Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <linux/iopoll.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227#define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229#define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
231
232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
234 */
235#define DMA_MIN_BYTES 16
236
237#define AUTOSUSPEND_TIMEOUT 2000
238
239struct atmel_spi_caps {
240 bool is_spi2;
241 bool has_wdrbt;
242 bool has_dma_support;
243 bool has_pdc_support;
244};
245
246/*
247 * The core SPI transfer engine just talks to a register bank to set up
248 * DMA transfers; transfer queue progress is driven by IRQs. The clock
249 * framework provides the base clock, subdivided for each spi_device.
250 */
251struct atmel_spi {
252 spinlock_t lock;
253 unsigned long flags;
254
255 phys_addr_t phybase;
256 void __iomem *regs;
257 int irq;
258 struct clk *clk;
259 struct platform_device *pdev;
260 unsigned long spi_clk;
261
262 struct spi_transfer *current_transfer;
263 int current_remaining_bytes;
264 int done_status;
265 dma_addr_t dma_addr_rx_bbuf;
266 dma_addr_t dma_addr_tx_bbuf;
267 void *addr_rx_bbuf;
268 void *addr_tx_bbuf;
269
270 struct completion xfer_completion;
271
272 struct atmel_spi_caps caps;
273
274 bool use_dma;
275 bool use_pdc;
276
277 bool keep_cs;
278
279 u32 fifo_size;
280 bool last_polarity;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287 u32 csr;
288};
289
290#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS 0xffffffff
292
293/*
294 * This frequency can be anything supported by the controller, but to avoid
295 * unnecessary delay, the highest possible frequency is chosen.
296 *
297 * This frequency is the highest possible which is not interfering with other
298 * chip select registers (see Note for Serial Clock Bit Rate configuration in
299 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
300 */
301#define DUMMY_MSG_FREQUENCY 0x02
302/*
303 * 8 bits is the minimum data the controller is capable of sending.
304 *
305 * This message can be anything as it should not be treated by any SPI device.
306 */
307#define DUMMY_MSG 0xAA
308
309/*
310 * Version 2 of the SPI controller has
311 * - CR.LASTXFER
312 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
314 * - SPI_CSRx.CSAAT
315 * - SPI_CSRx.SBCR allows faster clocking
316 */
317static bool atmel_spi_is_v2(struct atmel_spi *as)
318{
319 return as->caps.is_spi2;
320}
321
322/*
323 * Send a dummy message.
324 *
325 * This is sometimes needed when using a CS GPIO to force clock transition when
326 * switching between devices with different polarities.
327 */
328static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
329{
330 u32 status;
331 u32 csr;
332
333 /*
334 * Set a clock frequency to allow sending message on SPI bus.
335 * The frequency here can be anything, but is needed for
336 * the controller to send the data.
337 */
338 csr = spi_readl(as, CSR0 + 4 * chip_select);
339 csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
340 spi_writel(as, CSR0 + 4 * chip_select, csr);
341
342 /*
343 * Read all data coming from SPI bus, needed to be able to send
344 * the message.
345 */
346 spi_readl(as, RDR);
347 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
348 spi_readl(as, RDR);
349 cpu_relax();
350 }
351
352 spi_writel(as, TDR, DUMMY_MSG);
353
354 readl_poll_timeout_atomic(as->regs + SPI_SR, status,
355 (status & SPI_BIT(TXEMPTY)), 1, 1000);
356}
357
358
359/*
360 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361 * they assume that spi slave device state will not change on deselect, so
362 * that automagic deselection is OK. ("NPCSx rises if no data is to be
363 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
364 * controllers have CSAAT and friends.
365 *
366 * Even controller newer than ar91rm9200, using GPIOs can make sens as
367 * it lets us support active-high chipselects despite the controller's
368 * belief that only active-low devices/systems exists.
369 *
370 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371 * right when driven with GPIO. ("Mode Fault does not allow more than one
372 * Master on Chip Select 0.") No workaround exists for that ... so for
373 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374 * and (c) will trigger that first erratum in some cases.
375 *
376 * When changing the clock polarity, the SPI controller waits for the next
377 * transmission to enforce the default clock state. This may be an issue when
378 * using a GPIO as Chip Select: the clock level is applied only when the first
379 * packet is sent, once the CS has already been asserted. The workaround is to
380 * avoid this by sending a first (dummy) message before toggling the CS state.
381 */
382static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
383{
384 struct atmel_spi_device *asd = spi->controller_state;
385 bool new_polarity;
386 int chip_select;
387 u32 mr;
388
389 if (spi_get_csgpiod(spi, 0))
390 chip_select = as->native_cs_for_gpio;
391 else
392 chip_select = spi_get_chipselect(spi, 0);
393
394 if (atmel_spi_is_v2(as)) {
395 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
396 /* For the low SPI version, there is a issue that PDC transfer
397 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
398 */
399 spi_writel(as, CSR0, asd->csr);
400 if (as->caps.has_wdrbt) {
401 spi_writel(as, MR,
402 SPI_BF(PCS, ~(0x01 << chip_select))
403 | SPI_BIT(WDRBT)
404 | SPI_BIT(MODFDIS)
405 | SPI_BIT(MSTR));
406 } else {
407 spi_writel(as, MR,
408 SPI_BF(PCS, ~(0x01 << chip_select))
409 | SPI_BIT(MODFDIS)
410 | SPI_BIT(MSTR));
411 }
412
413 mr = spi_readl(as, MR);
414
415 /*
416 * Ensures the clock polarity is valid before we actually
417 * assert the CS to avoid spurious clock edges to be
418 * processed by the spi devices.
419 */
420 if (spi_get_csgpiod(spi, 0)) {
421 new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
422 if (new_polarity != as->last_polarity) {
423 /*
424 * Need to disable the GPIO before sending the dummy
425 * message because it is already set by the spi core.
426 */
427 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
428 atmel_spi_send_dummy(as, spi, chip_select);
429 as->last_polarity = new_polarity;
430 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
431 }
432 }
433 } else {
434 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
435 int i;
436 u32 csr;
437
438 /* Make sure clock polarity is correct */
439 for (i = 0; i < spi->controller->num_chipselect; i++) {
440 csr = spi_readl(as, CSR0 + 4 * i);
441 if ((csr ^ cpol) & SPI_BIT(CPOL))
442 spi_writel(as, CSR0 + 4 * i,
443 csr ^ SPI_BIT(CPOL));
444 }
445
446 mr = spi_readl(as, MR);
447 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
448 spi_writel(as, MR, mr);
449 }
450
451 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
452}
453
454static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
455{
456 int chip_select;
457 u32 mr;
458
459 if (spi_get_csgpiod(spi, 0))
460 chip_select = as->native_cs_for_gpio;
461 else
462 chip_select = spi_get_chipselect(spi, 0);
463
464 /* only deactivate *this* device; sometimes transfers to
465 * another device may be active when this routine is called.
466 */
467 mr = spi_readl(as, MR);
468 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
469 mr = SPI_BFINS(PCS, 0xf, mr);
470 spi_writel(as, MR, mr);
471 }
472
473 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
474
475 if (!spi_get_csgpiod(spi, 0))
476 spi_writel(as, CR, SPI_BIT(LASTXFER));
477}
478
479static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
480{
481 spin_lock_irqsave(&as->lock, as->flags);
482}
483
484static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
485{
486 spin_unlock_irqrestore(&as->lock, as->flags);
487}
488
489static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
490{
491 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
492}
493
494static inline bool atmel_spi_use_dma(struct atmel_spi *as,
495 struct spi_transfer *xfer)
496{
497 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
498}
499
500static bool atmel_spi_can_dma(struct spi_controller *host,
501 struct spi_device *spi,
502 struct spi_transfer *xfer)
503{
504 struct atmel_spi *as = spi_controller_get_devdata(host);
505
506 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
507 return atmel_spi_use_dma(as, xfer) &&
508 !atmel_spi_is_vmalloc_xfer(xfer);
509 else
510 return atmel_spi_use_dma(as, xfer);
511
512}
513
514static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
515{
516 struct spi_controller *host = platform_get_drvdata(as->pdev);
517 struct dma_slave_config slave_config;
518 int err = 0;
519
520 if (bits_per_word > 8) {
521 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
522 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
523 } else {
524 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
525 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
526 }
527
528 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
529 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
530 slave_config.src_maxburst = 1;
531 slave_config.dst_maxburst = 1;
532 slave_config.device_fc = false;
533
534 /*
535 * This driver uses fixed peripheral select mode (PS bit set to '0' in
536 * the Mode Register).
537 * So according to the datasheet, when FIFOs are available (and
538 * enabled), the Transmit FIFO operates in Multiple Data Mode.
539 * In this mode, up to 2 data, not 4, can be written into the Transmit
540 * Data Register in a single access.
541 * However, the first data has to be written into the lowest 16 bits and
542 * the second data into the highest 16 bits of the Transmit
543 * Data Register. For 8bit data (the most frequent case), it would
544 * require to rework tx_buf so each data would actually fit 16 bits.
545 * So we'd rather write only one data at the time. Hence the transmit
546 * path works the same whether FIFOs are available (and enabled) or not.
547 */
548 if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
549 dev_err(&as->pdev->dev,
550 "failed to configure tx dma channel\n");
551 err = -EINVAL;
552 }
553
554 /*
555 * This driver configures the spi controller for host mode (MSTR bit
556 * set to '1' in the Mode Register).
557 * So according to the datasheet, when FIFOs are available (and
558 * enabled), the Receive FIFO operates in Single Data Mode.
559 * So the receive path works the same whether FIFOs are available (and
560 * enabled) or not.
561 */
562 if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
563 dev_err(&as->pdev->dev,
564 "failed to configure rx dma channel\n");
565 err = -EINVAL;
566 }
567
568 return err;
569}
570
571static int atmel_spi_configure_dma(struct spi_controller *host,
572 struct atmel_spi *as)
573{
574 struct device *dev = &as->pdev->dev;
575 int err;
576
577 host->dma_tx = dma_request_chan(dev, "tx");
578 if (IS_ERR(host->dma_tx)) {
579 err = PTR_ERR(host->dma_tx);
580 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
581 goto error_clear;
582 }
583
584 host->dma_rx = dma_request_chan(dev, "rx");
585 if (IS_ERR(host->dma_rx)) {
586 err = PTR_ERR(host->dma_rx);
587 /*
588 * No reason to check EPROBE_DEFER here since we have already
589 * requested tx channel.
590 */
591 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
592 goto error;
593 }
594
595 err = atmel_spi_dma_slave_config(as, 8);
596 if (err)
597 goto error;
598
599 dev_info(&as->pdev->dev,
600 "Using %s (tx) and %s (rx) for DMA transfers\n",
601 dma_chan_name(host->dma_tx),
602 dma_chan_name(host->dma_rx));
603
604 return 0;
605error:
606 if (!IS_ERR(host->dma_rx))
607 dma_release_channel(host->dma_rx);
608 if (!IS_ERR(host->dma_tx))
609 dma_release_channel(host->dma_tx);
610error_clear:
611 host->dma_tx = host->dma_rx = NULL;
612 return err;
613}
614
615static void atmel_spi_stop_dma(struct spi_controller *host)
616{
617 if (host->dma_rx)
618 dmaengine_terminate_all(host->dma_rx);
619 if (host->dma_tx)
620 dmaengine_terminate_all(host->dma_tx);
621}
622
623static void atmel_spi_release_dma(struct spi_controller *host)
624{
625 if (host->dma_rx) {
626 dma_release_channel(host->dma_rx);
627 host->dma_rx = NULL;
628 }
629 if (host->dma_tx) {
630 dma_release_channel(host->dma_tx);
631 host->dma_tx = NULL;
632 }
633}
634
635/* This function is called by the DMA driver from tasklet context */
636static void dma_callback(void *data)
637{
638 struct spi_controller *host = data;
639 struct atmel_spi *as = spi_controller_get_devdata(host);
640
641 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
642 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
643 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
644 as->current_transfer->len);
645 }
646 complete(&as->xfer_completion);
647}
648
649/*
650 * Next transfer using PIO without FIFO.
651 */
652static void atmel_spi_next_xfer_single(struct spi_controller *host,
653 struct spi_transfer *xfer)
654{
655 struct atmel_spi *as = spi_controller_get_devdata(host);
656 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
657
658 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
659
660 /* Make sure data is not remaining in RDR */
661 spi_readl(as, RDR);
662 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
663 spi_readl(as, RDR);
664 cpu_relax();
665 }
666
667 if (xfer->bits_per_word > 8)
668 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
669 else
670 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
671
672 dev_dbg(host->dev.parent,
673 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
675 xfer->bits_per_word);
676
677 /* Enable relevant interrupts */
678 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
679}
680
681/*
682 * Next transfer using PIO with FIFO.
683 */
684static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
685 struct spi_transfer *xfer)
686{
687 struct atmel_spi *as = spi_controller_get_devdata(host);
688 u32 current_remaining_data, num_data;
689 u32 offset = xfer->len - as->current_remaining_bytes;
690 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
691 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
692 u16 td0, td1;
693 u32 fifomr;
694
695 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
696
697 /* Compute the number of data to transfer in the current iteration */
698 current_remaining_data = ((xfer->bits_per_word > 8) ?
699 ((u32)as->current_remaining_bytes >> 1) :
700 (u32)as->current_remaining_bytes);
701 num_data = min(current_remaining_data, as->fifo_size);
702
703 /* Flush RX and TX FIFOs */
704 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
705 while (spi_readl(as, FLR))
706 cpu_relax();
707
708 /* Set RX FIFO Threshold to the number of data to transfer */
709 fifomr = spi_readl(as, FMR);
710 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
711
712 /* Clear FIFO flags in the Status Register, especially RXFTHF */
713 (void)spi_readl(as, SR);
714
715 /* Fill TX FIFO */
716 while (num_data >= 2) {
717 if (xfer->bits_per_word > 8) {
718 td0 = *words++;
719 td1 = *words++;
720 } else {
721 td0 = *bytes++;
722 td1 = *bytes++;
723 }
724
725 spi_writel(as, TDR, (td1 << 16) | td0);
726 num_data -= 2;
727 }
728
729 if (num_data) {
730 if (xfer->bits_per_word > 8)
731 td0 = *words++;
732 else
733 td0 = *bytes++;
734
735 spi_writew(as, TDR, td0);
736 num_data--;
737 }
738
739 dev_dbg(host->dev.parent,
740 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
742 xfer->bits_per_word);
743
744 /*
745 * Enable RX FIFO Threshold Flag interrupt to be notified about
746 * transfer completion.
747 */
748 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
749}
750
751/*
752 * Next transfer using PIO.
753 */
754static void atmel_spi_next_xfer_pio(struct spi_controller *host,
755 struct spi_transfer *xfer)
756{
757 struct atmel_spi *as = spi_controller_get_devdata(host);
758
759 if (as->fifo_size)
760 atmel_spi_next_xfer_fifo(host, xfer);
761 else
762 atmel_spi_next_xfer_single(host, xfer);
763}
764
765/*
766 * Submit next transfer for DMA.
767 */
768static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
769 struct spi_transfer *xfer,
770 u32 *plen)
771{
772 struct atmel_spi *as = spi_controller_get_devdata(host);
773 struct dma_chan *rxchan = host->dma_rx;
774 struct dma_chan *txchan = host->dma_tx;
775 struct dma_async_tx_descriptor *rxdesc;
776 struct dma_async_tx_descriptor *txdesc;
777 dma_cookie_t cookie;
778
779 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
780
781 /* Check that the channels are available */
782 if (!rxchan || !txchan)
783 return -ENODEV;
784
785
786 *plen = xfer->len;
787
788 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
789 goto err_exit;
790
791 /* Send both scatterlists */
792 if (atmel_spi_is_vmalloc_xfer(xfer) &&
793 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
794 rxdesc = dmaengine_prep_slave_single(rxchan,
795 as->dma_addr_rx_bbuf,
796 xfer->len,
797 DMA_DEV_TO_MEM,
798 DMA_PREP_INTERRUPT |
799 DMA_CTRL_ACK);
800 } else {
801 rxdesc = dmaengine_prep_slave_sg(rxchan,
802 xfer->rx_sg.sgl,
803 xfer->rx_sg.nents,
804 DMA_DEV_TO_MEM,
805 DMA_PREP_INTERRUPT |
806 DMA_CTRL_ACK);
807 }
808 if (!rxdesc)
809 goto err_dma;
810
811 if (atmel_spi_is_vmalloc_xfer(xfer) &&
812 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
813 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
814 txdesc = dmaengine_prep_slave_single(txchan,
815 as->dma_addr_tx_bbuf,
816 xfer->len, DMA_MEM_TO_DEV,
817 DMA_PREP_INTERRUPT |
818 DMA_CTRL_ACK);
819 } else {
820 txdesc = dmaengine_prep_slave_sg(txchan,
821 xfer->tx_sg.sgl,
822 xfer->tx_sg.nents,
823 DMA_MEM_TO_DEV,
824 DMA_PREP_INTERRUPT |
825 DMA_CTRL_ACK);
826 }
827 if (!txdesc)
828 goto err_dma;
829
830 dev_dbg(host->dev.parent,
831 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
833 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
834
835 /* Enable relevant interrupts */
836 spi_writel(as, IER, SPI_BIT(OVRES));
837
838 /* Put the callback on the RX transfer only, that should finish last */
839 rxdesc->callback = dma_callback;
840 rxdesc->callback_param = host;
841
842 /* Submit and fire RX and TX with TX last so we're ready to read! */
843 cookie = rxdesc->tx_submit(rxdesc);
844 if (dma_submit_error(cookie))
845 goto err_dma;
846 cookie = txdesc->tx_submit(txdesc);
847 if (dma_submit_error(cookie))
848 goto err_dma;
849 rxchan->device->device_issue_pending(rxchan);
850 txchan->device->device_issue_pending(txchan);
851
852 return 0;
853
854err_dma:
855 spi_writel(as, IDR, SPI_BIT(OVRES));
856 atmel_spi_stop_dma(host);
857err_exit:
858 return -ENOMEM;
859}
860
861static void atmel_spi_next_xfer_data(struct spi_controller *host,
862 struct spi_transfer *xfer,
863 dma_addr_t *tx_dma,
864 dma_addr_t *rx_dma,
865 u32 *plen)
866{
867 *rx_dma = xfer->rx_dma + xfer->len - *plen;
868 *tx_dma = xfer->tx_dma + xfer->len - *plen;
869 if (*plen > host->max_dma_len)
870 *plen = host->max_dma_len;
871}
872
873static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
874 struct spi_device *spi,
875 struct spi_transfer *xfer)
876{
877 u32 scbr, csr;
878 unsigned long bus_hz;
879 int chip_select;
880
881 if (spi_get_csgpiod(spi, 0))
882 chip_select = as->native_cs_for_gpio;
883 else
884 chip_select = spi_get_chipselect(spi, 0);
885
886 /* v1 chips start out at half the peripheral bus speed. */
887 bus_hz = as->spi_clk;
888 if (!atmel_spi_is_v2(as))
889 bus_hz /= 2;
890
891 /*
892 * Calculate the lowest divider that satisfies the
893 * constraint, assuming div32/fdiv/mbz == 0.
894 */
895 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
896
897 /*
898 * If the resulting divider doesn't fit into the
899 * register bitfield, we can't satisfy the constraint.
900 */
901 if (scbr >= (1 << SPI_SCBR_SIZE)) {
902 dev_err(&spi->dev,
903 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904 xfer->speed_hz, scbr, bus_hz/255);
905 return -EINVAL;
906 }
907 if (scbr == 0) {
908 dev_err(&spi->dev,
909 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
910 xfer->speed_hz, scbr, bus_hz);
911 return -EINVAL;
912 }
913 csr = spi_readl(as, CSR0 + 4 * chip_select);
914 csr = SPI_BFINS(SCBR, scbr, csr);
915 spi_writel(as, CSR0 + 4 * chip_select, csr);
916 xfer->effective_speed_hz = bus_hz / scbr;
917
918 return 0;
919}
920
921/*
922 * Submit next transfer for PDC.
923 * lock is held, spi irq is blocked
924 */
925static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
926 struct spi_transfer *xfer)
927{
928 struct atmel_spi *as = spi_controller_get_devdata(host);
929 u32 len;
930 dma_addr_t tx_dma, rx_dma;
931
932 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
933
934 len = as->current_remaining_bytes;
935 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
936 as->current_remaining_bytes -= len;
937
938 spi_writel(as, RPR, rx_dma);
939 spi_writel(as, TPR, tx_dma);
940
941 if (xfer->bits_per_word > 8)
942 len >>= 1;
943 spi_writel(as, RCR, len);
944 spi_writel(as, TCR, len);
945
946 dev_dbg(&host->dev,
947 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948 xfer, xfer->len, xfer->tx_buf,
949 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
950 (unsigned long long)xfer->rx_dma);
951
952 if (as->current_remaining_bytes) {
953 len = as->current_remaining_bytes;
954 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
955 as->current_remaining_bytes -= len;
956
957 spi_writel(as, RNPR, rx_dma);
958 spi_writel(as, TNPR, tx_dma);
959
960 if (xfer->bits_per_word > 8)
961 len >>= 1;
962 spi_writel(as, RNCR, len);
963 spi_writel(as, TNCR, len);
964
965 dev_dbg(&host->dev,
966 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967 xfer, xfer->len, xfer->tx_buf,
968 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
969 (unsigned long long)xfer->rx_dma);
970 }
971
972 /* REVISIT: We're waiting for RXBUFF before we start the next
973 * transfer because we need to handle some difficult timing
974 * issues otherwise. If we wait for TXBUFE in one transfer and
975 * then starts waiting for RXBUFF in the next, it's difficult
976 * to tell the difference between the RXBUFF interrupt we're
977 * actually waiting for and the RXBUFF interrupt of the
978 * previous transfer.
979 *
980 * It should be doable, though. Just not now...
981 */
982 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
983 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
984}
985
986/*
987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988 * - The buffer is either valid for CPU access, else NULL
989 * - If the buffer is valid, so is its DMA address
990 *
991 * This driver manages the dma address unless message->is_dma_mapped.
992 */
993static int
994atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
995{
996 struct device *dev = &as->pdev->dev;
997
998 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
999 if (xfer->tx_buf) {
1000 /* tx_buf is a const void* where we need a void * for the dma
1001 * mapping */
1002 void *nonconst_tx = (void *)xfer->tx_buf;
1003
1004 xfer->tx_dma = dma_map_single(dev,
1005 nonconst_tx, xfer->len,
1006 DMA_TO_DEVICE);
1007 if (dma_mapping_error(dev, xfer->tx_dma))
1008 return -ENOMEM;
1009 }
1010 if (xfer->rx_buf) {
1011 xfer->rx_dma = dma_map_single(dev,
1012 xfer->rx_buf, xfer->len,
1013 DMA_FROM_DEVICE);
1014 if (dma_mapping_error(dev, xfer->rx_dma)) {
1015 if (xfer->tx_buf)
1016 dma_unmap_single(dev,
1017 xfer->tx_dma, xfer->len,
1018 DMA_TO_DEVICE);
1019 return -ENOMEM;
1020 }
1021 }
1022 return 0;
1023}
1024
1025static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1026 struct spi_transfer *xfer)
1027{
1028 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1029 dma_unmap_single(host->dev.parent, xfer->tx_dma,
1030 xfer->len, DMA_TO_DEVICE);
1031 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1032 dma_unmap_single(host->dev.parent, xfer->rx_dma,
1033 xfer->len, DMA_FROM_DEVICE);
1034}
1035
1036static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1037{
1038 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1039}
1040
1041static void
1042atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1043{
1044 u8 *rxp;
1045 u16 *rxp16;
1046 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1047
1048 if (xfer->bits_per_word > 8) {
1049 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1050 *rxp16 = spi_readl(as, RDR);
1051 } else {
1052 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1053 *rxp = spi_readl(as, RDR);
1054 }
1055 if (xfer->bits_per_word > 8) {
1056 if (as->current_remaining_bytes > 2)
1057 as->current_remaining_bytes -= 2;
1058 else
1059 as->current_remaining_bytes = 0;
1060 } else {
1061 as->current_remaining_bytes--;
1062 }
1063}
1064
1065static void
1066atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1067{
1068 u32 fifolr = spi_readl(as, FLR);
1069 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1070 u32 offset = xfer->len - as->current_remaining_bytes;
1071 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1072 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1073 u16 rd; /* RD field is the lowest 16 bits of RDR */
1074
1075 /* Update the number of remaining bytes to transfer */
1076 num_bytes = ((xfer->bits_per_word > 8) ?
1077 (num_data << 1) :
1078 num_data);
1079
1080 if (as->current_remaining_bytes > num_bytes)
1081 as->current_remaining_bytes -= num_bytes;
1082 else
1083 as->current_remaining_bytes = 0;
1084
1085 /* Handle odd number of bytes when data are more than 8bit width */
1086 if (xfer->bits_per_word > 8)
1087 as->current_remaining_bytes &= ~0x1;
1088
1089 /* Read data */
1090 while (num_data) {
1091 rd = spi_readl(as, RDR);
1092 if (xfer->bits_per_word > 8)
1093 *words++ = rd;
1094 else
1095 *bytes++ = rd;
1096 num_data--;
1097 }
1098}
1099
1100/* Called from IRQ
1101 *
1102 * Must update "current_remaining_bytes" to keep track of data
1103 * to transfer.
1104 */
1105static void
1106atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1107{
1108 if (as->fifo_size)
1109 atmel_spi_pump_fifo_data(as, xfer);
1110 else
1111 atmel_spi_pump_single_data(as, xfer);
1112}
1113
1114/* Interrupt
1115 *
1116 */
1117static irqreturn_t
1118atmel_spi_pio_interrupt(int irq, void *dev_id)
1119{
1120 struct spi_controller *host = dev_id;
1121 struct atmel_spi *as = spi_controller_get_devdata(host);
1122 u32 status, pending, imr;
1123 struct spi_transfer *xfer;
1124 int ret = IRQ_NONE;
1125
1126 imr = spi_readl(as, IMR);
1127 status = spi_readl(as, SR);
1128 pending = status & imr;
1129
1130 if (pending & SPI_BIT(OVRES)) {
1131 ret = IRQ_HANDLED;
1132 spi_writel(as, IDR, SPI_BIT(OVRES));
1133 dev_warn(host->dev.parent, "overrun\n");
1134
1135 /*
1136 * When we get an overrun, we disregard the current
1137 * transfer. Data will not be copied back from any
1138 * bounce buffer and msg->actual_len will not be
1139 * updated with the last xfer.
1140 *
1141 * We will also not process any remaning transfers in
1142 * the message.
1143 */
1144 as->done_status = -EIO;
1145 smp_wmb();
1146
1147 /* Clear any overrun happening while cleaning up */
1148 spi_readl(as, SR);
1149
1150 complete(&as->xfer_completion);
1151
1152 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1153 atmel_spi_lock(as);
1154
1155 if (as->current_remaining_bytes) {
1156 ret = IRQ_HANDLED;
1157 xfer = as->current_transfer;
1158 atmel_spi_pump_pio_data(as, xfer);
1159 if (!as->current_remaining_bytes)
1160 spi_writel(as, IDR, pending);
1161
1162 complete(&as->xfer_completion);
1163 }
1164
1165 atmel_spi_unlock(as);
1166 } else {
1167 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1168 ret = IRQ_HANDLED;
1169 spi_writel(as, IDR, pending);
1170 }
1171
1172 return ret;
1173}
1174
1175static irqreturn_t
1176atmel_spi_pdc_interrupt(int irq, void *dev_id)
1177{
1178 struct spi_controller *host = dev_id;
1179 struct atmel_spi *as = spi_controller_get_devdata(host);
1180 u32 status, pending, imr;
1181 int ret = IRQ_NONE;
1182
1183 imr = spi_readl(as, IMR);
1184 status = spi_readl(as, SR);
1185 pending = status & imr;
1186
1187 if (pending & SPI_BIT(OVRES)) {
1188
1189 ret = IRQ_HANDLED;
1190
1191 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1192 | SPI_BIT(OVRES)));
1193
1194 /* Clear any overrun happening while cleaning up */
1195 spi_readl(as, SR);
1196
1197 as->done_status = -EIO;
1198
1199 complete(&as->xfer_completion);
1200
1201 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1202 ret = IRQ_HANDLED;
1203
1204 spi_writel(as, IDR, pending);
1205
1206 complete(&as->xfer_completion);
1207 }
1208
1209 return ret;
1210}
1211
1212static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1213{
1214 struct spi_delay *delay = &spi->word_delay;
1215 u32 value = delay->value;
1216
1217 switch (delay->unit) {
1218 case SPI_DELAY_UNIT_NSECS:
1219 value /= 1000;
1220 break;
1221 case SPI_DELAY_UNIT_USECS:
1222 break;
1223 default:
1224 return -EINVAL;
1225 }
1226
1227 return (as->spi_clk / 1000000 * value) >> 5;
1228}
1229
1230static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1231{
1232 int i;
1233 struct spi_controller *host = platform_get_drvdata(as->pdev);
1234
1235 if (!as->native_cs_free)
1236 return; /* already initialized */
1237
1238 if (!host->cs_gpiods)
1239 return; /* No CS GPIO */
1240
1241 /*
1242 * On the first version of the controller (AT91RM9200), CS0
1243 * can't be used associated with GPIO
1244 */
1245 if (atmel_spi_is_v2(as))
1246 i = 0;
1247 else
1248 i = 1;
1249
1250 for (; i < 4; i++)
1251 if (host->cs_gpiods[i])
1252 as->native_cs_free |= BIT(i);
1253
1254 if (as->native_cs_free)
1255 as->native_cs_for_gpio = ffs(as->native_cs_free);
1256}
1257
1258static int atmel_spi_setup(struct spi_device *spi)
1259{
1260 struct atmel_spi *as;
1261 struct atmel_spi_device *asd;
1262 u32 csr;
1263 unsigned int bits = spi->bits_per_word;
1264 int chip_select;
1265 int word_delay_csr;
1266
1267 as = spi_controller_get_devdata(spi->controller);
1268
1269 /* see notes above re chipselect */
1270 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1271 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1272 return -EINVAL;
1273 }
1274
1275 /* Setup() is called during spi_register_controller(aka
1276 * spi_register_master) but after all membmers of the cs_gpiod
1277 * array have been filled, so we can looked for which native
1278 * CS will be free for using with GPIO
1279 */
1280 initialize_native_cs_for_gpio(as);
1281
1282 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1283 dev_err(&spi->dev,
1284 "No native CS available to support this GPIO CS\n");
1285 return -EBUSY;
1286 }
1287
1288 if (spi_get_csgpiod(spi, 0))
1289 chip_select = as->native_cs_for_gpio;
1290 else
1291 chip_select = spi_get_chipselect(spi, 0);
1292
1293 csr = SPI_BF(BITS, bits - 8);
1294 if (spi->mode & SPI_CPOL)
1295 csr |= SPI_BIT(CPOL);
1296 if (!(spi->mode & SPI_CPHA))
1297 csr |= SPI_BIT(NCPHA);
1298
1299 if (!spi_get_csgpiod(spi, 0))
1300 csr |= SPI_BIT(CSAAT);
1301 csr |= SPI_BF(DLYBS, 0);
1302
1303 word_delay_csr = atmel_word_delay_csr(spi, as);
1304 if (word_delay_csr < 0)
1305 return word_delay_csr;
1306
1307 /* DLYBCT adds delays between words. This is useful for slow devices
1308 * that need a bit of time to setup the next transfer.
1309 */
1310 csr |= SPI_BF(DLYBCT, word_delay_csr);
1311
1312 asd = spi->controller_state;
1313 if (!asd) {
1314 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1315 if (!asd)
1316 return -ENOMEM;
1317
1318 spi->controller_state = asd;
1319 }
1320
1321 asd->csr = csr;
1322
1323 dev_dbg(&spi->dev,
1324 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1325 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1326
1327 if (!atmel_spi_is_v2(as))
1328 spi_writel(as, CSR0 + 4 * chip_select, csr);
1329
1330 return 0;
1331}
1332
1333static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1334{
1335 struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1336 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1337 * since we already have routines for activate/deactivate translate
1338 * high/low to active/inactive
1339 */
1340 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1341
1342 if (enable) {
1343 cs_activate(as, spi);
1344 } else {
1345 cs_deactivate(as, spi);
1346 }
1347
1348}
1349
1350static int atmel_spi_one_transfer(struct spi_controller *host,
1351 struct spi_device *spi,
1352 struct spi_transfer *xfer)
1353{
1354 struct atmel_spi *as;
1355 u8 bits;
1356 u32 len;
1357 struct atmel_spi_device *asd;
1358 int timeout;
1359 int ret;
1360 unsigned int dma_timeout;
1361 long ret_timeout;
1362
1363 as = spi_controller_get_devdata(host);
1364
1365 asd = spi->controller_state;
1366 bits = (asd->csr >> 4) & 0xf;
1367 if (bits != xfer->bits_per_word - 8) {
1368 dev_dbg(&spi->dev,
1369 "you can't yet change bits_per_word in transfers\n");
1370 return -ENOPROTOOPT;
1371 }
1372
1373 /*
1374 * DMA map early, for performance (empties dcache ASAP) and
1375 * better fault reporting.
1376 */
1377 if ((!host->cur_msg->is_dma_mapped)
1378 && as->use_pdc) {
1379 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1380 return -ENOMEM;
1381 }
1382
1383 atmel_spi_set_xfer_speed(as, spi, xfer);
1384
1385 as->done_status = 0;
1386 as->current_transfer = xfer;
1387 as->current_remaining_bytes = xfer->len;
1388 while (as->current_remaining_bytes) {
1389 reinit_completion(&as->xfer_completion);
1390
1391 if (as->use_pdc) {
1392 atmel_spi_lock(as);
1393 atmel_spi_pdc_next_xfer(host, xfer);
1394 atmel_spi_unlock(as);
1395 } else if (atmel_spi_use_dma(as, xfer)) {
1396 len = as->current_remaining_bytes;
1397 ret = atmel_spi_next_xfer_dma_submit(host,
1398 xfer, &len);
1399 if (ret) {
1400 dev_err(&spi->dev,
1401 "unable to use DMA, fallback to PIO\n");
1402 as->done_status = ret;
1403 break;
1404 } else {
1405 as->current_remaining_bytes -= len;
1406 if (as->current_remaining_bytes < 0)
1407 as->current_remaining_bytes = 0;
1408 }
1409 } else {
1410 atmel_spi_lock(as);
1411 atmel_spi_next_xfer_pio(host, xfer);
1412 atmel_spi_unlock(as);
1413 }
1414
1415 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1416 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1417 if (!ret_timeout) {
1418 dev_err(&spi->dev, "spi transfer timeout\n");
1419 as->done_status = -EIO;
1420 }
1421
1422 if (as->done_status)
1423 break;
1424 }
1425
1426 if (as->done_status) {
1427 if (as->use_pdc) {
1428 dev_warn(host->dev.parent,
1429 "overrun (%u/%u remaining)\n",
1430 spi_readl(as, TCR), spi_readl(as, RCR));
1431
1432 /*
1433 * Clean up DMA registers and make sure the data
1434 * registers are empty.
1435 */
1436 spi_writel(as, RNCR, 0);
1437 spi_writel(as, TNCR, 0);
1438 spi_writel(as, RCR, 0);
1439 spi_writel(as, TCR, 0);
1440 for (timeout = 1000; timeout; timeout--)
1441 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1442 break;
1443 if (!timeout)
1444 dev_warn(host->dev.parent,
1445 "timeout waiting for TXEMPTY");
1446 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1447 spi_readl(as, RDR);
1448
1449 /* Clear any overrun happening while cleaning up */
1450 spi_readl(as, SR);
1451
1452 } else if (atmel_spi_use_dma(as, xfer)) {
1453 atmel_spi_stop_dma(host);
1454 }
1455 }
1456
1457 if (!host->cur_msg->is_dma_mapped
1458 && as->use_pdc)
1459 atmel_spi_dma_unmap_xfer(host, xfer);
1460
1461 if (as->use_pdc)
1462 atmel_spi_disable_pdc_transfer(as);
1463
1464 return as->done_status;
1465}
1466
1467static void atmel_spi_cleanup(struct spi_device *spi)
1468{
1469 struct atmel_spi_device *asd = spi->controller_state;
1470
1471 if (!asd)
1472 return;
1473
1474 spi->controller_state = NULL;
1475 kfree(asd);
1476}
1477
1478static inline unsigned int atmel_get_version(struct atmel_spi *as)
1479{
1480 return spi_readl(as, VERSION) & 0x00000fff;
1481}
1482
1483static void atmel_get_caps(struct atmel_spi *as)
1484{
1485 unsigned int version;
1486
1487 version = atmel_get_version(as);
1488
1489 as->caps.is_spi2 = version > 0x121;
1490 as->caps.has_wdrbt = version >= 0x210;
1491 as->caps.has_dma_support = version >= 0x212;
1492 as->caps.has_pdc_support = version < 0x212;
1493}
1494
1495static void atmel_spi_init(struct atmel_spi *as)
1496{
1497 spi_writel(as, CR, SPI_BIT(SWRST));
1498 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1499
1500 /* It is recommended to enable FIFOs first thing after reset */
1501 if (as->fifo_size)
1502 spi_writel(as, CR, SPI_BIT(FIFOEN));
1503
1504 if (as->caps.has_wdrbt) {
1505 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1506 | SPI_BIT(MSTR));
1507 } else {
1508 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1509 }
1510
1511 if (as->use_pdc)
1512 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1513 spi_writel(as, CR, SPI_BIT(SPIEN));
1514}
1515
1516static int atmel_spi_probe(struct platform_device *pdev)
1517{
1518 struct resource *regs;
1519 int irq;
1520 struct clk *clk;
1521 int ret;
1522 struct spi_controller *host;
1523 struct atmel_spi *as;
1524
1525 /* Select default pin state */
1526 pinctrl_pm_select_default_state(&pdev->dev);
1527
1528 irq = platform_get_irq(pdev, 0);
1529 if (irq < 0)
1530 return irq;
1531
1532 clk = devm_clk_get(&pdev->dev, "spi_clk");
1533 if (IS_ERR(clk))
1534 return PTR_ERR(clk);
1535
1536 /* setup spi core then atmel-specific driver state */
1537 host = spi_alloc_host(&pdev->dev, sizeof(*as));
1538 if (!host)
1539 return -ENOMEM;
1540
1541 /* the spi->mode bits understood by this driver: */
1542 host->use_gpio_descriptors = true;
1543 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1544 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1545 host->dev.of_node = pdev->dev.of_node;
1546 host->bus_num = pdev->id;
1547 host->num_chipselect = 4;
1548 host->setup = atmel_spi_setup;
1549 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1550 SPI_CONTROLLER_GPIO_SS);
1551 host->transfer_one = atmel_spi_one_transfer;
1552 host->set_cs = atmel_spi_set_cs;
1553 host->cleanup = atmel_spi_cleanup;
1554 host->auto_runtime_pm = true;
1555 host->max_dma_len = SPI_MAX_DMA_XFER;
1556 host->can_dma = atmel_spi_can_dma;
1557 platform_set_drvdata(pdev, host);
1558
1559 as = spi_controller_get_devdata(host);
1560
1561 spin_lock_init(&as->lock);
1562
1563 as->pdev = pdev;
1564 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
1565 if (IS_ERR(as->regs)) {
1566 ret = PTR_ERR(as->regs);
1567 goto out_unmap_regs;
1568 }
1569 as->phybase = regs->start;
1570 as->irq = irq;
1571 as->clk = clk;
1572
1573 init_completion(&as->xfer_completion);
1574
1575 atmel_get_caps(as);
1576
1577 as->use_dma = false;
1578 as->use_pdc = false;
1579 if (as->caps.has_dma_support) {
1580 ret = atmel_spi_configure_dma(host, as);
1581 if (ret == 0) {
1582 as->use_dma = true;
1583 } else if (ret == -EPROBE_DEFER) {
1584 goto out_unmap_regs;
1585 }
1586 } else if (as->caps.has_pdc_support) {
1587 as->use_pdc = true;
1588 }
1589
1590 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1591 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1592 SPI_MAX_DMA_XFER,
1593 &as->dma_addr_rx_bbuf,
1594 GFP_KERNEL | GFP_DMA);
1595 if (!as->addr_rx_bbuf) {
1596 as->use_dma = false;
1597 } else {
1598 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1599 SPI_MAX_DMA_XFER,
1600 &as->dma_addr_tx_bbuf,
1601 GFP_KERNEL | GFP_DMA);
1602 if (!as->addr_tx_bbuf) {
1603 as->use_dma = false;
1604 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1605 as->addr_rx_bbuf,
1606 as->dma_addr_rx_bbuf);
1607 }
1608 }
1609 if (!as->use_dma)
1610 dev_info(host->dev.parent,
1611 " can not allocate dma coherent memory\n");
1612 }
1613
1614 if (as->caps.has_dma_support && !as->use_dma)
1615 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1616
1617 if (as->use_pdc) {
1618 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1619 0, dev_name(&pdev->dev), host);
1620 } else {
1621 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1622 0, dev_name(&pdev->dev), host);
1623 }
1624 if (ret)
1625 goto out_unmap_regs;
1626
1627 /* Initialize the hardware */
1628 ret = clk_prepare_enable(clk);
1629 if (ret)
1630 goto out_free_irq;
1631
1632 as->spi_clk = clk_get_rate(clk);
1633
1634 as->fifo_size = 0;
1635 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1636 &as->fifo_size)) {
1637 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1638 }
1639
1640 atmel_spi_init(as);
1641
1642 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1643 pm_runtime_use_autosuspend(&pdev->dev);
1644 pm_runtime_set_active(&pdev->dev);
1645 pm_runtime_enable(&pdev->dev);
1646
1647 ret = devm_spi_register_controller(&pdev->dev, host);
1648 if (ret)
1649 goto out_free_dma;
1650
1651 /* go! */
1652 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1653 atmel_get_version(as), (unsigned long)regs->start,
1654 irq);
1655
1656 return 0;
1657
1658out_free_dma:
1659 pm_runtime_disable(&pdev->dev);
1660 pm_runtime_set_suspended(&pdev->dev);
1661
1662 if (as->use_dma)
1663 atmel_spi_release_dma(host);
1664
1665 spi_writel(as, CR, SPI_BIT(SWRST));
1666 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1667 clk_disable_unprepare(clk);
1668out_free_irq:
1669out_unmap_regs:
1670 spi_controller_put(host);
1671 return ret;
1672}
1673
1674static void atmel_spi_remove(struct platform_device *pdev)
1675{
1676 struct spi_controller *host = platform_get_drvdata(pdev);
1677 struct atmel_spi *as = spi_controller_get_devdata(host);
1678
1679 pm_runtime_get_sync(&pdev->dev);
1680
1681 /* reset the hardware and block queue progress */
1682 if (as->use_dma) {
1683 atmel_spi_stop_dma(host);
1684 atmel_spi_release_dma(host);
1685 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1686 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1687 as->addr_tx_bbuf,
1688 as->dma_addr_tx_bbuf);
1689 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1690 as->addr_rx_bbuf,
1691 as->dma_addr_rx_bbuf);
1692 }
1693 }
1694
1695 spin_lock_irq(&as->lock);
1696 spi_writel(as, CR, SPI_BIT(SWRST));
1697 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1698 spi_readl(as, SR);
1699 spin_unlock_irq(&as->lock);
1700
1701 clk_disable_unprepare(as->clk);
1702
1703 pm_runtime_put_noidle(&pdev->dev);
1704 pm_runtime_disable(&pdev->dev);
1705}
1706
1707static int atmel_spi_runtime_suspend(struct device *dev)
1708{
1709 struct spi_controller *host = dev_get_drvdata(dev);
1710 struct atmel_spi *as = spi_controller_get_devdata(host);
1711
1712 clk_disable_unprepare(as->clk);
1713 pinctrl_pm_select_sleep_state(dev);
1714
1715 return 0;
1716}
1717
1718static int atmel_spi_runtime_resume(struct device *dev)
1719{
1720 struct spi_controller *host = dev_get_drvdata(dev);
1721 struct atmel_spi *as = spi_controller_get_devdata(host);
1722
1723 pinctrl_pm_select_default_state(dev);
1724
1725 return clk_prepare_enable(as->clk);
1726}
1727
1728static int atmel_spi_suspend(struct device *dev)
1729{
1730 struct spi_controller *host = dev_get_drvdata(dev);
1731 int ret;
1732
1733 /* Stop the queue running */
1734 ret = spi_controller_suspend(host);
1735 if (ret)
1736 return ret;
1737
1738 if (!pm_runtime_suspended(dev))
1739 atmel_spi_runtime_suspend(dev);
1740
1741 return 0;
1742}
1743
1744static int atmel_spi_resume(struct device *dev)
1745{
1746 struct spi_controller *host = dev_get_drvdata(dev);
1747 struct atmel_spi *as = spi_controller_get_devdata(host);
1748 int ret;
1749
1750 ret = clk_prepare_enable(as->clk);
1751 if (ret)
1752 return ret;
1753
1754 atmel_spi_init(as);
1755
1756 clk_disable_unprepare(as->clk);
1757
1758 if (!pm_runtime_suspended(dev)) {
1759 ret = atmel_spi_runtime_resume(dev);
1760 if (ret)
1761 return ret;
1762 }
1763
1764 /* Start the queue running */
1765 return spi_controller_resume(host);
1766}
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771 atmel_spi_runtime_resume, NULL)
1772};
1773
1774static const struct of_device_id atmel_spi_dt_ids[] = {
1775 { .compatible = "atmel,at91rm9200-spi" },
1776 { /* sentinel */ }
1777};
1778
1779MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1780
1781static struct platform_driver atmel_spi_driver = {
1782 .driver = {
1783 .name = "atmel_spi",
1784 .pm = pm_ptr(&atmel_spi_pm_ops),
1785 .of_match_table = atmel_spi_dt_ids,
1786 },
1787 .probe = atmel_spi_probe,
1788 .remove_new = atmel_spi_remove,
1789};
1790module_platform_driver(atmel_spi_driver);
1791
1792MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794MODULE_LICENSE("GPL");
1795MODULE_ALIAS("platform:atmel_spi");
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmaengine.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/dma-atmel.h>
23#include <linux/of.h>
24
25#include <linux/io.h>
26#include <linux/gpio.h>
27#include <linux/of_gpio.h>
28#include <linux/pinctrl/consumer.h>
29#include <linux/pm_runtime.h>
30
31/* SPI register offsets */
32#define SPI_CR 0x0000
33#define SPI_MR 0x0004
34#define SPI_RDR 0x0008
35#define SPI_TDR 0x000c
36#define SPI_SR 0x0010
37#define SPI_IER 0x0014
38#define SPI_IDR 0x0018
39#define SPI_IMR 0x001c
40#define SPI_CSR0 0x0030
41#define SPI_CSR1 0x0034
42#define SPI_CSR2 0x0038
43#define SPI_CSR3 0x003c
44#define SPI_FMR 0x0040
45#define SPI_FLR 0x0044
46#define SPI_VERSION 0x00fc
47#define SPI_RPR 0x0100
48#define SPI_RCR 0x0104
49#define SPI_TPR 0x0108
50#define SPI_TCR 0x010c
51#define SPI_RNPR 0x0110
52#define SPI_RNCR 0x0114
53#define SPI_TNPR 0x0118
54#define SPI_TNCR 0x011c
55#define SPI_PTCR 0x0120
56#define SPI_PTSR 0x0124
57
58/* Bitfields in CR */
59#define SPI_SPIEN_OFFSET 0
60#define SPI_SPIEN_SIZE 1
61#define SPI_SPIDIS_OFFSET 1
62#define SPI_SPIDIS_SIZE 1
63#define SPI_SWRST_OFFSET 7
64#define SPI_SWRST_SIZE 1
65#define SPI_LASTXFER_OFFSET 24
66#define SPI_LASTXFER_SIZE 1
67#define SPI_TXFCLR_OFFSET 16
68#define SPI_TXFCLR_SIZE 1
69#define SPI_RXFCLR_OFFSET 17
70#define SPI_RXFCLR_SIZE 1
71#define SPI_FIFOEN_OFFSET 30
72#define SPI_FIFOEN_SIZE 1
73#define SPI_FIFODIS_OFFSET 31
74#define SPI_FIFODIS_SIZE 1
75
76/* Bitfields in MR */
77#define SPI_MSTR_OFFSET 0
78#define SPI_MSTR_SIZE 1
79#define SPI_PS_OFFSET 1
80#define SPI_PS_SIZE 1
81#define SPI_PCSDEC_OFFSET 2
82#define SPI_PCSDEC_SIZE 1
83#define SPI_FDIV_OFFSET 3
84#define SPI_FDIV_SIZE 1
85#define SPI_MODFDIS_OFFSET 4
86#define SPI_MODFDIS_SIZE 1
87#define SPI_WDRBT_OFFSET 5
88#define SPI_WDRBT_SIZE 1
89#define SPI_LLB_OFFSET 7
90#define SPI_LLB_SIZE 1
91#define SPI_PCS_OFFSET 16
92#define SPI_PCS_SIZE 4
93#define SPI_DLYBCS_OFFSET 24
94#define SPI_DLYBCS_SIZE 8
95
96/* Bitfields in RDR */
97#define SPI_RD_OFFSET 0
98#define SPI_RD_SIZE 16
99
100/* Bitfields in TDR */
101#define SPI_TD_OFFSET 0
102#define SPI_TD_SIZE 16
103
104/* Bitfields in SR */
105#define SPI_RDRF_OFFSET 0
106#define SPI_RDRF_SIZE 1
107#define SPI_TDRE_OFFSET 1
108#define SPI_TDRE_SIZE 1
109#define SPI_MODF_OFFSET 2
110#define SPI_MODF_SIZE 1
111#define SPI_OVRES_OFFSET 3
112#define SPI_OVRES_SIZE 1
113#define SPI_ENDRX_OFFSET 4
114#define SPI_ENDRX_SIZE 1
115#define SPI_ENDTX_OFFSET 5
116#define SPI_ENDTX_SIZE 1
117#define SPI_RXBUFF_OFFSET 6
118#define SPI_RXBUFF_SIZE 1
119#define SPI_TXBUFE_OFFSET 7
120#define SPI_TXBUFE_SIZE 1
121#define SPI_NSSR_OFFSET 8
122#define SPI_NSSR_SIZE 1
123#define SPI_TXEMPTY_OFFSET 9
124#define SPI_TXEMPTY_SIZE 1
125#define SPI_SPIENS_OFFSET 16
126#define SPI_SPIENS_SIZE 1
127#define SPI_TXFEF_OFFSET 24
128#define SPI_TXFEF_SIZE 1
129#define SPI_TXFFF_OFFSET 25
130#define SPI_TXFFF_SIZE 1
131#define SPI_TXFTHF_OFFSET 26
132#define SPI_TXFTHF_SIZE 1
133#define SPI_RXFEF_OFFSET 27
134#define SPI_RXFEF_SIZE 1
135#define SPI_RXFFF_OFFSET 28
136#define SPI_RXFFF_SIZE 1
137#define SPI_RXFTHF_OFFSET 29
138#define SPI_RXFTHF_SIZE 1
139#define SPI_TXFPTEF_OFFSET 30
140#define SPI_TXFPTEF_SIZE 1
141#define SPI_RXFPTEF_OFFSET 31
142#define SPI_RXFPTEF_SIZE 1
143
144/* Bitfields in CSR0 */
145#define SPI_CPOL_OFFSET 0
146#define SPI_CPOL_SIZE 1
147#define SPI_NCPHA_OFFSET 1
148#define SPI_NCPHA_SIZE 1
149#define SPI_CSAAT_OFFSET 3
150#define SPI_CSAAT_SIZE 1
151#define SPI_BITS_OFFSET 4
152#define SPI_BITS_SIZE 4
153#define SPI_SCBR_OFFSET 8
154#define SPI_SCBR_SIZE 8
155#define SPI_DLYBS_OFFSET 16
156#define SPI_DLYBS_SIZE 8
157#define SPI_DLYBCT_OFFSET 24
158#define SPI_DLYBCT_SIZE 8
159
160/* Bitfields in RCR */
161#define SPI_RXCTR_OFFSET 0
162#define SPI_RXCTR_SIZE 16
163
164/* Bitfields in TCR */
165#define SPI_TXCTR_OFFSET 0
166#define SPI_TXCTR_SIZE 16
167
168/* Bitfields in RNCR */
169#define SPI_RXNCR_OFFSET 0
170#define SPI_RXNCR_SIZE 16
171
172/* Bitfields in TNCR */
173#define SPI_TXNCR_OFFSET 0
174#define SPI_TXNCR_SIZE 16
175
176/* Bitfields in PTCR */
177#define SPI_RXTEN_OFFSET 0
178#define SPI_RXTEN_SIZE 1
179#define SPI_RXTDIS_OFFSET 1
180#define SPI_RXTDIS_SIZE 1
181#define SPI_TXTEN_OFFSET 8
182#define SPI_TXTEN_SIZE 1
183#define SPI_TXTDIS_OFFSET 9
184#define SPI_TXTDIS_SIZE 1
185
186/* Bitfields in FMR */
187#define SPI_TXRDYM_OFFSET 0
188#define SPI_TXRDYM_SIZE 2
189#define SPI_RXRDYM_OFFSET 4
190#define SPI_RXRDYM_SIZE 2
191#define SPI_TXFTHRES_OFFSET 16
192#define SPI_TXFTHRES_SIZE 6
193#define SPI_RXFTHRES_OFFSET 24
194#define SPI_RXFTHRES_SIZE 6
195
196/* Bitfields in FLR */
197#define SPI_TXFL_OFFSET 0
198#define SPI_TXFL_SIZE 6
199#define SPI_RXFL_OFFSET 16
200#define SPI_RXFL_SIZE 6
201
202/* Constants for BITS */
203#define SPI_BITS_8_BPT 0
204#define SPI_BITS_9_BPT 1
205#define SPI_BITS_10_BPT 2
206#define SPI_BITS_11_BPT 3
207#define SPI_BITS_12_BPT 4
208#define SPI_BITS_13_BPT 5
209#define SPI_BITS_14_BPT 6
210#define SPI_BITS_15_BPT 7
211#define SPI_BITS_16_BPT 8
212#define SPI_ONE_DATA 0
213#define SPI_TWO_DATA 1
214#define SPI_FOUR_DATA 2
215
216/* Bit manipulation macros */
217#define SPI_BIT(name) \
218 (1 << SPI_##name##_OFFSET)
219#define SPI_BF(name, value) \
220 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221#define SPI_BFEXT(name, value) \
222 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223#define SPI_BFINS(name, value, old) \
224 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 | SPI_BF(name, value))
226
227/* Register access macros */
228#ifdef CONFIG_AVR32
229#define spi_readl(port, reg) \
230 __raw_readl((port)->regs + SPI_##reg)
231#define spi_writel(port, reg, value) \
232 __raw_writel((value), (port)->regs + SPI_##reg)
233
234#define spi_readw(port, reg) \
235 __raw_readw((port)->regs + SPI_##reg)
236#define spi_writew(port, reg, value) \
237 __raw_writew((value), (port)->regs + SPI_##reg)
238
239#define spi_readb(port, reg) \
240 __raw_readb((port)->regs + SPI_##reg)
241#define spi_writeb(port, reg, value) \
242 __raw_writeb((value), (port)->regs + SPI_##reg)
243#else
244#define spi_readl(port, reg) \
245 readl_relaxed((port)->regs + SPI_##reg)
246#define spi_writel(port, reg, value) \
247 writel_relaxed((value), (port)->regs + SPI_##reg)
248
249#define spi_readw(port, reg) \
250 readw_relaxed((port)->regs + SPI_##reg)
251#define spi_writew(port, reg, value) \
252 writew_relaxed((value), (port)->regs + SPI_##reg)
253
254#define spi_readb(port, reg) \
255 readb_relaxed((port)->regs + SPI_##reg)
256#define spi_writeb(port, reg, value) \
257 writeb_relaxed((value), (port)->regs + SPI_##reg)
258#endif
259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260 * cache operations; better heuristics consider wordsize and bitrate.
261 */
262#define DMA_MIN_BYTES 16
263
264#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
265
266#define AUTOSUSPEND_TIMEOUT 2000
267
268struct atmel_spi_caps {
269 bool is_spi2;
270 bool has_wdrbt;
271 bool has_dma_support;
272 bool has_pdc_support;
273};
274
275/*
276 * The core SPI transfer engine just talks to a register bank to set up
277 * DMA transfers; transfer queue progress is driven by IRQs. The clock
278 * framework provides the base clock, subdivided for each spi_device.
279 */
280struct atmel_spi {
281 spinlock_t lock;
282 unsigned long flags;
283
284 phys_addr_t phybase;
285 void __iomem *regs;
286 int irq;
287 struct clk *clk;
288 struct platform_device *pdev;
289 unsigned long spi_clk;
290
291 struct spi_transfer *current_transfer;
292 int current_remaining_bytes;
293 int done_status;
294 dma_addr_t dma_addr_rx_bbuf;
295 dma_addr_t dma_addr_tx_bbuf;
296 void *addr_rx_bbuf;
297 void *addr_tx_bbuf;
298
299 struct completion xfer_completion;
300
301 struct atmel_spi_caps caps;
302
303 bool use_dma;
304 bool use_pdc;
305 bool use_cs_gpios;
306
307 bool keep_cs;
308 bool cs_active;
309
310 u32 fifo_size;
311};
312
313/* Controller-specific per-slave state */
314struct atmel_spi_device {
315 unsigned int npcs_pin;
316 u32 csr;
317};
318
319#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
320#define INVALID_DMA_ADDRESS 0xffffffff
321
322/*
323 * Version 2 of the SPI controller has
324 * - CR.LASTXFER
325 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
326 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
327 * - SPI_CSRx.CSAAT
328 * - SPI_CSRx.SBCR allows faster clocking
329 */
330static bool atmel_spi_is_v2(struct atmel_spi *as)
331{
332 return as->caps.is_spi2;
333}
334
335/*
336 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
337 * they assume that spi slave device state will not change on deselect, so
338 * that automagic deselection is OK. ("NPCSx rises if no data is to be
339 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
340 * controllers have CSAAT and friends.
341 *
342 * Since the CSAAT functionality is a bit weird on newer controllers as
343 * well, we use GPIO to control nCSx pins on all controllers, updating
344 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
345 * support active-high chipselects despite the controller's belief that
346 * only active-low devices/systems exists.
347 *
348 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
349 * right when driven with GPIO. ("Mode Fault does not allow more than one
350 * Master on Chip Select 0.") No workaround exists for that ... so for
351 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
352 * and (c) will trigger that first erratum in some cases.
353 */
354
355static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356{
357 struct atmel_spi_device *asd = spi->controller_state;
358 unsigned active = spi->mode & SPI_CS_HIGH;
359 u32 mr;
360
361 if (atmel_spi_is_v2(as)) {
362 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
363 /* For the low SPI version, there is a issue that PDC transfer
364 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
365 */
366 spi_writel(as, CSR0, asd->csr);
367 if (as->caps.has_wdrbt) {
368 spi_writel(as, MR,
369 SPI_BF(PCS, ~(0x01 << spi->chip_select))
370 | SPI_BIT(WDRBT)
371 | SPI_BIT(MODFDIS)
372 | SPI_BIT(MSTR));
373 } else {
374 spi_writel(as, MR,
375 SPI_BF(PCS, ~(0x01 << spi->chip_select))
376 | SPI_BIT(MODFDIS)
377 | SPI_BIT(MSTR));
378 }
379
380 mr = spi_readl(as, MR);
381 if (as->use_cs_gpios)
382 gpio_set_value(asd->npcs_pin, active);
383 } else {
384 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
385 int i;
386 u32 csr;
387
388 /* Make sure clock polarity is correct */
389 for (i = 0; i < spi->master->num_chipselect; i++) {
390 csr = spi_readl(as, CSR0 + 4 * i);
391 if ((csr ^ cpol) & SPI_BIT(CPOL))
392 spi_writel(as, CSR0 + 4 * i,
393 csr ^ SPI_BIT(CPOL));
394 }
395
396 mr = spi_readl(as, MR);
397 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
398 if (as->use_cs_gpios && spi->chip_select != 0)
399 gpio_set_value(asd->npcs_pin, active);
400 spi_writel(as, MR, mr);
401 }
402
403 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
404 asd->npcs_pin, active ? " (high)" : "",
405 mr);
406}
407
408static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
409{
410 struct atmel_spi_device *asd = spi->controller_state;
411 unsigned active = spi->mode & SPI_CS_HIGH;
412 u32 mr;
413
414 /* only deactivate *this* device; sometimes transfers to
415 * another device may be active when this routine is called.
416 */
417 mr = spi_readl(as, MR);
418 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
419 mr = SPI_BFINS(PCS, 0xf, mr);
420 spi_writel(as, MR, mr);
421 }
422
423 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
424 asd->npcs_pin, active ? " (low)" : "",
425 mr);
426
427 if (!as->use_cs_gpios)
428 spi_writel(as, CR, SPI_BIT(LASTXFER));
429 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
430 gpio_set_value(asd->npcs_pin, !active);
431}
432
433static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
434{
435 spin_lock_irqsave(&as->lock, as->flags);
436}
437
438static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
439{
440 spin_unlock_irqrestore(&as->lock, as->flags);
441}
442
443static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
444{
445 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
446}
447
448static inline bool atmel_spi_use_dma(struct atmel_spi *as,
449 struct spi_transfer *xfer)
450{
451 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
452}
453
454static bool atmel_spi_can_dma(struct spi_master *master,
455 struct spi_device *spi,
456 struct spi_transfer *xfer)
457{
458 struct atmel_spi *as = spi_master_get_devdata(master);
459
460 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
461 return atmel_spi_use_dma(as, xfer) &&
462 !atmel_spi_is_vmalloc_xfer(xfer);
463 else
464 return atmel_spi_use_dma(as, xfer);
465
466}
467
468static int atmel_spi_dma_slave_config(struct atmel_spi *as,
469 struct dma_slave_config *slave_config,
470 u8 bits_per_word)
471{
472 struct spi_master *master = platform_get_drvdata(as->pdev);
473 int err = 0;
474
475 if (bits_per_word > 8) {
476 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
477 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
478 } else {
479 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
480 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
481 }
482
483 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
484 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
485 slave_config->src_maxburst = 1;
486 slave_config->dst_maxburst = 1;
487 slave_config->device_fc = false;
488
489 /*
490 * This driver uses fixed peripheral select mode (PS bit set to '0' in
491 * the Mode Register).
492 * So according to the datasheet, when FIFOs are available (and
493 * enabled), the Transmit FIFO operates in Multiple Data Mode.
494 * In this mode, up to 2 data, not 4, can be written into the Transmit
495 * Data Register in a single access.
496 * However, the first data has to be written into the lowest 16 bits and
497 * the second data into the highest 16 bits of the Transmit
498 * Data Register. For 8bit data (the most frequent case), it would
499 * require to rework tx_buf so each data would actualy fit 16 bits.
500 * So we'd rather write only one data at the time. Hence the transmit
501 * path works the same whether FIFOs are available (and enabled) or not.
502 */
503 slave_config->direction = DMA_MEM_TO_DEV;
504 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
505 dev_err(&as->pdev->dev,
506 "failed to configure tx dma channel\n");
507 err = -EINVAL;
508 }
509
510 /*
511 * This driver configures the spi controller for master mode (MSTR bit
512 * set to '1' in the Mode Register).
513 * So according to the datasheet, when FIFOs are available (and
514 * enabled), the Receive FIFO operates in Single Data Mode.
515 * So the receive path works the same whether FIFOs are available (and
516 * enabled) or not.
517 */
518 slave_config->direction = DMA_DEV_TO_MEM;
519 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
520 dev_err(&as->pdev->dev,
521 "failed to configure rx dma channel\n");
522 err = -EINVAL;
523 }
524
525 return err;
526}
527
528static int atmel_spi_configure_dma(struct spi_master *master,
529 struct atmel_spi *as)
530{
531 struct dma_slave_config slave_config;
532 struct device *dev = &as->pdev->dev;
533 int err;
534
535 dma_cap_mask_t mask;
536 dma_cap_zero(mask);
537 dma_cap_set(DMA_SLAVE, mask);
538
539 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
540 if (IS_ERR(master->dma_tx)) {
541 err = PTR_ERR(master->dma_tx);
542 if (err == -EPROBE_DEFER) {
543 dev_warn(dev, "no DMA channel available at the moment\n");
544 goto error_clear;
545 }
546 dev_err(dev,
547 "DMA TX channel not available, SPI unable to use DMA\n");
548 err = -EBUSY;
549 goto error_clear;
550 }
551
552 /*
553 * No reason to check EPROBE_DEFER here since we have already requested
554 * tx channel. If it fails here, it's for another reason.
555 */
556 master->dma_rx = dma_request_slave_channel(dev, "rx");
557
558 if (!master->dma_rx) {
559 dev_err(dev,
560 "DMA RX channel not available, SPI unable to use DMA\n");
561 err = -EBUSY;
562 goto error;
563 }
564
565 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
566 if (err)
567 goto error;
568
569 dev_info(&as->pdev->dev,
570 "Using %s (tx) and %s (rx) for DMA transfers\n",
571 dma_chan_name(master->dma_tx),
572 dma_chan_name(master->dma_rx));
573
574 return 0;
575error:
576 if (master->dma_rx)
577 dma_release_channel(master->dma_rx);
578 if (!IS_ERR(master->dma_tx))
579 dma_release_channel(master->dma_tx);
580error_clear:
581 master->dma_tx = master->dma_rx = NULL;
582 return err;
583}
584
585static void atmel_spi_stop_dma(struct spi_master *master)
586{
587 if (master->dma_rx)
588 dmaengine_terminate_all(master->dma_rx);
589 if (master->dma_tx)
590 dmaengine_terminate_all(master->dma_tx);
591}
592
593static void atmel_spi_release_dma(struct spi_master *master)
594{
595 if (master->dma_rx) {
596 dma_release_channel(master->dma_rx);
597 master->dma_rx = NULL;
598 }
599 if (master->dma_tx) {
600 dma_release_channel(master->dma_tx);
601 master->dma_tx = NULL;
602 }
603}
604
605/* This function is called by the DMA driver from tasklet context */
606static void dma_callback(void *data)
607{
608 struct spi_master *master = data;
609 struct atmel_spi *as = spi_master_get_devdata(master);
610
611 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
612 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
613 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
614 as->current_transfer->len);
615 }
616 complete(&as->xfer_completion);
617}
618
619/*
620 * Next transfer using PIO without FIFO.
621 */
622static void atmel_spi_next_xfer_single(struct spi_master *master,
623 struct spi_transfer *xfer)
624{
625 struct atmel_spi *as = spi_master_get_devdata(master);
626 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
627
628 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
629
630 /* Make sure data is not remaining in RDR */
631 spi_readl(as, RDR);
632 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
633 spi_readl(as, RDR);
634 cpu_relax();
635 }
636
637 if (xfer->bits_per_word > 8)
638 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
639 else
640 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
641
642 dev_dbg(master->dev.parent,
643 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
644 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
645 xfer->bits_per_word);
646
647 /* Enable relevant interrupts */
648 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
649}
650
651/*
652 * Next transfer using PIO with FIFO.
653 */
654static void atmel_spi_next_xfer_fifo(struct spi_master *master,
655 struct spi_transfer *xfer)
656{
657 struct atmel_spi *as = spi_master_get_devdata(master);
658 u32 current_remaining_data, num_data;
659 u32 offset = xfer->len - as->current_remaining_bytes;
660 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
661 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
662 u16 td0, td1;
663 u32 fifomr;
664
665 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
666
667 /* Compute the number of data to transfer in the current iteration */
668 current_remaining_data = ((xfer->bits_per_word > 8) ?
669 ((u32)as->current_remaining_bytes >> 1) :
670 (u32)as->current_remaining_bytes);
671 num_data = min(current_remaining_data, as->fifo_size);
672
673 /* Flush RX and TX FIFOs */
674 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
675 while (spi_readl(as, FLR))
676 cpu_relax();
677
678 /* Set RX FIFO Threshold to the number of data to transfer */
679 fifomr = spi_readl(as, FMR);
680 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
681
682 /* Clear FIFO flags in the Status Register, especially RXFTHF */
683 (void)spi_readl(as, SR);
684
685 /* Fill TX FIFO */
686 while (num_data >= 2) {
687 if (xfer->bits_per_word > 8) {
688 td0 = *words++;
689 td1 = *words++;
690 } else {
691 td0 = *bytes++;
692 td1 = *bytes++;
693 }
694
695 spi_writel(as, TDR, (td1 << 16) | td0);
696 num_data -= 2;
697 }
698
699 if (num_data) {
700 if (xfer->bits_per_word > 8)
701 td0 = *words++;
702 else
703 td0 = *bytes++;
704
705 spi_writew(as, TDR, td0);
706 num_data--;
707 }
708
709 dev_dbg(master->dev.parent,
710 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
711 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
712 xfer->bits_per_word);
713
714 /*
715 * Enable RX FIFO Threshold Flag interrupt to be notified about
716 * transfer completion.
717 */
718 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
719}
720
721/*
722 * Next transfer using PIO.
723 */
724static void atmel_spi_next_xfer_pio(struct spi_master *master,
725 struct spi_transfer *xfer)
726{
727 struct atmel_spi *as = spi_master_get_devdata(master);
728
729 if (as->fifo_size)
730 atmel_spi_next_xfer_fifo(master, xfer);
731 else
732 atmel_spi_next_xfer_single(master, xfer);
733}
734
735/*
736 * Submit next transfer for DMA.
737 */
738static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
739 struct spi_transfer *xfer,
740 u32 *plen)
741{
742 struct atmel_spi *as = spi_master_get_devdata(master);
743 struct dma_chan *rxchan = master->dma_rx;
744 struct dma_chan *txchan = master->dma_tx;
745 struct dma_async_tx_descriptor *rxdesc;
746 struct dma_async_tx_descriptor *txdesc;
747 struct dma_slave_config slave_config;
748 dma_cookie_t cookie;
749
750 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
751
752 /* Check that the channels are available */
753 if (!rxchan || !txchan)
754 return -ENODEV;
755
756 /* release lock for DMA operations */
757 atmel_spi_unlock(as);
758
759 *plen = xfer->len;
760
761 if (atmel_spi_dma_slave_config(as, &slave_config,
762 xfer->bits_per_word))
763 goto err_exit;
764
765 /* Send both scatterlists */
766 if (atmel_spi_is_vmalloc_xfer(xfer) &&
767 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
768 rxdesc = dmaengine_prep_slave_single(rxchan,
769 as->dma_addr_rx_bbuf,
770 xfer->len,
771 DMA_DEV_TO_MEM,
772 DMA_PREP_INTERRUPT |
773 DMA_CTRL_ACK);
774 } else {
775 rxdesc = dmaengine_prep_slave_sg(rxchan,
776 xfer->rx_sg.sgl,
777 xfer->rx_sg.nents,
778 DMA_DEV_TO_MEM,
779 DMA_PREP_INTERRUPT |
780 DMA_CTRL_ACK);
781 }
782 if (!rxdesc)
783 goto err_dma;
784
785 if (atmel_spi_is_vmalloc_xfer(xfer) &&
786 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
787 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
788 txdesc = dmaengine_prep_slave_single(txchan,
789 as->dma_addr_tx_bbuf,
790 xfer->len, DMA_MEM_TO_DEV,
791 DMA_PREP_INTERRUPT |
792 DMA_CTRL_ACK);
793 } else {
794 txdesc = dmaengine_prep_slave_sg(txchan,
795 xfer->tx_sg.sgl,
796 xfer->tx_sg.nents,
797 DMA_MEM_TO_DEV,
798 DMA_PREP_INTERRUPT |
799 DMA_CTRL_ACK);
800 }
801 if (!txdesc)
802 goto err_dma;
803
804 dev_dbg(master->dev.parent,
805 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
806 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
807 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
808
809 /* Enable relevant interrupts */
810 spi_writel(as, IER, SPI_BIT(OVRES));
811
812 /* Put the callback on the RX transfer only, that should finish last */
813 rxdesc->callback = dma_callback;
814 rxdesc->callback_param = master;
815
816 /* Submit and fire RX and TX with TX last so we're ready to read! */
817 cookie = rxdesc->tx_submit(rxdesc);
818 if (dma_submit_error(cookie))
819 goto err_dma;
820 cookie = txdesc->tx_submit(txdesc);
821 if (dma_submit_error(cookie))
822 goto err_dma;
823 rxchan->device->device_issue_pending(rxchan);
824 txchan->device->device_issue_pending(txchan);
825
826 /* take back lock */
827 atmel_spi_lock(as);
828 return 0;
829
830err_dma:
831 spi_writel(as, IDR, SPI_BIT(OVRES));
832 atmel_spi_stop_dma(master);
833err_exit:
834 atmel_spi_lock(as);
835 return -ENOMEM;
836}
837
838static void atmel_spi_next_xfer_data(struct spi_master *master,
839 struct spi_transfer *xfer,
840 dma_addr_t *tx_dma,
841 dma_addr_t *rx_dma,
842 u32 *plen)
843{
844 *rx_dma = xfer->rx_dma + xfer->len - *plen;
845 *tx_dma = xfer->tx_dma + xfer->len - *plen;
846 if (*plen > master->max_dma_len)
847 *plen = master->max_dma_len;
848}
849
850static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
851 struct spi_device *spi,
852 struct spi_transfer *xfer)
853{
854 u32 scbr, csr;
855 unsigned long bus_hz;
856
857 /* v1 chips start out at half the peripheral bus speed. */
858 bus_hz = as->spi_clk;
859 if (!atmel_spi_is_v2(as))
860 bus_hz /= 2;
861
862 /*
863 * Calculate the lowest divider that satisfies the
864 * constraint, assuming div32/fdiv/mbz == 0.
865 */
866 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
867
868 /*
869 * If the resulting divider doesn't fit into the
870 * register bitfield, we can't satisfy the constraint.
871 */
872 if (scbr >= (1 << SPI_SCBR_SIZE)) {
873 dev_err(&spi->dev,
874 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
875 xfer->speed_hz, scbr, bus_hz/255);
876 return -EINVAL;
877 }
878 if (scbr == 0) {
879 dev_err(&spi->dev,
880 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
881 xfer->speed_hz, scbr, bus_hz);
882 return -EINVAL;
883 }
884 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
885 csr = SPI_BFINS(SCBR, scbr, csr);
886 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
887
888 return 0;
889}
890
891/*
892 * Submit next transfer for PDC.
893 * lock is held, spi irq is blocked
894 */
895static void atmel_spi_pdc_next_xfer(struct spi_master *master,
896 struct spi_message *msg,
897 struct spi_transfer *xfer)
898{
899 struct atmel_spi *as = spi_master_get_devdata(master);
900 u32 len;
901 dma_addr_t tx_dma, rx_dma;
902
903 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
904
905 len = as->current_remaining_bytes;
906 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
907 as->current_remaining_bytes -= len;
908
909 spi_writel(as, RPR, rx_dma);
910 spi_writel(as, TPR, tx_dma);
911
912 if (msg->spi->bits_per_word > 8)
913 len >>= 1;
914 spi_writel(as, RCR, len);
915 spi_writel(as, TCR, len);
916
917 dev_dbg(&msg->spi->dev,
918 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919 xfer, xfer->len, xfer->tx_buf,
920 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
921 (unsigned long long)xfer->rx_dma);
922
923 if (as->current_remaining_bytes) {
924 len = as->current_remaining_bytes;
925 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
926 as->current_remaining_bytes -= len;
927
928 spi_writel(as, RNPR, rx_dma);
929 spi_writel(as, TNPR, tx_dma);
930
931 if (msg->spi->bits_per_word > 8)
932 len >>= 1;
933 spi_writel(as, RNCR, len);
934 spi_writel(as, TNCR, len);
935
936 dev_dbg(&msg->spi->dev,
937 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
938 xfer, xfer->len, xfer->tx_buf,
939 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
940 (unsigned long long)xfer->rx_dma);
941 }
942
943 /* REVISIT: We're waiting for RXBUFF before we start the next
944 * transfer because we need to handle some difficult timing
945 * issues otherwise. If we wait for TXBUFE in one transfer and
946 * then starts waiting for RXBUFF in the next, it's difficult
947 * to tell the difference between the RXBUFF interrupt we're
948 * actually waiting for and the RXBUFF interrupt of the
949 * previous transfer.
950 *
951 * It should be doable, though. Just not now...
952 */
953 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
954 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
955}
956
957/*
958 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
959 * - The buffer is either valid for CPU access, else NULL
960 * - If the buffer is valid, so is its DMA address
961 *
962 * This driver manages the dma address unless message->is_dma_mapped.
963 */
964static int
965atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
966{
967 struct device *dev = &as->pdev->dev;
968
969 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
970 if (xfer->tx_buf) {
971 /* tx_buf is a const void* where we need a void * for the dma
972 * mapping */
973 void *nonconst_tx = (void *)xfer->tx_buf;
974
975 xfer->tx_dma = dma_map_single(dev,
976 nonconst_tx, xfer->len,
977 DMA_TO_DEVICE);
978 if (dma_mapping_error(dev, xfer->tx_dma))
979 return -ENOMEM;
980 }
981 if (xfer->rx_buf) {
982 xfer->rx_dma = dma_map_single(dev,
983 xfer->rx_buf, xfer->len,
984 DMA_FROM_DEVICE);
985 if (dma_mapping_error(dev, xfer->rx_dma)) {
986 if (xfer->tx_buf)
987 dma_unmap_single(dev,
988 xfer->tx_dma, xfer->len,
989 DMA_TO_DEVICE);
990 return -ENOMEM;
991 }
992 }
993 return 0;
994}
995
996static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
997 struct spi_transfer *xfer)
998{
999 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1000 dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001 xfer->len, DMA_TO_DEVICE);
1002 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1003 dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004 xfer->len, DMA_FROM_DEVICE);
1005}
1006
1007static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1008{
1009 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1010}
1011
1012static void
1013atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014{
1015 u8 *rxp;
1016 u16 *rxp16;
1017 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1018
1019 if (xfer->bits_per_word > 8) {
1020 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1021 *rxp16 = spi_readl(as, RDR);
1022 } else {
1023 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1024 *rxp = spi_readl(as, RDR);
1025 }
1026 if (xfer->bits_per_word > 8) {
1027 if (as->current_remaining_bytes > 2)
1028 as->current_remaining_bytes -= 2;
1029 else
1030 as->current_remaining_bytes = 0;
1031 } else {
1032 as->current_remaining_bytes--;
1033 }
1034}
1035
1036static void
1037atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038{
1039 u32 fifolr = spi_readl(as, FLR);
1040 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1041 u32 offset = xfer->len - as->current_remaining_bytes;
1042 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1043 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1044 u16 rd; /* RD field is the lowest 16 bits of RDR */
1045
1046 /* Update the number of remaining bytes to transfer */
1047 num_bytes = ((xfer->bits_per_word > 8) ?
1048 (num_data << 1) :
1049 num_data);
1050
1051 if (as->current_remaining_bytes > num_bytes)
1052 as->current_remaining_bytes -= num_bytes;
1053 else
1054 as->current_remaining_bytes = 0;
1055
1056 /* Handle odd number of bytes when data are more than 8bit width */
1057 if (xfer->bits_per_word > 8)
1058 as->current_remaining_bytes &= ~0x1;
1059
1060 /* Read data */
1061 while (num_data) {
1062 rd = spi_readl(as, RDR);
1063 if (xfer->bits_per_word > 8)
1064 *words++ = rd;
1065 else
1066 *bytes++ = rd;
1067 num_data--;
1068 }
1069}
1070
1071/* Called from IRQ
1072 *
1073 * Must update "current_remaining_bytes" to keep track of data
1074 * to transfer.
1075 */
1076static void
1077atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078{
1079 if (as->fifo_size)
1080 atmel_spi_pump_fifo_data(as, xfer);
1081 else
1082 atmel_spi_pump_single_data(as, xfer);
1083}
1084
1085/* Interrupt
1086 *
1087 * No need for locking in this Interrupt handler: done_status is the
1088 * only information modified.
1089 */
1090static irqreturn_t
1091atmel_spi_pio_interrupt(int irq, void *dev_id)
1092{
1093 struct spi_master *master = dev_id;
1094 struct atmel_spi *as = spi_master_get_devdata(master);
1095 u32 status, pending, imr;
1096 struct spi_transfer *xfer;
1097 int ret = IRQ_NONE;
1098
1099 imr = spi_readl(as, IMR);
1100 status = spi_readl(as, SR);
1101 pending = status & imr;
1102
1103 if (pending & SPI_BIT(OVRES)) {
1104 ret = IRQ_HANDLED;
1105 spi_writel(as, IDR, SPI_BIT(OVRES));
1106 dev_warn(master->dev.parent, "overrun\n");
1107
1108 /*
1109 * When we get an overrun, we disregard the current
1110 * transfer. Data will not be copied back from any
1111 * bounce buffer and msg->actual_len will not be
1112 * updated with the last xfer.
1113 *
1114 * We will also not process any remaning transfers in
1115 * the message.
1116 */
1117 as->done_status = -EIO;
1118 smp_wmb();
1119
1120 /* Clear any overrun happening while cleaning up */
1121 spi_readl(as, SR);
1122
1123 complete(&as->xfer_completion);
1124
1125 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126 atmel_spi_lock(as);
1127
1128 if (as->current_remaining_bytes) {
1129 ret = IRQ_HANDLED;
1130 xfer = as->current_transfer;
1131 atmel_spi_pump_pio_data(as, xfer);
1132 if (!as->current_remaining_bytes)
1133 spi_writel(as, IDR, pending);
1134
1135 complete(&as->xfer_completion);
1136 }
1137
1138 atmel_spi_unlock(as);
1139 } else {
1140 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1141 ret = IRQ_HANDLED;
1142 spi_writel(as, IDR, pending);
1143 }
1144
1145 return ret;
1146}
1147
1148static irqreturn_t
1149atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150{
1151 struct spi_master *master = dev_id;
1152 struct atmel_spi *as = spi_master_get_devdata(master);
1153 u32 status, pending, imr;
1154 int ret = IRQ_NONE;
1155
1156 imr = spi_readl(as, IMR);
1157 status = spi_readl(as, SR);
1158 pending = status & imr;
1159
1160 if (pending & SPI_BIT(OVRES)) {
1161
1162 ret = IRQ_HANDLED;
1163
1164 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165 | SPI_BIT(OVRES)));
1166
1167 /* Clear any overrun happening while cleaning up */
1168 spi_readl(as, SR);
1169
1170 as->done_status = -EIO;
1171
1172 complete(&as->xfer_completion);
1173
1174 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175 ret = IRQ_HANDLED;
1176
1177 spi_writel(as, IDR, pending);
1178
1179 complete(&as->xfer_completion);
1180 }
1181
1182 return ret;
1183}
1184
1185static int atmel_spi_setup(struct spi_device *spi)
1186{
1187 struct atmel_spi *as;
1188 struct atmel_spi_device *asd;
1189 u32 csr;
1190 unsigned int bits = spi->bits_per_word;
1191 unsigned int npcs_pin;
1192
1193 as = spi_master_get_devdata(spi->master);
1194
1195 /* see notes above re chipselect */
1196 if (!atmel_spi_is_v2(as)
1197 && spi->chip_select == 0
1198 && (spi->mode & SPI_CS_HIGH)) {
1199 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1200 return -EINVAL;
1201 }
1202
1203 csr = SPI_BF(BITS, bits - 8);
1204 if (spi->mode & SPI_CPOL)
1205 csr |= SPI_BIT(CPOL);
1206 if (!(spi->mode & SPI_CPHA))
1207 csr |= SPI_BIT(NCPHA);
1208 if (!as->use_cs_gpios)
1209 csr |= SPI_BIT(CSAAT);
1210
1211 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1212 *
1213 * DLYBCT would add delays between words, slowing down transfers.
1214 * It could potentially be useful to cope with DMA bottlenecks, but
1215 * in those cases it's probably best to just use a lower bitrate.
1216 */
1217 csr |= SPI_BF(DLYBS, 0);
1218 csr |= SPI_BF(DLYBCT, 0);
1219
1220 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221 npcs_pin = (unsigned long)spi->controller_data;
1222
1223 if (!as->use_cs_gpios)
1224 npcs_pin = spi->chip_select;
1225 else if (gpio_is_valid(spi->cs_gpio))
1226 npcs_pin = spi->cs_gpio;
1227
1228 asd = spi->controller_state;
1229 if (!asd) {
1230 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1231 if (!asd)
1232 return -ENOMEM;
1233
1234 if (as->use_cs_gpios)
1235 gpio_direction_output(npcs_pin,
1236 !(spi->mode & SPI_CS_HIGH));
1237
1238 asd->npcs_pin = npcs_pin;
1239 spi->controller_state = asd;
1240 }
1241
1242 asd->csr = csr;
1243
1244 dev_dbg(&spi->dev,
1245 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246 bits, spi->mode, spi->chip_select, csr);
1247
1248 if (!atmel_spi_is_v2(as))
1249 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250
1251 return 0;
1252}
1253
1254static int atmel_spi_one_transfer(struct spi_master *master,
1255 struct spi_message *msg,
1256 struct spi_transfer *xfer)
1257{
1258 struct atmel_spi *as;
1259 struct spi_device *spi = msg->spi;
1260 u8 bits;
1261 u32 len;
1262 struct atmel_spi_device *asd;
1263 int timeout;
1264 int ret;
1265 unsigned long dma_timeout;
1266
1267 as = spi_master_get_devdata(master);
1268
1269 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1270 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271 return -EINVAL;
1272 }
1273
1274 asd = spi->controller_state;
1275 bits = (asd->csr >> 4) & 0xf;
1276 if (bits != xfer->bits_per_word - 8) {
1277 dev_dbg(&spi->dev,
1278 "you can't yet change bits_per_word in transfers\n");
1279 return -ENOPROTOOPT;
1280 }
1281
1282 /*
1283 * DMA map early, for performance (empties dcache ASAP) and
1284 * better fault reporting.
1285 */
1286 if ((!msg->is_dma_mapped)
1287 && as->use_pdc) {
1288 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1289 return -ENOMEM;
1290 }
1291
1292 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293
1294 as->done_status = 0;
1295 as->current_transfer = xfer;
1296 as->current_remaining_bytes = xfer->len;
1297 while (as->current_remaining_bytes) {
1298 reinit_completion(&as->xfer_completion);
1299
1300 if (as->use_pdc) {
1301 atmel_spi_pdc_next_xfer(master, msg, xfer);
1302 } else if (atmel_spi_use_dma(as, xfer)) {
1303 len = as->current_remaining_bytes;
1304 ret = atmel_spi_next_xfer_dma_submit(master,
1305 xfer, &len);
1306 if (ret) {
1307 dev_err(&spi->dev,
1308 "unable to use DMA, fallback to PIO\n");
1309 atmel_spi_next_xfer_pio(master, xfer);
1310 } else {
1311 as->current_remaining_bytes -= len;
1312 if (as->current_remaining_bytes < 0)
1313 as->current_remaining_bytes = 0;
1314 }
1315 } else {
1316 atmel_spi_next_xfer_pio(master, xfer);
1317 }
1318
1319 /* interrupts are disabled, so free the lock for schedule */
1320 atmel_spi_unlock(as);
1321 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1322 SPI_DMA_TIMEOUT);
1323 atmel_spi_lock(as);
1324 if (WARN_ON(dma_timeout == 0)) {
1325 dev_err(&spi->dev, "spi transfer timeout\n");
1326 as->done_status = -EIO;
1327 }
1328
1329 if (as->done_status)
1330 break;
1331 }
1332
1333 if (as->done_status) {
1334 if (as->use_pdc) {
1335 dev_warn(master->dev.parent,
1336 "overrun (%u/%u remaining)\n",
1337 spi_readl(as, TCR), spi_readl(as, RCR));
1338
1339 /*
1340 * Clean up DMA registers and make sure the data
1341 * registers are empty.
1342 */
1343 spi_writel(as, RNCR, 0);
1344 spi_writel(as, TNCR, 0);
1345 spi_writel(as, RCR, 0);
1346 spi_writel(as, TCR, 0);
1347 for (timeout = 1000; timeout; timeout--)
1348 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1349 break;
1350 if (!timeout)
1351 dev_warn(master->dev.parent,
1352 "timeout waiting for TXEMPTY");
1353 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1354 spi_readl(as, RDR);
1355
1356 /* Clear any overrun happening while cleaning up */
1357 spi_readl(as, SR);
1358
1359 } else if (atmel_spi_use_dma(as, xfer)) {
1360 atmel_spi_stop_dma(master);
1361 }
1362
1363 if (!msg->is_dma_mapped
1364 && as->use_pdc)
1365 atmel_spi_dma_unmap_xfer(master, xfer);
1366
1367 return 0;
1368
1369 } else {
1370 /* only update length if no error */
1371 msg->actual_length += xfer->len;
1372 }
1373
1374 if (!msg->is_dma_mapped
1375 && as->use_pdc)
1376 atmel_spi_dma_unmap_xfer(master, xfer);
1377
1378 if (xfer->delay_usecs)
1379 udelay(xfer->delay_usecs);
1380
1381 if (xfer->cs_change) {
1382 if (list_is_last(&xfer->transfer_list,
1383 &msg->transfers)) {
1384 as->keep_cs = true;
1385 } else {
1386 as->cs_active = !as->cs_active;
1387 if (as->cs_active)
1388 cs_activate(as, msg->spi);
1389 else
1390 cs_deactivate(as, msg->spi);
1391 }
1392 }
1393
1394 return 0;
1395}
1396
1397static int atmel_spi_transfer_one_message(struct spi_master *master,
1398 struct spi_message *msg)
1399{
1400 struct atmel_spi *as;
1401 struct spi_transfer *xfer;
1402 struct spi_device *spi = msg->spi;
1403 int ret = 0;
1404
1405 as = spi_master_get_devdata(master);
1406
1407 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1408 msg, dev_name(&spi->dev));
1409
1410 atmel_spi_lock(as);
1411 cs_activate(as, spi);
1412
1413 as->cs_active = true;
1414 as->keep_cs = false;
1415
1416 msg->status = 0;
1417 msg->actual_length = 0;
1418
1419 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420 ret = atmel_spi_one_transfer(master, msg, xfer);
1421 if (ret)
1422 goto msg_done;
1423 }
1424
1425 if (as->use_pdc)
1426 atmel_spi_disable_pdc_transfer(as);
1427
1428 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429 dev_dbg(&spi->dev,
1430 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431 xfer, xfer->len,
1432 xfer->tx_buf, &xfer->tx_dma,
1433 xfer->rx_buf, &xfer->rx_dma);
1434 }
1435
1436msg_done:
1437 if (!as->keep_cs)
1438 cs_deactivate(as, msg->spi);
1439
1440 atmel_spi_unlock(as);
1441
1442 msg->status = as->done_status;
1443 spi_finalize_current_message(spi->master);
1444
1445 return ret;
1446}
1447
1448static void atmel_spi_cleanup(struct spi_device *spi)
1449{
1450 struct atmel_spi_device *asd = spi->controller_state;
1451
1452 if (!asd)
1453 return;
1454
1455 spi->controller_state = NULL;
1456 kfree(asd);
1457}
1458
1459static inline unsigned int atmel_get_version(struct atmel_spi *as)
1460{
1461 return spi_readl(as, VERSION) & 0x00000fff;
1462}
1463
1464static void atmel_get_caps(struct atmel_spi *as)
1465{
1466 unsigned int version;
1467
1468 version = atmel_get_version(as);
1469
1470 as->caps.is_spi2 = version > 0x121;
1471 as->caps.has_wdrbt = version >= 0x210;
1472 as->caps.has_dma_support = version >= 0x212;
1473 as->caps.has_pdc_support = version < 0x212;
1474}
1475
1476/*-------------------------------------------------------------------------*/
1477static int atmel_spi_gpio_cs(struct platform_device *pdev)
1478{
1479 struct spi_master *master = platform_get_drvdata(pdev);
1480 struct atmel_spi *as = spi_master_get_devdata(master);
1481 struct device_node *np = master->dev.of_node;
1482 int i;
1483 int ret = 0;
1484 int nb = 0;
1485
1486 if (!as->use_cs_gpios)
1487 return 0;
1488
1489 if (!np)
1490 return 0;
1491
1492 nb = of_gpio_named_count(np, "cs-gpios");
1493 for (i = 0; i < nb; i++) {
1494 int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1495 "cs-gpios", i);
1496
1497 if (cs_gpio == -EPROBE_DEFER)
1498 return cs_gpio;
1499
1500 if (gpio_is_valid(cs_gpio)) {
1501 ret = devm_gpio_request(&pdev->dev, cs_gpio,
1502 dev_name(&pdev->dev));
1503 if (ret)
1504 return ret;
1505 }
1506 }
1507
1508 return 0;
1509}
1510
1511static void atmel_spi_init(struct atmel_spi *as)
1512{
1513 spi_writel(as, CR, SPI_BIT(SWRST));
1514 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1515
1516 /* It is recommended to enable FIFOs first thing after reset */
1517 if (as->fifo_size)
1518 spi_writel(as, CR, SPI_BIT(FIFOEN));
1519
1520 if (as->caps.has_wdrbt) {
1521 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1522 | SPI_BIT(MSTR));
1523 } else {
1524 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1525 }
1526
1527 if (as->use_pdc)
1528 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1529 spi_writel(as, CR, SPI_BIT(SPIEN));
1530}
1531
1532static int atmel_spi_probe(struct platform_device *pdev)
1533{
1534 struct resource *regs;
1535 int irq;
1536 struct clk *clk;
1537 int ret;
1538 struct spi_master *master;
1539 struct atmel_spi *as;
1540
1541 /* Select default pin state */
1542 pinctrl_pm_select_default_state(&pdev->dev);
1543
1544 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545 if (!regs)
1546 return -ENXIO;
1547
1548 irq = platform_get_irq(pdev, 0);
1549 if (irq < 0)
1550 return irq;
1551
1552 clk = devm_clk_get(&pdev->dev, "spi_clk");
1553 if (IS_ERR(clk))
1554 return PTR_ERR(clk);
1555
1556 /* setup spi core then atmel-specific driver state */
1557 ret = -ENOMEM;
1558 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1559 if (!master)
1560 goto out_free;
1561
1562 /* the spi->mode bits understood by this driver: */
1563 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1564 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1565 master->dev.of_node = pdev->dev.of_node;
1566 master->bus_num = pdev->id;
1567 master->num_chipselect = master->dev.of_node ? 0 : 4;
1568 master->setup = atmel_spi_setup;
1569 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1570 master->transfer_one_message = atmel_spi_transfer_one_message;
1571 master->cleanup = atmel_spi_cleanup;
1572 master->auto_runtime_pm = true;
1573 master->max_dma_len = SPI_MAX_DMA_XFER;
1574 master->can_dma = atmel_spi_can_dma;
1575 platform_set_drvdata(pdev, master);
1576
1577 as = spi_master_get_devdata(master);
1578
1579 spin_lock_init(&as->lock);
1580
1581 as->pdev = pdev;
1582 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1583 if (IS_ERR(as->regs)) {
1584 ret = PTR_ERR(as->regs);
1585 goto out_unmap_regs;
1586 }
1587 as->phybase = regs->start;
1588 as->irq = irq;
1589 as->clk = clk;
1590
1591 init_completion(&as->xfer_completion);
1592
1593 atmel_get_caps(as);
1594
1595 as->use_cs_gpios = true;
1596 if (atmel_spi_is_v2(as) &&
1597 pdev->dev.of_node &&
1598 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1599 as->use_cs_gpios = false;
1600 master->num_chipselect = 4;
1601 }
1602
1603 ret = atmel_spi_gpio_cs(pdev);
1604 if (ret)
1605 goto out_unmap_regs;
1606
1607 as->use_dma = false;
1608 as->use_pdc = false;
1609 if (as->caps.has_dma_support) {
1610 ret = atmel_spi_configure_dma(master, as);
1611 if (ret == 0) {
1612 as->use_dma = true;
1613 } else if (ret == -EPROBE_DEFER) {
1614 return ret;
1615 }
1616 } else if (as->caps.has_pdc_support) {
1617 as->use_pdc = true;
1618 }
1619
1620 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1621 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1622 SPI_MAX_DMA_XFER,
1623 &as->dma_addr_rx_bbuf,
1624 GFP_KERNEL | GFP_DMA);
1625 if (!as->addr_rx_bbuf) {
1626 as->use_dma = false;
1627 } else {
1628 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1629 SPI_MAX_DMA_XFER,
1630 &as->dma_addr_tx_bbuf,
1631 GFP_KERNEL | GFP_DMA);
1632 if (!as->addr_tx_bbuf) {
1633 as->use_dma = false;
1634 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1635 as->addr_rx_bbuf,
1636 as->dma_addr_rx_bbuf);
1637 }
1638 }
1639 if (!as->use_dma)
1640 dev_info(master->dev.parent,
1641 " can not allocate dma coherent memory\n");
1642 }
1643
1644 if (as->caps.has_dma_support && !as->use_dma)
1645 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1646
1647 if (as->use_pdc) {
1648 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1649 0, dev_name(&pdev->dev), master);
1650 } else {
1651 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1652 0, dev_name(&pdev->dev), master);
1653 }
1654 if (ret)
1655 goto out_unmap_regs;
1656
1657 /* Initialize the hardware */
1658 ret = clk_prepare_enable(clk);
1659 if (ret)
1660 goto out_free_irq;
1661
1662 as->spi_clk = clk_get_rate(clk);
1663
1664 as->fifo_size = 0;
1665 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1666 &as->fifo_size)) {
1667 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1668 }
1669
1670 atmel_spi_init(as);
1671
1672 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1673 pm_runtime_use_autosuspend(&pdev->dev);
1674 pm_runtime_set_active(&pdev->dev);
1675 pm_runtime_enable(&pdev->dev);
1676
1677 ret = devm_spi_register_master(&pdev->dev, master);
1678 if (ret)
1679 goto out_free_dma;
1680
1681 /* go! */
1682 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683 atmel_get_version(as), (unsigned long)regs->start,
1684 irq);
1685
1686 return 0;
1687
1688out_free_dma:
1689 pm_runtime_disable(&pdev->dev);
1690 pm_runtime_set_suspended(&pdev->dev);
1691
1692 if (as->use_dma)
1693 atmel_spi_release_dma(master);
1694
1695 spi_writel(as, CR, SPI_BIT(SWRST));
1696 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1697 clk_disable_unprepare(clk);
1698out_free_irq:
1699out_unmap_regs:
1700out_free:
1701 spi_master_put(master);
1702 return ret;
1703}
1704
1705static int atmel_spi_remove(struct platform_device *pdev)
1706{
1707 struct spi_master *master = platform_get_drvdata(pdev);
1708 struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710 pm_runtime_get_sync(&pdev->dev);
1711
1712 /* reset the hardware and block queue progress */
1713 if (as->use_dma) {
1714 atmel_spi_stop_dma(master);
1715 atmel_spi_release_dma(master);
1716 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1717 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1718 as->addr_tx_bbuf,
1719 as->dma_addr_tx_bbuf);
1720 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1721 as->addr_rx_bbuf,
1722 as->dma_addr_rx_bbuf);
1723 }
1724 }
1725
1726 spin_lock_irq(&as->lock);
1727 spi_writel(as, CR, SPI_BIT(SWRST));
1728 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1729 spi_readl(as, SR);
1730 spin_unlock_irq(&as->lock);
1731
1732 clk_disable_unprepare(as->clk);
1733
1734 pm_runtime_put_noidle(&pdev->dev);
1735 pm_runtime_disable(&pdev->dev);
1736
1737 return 0;
1738}
1739
1740#ifdef CONFIG_PM
1741static int atmel_spi_runtime_suspend(struct device *dev)
1742{
1743 struct spi_master *master = dev_get_drvdata(dev);
1744 struct atmel_spi *as = spi_master_get_devdata(master);
1745
1746 clk_disable_unprepare(as->clk);
1747 pinctrl_pm_select_sleep_state(dev);
1748
1749 return 0;
1750}
1751
1752static int atmel_spi_runtime_resume(struct device *dev)
1753{
1754 struct spi_master *master = dev_get_drvdata(dev);
1755 struct atmel_spi *as = spi_master_get_devdata(master);
1756
1757 pinctrl_pm_select_default_state(dev);
1758
1759 return clk_prepare_enable(as->clk);
1760}
1761
1762#ifdef CONFIG_PM_SLEEP
1763static int atmel_spi_suspend(struct device *dev)
1764{
1765 struct spi_master *master = dev_get_drvdata(dev);
1766 int ret;
1767
1768 /* Stop the queue running */
1769 ret = spi_master_suspend(master);
1770 if (ret) {
1771 dev_warn(dev, "cannot suspend master\n");
1772 return ret;
1773 }
1774
1775 if (!pm_runtime_suspended(dev))
1776 atmel_spi_runtime_suspend(dev);
1777
1778 return 0;
1779}
1780
1781static int atmel_spi_resume(struct device *dev)
1782{
1783 struct spi_master *master = dev_get_drvdata(dev);
1784 struct atmel_spi *as = spi_master_get_devdata(master);
1785 int ret;
1786
1787 ret = clk_prepare_enable(as->clk);
1788 if (ret)
1789 return ret;
1790
1791 atmel_spi_init(as);
1792
1793 clk_disable_unprepare(as->clk);
1794
1795 if (!pm_runtime_suspended(dev)) {
1796 ret = atmel_spi_runtime_resume(dev);
1797 if (ret)
1798 return ret;
1799 }
1800
1801 /* Start the queue running */
1802 ret = spi_master_resume(master);
1803 if (ret)
1804 dev_err(dev, "problem starting queue (%d)\n", ret);
1805
1806 return ret;
1807}
1808#endif
1809
1810static const struct dev_pm_ops atmel_spi_pm_ops = {
1811 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1812 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1813 atmel_spi_runtime_resume, NULL)
1814};
1815#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1816#else
1817#define ATMEL_SPI_PM_OPS NULL
1818#endif
1819
1820#if defined(CONFIG_OF)
1821static const struct of_device_id atmel_spi_dt_ids[] = {
1822 { .compatible = "atmel,at91rm9200-spi" },
1823 { /* sentinel */ }
1824};
1825
1826MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1827#endif
1828
1829static struct platform_driver atmel_spi_driver = {
1830 .driver = {
1831 .name = "atmel_spi",
1832 .pm = ATMEL_SPI_PM_OPS,
1833 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1834 },
1835 .probe = atmel_spi_probe,
1836 .remove = atmel_spi_remove,
1837};
1838module_platform_driver(atmel_spi_driver);
1839
1840MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842MODULE_LICENSE("GPL");
1843MODULE_ALIAS("platform:atmel_spi");