Loading...
Note: File does not exist in v3.5.6.
1/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2#ifndef __BPF_CORE_READ_H__
3#define __BPF_CORE_READ_H__
4
5/*
6 * enum bpf_field_info_kind is passed as a second argument into
7 * __builtin_preserve_field_info() built-in to get a specific aspect of
8 * a field, captured as a first argument. __builtin_preserve_field_info(field,
9 * info_kind) returns __u32 integer and produces BTF field relocation, which
10 * is understood and processed by libbpf during BPF object loading. See
11 * selftests/bpf for examples.
12 */
13enum bpf_field_info_kind {
14 BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */
15 BPF_FIELD_BYTE_SIZE = 1,
16 BPF_FIELD_EXISTS = 2, /* field existence in target kernel */
17 BPF_FIELD_SIGNED = 3,
18 BPF_FIELD_LSHIFT_U64 = 4,
19 BPF_FIELD_RSHIFT_U64 = 5,
20};
21
22/* second argument to __builtin_btf_type_id() built-in */
23enum bpf_type_id_kind {
24 BPF_TYPE_ID_LOCAL = 0, /* BTF type ID in local program */
25 BPF_TYPE_ID_TARGET = 1, /* BTF type ID in target kernel */
26};
27
28/* second argument to __builtin_preserve_type_info() built-in */
29enum bpf_type_info_kind {
30 BPF_TYPE_EXISTS = 0, /* type existence in target kernel */
31 BPF_TYPE_SIZE = 1, /* type size in target kernel */
32 BPF_TYPE_MATCHES = 2, /* type match in target kernel */
33};
34
35/* second argument to __builtin_preserve_enum_value() built-in */
36enum bpf_enum_value_kind {
37 BPF_ENUMVAL_EXISTS = 0, /* enum value existence in kernel */
38 BPF_ENUMVAL_VALUE = 1, /* enum value value relocation */
39};
40
41#define __CORE_RELO(src, field, info) \
42 __builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
43
44#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
45#define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
46 bpf_probe_read_kernel( \
47 (void *)dst, \
48 __CORE_RELO(src, fld, BYTE_SIZE), \
49 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
50#else
51/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
52 * for big-endian we need to adjust destination pointer accordingly, based on
53 * field byte size
54 */
55#define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
56 bpf_probe_read_kernel( \
57 (void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
58 __CORE_RELO(src, fld, BYTE_SIZE), \
59 (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
60#endif
61
62/*
63 * Extract bitfield, identified by s->field, and return its value as u64.
64 * All this is done in relocatable manner, so bitfield changes such as
65 * signedness, bit size, offset changes, this will be handled automatically.
66 * This version of macro is using bpf_probe_read_kernel() to read underlying
67 * integer storage. Macro functions as an expression and its return type is
68 * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
69 */
70#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \
71 unsigned long long val = 0; \
72 \
73 __CORE_BITFIELD_PROBE_READ(&val, s, field); \
74 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
75 if (__CORE_RELO(s, field, SIGNED)) \
76 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
77 else \
78 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
79 val; \
80})
81
82/*
83 * Extract bitfield, identified by s->field, and return its value as u64.
84 * This version of macro is using direct memory reads and should be used from
85 * BPF program types that support such functionality (e.g., typed raw
86 * tracepoints).
87 */
88#define BPF_CORE_READ_BITFIELD(s, field) ({ \
89 const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
90 unsigned long long val; \
91 \
92 /* This is a so-called barrier_var() operation that makes specified \
93 * variable "a black box" for optimizing compiler. \
94 * It forces compiler to perform BYTE_OFFSET relocation on p and use \
95 * its calculated value in the switch below, instead of applying \
96 * the same relocation 4 times for each individual memory load. \
97 */ \
98 asm volatile("" : "=r"(p) : "0"(p)); \
99 \
100 switch (__CORE_RELO(s, field, BYTE_SIZE)) { \
101 case 1: val = *(const unsigned char *)p; break; \
102 case 2: val = *(const unsigned short *)p; break; \
103 case 4: val = *(const unsigned int *)p; break; \
104 case 8: val = *(const unsigned long long *)p; break; \
105 } \
106 val <<= __CORE_RELO(s, field, LSHIFT_U64); \
107 if (__CORE_RELO(s, field, SIGNED)) \
108 val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
109 else \
110 val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
111 val; \
112})
113
114/*
115 * Write to a bitfield, identified by s->field.
116 * This is the inverse of BPF_CORE_WRITE_BITFIELD().
117 */
118#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({ \
119 void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
120 unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE); \
121 unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64); \
122 unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64); \
123 unsigned long long mask, val, nval = new_val; \
124 unsigned int rpad = rshift - lshift; \
125 \
126 asm volatile("" : "+r"(p)); \
127 \
128 switch (byte_size) { \
129 case 1: val = *(unsigned char *)p; break; \
130 case 2: val = *(unsigned short *)p; break; \
131 case 4: val = *(unsigned int *)p; break; \
132 case 8: val = *(unsigned long long *)p; break; \
133 } \
134 \
135 mask = (~0ULL << rshift) >> lshift; \
136 val = (val & ~mask) | ((nval << rpad) & mask); \
137 \
138 switch (byte_size) { \
139 case 1: *(unsigned char *)p = val; break; \
140 case 2: *(unsigned short *)p = val; break; \
141 case 4: *(unsigned int *)p = val; break; \
142 case 8: *(unsigned long long *)p = val; break; \
143 } \
144})
145
146#define ___bpf_field_ref1(field) (field)
147#define ___bpf_field_ref2(type, field) (((typeof(type) *)0)->field)
148#define ___bpf_field_ref(args...) \
149 ___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
150
151/*
152 * Convenience macro to check that field actually exists in target kernel's.
153 * Returns:
154 * 1, if matching field is present in target kernel;
155 * 0, if no matching field found.
156 *
157 * Supports two forms:
158 * - field reference through variable access:
159 * bpf_core_field_exists(p->my_field);
160 * - field reference through type and field names:
161 * bpf_core_field_exists(struct my_type, my_field).
162 */
163#define bpf_core_field_exists(field...) \
164 __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
165
166/*
167 * Convenience macro to get the byte size of a field. Works for integers,
168 * struct/unions, pointers, arrays, and enums.
169 *
170 * Supports two forms:
171 * - field reference through variable access:
172 * bpf_core_field_size(p->my_field);
173 * - field reference through type and field names:
174 * bpf_core_field_size(struct my_type, my_field).
175 */
176#define bpf_core_field_size(field...) \
177 __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
178
179/*
180 * Convenience macro to get field's byte offset.
181 *
182 * Supports two forms:
183 * - field reference through variable access:
184 * bpf_core_field_offset(p->my_field);
185 * - field reference through type and field names:
186 * bpf_core_field_offset(struct my_type, my_field).
187 */
188#define bpf_core_field_offset(field...) \
189 __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
190
191/*
192 * Convenience macro to get BTF type ID of a specified type, using a local BTF
193 * information. Return 32-bit unsigned integer with type ID from program's own
194 * BTF. Always succeeds.
195 */
196#define bpf_core_type_id_local(type) \
197 __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
198
199/*
200 * Convenience macro to get BTF type ID of a target kernel's type that matches
201 * specified local type.
202 * Returns:
203 * - valid 32-bit unsigned type ID in kernel BTF;
204 * - 0, if no matching type was found in a target kernel BTF.
205 */
206#define bpf_core_type_id_kernel(type) \
207 __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
208
209/*
210 * Convenience macro to check that provided named type
211 * (struct/union/enum/typedef) exists in a target kernel.
212 * Returns:
213 * 1, if such type is present in target kernel's BTF;
214 * 0, if no matching type is found.
215 */
216#define bpf_core_type_exists(type) \
217 __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
218
219/*
220 * Convenience macro to check that provided named type
221 * (struct/union/enum/typedef) "matches" that in a target kernel.
222 * Returns:
223 * 1, if the type matches in the target kernel's BTF;
224 * 0, if the type does not match any in the target kernel
225 */
226#define bpf_core_type_matches(type) \
227 __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES)
228
229/*
230 * Convenience macro to get the byte size of a provided named type
231 * (struct/union/enum/typedef) in a target kernel.
232 * Returns:
233 * >= 0 size (in bytes), if type is present in target kernel's BTF;
234 * 0, if no matching type is found.
235 */
236#define bpf_core_type_size(type) \
237 __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
238
239/*
240 * Convenience macro to check that provided enumerator value is defined in
241 * a target kernel.
242 * Returns:
243 * 1, if specified enum type and its enumerator value are present in target
244 * kernel's BTF;
245 * 0, if no matching enum and/or enum value within that enum is found.
246 */
247#define bpf_core_enum_value_exists(enum_type, enum_value) \
248 __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
249
250/*
251 * Convenience macro to get the integer value of an enumerator value in
252 * a target kernel.
253 * Returns:
254 * 64-bit value, if specified enum type and its enumerator value are
255 * present in target kernel's BTF;
256 * 0, if no matching enum and/or enum value within that enum is found.
257 */
258#define bpf_core_enum_value(enum_type, enum_value) \
259 __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
260
261/*
262 * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
263 * offset relocation for source address using __builtin_preserve_access_index()
264 * built-in, provided by Clang.
265 *
266 * __builtin_preserve_access_index() takes as an argument an expression of
267 * taking an address of a field within struct/union. It makes compiler emit
268 * a relocation, which records BTF type ID describing root struct/union and an
269 * accessor string which describes exact embedded field that was used to take
270 * an address. See detailed description of this relocation format and
271 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
272 *
273 * This relocation allows libbpf to adjust BPF instruction to use correct
274 * actual field offset, based on target kernel BTF type that matches original
275 * (local) BTF, used to record relocation.
276 */
277#define bpf_core_read(dst, sz, src) \
278 bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
279
280/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
281#define bpf_core_read_user(dst, sz, src) \
282 bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
283/*
284 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
285 * additionally emitting BPF CO-RE field relocation for specified source
286 * argument.
287 */
288#define bpf_core_read_str(dst, sz, src) \
289 bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
290
291/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
292#define bpf_core_read_user_str(dst, sz, src) \
293 bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
294
295#define ___concat(a, b) a ## b
296#define ___apply(fn, n) ___concat(fn, n)
297#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
298
299/*
300 * return number of provided arguments; used for switch-based variadic macro
301 * definitions (see ___last, ___arrow, etc below)
302 */
303#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
304/*
305 * return 0 if no arguments are passed, N - otherwise; used for
306 * recursively-defined macros to specify termination (0) case, and generic
307 * (N) case (e.g., ___read_ptrs, ___core_read)
308 */
309#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
310
311#define ___last1(x) x
312#define ___last2(a, x) x
313#define ___last3(a, b, x) x
314#define ___last4(a, b, c, x) x
315#define ___last5(a, b, c, d, x) x
316#define ___last6(a, b, c, d, e, x) x
317#define ___last7(a, b, c, d, e, f, x) x
318#define ___last8(a, b, c, d, e, f, g, x) x
319#define ___last9(a, b, c, d, e, f, g, h, x) x
320#define ___last10(a, b, c, d, e, f, g, h, i, x) x
321#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
322
323#define ___nolast2(a, _) a
324#define ___nolast3(a, b, _) a, b
325#define ___nolast4(a, b, c, _) a, b, c
326#define ___nolast5(a, b, c, d, _) a, b, c, d
327#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
328#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
329#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
330#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
331#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
332#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
333
334#define ___arrow1(a) a
335#define ___arrow2(a, b) a->b
336#define ___arrow3(a, b, c) a->b->c
337#define ___arrow4(a, b, c, d) a->b->c->d
338#define ___arrow5(a, b, c, d, e) a->b->c->d->e
339#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
340#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
341#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
342#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
343#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
344#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
345
346#define ___type(...) typeof(___arrow(__VA_ARGS__))
347
348#define ___read(read_fn, dst, src_type, src, accessor) \
349 read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
350
351/* "recursively" read a sequence of inner pointers using local __t var */
352#define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
353#define ___rd_last(fn, ...) \
354 ___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
355#define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
356#define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
357#define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
358#define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
359#define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
360#define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
361#define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
362#define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
363#define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
364#define ___read_ptrs(fn, src, ...) \
365 ___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
366
367#define ___core_read0(fn, fn_ptr, dst, src, a) \
368 ___read(fn, dst, ___type(src), src, a);
369#define ___core_readN(fn, fn_ptr, dst, src, ...) \
370 ___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__)) \
371 ___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \
372 ___last(__VA_ARGS__));
373#define ___core_read(fn, fn_ptr, dst, src, a, ...) \
374 ___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst, \
375 src, a, ##__VA_ARGS__)
376
377/*
378 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
379 * BPF_CORE_READ(), in which final field is read into user-provided storage.
380 * See BPF_CORE_READ() below for more details on general usage.
381 */
382#define BPF_CORE_READ_INTO(dst, src, a, ...) ({ \
383 ___core_read(bpf_core_read, bpf_core_read, \
384 dst, (src), a, ##__VA_ARGS__) \
385})
386
387/*
388 * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
389 *
390 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
391 */
392#define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({ \
393 ___core_read(bpf_core_read_user, bpf_core_read_user, \
394 dst, (src), a, ##__VA_ARGS__) \
395})
396
397/* Non-CO-RE variant of BPF_CORE_READ_INTO() */
398#define BPF_PROBE_READ_INTO(dst, src, a, ...) ({ \
399 ___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel, \
400 dst, (src), a, ##__VA_ARGS__) \
401})
402
403/* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
404 *
405 * As no CO-RE relocations are emitted, source types can be arbitrary and are
406 * not restricted to kernel types only.
407 */
408#define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({ \
409 ___core_read(bpf_probe_read_user, bpf_probe_read_user, \
410 dst, (src), a, ##__VA_ARGS__) \
411})
412
413/*
414 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
415 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
416 * corresponding error code) bpf_core_read_str() for final string read.
417 */
418#define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({ \
419 ___core_read(bpf_core_read_str, bpf_core_read, \
420 dst, (src), a, ##__VA_ARGS__) \
421})
422
423/*
424 * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
425 *
426 * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
427 */
428#define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({ \
429 ___core_read(bpf_core_read_user_str, bpf_core_read_user, \
430 dst, (src), a, ##__VA_ARGS__) \
431})
432
433/* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
434#define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({ \
435 ___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel, \
436 dst, (src), a, ##__VA_ARGS__) \
437})
438
439/*
440 * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
441 *
442 * As no CO-RE relocations are emitted, source types can be arbitrary and are
443 * not restricted to kernel types only.
444 */
445#define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({ \
446 ___core_read(bpf_probe_read_user_str, bpf_probe_read_user, \
447 dst, (src), a, ##__VA_ARGS__) \
448})
449
450/*
451 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
452 * when there are few pointer chasing steps.
453 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
454 * int x = s->a.b.c->d.e->f->g;
455 * can be succinctly achieved using BPF_CORE_READ as:
456 * int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
457 *
458 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
459 * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
460 * equivalent to:
461 * 1. const void *__t = s->a.b.c;
462 * 2. __t = __t->d.e;
463 * 3. __t = __t->f;
464 * 4. return __t->g;
465 *
466 * Equivalence is logical, because there is a heavy type casting/preservation
467 * involved, as well as all the reads are happening through
468 * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
469 * emit CO-RE relocations.
470 *
471 * N.B. Only up to 9 "field accessors" are supported, which should be more
472 * than enough for any practical purpose.
473 */
474#define BPF_CORE_READ(src, a, ...) ({ \
475 ___type((src), a, ##__VA_ARGS__) __r; \
476 BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \
477 __r; \
478})
479
480/*
481 * Variant of BPF_CORE_READ() for reading from user-space memory.
482 *
483 * NOTE: all the source types involved are still *kernel types* and need to
484 * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
485 * fail. Custom user types are not relocatable with CO-RE.
486 * The typical situation in which BPF_CORE_READ_USER() might be used is to
487 * read kernel UAPI types from the user-space memory passed in as a syscall
488 * input argument.
489 */
490#define BPF_CORE_READ_USER(src, a, ...) ({ \
491 ___type((src), a, ##__VA_ARGS__) __r; \
492 BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \
493 __r; \
494})
495
496/* Non-CO-RE variant of BPF_CORE_READ() */
497#define BPF_PROBE_READ(src, a, ...) ({ \
498 ___type((src), a, ##__VA_ARGS__) __r; \
499 BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \
500 __r; \
501})
502
503/*
504 * Non-CO-RE variant of BPF_CORE_READ_USER().
505 *
506 * As no CO-RE relocations are emitted, source types can be arbitrary and are
507 * not restricted to kernel types only.
508 */
509#define BPF_PROBE_READ_USER(src, a, ...) ({ \
510 ___type((src), a, ##__VA_ARGS__) __r; \
511 BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \
512 __r; \
513})
514
515#endif
516