Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
  2#ifndef __BPF_CORE_READ_H__
  3#define __BPF_CORE_READ_H__
  4
  5/*
  6 * enum bpf_field_info_kind is passed as a second argument into
  7 * __builtin_preserve_field_info() built-in to get a specific aspect of
  8 * a field, captured as a first argument. __builtin_preserve_field_info(field,
  9 * info_kind) returns __u32 integer and produces BTF field relocation, which
 10 * is understood and processed by libbpf during BPF object loading. See
 11 * selftests/bpf for examples.
 12 */
 13enum bpf_field_info_kind {
 14	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
 15	BPF_FIELD_BYTE_SIZE = 1,
 16	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
 17	BPF_FIELD_SIGNED = 3,
 18	BPF_FIELD_LSHIFT_U64 = 4,
 19	BPF_FIELD_RSHIFT_U64 = 5,
 20};
 21
 22/* second argument to __builtin_btf_type_id() built-in */
 23enum bpf_type_id_kind {
 24	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
 25	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
 26};
 27
 28/* second argument to __builtin_preserve_type_info() built-in */
 29enum bpf_type_info_kind {
 30	BPF_TYPE_EXISTS = 0,		/* type existence in target kernel */
 31	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
 32	BPF_TYPE_MATCHES = 2,		/* type match in target kernel */
 33};
 34
 35/* second argument to __builtin_preserve_enum_value() built-in */
 36enum bpf_enum_value_kind {
 37	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
 38	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
 39};
 40
 41#define __CORE_RELO(src, field, info)					      \
 42	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
 43
 44#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 45#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
 46	bpf_probe_read_kernel(						      \
 47			(void *)dst,				      \
 48			__CORE_RELO(src, fld, BYTE_SIZE),		      \
 49			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
 50#else
 51/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
 52 * for big-endian we need to adjust destination pointer accordingly, based on
 53 * field byte size
 54 */
 55#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
 56	bpf_probe_read_kernel(						      \
 57			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
 58			__CORE_RELO(src, fld, BYTE_SIZE),		      \
 59			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
 60#endif
 61
 62/*
 63 * Extract bitfield, identified by s->field, and return its value as u64.
 64 * All this is done in relocatable manner, so bitfield changes such as
 65 * signedness, bit size, offset changes, this will be handled automatically.
 66 * This version of macro is using bpf_probe_read_kernel() to read underlying
 67 * integer storage. Macro functions as an expression and its return type is
 68 * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
 69 */
 70#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
 71	unsigned long long val = 0;					      \
 72									      \
 73	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
 74	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
 75	if (__CORE_RELO(s, field, SIGNED))				      \
 76		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
 77	else								      \
 78		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
 79	val;								      \
 80})
 81
 82/*
 83 * Extract bitfield, identified by s->field, and return its value as u64.
 84 * This version of macro is using direct memory reads and should be used from
 85 * BPF program types that support such functionality (e.g., typed raw
 86 * tracepoints).
 87 */
 88#define BPF_CORE_READ_BITFIELD(s, field) ({				      \
 89	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
 90	unsigned long long val;						      \
 91									      \
 92	/* This is a so-called barrier_var() operation that makes specified   \
 93	 * variable "a black box" for optimizing compiler.		      \
 94	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
 95	 * its calculated value in the switch below, instead of applying      \
 96	 * the same relocation 4 times for each individual memory load.       \
 97	 */								      \
 98	asm volatile("" : "=r"(p) : "0"(p));				      \
 99									      \
100	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
101	case 1: val = *(const unsigned char *)p; break;			      \
102	case 2: val = *(const unsigned short *)p; break;		      \
103	case 4: val = *(const unsigned int *)p; break;			      \
104	case 8: val = *(const unsigned long long *)p; break;		      \
105	}								      \
106	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
107	if (__CORE_RELO(s, field, SIGNED))				      \
108		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
109	else								      \
110		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
111	val;								      \
112})
113
114/*
115 * Write to a bitfield, identified by s->field.
116 * This is the inverse of BPF_CORE_WRITE_BITFIELD().
117 */
118#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({			\
119	void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET);	\
120	unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE);	\
121	unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64);	\
122	unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64);	\
123	unsigned long long mask, val, nval = new_val;			\
124	unsigned int rpad = rshift - lshift;				\
125									\
126	asm volatile("" : "+r"(p));					\
127									\
128	switch (byte_size) {						\
129	case 1: val = *(unsigned char *)p; break;			\
130	case 2: val = *(unsigned short *)p; break;			\
131	case 4: val = *(unsigned int *)p; break;			\
132	case 8: val = *(unsigned long long *)p; break;			\
133	}								\
134									\
135	mask = (~0ULL << rshift) >> lshift;				\
136	val = (val & ~mask) | ((nval << rpad) & mask);			\
137									\
138	switch (byte_size) {						\
139	case 1: *(unsigned char *)p      = val; break;			\
140	case 2: *(unsigned short *)p     = val; break;			\
141	case 4: *(unsigned int *)p       = val; break;			\
142	case 8: *(unsigned long long *)p = val; break;			\
143	}								\
144})
145
146#define ___bpf_field_ref1(field)	(field)
147#define ___bpf_field_ref2(type, field)	(((typeof(type) *)0)->field)
148#define ___bpf_field_ref(args...)					    \
149	___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
150
151/*
152 * Convenience macro to check that field actually exists in target kernel's.
153 * Returns:
154 *    1, if matching field is present in target kernel;
155 *    0, if no matching field found.
156 *
157 * Supports two forms:
158 *   - field reference through variable access:
159 *     bpf_core_field_exists(p->my_field);
160 *   - field reference through type and field names:
161 *     bpf_core_field_exists(struct my_type, my_field).
162 */
163#define bpf_core_field_exists(field...)					    \
164	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
165
166/*
167 * Convenience macro to get the byte size of a field. Works for integers,
168 * struct/unions, pointers, arrays, and enums.
169 *
170 * Supports two forms:
171 *   - field reference through variable access:
172 *     bpf_core_field_size(p->my_field);
173 *   - field reference through type and field names:
174 *     bpf_core_field_size(struct my_type, my_field).
175 */
176#define bpf_core_field_size(field...)					    \
177	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
178
179/*
180 * Convenience macro to get field's byte offset.
181 *
182 * Supports two forms:
183 *   - field reference through variable access:
184 *     bpf_core_field_offset(p->my_field);
185 *   - field reference through type and field names:
186 *     bpf_core_field_offset(struct my_type, my_field).
187 */
188#define bpf_core_field_offset(field...)					    \
189	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
190
191/*
192 * Convenience macro to get BTF type ID of a specified type, using a local BTF
193 * information. Return 32-bit unsigned integer with type ID from program's own
194 * BTF. Always succeeds.
195 */
196#define bpf_core_type_id_local(type)					    \
197	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
198
199/*
200 * Convenience macro to get BTF type ID of a target kernel's type that matches
201 * specified local type.
202 * Returns:
203 *    - valid 32-bit unsigned type ID in kernel BTF;
204 *    - 0, if no matching type was found in a target kernel BTF.
205 */
206#define bpf_core_type_id_kernel(type)					    \
207	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
208
209/*
210 * Convenience macro to check that provided named type
211 * (struct/union/enum/typedef) exists in a target kernel.
212 * Returns:
213 *    1, if such type is present in target kernel's BTF;
214 *    0, if no matching type is found.
215 */
216#define bpf_core_type_exists(type)					    \
217	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
218
219/*
220 * Convenience macro to check that provided named type
221 * (struct/union/enum/typedef) "matches" that in a target kernel.
222 * Returns:
223 *    1, if the type matches in the target kernel's BTF;
224 *    0, if the type does not match any in the target kernel
225 */
226#define bpf_core_type_matches(type)					    \
227	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES)
228
229/*
230 * Convenience macro to get the byte size of a provided named type
231 * (struct/union/enum/typedef) in a target kernel.
232 * Returns:
233 *    >= 0 size (in bytes), if type is present in target kernel's BTF;
234 *    0, if no matching type is found.
235 */
236#define bpf_core_type_size(type)					    \
237	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
238
239/*
240 * Convenience macro to check that provided enumerator value is defined in
241 * a target kernel.
242 * Returns:
243 *    1, if specified enum type and its enumerator value are present in target
244 *    kernel's BTF;
245 *    0, if no matching enum and/or enum value within that enum is found.
246 */
247#define bpf_core_enum_value_exists(enum_type, enum_value)		    \
248	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
249
250/*
251 * Convenience macro to get the integer value of an enumerator value in
252 * a target kernel.
253 * Returns:
254 *    64-bit value, if specified enum type and its enumerator value are
255 *    present in target kernel's BTF;
256 *    0, if no matching enum and/or enum value within that enum is found.
257 */
258#define bpf_core_enum_value(enum_type, enum_value)			    \
259	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
260
261/*
262 * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
263 * offset relocation for source address using __builtin_preserve_access_index()
264 * built-in, provided by Clang.
265 *
266 * __builtin_preserve_access_index() takes as an argument an expression of
267 * taking an address of a field within struct/union. It makes compiler emit
268 * a relocation, which records BTF type ID describing root struct/union and an
269 * accessor string which describes exact embedded field that was used to take
270 * an address. See detailed description of this relocation format and
271 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
272 *
273 * This relocation allows libbpf to adjust BPF instruction to use correct
274 * actual field offset, based on target kernel BTF type that matches original
275 * (local) BTF, used to record relocation.
276 */
277#define bpf_core_read(dst, sz, src)					    \
278	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
279
280/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
281#define bpf_core_read_user(dst, sz, src)				    \
282	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
283/*
284 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
285 * additionally emitting BPF CO-RE field relocation for specified source
286 * argument.
287 */
288#define bpf_core_read_str(dst, sz, src)					    \
289	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
290
291/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
292#define bpf_core_read_user_str(dst, sz, src)				    \
293	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
294
295#define ___concat(a, b) a ## b
296#define ___apply(fn, n) ___concat(fn, n)
297#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
298
299/*
300 * return number of provided arguments; used for switch-based variadic macro
301 * definitions (see ___last, ___arrow, etc below)
302 */
303#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
304/*
305 * return 0 if no arguments are passed, N - otherwise; used for
306 * recursively-defined macros to specify termination (0) case, and generic
307 * (N) case (e.g., ___read_ptrs, ___core_read)
308 */
309#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
310
311#define ___last1(x) x
312#define ___last2(a, x) x
313#define ___last3(a, b, x) x
314#define ___last4(a, b, c, x) x
315#define ___last5(a, b, c, d, x) x
316#define ___last6(a, b, c, d, e, x) x
317#define ___last7(a, b, c, d, e, f, x) x
318#define ___last8(a, b, c, d, e, f, g, x) x
319#define ___last9(a, b, c, d, e, f, g, h, x) x
320#define ___last10(a, b, c, d, e, f, g, h, i, x) x
321#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
322
323#define ___nolast2(a, _) a
324#define ___nolast3(a, b, _) a, b
325#define ___nolast4(a, b, c, _) a, b, c
326#define ___nolast5(a, b, c, d, _) a, b, c, d
327#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
328#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
329#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
330#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
331#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
332#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
333
334#define ___arrow1(a) a
335#define ___arrow2(a, b) a->b
336#define ___arrow3(a, b, c) a->b->c
337#define ___arrow4(a, b, c, d) a->b->c->d
338#define ___arrow5(a, b, c, d, e) a->b->c->d->e
339#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
340#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
341#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
342#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
343#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
344#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
345
346#define ___type(...) typeof(___arrow(__VA_ARGS__))
347
348#define ___read(read_fn, dst, src_type, src, accessor)			    \
349	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
350
351/* "recursively" read a sequence of inner pointers using local __t var */
352#define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
353#define ___rd_last(fn, ...)						    \
354	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
355#define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
356#define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
357#define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
358#define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
359#define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
360#define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
361#define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
362#define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
363#define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
364#define ___read_ptrs(fn, src, ...)					    \
365	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
366
367#define ___core_read0(fn, fn_ptr, dst, src, a)				    \
368	___read(fn, dst, ___type(src), src, a);
369#define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
370	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
371	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
372		___last(__VA_ARGS__));
373#define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
374	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
375						      src, a, ##__VA_ARGS__)
376
377/*
378 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
379 * BPF_CORE_READ(), in which final field is read into user-provided storage.
380 * See BPF_CORE_READ() below for more details on general usage.
381 */
382#define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
383	___core_read(bpf_core_read, bpf_core_read,			    \
384		     dst, (src), a, ##__VA_ARGS__)			    \
385})
386
387/*
388 * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
389 *
390 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
391 */
392#define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
393	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
394		     dst, (src), a, ##__VA_ARGS__)			    \
395})
396
397/* Non-CO-RE variant of BPF_CORE_READ_INTO() */
398#define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
399	___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel,	    \
400		     dst, (src), a, ##__VA_ARGS__)			    \
401})
402
403/* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
404 *
405 * As no CO-RE relocations are emitted, source types can be arbitrary and are
406 * not restricted to kernel types only.
407 */
408#define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
409	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
410		     dst, (src), a, ##__VA_ARGS__)			    \
411})
412
413/*
414 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
415 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
416 * corresponding error code) bpf_core_read_str() for final string read.
417 */
418#define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
419	___core_read(bpf_core_read_str, bpf_core_read,			    \
420		     dst, (src), a, ##__VA_ARGS__)			    \
421})
422
423/*
424 * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
425 *
426 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
427 */
428#define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
429	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
430		     dst, (src), a, ##__VA_ARGS__)			    \
431})
432
433/* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
434#define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
435	___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel,	    \
436		     dst, (src), a, ##__VA_ARGS__)			    \
437})
438
439/*
440 * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
441 *
442 * As no CO-RE relocations are emitted, source types can be arbitrary and are
443 * not restricted to kernel types only.
444 */
445#define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
446	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
447		     dst, (src), a, ##__VA_ARGS__)			    \
448})
449
450/*
451 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
452 * when there are few pointer chasing steps.
453 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
454 *	int x = s->a.b.c->d.e->f->g;
455 * can be succinctly achieved using BPF_CORE_READ as:
456 *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
457 *
458 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
459 * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
460 * equivalent to:
461 * 1. const void *__t = s->a.b.c;
462 * 2. __t = __t->d.e;
463 * 3. __t = __t->f;
464 * 4. return __t->g;
465 *
466 * Equivalence is logical, because there is a heavy type casting/preservation
467 * involved, as well as all the reads are happening through
468 * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
469 * emit CO-RE relocations.
470 *
471 * N.B. Only up to 9 "field accessors" are supported, which should be more
472 * than enough for any practical purpose.
473 */
474#define BPF_CORE_READ(src, a, ...) ({					    \
475	___type((src), a, ##__VA_ARGS__) __r;				    \
476	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
477	__r;								    \
478})
479
480/*
481 * Variant of BPF_CORE_READ() for reading from user-space memory.
482 *
483 * NOTE: all the source types involved are still *kernel types* and need to
484 * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
485 * fail. Custom user types are not relocatable with CO-RE.
486 * The typical situation in which BPF_CORE_READ_USER() might be used is to
487 * read kernel UAPI types from the user-space memory passed in as a syscall
488 * input argument.
489 */
490#define BPF_CORE_READ_USER(src, a, ...) ({				    \
491	___type((src), a, ##__VA_ARGS__) __r;				    \
492	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
493	__r;								    \
494})
495
496/* Non-CO-RE variant of BPF_CORE_READ() */
497#define BPF_PROBE_READ(src, a, ...) ({					    \
498	___type((src), a, ##__VA_ARGS__) __r;				    \
499	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
500	__r;								    \
501})
502
503/*
504 * Non-CO-RE variant of BPF_CORE_READ_USER().
505 *
506 * As no CO-RE relocations are emitted, source types can be arbitrary and are
507 * not restricted to kernel types only.
508 */
509#define BPF_PROBE_READ_USER(src, a, ...) ({				    \
510	___type((src), a, ##__VA_ARGS__) __r;				    \
511	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
512	__r;								    \
513})
514
515#endif
516