsigned int base, int index)
 547{
 548	struct regmap *map = data->map;
 549
 550	return base + index * map->reg_stride * data->irq_reg_stride;
 551}
 552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 553
 554/**
 555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 556 * @buf: Buffer containing configuration register values, this is a 2D array of
 557 *       `num_config_bases` rows, each of `num_config_regs` elements.
 558 * @type: The requested IRQ type.
 559 * @irq_data: The IRQ being configured.
 560 * @idx: Index of the irq's config registers within each array `buf[i]`
 561 * @irq_drv_data: Driver specific IRQ data
 562 *
 563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 564 * chips with one config register. Register values are updated according to
 565 * the &struct regmap_irq_type data associated with an IRQ.
 566 */
 567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 568				      const struct regmap_irq *irq_data,
 569				      int idx, void *irq_drv_data)
 570{
 571	const struct regmap_irq_type *t = &irq_data->type;
 572
 573	if (t->type_reg_mask)
 574		buf[0][idx] &= ~t->type_reg_mask;
 575	else
 576		buf[0][idx] &= ~(t->type_falling_val |
 577				 t->type_rising_val |
 578				 t->type_level_low_val |
 579				 t->type_level_high_val);
 580
 581	switch (type) {
 582	case IRQ_TYPE_EDGE_FALLING:
 583		buf[0][idx] |= t->type_falling_val;
 584		break;
 585
 586	case IRQ_TYPE_EDGE_RISING:
 587		buf[0][idx] |= t->type_rising_val;
 588		break;
 589
 590	case IRQ_TYPE_EDGE_BOTH:
 591		buf[0][idx] |= (t->type_falling_val |
 592				t->type_rising_val);
 593		break;
 594
 595	case IRQ_TYPE_LEVEL_HIGH:
 596		buf[0][idx] |= t->type_level_high_val;
 597		break;
 598
 599	case IRQ_TYPE_LEVEL_LOW:
 600		buf[0][idx] |= t->type_level_low_val;
 601		break;
 602
 603	default:
 604		return -EINVAL;
 605	}
 606
 607	return 0;
 608}
 609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 610
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629			       struct regmap *map, int irq,
 630			       int irq_flags, int irq_base,
 631			       const struct regmap_irq_chip *chip,
 632			       struct regmap_irq_chip_data **data)
 633{
 634	struct regmap_irq_chip_data *d;
 635	int i;
 636	int ret = -ENOMEM;
 637	u32 reg;
 
 638
 639	if (chip->num_regs <= 0)
 640		return -EINVAL;
 641
 642	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 643		return -EINVAL;
 644
 645	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
 646		return -EINVAL;
 647
 648	for (i = 0; i < chip->num_irqs; i++) {
 649		if (chip->irqs[i].reg_offset % map->reg_stride)
 650			return -EINVAL;
 651		if (chip->irqs[i].reg_offset / map->reg_stride >=
 652		    chip->num_regs)
 653			return -EINVAL;
 654	}
 655
 656	if (irq_base) {
 657		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 658		if (irq_base < 0) {
 659			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 660				 irq_base);
 661			return irq_base;
 662		}
 663	}
 664
 665	d = kzalloc(sizeof(*d), GFP_KERNEL);
 666	if (!d)
 667		return -ENOMEM;
 668
 669	if (chip->num_main_regs) {
 670		d->main_status_buf = kcalloc(chip->num_main_regs,
 671					     sizeof(*d->main_status_buf),
 672					     GFP_KERNEL);
 673
 674		if (!d->main_status_buf)
 675			goto err_alloc;
 676	}
 677
 678	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 679				GFP_KERNEL);
 680	if (!d->status_buf)
 681		goto err_alloc;
 682
 683	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 684			      GFP_KERNEL);
 685	if (!d->mask_buf)
 686		goto err_alloc;
 687
 688	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 689				  GFP_KERNEL);
 690	if (!d->mask_buf_def)
 691		goto err_alloc;
 692
 693	if (chip->wake_base) {
 694		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 695				      GFP_KERNEL);
 696		if (!d->wake_buf)
 697			goto err_alloc;
 698	}
 699
 700	if (chip->type_in_mask) {
 701		d->type_buf_def = kcalloc(chip->num_regs,
 702					  sizeof(*d->type_buf_def), GFP_KERNEL);
 703		if (!d->type_buf_def)
 704			goto err_alloc;
 705
 706		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
 
 707		if (!d->type_buf)
 708			goto err_alloc;
 709	}
 710
 711	if (chip->num_config_bases && chip->num_config_regs) {
 712		/*
 713		 * Create config_buf[num_config_bases][num_config_regs]
 714		 */
 715		d->config_buf = kcalloc(chip->num_config_bases,
 716					sizeof(*d->config_buf), GFP_KERNEL);
 717		if (!d->config_buf)
 718			goto err_alloc;
 719
 720		for (i = 0; i < chip->num_config_bases; i++) {
 721			d->config_buf[i] = kcalloc(chip->num_config_regs,
 722						   sizeof(**d->config_buf),
 723						   GFP_KERNEL);
 724			if (!d->config_buf[i])
 725				goto err_alloc;
 726		}
 727	}
 728
 729	d->irq_chip = regmap_irq_chip;
 730	d->irq_chip.name = chip->name;
 731	d->irq = irq;
 732	d->map = map;
 733	d->chip = chip;
 734	d->irq_base = irq_base;
 735
 736	if (chip->irq_reg_stride)
 737		d->irq_reg_stride = chip->irq_reg_stride;
 738	else
 739		d->irq_reg_stride = 1;
 740
 741	if (chip->get_irq_reg)
 742		d->get_irq_reg = chip->get_irq_reg;
 743	else
 744		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 745
 746	if (regmap_irq_can_bulk_read_status(d)) {
 
 747		d->status_reg_buf = kmalloc_array(chip->num_regs,
 748						  map->format.val_bytes,
 749						  GFP_KERNEL);
 750		if (!d->status_reg_buf)
 751			goto err_alloc;
 752	}
 753
 754	mutex_init(&d->lock);
 755
 756	for (i = 0; i < chip->num_irqs; i++)
 757		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 758			|= chip->irqs[i].mask;
 759
 760	/* Mask all the interrupts by default */
 761	for (i = 0; i < chip->num_regs; i++) {
 762		d->mask_buf[i] = d->mask_buf_def[i];
 763
 764		if (chip->handle_mask_sync) {
 765			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
 766						     d->mask_buf[i],
 767						     chip->irq_drv_data);
 768			if (ret)
 769				goto err_alloc;
 770		}
 771
 772		if (chip->mask_base && !chip->handle_mask_sync) {
 773			reg = d->get_irq_reg(d, chip->mask_base, i);
 774			ret = regmap_update_bits(d->map, reg,
 775						 d->mask_buf_def[i],
 776						 d->mask_buf[i]);
 777			if (ret) {
 778				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 779					reg, ret);
 780				goto err_alloc;
 781			}
 782		}
 783
 784		if (chip->unmask_base && !chip->handle_mask_sync) {
 785			reg = d->get_irq_reg(d, chip->unmask_base, i);
 786			ret = regmap_update_bits(d->map, reg,
 787					d->mask_buf_def[i], ~d->mask_buf[i]);
 788			if (ret) {
 789				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 790					reg, ret);
 791				goto err_alloc;
 792			}
 793		}
 794
 795		if (!chip->init_ack_masked)
 796			continue;
 797
 798		/* Ack masked but set interrupts */
 799		if (d->chip->no_status) {
 800			/* no status register so default to all active */
 801			d->status_buf[i] = GENMASK(31, 0);
 802		} else {
 803			reg = d->get_irq_reg(d, d->chip->status_base, i);
 804			ret = regmap_read(map, reg, &d->status_buf[i]);
 805			if (ret != 0) {
 806				dev_err(map->dev, "Failed to read IRQ status: %d\n",
 807					ret);
 808				goto err_alloc;
 809			}
 810		}
 811
 812		if (chip->status_invert)
 813			d->status_buf[i] = ~d->status_buf[i];
 814
 815		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 816			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 
 817			if (chip->ack_invert)
 818				ret = regmap_write(map, reg,
 819					~(d->status_buf[i] & d->mask_buf[i]));
 820			else
 821				ret = regmap_write(map, reg,
 822					d->status_buf[i] & d->mask_buf[i]);
 823			if (chip->clear_ack) {
 824				if (chip->ack_invert && !ret)
 825					ret = regmap_write(map, reg, UINT_MAX);
 826				else if (!ret)
 827					ret = regmap_write(map, reg, 0);
 828			}
 829			if (ret != 0) {
 830				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 831					reg, ret);
 832				goto err_alloc;
 833			}
 834		}
 835	}
 836
 837	/* Wake is disabled by default */
 838	if (d->wake_buf) {
 839		for (i = 0; i < chip->num_regs; i++) {
 840			d->wake_buf[i] = d->mask_buf_def[i];
 841			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
 842
 843			if (chip->wake_invert)
 844				ret = regmap_update_bits(d->map, reg,
 845							 d->mask_buf_def[i],
 846							 0);
 847			else
 848				ret = regmap_update_bits(d->map, reg,
 849							 d->mask_buf_def[i],
 850							 d->wake_buf[i]);
 851			if (ret != 0) {
 852				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 853					reg, ret);
 854				goto err_alloc;
 855			}
 856		}
 857	}
 858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859	if (irq_base)
 860		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 861						     irq_base, 0,
 862						     &regmap_domain_ops, d);
 863	else
 864		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 865						     &regmap_domain_ops, d);
 
 866	if (!d->domain) {
 867		dev_err(map->dev, "Failed to create IRQ domain\n");
 868		ret = -ENOMEM;
 869		goto err_alloc;
 870	}
 871
 872	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 873				   irq_flags | IRQF_ONESHOT,
 874				   chip->name, d);
 875	if (ret != 0) {
 876		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 877			irq, chip->name, ret);
 878		goto err_domain;
 879	}
 880
 881	*data = d;
 882
 883	return 0;
 884
 885err_domain:
 886	/* Should really dispose of the domain but... */
 887err_alloc:
 888	kfree(d->type_buf);
 889	kfree(d->type_buf_def);
 890	kfree(d->wake_buf);
 891	kfree(d->mask_buf_def);
 892	kfree(d->mask_buf);
 893	kfree(d->status_buf);
 894	kfree(d->status_reg_buf);
 895	if (d->config_buf) {
 896		for (i = 0; i < chip->num_config_bases; i++)
 897			kfree(d->config_buf[i]);
 898		kfree(d->config_buf);
 899	}
 900	kfree(d);
 901	return ret;
 902}
 903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 904
 905/**
 906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 907 *
 908 * @map: The regmap for the device.
 909 * @irq: The IRQ the device uses to signal interrupts.
 910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 912 * @chip: Configuration for the interrupt controller.
 913 * @data: Runtime data structure for the controller, allocated on success.
 914 *
 915 * Returns 0 on success or an errno on failure.
 916 *
 917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 918 * node of the regmap is used.
 919 */
 920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 921			int irq_base, const struct regmap_irq_chip *chip,
 922			struct regmap_irq_chip_data **data)
 923{
 924	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 925					  irq_flags, irq_base, chip, data);
 926}
 927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 928
 929/**
 930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 931 *
 932 * @irq: Primary IRQ for the device
 933 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 934 *
 935 * This function also disposes of all mapped IRQs on the chip.
 936 */
 937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 938{
 939	unsigned int virq;
 940	int i, hwirq;
 941
 942	if (!d)
 943		return;
 944
 945	free_irq(irq, d);
 946
 947	/* Dispose all virtual irq from irq domain before removing it */
 948	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 949		/* Ignore hwirq if holes in the IRQ list */
 950		if (!d->chip->irqs[hwirq].mask)
 951			continue;
 952
 953		/*
 954		 * Find the virtual irq of hwirq on chip and if it is
 955		 * there then dispose it
 956		 */
 957		virq = irq_find_mapping(d->domain, hwirq);
 958		if (virq)
 959			irq_dispose_mapping(virq);
 960	}
 961
 962	irq_domain_remove(d->domain);
 963	kfree(d->type_buf);
 964	kfree(d->type_buf_def);
 965	kfree(d->wake_buf);
 966	kfree(d->mask_buf_def);
 967	kfree(d->mask_buf);
 968	kfree(d->status_reg_buf);
 969	kfree(d->status_buf);
 970	if (d->config_buf) {
 971		for (i = 0; i < d->chip->num_config_bases; i++)
 972			kfree(d->config_buf[i]);
 973		kfree(d->config_buf);
 974	}
 975	kfree(d);
 976}
 977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 978
 979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 980{
 981	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 982
 983	regmap_del_irq_chip(d->irq, d);
 984}
 985
 986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 987
 988{
 989	struct regmap_irq_chip_data **r = res;
 990
 991	if (!r || !*r) {
 992		WARN_ON(!r || !*r);
 993		return 0;
 994	}
 995	return *r == data;
 996}
 997
 998/**
 999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The &regmap_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016				    struct fwnode_handle *fwnode,
1017				    struct regmap *map, int irq,
1018				    int irq_flags, int irq_base,
1019				    const struct regmap_irq_chip *chip,
1020				    struct regmap_irq_chip_data **data)
1021{
1022	struct regmap_irq_chip_data **ptr, *d;
1023	int ret;
1024
1025	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026			   GFP_KERNEL);
1027	if (!ptr)
1028		return -ENOMEM;
1029
1030	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031					 chip, &d);
1032	if (ret < 0) {
1033		devres_free(ptr);
1034		return ret;
1035	}
1036
1037	*ptr = d;
1038	devres_add(dev, ptr);
1039	*data = d;
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The &regmap_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061			     int irq_flags, int irq_base,
1062			     const struct regmap_irq_chip *chip,
1063			     struct regmap_irq_chip_data **data)
1064{
1065	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066					       irq, irq_flags, irq_base, chip,
1067					       data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081			      struct regmap_irq_chip_data *data)
1082{
1083	int rc;
1084
1085	WARN_ON(irq != data->irq);
1086	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087			    devm_regmap_irq_chip_match, data);
1088
1089	if (rc != 0)
1090		WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103	WARN_ON(!data->irq_base);
1104	return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118	/* Handle holes in the IRQ list */
1119	if (!data->chip->irqs[irq].mask)
1120		return -EINVAL;
1121
1122	return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems.  For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138	if (data)
1139		return data->domain;
1140	else
1141		return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v4.17
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/device.h>
 14#include <linux/export.h>
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 
 
 
 
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
 64				  unsigned int reg, unsigned int mask,
 65				  unsigned int val)
 66{
 67	if (d->chip->mask_writeonly)
 68		return regmap_write_bits(d->map, reg, mask, val);
 69	else
 70		return regmap_update_bits(d->map, reg, mask, val);
 71}
 72
 73static void regmap_irq_sync_unlock(struct irq_data *data)
 74{
 75	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 76	struct regmap *map = d->map;
 77	int i, ret;
 78	u32 reg;
 79	u32 unmask_offset;
 80
 81	if (d->chip->runtime_pm) {
 82		ret = pm_runtime_get_sync(map->dev);
 83		if (ret < 0)
 84			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 85				ret);
 86	}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 88	/*
 89	 * If there's been a change in the mask write it back to the
 90	 * hardware.  We rely on the use of the regmap core cache to
 91	 * suppress pointless writes.
 92	 */
 93	for (i = 0; i < d->chip->num_regs; i++) {
 94		reg = d->chip->mask_base +
 95			(i * map->reg_stride * d->irq_reg_stride);
 96		if (d->chip->mask_invert) {
 97			ret = regmap_irq_update_bits(d, reg,
 98					 d->mask_buf_def[i], ~d->mask_buf[i]);
 99		} else if (d->chip->unmask_base) {
100			/* set mask with mask_base register */
101			ret = regmap_irq_update_bits(d, reg,
 
 
 
 
 
 
 
 
 
102					d->mask_buf_def[i], ~d->mask_buf[i]);
103			if (ret < 0)
104				dev_err(d->map->dev,
105					"Failed to sync unmasks in %x\n",
106					reg);
107			unmask_offset = d->chip->unmask_base -
108							d->chip->mask_base;
109			/* clear mask with unmask_base register */
110			ret = regmap_irq_update_bits(d,
111					reg + unmask_offset,
112					d->mask_buf_def[i],
113					d->mask_buf[i]);
114		} else {
115			ret = regmap_irq_update_bits(d, reg,
116					 d->mask_buf_def[i], d->mask_buf[i]);
117		}
118		if (ret != 0)
119			dev_err(d->map->dev, "Failed to sync masks in %x\n",
120				reg);
121
122		reg = d->chip->wake_base +
123			(i * map->reg_stride * d->irq_reg_stride);
124		if (d->wake_buf) {
125			if (d->chip->wake_invert)
126				ret = regmap_irq_update_bits(d, reg,
127							 d->mask_buf_def[i],
128							 ~d->wake_buf[i]);
129			else
130				ret = regmap_irq_update_bits(d, reg,
131							 d->mask_buf_def[i],
132							 d->wake_buf[i]);
133			if (ret != 0)
134				dev_err(d->map->dev,
135					"Failed to sync wakes in %x: %d\n",
136					reg, ret);
137		}
138
139		if (!d->chip->init_ack_masked)
140			continue;
141		/*
142		 * Ack all the masked interrupts unconditionally,
143		 * OR if there is masked interrupt which hasn't been Acked,
144		 * it'll be ignored in irq handler, then may introduce irq storm
145		 */
146		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147			reg = d->chip->ack_base +
148				(i * map->reg_stride * d->irq_reg_stride);
149			/* some chips ack by write 0 */
150			if (d->chip->ack_invert)
151				ret = regmap_write(map, reg, ~d->mask_buf[i]);
152			else
153				ret = regmap_write(map, reg, d->mask_buf[i]);
 
 
 
 
 
 
154			if (ret != 0)
155				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156					reg, ret);
157		}
158	}
159
160	for (i = 0; i < d->chip->num_type_reg; i++) {
161		if (!d->type_buf_def[i])
162			continue;
163		reg = d->chip->type_base +
164			(i * map->reg_stride * d->type_reg_stride);
165		if (d->chip->type_invert)
166			ret = regmap_irq_update_bits(d, reg,
167				d->type_buf_def[i], ~d->type_buf[i]);
168		else
169			ret = regmap_irq_update_bits(d, reg,
170				d->type_buf_def[i], d->type_buf[i]);
171		if (ret != 0)
172			dev_err(d->map->dev, "Failed to sync type in %x\n",
173				reg);
174	}
175
176	if (d->chip->runtime_pm)
177		pm_runtime_put(map->dev);
178
179	/* If we've changed our wakeup count propagate it to the parent */
180	if (d->wake_count < 0)
181		for (i = d->wake_count; i < 0; i++)
182			irq_set_irq_wake(d->irq, 0);
183	else if (d->wake_count > 0)
184		for (i = 0; i < d->wake_count; i++)
185			irq_set_irq_wake(d->irq, 1);
186
187	d->wake_count = 0;
188
189	mutex_unlock(&d->lock);
190}
191
192static void regmap_irq_enable(struct irq_data *data)
193{
194	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195	struct regmap *map = d->map;
196	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199}
200
201static void regmap_irq_disable(struct irq_data *data)
202{
203	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204	struct regmap *map = d->map;
205	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206
207	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208}
209
210static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211{
212	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213	struct regmap *map = d->map;
214	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215	int reg = irq_data->type_reg_offset / map->reg_stride;
 
216
217	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218		return 0;
219
220	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221					irq_data->type_rising_mask);
222	switch (type) {
223	case IRQ_TYPE_EDGE_FALLING:
224		d->type_buf[reg] |= irq_data->type_falling_mask;
225		break;
226
227	case IRQ_TYPE_EDGE_RISING:
228		d->type_buf[reg] |= irq_data->type_rising_mask;
229		break;
 
 
 
230
231	case IRQ_TYPE_EDGE_BOTH:
232		d->type_buf[reg] |= (irq_data->type_falling_mask |
233					irq_data->type_rising_mask);
234		break;
 
 
235
236	default:
237		return -EINVAL;
238	}
239	return 0;
240}
241
242static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243{
244	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245	struct regmap *map = d->map;
246	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247
248	if (on) {
249		if (d->wake_buf)
250			d->wake_buf[irq_data->reg_offset / map->reg_stride]
251				&= ~irq_data->mask;
252		d->wake_count++;
253	} else {
254		if (d->wake_buf)
255			d->wake_buf[irq_data->reg_offset / map->reg_stride]
256				|= irq_data->mask;
257		d->wake_count--;
258	}
259
260	return 0;
261}
262
263static const struct irq_chip regmap_irq_chip = {
264	.irq_bus_lock		= regmap_irq_lock,
265	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
266	.irq_disable		= regmap_irq_disable,
267	.irq_enable		= regmap_irq_enable,
268	.irq_set_type		= regmap_irq_set_type,
269	.irq_set_wake		= regmap_irq_set_wake,
270};
271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272static irqreturn_t regmap_irq_thread(int irq, void *d)
273{
274	struct regmap_irq_chip_data *data = d;
275	const struct regmap_irq_chip *chip = data->chip;
276	struct regmap *map = data->map;
277	int ret, i;
278	bool handled = false;
279	u32 reg;
280
281	if (chip->handle_pre_irq)
282		chip->handle_pre_irq(chip->irq_drv_data);
283
284	if (chip->runtime_pm) {
285		ret = pm_runtime_get_sync(map->dev);
286		if (ret < 0) {
287			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288				ret);
289			pm_runtime_put(map->dev);
290			goto exit;
291		}
292	}
293
294	/*
295	 * Read in the statuses, using a single bulk read if possible
296	 * in order to reduce the I/O overheads.
 
297	 */
298	if (!map->use_single_read && map->reg_stride == 1 &&
299	    data->irq_reg_stride == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300		u8 *buf8 = data->status_reg_buf;
301		u16 *buf16 = data->status_reg_buf;
302		u32 *buf32 = data->status_reg_buf;
303
304		BUG_ON(!data->status_reg_buf);
305
306		ret = regmap_bulk_read(map, chip->status_base,
307				       data->status_reg_buf,
308				       chip->num_regs);
309		if (ret != 0) {
310			dev_err(map->dev, "Failed to read IRQ status: %d\n",
311				ret);
312			goto exit;
313		}
314
315		for (i = 0; i < data->chip->num_regs; i++) {
316			switch (map->format.val_bytes) {
317			case 1:
318				data->status_buf[i] = buf8[i];
319				break;
320			case 2:
321				data->status_buf[i] = buf16[i];
322				break;
323			case 4:
324				data->status_buf[i] = buf32[i];
325				break;
326			default:
327				BUG();
328				goto exit;
329			}
330		}
331
332	} else {
333		for (i = 0; i < data->chip->num_regs; i++) {
334			ret = regmap_read(map, chip->status_base +
335					  (i * map->reg_stride
336					   * data->irq_reg_stride),
337					  &data->status_buf[i]);
338
339			if (ret != 0) {
340				dev_err(map->dev,
341					"Failed to read IRQ status: %d\n",
342					ret);
343				if (chip->runtime_pm)
344					pm_runtime_put(map->dev);
345				goto exit;
346			}
347		}
348	}
349
 
 
 
 
350	/*
351	 * Ignore masked IRQs and ack if we need to; we ack early so
352	 * there is no race between handling and acknowleding the
353	 * interrupt.  We assume that typically few of the interrupts
354	 * will fire simultaneously so don't worry about overhead from
355	 * doing a write per register.
356	 */
357	for (i = 0; i < data->chip->num_regs; i++) {
358		data->status_buf[i] &= ~data->mask_buf[i];
359
360		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361			reg = chip->ack_base +
362				(i * map->reg_stride * data->irq_reg_stride);
363			ret = regmap_write(map, reg, data->status_buf[i]);
 
 
 
 
 
 
 
 
 
 
 
364			if (ret != 0)
365				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366					reg, ret);
367		}
368	}
369
370	for (i = 0; i < chip->num_irqs; i++) {
371		if (data->status_buf[chip->irqs[i].reg_offset /
372				     map->reg_stride] & chip->irqs[i].mask) {
373			handle_nested_irq(irq_find_mapping(data->domain, i));
374			handled = true;
375		}
376	}
377
378	if (chip->runtime_pm)
379		pm_runtime_put(map->dev);
380
381exit:
382	if (chip->handle_post_irq)
383		chip->handle_post_irq(chip->irq_drv_data);
384
 
 
 
385	if (handled)
386		return IRQ_HANDLED;
387	else
388		return IRQ_NONE;
389}
390
391static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392			  irq_hw_number_t hw)
393{
394	struct regmap_irq_chip_data *data = h->host_data;
395
396	irq_set_chip_data(virq, data);
397	irq_set_chip(virq, &data->irq_chip);
398	irq_set_nested_thread(virq, 1);
399	irq_set_parent(virq, data->irq);
400	irq_set_noprobe(virq);
401
402	return 0;
403}
404
405static const struct irq_domain_ops regmap_domain_ops = {
406	.map	= regmap_irq_map,
407	.xlate	= irq_domain_xlate_onetwocell,
408};
409
410/**
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412 *
 
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
419 *
420 * Returns 0 on success or an errno on failure.
421 *
422 * In order for this to be efficient the chip really should use a
423 * register cache.  The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
425 */
426int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427			int irq_base, const struct regmap_irq_chip *chip,
428			struct regmap_irq_chip_data **data)
 
 
429{
430	struct regmap_irq_chip_data *d;
431	int i;
432	int ret = -ENOMEM;
433	u32 reg;
434	u32 unmask_offset;
435
436	if (chip->num_regs <= 0)
437		return -EINVAL;
438
 
 
 
 
 
 
439	for (i = 0; i < chip->num_irqs; i++) {
440		if (chip->irqs[i].reg_offset % map->reg_stride)
441			return -EINVAL;
442		if (chip->irqs[i].reg_offset / map->reg_stride >=
443		    chip->num_regs)
444			return -EINVAL;
445	}
446
447	if (irq_base) {
448		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449		if (irq_base < 0) {
450			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451				 irq_base);
452			return irq_base;
453		}
454	}
455
456	d = kzalloc(sizeof(*d), GFP_KERNEL);
457	if (!d)
458		return -ENOMEM;
459
460	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 
 
 
 
 
 
 
 
 
461				GFP_KERNEL);
462	if (!d->status_buf)
463		goto err_alloc;
464
465	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466			      GFP_KERNEL);
467	if (!d->mask_buf)
468		goto err_alloc;
469
470	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471				  GFP_KERNEL);
472	if (!d->mask_buf_def)
473		goto err_alloc;
474
475	if (chip->wake_base) {
476		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477				      GFP_KERNEL);
478		if (!d->wake_buf)
479			goto err_alloc;
480	}
481
482	if (chip->num_type_reg) {
483		d->type_buf_def = kcalloc(chip->num_type_reg,
484					sizeof(unsigned int), GFP_KERNEL);
485		if (!d->type_buf_def)
486			goto err_alloc;
487
488		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489				      GFP_KERNEL);
490		if (!d->type_buf)
491			goto err_alloc;
492	}
493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494	d->irq_chip = regmap_irq_chip;
495	d->irq_chip.name = chip->name;
496	d->irq = irq;
497	d->map = map;
498	d->chip = chip;
499	d->irq_base = irq_base;
500
501	if (chip->irq_reg_stride)
502		d->irq_reg_stride = chip->irq_reg_stride;
503	else
504		d->irq_reg_stride = 1;
505
506	if (chip->type_reg_stride)
507		d->type_reg_stride = chip->type_reg_stride;
508	else
509		d->type_reg_stride = 1;
510
511	if (!map->use_single_read && map->reg_stride == 1 &&
512	    d->irq_reg_stride == 1) {
513		d->status_reg_buf = kmalloc_array(chip->num_regs,
514						  map->format.val_bytes,
515						  GFP_KERNEL);
516		if (!d->status_reg_buf)
517			goto err_alloc;
518	}
519
520	mutex_init(&d->lock);
521
522	for (i = 0; i < chip->num_irqs; i++)
523		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524			|= chip->irqs[i].mask;
525
526	/* Mask all the interrupts by default */
527	for (i = 0; i < chip->num_regs; i++) {
528		d->mask_buf[i] = d->mask_buf_def[i];
529		reg = chip->mask_base +
530			(i * map->reg_stride * d->irq_reg_stride);
531		if (chip->mask_invert)
532			ret = regmap_irq_update_bits(d, reg,
533					 d->mask_buf[i], ~d->mask_buf[i]);
534		else if (d->chip->unmask_base) {
535			unmask_offset = d->chip->unmask_base -
536					d->chip->mask_base;
537			ret = regmap_irq_update_bits(d,
538					reg + unmask_offset,
539					d->mask_buf[i],
540					d->mask_buf[i]);
541		} else
542			ret = regmap_irq_update_bits(d, reg,
543					 d->mask_buf[i], d->mask_buf[i]);
544		if (ret != 0) {
545			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546				reg, ret);
547			goto err_alloc;
 
 
 
 
 
 
 
 
 
 
 
548		}
549
550		if (!chip->init_ack_masked)
551			continue;
552
553		/* Ack masked but set interrupts */
554		reg = chip->status_base +
555			(i * map->reg_stride * d->irq_reg_stride);
556		ret = regmap_read(map, reg, &d->status_buf[i]);
557		if (ret != 0) {
558			dev_err(map->dev, "Failed to read IRQ status: %d\n",
559				ret);
560			goto err_alloc;
 
 
 
 
561		}
562
 
 
 
563		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564			reg = chip->ack_base +
565				(i * map->reg_stride * d->irq_reg_stride);
566			if (chip->ack_invert)
567				ret = regmap_write(map, reg,
568					~(d->status_buf[i] & d->mask_buf[i]));
569			else
570				ret = regmap_write(map, reg,
571					d->status_buf[i] & d->mask_buf[i]);
 
 
 
 
 
 
572			if (ret != 0) {
573				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574					reg, ret);
575				goto err_alloc;
576			}
577		}
578	}
579
580	/* Wake is disabled by default */
581	if (d->wake_buf) {
582		for (i = 0; i < chip->num_regs; i++) {
583			d->wake_buf[i] = d->mask_buf_def[i];
584			reg = chip->wake_base +
585				(i * map->reg_stride * d->irq_reg_stride);
586
587			if (chip->wake_invert)
588				ret = regmap_irq_update_bits(d, reg,
589							 d->mask_buf_def[i],
590							 0);
591			else
592				ret = regmap_irq_update_bits(d, reg,
593							 d->mask_buf_def[i],
594							 d->wake_buf[i]);
595			if (ret != 0) {
596				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597					reg, ret);
598				goto err_alloc;
599			}
600		}
601	}
602
603	if (chip->num_type_reg) {
604		for (i = 0; i < chip->num_irqs; i++) {
605			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607					chip->irqs[i].type_falling_mask;
608		}
609		for (i = 0; i < chip->num_type_reg; ++i) {
610			if (!d->type_buf_def[i])
611				continue;
612
613			reg = chip->type_base +
614				(i * map->reg_stride * d->type_reg_stride);
615			if (chip->type_invert)
616				ret = regmap_irq_update_bits(d, reg,
617					d->type_buf_def[i], 0xFF);
618			else
619				ret = regmap_irq_update_bits(d, reg,
620					d->type_buf_def[i], 0x0);
621			if (ret != 0) {
622				dev_err(map->dev,
623					"Failed to set type in 0x%x: %x\n",
624					reg, ret);
625				goto err_alloc;
626			}
627		}
628	}
629
630	if (irq_base)
631		d->domain = irq_domain_add_legacy(map->dev->of_node,
632						  chip->num_irqs, irq_base, 0,
633						  &regmap_domain_ops, d);
634	else
635		d->domain = irq_domain_add_linear(map->dev->of_node,
636						  chip->num_irqs,
637						  &regmap_domain_ops, d);
638	if (!d->domain) {
639		dev_err(map->dev, "Failed to create IRQ domain\n");
640		ret = -ENOMEM;
641		goto err_alloc;
642	}
643
644	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645				   irq_flags | IRQF_ONESHOT,
646				   chip->name, d);
647	if (ret != 0) {
648		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649			irq, chip->name, ret);
650		goto err_domain;
651	}
652
653	*data = d;
654
655	return 0;
656
657err_domain:
658	/* Should really dispose of the domain but... */
659err_alloc:
660	kfree(d->type_buf);
661	kfree(d->type_buf_def);
662	kfree(d->wake_buf);
663	kfree(d->mask_buf_def);
664	kfree(d->mask_buf);
665	kfree(d->status_buf);
666	kfree(d->status_reg_buf);
 
 
 
 
 
667	kfree(d);
668	return ret;
669}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671
672/**
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674 *
675 * @irq: Primary IRQ for the device
676 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
677 *
678 * This function also disposes of all mapped IRQs on the chip.
679 */
680void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681{
682	unsigned int virq;
683	int hwirq;
684
685	if (!d)
686		return;
687
688	free_irq(irq, d);
689
690	/* Dispose all virtual irq from irq domain before removing it */
691	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692		/* Ignore hwirq if holes in the IRQ list */
693		if (!d->chip->irqs[hwirq].mask)
694			continue;
695
696		/*
697		 * Find the virtual irq of hwirq on chip and if it is
698		 * there then dispose it
699		 */
700		virq = irq_find_mapping(d->domain, hwirq);
701		if (virq)
702			irq_dispose_mapping(virq);
703	}
704
705	irq_domain_remove(d->domain);
706	kfree(d->type_buf);
707	kfree(d->type_buf_def);
708	kfree(d->wake_buf);
709	kfree(d->mask_buf_def);
710	kfree(d->mask_buf);
711	kfree(d->status_reg_buf);
712	kfree(d->status_buf);
 
 
 
 
 
713	kfree(d);
714}
715EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716
717static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718{
719	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720
721	regmap_del_irq_chip(d->irq, d);
722}
723
724static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725
726{
727	struct regmap_irq_chip_data **r = res;
728
729	if (!r || !*r) {
730		WARN_ON(!r || !*r);
731		return 0;
732	}
733	return *r == data;
734}
735
736/**
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738 *
739 * @dev: The device pointer on which irq_chip belongs to.
 
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
746 *
747 * Returns 0 on success or an errno on failure.
748 *
749 * The &regmap_irq_chip_data will be automatically released when the device is
750 * unbound.
751 */
752int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753			     int irq_flags, int irq_base,
754			     const struct regmap_irq_chip *chip,
755			     struct regmap_irq_chip_data **data)
 
 
756{
757	struct regmap_irq_chip_data **ptr, *d;
758	int ret;
759
760	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761			   GFP_KERNEL);
762	if (!ptr)
763		return -ENOMEM;
764
765	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766				  chip, &d);
767	if (ret < 0) {
768		devres_free(ptr);
769		return ret;
770	}
771
772	*ptr = d;
773	devres_add(dev, ptr);
774	*data = d;
775	return 0;
776}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778
779/**
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781 *
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
785 *
786 * A resource managed version of regmap_del_irq_chip().
787 */
788void devm_regmap_del_irq_chip(struct device *dev, int irq,
789			      struct regmap_irq_chip_data *data)
790{
791	int rc;
792
793	WARN_ON(irq != data->irq);
794	rc = devres_release(dev, devm_regmap_irq_chip_release,
795			    devm_regmap_irq_chip_match, data);
796
797	if (rc != 0)
798		WARN_ON(rc);
799}
800EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801
802/**
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804 *
805 * @data: regmap irq controller to operate on.
806 *
807 * Useful for drivers to request their own IRQs.
808 */
809int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810{
811	WARN_ON(!data->irq_base);
812	return data->irq_base;
813}
814EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815
816/**
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818 *
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
821 *
822 * Useful for drivers to request their own IRQs.
823 */
824int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825{
826	/* Handle holes in the IRQ list */
827	if (!data->chip->irqs[irq].mask)
828		return -EINVAL;
829
830	return irq_create_mapping(data->domain, irq);
831}
832EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833
834/**
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836 *
837 * @data: regmap_irq controller to operate on.
838 *
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems.  For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
842 * allocated.
843 */
844struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845{
846	if (data)
847		return data->domain;
848	else
849		return NULL;
850}
851EXPORT_SYMBOL_GPL(regmap_irq_get_domain);