Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * RocketPort device driver for Linux
   4 *
   5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   6 * 
   7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   8 */
   9
  10/*
  11 * Kernel Synchronization:
  12 *
  13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  14 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  15 * are not used.
  16 *
  17 * Critical data: 
  18 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  19 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  20 *    a per port spinlock.
  21 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  22 *    is data to be transmitted.  Protected by atomic bit operations.
  23 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  24 * 
  25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  26 * simultaneous access to the same port by more than one process.
  27 */
  28
  29/****** Defines ******/
  30#define ROCKET_PARANOIA_CHECK
  31#define ROCKET_DISABLE_SIMUSAGE
  32
  33#undef ROCKET_SOFT_FLOW
  34#undef ROCKET_DEBUG_OPEN
  35#undef ROCKET_DEBUG_INTR
  36#undef ROCKET_DEBUG_WRITE
  37#undef ROCKET_DEBUG_FLOW
  38#undef ROCKET_DEBUG_THROTTLE
  39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  40#undef ROCKET_DEBUG_RECEIVE
  41#undef ROCKET_DEBUG_HANGUP
  42#undef REV_PCI_ORDER
  43#undef ROCKET_DEBUG_IO
  44
  45#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */
  46
  47/****** Kernel includes ******/
  48
  49#include <linux/module.h>
  50#include <linux/errno.h>
  51#include <linux/major.h>
  52#include <linux/kernel.h>
  53#include <linux/signal.h>
  54#include <linux/slab.h>
  55#include <linux/mm.h>
  56#include <linux/sched.h>
  57#include <linux/timer.h>
  58#include <linux/interrupt.h>
  59#include <linux/tty.h>
  60#include <linux/tty_driver.h>
  61#include <linux/tty_flip.h>
  62#include <linux/serial.h>
  63#include <linux/string.h>
  64#include <linux/fcntl.h>
  65#include <linux/ptrace.h>
  66#include <linux/mutex.h>
  67#include <linux/ioport.h>
  68#include <linux/delay.h>
  69#include <linux/completion.h>
  70#include <linux/wait.h>
  71#include <linux/pci.h>
  72#include <linux/uaccess.h>
  73#include <linux/atomic.h>
  74#include <asm/unaligned.h>
  75#include <linux/bitops.h>
  76#include <linux/spinlock.h>
  77#include <linux/init.h>
  78
  79/****** RocketPort includes ******/
  80
  81#include "rocket_int.h"
  82#include "rocket.h"
  83
  84#define ROCKET_VERSION "2.09"
  85#define ROCKET_DATE "12-June-2003"
  86
  87/****** RocketPort Local Variables ******/
  88
  89static void rp_do_poll(struct timer_list *unused);
  90
  91static struct tty_driver *rocket_driver;
  92
  93static struct rocket_version driver_version = {	
  94	ROCKET_VERSION, ROCKET_DATE
  95};
  96
  97static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
  98static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
  99						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 100static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 101static DEFINE_TIMER(rocket_timer, rp_do_poll);
 102
 103static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 104static unsigned long board2;
 105static unsigned long board3;
 106static unsigned long board4;
 107static unsigned long controller;
 108static bool support_low_speed;
 109static unsigned long modem1;
 110static unsigned long modem2;
 111static unsigned long modem3;
 112static unsigned long modem4;
 113static unsigned long pc104_1[8];
 114static unsigned long pc104_2[8];
 115static unsigned long pc104_3[8];
 116static unsigned long pc104_4[8];
 117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 118
 119static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 120static unsigned long rcktpt_io_addr[NUM_BOARDS];
 121static int rcktpt_type[NUM_BOARDS];
 122static int is_PCI[NUM_BOARDS];
 123static rocketModel_t rocketModel[NUM_BOARDS];
 124static int max_board;
 125static const struct tty_port_operations rocket_port_ops;
 126
 127/*
 128 * The following arrays define the interrupt bits corresponding to each AIOP.
 129 * These bits are different between the ISA and regular PCI boards and the
 130 * Universal PCI boards.
 131 */
 132
 133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 134	AIOP_INTR_BIT_0,
 135	AIOP_INTR_BIT_1,
 136	AIOP_INTR_BIT_2,
 137	AIOP_INTR_BIT_3
 138};
 139
 140#ifdef CONFIG_PCI
 141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 142	UPCI_AIOP_INTR_BIT_0,
 143	UPCI_AIOP_INTR_BIT_1,
 144	UPCI_AIOP_INTR_BIT_2,
 145	UPCI_AIOP_INTR_BIT_3
 146};
 147#endif
 148
 149static Byte_t RData[RDATASIZE] = {
 150	0x00, 0x09, 0xf6, 0x82,
 151	0x02, 0x09, 0x86, 0xfb,
 152	0x04, 0x09, 0x00, 0x0a,
 153	0x06, 0x09, 0x01, 0x0a,
 154	0x08, 0x09, 0x8a, 0x13,
 155	0x0a, 0x09, 0xc5, 0x11,
 156	0x0c, 0x09, 0x86, 0x85,
 157	0x0e, 0x09, 0x20, 0x0a,
 158	0x10, 0x09, 0x21, 0x0a,
 159	0x12, 0x09, 0x41, 0xff,
 160	0x14, 0x09, 0x82, 0x00,
 161	0x16, 0x09, 0x82, 0x7b,
 162	0x18, 0x09, 0x8a, 0x7d,
 163	0x1a, 0x09, 0x88, 0x81,
 164	0x1c, 0x09, 0x86, 0x7a,
 165	0x1e, 0x09, 0x84, 0x81,
 166	0x20, 0x09, 0x82, 0x7c,
 167	0x22, 0x09, 0x0a, 0x0a
 168};
 169
 170static Byte_t RRegData[RREGDATASIZE] = {
 171	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 172	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 173	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 174	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 175	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 176	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 177	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 178	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 179	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 180	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 181	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 182	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 183	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 184};
 185
 186static CONTROLLER_T sController[CTL_SIZE] = {
 187	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 188	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 189	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 190	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 191	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 192	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 193	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 194	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 195};
 196
 197static Byte_t sBitMapClrTbl[8] = {
 198	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 199};
 200
 201static Byte_t sBitMapSetTbl[8] = {
 202	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 203};
 204
 205static int sClockPrescale = 0x14;
 206
 207/*
 208 *  Line number is the ttySIx number (x), the Minor number.  We 
 209 *  assign them sequentially, starting at zero.  The following 
 210 *  array keeps track of the line number assigned to a given board/aiop/channel.
 211 */
 212static unsigned char lineNumbers[MAX_RP_PORTS];
 213static unsigned long nextLineNumber;
 214
 215/*****  RocketPort Static Prototypes   *********/
 216static int __init init_ISA(int i);
 217static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 218static void rp_flush_buffer(struct tty_struct *tty);
 219static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 220static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 221static void rp_start(struct tty_struct *tty);
 222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 223		     int ChanNum);
 224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 225static void sFlushRxFIFO(CHANNEL_T * ChP);
 226static void sFlushTxFIFO(CHANNEL_T * ChP);
 227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 233			   ByteIO_t * AiopIOList, int AiopIOListSize,
 234			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 235static int sReadAiopID(ByteIO_t io);
 236static int sReadAiopNumChan(WordIO_t io);
 237
 238MODULE_AUTHOR("Theodore Ts'o");
 239MODULE_DESCRIPTION("Comtrol RocketPort driver");
 240module_param_hw(board1, ulong, ioport, 0);
 241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 242module_param_hw(board2, ulong, ioport, 0);
 243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 244module_param_hw(board3, ulong, ioport, 0);
 245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 246module_param_hw(board4, ulong, ioport, 0);
 247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 248module_param_hw(controller, ulong, ioport, 0);
 249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 250module_param(support_low_speed, bool, 0);
 251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 252module_param(modem1, ulong, 0);
 253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 254module_param(modem2, ulong, 0);
 255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 256module_param(modem3, ulong, 0);
 257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 258module_param(modem4, ulong, 0);
 259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 260module_param_array(pc104_1, ulong, NULL, 0);
 261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 262module_param_array(pc104_2, ulong, NULL, 0);
 263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 264module_param_array(pc104_3, ulong, NULL, 0);
 265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 266module_param_array(pc104_4, ulong, NULL, 0);
 267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 268
 269static int rp_init(void);
 270static void rp_cleanup_module(void);
 271
 272module_init(rp_init);
 273module_exit(rp_cleanup_module);
 274
 275
 276MODULE_LICENSE("Dual BSD/GPL");
 277
 278/*************************************************************************/
 279/*                     Module code starts here                           */
 280
 281static inline int rocket_paranoia_check(struct r_port *info,
 282					const char *routine)
 283{
 284#ifdef ROCKET_PARANOIA_CHECK
 285	if (!info)
 286		return 1;
 287	if (info->magic != RPORT_MAGIC) {
 288		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 289				"struct in %s\n", routine);
 290		return 1;
 291	}
 292#endif
 293	return 0;
 294}
 295
 296
 297/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 298 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 299 *  tty layer.  
 300 */
 301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 302		unsigned int ChanStatus)
 303{
 304	unsigned int CharNStat;
 305	int ToRecv, wRecv, space;
 306	unsigned char *cbuf;
 307
 308	ToRecv = sGetRxCnt(cp);
 309#ifdef ROCKET_DEBUG_INTR
 310	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 311#endif
 312	if (ToRecv == 0)
 313		return;
 314
 315	/*
 316	 * if status indicates there are errored characters in the
 317	 * FIFO, then enter status mode (a word in FIFO holds
 318	 * character and status).
 319	 */
 320	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 321		if (!(ChanStatus & STATMODE)) {
 322#ifdef ROCKET_DEBUG_RECEIVE
 323			printk(KERN_INFO "Entering STATMODE...\n");
 324#endif
 325			ChanStatus |= STATMODE;
 326			sEnRxStatusMode(cp);
 327		}
 328	}
 329
 330	/* 
 331	 * if we previously entered status mode, then read down the
 332	 * FIFO one word at a time, pulling apart the character and
 333	 * the status.  Update error counters depending on status
 334	 */
 335	if (ChanStatus & STATMODE) {
 336#ifdef ROCKET_DEBUG_RECEIVE
 337		printk(KERN_INFO "Ignore %x, read %x...\n",
 338			info->ignore_status_mask, info->read_status_mask);
 339#endif
 340		while (ToRecv) {
 341			char flag;
 342
 343			CharNStat = sInW(sGetTxRxDataIO(cp));
 344#ifdef ROCKET_DEBUG_RECEIVE
 345			printk(KERN_INFO "%x...\n", CharNStat);
 346#endif
 347			if (CharNStat & STMBREAKH)
 348				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 349			if (CharNStat & info->ignore_status_mask) {
 350				ToRecv--;
 351				continue;
 352			}
 353			CharNStat &= info->read_status_mask;
 354			if (CharNStat & STMBREAKH)
 355				flag = TTY_BREAK;
 356			else if (CharNStat & STMPARITYH)
 357				flag = TTY_PARITY;
 358			else if (CharNStat & STMFRAMEH)
 359				flag = TTY_FRAME;
 360			else if (CharNStat & STMRCVROVRH)
 361				flag = TTY_OVERRUN;
 362			else
 363				flag = TTY_NORMAL;
 364			tty_insert_flip_char(&info->port, CharNStat & 0xff,
 365					flag);
 366			ToRecv--;
 367		}
 368
 369		/*
 370		 * after we've emptied the FIFO in status mode, turn
 371		 * status mode back off
 372		 */
 373		if (sGetRxCnt(cp) == 0) {
 374#ifdef ROCKET_DEBUG_RECEIVE
 375			printk(KERN_INFO "Status mode off.\n");
 376#endif
 377			sDisRxStatusMode(cp);
 378		}
 379	} else {
 380		/*
 381		 * we aren't in status mode, so read down the FIFO two
 382		 * characters at time by doing repeated word IO
 383		 * transfer.
 384		 */
 385		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 386		if (space < ToRecv) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 389#endif
 390			if (space <= 0)
 391				return;
 392			ToRecv = space;
 393		}
 394		wRecv = ToRecv >> 1;
 395		if (wRecv)
 396			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 397		if (ToRecv & 1)
 398			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 399	}
 400	/*  Push the data up to the tty layer */
 401	tty_flip_buffer_push(&info->port);
 402}
 403
 404/*
 405 *  Serial port transmit data function.  Called from the timer polling loop as a 
 406 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 407 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 408 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 409 */
 410static void rp_do_transmit(struct r_port *info)
 411{
 412	int c;
 413	CHANNEL_t *cp = &info->channel;
 414	struct tty_struct *tty;
 415	unsigned long flags;
 416
 417#ifdef ROCKET_DEBUG_INTR
 418	printk(KERN_DEBUG "%s\n", __func__);
 419#endif
 420	if (!info)
 421		return;
 422	tty = tty_port_tty_get(&info->port);
 423
 424	if (tty == NULL) {
 425		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 426		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 427		return;
 428	}
 429
 430	spin_lock_irqsave(&info->slock, flags);
 431	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 432
 433	/*  Loop sending data to FIFO until done or FIFO full */
 434	while (1) {
 435		if (tty->stopped)
 436			break;
 437		c = min(info->xmit_fifo_room, info->xmit_cnt);
 438		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 439		if (c <= 0 || info->xmit_fifo_room <= 0)
 440			break;
 441		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 442		if (c & 1)
 443			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 444		info->xmit_tail += c;
 445		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 446		info->xmit_cnt -= c;
 447		info->xmit_fifo_room -= c;
 448#ifdef ROCKET_DEBUG_INTR
 449		printk(KERN_INFO "tx %d chars...\n", c);
 450#endif
 451	}
 452
 453	if (info->xmit_cnt == 0)
 454		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 455
 456	if (info->xmit_cnt < WAKEUP_CHARS) {
 457		tty_wakeup(tty);
 458#ifdef ROCKETPORT_HAVE_POLL_WAIT
 459		wake_up_interruptible(&tty->poll_wait);
 460#endif
 461	}
 462
 463	spin_unlock_irqrestore(&info->slock, flags);
 464	tty_kref_put(tty);
 465
 466#ifdef ROCKET_DEBUG_INTR
 467	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 468	       info->xmit_tail, info->xmit_fifo_room);
 469#endif
 470}
 471
 472/*
 473 *  Called when a serial port signals it has read data in it's RX FIFO.
 474 *  It checks what interrupts are pending and services them, including
 475 *  receiving serial data.  
 476 */
 477static void rp_handle_port(struct r_port *info)
 478{
 479	CHANNEL_t *cp;
 480	unsigned int IntMask, ChanStatus;
 481
 482	if (!info)
 483		return;
 484
 485	if (!tty_port_initialized(&info->port)) {
 486		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 487				"info->flags & NOT_INIT\n");
 488		return;
 489	}
 490
 491	cp = &info->channel;
 492
 493	IntMask = sGetChanIntID(cp) & info->intmask;
 494#ifdef ROCKET_DEBUG_INTR
 495	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 496#endif
 497	ChanStatus = sGetChanStatus(cp);
 498	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 499		rp_do_receive(info, cp, ChanStatus);
 500	}
 501	if (IntMask & DELTA_CD) {	/* CD change  */
 502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 503		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 504		       (ChanStatus & CD_ACT) ? "on" : "off");
 505#endif
 506		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 507#ifdef ROCKET_DEBUG_HANGUP
 508			printk(KERN_INFO "CD drop, calling hangup.\n");
 509#endif
 510			tty_port_tty_hangup(&info->port, false);
 511		}
 512		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 513		wake_up_interruptible(&info->port.open_wait);
 514	}
 515#ifdef ROCKET_DEBUG_INTR
 516	if (IntMask & DELTA_CTS) {	/* CTS change */
 517		printk(KERN_INFO "CTS change...\n");
 518	}
 519	if (IntMask & DELTA_DSR) {	/* DSR change */
 520		printk(KERN_INFO "DSR change...\n");
 521	}
 522#endif
 523}
 524
 525/*
 526 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 527 */
 528static void rp_do_poll(struct timer_list *unused)
 529{
 530	CONTROLLER_t *ctlp;
 531	int ctrl, aiop, ch, line;
 532	unsigned int xmitmask, i;
 533	unsigned int CtlMask;
 534	unsigned char AiopMask;
 535	Word_t bit;
 536
 537	/*  Walk through all the boards (ctrl's) */
 538	for (ctrl = 0; ctrl < max_board; ctrl++) {
 539		if (rcktpt_io_addr[ctrl] <= 0)
 540			continue;
 541
 542		/*  Get a ptr to the board's control struct */
 543		ctlp = sCtlNumToCtlPtr(ctrl);
 544
 545		/*  Get the interrupt status from the board */
 546#ifdef CONFIG_PCI
 547		if (ctlp->BusType == isPCI)
 548			CtlMask = sPCIGetControllerIntStatus(ctlp);
 549		else
 550#endif
 551			CtlMask = sGetControllerIntStatus(ctlp);
 552
 553		/*  Check if any AIOP read bits are set */
 554		for (aiop = 0; CtlMask; aiop++) {
 555			bit = ctlp->AiopIntrBits[aiop];
 556			if (CtlMask & bit) {
 557				CtlMask &= ~bit;
 558				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 559
 560				/*  Check if any port read bits are set */
 561				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 562					if (AiopMask & 1) {
 563
 564						/*  Get the line number (/dev/ttyRx number). */
 565						/*  Read the data from the port. */
 566						line = GetLineNumber(ctrl, aiop, ch);
 567						rp_handle_port(rp_table[line]);
 568					}
 569				}
 570			}
 571		}
 572
 573		xmitmask = xmit_flags[ctrl];
 574
 575		/*
 576		 *  xmit_flags contains bit-significant flags, indicating there is data
 577		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 578		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 579		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 580		 */
 581		if (xmitmask) {
 582			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 583				if (xmitmask & (1 << i)) {
 584					aiop = (i & 0x18) >> 3;
 585					ch = i & 0x07;
 586					line = GetLineNumber(ctrl, aiop, ch);
 587					rp_do_transmit(rp_table[line]);
 588				}
 589			}
 590		}
 591	}
 592
 593	/*
 594	 * Reset the timer so we get called at the next clock tick (10ms).
 595	 */
 596	if (atomic_read(&rp_num_ports_open))
 597		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 598}
 599
 600/*
 601 *  Initializes the r_port structure for a port, as well as enabling the port on 
 602 *  the board.  
 603 *  Inputs:  board, aiop, chan numbers
 604 */
 605static void __init
 606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 607{
 608	unsigned rocketMode;
 609	struct r_port *info;
 610	int line;
 611	CONTROLLER_T *ctlp;
 612
 613	/*  Get the next available line number */
 614	line = SetLineNumber(board, aiop, chan);
 615
 616	ctlp = sCtlNumToCtlPtr(board);
 617
 618	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 619	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 620	if (!info) {
 621		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 622				line);
 623		return;
 624	}
 625
 626	info->magic = RPORT_MAGIC;
 627	info->line = line;
 628	info->ctlp = ctlp;
 629	info->board = board;
 630	info->aiop = aiop;
 631	info->chan = chan;
 632	tty_port_init(&info->port);
 633	info->port.ops = &rocket_port_ops;
 634	info->flags &= ~ROCKET_MODE_MASK;
 635	switch (pc104[board][line]) {
 636	case 422:
 637		info->flags |= ROCKET_MODE_RS422;
 638		break;
 639	case 485:
 640		info->flags |= ROCKET_MODE_RS485;
 641		break;
 642	case 232:
 643	default:
 644		info->flags |= ROCKET_MODE_RS232;
 645		break;
 646	}
 647
 648	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 649	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 650		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 651				board, aiop, chan);
 652		tty_port_destroy(&info->port);
 653		kfree(info);
 654		return;
 655	}
 656
 657	rocketMode = info->flags & ROCKET_MODE_MASK;
 658
 659	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 660		sEnRTSToggle(&info->channel);
 661	else
 662		sDisRTSToggle(&info->channel);
 663
 664	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 665		switch (rocketMode) {
 666		case ROCKET_MODE_RS485:
 667			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 668			break;
 669		case ROCKET_MODE_RS422:
 670			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 671			break;
 672		case ROCKET_MODE_RS232:
 673		default:
 674			if (info->flags & ROCKET_RTS_TOGGLE)
 675				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 676			else
 677				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 678			break;
 679		}
 680	}
 681	spin_lock_init(&info->slock);
 682	mutex_init(&info->write_mtx);
 683	rp_table[line] = info;
 684	tty_port_register_device(&info->port, rocket_driver, line,
 685			pci_dev ? &pci_dev->dev : NULL);
 686}
 687
 688/*
 689 *  Configures a rocketport port according to its termio settings.  Called from 
 690 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 691 */
 692static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 693			     struct ktermios *old_termios)
 694{
 695	unsigned cflag;
 696	unsigned long flags;
 697	unsigned rocketMode;
 698	int bits, baud, divisor;
 699	CHANNEL_t *cp;
 700	struct ktermios *t = &tty->termios;
 701
 702	cp = &info->channel;
 703	cflag = t->c_cflag;
 704
 705	/* Byte size and parity */
 706	if ((cflag & CSIZE) == CS8) {
 707		sSetData8(cp);
 708		bits = 10;
 709	} else {
 710		sSetData7(cp);
 711		bits = 9;
 712	}
 713	if (cflag & CSTOPB) {
 714		sSetStop2(cp);
 715		bits++;
 716	} else {
 717		sSetStop1(cp);
 718	}
 719
 720	if (cflag & PARENB) {
 721		sEnParity(cp);
 722		bits++;
 723		if (cflag & PARODD) {
 724			sSetOddParity(cp);
 725		} else {
 726			sSetEvenParity(cp);
 727		}
 728	} else {
 729		sDisParity(cp);
 730	}
 731
 732	/* baud rate */
 733	baud = tty_get_baud_rate(tty);
 734	if (!baud)
 735		baud = 9600;
 736	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 737	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 738		baud = tty_termios_baud_rate(old_termios);
 739		if (!baud)
 740			baud = 9600;
 741		divisor = (rp_baud_base[info->board] / baud) - 1;
 742	}
 743	if (divisor >= 8192 || divisor < 0) {
 744		baud = 9600;
 745		divisor = (rp_baud_base[info->board] / baud) - 1;
 746	}
 747	info->cps = baud / bits;
 748	sSetBaud(cp, divisor);
 749
 750	/* FIXME: Should really back compute a baud rate from the divisor */
 751	tty_encode_baud_rate(tty, baud, baud);
 752
 753	if (cflag & CRTSCTS) {
 754		info->intmask |= DELTA_CTS;
 755		sEnCTSFlowCtl(cp);
 756	} else {
 757		info->intmask &= ~DELTA_CTS;
 758		sDisCTSFlowCtl(cp);
 759	}
 760	if (cflag & CLOCAL) {
 761		info->intmask &= ~DELTA_CD;
 762	} else {
 763		spin_lock_irqsave(&info->slock, flags);
 764		if (sGetChanStatus(cp) & CD_ACT)
 765			info->cd_status = 1;
 766		else
 767			info->cd_status = 0;
 768		info->intmask |= DELTA_CD;
 769		spin_unlock_irqrestore(&info->slock, flags);
 770	}
 771
 772	/*
 773	 * Handle software flow control in the board
 774	 */
 775#ifdef ROCKET_SOFT_FLOW
 776	if (I_IXON(tty)) {
 777		sEnTxSoftFlowCtl(cp);
 778		if (I_IXANY(tty)) {
 779			sEnIXANY(cp);
 780		} else {
 781			sDisIXANY(cp);
 782		}
 783		sSetTxXONChar(cp, START_CHAR(tty));
 784		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 785	} else {
 786		sDisTxSoftFlowCtl(cp);
 787		sDisIXANY(cp);
 788		sClrTxXOFF(cp);
 789	}
 790#endif
 791
 792	/*
 793	 * Set up ignore/read mask words
 794	 */
 795	info->read_status_mask = STMRCVROVRH | 0xFF;
 796	if (I_INPCK(tty))
 797		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 798	if (I_BRKINT(tty) || I_PARMRK(tty))
 799		info->read_status_mask |= STMBREAKH;
 800
 801	/*
 802	 * Characters to ignore
 803	 */
 804	info->ignore_status_mask = 0;
 805	if (I_IGNPAR(tty))
 806		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 807	if (I_IGNBRK(tty)) {
 808		info->ignore_status_mask |= STMBREAKH;
 809		/*
 810		 * If we're ignoring parity and break indicators,
 811		 * ignore overruns too.  (For real raw support).
 812		 */
 813		if (I_IGNPAR(tty))
 814			info->ignore_status_mask |= STMRCVROVRH;
 815	}
 816
 817	rocketMode = info->flags & ROCKET_MODE_MASK;
 818
 819	if ((info->flags & ROCKET_RTS_TOGGLE)
 820	    || (rocketMode == ROCKET_MODE_RS485))
 821		sEnRTSToggle(cp);
 822	else
 823		sDisRTSToggle(cp);
 824
 825	sSetRTS(&info->channel);
 826
 827	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 828		switch (rocketMode) {
 829		case ROCKET_MODE_RS485:
 830			sSetInterfaceMode(cp, InterfaceModeRS485);
 831			break;
 832		case ROCKET_MODE_RS422:
 833			sSetInterfaceMode(cp, InterfaceModeRS422);
 834			break;
 835		case ROCKET_MODE_RS232:
 836		default:
 837			if (info->flags & ROCKET_RTS_TOGGLE)
 838				sSetInterfaceMode(cp, InterfaceModeRS232T);
 839			else
 840				sSetInterfaceMode(cp, InterfaceModeRS232);
 841			break;
 842		}
 843	}
 844}
 845
 846static int carrier_raised(struct tty_port *port)
 847{
 848	struct r_port *info = container_of(port, struct r_port, port);
 849	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 850}
 851
 852static void dtr_rts(struct tty_port *port, int on)
 853{
 854	struct r_port *info = container_of(port, struct r_port, port);
 855	if (on) {
 856		sSetDTR(&info->channel);
 857		sSetRTS(&info->channel);
 858	} else {
 859		sClrDTR(&info->channel);
 860		sClrRTS(&info->channel);
 861	}
 862}
 863
 864/*
 865 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 866 *  port's r_port struct.  Initializes the port hardware.  
 867 */
 868static int rp_open(struct tty_struct *tty, struct file *filp)
 869{
 870	struct r_port *info;
 871	struct tty_port *port;
 872	int retval;
 873	CHANNEL_t *cp;
 874	unsigned long page;
 875
 876	info = rp_table[tty->index];
 877	if (info == NULL)
 878		return -ENXIO;
 879	port = &info->port;
 880	
 881	page = __get_free_page(GFP_KERNEL);
 882	if (!page)
 883		return -ENOMEM;
 884
 885	/*
 886	 * We must not sleep from here until the port is marked fully in use.
 887	 */
 888	if (info->xmit_buf)
 889		free_page(page);
 890	else
 891		info->xmit_buf = (unsigned char *) page;
 892
 893	tty->driver_data = info;
 894	tty_port_tty_set(port, tty);
 895
 896	if (port->count++ == 0) {
 897		atomic_inc(&rp_num_ports_open);
 898
 899#ifdef ROCKET_DEBUG_OPEN
 900		printk(KERN_INFO "rocket mod++ = %d...\n",
 901				atomic_read(&rp_num_ports_open));
 902#endif
 903	}
 904#ifdef ROCKET_DEBUG_OPEN
 905	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 906#endif
 907
 908	/*
 909	 * Info->count is now 1; so it's safe to sleep now.
 910	 */
 911	if (!tty_port_initialized(port)) {
 912		cp = &info->channel;
 913		sSetRxTrigger(cp, TRIG_1);
 914		if (sGetChanStatus(cp) & CD_ACT)
 915			info->cd_status = 1;
 916		else
 917			info->cd_status = 0;
 918		sDisRxStatusMode(cp);
 919		sFlushRxFIFO(cp);
 920		sFlushTxFIFO(cp);
 921
 922		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 923		sSetRxTrigger(cp, TRIG_1);
 924
 925		sGetChanStatus(cp);
 926		sDisRxStatusMode(cp);
 927		sClrTxXOFF(cp);
 928
 929		sDisCTSFlowCtl(cp);
 930		sDisTxSoftFlowCtl(cp);
 931
 932		sEnRxFIFO(cp);
 933		sEnTransmit(cp);
 934
 935		tty_port_set_initialized(&info->port, 1);
 936
 937		configure_r_port(tty, info, NULL);
 938		if (C_BAUD(tty)) {
 939			sSetDTR(cp);
 940			sSetRTS(cp);
 941		}
 942	}
 943	/*  Starts (or resets) the maint polling loop */
 944	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 945
 946	retval = tty_port_block_til_ready(port, tty, filp);
 947	if (retval) {
 948#ifdef ROCKET_DEBUG_OPEN
 949		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 950#endif
 951		return retval;
 952	}
 953	return 0;
 954}
 955
 956/*
 957 *  Exception handler that closes a serial port. info->port.count is considered critical.
 958 */
 959static void rp_close(struct tty_struct *tty, struct file *filp)
 960{
 961	struct r_port *info = tty->driver_data;
 962	struct tty_port *port = &info->port;
 963	int timeout;
 964	CHANNEL_t *cp;
 965	
 966	if (rocket_paranoia_check(info, "rp_close"))
 967		return;
 968
 969#ifdef ROCKET_DEBUG_OPEN
 970	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 971#endif
 972
 973	if (tty_port_close_start(port, tty, filp) == 0)
 974		return;
 975
 976	mutex_lock(&port->mutex);
 977	cp = &info->channel;
 978	/*
 979	 * Before we drop DTR, make sure the UART transmitter
 980	 * has completely drained; this is especially
 981	 * important if there is a transmit FIFO!
 982	 */
 983	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
 984	if (timeout == 0)
 985		timeout = 1;
 986	rp_wait_until_sent(tty, timeout);
 987	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 988
 989	sDisTransmit(cp);
 990	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 991	sDisCTSFlowCtl(cp);
 992	sDisTxSoftFlowCtl(cp);
 993	sClrTxXOFF(cp);
 994	sFlushRxFIFO(cp);
 995	sFlushTxFIFO(cp);
 996	sClrRTS(cp);
 997	if (C_HUPCL(tty))
 998		sClrDTR(cp);
 999
1000	rp_flush_buffer(tty);
1001		
1002	tty_ldisc_flush(tty);
1003
1004	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1005
1006	/* We can't yet use tty_port_close_end as the buffer handling in this
1007	   driver is a bit different to the usual */
1008
1009	if (port->blocked_open) {
1010		if (port->close_delay) {
1011			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1012		}
1013		wake_up_interruptible(&port->open_wait);
1014	} else {
1015		if (info->xmit_buf) {
1016			free_page((unsigned long) info->xmit_buf);
1017			info->xmit_buf = NULL;
1018		}
1019	}
1020	spin_lock_irq(&port->lock);
1021	tty->closing = 0;
1022	spin_unlock_irq(&port->lock);
1023	tty_port_set_initialized(port, 0);
1024	tty_port_set_active(port, 0);
1025	mutex_unlock(&port->mutex);
1026	tty_port_tty_set(port, NULL);
1027
1028	atomic_dec(&rp_num_ports_open);
1029
1030#ifdef ROCKET_DEBUG_OPEN
1031	printk(KERN_INFO "rocket mod-- = %d...\n",
1032			atomic_read(&rp_num_ports_open));
1033	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1034#endif
1035
1036}
1037
1038static void rp_set_termios(struct tty_struct *tty,
1039			   struct ktermios *old_termios)
1040{
1041	struct r_port *info = tty->driver_data;
1042	CHANNEL_t *cp;
1043	unsigned cflag;
1044
1045	if (rocket_paranoia_check(info, "rp_set_termios"))
1046		return;
1047
1048	cflag = tty->termios.c_cflag;
1049
1050	/*
1051	 * This driver doesn't support CS5 or CS6
1052	 */
1053	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1054		tty->termios.c_cflag =
1055		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1056	/* Or CMSPAR */
1057	tty->termios.c_cflag &= ~CMSPAR;
1058
1059	configure_r_port(tty, info, old_termios);
1060
1061	cp = &info->channel;
1062
1063	/* Handle transition to B0 status */
1064	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1065		sClrDTR(cp);
1066		sClrRTS(cp);
1067	}
1068
1069	/* Handle transition away from B0 status */
1070	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1071		sSetRTS(cp);
1072		sSetDTR(cp);
1073	}
1074
1075	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1076		rp_start(tty);
1077}
1078
1079static int rp_break(struct tty_struct *tty, int break_state)
1080{
1081	struct r_port *info = tty->driver_data;
1082	unsigned long flags;
1083
1084	if (rocket_paranoia_check(info, "rp_break"))
1085		return -EINVAL;
1086
1087	spin_lock_irqsave(&info->slock, flags);
1088	if (break_state == -1)
1089		sSendBreak(&info->channel);
1090	else
1091		sClrBreak(&info->channel);
1092	spin_unlock_irqrestore(&info->slock, flags);
1093	return 0;
1094}
1095
1096/*
1097 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1098 * the UPCI boards was added, it was decided to make this a function because
1099 * the macro was getting too complicated. All cases except the first one
1100 * (UPCIRingInd) are taken directly from the original macro.
1101 */
1102static int sGetChanRI(CHANNEL_T * ChP)
1103{
1104	CONTROLLER_t *CtlP = ChP->CtlP;
1105	int ChanNum = ChP->ChanNum;
1106	int RingInd = 0;
1107
1108	if (CtlP->UPCIRingInd)
1109		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1110	else if (CtlP->AltChanRingIndicator)
1111		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1112	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1113		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1114
1115	return RingInd;
1116}
1117
1118/********************************************************************************************/
1119/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1120
1121/*
1122 *  Returns the state of the serial modem control lines.  These next 2 functions 
1123 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1124 */
1125static int rp_tiocmget(struct tty_struct *tty)
1126{
1127	struct r_port *info = tty->driver_data;
1128	unsigned int control, result, ChanStatus;
1129
1130	ChanStatus = sGetChanStatusLo(&info->channel);
1131	control = info->channel.TxControl[3];
1132	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1133		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1134		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1135		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1136		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1137		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1138
1139	return result;
1140}
1141
1142/* 
1143 *  Sets the modem control lines
1144 */
1145static int rp_tiocmset(struct tty_struct *tty,
1146				unsigned int set, unsigned int clear)
1147{
1148	struct r_port *info = tty->driver_data;
1149
1150	if (set & TIOCM_RTS)
1151		info->channel.TxControl[3] |= SET_RTS;
1152	if (set & TIOCM_DTR)
1153		info->channel.TxControl[3] |= SET_DTR;
1154	if (clear & TIOCM_RTS)
1155		info->channel.TxControl[3] &= ~SET_RTS;
1156	if (clear & TIOCM_DTR)
1157		info->channel.TxControl[3] &= ~SET_DTR;
1158
1159	out32(info->channel.IndexAddr, info->channel.TxControl);
1160	return 0;
1161}
1162
1163static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1164{
1165	struct rocket_config tmp;
1166
1167	memset(&tmp, 0, sizeof (tmp));
1168	mutex_lock(&info->port.mutex);
1169	tmp.line = info->line;
1170	tmp.flags = info->flags;
1171	tmp.close_delay = info->port.close_delay;
1172	tmp.closing_wait = info->port.closing_wait;
1173	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1174	mutex_unlock(&info->port.mutex);
1175
1176	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1177		return -EFAULT;
1178	return 0;
1179}
1180
1181static int set_config(struct tty_struct *tty, struct r_port *info,
1182					struct rocket_config __user *new_info)
1183{
1184	struct rocket_config new_serial;
1185
1186	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1187		return -EFAULT;
1188
1189	mutex_lock(&info->port.mutex);
1190	if (!capable(CAP_SYS_ADMIN))
1191	{
1192		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1193			mutex_unlock(&info->port.mutex);
1194			return -EPERM;
1195		}
1196		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1197		mutex_unlock(&info->port.mutex);
1198		return 0;
1199	}
1200
1201	if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1202		/* warn about deprecation, unless clearing */
1203		if (new_serial.flags & ROCKET_SPD_MASK)
1204			dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1205	}
1206
1207	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1208	info->port.close_delay = new_serial.close_delay;
1209	info->port.closing_wait = new_serial.closing_wait;
1210
1211	mutex_unlock(&info->port.mutex);
1212
1213	configure_r_port(tty, info, NULL);
1214	return 0;
1215}
1216
1217/*
1218 *  This function fills in a rocket_ports struct with information
1219 *  about what boards/ports are in the system.  This info is passed
1220 *  to user space.  See setrocket.c where the info is used to create
1221 *  the /dev/ttyRx ports.
1222 */
1223static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1224{
1225	struct rocket_ports tmp;
1226	int board;
1227
1228	memset(&tmp, 0, sizeof (tmp));
1229	tmp.tty_major = rocket_driver->major;
1230
1231	for (board = 0; board < 4; board++) {
1232		tmp.rocketModel[board].model = rocketModel[board].model;
1233		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1234		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1235		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1236		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1237	}
1238	if (copy_to_user(retports, &tmp, sizeof (*retports)))
1239		return -EFAULT;
1240	return 0;
1241}
1242
1243static int reset_rm2(struct r_port *info, void __user *arg)
1244{
1245	int reset;
1246
1247	if (!capable(CAP_SYS_ADMIN))
1248		return -EPERM;
1249
1250	if (copy_from_user(&reset, arg, sizeof (int)))
1251		return -EFAULT;
1252	if (reset)
1253		reset = 1;
1254
1255	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1256            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1257		return -EINVAL;
1258
1259	if (info->ctlp->BusType == isISA)
1260		sModemReset(info->ctlp, info->chan, reset);
1261	else
1262		sPCIModemReset(info->ctlp, info->chan, reset);
1263
1264	return 0;
1265}
1266
1267static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1268{
1269	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1270		return -EFAULT;
1271	return 0;
1272}
1273
1274/*  IOCTL call handler into the driver */
1275static int rp_ioctl(struct tty_struct *tty,
1276		    unsigned int cmd, unsigned long arg)
1277{
1278	struct r_port *info = tty->driver_data;
1279	void __user *argp = (void __user *)arg;
1280	int ret = 0;
1281
1282	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1283		return -ENXIO;
1284
1285	switch (cmd) {
1286	case RCKP_GET_STRUCT:
1287		if (copy_to_user(argp, info, sizeof (struct r_port)))
1288			ret = -EFAULT;
1289		break;
1290	case RCKP_GET_CONFIG:
1291		ret = get_config(info, argp);
1292		break;
1293	case RCKP_SET_CONFIG:
1294		ret = set_config(tty, info, argp);
1295		break;
1296	case RCKP_GET_PORTS:
1297		ret = get_ports(info, argp);
1298		break;
1299	case RCKP_RESET_RM2:
1300		ret = reset_rm2(info, argp);
1301		break;
1302	case RCKP_GET_VERSION:
1303		ret = get_version(info, argp);
1304		break;
1305	default:
1306		ret = -ENOIOCTLCMD;
1307	}
1308	return ret;
1309}
1310
1311static void rp_send_xchar(struct tty_struct *tty, char ch)
1312{
1313	struct r_port *info = tty->driver_data;
1314	CHANNEL_t *cp;
1315
1316	if (rocket_paranoia_check(info, "rp_send_xchar"))
1317		return;
1318
1319	cp = &info->channel;
1320	if (sGetTxCnt(cp))
1321		sWriteTxPrioByte(cp, ch);
1322	else
1323		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1324}
1325
1326static void rp_throttle(struct tty_struct *tty)
1327{
1328	struct r_port *info = tty->driver_data;
1329
1330#ifdef ROCKET_DEBUG_THROTTLE
1331	printk(KERN_INFO "throttle %s ....\n", tty->name);
1332#endif
1333
1334	if (rocket_paranoia_check(info, "rp_throttle"))
1335		return;
1336
1337	if (I_IXOFF(tty))
1338		rp_send_xchar(tty, STOP_CHAR(tty));
1339
1340	sClrRTS(&info->channel);
1341}
1342
1343static void rp_unthrottle(struct tty_struct *tty)
1344{
1345	struct r_port *info = tty->driver_data;
1346#ifdef ROCKET_DEBUG_THROTTLE
1347	printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1348#endif
1349
1350	if (rocket_paranoia_check(info, "rp_unthrottle"))
1351		return;
1352
1353	if (I_IXOFF(tty))
1354		rp_send_xchar(tty, START_CHAR(tty));
1355
1356	sSetRTS(&info->channel);
1357}
1358
1359/*
1360 * ------------------------------------------------------------
1361 * rp_stop() and rp_start()
1362 *
1363 * This routines are called before setting or resetting tty->stopped.
1364 * They enable or disable transmitter interrupts, as necessary.
1365 * ------------------------------------------------------------
1366 */
1367static void rp_stop(struct tty_struct *tty)
1368{
1369	struct r_port *info = tty->driver_data;
1370
1371#ifdef ROCKET_DEBUG_FLOW
1372	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1373	       info->xmit_cnt, info->xmit_fifo_room);
1374#endif
1375
1376	if (rocket_paranoia_check(info, "rp_stop"))
1377		return;
1378
1379	if (sGetTxCnt(&info->channel))
1380		sDisTransmit(&info->channel);
1381}
1382
1383static void rp_start(struct tty_struct *tty)
1384{
1385	struct r_port *info = tty->driver_data;
1386
1387#ifdef ROCKET_DEBUG_FLOW
1388	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1389	       info->xmit_cnt, info->xmit_fifo_room);
1390#endif
1391
1392	if (rocket_paranoia_check(info, "rp_stop"))
1393		return;
1394
1395	sEnTransmit(&info->channel);
1396	set_bit((info->aiop * 8) + info->chan,
1397		(void *) &xmit_flags[info->board]);
1398}
1399
1400/*
1401 * rp_wait_until_sent() --- wait until the transmitter is empty
1402 */
1403static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1404{
1405	struct r_port *info = tty->driver_data;
1406	CHANNEL_t *cp;
1407	unsigned long orig_jiffies;
1408	int check_time, exit_time;
1409	int txcnt;
1410
1411	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1412		return;
1413
1414	cp = &info->channel;
1415
1416	orig_jiffies = jiffies;
1417#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1418	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1419	       jiffies);
1420	printk(KERN_INFO "cps=%d...\n", info->cps);
1421#endif
1422	while (1) {
1423		txcnt = sGetTxCnt(cp);
1424		if (!txcnt) {
1425			if (sGetChanStatusLo(cp) & TXSHRMT)
1426				break;
1427			check_time = (HZ / info->cps) / 5;
1428		} else {
1429			check_time = HZ * txcnt / info->cps;
1430		}
1431		if (timeout) {
1432			exit_time = orig_jiffies + timeout - jiffies;
1433			if (exit_time <= 0)
1434				break;
1435			if (exit_time < check_time)
1436				check_time = exit_time;
1437		}
1438		if (check_time == 0)
1439			check_time = 1;
1440#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1441		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1442				jiffies, check_time);
1443#endif
1444		msleep_interruptible(jiffies_to_msecs(check_time));
1445		if (signal_pending(current))
1446			break;
1447	}
1448	__set_current_state(TASK_RUNNING);
1449#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1450	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1451#endif
1452}
1453
1454/*
1455 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1456 */
1457static void rp_hangup(struct tty_struct *tty)
1458{
1459	CHANNEL_t *cp;
1460	struct r_port *info = tty->driver_data;
1461	unsigned long flags;
1462
1463	if (rocket_paranoia_check(info, "rp_hangup"))
1464		return;
1465
1466#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1467	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1468#endif
1469	rp_flush_buffer(tty);
1470	spin_lock_irqsave(&info->port.lock, flags);
1471	if (info->port.count)
1472		atomic_dec(&rp_num_ports_open);
1473	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1474	spin_unlock_irqrestore(&info->port.lock, flags);
1475
1476	tty_port_hangup(&info->port);
1477
1478	cp = &info->channel;
1479	sDisRxFIFO(cp);
1480	sDisTransmit(cp);
1481	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1482	sDisCTSFlowCtl(cp);
1483	sDisTxSoftFlowCtl(cp);
1484	sClrTxXOFF(cp);
1485	tty_port_set_initialized(&info->port, 0);
1486
1487	wake_up_interruptible(&info->port.open_wait);
1488}
1489
1490/*
1491 *  Exception handler - write char routine.  The RocketPort driver uses a
1492 *  double-buffering strategy, with the twist that if the in-memory CPU
1493 *  buffer is empty, and there's space in the transmit FIFO, the
1494 *  writing routines will write directly to transmit FIFO.
1495 *  Write buffer and counters protected by spinlocks
1496 */
1497static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1498{
1499	struct r_port *info = tty->driver_data;
1500	CHANNEL_t *cp;
1501	unsigned long flags;
1502
1503	if (rocket_paranoia_check(info, "rp_put_char"))
1504		return 0;
1505
1506	/*
1507	 * Grab the port write mutex, locking out other processes that try to
1508	 * write to this port
1509	 */
1510	mutex_lock(&info->write_mtx);
1511
1512#ifdef ROCKET_DEBUG_WRITE
1513	printk(KERN_INFO "rp_put_char %c...\n", ch);
1514#endif
1515
1516	spin_lock_irqsave(&info->slock, flags);
1517	cp = &info->channel;
1518
1519	if (!tty->stopped && info->xmit_fifo_room == 0)
1520		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1521
1522	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1523		info->xmit_buf[info->xmit_head++] = ch;
1524		info->xmit_head &= XMIT_BUF_SIZE - 1;
1525		info->xmit_cnt++;
1526		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1527	} else {
1528		sOutB(sGetTxRxDataIO(cp), ch);
1529		info->xmit_fifo_room--;
1530	}
1531	spin_unlock_irqrestore(&info->slock, flags);
1532	mutex_unlock(&info->write_mtx);
1533	return 1;
1534}
1535
1536/*
1537 *  Exception handler - write routine, called when user app writes to the device.
1538 *  A per port write mutex is used to protect from another process writing to
1539 *  this port at the same time.  This other process could be running on the other CPU
1540 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1541 *  Spinlocks protect the info xmit members.
1542 */
1543static int rp_write(struct tty_struct *tty,
1544		    const unsigned char *buf, int count)
1545{
1546	struct r_port *info = tty->driver_data;
1547	CHANNEL_t *cp;
1548	const unsigned char *b;
1549	int c, retval = 0;
1550	unsigned long flags;
1551
1552	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1553		return 0;
1554
1555	if (mutex_lock_interruptible(&info->write_mtx))
1556		return -ERESTARTSYS;
1557
1558#ifdef ROCKET_DEBUG_WRITE
1559	printk(KERN_INFO "rp_write %d chars...\n", count);
1560#endif
1561	cp = &info->channel;
1562
1563	if (!tty->stopped && info->xmit_fifo_room < count)
1564		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1565
1566        /*
1567	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1568	 *  into FIFO.  Use the write queue for temp storage.
1569         */
1570	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1571		c = min(count, info->xmit_fifo_room);
1572		b = buf;
1573
1574		/*  Push data into FIFO, 2 bytes at a time */
1575		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1576
1577		/*  If there is a byte remaining, write it */
1578		if (c & 1)
1579			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1580
1581		retval += c;
1582		buf += c;
1583		count -= c;
1584
1585		spin_lock_irqsave(&info->slock, flags);
1586		info->xmit_fifo_room -= c;
1587		spin_unlock_irqrestore(&info->slock, flags);
1588	}
1589
1590	/* If count is zero, we wrote it all and are done */
1591	if (!count)
1592		goto end;
1593
1594	/*  Write remaining data into the port's xmit_buf */
1595	while (1) {
1596		/* Hung up ? */
1597		if (!tty_port_active(&info->port))
1598			goto end;
1599		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1600		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1601		if (c <= 0)
1602			break;
1603
1604		b = buf;
1605		memcpy(info->xmit_buf + info->xmit_head, b, c);
1606
1607		spin_lock_irqsave(&info->slock, flags);
1608		info->xmit_head =
1609		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1610		info->xmit_cnt += c;
1611		spin_unlock_irqrestore(&info->slock, flags);
1612
1613		buf += c;
1614		count -= c;
1615		retval += c;
1616	}
1617
1618	if ((retval > 0) && !tty->stopped)
1619		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1620	
1621end:
1622 	if (info->xmit_cnt < WAKEUP_CHARS) {
1623 		tty_wakeup(tty);
1624#ifdef ROCKETPORT_HAVE_POLL_WAIT
1625		wake_up_interruptible(&tty->poll_wait);
1626#endif
1627	}
1628	mutex_unlock(&info->write_mtx);
1629	return retval;
1630}
1631
1632/*
1633 * Return the number of characters that can be sent.  We estimate
1634 * only using the in-memory transmit buffer only, and ignore the
1635 * potential space in the transmit FIFO.
1636 */
1637static int rp_write_room(struct tty_struct *tty)
1638{
1639	struct r_port *info = tty->driver_data;
1640	int ret;
1641
1642	if (rocket_paranoia_check(info, "rp_write_room"))
1643		return 0;
1644
1645	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1646	if (ret < 0)
1647		ret = 0;
1648#ifdef ROCKET_DEBUG_WRITE
1649	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1650#endif
1651	return ret;
1652}
1653
1654/*
1655 * Return the number of characters in the buffer.  Again, this only
1656 * counts those characters in the in-memory transmit buffer.
1657 */
1658static int rp_chars_in_buffer(struct tty_struct *tty)
1659{
1660	struct r_port *info = tty->driver_data;
1661
1662	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1663		return 0;
1664
1665#ifdef ROCKET_DEBUG_WRITE
1666	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1667#endif
1668	return info->xmit_cnt;
1669}
1670
1671/*
1672 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1673 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1674 *  do not call this function if the spinlock is already held.
1675 */
1676static void rp_flush_buffer(struct tty_struct *tty)
1677{
1678	struct r_port *info = tty->driver_data;
1679	CHANNEL_t *cp;
1680	unsigned long flags;
1681
1682	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1683		return;
1684
1685	spin_lock_irqsave(&info->slock, flags);
1686	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1687	spin_unlock_irqrestore(&info->slock, flags);
1688
1689#ifdef ROCKETPORT_HAVE_POLL_WAIT
1690	wake_up_interruptible(&tty->poll_wait);
1691#endif
1692	tty_wakeup(tty);
1693
1694	cp = &info->channel;
1695	sFlushTxFIFO(cp);
1696}
1697
1698#ifdef CONFIG_PCI
1699
1700static const struct pci_device_id rocket_pci_ids[] = {
1701	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1702	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1703	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1704	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1705	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1706	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1707	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1708	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1709	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1710	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1711	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1712	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1713	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1714	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1715	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1716	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1717	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1718	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1719	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1720	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1721	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1722	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1723	{ }
1724};
1725MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1726
1727/*  Resets the speaker controller on RocketModem II and III devices */
1728static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1729{
1730	ByteIO_t addr;
1731
1732	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1733	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1734		addr = CtlP->AiopIO[0] + 0x4F;
1735		sOutB(addr, 0);
1736	}
1737
1738	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1739	if ((model == MODEL_UPCI_RM3_8PORT)
1740	    || (model == MODEL_UPCI_RM3_4PORT)) {
1741		addr = CtlP->AiopIO[0] + 0x88;
1742		sOutB(addr, 0);
1743	}
1744}
1745
1746/***************************************************************************
1747Function: sPCIInitController
1748Purpose:  Initialization of controller global registers and controller
1749          structure.
1750Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1751                          IRQNum,Frequency,PeriodicOnly)
1752          CONTROLLER_T *CtlP; Ptr to controller structure
1753          int CtlNum; Controller number
1754          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1755             This list must be in the order the AIOPs will be found on the
1756             controller.  Once an AIOP in the list is not found, it is
1757             assumed that there are no more AIOPs on the controller.
1758          int AiopIOListSize; Number of addresses in AiopIOList
1759          int IRQNum; Interrupt Request number.  Can be any of the following:
1760                         0: Disable global interrupts
1761                         3: IRQ 3
1762                         4: IRQ 4
1763                         5: IRQ 5
1764                         9: IRQ 9
1765                         10: IRQ 10
1766                         11: IRQ 11
1767                         12: IRQ 12
1768                         15: IRQ 15
1769          Byte_t Frequency: A flag identifying the frequency
1770                   of the periodic interrupt, can be any one of the following:
1771                      FREQ_DIS - periodic interrupt disabled
1772                      FREQ_137HZ - 137 Hertz
1773                      FREQ_69HZ - 69 Hertz
1774                      FREQ_34HZ - 34 Hertz
1775                      FREQ_17HZ - 17 Hertz
1776                      FREQ_9HZ - 9 Hertz
1777                      FREQ_4HZ - 4 Hertz
1778                   If IRQNum is set to 0 the Frequency parameter is
1779                   overidden, it is forced to a value of FREQ_DIS.
1780          int PeriodicOnly: 1 if all interrupts except the periodic
1781                               interrupt are to be blocked.
1782                            0 is both the periodic interrupt and
1783                               other channel interrupts are allowed.
1784                            If IRQNum is set to 0 the PeriodicOnly parameter is
1785                               overidden, it is forced to a value of 0.
1786Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1787               initialization failed.
1788
1789Comments:
1790          If periodic interrupts are to be disabled but AIOP interrupts
1791          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1792
1793          If interrupts are to be completely disabled set IRQNum to 0.
1794
1795          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1796          invalid combination.
1797
1798          This function performs initialization of global interrupt modes,
1799          but it does not actually enable global interrupts.  To enable
1800          and disable global interrupts use functions sEnGlobalInt() and
1801          sDisGlobalInt().  Enabling of global interrupts is normally not
1802          done until all other initializations are complete.
1803
1804          Even if interrupts are globally enabled, they must also be
1805          individually enabled for each channel that is to generate
1806          interrupts.
1807
1808Warnings: No range checking on any of the parameters is done.
1809
1810          No context switches are allowed while executing this function.
1811
1812          After this function all AIOPs on the controller are disabled,
1813          they can be enabled with sEnAiop().
1814*/
1815static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1816			      ByteIO_t * AiopIOList, int AiopIOListSize,
1817			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1818			      int PeriodicOnly, int altChanRingIndicator,
1819			      int UPCIRingInd)
1820{
1821	int i;
1822	ByteIO_t io;
1823
1824	CtlP->AltChanRingIndicator = altChanRingIndicator;
1825	CtlP->UPCIRingInd = UPCIRingInd;
1826	CtlP->CtlNum = CtlNum;
1827	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
1828	CtlP->BusType = isPCI;	/* controller release 1 */
1829
1830	if (ConfigIO) {
1831		CtlP->isUPCI = 1;
1832		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1833		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1834		CtlP->AiopIntrBits = upci_aiop_intr_bits;
1835	} else {
1836		CtlP->isUPCI = 0;
1837		CtlP->PCIIO =
1838		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1839		CtlP->AiopIntrBits = aiop_intr_bits;
1840	}
1841
1842	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
1843	/* Init AIOPs */
1844	CtlP->NumAiop = 0;
1845	for (i = 0; i < AiopIOListSize; i++) {
1846		io = AiopIOList[i];
1847		CtlP->AiopIO[i] = (WordIO_t) io;
1848		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1849
1850		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
1851		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
1852			break;	/* done looking for AIOPs */
1853
1854		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
1855		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
1856		sOutB(io + _INDX_DATA, sClockPrescale);
1857		CtlP->NumAiop++;	/* bump count of AIOPs */
1858	}
1859
1860	if (CtlP->NumAiop == 0)
1861		return (-1);
1862	else
1863		return (CtlP->NumAiop);
1864}
1865
1866/*
1867 *  Called when a PCI card is found.  Retrieves and stores model information,
1868 *  init's aiopic and serial port hardware.
1869 *  Inputs:  i is the board number (0-n)
1870 */
1871static __init int register_PCI(int i, struct pci_dev *dev)
1872{
1873	int num_aiops, aiop, max_num_aiops, num_chan, chan;
1874	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1875	CONTROLLER_t *ctlp;
1876
1877	int fast_clock = 0;
1878	int altChanRingIndicator = 0;
1879	int ports_per_aiop = 8;
1880	WordIO_t ConfigIO = 0;
1881	ByteIO_t UPCIRingInd = 0;
1882
1883	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1884	    pci_enable_device(dev))
1885		return 0;
1886
1887	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1888
1889	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1890	rocketModel[i].loadrm2 = 0;
1891	rocketModel[i].startingPortNumber = nextLineNumber;
1892
1893	/*  Depending on the model, set up some config variables */
1894	switch (dev->device) {
1895	case PCI_DEVICE_ID_RP4QUAD:
1896		max_num_aiops = 1;
1897		ports_per_aiop = 4;
1898		rocketModel[i].model = MODEL_RP4QUAD;
1899		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1900		rocketModel[i].numPorts = 4;
1901		break;
1902	case PCI_DEVICE_ID_RP8OCTA:
1903		max_num_aiops = 1;
1904		rocketModel[i].model = MODEL_RP8OCTA;
1905		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1906		rocketModel[i].numPorts = 8;
1907		break;
1908	case PCI_DEVICE_ID_URP8OCTA:
1909		max_num_aiops = 1;
1910		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1911		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1912		rocketModel[i].numPorts = 8;
1913		break;
1914	case PCI_DEVICE_ID_RP8INTF:
1915		max_num_aiops = 1;
1916		rocketModel[i].model = MODEL_RP8INTF;
1917		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1918		rocketModel[i].numPorts = 8;
1919		break;
1920	case PCI_DEVICE_ID_URP8INTF:
1921		max_num_aiops = 1;
1922		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1923		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1924		rocketModel[i].numPorts = 8;
1925		break;
1926	case PCI_DEVICE_ID_RP8J:
1927		max_num_aiops = 1;
1928		rocketModel[i].model = MODEL_RP8J;
1929		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1930		rocketModel[i].numPorts = 8;
1931		break;
1932	case PCI_DEVICE_ID_RP4J:
1933		max_num_aiops = 1;
1934		ports_per_aiop = 4;
1935		rocketModel[i].model = MODEL_RP4J;
1936		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1937		rocketModel[i].numPorts = 4;
1938		break;
1939	case PCI_DEVICE_ID_RP8SNI:
1940		max_num_aiops = 1;
1941		rocketModel[i].model = MODEL_RP8SNI;
1942		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1943		rocketModel[i].numPorts = 8;
1944		break;
1945	case PCI_DEVICE_ID_RP16SNI:
1946		max_num_aiops = 2;
1947		rocketModel[i].model = MODEL_RP16SNI;
1948		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1949		rocketModel[i].numPorts = 16;
1950		break;
1951	case PCI_DEVICE_ID_RP16INTF:
1952		max_num_aiops = 2;
1953		rocketModel[i].model = MODEL_RP16INTF;
1954		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1955		rocketModel[i].numPorts = 16;
1956		break;
1957	case PCI_DEVICE_ID_URP16INTF:
1958		max_num_aiops = 2;
1959		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1960		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1961		rocketModel[i].numPorts = 16;
1962		break;
1963	case PCI_DEVICE_ID_CRP16INTF:
1964		max_num_aiops = 2;
1965		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1966		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1967		rocketModel[i].numPorts = 16;
1968		break;
1969	case PCI_DEVICE_ID_RP32INTF:
1970		max_num_aiops = 4;
1971		rocketModel[i].model = MODEL_RP32INTF;
1972		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1973		rocketModel[i].numPorts = 32;
1974		break;
1975	case PCI_DEVICE_ID_URP32INTF:
1976		max_num_aiops = 4;
1977		rocketModel[i].model = MODEL_UPCI_RP32INTF;
1978		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1979		rocketModel[i].numPorts = 32;
1980		break;
1981	case PCI_DEVICE_ID_RPP4:
1982		max_num_aiops = 1;
1983		ports_per_aiop = 4;
1984		altChanRingIndicator++;
1985		fast_clock++;
1986		rocketModel[i].model = MODEL_RPP4;
1987		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1988		rocketModel[i].numPorts = 4;
1989		break;
1990	case PCI_DEVICE_ID_RPP8:
1991		max_num_aiops = 2;
1992		ports_per_aiop = 4;
1993		altChanRingIndicator++;
1994		fast_clock++;
1995		rocketModel[i].model = MODEL_RPP8;
1996		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1997		rocketModel[i].numPorts = 8;
1998		break;
1999	case PCI_DEVICE_ID_RP2_232:
2000		max_num_aiops = 1;
2001		ports_per_aiop = 2;
2002		altChanRingIndicator++;
2003		fast_clock++;
2004		rocketModel[i].model = MODEL_RP2_232;
2005		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2006		rocketModel[i].numPorts = 2;
2007		break;
2008	case PCI_DEVICE_ID_RP2_422:
2009		max_num_aiops = 1;
2010		ports_per_aiop = 2;
2011		altChanRingIndicator++;
2012		fast_clock++;
2013		rocketModel[i].model = MODEL_RP2_422;
2014		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2015		rocketModel[i].numPorts = 2;
2016		break;
2017	case PCI_DEVICE_ID_RP6M:
2018
2019		max_num_aiops = 1;
2020		ports_per_aiop = 6;
2021
2022		/*  If revision is 1, the rocketmodem flash must be loaded.
2023		 *  If it is 2 it is a "socketed" version. */
2024		if (dev->revision == 1) {
2025			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2026			rocketModel[i].loadrm2 = 1;
2027		} else {
2028			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2029		}
2030
2031		rocketModel[i].model = MODEL_RP6M;
2032		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2033		rocketModel[i].numPorts = 6;
2034		break;
2035	case PCI_DEVICE_ID_RP4M:
2036		max_num_aiops = 1;
2037		ports_per_aiop = 4;
2038		if (dev->revision == 1) {
2039			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2040			rocketModel[i].loadrm2 = 1;
2041		} else {
2042			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2043		}
2044
2045		rocketModel[i].model = MODEL_RP4M;
2046		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2047		rocketModel[i].numPorts = 4;
2048		break;
2049	default:
2050		max_num_aiops = 0;
2051		break;
2052	}
2053
2054	/*
2055	 * Check for UPCI boards.
2056	 */
2057
2058	switch (dev->device) {
2059	case PCI_DEVICE_ID_URP32INTF:
2060	case PCI_DEVICE_ID_URP8INTF:
2061	case PCI_DEVICE_ID_URP16INTF:
2062	case PCI_DEVICE_ID_CRP16INTF:
2063	case PCI_DEVICE_ID_URP8OCTA:
2064		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2065		ConfigIO = pci_resource_start(dev, 1);
2066		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2067			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2068
2069			/*
2070			 * Check for octa or quad cable.
2071			 */
2072			if (!
2073			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2074			     PCI_GPIO_CTRL_8PORT)) {
2075				ports_per_aiop = 4;
2076				rocketModel[i].numPorts = 4;
2077			}
2078		}
2079		break;
2080	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2081		max_num_aiops = 1;
2082		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2083		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2084		rocketModel[i].numPorts = 8;
2085		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2086		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2087		ConfigIO = pci_resource_start(dev, 1);
2088		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2089		break;
2090	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2091		max_num_aiops = 1;
2092		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2093		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2094		rocketModel[i].numPorts = 4;
2095		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2096		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2097		ConfigIO = pci_resource_start(dev, 1);
2098		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2099		break;
2100	default:
2101		break;
2102	}
2103
2104	if (fast_clock) {
2105		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2106		rp_baud_base[i] = 921600;
2107	} else {
2108		/*
2109		 * If support_low_speed is set, use the slow clock
2110		 * prescale, which supports 50 bps
2111		 */
2112		if (support_low_speed) {
2113			/* mod 9 (divide by 10) prescale */
2114			sClockPrescale = 0x19;
2115			rp_baud_base[i] = 230400;
2116		} else {
2117			/* mod 4 (divide by 5) prescale */
2118			sClockPrescale = 0x14;
2119			rp_baud_base[i] = 460800;
2120		}
2121	}
2122
2123	for (aiop = 0; aiop < max_num_aiops; aiop++)
2124		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2125	ctlp = sCtlNumToCtlPtr(i);
2126	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2127	for (aiop = 0; aiop < max_num_aiops; aiop++)
2128		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2129
2130	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2131		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2132		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2133		rocketModel[i].startingPortNumber,
2134		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2135
2136	if (num_aiops <= 0) {
2137		rcktpt_io_addr[i] = 0;
2138		return (0);
2139	}
2140	is_PCI[i] = 1;
2141
2142	/*  Reset the AIOPIC, init the serial ports */
2143	for (aiop = 0; aiop < num_aiops; aiop++) {
2144		sResetAiopByNum(ctlp, aiop);
2145		num_chan = ports_per_aiop;
2146		for (chan = 0; chan < num_chan; chan++)
2147			init_r_port(i, aiop, chan, dev);
2148	}
2149
2150	/*  Rocket modems must be reset */
2151	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2152	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2153	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2154		num_chan = ports_per_aiop;
2155		for (chan = 0; chan < num_chan; chan++)
2156			sPCIModemReset(ctlp, chan, 1);
2157		msleep(500);
2158		for (chan = 0; chan < num_chan; chan++)
2159			sPCIModemReset(ctlp, chan, 0);
2160		msleep(500);
2161		rmSpeakerReset(ctlp, rocketModel[i].model);
2162	}
2163	return (1);
2164}
2165
2166/*
2167 *  Probes for PCI cards, inits them if found
2168 *  Input:   board_found = number of ISA boards already found, or the
2169 *           starting board number
2170 *  Returns: Number of PCI boards found
2171 */
2172static int __init init_PCI(int boards_found)
2173{
2174	struct pci_dev *dev = NULL;
2175	int count = 0;
2176
2177	/*  Work through the PCI device list, pulling out ours */
2178	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2179		if (register_PCI(count + boards_found, dev))
2180			count++;
2181	}
2182	return (count);
2183}
2184
2185#endif				/* CONFIG_PCI */
2186
2187/*
2188 *  Probes for ISA cards
2189 *  Input:   i = the board number to look for
2190 *  Returns: 1 if board found, 0 else
2191 */
2192static int __init init_ISA(int i)
2193{
2194	int num_aiops, num_chan = 0, total_num_chan = 0;
2195	int aiop, chan;
2196	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2197	CONTROLLER_t *ctlp;
2198	char *type_string;
2199
2200	/*  If io_addr is zero, no board configured */
2201	if (rcktpt_io_addr[i] == 0)
2202		return (0);
2203
2204	/*  Reserve the IO region */
2205	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2206		printk(KERN_ERR "Unable to reserve IO region for configured "
2207				"ISA RocketPort at address 0x%lx, board not "
2208				"installed...\n", rcktpt_io_addr[i]);
2209		rcktpt_io_addr[i] = 0;
2210		return (0);
2211	}
2212
2213	ctlp = sCtlNumToCtlPtr(i);
2214
2215	ctlp->boardType = rcktpt_type[i];
2216
2217	switch (rcktpt_type[i]) {
2218	case ROCKET_TYPE_PC104:
2219		type_string = "(PC104)";
2220		break;
2221	case ROCKET_TYPE_MODEM:
2222		type_string = "(RocketModem)";
2223		break;
2224	case ROCKET_TYPE_MODEMII:
2225		type_string = "(RocketModem II)";
2226		break;
2227	default:
2228		type_string = "";
2229		break;
2230	}
2231
2232	/*
2233	 * If support_low_speed is set, use the slow clock prescale,
2234	 * which supports 50 bps
2235	 */
2236	if (support_low_speed) {
2237		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2238		rp_baud_base[i] = 230400;
2239	} else {
2240		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2241		rp_baud_base[i] = 460800;
2242	}
2243
2244	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2245		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2246
2247	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2248
2249	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2250		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2251		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2252	}
2253
2254	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2255	if (num_aiops <= 0) {
2256		release_region(rcktpt_io_addr[i], 64);
2257		rcktpt_io_addr[i] = 0;
2258		return (0);
2259	}
2260  
2261	rocketModel[i].startingPortNumber = nextLineNumber;
2262
2263	for (aiop = 0; aiop < num_aiops; aiop++) {
2264		sResetAiopByNum(ctlp, aiop);
2265		sEnAiop(ctlp, aiop);
2266		num_chan = sGetAiopNumChan(ctlp, aiop);
2267		total_num_chan += num_chan;
2268		for (chan = 0; chan < num_chan; chan++)
2269			init_r_port(i, aiop, chan, NULL);
2270	}
2271	is_PCI[i] = 0;
2272	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2273		num_chan = sGetAiopNumChan(ctlp, 0);
2274		total_num_chan = num_chan;
2275		for (chan = 0; chan < num_chan; chan++)
2276			sModemReset(ctlp, chan, 1);
2277		msleep(500);
2278		for (chan = 0; chan < num_chan; chan++)
2279			sModemReset(ctlp, chan, 0);
2280		msleep(500);
2281		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2282	} else {
2283		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2284	}
2285	rocketModel[i].numPorts = total_num_chan;
2286	rocketModel[i].model = MODEL_ISA;
2287
2288	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2289	       i, rcktpt_io_addr[i], num_aiops, type_string);
2290
2291	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2292	       rocketModel[i].modelString,
2293	       rocketModel[i].startingPortNumber,
2294	       rocketModel[i].startingPortNumber +
2295	       rocketModel[i].numPorts - 1);
2296
2297	return (1);
2298}
2299
2300static const struct tty_operations rocket_ops = {
2301	.open = rp_open,
2302	.close = rp_close,
2303	.write = rp_write,
2304	.put_char = rp_put_char,
2305	.write_room = rp_write_room,
2306	.chars_in_buffer = rp_chars_in_buffer,
2307	.flush_buffer = rp_flush_buffer,
2308	.ioctl = rp_ioctl,
2309	.throttle = rp_throttle,
2310	.unthrottle = rp_unthrottle,
2311	.set_termios = rp_set_termios,
2312	.stop = rp_stop,
2313	.start = rp_start,
2314	.hangup = rp_hangup,
2315	.break_ctl = rp_break,
2316	.send_xchar = rp_send_xchar,
2317	.wait_until_sent = rp_wait_until_sent,
2318	.tiocmget = rp_tiocmget,
2319	.tiocmset = rp_tiocmset,
2320};
2321
2322static const struct tty_port_operations rocket_port_ops = {
2323	.carrier_raised = carrier_raised,
2324	.dtr_rts = dtr_rts,
2325};
2326
2327/*
2328 * The module "startup" routine; it's run when the module is loaded.
2329 */
2330static int __init rp_init(void)
2331{
2332	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2333
2334	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2335	       ROCKET_VERSION, ROCKET_DATE);
2336
2337	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2338	if (!rocket_driver)
2339		goto err;
2340
2341	/*
2342	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2343	 *  zero, use the default controller IO address of board1 + 0x40.
2344	 */
2345	if (board1) {
2346		if (controller == 0)
2347			controller = board1 + 0x40;
2348	} else {
2349		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2350	}
2351
2352	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2353	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2354		printk(KERN_ERR "Unable to reserve IO region for first "
2355			"configured ISA RocketPort controller 0x%lx.  "
2356			"Driver exiting\n", controller);
2357		ret = -EBUSY;
2358		goto err_tty;
2359	}
2360
2361	/*  Store ISA variable retrieved from command line or .conf file. */
2362	rcktpt_io_addr[0] = board1;
2363	rcktpt_io_addr[1] = board2;
2364	rcktpt_io_addr[2] = board3;
2365	rcktpt_io_addr[3] = board4;
2366
2367	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2368	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2369	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2370	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2371	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2372	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2373	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2374	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2375
2376	/*
2377	 * Set up the tty driver structure and then register this
2378	 * driver with the tty layer.
2379	 */
2380
2381	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2382	rocket_driver->name = "ttyR";
2383	rocket_driver->driver_name = "Comtrol RocketPort";
2384	rocket_driver->major = TTY_ROCKET_MAJOR;
2385	rocket_driver->minor_start = 0;
2386	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2387	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2388	rocket_driver->init_termios = tty_std_termios;
2389	rocket_driver->init_termios.c_cflag =
2390	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2391	rocket_driver->init_termios.c_ispeed = 9600;
2392	rocket_driver->init_termios.c_ospeed = 9600;
2393#ifdef ROCKET_SOFT_FLOW
2394	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2395#endif
2396	tty_set_operations(rocket_driver, &rocket_ops);
2397
2398	ret = tty_register_driver(rocket_driver);
2399	if (ret < 0) {
2400		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2401		goto err_controller;
2402	}
2403
2404#ifdef ROCKET_DEBUG_OPEN
2405	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2406#endif
2407
2408	/*
2409	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2410         *  will be initialized here.
2411	 */
2412	isa_boards_found = 0;
2413	pci_boards_found = 0;
2414
2415	for (i = 0; i < NUM_BOARDS; i++) {
2416		if (init_ISA(i))
2417			isa_boards_found++;
2418	}
2419
2420#ifdef CONFIG_PCI
2421	if (isa_boards_found < NUM_BOARDS)
2422		pci_boards_found = init_PCI(isa_boards_found);
2423#endif
2424
2425	max_board = pci_boards_found + isa_boards_found;
2426
2427	if (max_board == 0) {
2428		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2429		ret = -ENXIO;
2430		goto err_ttyu;
2431	}
2432
2433	return 0;
2434err_ttyu:
2435	tty_unregister_driver(rocket_driver);
2436err_controller:
2437	if (controller)
2438		release_region(controller, 4);
2439err_tty:
2440	put_tty_driver(rocket_driver);
2441err:
2442	return ret;
2443}
2444
2445
2446static void rp_cleanup_module(void)
2447{
2448	int retval;
2449	int i;
2450
2451	del_timer_sync(&rocket_timer);
2452
2453	retval = tty_unregister_driver(rocket_driver);
2454	if (retval)
2455		printk(KERN_ERR "Error %d while trying to unregister "
2456		       "rocketport driver\n", -retval);
2457
2458	for (i = 0; i < MAX_RP_PORTS; i++)
2459		if (rp_table[i]) {
2460			tty_unregister_device(rocket_driver, i);
2461			tty_port_destroy(&rp_table[i]->port);
2462			kfree(rp_table[i]);
2463		}
2464
2465	put_tty_driver(rocket_driver);
2466
2467	for (i = 0; i < NUM_BOARDS; i++) {
2468		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2469			continue;
2470		release_region(rcktpt_io_addr[i], 64);
2471	}
2472	if (controller)
2473		release_region(controller, 4);
2474}
2475
2476/***************************************************************************
2477Function: sInitController
2478Purpose:  Initialization of controller global registers and controller
2479          structure.
2480Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2481                          IRQNum,Frequency,PeriodicOnly)
2482          CONTROLLER_T *CtlP; Ptr to controller structure
2483          int CtlNum; Controller number
2484          ByteIO_t MudbacIO; Mudbac base I/O address.
2485          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2486             This list must be in the order the AIOPs will be found on the
2487             controller.  Once an AIOP in the list is not found, it is
2488             assumed that there are no more AIOPs on the controller.
2489          int AiopIOListSize; Number of addresses in AiopIOList
2490          int IRQNum; Interrupt Request number.  Can be any of the following:
2491                         0: Disable global interrupts
2492                         3: IRQ 3
2493                         4: IRQ 4
2494                         5: IRQ 5
2495                         9: IRQ 9
2496                         10: IRQ 10
2497                         11: IRQ 11
2498                         12: IRQ 12
2499                         15: IRQ 15
2500          Byte_t Frequency: A flag identifying the frequency
2501                   of the periodic interrupt, can be any one of the following:
2502                      FREQ_DIS - periodic interrupt disabled
2503                      FREQ_137HZ - 137 Hertz
2504                      FREQ_69HZ - 69 Hertz
2505                      FREQ_34HZ - 34 Hertz
2506                      FREQ_17HZ - 17 Hertz
2507                      FREQ_9HZ - 9 Hertz
2508                      FREQ_4HZ - 4 Hertz
2509                   If IRQNum is set to 0 the Frequency parameter is
2510                   overidden, it is forced to a value of FREQ_DIS.
2511          int PeriodicOnly: 1 if all interrupts except the periodic
2512                               interrupt are to be blocked.
2513                            0 is both the periodic interrupt and
2514                               other channel interrupts are allowed.
2515                            If IRQNum is set to 0 the PeriodicOnly parameter is
2516                               overidden, it is forced to a value of 0.
2517Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2518               initialization failed.
2519
2520Comments:
2521          If periodic interrupts are to be disabled but AIOP interrupts
2522          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2523
2524          If interrupts are to be completely disabled set IRQNum to 0.
2525
2526          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2527          invalid combination.
2528
2529          This function performs initialization of global interrupt modes,
2530          but it does not actually enable global interrupts.  To enable
2531          and disable global interrupts use functions sEnGlobalInt() and
2532          sDisGlobalInt().  Enabling of global interrupts is normally not
2533          done until all other initializations are complete.
2534
2535          Even if interrupts are globally enabled, they must also be
2536          individually enabled for each channel that is to generate
2537          interrupts.
2538
2539Warnings: No range checking on any of the parameters is done.
2540
2541          No context switches are allowed while executing this function.
2542
2543          After this function all AIOPs on the controller are disabled,
2544          they can be enabled with sEnAiop().
2545*/
2546static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2547			   ByteIO_t * AiopIOList, int AiopIOListSize,
2548			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2549{
2550	int i;
2551	ByteIO_t io;
2552	int done;
2553
2554	CtlP->AiopIntrBits = aiop_intr_bits;
2555	CtlP->AltChanRingIndicator = 0;
2556	CtlP->CtlNum = CtlNum;
2557	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2558	CtlP->BusType = isISA;
2559	CtlP->MBaseIO = MudbacIO;
2560	CtlP->MReg1IO = MudbacIO + 1;
2561	CtlP->MReg2IO = MudbacIO + 2;
2562	CtlP->MReg3IO = MudbacIO + 3;
2563#if 1
2564	CtlP->MReg2 = 0;	/* interrupt disable */
2565	CtlP->MReg3 = 0;	/* no periodic interrupts */
2566#else
2567	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2568		CtlP->MReg2 = 0;	/* interrupt disable */
2569		CtlP->MReg3 = 0;	/* no periodic interrupts */
2570	} else {
2571		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2572		CtlP->MReg3 = Frequency;	/* set frequency */
2573		if (PeriodicOnly) {	/* periodic interrupt only */
2574			CtlP->MReg3 |= PERIODIC_ONLY;
2575		}
2576	}
2577#endif
2578	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2579	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2580	sControllerEOI(CtlP);	/* clear EOI if warm init */
2581	/* Init AIOPs */
2582	CtlP->NumAiop = 0;
2583	for (i = done = 0; i < AiopIOListSize; i++) {
2584		io = AiopIOList[i];
2585		CtlP->AiopIO[i] = (WordIO_t) io;
2586		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2587		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2588		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2589		if (done)
2590			continue;
2591		sEnAiop(CtlP, i);	/* enable the AIOP */
2592		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2593		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2594			done = 1;	/* done looking for AIOPs */
2595		else {
2596			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2597			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2598			sOutB(io + _INDX_DATA, sClockPrescale);
2599			CtlP->NumAiop++;	/* bump count of AIOPs */
2600		}
2601		sDisAiop(CtlP, i);	/* disable AIOP */
2602	}
2603
2604	if (CtlP->NumAiop == 0)
2605		return (-1);
2606	else
2607		return (CtlP->NumAiop);
2608}
2609
2610/***************************************************************************
2611Function: sReadAiopID
2612Purpose:  Read the AIOP idenfication number directly from an AIOP.
2613Call:     sReadAiopID(io)
2614          ByteIO_t io: AIOP base I/O address
2615Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2616                 is replace by an identifying number.
2617          Flag AIOPID_NULL if no valid AIOP is found
2618Warnings: No context switches are allowed while executing this function.
2619
2620*/
2621static int sReadAiopID(ByteIO_t io)
2622{
2623	Byte_t AiopID;		/* ID byte from AIOP */
2624
2625	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2626	sOutB(io + _CMD_REG, 0x0);
2627	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2628	if (AiopID == 0x06)
2629		return (1);
2630	else			/* AIOP does not exist */
2631		return (-1);
2632}
2633
2634/***************************************************************************
2635Function: sReadAiopNumChan
2636Purpose:  Read the number of channels available in an AIOP directly from
2637          an AIOP.
2638Call:     sReadAiopNumChan(io)
2639          WordIO_t io: AIOP base I/O address
2640Return:   int: The number of channels available
2641Comments: The number of channels is determined by write/reads from identical
2642          offsets within the SRAM address spaces for channels 0 and 4.
2643          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2644          AIOP, otherwise it is an 8 channel.
2645Warnings: No context switches are allowed while executing this function.
2646*/
2647static int sReadAiopNumChan(WordIO_t io)
2648{
2649	Word_t x;
2650	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2651
2652	/* write to chan 0 SRAM */
2653	out32((DWordIO_t) io + _INDX_ADDR, R);
2654	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2655	x = sInW(io + _INDX_DATA);
2656	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2657	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2658		return (8);
2659	else
2660		return (4);
2661}
2662
2663/***************************************************************************
2664Function: sInitChan
2665Purpose:  Initialization of a channel and channel structure
2666Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2667          CONTROLLER_T *CtlP; Ptr to controller structure
2668          CHANNEL_T *ChP; Ptr to channel structure
2669          int AiopNum; AIOP number within controller
2670          int ChanNum; Channel number within AIOP
2671Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2672               number exceeds number of channels available in AIOP.
2673Comments: This function must be called before a channel can be used.
2674Warnings: No range checking on any of the parameters is done.
2675
2676          No context switches are allowed while executing this function.
2677*/
2678static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2679		     int ChanNum)
2680{
2681	int i;
2682	WordIO_t AiopIO;
2683	WordIO_t ChIOOff;
2684	Byte_t *ChR;
2685	Word_t ChOff;
2686	static Byte_t R[4];
2687	int brd9600;
2688
2689	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2690		return 0;	/* exceeds num chans in AIOP */
2691
2692	/* Channel, AIOP, and controller identifiers */
2693	ChP->CtlP = CtlP;
2694	ChP->ChanID = CtlP->AiopID[AiopNum];
2695	ChP->AiopNum = AiopNum;
2696	ChP->ChanNum = ChanNum;
2697
2698	/* Global direct addresses */
2699	AiopIO = CtlP->AiopIO[AiopNum];
2700	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2701	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2702	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2703	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2704	ChP->IndexData = AiopIO + _INDX_DATA;
2705
2706	/* Channel direct addresses */
2707	ChIOOff = AiopIO + ChP->ChanNum * 2;
2708	ChP->TxRxData = ChIOOff + _TD0;
2709	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2710	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2711	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2712
2713	/* Initialize the channel from the RData array */
2714	for (i = 0; i < RDATASIZE; i += 4) {
2715		R[0] = RData[i];
2716		R[1] = RData[i + 1] + 0x10 * ChanNum;
2717		R[2] = RData[i + 2];
2718		R[3] = RData[i + 3];
2719		out32(ChP->IndexAddr, R);
2720	}
2721
2722	ChR = ChP->R;
2723	for (i = 0; i < RREGDATASIZE; i += 4) {
2724		ChR[i] = RRegData[i];
2725		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2726		ChR[i + 2] = RRegData[i + 2];
2727		ChR[i + 3] = RRegData[i + 3];
2728	}
2729
2730	/* Indexed registers */
2731	ChOff = (Word_t) ChanNum *0x1000;
2732
2733	if (sClockPrescale == 0x14)
2734		brd9600 = 47;
2735	else
2736		brd9600 = 23;
2737
2738	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2739	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2740	ChP->BaudDiv[2] = (Byte_t) brd9600;
2741	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2742	out32(ChP->IndexAddr, ChP->BaudDiv);
2743
2744	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2745	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2746	ChP->TxControl[2] = 0;
2747	ChP->TxControl[3] = 0;
2748	out32(ChP->IndexAddr, ChP->TxControl);
2749
2750	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2751	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2752	ChP->RxControl[2] = 0;
2753	ChP->RxControl[3] = 0;
2754	out32(ChP->IndexAddr, ChP->RxControl);
2755
2756	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2757	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2758	ChP->TxEnables[2] = 0;
2759	ChP->TxEnables[3] = 0;
2760	out32(ChP->IndexAddr, ChP->TxEnables);
2761
2762	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2763	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2764	ChP->TxCompare[2] = 0;
2765	ChP->TxCompare[3] = 0;
2766	out32(ChP->IndexAddr, ChP->TxCompare);
2767
2768	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2769	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2770	ChP->TxReplace1[2] = 0;
2771	ChP->TxReplace1[3] = 0;
2772	out32(ChP->IndexAddr, ChP->TxReplace1);
2773
2774	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2775	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2776	ChP->TxReplace2[2] = 0;
2777	ChP->TxReplace2[3] = 0;
2778	out32(ChP->IndexAddr, ChP->TxReplace2);
2779
2780	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2781	ChP->TxFIFO = ChOff + _TX_FIFO;
2782
2783	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2784	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2785	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2786	sOutW(ChP->IndexData, 0);
2787	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2788	ChP->RxFIFO = ChOff + _RX_FIFO;
2789
2790	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2791	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2792	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2793	sOutW(ChP->IndexData, 0);
2794	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2795	sOutW(ChP->IndexData, 0);
2796	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2797	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2798	sOutB(ChP->IndexData, 0);
2799	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2800	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2801	sOutB(ChP->IndexData, 0);
2802	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2803	sEnRxProcessor(ChP);	/* start the Rx processor */
2804
2805	return 1;
2806}
2807
2808/***************************************************************************
2809Function: sStopRxProcessor
2810Purpose:  Stop the receive processor from processing a channel.
2811Call:     sStopRxProcessor(ChP)
2812          CHANNEL_T *ChP; Ptr to channel structure
2813
2814Comments: The receive processor can be started again with sStartRxProcessor().
2815          This function causes the receive processor to skip over the
2816          stopped channel.  It does not stop it from processing other channels.
2817
2818Warnings: No context switches are allowed while executing this function.
2819
2820          Do not leave the receive processor stopped for more than one
2821          character time.
2822
2823          After calling this function a delay of 4 uS is required to ensure
2824          that the receive processor is no longer processing this channel.
2825*/
2826static void sStopRxProcessor(CHANNEL_T * ChP)
2827{
2828	Byte_t R[4];
2829
2830	R[0] = ChP->R[0];
2831	R[1] = ChP->R[1];
2832	R[2] = 0x0a;
2833	R[3] = ChP->R[3];
2834	out32(ChP->IndexAddr, R);
2835}
2836
2837/***************************************************************************
2838Function: sFlushRxFIFO
2839Purpose:  Flush the Rx FIFO
2840Call:     sFlushRxFIFO(ChP)
2841          CHANNEL_T *ChP; Ptr to channel structure
2842Return:   void
2843Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2844          while it is being flushed the receive processor is stopped
2845          and the transmitter is disabled.  After these operations a
2846          4 uS delay is done before clearing the pointers to allow
2847          the receive processor to stop.  These items are handled inside
2848          this function.
2849Warnings: No context switches are allowed while executing this function.
2850*/
2851static void sFlushRxFIFO(CHANNEL_T * ChP)
2852{
2853	int i;
2854	Byte_t Ch;		/* channel number within AIOP */
2855	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2856
2857	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2858		return;		/* don't need to flush */
2859
2860	RxFIFOEnabled = 0;
2861	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2862		RxFIFOEnabled = 1;
2863		sDisRxFIFO(ChP);	/* disable it */
2864		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2865			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2866	}
2867	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2868	Ch = (Byte_t) sGetChanNum(ChP);
2869	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2870	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2871	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2872	sOutW(ChP->IndexData, 0);
2873	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2874	sOutW(ChP->IndexData, 0);
2875	if (RxFIFOEnabled)
2876		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2877}
2878
2879/***************************************************************************
2880Function: sFlushTxFIFO
2881Purpose:  Flush the Tx FIFO
2882Call:     sFlushTxFIFO(ChP)
2883          CHANNEL_T *ChP; Ptr to channel structure
2884Return:   void
2885Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2886          while it is being flushed the receive processor is stopped
2887          and the transmitter is disabled.  After these operations a
2888          4 uS delay is done before clearing the pointers to allow
2889          the receive processor to stop.  These items are handled inside
2890          this function.
2891Warnings: No context switches are allowed while executing this function.
2892*/
2893static void sFlushTxFIFO(CHANNEL_T * ChP)
2894{
2895	int i;
2896	Byte_t Ch;		/* channel number within AIOP */
2897	int TxEnabled;		/* 1 if transmitter enabled */
2898
2899	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2900		return;		/* don't need to flush */
2901
2902	TxEnabled = 0;
2903	if (ChP->TxControl[3] & TX_ENABLE) {
2904		TxEnabled = 1;
2905		sDisTransmit(ChP);	/* disable transmitter */
2906	}
2907	sStopRxProcessor(ChP);	/* stop Rx processor */
2908	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2909		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2910	Ch = (Byte_t) sGetChanNum(ChP);
2911	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2912	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2913	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2914	sOutW(ChP->IndexData, 0);
2915	if (TxEnabled)
2916		sEnTransmit(ChP);	/* enable transmitter */
2917	sStartRxProcessor(ChP);	/* restart Rx processor */
2918}
2919
2920/***************************************************************************
2921Function: sWriteTxPrioByte
2922Purpose:  Write a byte of priority transmit data to a channel
2923Call:     sWriteTxPrioByte(ChP,Data)
2924          CHANNEL_T *ChP; Ptr to channel structure
2925          Byte_t Data; The transmit data byte
2926
2927Return:   int: 1 if the bytes is successfully written, otherwise 0.
2928
2929Comments: The priority byte is transmitted before any data in the Tx FIFO.
2930
2931Warnings: No context switches are allowed while executing this function.
2932*/
2933static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2934{
2935	Byte_t DWBuf[4];	/* buffer for double word writes */
2936	Word_t *WordPtr;	/* must be far because Win SS != DS */
2937	register DWordIO_t IndexAddr;
2938
2939	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2940		IndexAddr = ChP->IndexAddr;
2941		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2942		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2943			return (0);	/* nothing sent */
2944
2945		WordPtr = (Word_t *) (&DWBuf[0]);
2946		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2947
2948		DWBuf[2] = Data;	/* data byte value */
2949		out32(IndexAddr, DWBuf);	/* write it out */
2950
2951		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2952
2953		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2954		DWBuf[3] = 0;	/* priority buffer pointer */
2955		out32(IndexAddr, DWBuf);	/* write it out */
2956	} else {		/* write it to Tx FIFO */
2957
2958		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2959	}
2960	return (1);		/* 1 byte sent */
2961}
2962
2963/***************************************************************************
2964Function: sEnInterrupts
2965Purpose:  Enable one or more interrupts for a channel
2966Call:     sEnInterrupts(ChP,Flags)
2967          CHANNEL_T *ChP; Ptr to channel structure
2968          Word_t Flags: Interrupt enable flags, can be any combination
2969             of the following flags:
2970                TXINT_EN:   Interrupt on Tx FIFO empty
2971                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2972                            sSetRxTrigger())
2973                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2974                MCINT_EN:   Interrupt on modem input change
2975                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2976                            Interrupt Channel Register.
2977Return:   void
2978Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2979          enabled.  If an interrupt enable flag is not set in Flags, that
2980          interrupt will not be changed.  Interrupts can be disabled with
2981          function sDisInterrupts().
2982
2983          This function sets the appropriate bit for the channel in the AIOP's
2984          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
2985          this channel's bit to be set in the AIOP's Interrupt Channel Register.
2986
2987          Interrupts must also be globally enabled before channel interrupts
2988          will be passed on to the host.  This is done with function
2989          sEnGlobalInt().
2990
2991          In some cases it may be desirable to disable interrupts globally but
2992          enable channel interrupts.  This would allow the global interrupt
2993          status register to be used to determine which AIOPs need service.
2994*/
2995static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
2996{
2997	Byte_t Mask;		/* Interrupt Mask Register */
2998
2999	ChP->RxControl[2] |=
3000	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3001
3002	out32(ChP->IndexAddr, ChP->RxControl);
3003
3004	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3005
3006	out32(ChP->IndexAddr, ChP->TxControl);
3007
3008	if (Flags & CHANINT_EN) {
3009		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3010		sOutB(ChP->IntMask, Mask);
3011	}
3012}
3013
3014/***************************************************************************
3015Function: sDisInterrupts
3016Purpose:  Disable one or more interrupts for a channel
3017Call:     sDisInterrupts(ChP,Flags)
3018          CHANNEL_T *ChP; Ptr to channel structure
3019          Word_t Flags: Interrupt flags, can be any combination
3020             of the following flags:
3021                TXINT_EN:   Interrupt on Tx FIFO empty
3022                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3023                            sSetRxTrigger())
3024                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3025                MCINT_EN:   Interrupt on modem input change
3026                CHANINT_EN: Disable channel interrupt signal to the
3027                            AIOP's Interrupt Channel Register.
3028Return:   void
3029Comments: If an interrupt flag is set in Flags, that interrupt will be
3030          disabled.  If an interrupt flag is not set in Flags, that
3031          interrupt will not be changed.  Interrupts can be enabled with
3032          function sEnInterrupts().
3033
3034          This function clears the appropriate bit for the channel in the AIOP's
3035          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3036          this channel's bit from being set in the AIOP's Interrupt Channel
3037          Register.
3038*/
3039static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3040{
3041	Byte_t Mask;		/* Interrupt Mask Register */
3042
3043	ChP->RxControl[2] &=
3044	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3045	out32(ChP->IndexAddr, ChP->RxControl);
3046	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3047	out32(ChP->IndexAddr, ChP->TxControl);
3048
3049	if (Flags & CHANINT_EN) {
3050		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3051		sOutB(ChP->IntMask, Mask);
3052	}
3053}
3054
3055static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3056{
3057	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3058}
3059
3060/*
3061 *  Not an official SSCI function, but how to reset RocketModems.
3062 *  ISA bus version
3063 */
3064static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3065{
3066	ByteIO_t addr;
3067	Byte_t val;
3068
3069	addr = CtlP->AiopIO[0] + 0x400;
3070	val = sInB(CtlP->MReg3IO);
3071	/* if AIOP[1] is not enabled, enable it */
3072	if ((val & 2) == 0) {
3073		val = sInB(CtlP->MReg2IO);
3074		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3075		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3076	}
3077
3078	sEnAiop(CtlP, 1);
3079	if (!on)
3080		addr += 8;
3081	sOutB(addr + chan, 0);	/* apply or remove reset */
3082	sDisAiop(CtlP, 1);
3083}
3084
3085/*
3086 *  Not an official SSCI function, but how to reset RocketModems.
3087 *  PCI bus version
3088 */
3089static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3090{
3091	ByteIO_t addr;
3092
3093	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3094	if (!on)
3095		addr += 8;
3096	sOutB(addr + chan, 0);	/* apply or remove reset */
3097}
3098
3099/*  Returns the line number given the controller (board), aiop and channel number */
3100static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3101{
3102	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3103}
3104
3105/*
3106 *  Stores the line number associated with a given controller (board), aiop
3107 *  and channel number.  
3108 *  Returns:  The line number assigned 
3109 */
3110static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3111{
3112	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3113	return (nextLineNumber - 1);
3114}