Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
 
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
  27#include <asm/page.h>
 
 
  28#include <linux/uaccess.h>
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33#include <asm/fpu/api.h>
  34
  35#include "entry.h"
  36
  37#ifdef CONFIG_COMPAT
  38#include "compat_ptrace.h"
  39#endif
  40
 
 
 
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
 
  45	union ctlreg0 cr0_old, cr0_new;
  46	union ctlreg2 cr2_old, cr2_new;
  47	int cr0_changed, cr2_changed;
  48	union {
  49		struct ctlreg regs[3];
  50		struct {
  51			struct ctlreg control;
  52			struct ctlreg start;
  53			struct ctlreg end;
  54		};
  55	} old, new;
  56
  57	local_ctl_store(0, &cr0_old.reg);
  58	local_ctl_store(2, &cr2_old.reg);
  59	cr0_new = cr0_old;
  60	cr2_new = cr2_old;
  61	/* Take care of the enable/disable of transactional execution. */
  62	if (MACHINE_HAS_TE) {
  63		/* Set or clear transaction execution TXC bit 8. */
  64		cr0_new.tcx = 1;
  65		if (task->thread.per_flags & PER_FLAG_NO_TE)
  66			cr0_new.tcx = 0;
  67		/* Set or clear transaction execution TDC bits 62 and 63. */
  68		cr2_new.tdc = 0;
  69		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  70			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  71				cr2_new.tdc = 1;
  72			else
  73				cr2_new.tdc = 2;
  74		}
  75	}
  76	/* Take care of enable/disable of guarded storage. */
  77	if (MACHINE_HAS_GS) {
  78		cr2_new.gse = 0;
  79		if (task->thread.gs_cb)
  80			cr2_new.gse = 1;
  81	}
  82	/* Load control register 0/2 iff changed */
  83	cr0_changed = cr0_new.val != cr0_old.val;
  84	cr2_changed = cr2_new.val != cr2_old.val;
  85	if (cr0_changed)
  86		local_ctl_load(0, &cr0_new.reg);
  87	if (cr2_changed)
  88		local_ctl_load(2, &cr2_new.reg);
  89	/* Copy user specified PER registers */
  90	new.control.val = thread->per_user.control;
  91	new.start.val = thread->per_user.start;
  92	new.end.val = thread->per_user.end;
  93
  94	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  95	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  96	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  97		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  98			new.control.val |= PER_EVENT_BRANCH;
  99		else
 100			new.control.val |= PER_EVENT_IFETCH;
 101		new.control.val |= PER_CONTROL_SUSPENSION;
 102		new.control.val |= PER_EVENT_TRANSACTION_END;
 103		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 104			new.control.val |= PER_EVENT_IFETCH;
 105		new.start.val = 0;
 106		new.end.val = -1UL;
 107	}
 108
 109	/* Take care of the PER enablement bit in the PSW. */
 110	if (!(new.control.val & PER_EVENT_MASK)) {
 111		regs->psw.mask &= ~PSW_MASK_PER;
 112		return;
 113	}
 114	regs->psw.mask |= PSW_MASK_PER;
 115	__local_ctl_store(9, 11, old.regs);
 116	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 117		__local_ctl_load(9, 11, new.regs);
 118}
 119
 120void user_enable_single_step(struct task_struct *task)
 121{
 122	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 123	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 124}
 125
 126void user_disable_single_step(struct task_struct *task)
 127{
 128	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 129	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 130}
 131
 132void user_enable_block_step(struct task_struct *task)
 133{
 134	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 135	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 136}
 137
 138/*
 139 * Called by kernel/ptrace.c when detaching..
 140 *
 141 * Clear all debugging related fields.
 142 */
 143void ptrace_disable(struct task_struct *task)
 144{
 145	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 146	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 147	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 148	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 149	task->thread.per_flags = 0;
 150}
 151
 152#define __ADDR_MASK 7
 153
 154static inline unsigned long __peek_user_per(struct task_struct *child,
 155					    addr_t addr)
 156{
 157	if (addr == offsetof(struct per_struct_kernel, cr9))
 
 
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == offsetof(struct per_struct_kernel, cr10))
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == offsetof(struct per_struct_kernel, cr11))
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == offsetof(struct per_struct_kernel, bits))
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == offsetof(struct per_struct_kernel, address))
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == offsetof(struct per_struct_kernel, access_id))
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 
 204	addr_t offset, tmp;
 205
 206	if (addr < offsetof(struct user, regs.acrs)) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == offsetof(struct user, regs.psw.mask)) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - offsetof(struct user, regs.acrs);
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == offsetof(struct user, regs.acrs[15]))
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 251
 252	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 258		if (cpu_has_vx())
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= offsetof(struct user, regs.per_info);
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 288	if (addr >= offsetof(struct user, regs.acrs) &&
 289	    addr < offsetof(struct user, regs.orig_gpr2))
 290		mask = 3;
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 
 
 301	/*
 302	 * There are only three fields in the per_info struct that the
 303	 * debugger user can write to.
 304	 * 1) cr9: the debugger wants to set a new PER event mask
 305	 * 2) starting_addr: the debugger wants to set a new starting
 306	 *    address to use with the PER event mask.
 307	 * 3) ending_addr: the debugger wants to set a new ending
 308	 *    address to use with the PER event mask.
 309	 * The user specified PER event mask and the start and end
 310	 * addresses are used only if single stepping is not in effect.
 311	 * Writes to any other field in per_info are ignored.
 312	 */
 313	if (addr == offsetof(struct per_struct_kernel, cr9))
 314		/* PER event mask of the user specified per set. */
 315		child->thread.per_user.control =
 316			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 317	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 318		/* Starting address of the user specified per set. */
 319		child->thread.per_user.start = data;
 320	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 321		/* Ending address of the user specified per set. */
 322		child->thread.per_user.end = data;
 323}
 324
 325/*
 326 * Write a word to the user area of a process at location addr. This
 327 * operation does have an additional problem compared to peek_user.
 328 * Stores to the program status word and on the floating point
 329 * control register needs to get checked for validity.
 330 */
 331static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 332{
 
 333	addr_t offset;
 334
 335
 336	if (addr < offsetof(struct user, regs.acrs)) {
 337		struct pt_regs *regs = task_pt_regs(child);
 338		/*
 339		 * psw and gprs are stored on the stack
 340		 */
 341		if (addr == offsetof(struct user, regs.psw.mask)) {
 342			unsigned long mask = PSW_MASK_USER;
 343
 344			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 345			if ((data ^ PSW_USER_BITS) & ~mask)
 346				/* Invalid psw mask. */
 347				return -EINVAL;
 348			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 349				/* Invalid address-space-control bits */
 350				return -EINVAL;
 351			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 352				/* Invalid addressing mode bits */
 353				return -EINVAL;
 354		}
 
 355
 356		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 357			addr == offsetof(struct user, regs.gprs[2])) {
 358			struct pt_regs *regs = task_pt_regs(child);
 359
 360			regs->int_code = 0x20000 | (data & 0xffff);
 361		}
 362		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 363	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 364		/*
 365		 * access registers are stored in the thread structure
 366		 */
 367		offset = addr - offsetof(struct user, regs.acrs);
 368		/*
 369		 * Very special case: old & broken 64 bit gdb writing
 370		 * to acrs[15] with a 64 bit value. Ignore the lower
 371		 * half of the value and write the upper 32 bit to
 372		 * acrs[15]. Sick...
 373		 */
 374		if (addr == offsetof(struct user, regs.acrs[15]))
 375			child->thread.acrs[15] = (unsigned int) (data >> 32);
 376		else
 377			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 378
 379	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 380		/*
 381		 * orig_gpr2 is stored on the kernel stack
 382		 */
 383		task_pt_regs(child)->orig_gpr2 = data;
 384
 385	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 386		/*
 387		 * prevent writes of padding hole between
 388		 * orig_gpr2 and fp_regs on s390.
 389		 */
 390		return 0;
 391
 392	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 393		/*
 394		 * floating point control reg. is in the thread structure
 395		 */
 396		if ((unsigned int)data != 0)
 
 397			return -EINVAL;
 398		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 399
 400	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 401		/*
 402		 * floating point regs. are either in child->thread.fpu
 403		 * or the child->thread.fpu.vxrs array
 404		 */
 405		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 406		if (cpu_has_vx())
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.vxrs + 2*offset) = data;
 409		else
 410			*(addr_t *)((addr_t)
 411				child->thread.fpu.fprs + offset) = data;
 412
 413	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 414		/*
 415		 * Handle access to the per_info structure.
 416		 */
 417		addr -= offsetof(struct user, regs.per_info);
 418		__poke_user_per(child, addr, data);
 419
 420	}
 421
 422	return 0;
 423}
 424
 425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 426{
 427	addr_t mask;
 428
 429	/*
 430	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 431	 * an alignment of 4. Programmers from hell indeed...
 432	 */
 433	mask = __ADDR_MASK;
 434	if (addr >= offsetof(struct user, regs.acrs) &&
 435	    addr < offsetof(struct user, regs.orig_gpr2))
 436		mask = 3;
 437	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 438		return -EIO;
 439
 440	return __poke_user(child, addr, data);
 441}
 442
 443long arch_ptrace(struct task_struct *child, long request,
 444		 unsigned long addr, unsigned long data)
 445{
 446	ptrace_area parea; 
 447	int copied, ret;
 448
 449	switch (request) {
 450	case PTRACE_PEEKUSR:
 451		/* read the word at location addr in the USER area. */
 452		return peek_user(child, addr, data);
 453
 454	case PTRACE_POKEUSR:
 455		/* write the word at location addr in the USER area */
 456		return poke_user(child, addr, data);
 457
 458	case PTRACE_PEEKUSR_AREA:
 459	case PTRACE_POKEUSR_AREA:
 460		if (copy_from_user(&parea, (void __force __user *) addr,
 461							sizeof(parea)))
 462			return -EFAULT;
 463		addr = parea.kernel_addr;
 464		data = parea.process_addr;
 465		copied = 0;
 466		while (copied < parea.len) {
 467			if (request == PTRACE_PEEKUSR_AREA)
 468				ret = peek_user(child, addr, data);
 469			else {
 470				addr_t utmp;
 471				if (get_user(utmp,
 472					     (addr_t __force __user *) data))
 473					return -EFAULT;
 474				ret = poke_user(child, addr, utmp);
 475			}
 476			if (ret)
 477				return ret;
 478			addr += sizeof(unsigned long);
 479			data += sizeof(unsigned long);
 480			copied += sizeof(unsigned long);
 481		}
 482		return 0;
 483	case PTRACE_GET_LAST_BREAK:
 484		return put_user(child->thread.last_break, (unsigned long __user *)data);
 
 
 485	case PTRACE_ENABLE_TE:
 486		if (!MACHINE_HAS_TE)
 487			return -EIO;
 488		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 489		return 0;
 490	case PTRACE_DISABLE_TE:
 491		if (!MACHINE_HAS_TE)
 492			return -EIO;
 493		child->thread.per_flags |= PER_FLAG_NO_TE;
 494		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 495		return 0;
 496	case PTRACE_TE_ABORT_RAND:
 497		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 498			return -EIO;
 499		switch (data) {
 500		case 0UL:
 501			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 502			break;
 503		case 1UL:
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 505			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 506			break;
 507		case 2UL:
 508			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 509			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 510			break;
 511		default:
 512			return -EINVAL;
 513		}
 514		return 0;
 515	default:
 516		return ptrace_request(child, request, addr, data);
 517	}
 518}
 519
 520#ifdef CONFIG_COMPAT
 521/*
 522 * Now the fun part starts... a 31 bit program running in the
 523 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 524 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 525 * to handle, the difference to the 64 bit versions of the requests
 526 * is that the access is done in multiples of 4 byte instead of
 527 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 528 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 529 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 530 * is a 31 bit program too, the content of struct user can be
 531 * emulated. A 31 bit program peeking into the struct user of
 532 * a 64 bit program is a no-no.
 533 */
 534
 535/*
 536 * Same as peek_user_per but for a 31 bit program.
 537 */
 538static inline __u32 __peek_user_per_compat(struct task_struct *child,
 539					   addr_t addr)
 540{
 541	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == offsetof(struct compat_per_struct_kernel, address))
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 
 580	addr_t offset;
 581	__u32 tmp;
 582
 583	if (addr < offsetof(struct compat_user, regs.acrs)) {
 584		struct pt_regs *regs = task_pt_regs(child);
 585		/*
 586		 * psw and gprs are stored on the stack
 587		 */
 588		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 589			/* Fake a 31 bit psw mask. */
 590			tmp = (__u32)(regs->psw.mask >> 32);
 591			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 592			tmp |= PSW32_USER_BITS;
 593		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 594			/* Fake a 31 bit psw address. */
 595			tmp = (__u32) regs->psw.addr |
 596				(__u32)(regs->psw.mask & PSW_MASK_BA);
 597		} else {
 598			/* gpr 0-15 */
 599			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 600		}
 601	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 602		/*
 603		 * access registers are stored in the thread structure
 604		 */
 605		offset = addr - offsetof(struct compat_user, regs.acrs);
 606		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 607
 608	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 609		/*
 610		 * orig_gpr2 is stored on the kernel stack
 611		 */
 612		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 613
 614	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 615		/*
 616		 * prevent reads of padding hole between
 617		 * orig_gpr2 and fp_regs on s390.
 618		 */
 619		tmp = 0;
 620
 621	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 622		/*
 623		 * floating point control reg. is in the thread structure
 624		 */
 625		tmp = child->thread.fpu.fpc;
 626
 627	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 628		/*
 629		 * floating point regs. are either in child->thread.fpu
 630		 * or the child->thread.fpu.vxrs array
 631		 */
 632		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 633		if (cpu_has_vx())
 634			tmp = *(__u32 *)
 635			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 636		else
 637			tmp = *(__u32 *)
 638			       ((addr_t) child->thread.fpu.fprs + offset);
 639
 640	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 641		/*
 642		 * Handle access to the per_info structure.
 643		 */
 644		addr -= offsetof(struct compat_user, regs.per_info);
 645		tmp = __peek_user_per_compat(child, addr);
 646
 647	} else
 648		tmp = 0;
 649
 650	return tmp;
 651}
 652
 653static int peek_user_compat(struct task_struct *child,
 654			    addr_t addr, addr_t data)
 655{
 656	__u32 tmp;
 657
 658	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 659		return -EIO;
 660
 661	tmp = __peek_user_compat(child, addr);
 662	return put_user(tmp, (__u32 __user *) data);
 663}
 664
 665/*
 666 * Same as poke_user_per but for a 31 bit program.
 667 */
 668static inline void __poke_user_per_compat(struct task_struct *child,
 669					  addr_t addr, __u32 data)
 670{
 671	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 672		/* PER event mask of the user specified per set. */
 673		child->thread.per_user.control =
 674			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 675	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 676		/* Starting address of the user specified per set. */
 677		child->thread.per_user.start = data;
 678	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 679		/* Ending address of the user specified per set. */
 680		child->thread.per_user.end = data;
 681}
 682
 683/*
 684 * Same as poke_user but for a 31 bit program.
 685 */
 686static int __poke_user_compat(struct task_struct *child,
 687			      addr_t addr, addr_t data)
 688{
 
 689	__u32 tmp = (__u32) data;
 690	addr_t offset;
 691
 692	if (addr < offsetof(struct compat_user, regs.acrs)) {
 693		struct pt_regs *regs = task_pt_regs(child);
 694		/*
 695		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 696		 */
 697		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 698			__u32 mask = PSW32_MASK_USER;
 699
 700			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 701			/* Build a 64 bit psw mask from 31 bit mask. */
 702			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 703				/* Invalid psw mask. */
 704				return -EINVAL;
 705			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 706				/* Invalid address-space-control bits */
 707				return -EINVAL;
 708			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 709				(regs->psw.mask & PSW_MASK_BA) |
 710				(__u64)(tmp & mask) << 32;
 711		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 712			/* Build a 64 bit psw address from 31 bit address. */
 713			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 714			/* Transfer 31 bit amode bit to psw mask. */
 715			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 716				(__u64)(tmp & PSW32_ADDR_AMODE);
 717		} else {
 718			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 719				addr == offsetof(struct compat_user, regs.gprs[2])) {
 720				struct pt_regs *regs = task_pt_regs(child);
 721
 722				regs->int_code = 0x20000 | (data & 0xffff);
 723			}
 724			/* gpr 0-15 */
 725			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 726		}
 727	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 728		/*
 729		 * access registers are stored in the thread structure
 730		 */
 731		offset = addr - offsetof(struct compat_user, regs.acrs);
 732		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 733
 734	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 735		/*
 736		 * orig_gpr2 is stored on the kernel stack
 737		 */
 738		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 739
 740	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 741		/*
 742		 * prevent writess of padding hole between
 743		 * orig_gpr2 and fp_regs on s390.
 744		 */
 745		return 0;
 746
 747	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 748		/*
 749		 * floating point control reg. is in the thread structure
 750		 */
 
 
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 759		if (cpu_has_vx())
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= offsetof(struct compat_user, regs.per_info);
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		return put_user(child->thread.last_break, (unsigned int __user *)data);
 
 
 831	}
 832	return compat_ptrace_request(child, request, addr, data);
 833}
 834#endif
 835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836/*
 837 * user_regset definitions.
 838 */
 839
 840static int s390_regs_get(struct task_struct *target,
 841			 const struct user_regset *regset,
 842			 struct membuf to)
 
 843{
 844	unsigned pos;
 845	if (target == current)
 846		save_access_regs(target->thread.acrs);
 847
 848	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 849		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	return 0;
 851}
 852
 853static int s390_regs_set(struct task_struct *target,
 854			 const struct user_regset *regset,
 855			 unsigned int pos, unsigned int count,
 856			 const void *kbuf, const void __user *ubuf)
 857{
 858	int rc = 0;
 859
 860	if (target == current)
 861		save_access_regs(target->thread.acrs);
 862
 863	if (kbuf) {
 864		const unsigned long *k = kbuf;
 865		while (count > 0 && !rc) {
 866			rc = __poke_user(target, pos, *k++);
 867			count -= sizeof(*k);
 868			pos += sizeof(*k);
 869		}
 870	} else {
 871		const unsigned long  __user *u = ubuf;
 872		while (count > 0 && !rc) {
 873			unsigned long word;
 874			rc = __get_user(word, u++);
 875			if (rc)
 876				break;
 877			rc = __poke_user(target, pos, word);
 878			count -= sizeof(*u);
 879			pos += sizeof(*u);
 880		}
 881	}
 882
 883	if (rc == 0 && target == current)
 884		restore_access_regs(target->thread.acrs);
 885
 886	return rc;
 887}
 888
 889static int s390_fpregs_get(struct task_struct *target,
 890			   const struct user_regset *regset,
 891			   struct membuf to)
 892{
 893	_s390_fp_regs fp_regs;
 894
 895	if (target == current)
 896		save_fpu_regs();
 897
 898	fp_regs.fpc = target->thread.fpu.fpc;
 899	fpregs_store(&fp_regs, &target->thread.fpu);
 900
 901	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 902}
 903
 904static int s390_fpregs_set(struct task_struct *target,
 905			   const struct user_regset *regset, unsigned int pos,
 906			   unsigned int count, const void *kbuf,
 907			   const void __user *ubuf)
 908{
 909	int rc = 0;
 910	freg_t fprs[__NUM_FPRS];
 911
 912	if (target == current)
 913		save_fpu_regs();
 914
 915	if (cpu_has_vx())
 916		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 917	else
 918		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 919
 
 920	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 921		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 922		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 923					0, offsetof(s390_fp_regs, fprs));
 924		if (rc)
 925			return rc;
 926		if (ufpc[1] != 0)
 927			return -EINVAL;
 928		target->thread.fpu.fpc = ufpc[0];
 929	}
 930
 931	if (rc == 0 && count > 0)
 932		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 933					fprs, offsetof(s390_fp_regs, fprs), -1);
 934	if (rc)
 935		return rc;
 936
 937	if (cpu_has_vx())
 938		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 939	else
 940		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 941
 942	return rc;
 943}
 944
 945static int s390_last_break_get(struct task_struct *target,
 946			       const struct user_regset *regset,
 947			       struct membuf to)
 
 948{
 949	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 950}
 951
 952static int s390_last_break_set(struct task_struct *target,
 953			       const struct user_regset *regset,
 954			       unsigned int pos, unsigned int count,
 955			       const void *kbuf, const void __user *ubuf)
 956{
 957	return 0;
 958}
 959
 960static int s390_tdb_get(struct task_struct *target,
 961			const struct user_regset *regset,
 962			struct membuf to)
 
 963{
 964	struct pt_regs *regs = task_pt_regs(target);
 965	size_t size;
 966
 967	if (!(regs->int_code & 0x200))
 968		return -ENODATA;
 969	size = sizeof(target->thread.trap_tdb.data);
 970	return membuf_write(&to, target->thread.trap_tdb.data, size);
 971}
 972
 973static int s390_tdb_set(struct task_struct *target,
 974			const struct user_regset *regset,
 975			unsigned int pos, unsigned int count,
 976			const void *kbuf, const void __user *ubuf)
 977{
 978	return 0;
 979}
 980
 981static int s390_vxrs_low_get(struct task_struct *target,
 982			     const struct user_regset *regset,
 983			     struct membuf to)
 
 984{
 985	__u64 vxrs[__NUM_VXRS_LOW];
 986	int i;
 987
 988	if (!cpu_has_vx())
 989		return -ENODEV;
 990	if (target == current)
 991		save_fpu_regs();
 992	for (i = 0; i < __NUM_VXRS_LOW; i++)
 993		vxrs[i] = target->thread.fpu.vxrs[i].low;
 994	return membuf_write(&to, vxrs, sizeof(vxrs));
 995}
 996
 997static int s390_vxrs_low_set(struct task_struct *target,
 998			     const struct user_regset *regset,
 999			     unsigned int pos, unsigned int count,
1000			     const void *kbuf, const void __user *ubuf)
1001{
1002	__u64 vxrs[__NUM_VXRS_LOW];
1003	int i, rc;
1004
1005	if (!cpu_has_vx())
1006		return -ENODEV;
1007	if (target == current)
1008		save_fpu_regs();
1009
1010	for (i = 0; i < __NUM_VXRS_LOW; i++)
1011		vxrs[i] = target->thread.fpu.vxrs[i].low;
1012
1013	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014	if (rc == 0)
1015		for (i = 0; i < __NUM_VXRS_LOW; i++)
1016			target->thread.fpu.vxrs[i].low = vxrs[i];
1017
1018	return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022			      const struct user_regset *regset,
1023			      struct membuf to)
 
1024{
1025	if (!cpu_has_vx())
 
 
1026		return -ENODEV;
1027	if (target == current)
1028		save_fpu_regs();
1029	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030			    __NUM_VXRS_HIGH * sizeof(__vector128));
 
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034			      const struct user_regset *regset,
1035			      unsigned int pos, unsigned int count,
1036			      const void *kbuf, const void __user *ubuf)
1037{
1038	int rc;
1039
1040	if (!cpu_has_vx())
1041		return -ENODEV;
1042	if (target == current)
1043		save_fpu_regs();
1044
1045	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047	return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051				const struct user_regset *regset,
1052				struct membuf to)
 
1053{
1054	return membuf_store(&to, target->thread.system_call);
 
 
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058				const struct user_regset *regset,
1059				unsigned int pos, unsigned int count,
1060				const void *kbuf, const void __user *ubuf)
1061{
1062	unsigned int *data = &target->thread.system_call;
1063	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064				  data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068			  const struct user_regset *regset,
1069			  struct membuf to)
 
1070{
1071	struct gs_cb *data = target->thread.gs_cb;
1072
1073	if (!MACHINE_HAS_GS)
1074		return -ENODEV;
1075	if (!data)
1076		return -ENODATA;
1077	if (target == current)
1078		save_gs_cb(data);
1079	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083			  const struct user_regset *regset,
1084			  unsigned int pos, unsigned int count,
1085			  const void *kbuf, const void __user *ubuf)
1086{
1087	struct gs_cb gs_cb = { }, *data = NULL;
1088	int rc;
1089
1090	if (!MACHINE_HAS_GS)
1091		return -ENODEV;
1092	if (!target->thread.gs_cb) {
1093		data = kzalloc(sizeof(*data), GFP_KERNEL);
1094		if (!data)
1095			return -ENOMEM;
1096	}
1097	if (!target->thread.gs_cb)
1098		gs_cb.gsd = 25;
1099	else if (target == current)
1100		save_gs_cb(&gs_cb);
1101	else
1102		gs_cb = *target->thread.gs_cb;
1103	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104				&gs_cb, 0, sizeof(gs_cb));
1105	if (rc) {
1106		kfree(data);
1107		return -EFAULT;
1108	}
1109	preempt_disable();
1110	if (!target->thread.gs_cb)
1111		target->thread.gs_cb = data;
1112	*target->thread.gs_cb = gs_cb;
1113	if (target == current) {
1114		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1115		restore_gs_cb(target->thread.gs_cb);
1116	}
1117	preempt_enable();
1118	return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122			  const struct user_regset *regset,
1123			  struct membuf to)
 
1124{
1125	struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127	if (!MACHINE_HAS_GS)
1128		return -ENODEV;
1129	if (!data)
1130		return -ENODATA;
1131	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135			  const struct user_regset *regset,
1136			  unsigned int pos, unsigned int count,
1137			  const void *kbuf, const void __user *ubuf)
1138{
1139	struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141	if (!MACHINE_HAS_GS)
1142		return -ENODEV;
1143	if (!data) {
1144		data = kzalloc(sizeof(*data), GFP_KERNEL);
1145		if (!data)
1146			return -ENOMEM;
1147		target->thread.gs_bc_cb = data;
1148	}
1149	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150				  data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155	return (cb->rca & 0x1f) == 0 &&
1156		(cb->roa & 0xfff) == 0 &&
1157		(cb->rla & 0xfff) == 0xfff &&
1158		cb->s == 1 &&
1159		cb->k == 1 &&
1160		cb->h == 0 &&
1161		cb->reserved1 == 0 &&
1162		cb->ps == 1 &&
1163		cb->qs == 0 &&
1164		cb->pc == 1 &&
1165		cb->qc == 0 &&
1166		cb->reserved2 == 0 &&
 
1167		cb->reserved3 == 0 &&
1168		cb->reserved4 == 0 &&
1169		cb->reserved5 == 0 &&
1170		cb->reserved6 == 0 &&
1171		cb->reserved7 == 0 &&
1172		cb->reserved8 == 0 &&
1173		cb->rla >= cb->roa &&
1174		cb->rca >= cb->roa &&
1175		cb->rca <= cb->rla+1 &&
1176		cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180				const struct user_regset *regset,
1181				struct membuf to)
 
1182{
1183	struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185	if (!test_facility(64))
1186		return -ENODEV;
1187	if (!data)
1188		return -ENODATA;
1189
1190	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
 
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194				  const struct user_regset *regset,
1195				  unsigned int pos, unsigned int count,
1196				  const void *kbuf, const void __user *ubuf)
1197{
1198	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199	int rc;
1200
1201	if (!test_facility(64))
1202		return -ENODEV;
1203
1204	if (!target->thread.ri_cb) {
1205		data = kzalloc(sizeof(*data), GFP_KERNEL);
1206		if (!data)
1207			return -ENOMEM;
1208	}
1209
1210	if (target->thread.ri_cb) {
1211		if (target == current)
1212			store_runtime_instr_cb(&ri_cb);
1213		else
1214			ri_cb = *target->thread.ri_cb;
1215	}
1216
1217	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1219	if (rc) {
1220		kfree(data);
1221		return -EFAULT;
1222	}
1223
1224	if (!is_ri_cb_valid(&ri_cb)) {
1225		kfree(data);
1226		return -EINVAL;
1227	}
1228	/*
1229	 * Override access key in any case, since user space should
1230	 * not be able to set it, nor should it care about it.
1231	 */
1232	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233	preempt_disable();
1234	if (!target->thread.ri_cb)
1235		target->thread.ri_cb = data;
1236	*target->thread.ri_cb = ri_cb;
1237	if (target == current)
1238		load_runtime_instr_cb(target->thread.ri_cb);
1239	preempt_enable();
1240
1241	return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245	{
1246		.core_note_type = NT_PRSTATUS,
1247		.n = sizeof(s390_regs) / sizeof(long),
1248		.size = sizeof(long),
1249		.align = sizeof(long),
1250		.regset_get = s390_regs_get,
1251		.set = s390_regs_set,
1252	},
1253	{
1254		.core_note_type = NT_PRFPREG,
1255		.n = sizeof(s390_fp_regs) / sizeof(long),
1256		.size = sizeof(long),
1257		.align = sizeof(long),
1258		.regset_get = s390_fpregs_get,
1259		.set = s390_fpregs_set,
1260	},
1261	{
1262		.core_note_type = NT_S390_SYSTEM_CALL,
1263		.n = 1,
1264		.size = sizeof(unsigned int),
1265		.align = sizeof(unsigned int),
1266		.regset_get = s390_system_call_get,
1267		.set = s390_system_call_set,
1268	},
1269	{
1270		.core_note_type = NT_S390_LAST_BREAK,
1271		.n = 1,
1272		.size = sizeof(long),
1273		.align = sizeof(long),
1274		.regset_get = s390_last_break_get,
1275		.set = s390_last_break_set,
1276	},
1277	{
1278		.core_note_type = NT_S390_TDB,
1279		.n = 1,
1280		.size = 256,
1281		.align = 1,
1282		.regset_get = s390_tdb_get,
1283		.set = s390_tdb_set,
1284	},
1285	{
1286		.core_note_type = NT_S390_VXRS_LOW,
1287		.n = __NUM_VXRS_LOW,
1288		.size = sizeof(__u64),
1289		.align = sizeof(__u64),
1290		.regset_get = s390_vxrs_low_get,
1291		.set = s390_vxrs_low_set,
1292	},
1293	{
1294		.core_note_type = NT_S390_VXRS_HIGH,
1295		.n = __NUM_VXRS_HIGH,
1296		.size = sizeof(__vector128),
1297		.align = sizeof(__vector128),
1298		.regset_get = s390_vxrs_high_get,
1299		.set = s390_vxrs_high_set,
1300	},
1301	{
1302		.core_note_type = NT_S390_GS_CB,
1303		.n = sizeof(struct gs_cb) / sizeof(__u64),
1304		.size = sizeof(__u64),
1305		.align = sizeof(__u64),
1306		.regset_get = s390_gs_cb_get,
1307		.set = s390_gs_cb_set,
1308	},
1309	{
1310		.core_note_type = NT_S390_GS_BC,
1311		.n = sizeof(struct gs_cb) / sizeof(__u64),
1312		.size = sizeof(__u64),
1313		.align = sizeof(__u64),
1314		.regset_get = s390_gs_bc_get,
1315		.set = s390_gs_bc_set,
1316	},
1317	{
1318		.core_note_type = NT_S390_RI_CB,
1319		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320		.size = sizeof(__u64),
1321		.align = sizeof(__u64),
1322		.regset_get = s390_runtime_instr_get,
1323		.set = s390_runtime_instr_set,
1324	},
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328	.name = "s390x",
1329	.e_machine = EM_S390,
1330	.regsets = s390_regsets,
1331	.n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336				const struct user_regset *regset,
1337				struct membuf to)
 
1338{
1339	unsigned n;
1340
1341	if (target == current)
1342		save_access_regs(target->thread.acrs);
1343
1344	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350				const struct user_regset *regset,
1351				unsigned int pos, unsigned int count,
1352				const void *kbuf, const void __user *ubuf)
1353{
1354	int rc = 0;
1355
1356	if (target == current)
1357		save_access_regs(target->thread.acrs);
1358
1359	if (kbuf) {
1360		const compat_ulong_t *k = kbuf;
1361		while (count > 0 && !rc) {
1362			rc = __poke_user_compat(target, pos, *k++);
1363			count -= sizeof(*k);
1364			pos += sizeof(*k);
1365		}
1366	} else {
1367		const compat_ulong_t  __user *u = ubuf;
1368		while (count > 0 && !rc) {
1369			compat_ulong_t word;
1370			rc = __get_user(word, u++);
1371			if (rc)
1372				break;
1373			rc = __poke_user_compat(target, pos, word);
1374			count -= sizeof(*u);
1375			pos += sizeof(*u);
1376		}
1377	}
1378
1379	if (rc == 0 && target == current)
1380		restore_access_regs(target->thread.acrs);
1381
1382	return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386				     const struct user_regset *regset,
1387				     struct membuf to)
 
1388{
1389	compat_ulong_t *gprs_high;
1390	int i;
1391
1392	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395	return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399				     const struct user_regset *regset,
1400				     unsigned int pos, unsigned int count,
1401				     const void *kbuf, const void __user *ubuf)
1402{
1403	compat_ulong_t *gprs_high;
1404	int rc = 0;
1405
1406	gprs_high = (compat_ulong_t *)
1407		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408	if (kbuf) {
1409		const compat_ulong_t *k = kbuf;
1410		while (count > 0) {
1411			*gprs_high = *k++;
1412			*gprs_high += 2;
1413			count -= sizeof(*k);
1414		}
1415	} else {
1416		const compat_ulong_t  __user *u = ubuf;
1417		while (count > 0 && !rc) {
1418			unsigned long word;
1419			rc = __get_user(word, u++);
1420			if (rc)
1421				break;
1422			*gprs_high = word;
1423			*gprs_high += 2;
1424			count -= sizeof(*u);
1425		}
1426	}
1427
1428	return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432				      const struct user_regset *regset,
1433				      struct membuf to)
 
1434{
1435	compat_ulong_t last_break = target->thread.last_break;
1436
1437	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441				      const struct user_regset *regset,
1442				      unsigned int pos, unsigned int count,
1443				      const void *kbuf, const void __user *ubuf)
1444{
1445	return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449	{
1450		.core_note_type = NT_PRSTATUS,
1451		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452		.size = sizeof(compat_long_t),
1453		.align = sizeof(compat_long_t),
1454		.regset_get = s390_compat_regs_get,
1455		.set = s390_compat_regs_set,
1456	},
1457	{
1458		.core_note_type = NT_PRFPREG,
1459		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460		.size = sizeof(compat_long_t),
1461		.align = sizeof(compat_long_t),
1462		.regset_get = s390_fpregs_get,
1463		.set = s390_fpregs_set,
1464	},
1465	{
1466		.core_note_type = NT_S390_SYSTEM_CALL,
1467		.n = 1,
1468		.size = sizeof(compat_uint_t),
1469		.align = sizeof(compat_uint_t),
1470		.regset_get = s390_system_call_get,
1471		.set = s390_system_call_set,
1472	},
1473	{
1474		.core_note_type = NT_S390_LAST_BREAK,
1475		.n = 1,
1476		.size = sizeof(long),
1477		.align = sizeof(long),
1478		.regset_get = s390_compat_last_break_get,
1479		.set = s390_compat_last_break_set,
1480	},
1481	{
1482		.core_note_type = NT_S390_TDB,
1483		.n = 1,
1484		.size = 256,
1485		.align = 1,
1486		.regset_get = s390_tdb_get,
1487		.set = s390_tdb_set,
1488	},
1489	{
1490		.core_note_type = NT_S390_VXRS_LOW,
1491		.n = __NUM_VXRS_LOW,
1492		.size = sizeof(__u64),
1493		.align = sizeof(__u64),
1494		.regset_get = s390_vxrs_low_get,
1495		.set = s390_vxrs_low_set,
1496	},
1497	{
1498		.core_note_type = NT_S390_VXRS_HIGH,
1499		.n = __NUM_VXRS_HIGH,
1500		.size = sizeof(__vector128),
1501		.align = sizeof(__vector128),
1502		.regset_get = s390_vxrs_high_get,
1503		.set = s390_vxrs_high_set,
1504	},
1505	{
1506		.core_note_type = NT_S390_HIGH_GPRS,
1507		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508		.size = sizeof(compat_long_t),
1509		.align = sizeof(compat_long_t),
1510		.regset_get = s390_compat_regs_high_get,
1511		.set = s390_compat_regs_high_set,
1512	},
1513	{
1514		.core_note_type = NT_S390_GS_CB,
1515		.n = sizeof(struct gs_cb) / sizeof(__u64),
1516		.size = sizeof(__u64),
1517		.align = sizeof(__u64),
1518		.regset_get = s390_gs_cb_get,
1519		.set = s390_gs_cb_set,
1520	},
1521	{
1522		.core_note_type = NT_S390_GS_BC,
1523		.n = sizeof(struct gs_cb) / sizeof(__u64),
1524		.size = sizeof(__u64),
1525		.align = sizeof(__u64),
1526		.regset_get = s390_gs_bc_get,
1527		.set = s390_gs_bc_set,
1528	},
1529	{
1530		.core_note_type = NT_S390_RI_CB,
1531		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532		.size = sizeof(__u64),
1533		.align = sizeof(__u64),
1534		.regset_get = s390_runtime_instr_get,
1535		.set = s390_runtime_instr_set,
1536	},
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540	.name = "s390",
1541	.e_machine = EM_S390,
1542	.regsets = s390_compat_regsets,
1543	.n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550	if (test_tsk_thread_flag(task, TIF_31BIT))
1551		return &user_s390_compat_view;
1552#endif
1553	return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1558	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563	if (offset >= NUM_GPRS)
1564		return 0;
1565	return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570	unsigned long offset;
1571
1572	if (!name || *name != 'r')
1573		return -EINVAL;
1574	if (kstrtoul(name + 1, 10, &offset))
1575		return -EINVAL;
1576	if (offset >= NUM_GPRS)
1577		return -EINVAL;
1578	return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583	if (offset >= NUM_GPRS)
1584		return NULL;
1585	return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590	unsigned long ksp = kernel_stack_pointer(regs);
1591
1592	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606	unsigned long addr;
1607
1608	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609	if (!regs_within_kernel_stack(regs, addr))
1610		return 0;
1611	return *(unsigned long *)addr;
1612}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/segment.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/pgalloc.h>
  31#include <linux/uaccess.h>
  32#include <asm/unistd.h>
  33#include <asm/switch_to.h>
  34#include <asm/runtime_instr.h>
  35#include <asm/facility.h>
 
  36
  37#include "entry.h"
  38
  39#ifdef CONFIG_COMPAT
  40#include "compat_ptrace.h"
  41#endif
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/syscalls.h>
  45
  46void update_cr_regs(struct task_struct *task)
  47{
  48	struct pt_regs *regs = task_pt_regs(task);
  49	struct thread_struct *thread = &task->thread;
  50	struct per_regs old, new;
  51	union ctlreg0 cr0_old, cr0_new;
  52	union ctlreg2 cr2_old, cr2_new;
  53	int cr0_changed, cr2_changed;
 
 
 
 
 
 
 
 
  54
  55	__ctl_store(cr0_old.val, 0, 0);
  56	__ctl_store(cr2_old.val, 2, 2);
  57	cr0_new = cr0_old;
  58	cr2_new = cr2_old;
  59	/* Take care of the enable/disable of transactional execution. */
  60	if (MACHINE_HAS_TE) {
  61		/* Set or clear transaction execution TXC bit 8. */
  62		cr0_new.tcx = 1;
  63		if (task->thread.per_flags & PER_FLAG_NO_TE)
  64			cr0_new.tcx = 0;
  65		/* Set or clear transaction execution TDC bits 62 and 63. */
  66		cr2_new.tdc = 0;
  67		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  68			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  69				cr2_new.tdc = 1;
  70			else
  71				cr2_new.tdc = 2;
  72		}
  73	}
  74	/* Take care of enable/disable of guarded storage. */
  75	if (MACHINE_HAS_GS) {
  76		cr2_new.gse = 0;
  77		if (task->thread.gs_cb)
  78			cr2_new.gse = 1;
  79	}
  80	/* Load control register 0/2 iff changed */
  81	cr0_changed = cr0_new.val != cr0_old.val;
  82	cr2_changed = cr2_new.val != cr2_old.val;
  83	if (cr0_changed)
  84		__ctl_load(cr0_new.val, 0, 0);
  85	if (cr2_changed)
  86		__ctl_load(cr2_new.val, 2, 2);
  87	/* Copy user specified PER registers */
  88	new.control = thread->per_user.control;
  89	new.start = thread->per_user.start;
  90	new.end = thread->per_user.end;
  91
  92	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  93	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  94	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  95		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  96			new.control |= PER_EVENT_BRANCH;
  97		else
  98			new.control |= PER_EVENT_IFETCH;
  99		new.control |= PER_CONTROL_SUSPENSION;
 100		new.control |= PER_EVENT_TRANSACTION_END;
 101		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 102			new.control |= PER_EVENT_IFETCH;
 103		new.start = 0;
 104		new.end = -1UL;
 105	}
 106
 107	/* Take care of the PER enablement bit in the PSW. */
 108	if (!(new.control & PER_EVENT_MASK)) {
 109		regs->psw.mask &= ~PSW_MASK_PER;
 110		return;
 111	}
 112	regs->psw.mask |= PSW_MASK_PER;
 113	__ctl_store(old, 9, 11);
 114	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 115		__ctl_load(new, 9, 11);
 116}
 117
 118void user_enable_single_step(struct task_struct *task)
 119{
 120	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 121	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 122}
 123
 124void user_disable_single_step(struct task_struct *task)
 125{
 126	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 128}
 129
 130void user_enable_block_step(struct task_struct *task)
 131{
 132	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 133	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 134}
 135
 136/*
 137 * Called by kernel/ptrace.c when detaching..
 138 *
 139 * Clear all debugging related fields.
 140 */
 141void ptrace_disable(struct task_struct *task)
 142{
 143	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 144	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 145	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 146	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 147	task->thread.per_flags = 0;
 148}
 149
 150#define __ADDR_MASK 7
 151
 152static inline unsigned long __peek_user_per(struct task_struct *child,
 153					    addr_t addr)
 154{
 155	struct per_struct_kernel *dummy = NULL;
 156
 157	if (addr == (addr_t) &dummy->cr9)
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == (addr_t) &dummy->cr10)
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == (addr_t) &dummy->cr11)
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == (addr_t) &dummy->bits)
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == (addr_t) &dummy->starting_addr)
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == (addr_t) &dummy->ending_addr)
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == (addr_t) &dummy->perc_atmid)
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == (addr_t) &dummy->address)
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == (addr_t) &dummy->access_id)
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 204	struct user *dummy = NULL;
 205	addr_t offset, tmp;
 206
 207	if (addr < (addr_t) &dummy->regs.acrs) {
 208		/*
 209		 * psw and gprs are stored on the stack
 210		 */
 211		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 212		if (addr == (addr_t) &dummy->regs.psw.mask) {
 213			/* Return a clean psw mask. */
 214			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 215			tmp |= PSW_USER_BITS;
 216		}
 217
 218	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 219		/*
 220		 * access registers are stored in the thread structure
 221		 */
 222		offset = addr - (addr_t) &dummy->regs.acrs;
 223		/*
 224		 * Very special case: old & broken 64 bit gdb reading
 225		 * from acrs[15]. Result is a 64 bit value. Read the
 226		 * 32 bit acrs[15] value and shift it by 32. Sick...
 227		 */
 228		if (addr == (addr_t) &dummy->regs.acrs[15])
 229			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 230		else
 231			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 232
 233	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 234		/*
 235		 * orig_gpr2 is stored on the kernel stack
 236		 */
 237		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 238
 239	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 240		/*
 241		 * prevent reads of padding hole between
 242		 * orig_gpr2 and fp_regs on s390.
 243		 */
 244		tmp = 0;
 245
 246	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 247		/*
 248		 * floating point control reg. is in the thread structure
 249		 */
 250		tmp = child->thread.fpu.fpc;
 251		tmp <<= BITS_PER_LONG - 32;
 252
 253	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 254		/*
 255		 * floating point regs. are either in child->thread.fpu
 256		 * or the child->thread.fpu.vxrs array
 257		 */
 258		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 259		if (MACHINE_HAS_VX)
 260			tmp = *(addr_t *)
 261			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 262		else
 263			tmp = *(addr_t *)
 264			       ((addr_t) child->thread.fpu.fprs + offset);
 265
 266	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 267		/*
 268		 * Handle access to the per_info structure.
 269		 */
 270		addr -= (addr_t) &dummy->regs.per_info;
 271		tmp = __peek_user_per(child, addr);
 272
 273	} else
 274		tmp = 0;
 275
 276	return tmp;
 277}
 278
 279static int
 280peek_user(struct task_struct *child, addr_t addr, addr_t data)
 281{
 282	addr_t tmp, mask;
 283
 284	/*
 285	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 286	 * an alignment of 4. Programmers from hell...
 287	 */
 288	mask = __ADDR_MASK;
 289	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 290	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 291		mask = 3;
 292	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 293		return -EIO;
 294
 295	tmp = __peek_user(child, addr);
 296	return put_user(tmp, (addr_t __user *) data);
 297}
 298
 299static inline void __poke_user_per(struct task_struct *child,
 300				   addr_t addr, addr_t data)
 301{
 302	struct per_struct_kernel *dummy = NULL;
 303
 304	/*
 305	 * There are only three fields in the per_info struct that the
 306	 * debugger user can write to.
 307	 * 1) cr9: the debugger wants to set a new PER event mask
 308	 * 2) starting_addr: the debugger wants to set a new starting
 309	 *    address to use with the PER event mask.
 310	 * 3) ending_addr: the debugger wants to set a new ending
 311	 *    address to use with the PER event mask.
 312	 * The user specified PER event mask and the start and end
 313	 * addresses are used only if single stepping is not in effect.
 314	 * Writes to any other field in per_info are ignored.
 315	 */
 316	if (addr == (addr_t) &dummy->cr9)
 317		/* PER event mask of the user specified per set. */
 318		child->thread.per_user.control =
 319			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 320	else if (addr == (addr_t) &dummy->starting_addr)
 321		/* Starting address of the user specified per set. */
 322		child->thread.per_user.start = data;
 323	else if (addr == (addr_t) &dummy->ending_addr)
 324		/* Ending address of the user specified per set. */
 325		child->thread.per_user.end = data;
 326}
 327
 328/*
 329 * Write a word to the user area of a process at location addr. This
 330 * operation does have an additional problem compared to peek_user.
 331 * Stores to the program status word and on the floating point
 332 * control register needs to get checked for validity.
 333 */
 334static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 335{
 336	struct user *dummy = NULL;
 337	addr_t offset;
 338
 339	if (addr < (addr_t) &dummy->regs.acrs) {
 
 
 340		/*
 341		 * psw and gprs are stored on the stack
 342		 */
 343		if (addr == (addr_t) &dummy->regs.psw.mask) {
 344			unsigned long mask = PSW_MASK_USER;
 345
 346			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 347			if ((data ^ PSW_USER_BITS) & ~mask)
 348				/* Invalid psw mask. */
 349				return -EINVAL;
 350			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 351				/* Invalid address-space-control bits */
 352				return -EINVAL;
 353			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 354				/* Invalid addressing mode bits */
 355				return -EINVAL;
 356		}
 357		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 358
 359	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 
 
 
 
 
 
 
 360		/*
 361		 * access registers are stored in the thread structure
 362		 */
 363		offset = addr - (addr_t) &dummy->regs.acrs;
 364		/*
 365		 * Very special case: old & broken 64 bit gdb writing
 366		 * to acrs[15] with a 64 bit value. Ignore the lower
 367		 * half of the value and write the upper 32 bit to
 368		 * acrs[15]. Sick...
 369		 */
 370		if (addr == (addr_t) &dummy->regs.acrs[15])
 371			child->thread.acrs[15] = (unsigned int) (data >> 32);
 372		else
 373			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 374
 375	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 376		/*
 377		 * orig_gpr2 is stored on the kernel stack
 378		 */
 379		task_pt_regs(child)->orig_gpr2 = data;
 380
 381	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 382		/*
 383		 * prevent writes of padding hole between
 384		 * orig_gpr2 and fp_regs on s390.
 385		 */
 386		return 0;
 387
 388	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 389		/*
 390		 * floating point control reg. is in the thread structure
 391		 */
 392		if ((unsigned int) data != 0 ||
 393		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 394			return -EINVAL;
 395		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 396
 397	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 398		/*
 399		 * floating point regs. are either in child->thread.fpu
 400		 * or the child->thread.fpu.vxrs array
 401		 */
 402		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 403		if (MACHINE_HAS_VX)
 404			*(addr_t *)((addr_t)
 405				child->thread.fpu.vxrs + 2*offset) = data;
 406		else
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.fprs + offset) = data;
 409
 410	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 411		/*
 412		 * Handle access to the per_info structure.
 413		 */
 414		addr -= (addr_t) &dummy->regs.per_info;
 415		__poke_user_per(child, addr, data);
 416
 417	}
 418
 419	return 0;
 420}
 421
 422static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 423{
 424	addr_t mask;
 425
 426	/*
 427	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 428	 * an alignment of 4. Programmers from hell indeed...
 429	 */
 430	mask = __ADDR_MASK;
 431	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 432	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 433		mask = 3;
 434	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 435		return -EIO;
 436
 437	return __poke_user(child, addr, data);
 438}
 439
 440long arch_ptrace(struct task_struct *child, long request,
 441		 unsigned long addr, unsigned long data)
 442{
 443	ptrace_area parea; 
 444	int copied, ret;
 445
 446	switch (request) {
 447	case PTRACE_PEEKUSR:
 448		/* read the word at location addr in the USER area. */
 449		return peek_user(child, addr, data);
 450
 451	case PTRACE_POKEUSR:
 452		/* write the word at location addr in the USER area */
 453		return poke_user(child, addr, data);
 454
 455	case PTRACE_PEEKUSR_AREA:
 456	case PTRACE_POKEUSR_AREA:
 457		if (copy_from_user(&parea, (void __force __user *) addr,
 458							sizeof(parea)))
 459			return -EFAULT;
 460		addr = parea.kernel_addr;
 461		data = parea.process_addr;
 462		copied = 0;
 463		while (copied < parea.len) {
 464			if (request == PTRACE_PEEKUSR_AREA)
 465				ret = peek_user(child, addr, data);
 466			else {
 467				addr_t utmp;
 468				if (get_user(utmp,
 469					     (addr_t __force __user *) data))
 470					return -EFAULT;
 471				ret = poke_user(child, addr, utmp);
 472			}
 473			if (ret)
 474				return ret;
 475			addr += sizeof(unsigned long);
 476			data += sizeof(unsigned long);
 477			copied += sizeof(unsigned long);
 478		}
 479		return 0;
 480	case PTRACE_GET_LAST_BREAK:
 481		put_user(child->thread.last_break,
 482			 (unsigned long __user *) data);
 483		return 0;
 484	case PTRACE_ENABLE_TE:
 485		if (!MACHINE_HAS_TE)
 486			return -EIO;
 487		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 488		return 0;
 489	case PTRACE_DISABLE_TE:
 490		if (!MACHINE_HAS_TE)
 491			return -EIO;
 492		child->thread.per_flags |= PER_FLAG_NO_TE;
 493		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 494		return 0;
 495	case PTRACE_TE_ABORT_RAND:
 496		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 497			return -EIO;
 498		switch (data) {
 499		case 0UL:
 500			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 501			break;
 502		case 1UL:
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 505			break;
 506		case 2UL:
 507			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 508			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 509			break;
 510		default:
 511			return -EINVAL;
 512		}
 513		return 0;
 514	default:
 515		return ptrace_request(child, request, addr, data);
 516	}
 517}
 518
 519#ifdef CONFIG_COMPAT
 520/*
 521 * Now the fun part starts... a 31 bit program running in the
 522 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 523 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 524 * to handle, the difference to the 64 bit versions of the requests
 525 * is that the access is done in multiples of 4 byte instead of
 526 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 527 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 528 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 529 * is a 31 bit program too, the content of struct user can be
 530 * emulated. A 31 bit program peeking into the struct user of
 531 * a 64 bit program is a no-no.
 532 */
 533
 534/*
 535 * Same as peek_user_per but for a 31 bit program.
 536 */
 537static inline __u32 __peek_user_per_compat(struct task_struct *child,
 538					   addr_t addr)
 539{
 540	struct compat_per_struct_kernel *dummy32 = NULL;
 541
 542	if (addr == (addr_t) &dummy32->cr9)
 543		/* Control bits of the active per set. */
 544		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 545			PER_EVENT_IFETCH : child->thread.per_user.control;
 546	else if (addr == (addr_t) &dummy32->cr10)
 547		/* Start address of the active per set. */
 548		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 549			0 : child->thread.per_user.start;
 550	else if (addr == (addr_t) &dummy32->cr11)
 551		/* End address of the active per set. */
 552		return test_thread_flag(TIF_SINGLE_STEP) ?
 553			PSW32_ADDR_INSN : child->thread.per_user.end;
 554	else if (addr == (addr_t) &dummy32->bits)
 555		/* Single-step bit. */
 556		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 557			0x80000000 : 0;
 558	else if (addr == (addr_t) &dummy32->starting_addr)
 559		/* Start address of the user specified per set. */
 560		return (__u32) child->thread.per_user.start;
 561	else if (addr == (addr_t) &dummy32->ending_addr)
 562		/* End address of the user specified per set. */
 563		return (__u32) child->thread.per_user.end;
 564	else if (addr == (addr_t) &dummy32->perc_atmid)
 565		/* PER code, ATMID and AI of the last PER trap */
 566		return (__u32) child->thread.per_event.cause << 16;
 567	else if (addr == (addr_t) &dummy32->address)
 568		/* Address of the last PER trap */
 569		return (__u32) child->thread.per_event.address;
 570	else if (addr == (addr_t) &dummy32->access_id)
 571		/* Access id of the last PER trap */
 572		return (__u32) child->thread.per_event.paid << 24;
 573	return 0;
 574}
 575
 576/*
 577 * Same as peek_user but for a 31 bit program.
 578 */
 579static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 580{
 581	struct compat_user *dummy32 = NULL;
 582	addr_t offset;
 583	__u32 tmp;
 584
 585	if (addr < (addr_t) &dummy32->regs.acrs) {
 586		struct pt_regs *regs = task_pt_regs(child);
 587		/*
 588		 * psw and gprs are stored on the stack
 589		 */
 590		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 591			/* Fake a 31 bit psw mask. */
 592			tmp = (__u32)(regs->psw.mask >> 32);
 593			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 594			tmp |= PSW32_USER_BITS;
 595		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 596			/* Fake a 31 bit psw address. */
 597			tmp = (__u32) regs->psw.addr |
 598				(__u32)(regs->psw.mask & PSW_MASK_BA);
 599		} else {
 600			/* gpr 0-15 */
 601			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 602		}
 603	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 604		/*
 605		 * access registers are stored in the thread structure
 606		 */
 607		offset = addr - (addr_t) &dummy32->regs.acrs;
 608		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 609
 610	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 611		/*
 612		 * orig_gpr2 is stored on the kernel stack
 613		 */
 614		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 615
 616	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 617		/*
 618		 * prevent reads of padding hole between
 619		 * orig_gpr2 and fp_regs on s390.
 620		 */
 621		tmp = 0;
 622
 623	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 624		/*
 625		 * floating point control reg. is in the thread structure
 626		 */
 627		tmp = child->thread.fpu.fpc;
 628
 629	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 630		/*
 631		 * floating point regs. are either in child->thread.fpu
 632		 * or the child->thread.fpu.vxrs array
 633		 */
 634		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 635		if (MACHINE_HAS_VX)
 636			tmp = *(__u32 *)
 637			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 638		else
 639			tmp = *(__u32 *)
 640			       ((addr_t) child->thread.fpu.fprs + offset);
 641
 642	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 643		/*
 644		 * Handle access to the per_info structure.
 645		 */
 646		addr -= (addr_t) &dummy32->regs.per_info;
 647		tmp = __peek_user_per_compat(child, addr);
 648
 649	} else
 650		tmp = 0;
 651
 652	return tmp;
 653}
 654
 655static int peek_user_compat(struct task_struct *child,
 656			    addr_t addr, addr_t data)
 657{
 658	__u32 tmp;
 659
 660	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 661		return -EIO;
 662
 663	tmp = __peek_user_compat(child, addr);
 664	return put_user(tmp, (__u32 __user *) data);
 665}
 666
 667/*
 668 * Same as poke_user_per but for a 31 bit program.
 669 */
 670static inline void __poke_user_per_compat(struct task_struct *child,
 671					  addr_t addr, __u32 data)
 672{
 673	struct compat_per_struct_kernel *dummy32 = NULL;
 674
 675	if (addr == (addr_t) &dummy32->cr9)
 676		/* PER event mask of the user specified per set. */
 677		child->thread.per_user.control =
 678			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 679	else if (addr == (addr_t) &dummy32->starting_addr)
 680		/* Starting address of the user specified per set. */
 681		child->thread.per_user.start = data;
 682	else if (addr == (addr_t) &dummy32->ending_addr)
 683		/* Ending address of the user specified per set. */
 684		child->thread.per_user.end = data;
 685}
 686
 687/*
 688 * Same as poke_user but for a 31 bit program.
 689 */
 690static int __poke_user_compat(struct task_struct *child,
 691			      addr_t addr, addr_t data)
 692{
 693	struct compat_user *dummy32 = NULL;
 694	__u32 tmp = (__u32) data;
 695	addr_t offset;
 696
 697	if (addr < (addr_t) &dummy32->regs.acrs) {
 698		struct pt_regs *regs = task_pt_regs(child);
 699		/*
 700		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 701		 */
 702		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 703			__u32 mask = PSW32_MASK_USER;
 704
 705			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 706			/* Build a 64 bit psw mask from 31 bit mask. */
 707			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 708				/* Invalid psw mask. */
 709				return -EINVAL;
 710			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 711				/* Invalid address-space-control bits */
 712				return -EINVAL;
 713			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 714				(regs->psw.mask & PSW_MASK_BA) |
 715				(__u64)(tmp & mask) << 32;
 716		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 717			/* Build a 64 bit psw address from 31 bit address. */
 718			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 719			/* Transfer 31 bit amode bit to psw mask. */
 720			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 721				(__u64)(tmp & PSW32_ADDR_AMODE);
 722		} else {
 
 
 
 
 
 
 723			/* gpr 0-15 */
 724			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 725		}
 726	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 727		/*
 728		 * access registers are stored in the thread structure
 729		 */
 730		offset = addr - (addr_t) &dummy32->regs.acrs;
 731		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 732
 733	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 734		/*
 735		 * orig_gpr2 is stored on the kernel stack
 736		 */
 737		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 738
 739	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 740		/*
 741		 * prevent writess of padding hole between
 742		 * orig_gpr2 and fp_regs on s390.
 743		 */
 744		return 0;
 745
 746	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 747		/*
 748		 * floating point control reg. is in the thread structure
 749		 */
 750		if (test_fp_ctl(tmp))
 751			return -EINVAL;
 752		child->thread.fpu.fpc = data;
 753
 754	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 755		/*
 756		 * floating point regs. are either in child->thread.fpu
 757		 * or the child->thread.fpu.vxrs array
 758		 */
 759		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 760		if (MACHINE_HAS_VX)
 761			*(__u32 *)((addr_t)
 762				child->thread.fpu.vxrs + 2*offset) = tmp;
 763		else
 764			*(__u32 *)((addr_t)
 765				child->thread.fpu.fprs + offset) = tmp;
 766
 767	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 768		/*
 769		 * Handle access to the per_info structure.
 770		 */
 771		addr -= (addr_t) &dummy32->regs.per_info;
 772		__poke_user_per_compat(child, addr, data);
 773	}
 774
 775	return 0;
 776}
 777
 778static int poke_user_compat(struct task_struct *child,
 779			    addr_t addr, addr_t data)
 780{
 781	if (!is_compat_task() || (addr & 3) ||
 782	    addr > sizeof(struct compat_user) - 3)
 783		return -EIO;
 784
 785	return __poke_user_compat(child, addr, data);
 786}
 787
 788long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 789			compat_ulong_t caddr, compat_ulong_t cdata)
 790{
 791	unsigned long addr = caddr;
 792	unsigned long data = cdata;
 793	compat_ptrace_area parea;
 794	int copied, ret;
 795
 796	switch (request) {
 797	case PTRACE_PEEKUSR:
 798		/* read the word at location addr in the USER area. */
 799		return peek_user_compat(child, addr, data);
 800
 801	case PTRACE_POKEUSR:
 802		/* write the word at location addr in the USER area */
 803		return poke_user_compat(child, addr, data);
 804
 805	case PTRACE_PEEKUSR_AREA:
 806	case PTRACE_POKEUSR_AREA:
 807		if (copy_from_user(&parea, (void __force __user *) addr,
 808							sizeof(parea)))
 809			return -EFAULT;
 810		addr = parea.kernel_addr;
 811		data = parea.process_addr;
 812		copied = 0;
 813		while (copied < parea.len) {
 814			if (request == PTRACE_PEEKUSR_AREA)
 815				ret = peek_user_compat(child, addr, data);
 816			else {
 817				__u32 utmp;
 818				if (get_user(utmp,
 819					     (__u32 __force __user *) data))
 820					return -EFAULT;
 821				ret = poke_user_compat(child, addr, utmp);
 822			}
 823			if (ret)
 824				return ret;
 825			addr += sizeof(unsigned int);
 826			data += sizeof(unsigned int);
 827			copied += sizeof(unsigned int);
 828		}
 829		return 0;
 830	case PTRACE_GET_LAST_BREAK:
 831		put_user(child->thread.last_break,
 832			 (unsigned int __user *) data);
 833		return 0;
 834	}
 835	return compat_ptrace_request(child, request, addr, data);
 836}
 837#endif
 838
 839asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 840{
 841	unsigned long mask = -1UL;
 842
 843	/*
 844	 * The sysc_tracesys code in entry.S stored the system
 845	 * call number to gprs[2].
 846	 */
 847	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 848	    (tracehook_report_syscall_entry(regs) ||
 849	     regs->gprs[2] >= NR_syscalls)) {
 850		/*
 851		 * Tracing decided this syscall should not happen or the
 852		 * debugger stored an invalid system call number. Skip
 853		 * the system call and the system call restart handling.
 854		 */
 855		clear_pt_regs_flag(regs, PIF_SYSCALL);
 856		return -1;
 857	}
 858
 859	/* Do the secure computing check after ptrace. */
 860	if (secure_computing(NULL)) {
 861		/* seccomp failures shouldn't expose any additional code. */
 862		return -1;
 863	}
 864
 865	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 866		trace_sys_enter(regs, regs->gprs[2]);
 867
 868	if (is_compat_task())
 869		mask = 0xffffffff;
 870
 871	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 872			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 873			    regs->gprs[5] &mask);
 874
 875	return regs->gprs[2];
 876}
 877
 878asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 879{
 880	audit_syscall_exit(regs);
 881
 882	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 883		trace_sys_exit(regs, regs->gprs[2]);
 884
 885	if (test_thread_flag(TIF_SYSCALL_TRACE))
 886		tracehook_report_syscall_exit(regs, 0);
 887}
 888
 889/*
 890 * user_regset definitions.
 891 */
 892
 893static int s390_regs_get(struct task_struct *target,
 894			 const struct user_regset *regset,
 895			 unsigned int pos, unsigned int count,
 896			 void *kbuf, void __user *ubuf)
 897{
 
 898	if (target == current)
 899		save_access_regs(target->thread.acrs);
 900
 901	if (kbuf) {
 902		unsigned long *k = kbuf;
 903		while (count > 0) {
 904			*k++ = __peek_user(target, pos);
 905			count -= sizeof(*k);
 906			pos += sizeof(*k);
 907		}
 908	} else {
 909		unsigned long __user *u = ubuf;
 910		while (count > 0) {
 911			if (__put_user(__peek_user(target, pos), u++))
 912				return -EFAULT;
 913			count -= sizeof(*u);
 914			pos += sizeof(*u);
 915		}
 916	}
 917	return 0;
 918}
 919
 920static int s390_regs_set(struct task_struct *target,
 921			 const struct user_regset *regset,
 922			 unsigned int pos, unsigned int count,
 923			 const void *kbuf, const void __user *ubuf)
 924{
 925	int rc = 0;
 926
 927	if (target == current)
 928		save_access_regs(target->thread.acrs);
 929
 930	if (kbuf) {
 931		const unsigned long *k = kbuf;
 932		while (count > 0 && !rc) {
 933			rc = __poke_user(target, pos, *k++);
 934			count -= sizeof(*k);
 935			pos += sizeof(*k);
 936		}
 937	} else {
 938		const unsigned long  __user *u = ubuf;
 939		while (count > 0 && !rc) {
 940			unsigned long word;
 941			rc = __get_user(word, u++);
 942			if (rc)
 943				break;
 944			rc = __poke_user(target, pos, word);
 945			count -= sizeof(*u);
 946			pos += sizeof(*u);
 947		}
 948	}
 949
 950	if (rc == 0 && target == current)
 951		restore_access_regs(target->thread.acrs);
 952
 953	return rc;
 954}
 955
 956static int s390_fpregs_get(struct task_struct *target,
 957			   const struct user_regset *regset, unsigned int pos,
 958			   unsigned int count, void *kbuf, void __user *ubuf)
 959{
 960	_s390_fp_regs fp_regs;
 961
 962	if (target == current)
 963		save_fpu_regs();
 964
 965	fp_regs.fpc = target->thread.fpu.fpc;
 966	fpregs_store(&fp_regs, &target->thread.fpu);
 967
 968	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 969				   &fp_regs, 0, -1);
 970}
 971
 972static int s390_fpregs_set(struct task_struct *target,
 973			   const struct user_regset *regset, unsigned int pos,
 974			   unsigned int count, const void *kbuf,
 975			   const void __user *ubuf)
 976{
 977	int rc = 0;
 978	freg_t fprs[__NUM_FPRS];
 979
 980	if (target == current)
 981		save_fpu_regs();
 982
 983	if (MACHINE_HAS_VX)
 984		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 985	else
 986		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 987
 988	/* If setting FPC, must validate it first. */
 989	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 990		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 991		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 992					0, offsetof(s390_fp_regs, fprs));
 993		if (rc)
 994			return rc;
 995		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 996			return -EINVAL;
 997		target->thread.fpu.fpc = ufpc[0];
 998	}
 999
1000	if (rc == 0 && count > 0)
1001		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002					fprs, offsetof(s390_fp_regs, fprs), -1);
1003	if (rc)
1004		return rc;
1005
1006	if (MACHINE_HAS_VX)
1007		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1008	else
1009		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1010
1011	return rc;
1012}
1013
1014static int s390_last_break_get(struct task_struct *target,
1015			       const struct user_regset *regset,
1016			       unsigned int pos, unsigned int count,
1017			       void *kbuf, void __user *ubuf)
1018{
1019	if (count > 0) {
1020		if (kbuf) {
1021			unsigned long *k = kbuf;
1022			*k = target->thread.last_break;
1023		} else {
1024			unsigned long  __user *u = ubuf;
1025			if (__put_user(target->thread.last_break, u))
1026				return -EFAULT;
1027		}
1028	}
1029	return 0;
1030}
1031
1032static int s390_last_break_set(struct task_struct *target,
1033			       const struct user_regset *regset,
1034			       unsigned int pos, unsigned int count,
1035			       const void *kbuf, const void __user *ubuf)
1036{
1037	return 0;
1038}
1039
1040static int s390_tdb_get(struct task_struct *target,
1041			const struct user_regset *regset,
1042			unsigned int pos, unsigned int count,
1043			void *kbuf, void __user *ubuf)
1044{
1045	struct pt_regs *regs = task_pt_regs(target);
1046	unsigned char *data;
1047
1048	if (!(regs->int_code & 0x200))
1049		return -ENODATA;
1050	data = target->thread.trap_tdb;
1051	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052}
1053
1054static int s390_tdb_set(struct task_struct *target,
1055			const struct user_regset *regset,
1056			unsigned int pos, unsigned int count,
1057			const void *kbuf, const void __user *ubuf)
1058{
1059	return 0;
1060}
1061
1062static int s390_vxrs_low_get(struct task_struct *target,
1063			     const struct user_regset *regset,
1064			     unsigned int pos, unsigned int count,
1065			     void *kbuf, void __user *ubuf)
1066{
1067	__u64 vxrs[__NUM_VXRS_LOW];
1068	int i;
1069
1070	if (!MACHINE_HAS_VX)
1071		return -ENODEV;
1072	if (target == current)
1073		save_fpu_regs();
1074	for (i = 0; i < __NUM_VXRS_LOW; i++)
1075		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1076	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1077}
1078
1079static int s390_vxrs_low_set(struct task_struct *target,
1080			     const struct user_regset *regset,
1081			     unsigned int pos, unsigned int count,
1082			     const void *kbuf, const void __user *ubuf)
1083{
1084	__u64 vxrs[__NUM_VXRS_LOW];
1085	int i, rc;
1086
1087	if (!MACHINE_HAS_VX)
1088		return -ENODEV;
1089	if (target == current)
1090		save_fpu_regs();
1091
1092	for (i = 0; i < __NUM_VXRS_LOW; i++)
1093		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1094
1095	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1096	if (rc == 0)
1097		for (i = 0; i < __NUM_VXRS_LOW; i++)
1098			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1099
1100	return rc;
1101}
1102
1103static int s390_vxrs_high_get(struct task_struct *target,
1104			      const struct user_regset *regset,
1105			      unsigned int pos, unsigned int count,
1106			      void *kbuf, void __user *ubuf)
1107{
1108	__vector128 vxrs[__NUM_VXRS_HIGH];
1109
1110	if (!MACHINE_HAS_VX)
1111		return -ENODEV;
1112	if (target == current)
1113		save_fpu_regs();
1114	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1115
1116	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1117}
1118
1119static int s390_vxrs_high_set(struct task_struct *target,
1120			      const struct user_regset *regset,
1121			      unsigned int pos, unsigned int count,
1122			      const void *kbuf, const void __user *ubuf)
1123{
1124	int rc;
1125
1126	if (!MACHINE_HAS_VX)
1127		return -ENODEV;
1128	if (target == current)
1129		save_fpu_regs();
1130
1131	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1132				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1133	return rc;
1134}
1135
1136static int s390_system_call_get(struct task_struct *target,
1137				const struct user_regset *regset,
1138				unsigned int pos, unsigned int count,
1139				void *kbuf, void __user *ubuf)
1140{
1141	unsigned int *data = &target->thread.system_call;
1142	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1143				   data, 0, sizeof(unsigned int));
1144}
1145
1146static int s390_system_call_set(struct task_struct *target,
1147				const struct user_regset *regset,
1148				unsigned int pos, unsigned int count,
1149				const void *kbuf, const void __user *ubuf)
1150{
1151	unsigned int *data = &target->thread.system_call;
1152	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1153				  data, 0, sizeof(unsigned int));
1154}
1155
1156static int s390_gs_cb_get(struct task_struct *target,
1157			  const struct user_regset *regset,
1158			  unsigned int pos, unsigned int count,
1159			  void *kbuf, void __user *ubuf)
1160{
1161	struct gs_cb *data = target->thread.gs_cb;
1162
1163	if (!MACHINE_HAS_GS)
1164		return -ENODEV;
1165	if (!data)
1166		return -ENODATA;
1167	if (target == current)
1168		save_gs_cb(data);
1169	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1170				   data, 0, sizeof(struct gs_cb));
1171}
1172
1173static int s390_gs_cb_set(struct task_struct *target,
1174			  const struct user_regset *regset,
1175			  unsigned int pos, unsigned int count,
1176			  const void *kbuf, const void __user *ubuf)
1177{
1178	struct gs_cb gs_cb = { }, *data = NULL;
1179	int rc;
1180
1181	if (!MACHINE_HAS_GS)
1182		return -ENODEV;
1183	if (!target->thread.gs_cb) {
1184		data = kzalloc(sizeof(*data), GFP_KERNEL);
1185		if (!data)
1186			return -ENOMEM;
1187	}
1188	if (!target->thread.gs_cb)
1189		gs_cb.gsd = 25;
1190	else if (target == current)
1191		save_gs_cb(&gs_cb);
1192	else
1193		gs_cb = *target->thread.gs_cb;
1194	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1195				&gs_cb, 0, sizeof(gs_cb));
1196	if (rc) {
1197		kfree(data);
1198		return -EFAULT;
1199	}
1200	preempt_disable();
1201	if (!target->thread.gs_cb)
1202		target->thread.gs_cb = data;
1203	*target->thread.gs_cb = gs_cb;
1204	if (target == current) {
1205		__ctl_set_bit(2, 4);
1206		restore_gs_cb(target->thread.gs_cb);
1207	}
1208	preempt_enable();
1209	return rc;
1210}
1211
1212static int s390_gs_bc_get(struct task_struct *target,
1213			  const struct user_regset *regset,
1214			  unsigned int pos, unsigned int count,
1215			  void *kbuf, void __user *ubuf)
1216{
1217	struct gs_cb *data = target->thread.gs_bc_cb;
1218
1219	if (!MACHINE_HAS_GS)
1220		return -ENODEV;
1221	if (!data)
1222		return -ENODATA;
1223	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1224				   data, 0, sizeof(struct gs_cb));
1225}
1226
1227static int s390_gs_bc_set(struct task_struct *target,
1228			  const struct user_regset *regset,
1229			  unsigned int pos, unsigned int count,
1230			  const void *kbuf, const void __user *ubuf)
1231{
1232	struct gs_cb *data = target->thread.gs_bc_cb;
1233
1234	if (!MACHINE_HAS_GS)
1235		return -ENODEV;
1236	if (!data) {
1237		data = kzalloc(sizeof(*data), GFP_KERNEL);
1238		if (!data)
1239			return -ENOMEM;
1240		target->thread.gs_bc_cb = data;
1241	}
1242	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1243				  data, 0, sizeof(struct gs_cb));
1244}
1245
1246static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1247{
1248	return (cb->rca & 0x1f) == 0 &&
1249		(cb->roa & 0xfff) == 0 &&
1250		(cb->rla & 0xfff) == 0xfff &&
1251		cb->s == 1 &&
1252		cb->k == 1 &&
1253		cb->h == 0 &&
1254		cb->reserved1 == 0 &&
1255		cb->ps == 1 &&
1256		cb->qs == 0 &&
1257		cb->pc == 1 &&
1258		cb->qc == 0 &&
1259		cb->reserved2 == 0 &&
1260		cb->key == PAGE_DEFAULT_KEY &&
1261		cb->reserved3 == 0 &&
1262		cb->reserved4 == 0 &&
1263		cb->reserved5 == 0 &&
1264		cb->reserved6 == 0 &&
1265		cb->reserved7 == 0 &&
1266		cb->reserved8 == 0 &&
1267		cb->rla >= cb->roa &&
1268		cb->rca >= cb->roa &&
1269		cb->rca <= cb->rla+1 &&
1270		cb->m < 3;
1271}
1272
1273static int s390_runtime_instr_get(struct task_struct *target,
1274				const struct user_regset *regset,
1275				unsigned int pos, unsigned int count,
1276				void *kbuf, void __user *ubuf)
1277{
1278	struct runtime_instr_cb *data = target->thread.ri_cb;
1279
1280	if (!test_facility(64))
1281		return -ENODEV;
1282	if (!data)
1283		return -ENODATA;
1284
1285	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286				   data, 0, sizeof(struct runtime_instr_cb));
1287}
1288
1289static int s390_runtime_instr_set(struct task_struct *target,
1290				  const struct user_regset *regset,
1291				  unsigned int pos, unsigned int count,
1292				  const void *kbuf, const void __user *ubuf)
1293{
1294	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1295	int rc;
1296
1297	if (!test_facility(64))
1298		return -ENODEV;
1299
1300	if (!target->thread.ri_cb) {
1301		data = kzalloc(sizeof(*data), GFP_KERNEL);
1302		if (!data)
1303			return -ENOMEM;
1304	}
1305
1306	if (target->thread.ri_cb) {
1307		if (target == current)
1308			store_runtime_instr_cb(&ri_cb);
1309		else
1310			ri_cb = *target->thread.ri_cb;
1311	}
1312
1313	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1314				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1315	if (rc) {
1316		kfree(data);
1317		return -EFAULT;
1318	}
1319
1320	if (!is_ri_cb_valid(&ri_cb)) {
1321		kfree(data);
1322		return -EINVAL;
1323	}
1324
 
 
 
 
1325	preempt_disable();
1326	if (!target->thread.ri_cb)
1327		target->thread.ri_cb = data;
1328	*target->thread.ri_cb = ri_cb;
1329	if (target == current)
1330		load_runtime_instr_cb(target->thread.ri_cb);
1331	preempt_enable();
1332
1333	return 0;
1334}
1335
1336static const struct user_regset s390_regsets[] = {
1337	{
1338		.core_note_type = NT_PRSTATUS,
1339		.n = sizeof(s390_regs) / sizeof(long),
1340		.size = sizeof(long),
1341		.align = sizeof(long),
1342		.get = s390_regs_get,
1343		.set = s390_regs_set,
1344	},
1345	{
1346		.core_note_type = NT_PRFPREG,
1347		.n = sizeof(s390_fp_regs) / sizeof(long),
1348		.size = sizeof(long),
1349		.align = sizeof(long),
1350		.get = s390_fpregs_get,
1351		.set = s390_fpregs_set,
1352	},
1353	{
1354		.core_note_type = NT_S390_SYSTEM_CALL,
1355		.n = 1,
1356		.size = sizeof(unsigned int),
1357		.align = sizeof(unsigned int),
1358		.get = s390_system_call_get,
1359		.set = s390_system_call_set,
1360	},
1361	{
1362		.core_note_type = NT_S390_LAST_BREAK,
1363		.n = 1,
1364		.size = sizeof(long),
1365		.align = sizeof(long),
1366		.get = s390_last_break_get,
1367		.set = s390_last_break_set,
1368	},
1369	{
1370		.core_note_type = NT_S390_TDB,
1371		.n = 1,
1372		.size = 256,
1373		.align = 1,
1374		.get = s390_tdb_get,
1375		.set = s390_tdb_set,
1376	},
1377	{
1378		.core_note_type = NT_S390_VXRS_LOW,
1379		.n = __NUM_VXRS_LOW,
1380		.size = sizeof(__u64),
1381		.align = sizeof(__u64),
1382		.get = s390_vxrs_low_get,
1383		.set = s390_vxrs_low_set,
1384	},
1385	{
1386		.core_note_type = NT_S390_VXRS_HIGH,
1387		.n = __NUM_VXRS_HIGH,
1388		.size = sizeof(__vector128),
1389		.align = sizeof(__vector128),
1390		.get = s390_vxrs_high_get,
1391		.set = s390_vxrs_high_set,
1392	},
1393	{
1394		.core_note_type = NT_S390_GS_CB,
1395		.n = sizeof(struct gs_cb) / sizeof(__u64),
1396		.size = sizeof(__u64),
1397		.align = sizeof(__u64),
1398		.get = s390_gs_cb_get,
1399		.set = s390_gs_cb_set,
1400	},
1401	{
1402		.core_note_type = NT_S390_GS_BC,
1403		.n = sizeof(struct gs_cb) / sizeof(__u64),
1404		.size = sizeof(__u64),
1405		.align = sizeof(__u64),
1406		.get = s390_gs_bc_get,
1407		.set = s390_gs_bc_set,
1408	},
1409	{
1410		.core_note_type = NT_S390_RI_CB,
1411		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1412		.size = sizeof(__u64),
1413		.align = sizeof(__u64),
1414		.get = s390_runtime_instr_get,
1415		.set = s390_runtime_instr_set,
1416	},
1417};
1418
1419static const struct user_regset_view user_s390_view = {
1420	.name = UTS_MACHINE,
1421	.e_machine = EM_S390,
1422	.regsets = s390_regsets,
1423	.n = ARRAY_SIZE(s390_regsets)
1424};
1425
1426#ifdef CONFIG_COMPAT
1427static int s390_compat_regs_get(struct task_struct *target,
1428				const struct user_regset *regset,
1429				unsigned int pos, unsigned int count,
1430				void *kbuf, void __user *ubuf)
1431{
 
 
1432	if (target == current)
1433		save_access_regs(target->thread.acrs);
1434
1435	if (kbuf) {
1436		compat_ulong_t *k = kbuf;
1437		while (count > 0) {
1438			*k++ = __peek_user_compat(target, pos);
1439			count -= sizeof(*k);
1440			pos += sizeof(*k);
1441		}
1442	} else {
1443		compat_ulong_t __user *u = ubuf;
1444		while (count > 0) {
1445			if (__put_user(__peek_user_compat(target, pos), u++))
1446				return -EFAULT;
1447			count -= sizeof(*u);
1448			pos += sizeof(*u);
1449		}
1450	}
1451	return 0;
1452}
1453
1454static int s390_compat_regs_set(struct task_struct *target,
1455				const struct user_regset *regset,
1456				unsigned int pos, unsigned int count,
1457				const void *kbuf, const void __user *ubuf)
1458{
1459	int rc = 0;
1460
1461	if (target == current)
1462		save_access_regs(target->thread.acrs);
1463
1464	if (kbuf) {
1465		const compat_ulong_t *k = kbuf;
1466		while (count > 0 && !rc) {
1467			rc = __poke_user_compat(target, pos, *k++);
1468			count -= sizeof(*k);
1469			pos += sizeof(*k);
1470		}
1471	} else {
1472		const compat_ulong_t  __user *u = ubuf;
1473		while (count > 0 && !rc) {
1474			compat_ulong_t word;
1475			rc = __get_user(word, u++);
1476			if (rc)
1477				break;
1478			rc = __poke_user_compat(target, pos, word);
1479			count -= sizeof(*u);
1480			pos += sizeof(*u);
1481		}
1482	}
1483
1484	if (rc == 0 && target == current)
1485		restore_access_regs(target->thread.acrs);
1486
1487	return rc;
1488}
1489
1490static int s390_compat_regs_high_get(struct task_struct *target,
1491				     const struct user_regset *regset,
1492				     unsigned int pos, unsigned int count,
1493				     void *kbuf, void __user *ubuf)
1494{
1495	compat_ulong_t *gprs_high;
 
1496
1497	gprs_high = (compat_ulong_t *)
1498		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1499	if (kbuf) {
1500		compat_ulong_t *k = kbuf;
1501		while (count > 0) {
1502			*k++ = *gprs_high;
1503			gprs_high += 2;
1504			count -= sizeof(*k);
1505		}
1506	} else {
1507		compat_ulong_t __user *u = ubuf;
1508		while (count > 0) {
1509			if (__put_user(*gprs_high, u++))
1510				return -EFAULT;
1511			gprs_high += 2;
1512			count -= sizeof(*u);
1513		}
1514	}
1515	return 0;
1516}
1517
1518static int s390_compat_regs_high_set(struct task_struct *target,
1519				     const struct user_regset *regset,
1520				     unsigned int pos, unsigned int count,
1521				     const void *kbuf, const void __user *ubuf)
1522{
1523	compat_ulong_t *gprs_high;
1524	int rc = 0;
1525
1526	gprs_high = (compat_ulong_t *)
1527		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1528	if (kbuf) {
1529		const compat_ulong_t *k = kbuf;
1530		while (count > 0) {
1531			*gprs_high = *k++;
1532			*gprs_high += 2;
1533			count -= sizeof(*k);
1534		}
1535	} else {
1536		const compat_ulong_t  __user *u = ubuf;
1537		while (count > 0 && !rc) {
1538			unsigned long word;
1539			rc = __get_user(word, u++);
1540			if (rc)
1541				break;
1542			*gprs_high = word;
1543			*gprs_high += 2;
1544			count -= sizeof(*u);
1545		}
1546	}
1547
1548	return rc;
1549}
1550
1551static int s390_compat_last_break_get(struct task_struct *target,
1552				      const struct user_regset *regset,
1553				      unsigned int pos, unsigned int count,
1554				      void *kbuf, void __user *ubuf)
1555{
1556	compat_ulong_t last_break;
1557
1558	if (count > 0) {
1559		last_break = target->thread.last_break;
1560		if (kbuf) {
1561			unsigned long *k = kbuf;
1562			*k = last_break;
1563		} else {
1564			unsigned long  __user *u = ubuf;
1565			if (__put_user(last_break, u))
1566				return -EFAULT;
1567		}
1568	}
1569	return 0;
1570}
1571
1572static int s390_compat_last_break_set(struct task_struct *target,
1573				      const struct user_regset *regset,
1574				      unsigned int pos, unsigned int count,
1575				      const void *kbuf, const void __user *ubuf)
1576{
1577	return 0;
1578}
1579
1580static const struct user_regset s390_compat_regsets[] = {
1581	{
1582		.core_note_type = NT_PRSTATUS,
1583		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1584		.size = sizeof(compat_long_t),
1585		.align = sizeof(compat_long_t),
1586		.get = s390_compat_regs_get,
1587		.set = s390_compat_regs_set,
1588	},
1589	{
1590		.core_note_type = NT_PRFPREG,
1591		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1592		.size = sizeof(compat_long_t),
1593		.align = sizeof(compat_long_t),
1594		.get = s390_fpregs_get,
1595		.set = s390_fpregs_set,
1596	},
1597	{
1598		.core_note_type = NT_S390_SYSTEM_CALL,
1599		.n = 1,
1600		.size = sizeof(compat_uint_t),
1601		.align = sizeof(compat_uint_t),
1602		.get = s390_system_call_get,
1603		.set = s390_system_call_set,
1604	},
1605	{
1606		.core_note_type = NT_S390_LAST_BREAK,
1607		.n = 1,
1608		.size = sizeof(long),
1609		.align = sizeof(long),
1610		.get = s390_compat_last_break_get,
1611		.set = s390_compat_last_break_set,
1612	},
1613	{
1614		.core_note_type = NT_S390_TDB,
1615		.n = 1,
1616		.size = 256,
1617		.align = 1,
1618		.get = s390_tdb_get,
1619		.set = s390_tdb_set,
1620	},
1621	{
1622		.core_note_type = NT_S390_VXRS_LOW,
1623		.n = __NUM_VXRS_LOW,
1624		.size = sizeof(__u64),
1625		.align = sizeof(__u64),
1626		.get = s390_vxrs_low_get,
1627		.set = s390_vxrs_low_set,
1628	},
1629	{
1630		.core_note_type = NT_S390_VXRS_HIGH,
1631		.n = __NUM_VXRS_HIGH,
1632		.size = sizeof(__vector128),
1633		.align = sizeof(__vector128),
1634		.get = s390_vxrs_high_get,
1635		.set = s390_vxrs_high_set,
1636	},
1637	{
1638		.core_note_type = NT_S390_HIGH_GPRS,
1639		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1640		.size = sizeof(compat_long_t),
1641		.align = sizeof(compat_long_t),
1642		.get = s390_compat_regs_high_get,
1643		.set = s390_compat_regs_high_set,
1644	},
1645	{
1646		.core_note_type = NT_S390_GS_CB,
1647		.n = sizeof(struct gs_cb) / sizeof(__u64),
1648		.size = sizeof(__u64),
1649		.align = sizeof(__u64),
1650		.get = s390_gs_cb_get,
1651		.set = s390_gs_cb_set,
1652	},
1653	{
1654		.core_note_type = NT_S390_GS_BC,
1655		.n = sizeof(struct gs_cb) / sizeof(__u64),
1656		.size = sizeof(__u64),
1657		.align = sizeof(__u64),
1658		.get = s390_gs_bc_get,
1659		.set = s390_gs_bc_set,
1660	},
1661	{
1662		.core_note_type = NT_S390_RI_CB,
1663		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1664		.size = sizeof(__u64),
1665		.align = sizeof(__u64),
1666		.get = s390_runtime_instr_get,
1667		.set = s390_runtime_instr_set,
1668	},
1669};
1670
1671static const struct user_regset_view user_s390_compat_view = {
1672	.name = "s390",
1673	.e_machine = EM_S390,
1674	.regsets = s390_compat_regsets,
1675	.n = ARRAY_SIZE(s390_compat_regsets)
1676};
1677#endif
1678
1679const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1680{
1681#ifdef CONFIG_COMPAT
1682	if (test_tsk_thread_flag(task, TIF_31BIT))
1683		return &user_s390_compat_view;
1684#endif
1685	return &user_s390_view;
1686}
1687
1688static const char *gpr_names[NUM_GPRS] = {
1689	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1690	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1691};
1692
1693unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1694{
1695	if (offset >= NUM_GPRS)
1696		return 0;
1697	return regs->gprs[offset];
1698}
1699
1700int regs_query_register_offset(const char *name)
1701{
1702	unsigned long offset;
1703
1704	if (!name || *name != 'r')
1705		return -EINVAL;
1706	if (kstrtoul(name + 1, 10, &offset))
1707		return -EINVAL;
1708	if (offset >= NUM_GPRS)
1709		return -EINVAL;
1710	return offset;
1711}
1712
1713const char *regs_query_register_name(unsigned int offset)
1714{
1715	if (offset >= NUM_GPRS)
1716		return NULL;
1717	return gpr_names[offset];
1718}
1719
1720static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1721{
1722	unsigned long ksp = kernel_stack_pointer(regs);
1723
1724	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1725}
1726
1727/**
1728 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1729 * @regs:pt_regs which contains kernel stack pointer.
1730 * @n:stack entry number.
1731 *
1732 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1733 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1734 * this returns 0.
1735 */
1736unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1737{
1738	unsigned long addr;
1739
1740	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1741	if (!regs_within_kernel_stack(regs, addr))
1742		return 0;
1743	return *(unsigned long *)addr;
1744}