Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
 
  19#include <linux/of.h>
  20
  21#include <linux/io.h>
  22#include <linux/gpio/consumer.h>
 
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/iopoll.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225#define spi_readl(port, reg) \
 226	readl_relaxed((port)->regs + SPI_##reg)
 227#define spi_writel(port, reg, value) \
 228	writel_relaxed((value), (port)->regs + SPI_##reg)
 
 
 
 229#define spi_writew(port, reg, value) \
 230	writew_relaxed((value), (port)->regs + SPI_##reg)
 231
 
 
 
 
 
 232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 233 * cache operations; better heuristics consider wordsize and bitrate.
 234 */
 235#define DMA_MIN_BYTES	16
 236
 
 
 237#define AUTOSUSPEND_TIMEOUT	2000
 238
 239struct atmel_spi_caps {
 240	bool	is_spi2;
 241	bool	has_wdrbt;
 242	bool	has_dma_support;
 243	bool	has_pdc_support;
 244};
 245
 246/*
 247 * The core SPI transfer engine just talks to a register bank to set up
 248 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 249 * framework provides the base clock, subdivided for each spi_device.
 250 */
 251struct atmel_spi {
 252	spinlock_t		lock;
 253	unsigned long		flags;
 254
 255	phys_addr_t		phybase;
 256	void __iomem		*regs;
 257	int			irq;
 258	struct clk		*clk;
 259	struct platform_device	*pdev;
 260	unsigned long		spi_clk;
 261
 262	struct spi_transfer	*current_transfer;
 263	int			current_remaining_bytes;
 264	int			done_status;
 265	dma_addr_t		dma_addr_rx_bbuf;
 266	dma_addr_t		dma_addr_tx_bbuf;
 267	void			*addr_rx_bbuf;
 268	void			*addr_tx_bbuf;
 269
 270	struct completion	xfer_completion;
 271
 272	struct atmel_spi_caps	caps;
 273
 274	bool			use_dma;
 275	bool			use_pdc;
 
 276
 277	bool			keep_cs;
 
 278
 279	u32			fifo_size;
 280	bool			last_polarity;
 281	u8			native_cs_free;
 282	u8			native_cs_for_gpio;
 283};
 284
 285/* Controller-specific per-slave state */
 286struct atmel_spi_device {
 
 287	u32			csr;
 288};
 289
 290#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 291#define INVALID_DMA_ADDRESS	0xffffffff
 292
 293/*
 294 * This frequency can be anything supported by the controller, but to avoid
 295 * unnecessary delay, the highest possible frequency is chosen.
 296 *
 297 * This frequency is the highest possible which is not interfering with other
 298 * chip select registers (see Note for Serial Clock Bit Rate configuration in
 299 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
 300 */
 301#define DUMMY_MSG_FREQUENCY	0x02
 302/*
 303 * 8 bits is the minimum data the controller is capable of sending.
 304 *
 305 * This message can be anything as it should not be treated by any SPI device.
 306 */
 307#define DUMMY_MSG		0xAA
 308
 309/*
 310 * Version 2 of the SPI controller has
 311 *  - CR.LASTXFER
 312 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 313 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 314 *  - SPI_CSRx.CSAAT
 315 *  - SPI_CSRx.SBCR allows faster clocking
 316 */
 317static bool atmel_spi_is_v2(struct atmel_spi *as)
 318{
 319	return as->caps.is_spi2;
 320}
 321
 322/*
 323 * Send a dummy message.
 324 *
 325 * This is sometimes needed when using a CS GPIO to force clock transition when
 326 * switching between devices with different polarities.
 327 */
 328static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
 329{
 330	u32 status;
 331	u32 csr;
 332
 333	/*
 334	 * Set a clock frequency to allow sending message on SPI bus.
 335	 * The frequency here can be anything, but is needed for
 336	 * the controller to send the data.
 337	 */
 338	csr = spi_readl(as, CSR0 + 4 * chip_select);
 339	csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
 340	spi_writel(as, CSR0 + 4 * chip_select, csr);
 341
 342	/*
 343	 * Read all data coming from SPI bus, needed to be able to send
 344	 * the message.
 345	 */
 346	spi_readl(as, RDR);
 347	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 348		spi_readl(as, RDR);
 349		cpu_relax();
 350	}
 351
 352	spi_writel(as, TDR, DUMMY_MSG);
 353
 354	readl_poll_timeout_atomic(as->regs + SPI_SR, status,
 355				  (status & SPI_BIT(TXEMPTY)), 1, 1000);
 356}
 357
 358
 359/*
 360 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 361 * they assume that spi slave device state will not change on deselect, so
 362 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 363 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 364 * controllers have CSAAT and friends.
 365 *
 366 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 367 * it lets us support active-high chipselects despite the controller's
 368 * belief that only active-low devices/systems exists.
 
 
 369 *
 370 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 371 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 372 * Master on Chip Select 0.")  No workaround exists for that ... so for
 373 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 374 * and (c) will trigger that first erratum in some cases.
 375 *
 376 * When changing the clock polarity, the SPI controller waits for the next
 377 * transmission to enforce the default clock state. This may be an issue when
 378 * using a GPIO as Chip Select: the clock level is applied only when the first
 379 * packet is sent, once the CS has already been asserted. The workaround is to
 380 * avoid this by sending a first (dummy) message before toggling the CS state.
 381 */
 
 382static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 383{
 384	struct atmel_spi_device *asd = spi->controller_state;
 385	bool new_polarity;
 386	int chip_select;
 387	u32 mr;
 388
 389	if (spi_get_csgpiod(spi, 0))
 390		chip_select = as->native_cs_for_gpio;
 391	else
 392		chip_select = spi_get_chipselect(spi, 0);
 393
 394	if (atmel_spi_is_v2(as)) {
 395		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 396		/* For the low SPI version, there is a issue that PDC transfer
 397		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 398		 */
 399		spi_writel(as, CSR0, asd->csr);
 400		if (as->caps.has_wdrbt) {
 401			spi_writel(as, MR,
 402					SPI_BF(PCS, ~(0x01 << chip_select))
 403					| SPI_BIT(WDRBT)
 404					| SPI_BIT(MODFDIS)
 405					| SPI_BIT(MSTR));
 406		} else {
 407			spi_writel(as, MR,
 408					SPI_BF(PCS, ~(0x01 << chip_select))
 409					| SPI_BIT(MODFDIS)
 410					| SPI_BIT(MSTR));
 411		}
 412
 413		mr = spi_readl(as, MR);
 414
 415		/*
 416		 * Ensures the clock polarity is valid before we actually
 417		 * assert the CS to avoid spurious clock edges to be
 418		 * processed by the spi devices.
 419		 */
 420		if (spi_get_csgpiod(spi, 0)) {
 421			new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
 422			if (new_polarity != as->last_polarity) {
 423				/*
 424				 * Need to disable the GPIO before sending the dummy
 425				 * message because it is already set by the spi core.
 426				 */
 427				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
 428				atmel_spi_send_dummy(as, spi, chip_select);
 429				as->last_polarity = new_polarity;
 430				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
 431			}
 432		}
 433	} else {
 434		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 435		int i;
 436		u32 csr;
 437
 438		/* Make sure clock polarity is correct */
 439		for (i = 0; i < spi->controller->num_chipselect; i++) {
 440			csr = spi_readl(as, CSR0 + 4 * i);
 441			if ((csr ^ cpol) & SPI_BIT(CPOL))
 442				spi_writel(as, CSR0 + 4 * i,
 443						csr ^ SPI_BIT(CPOL));
 444		}
 445
 446		mr = spi_readl(as, MR);
 447		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 
 
 448		spi_writel(as, MR, mr);
 449	}
 450
 451	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 452}
 453
 454static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 455{
 456	int chip_select;
 
 457	u32 mr;
 458
 459	if (spi_get_csgpiod(spi, 0))
 460		chip_select = as->native_cs_for_gpio;
 461	else
 462		chip_select = spi_get_chipselect(spi, 0);
 463
 464	/* only deactivate *this* device; sometimes transfers to
 465	 * another device may be active when this routine is called.
 466	 */
 467	mr = spi_readl(as, MR);
 468	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 469		mr = SPI_BFINS(PCS, 0xf, mr);
 470		spi_writel(as, MR, mr);
 471	}
 472
 473	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 474
 475	if (!spi_get_csgpiod(spi, 0))
 476		spi_writel(as, CR, SPI_BIT(LASTXFER));
 
 
 477}
 478
 479static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 480{
 481	spin_lock_irqsave(&as->lock, as->flags);
 482}
 483
 484static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 485{
 486	spin_unlock_irqrestore(&as->lock, as->flags);
 487}
 488
 489static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 490{
 491	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 492}
 493
 494static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 495				struct spi_transfer *xfer)
 496{
 497	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 498}
 499
 500static bool atmel_spi_can_dma(struct spi_controller *host,
 501			      struct spi_device *spi,
 502			      struct spi_transfer *xfer)
 503{
 504	struct atmel_spi *as = spi_controller_get_devdata(host);
 505
 506	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 507		return atmel_spi_use_dma(as, xfer) &&
 508			!atmel_spi_is_vmalloc_xfer(xfer);
 509	else
 510		return atmel_spi_use_dma(as, xfer);
 511
 
 512}
 513
 514static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
 
 
 515{
 516	struct spi_controller *host = platform_get_drvdata(as->pdev);
 517	struct dma_slave_config	slave_config;
 518	int err = 0;
 519
 520	if (bits_per_word > 8) {
 521		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 522		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 523	} else {
 524		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 525		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 526	}
 527
 528	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 529	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 530	slave_config.src_maxburst = 1;
 531	slave_config.dst_maxburst = 1;
 532	slave_config.device_fc = false;
 533
 534	/*
 535	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 536	 * the Mode Register).
 537	 * So according to the datasheet, when FIFOs are available (and
 538	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 539	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 540	 * Data Register in a single access.
 541	 * However, the first data has to be written into the lowest 16 bits and
 542	 * the second data into the highest 16 bits of the Transmit
 543	 * Data Register. For 8bit data (the most frequent case), it would
 544	 * require to rework tx_buf so each data would actually fit 16 bits.
 545	 * So we'd rather write only one data at the time. Hence the transmit
 546	 * path works the same whether FIFOs are available (and enabled) or not.
 547	 */
 548	if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
 
 549		dev_err(&as->pdev->dev,
 550			"failed to configure tx dma channel\n");
 551		err = -EINVAL;
 552	}
 553
 554	/*
 555	 * This driver configures the spi controller for host mode (MSTR bit
 556	 * set to '1' in the Mode Register).
 557	 * So according to the datasheet, when FIFOs are available (and
 558	 * enabled), the Receive FIFO operates in Single Data Mode.
 559	 * So the receive path works the same whether FIFOs are available (and
 560	 * enabled) or not.
 561	 */
 562	if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
 
 563		dev_err(&as->pdev->dev,
 564			"failed to configure rx dma channel\n");
 565		err = -EINVAL;
 566	}
 567
 568	return err;
 569}
 570
 571static int atmel_spi_configure_dma(struct spi_controller *host,
 572				   struct atmel_spi *as)
 573{
 
 574	struct device *dev = &as->pdev->dev;
 575	int err;
 576
 577	host->dma_tx = dma_request_chan(dev, "tx");
 578	if (IS_ERR(host->dma_tx)) {
 579		err = PTR_ERR(host->dma_tx);
 580		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 
 
 
 
 
 
 
 
 
 
 581		goto error_clear;
 582	}
 583
 584	host->dma_rx = dma_request_chan(dev, "rx");
 585	if (IS_ERR(host->dma_rx)) {
 586		err = PTR_ERR(host->dma_rx);
 587		/*
 588		 * No reason to check EPROBE_DEFER here since we have already
 589		 * requested tx channel.
 590		 */
 591		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 
 
 592		goto error;
 593	}
 594
 595	err = atmel_spi_dma_slave_config(as, 8);
 596	if (err)
 597		goto error;
 598
 599	dev_info(&as->pdev->dev,
 600			"Using %s (tx) and %s (rx) for DMA transfers\n",
 601			dma_chan_name(host->dma_tx),
 602			dma_chan_name(host->dma_rx));
 603
 604	return 0;
 605error:
 606	if (!IS_ERR(host->dma_rx))
 607		dma_release_channel(host->dma_rx);
 608	if (!IS_ERR(host->dma_tx))
 609		dma_release_channel(host->dma_tx);
 610error_clear:
 611	host->dma_tx = host->dma_rx = NULL;
 612	return err;
 613}
 614
 615static void atmel_spi_stop_dma(struct spi_controller *host)
 616{
 617	if (host->dma_rx)
 618		dmaengine_terminate_all(host->dma_rx);
 619	if (host->dma_tx)
 620		dmaengine_terminate_all(host->dma_tx);
 621}
 622
 623static void atmel_spi_release_dma(struct spi_controller *host)
 624{
 625	if (host->dma_rx) {
 626		dma_release_channel(host->dma_rx);
 627		host->dma_rx = NULL;
 628	}
 629	if (host->dma_tx) {
 630		dma_release_channel(host->dma_tx);
 631		host->dma_tx = NULL;
 632	}
 633}
 634
 635/* This function is called by the DMA driver from tasklet context */
 636static void dma_callback(void *data)
 637{
 638	struct spi_controller	*host = data;
 639	struct atmel_spi	*as = spi_controller_get_devdata(host);
 640
 641	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 642	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 643		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 644		       as->current_transfer->len);
 645	}
 646	complete(&as->xfer_completion);
 647}
 648
 649/*
 650 * Next transfer using PIO without FIFO.
 651 */
 652static void atmel_spi_next_xfer_single(struct spi_controller *host,
 653				       struct spi_transfer *xfer)
 654{
 655	struct atmel_spi	*as = spi_controller_get_devdata(host);
 656	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 657
 658	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
 659
 660	/* Make sure data is not remaining in RDR */
 661	spi_readl(as, RDR);
 662	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 663		spi_readl(as, RDR);
 664		cpu_relax();
 665	}
 666
 667	if (xfer->bits_per_word > 8)
 668		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 669	else
 670		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 671
 672	dev_dbg(host->dev.parent,
 673		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 674		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 675		xfer->bits_per_word);
 676
 677	/* Enable relevant interrupts */
 678	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 679}
 680
 681/*
 682 * Next transfer using PIO with FIFO.
 683 */
 684static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
 685				     struct spi_transfer *xfer)
 686{
 687	struct atmel_spi *as = spi_controller_get_devdata(host);
 688	u32 current_remaining_data, num_data;
 689	u32 offset = xfer->len - as->current_remaining_bytes;
 690	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 691	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 692	u16 td0, td1;
 693	u32 fifomr;
 694
 695	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
 696
 697	/* Compute the number of data to transfer in the current iteration */
 698	current_remaining_data = ((xfer->bits_per_word > 8) ?
 699				  ((u32)as->current_remaining_bytes >> 1) :
 700				  (u32)as->current_remaining_bytes);
 701	num_data = min(current_remaining_data, as->fifo_size);
 702
 703	/* Flush RX and TX FIFOs */
 704	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 705	while (spi_readl(as, FLR))
 706		cpu_relax();
 707
 708	/* Set RX FIFO Threshold to the number of data to transfer */
 709	fifomr = spi_readl(as, FMR);
 710	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 711
 712	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 713	(void)spi_readl(as, SR);
 714
 715	/* Fill TX FIFO */
 716	while (num_data >= 2) {
 717		if (xfer->bits_per_word > 8) {
 718			td0 = *words++;
 719			td1 = *words++;
 720		} else {
 721			td0 = *bytes++;
 722			td1 = *bytes++;
 723		}
 724
 725		spi_writel(as, TDR, (td1 << 16) | td0);
 726		num_data -= 2;
 727	}
 728
 729	if (num_data) {
 730		if (xfer->bits_per_word > 8)
 731			td0 = *words++;
 732		else
 733			td0 = *bytes++;
 734
 735		spi_writew(as, TDR, td0);
 736		num_data--;
 737	}
 738
 739	dev_dbg(host->dev.parent,
 740		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 741		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 742		xfer->bits_per_word);
 743
 744	/*
 745	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 746	 * transfer completion.
 747	 */
 748	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 749}
 750
 751/*
 752 * Next transfer using PIO.
 753 */
 754static void atmel_spi_next_xfer_pio(struct spi_controller *host,
 755				    struct spi_transfer *xfer)
 756{
 757	struct atmel_spi *as = spi_controller_get_devdata(host);
 758
 759	if (as->fifo_size)
 760		atmel_spi_next_xfer_fifo(host, xfer);
 761	else
 762		atmel_spi_next_xfer_single(host, xfer);
 763}
 764
 765/*
 766 * Submit next transfer for DMA.
 767 */
 768static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
 769				struct spi_transfer *xfer,
 770				u32 *plen)
 771{
 772	struct atmel_spi	*as = spi_controller_get_devdata(host);
 773	struct dma_chan		*rxchan = host->dma_rx;
 774	struct dma_chan		*txchan = host->dma_tx;
 775	struct dma_async_tx_descriptor *rxdesc;
 776	struct dma_async_tx_descriptor *txdesc;
 
 777	dma_cookie_t		cookie;
 778
 779	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 780
 781	/* Check that the channels are available */
 782	if (!rxchan || !txchan)
 783		return -ENODEV;
 784
 
 
 785
 786	*plen = xfer->len;
 787
 788	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
 
 789		goto err_exit;
 790
 791	/* Send both scatterlists */
 792	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 793	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 794		rxdesc = dmaengine_prep_slave_single(rxchan,
 795						     as->dma_addr_rx_bbuf,
 796						     xfer->len,
 797						     DMA_DEV_TO_MEM,
 798						     DMA_PREP_INTERRUPT |
 799						     DMA_CTRL_ACK);
 800	} else {
 801		rxdesc = dmaengine_prep_slave_sg(rxchan,
 802						 xfer->rx_sg.sgl,
 803						 xfer->rx_sg.nents,
 804						 DMA_DEV_TO_MEM,
 805						 DMA_PREP_INTERRUPT |
 806						 DMA_CTRL_ACK);
 807	}
 808	if (!rxdesc)
 809		goto err_dma;
 810
 811	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 812	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 813		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 814		txdesc = dmaengine_prep_slave_single(txchan,
 815						     as->dma_addr_tx_bbuf,
 816						     xfer->len, DMA_MEM_TO_DEV,
 817						     DMA_PREP_INTERRUPT |
 818						     DMA_CTRL_ACK);
 819	} else {
 820		txdesc = dmaengine_prep_slave_sg(txchan,
 821						 xfer->tx_sg.sgl,
 822						 xfer->tx_sg.nents,
 823						 DMA_MEM_TO_DEV,
 824						 DMA_PREP_INTERRUPT |
 825						 DMA_CTRL_ACK);
 826	}
 827	if (!txdesc)
 828		goto err_dma;
 829
 830	dev_dbg(host->dev.parent,
 831		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 832		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 833		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 834
 835	/* Enable relevant interrupts */
 836	spi_writel(as, IER, SPI_BIT(OVRES));
 837
 838	/* Put the callback on the RX transfer only, that should finish last */
 839	rxdesc->callback = dma_callback;
 840	rxdesc->callback_param = host;
 841
 842	/* Submit and fire RX and TX with TX last so we're ready to read! */
 843	cookie = rxdesc->tx_submit(rxdesc);
 844	if (dma_submit_error(cookie))
 845		goto err_dma;
 846	cookie = txdesc->tx_submit(txdesc);
 847	if (dma_submit_error(cookie))
 848		goto err_dma;
 849	rxchan->device->device_issue_pending(rxchan);
 850	txchan->device->device_issue_pending(txchan);
 851
 
 
 852	return 0;
 853
 854err_dma:
 855	spi_writel(as, IDR, SPI_BIT(OVRES));
 856	atmel_spi_stop_dma(host);
 857err_exit:
 
 858	return -ENOMEM;
 859}
 860
 861static void atmel_spi_next_xfer_data(struct spi_controller *host,
 862				struct spi_transfer *xfer,
 863				dma_addr_t *tx_dma,
 864				dma_addr_t *rx_dma,
 865				u32 *plen)
 866{
 867	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 868	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 869	if (*plen > host->max_dma_len)
 870		*plen = host->max_dma_len;
 871}
 872
 873static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 874				    struct spi_device *spi,
 875				    struct spi_transfer *xfer)
 876{
 877	u32			scbr, csr;
 878	unsigned long		bus_hz;
 879	int chip_select;
 880
 881	if (spi_get_csgpiod(spi, 0))
 882		chip_select = as->native_cs_for_gpio;
 883	else
 884		chip_select = spi_get_chipselect(spi, 0);
 885
 886	/* v1 chips start out at half the peripheral bus speed. */
 887	bus_hz = as->spi_clk;
 888	if (!atmel_spi_is_v2(as))
 889		bus_hz /= 2;
 890
 891	/*
 892	 * Calculate the lowest divider that satisfies the
 893	 * constraint, assuming div32/fdiv/mbz == 0.
 894	 */
 895	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 896
 897	/*
 898	 * If the resulting divider doesn't fit into the
 899	 * register bitfield, we can't satisfy the constraint.
 900	 */
 901	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 902		dev_err(&spi->dev,
 903			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 904			xfer->speed_hz, scbr, bus_hz/255);
 905		return -EINVAL;
 906	}
 907	if (scbr == 0) {
 908		dev_err(&spi->dev,
 909			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 910			xfer->speed_hz, scbr, bus_hz);
 911		return -EINVAL;
 912	}
 913	csr = spi_readl(as, CSR0 + 4 * chip_select);
 914	csr = SPI_BFINS(SCBR, scbr, csr);
 915	spi_writel(as, CSR0 + 4 * chip_select, csr);
 916	xfer->effective_speed_hz = bus_hz / scbr;
 917
 918	return 0;
 919}
 920
 921/*
 922 * Submit next transfer for PDC.
 923 * lock is held, spi irq is blocked
 924 */
 925static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
 
 926					struct spi_transfer *xfer)
 927{
 928	struct atmel_spi	*as = spi_controller_get_devdata(host);
 929	u32			len;
 930	dma_addr_t		tx_dma, rx_dma;
 931
 932	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 933
 934	len = as->current_remaining_bytes;
 935	atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
 936	as->current_remaining_bytes -= len;
 937
 938	spi_writel(as, RPR, rx_dma);
 939	spi_writel(as, TPR, tx_dma);
 940
 941	if (xfer->bits_per_word > 8)
 942		len >>= 1;
 943	spi_writel(as, RCR, len);
 944	spi_writel(as, TCR, len);
 945
 946	dev_dbg(&host->dev,
 947		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 948		xfer, xfer->len, xfer->tx_buf,
 949		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 950		(unsigned long long)xfer->rx_dma);
 951
 952	if (as->current_remaining_bytes) {
 953		len = as->current_remaining_bytes;
 954		atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
 955		as->current_remaining_bytes -= len;
 956
 957		spi_writel(as, RNPR, rx_dma);
 958		spi_writel(as, TNPR, tx_dma);
 959
 960		if (xfer->bits_per_word > 8)
 961			len >>= 1;
 962		spi_writel(as, RNCR, len);
 963		spi_writel(as, TNCR, len);
 964
 965		dev_dbg(&host->dev,
 966			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 967			xfer, xfer->len, xfer->tx_buf,
 968			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 969			(unsigned long long)xfer->rx_dma);
 970	}
 971
 972	/* REVISIT: We're waiting for RXBUFF before we start the next
 973	 * transfer because we need to handle some difficult timing
 974	 * issues otherwise. If we wait for TXBUFE in one transfer and
 975	 * then starts waiting for RXBUFF in the next, it's difficult
 976	 * to tell the difference between the RXBUFF interrupt we're
 977	 * actually waiting for and the RXBUFF interrupt of the
 978	 * previous transfer.
 979	 *
 980	 * It should be doable, though. Just not now...
 981	 */
 982	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 983	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 984}
 985
 986/*
 987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 988 *  - The buffer is either valid for CPU access, else NULL
 989 *  - If the buffer is valid, so is its DMA address
 990 *
 991 * This driver manages the dma address unless message->is_dma_mapped.
 992 */
 993static int
 994atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 995{
 996	struct device	*dev = &as->pdev->dev;
 997
 998	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 999	if (xfer->tx_buf) {
1000		/* tx_buf is a const void* where we need a void * for the dma
1001		 * mapping */
1002		void *nonconst_tx = (void *)xfer->tx_buf;
1003
1004		xfer->tx_dma = dma_map_single(dev,
1005				nonconst_tx, xfer->len,
1006				DMA_TO_DEVICE);
1007		if (dma_mapping_error(dev, xfer->tx_dma))
1008			return -ENOMEM;
1009	}
1010	if (xfer->rx_buf) {
1011		xfer->rx_dma = dma_map_single(dev,
1012				xfer->rx_buf, xfer->len,
1013				DMA_FROM_DEVICE);
1014		if (dma_mapping_error(dev, xfer->rx_dma)) {
1015			if (xfer->tx_buf)
1016				dma_unmap_single(dev,
1017						xfer->tx_dma, xfer->len,
1018						DMA_TO_DEVICE);
1019			return -ENOMEM;
1020		}
1021	}
1022	return 0;
1023}
1024
1025static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1026				     struct spi_transfer *xfer)
1027{
1028	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1029		dma_unmap_single(host->dev.parent, xfer->tx_dma,
1030				 xfer->len, DMA_TO_DEVICE);
1031	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1032		dma_unmap_single(host->dev.parent, xfer->rx_dma,
1033				 xfer->len, DMA_FROM_DEVICE);
1034}
1035
1036static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1037{
1038	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1039}
1040
1041static void
1042atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1043{
1044	u8		*rxp;
1045	u16		*rxp16;
1046	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1047
1048	if (xfer->bits_per_word > 8) {
1049		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1050		*rxp16 = spi_readl(as, RDR);
1051	} else {
1052		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1053		*rxp = spi_readl(as, RDR);
1054	}
1055	if (xfer->bits_per_word > 8) {
1056		if (as->current_remaining_bytes > 2)
1057			as->current_remaining_bytes -= 2;
1058		else
1059			as->current_remaining_bytes = 0;
1060	} else {
1061		as->current_remaining_bytes--;
1062	}
1063}
1064
1065static void
1066atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1067{
1068	u32 fifolr = spi_readl(as, FLR);
1069	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1070	u32 offset = xfer->len - as->current_remaining_bytes;
1071	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1072	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1073	u16 rd; /* RD field is the lowest 16 bits of RDR */
1074
1075	/* Update the number of remaining bytes to transfer */
1076	num_bytes = ((xfer->bits_per_word > 8) ?
1077		     (num_data << 1) :
1078		     num_data);
1079
1080	if (as->current_remaining_bytes > num_bytes)
1081		as->current_remaining_bytes -= num_bytes;
1082	else
1083		as->current_remaining_bytes = 0;
1084
1085	/* Handle odd number of bytes when data are more than 8bit width */
1086	if (xfer->bits_per_word > 8)
1087		as->current_remaining_bytes &= ~0x1;
1088
1089	/* Read data */
1090	while (num_data) {
1091		rd = spi_readl(as, RDR);
1092		if (xfer->bits_per_word > 8)
1093			*words++ = rd;
1094		else
1095			*bytes++ = rd;
1096		num_data--;
1097	}
1098}
1099
1100/* Called from IRQ
1101 *
1102 * Must update "current_remaining_bytes" to keep track of data
1103 * to transfer.
1104 */
1105static void
1106atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1107{
1108	if (as->fifo_size)
1109		atmel_spi_pump_fifo_data(as, xfer);
1110	else
1111		atmel_spi_pump_single_data(as, xfer);
1112}
1113
1114/* Interrupt
1115 *
 
 
1116 */
1117static irqreturn_t
1118atmel_spi_pio_interrupt(int irq, void *dev_id)
1119{
1120	struct spi_controller	*host = dev_id;
1121	struct atmel_spi	*as = spi_controller_get_devdata(host);
1122	u32			status, pending, imr;
1123	struct spi_transfer	*xfer;
1124	int			ret = IRQ_NONE;
1125
1126	imr = spi_readl(as, IMR);
1127	status = spi_readl(as, SR);
1128	pending = status & imr;
1129
1130	if (pending & SPI_BIT(OVRES)) {
1131		ret = IRQ_HANDLED;
1132		spi_writel(as, IDR, SPI_BIT(OVRES));
1133		dev_warn(host->dev.parent, "overrun\n");
1134
1135		/*
1136		 * When we get an overrun, we disregard the current
1137		 * transfer. Data will not be copied back from any
1138		 * bounce buffer and msg->actual_len will not be
1139		 * updated with the last xfer.
1140		 *
1141		 * We will also not process any remaning transfers in
1142		 * the message.
1143		 */
1144		as->done_status = -EIO;
1145		smp_wmb();
1146
1147		/* Clear any overrun happening while cleaning up */
1148		spi_readl(as, SR);
1149
1150		complete(&as->xfer_completion);
1151
1152	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1153		atmel_spi_lock(as);
1154
1155		if (as->current_remaining_bytes) {
1156			ret = IRQ_HANDLED;
1157			xfer = as->current_transfer;
1158			atmel_spi_pump_pio_data(as, xfer);
1159			if (!as->current_remaining_bytes)
1160				spi_writel(as, IDR, pending);
1161
1162			complete(&as->xfer_completion);
1163		}
1164
1165		atmel_spi_unlock(as);
1166	} else {
1167		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1168		ret = IRQ_HANDLED;
1169		spi_writel(as, IDR, pending);
1170	}
1171
1172	return ret;
1173}
1174
1175static irqreturn_t
1176atmel_spi_pdc_interrupt(int irq, void *dev_id)
1177{
1178	struct spi_controller	*host = dev_id;
1179	struct atmel_spi	*as = spi_controller_get_devdata(host);
1180	u32			status, pending, imr;
1181	int			ret = IRQ_NONE;
1182
1183	imr = spi_readl(as, IMR);
1184	status = spi_readl(as, SR);
1185	pending = status & imr;
1186
1187	if (pending & SPI_BIT(OVRES)) {
1188
1189		ret = IRQ_HANDLED;
1190
1191		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1192				     | SPI_BIT(OVRES)));
1193
1194		/* Clear any overrun happening while cleaning up */
1195		spi_readl(as, SR);
1196
1197		as->done_status = -EIO;
1198
1199		complete(&as->xfer_completion);
1200
1201	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1202		ret = IRQ_HANDLED;
1203
1204		spi_writel(as, IDR, pending);
1205
1206		complete(&as->xfer_completion);
1207	}
1208
1209	return ret;
1210}
1211
1212static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1213{
1214	struct spi_delay *delay = &spi->word_delay;
1215	u32 value = delay->value;
1216
1217	switch (delay->unit) {
1218	case SPI_DELAY_UNIT_NSECS:
1219		value /= 1000;
1220		break;
1221	case SPI_DELAY_UNIT_USECS:
1222		break;
1223	default:
1224		return -EINVAL;
1225	}
1226
1227	return (as->spi_clk / 1000000 * value) >> 5;
1228}
1229
1230static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1231{
1232	int i;
1233	struct spi_controller *host = platform_get_drvdata(as->pdev);
1234
1235	if (!as->native_cs_free)
1236		return; /* already initialized */
1237
1238	if (!host->cs_gpiods)
1239		return; /* No CS GPIO */
1240
1241	/*
1242	 * On the first version of the controller (AT91RM9200), CS0
1243	 * can't be used associated with GPIO
1244	 */
1245	if (atmel_spi_is_v2(as))
1246		i = 0;
1247	else
1248		i = 1;
1249
1250	for (; i < 4; i++)
1251		if (host->cs_gpiods[i])
1252			as->native_cs_free |= BIT(i);
1253
1254	if (as->native_cs_free)
1255		as->native_cs_for_gpio = ffs(as->native_cs_free);
1256}
1257
1258static int atmel_spi_setup(struct spi_device *spi)
1259{
1260	struct atmel_spi	*as;
1261	struct atmel_spi_device	*asd;
1262	u32			csr;
1263	unsigned int		bits = spi->bits_per_word;
1264	int chip_select;
1265	int			word_delay_csr;
1266
1267	as = spi_controller_get_devdata(spi->controller);
1268
1269	/* see notes above re chipselect */
1270	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1271		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 
 
1272		return -EINVAL;
1273	}
1274
1275	/* Setup() is called during spi_register_controller(aka
1276	 * spi_register_master) but after all membmers of the cs_gpiod
1277	 * array have been filled, so we can looked for which native
1278	 * CS will be free for using with GPIO
1279	 */
1280	initialize_native_cs_for_gpio(as);
1281
1282	if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1283		dev_err(&spi->dev,
1284			"No native CS available to support this GPIO CS\n");
1285		return -EBUSY;
1286	}
1287
1288	if (spi_get_csgpiod(spi, 0))
1289		chip_select = as->native_cs_for_gpio;
1290	else
1291		chip_select = spi_get_chipselect(spi, 0);
1292
1293	csr = SPI_BF(BITS, bits - 8);
1294	if (spi->mode & SPI_CPOL)
1295		csr |= SPI_BIT(CPOL);
1296	if (!(spi->mode & SPI_CPHA))
1297		csr |= SPI_BIT(NCPHA);
1298
1299	if (!spi_get_csgpiod(spi, 0))
1300		csr |= SPI_BIT(CSAAT);
 
 
 
 
 
 
 
1301	csr |= SPI_BF(DLYBS, 0);
 
1302
1303	word_delay_csr = atmel_word_delay_csr(spi, as);
1304	if (word_delay_csr < 0)
1305		return word_delay_csr;
1306
1307	/* DLYBCT adds delays between words.  This is useful for slow devices
1308	 * that need a bit of time to setup the next transfer.
1309	 */
1310	csr |= SPI_BF(DLYBCT, word_delay_csr);
1311
1312	asd = spi->controller_state;
1313	if (!asd) {
1314		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1315		if (!asd)
1316			return -ENOMEM;
1317
 
 
 
 
 
1318		spi->controller_state = asd;
1319	}
1320
1321	asd->csr = csr;
1322
1323	dev_dbg(&spi->dev,
1324		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1325		bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1326
1327	if (!atmel_spi_is_v2(as))
1328		spi_writel(as, CSR0 + 4 * chip_select, csr);
1329
1330	return 0;
1331}
1332
1333static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1334{
1335	struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1336	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1337	 * since we already have routines for activate/deactivate translate
1338	 * high/low to active/inactive
1339	 */
1340	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1341
1342	if (enable) {
1343		cs_activate(as, spi);
1344	} else {
1345		cs_deactivate(as, spi);
1346	}
1347
1348}
1349
1350static int atmel_spi_one_transfer(struct spi_controller *host,
1351					struct spi_device *spi,
1352					struct spi_transfer *xfer)
1353{
1354	struct atmel_spi	*as;
 
1355	u8			bits;
1356	u32			len;
1357	struct atmel_spi_device	*asd;
1358	int			timeout;
1359	int			ret;
1360	unsigned int		dma_timeout;
1361	long			ret_timeout;
1362
1363	as = spi_controller_get_devdata(host);
 
 
 
 
 
1364
1365	asd = spi->controller_state;
1366	bits = (asd->csr >> 4) & 0xf;
1367	if (bits != xfer->bits_per_word - 8) {
1368		dev_dbg(&spi->dev,
1369			"you can't yet change bits_per_word in transfers\n");
1370		return -ENOPROTOOPT;
1371	}
1372
1373	/*
1374	 * DMA map early, for performance (empties dcache ASAP) and
1375	 * better fault reporting.
1376	 */
1377	if ((!host->cur_msg->is_dma_mapped)
1378		&& as->use_pdc) {
1379		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1380			return -ENOMEM;
1381	}
1382
1383	atmel_spi_set_xfer_speed(as, spi, xfer);
1384
1385	as->done_status = 0;
1386	as->current_transfer = xfer;
1387	as->current_remaining_bytes = xfer->len;
1388	while (as->current_remaining_bytes) {
1389		reinit_completion(&as->xfer_completion);
1390
1391		if (as->use_pdc) {
1392			atmel_spi_lock(as);
1393			atmel_spi_pdc_next_xfer(host, xfer);
1394			atmel_spi_unlock(as);
1395		} else if (atmel_spi_use_dma(as, xfer)) {
1396			len = as->current_remaining_bytes;
1397			ret = atmel_spi_next_xfer_dma_submit(host,
1398								xfer, &len);
1399			if (ret) {
1400				dev_err(&spi->dev,
1401					"unable to use DMA, fallback to PIO\n");
1402				as->done_status = ret;
1403				break;
1404			} else {
1405				as->current_remaining_bytes -= len;
1406				if (as->current_remaining_bytes < 0)
1407					as->current_remaining_bytes = 0;
1408			}
1409		} else {
1410			atmel_spi_lock(as);
1411			atmel_spi_next_xfer_pio(host, xfer);
1412			atmel_spi_unlock(as);
1413		}
1414
1415		dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1416		ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1417		if (!ret_timeout) {
 
 
 
1418			dev_err(&spi->dev, "spi transfer timeout\n");
1419			as->done_status = -EIO;
1420		}
1421
1422		if (as->done_status)
1423			break;
1424	}
1425
1426	if (as->done_status) {
1427		if (as->use_pdc) {
1428			dev_warn(host->dev.parent,
1429				"overrun (%u/%u remaining)\n",
1430				spi_readl(as, TCR), spi_readl(as, RCR));
1431
1432			/*
1433			 * Clean up DMA registers and make sure the data
1434			 * registers are empty.
1435			 */
1436			spi_writel(as, RNCR, 0);
1437			spi_writel(as, TNCR, 0);
1438			spi_writel(as, RCR, 0);
1439			spi_writel(as, TCR, 0);
1440			for (timeout = 1000; timeout; timeout--)
1441				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1442					break;
1443			if (!timeout)
1444				dev_warn(host->dev.parent,
1445					 "timeout waiting for TXEMPTY");
1446			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1447				spi_readl(as, RDR);
1448
1449			/* Clear any overrun happening while cleaning up */
1450			spi_readl(as, SR);
1451
1452		} else if (atmel_spi_use_dma(as, xfer)) {
1453			atmel_spi_stop_dma(host);
1454		}
 
 
 
 
 
 
 
 
 
 
1455	}
1456
1457	if (!host->cur_msg->is_dma_mapped
1458		&& as->use_pdc)
1459		atmel_spi_dma_unmap_xfer(host, xfer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460
1461	if (as->use_pdc)
1462		atmel_spi_disable_pdc_transfer(as);
1463
1464	return as->done_status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465}
1466
1467static void atmel_spi_cleanup(struct spi_device *spi)
1468{
1469	struct atmel_spi_device	*asd = spi->controller_state;
1470
1471	if (!asd)
1472		return;
1473
1474	spi->controller_state = NULL;
1475	kfree(asd);
1476}
1477
1478static inline unsigned int atmel_get_version(struct atmel_spi *as)
1479{
1480	return spi_readl(as, VERSION) & 0x00000fff;
1481}
1482
1483static void atmel_get_caps(struct atmel_spi *as)
1484{
1485	unsigned int version;
1486
1487	version = atmel_get_version(as);
 
1488
1489	as->caps.is_spi2 = version > 0x121;
1490	as->caps.has_wdrbt = version >= 0x210;
1491	as->caps.has_dma_support = version >= 0x212;
1492	as->caps.has_pdc_support = version < 0x212;
1493}
1494
1495static void atmel_spi_init(struct atmel_spi *as)
 
1496{
1497	spi_writel(as, CR, SPI_BIT(SWRST));
1498	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1499
1500	/* It is recommended to enable FIFOs first thing after reset */
1501	if (as->fifo_size)
1502		spi_writel(as, CR, SPI_BIT(FIFOEN));
1503
1504	if (as->caps.has_wdrbt) {
1505		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1506				| SPI_BIT(MSTR));
1507	} else {
1508		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509	}
1510
1511	if (as->use_pdc)
1512		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1513	spi_writel(as, CR, SPI_BIT(SPIEN));
1514}
1515
1516static int atmel_spi_probe(struct platform_device *pdev)
1517{
1518	struct resource		*regs;
1519	int			irq;
1520	struct clk		*clk;
1521	int			ret;
1522	struct spi_controller	*host;
1523	struct atmel_spi	*as;
1524
1525	/* Select default pin state */
1526	pinctrl_pm_select_default_state(&pdev->dev);
1527
 
 
 
 
1528	irq = platform_get_irq(pdev, 0);
1529	if (irq < 0)
1530		return irq;
1531
1532	clk = devm_clk_get(&pdev->dev, "spi_clk");
1533	if (IS_ERR(clk))
1534		return PTR_ERR(clk);
1535
1536	/* setup spi core then atmel-specific driver state */
1537	host = spi_alloc_host(&pdev->dev, sizeof(*as));
1538	if (!host)
1539		return -ENOMEM;
 
1540
1541	/* the spi->mode bits understood by this driver: */
1542	host->use_gpio_descriptors = true;
1543	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1544	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1545	host->dev.of_node = pdev->dev.of_node;
1546	host->bus_num = pdev->id;
1547	host->num_chipselect = 4;
1548	host->setup = atmel_spi_setup;
1549	host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1550			SPI_CONTROLLER_GPIO_SS);
1551	host->transfer_one = atmel_spi_one_transfer;
1552	host->set_cs = atmel_spi_set_cs;
1553	host->cleanup = atmel_spi_cleanup;
1554	host->auto_runtime_pm = true;
1555	host->max_dma_len = SPI_MAX_DMA_XFER;
1556	host->can_dma = atmel_spi_can_dma;
1557	platform_set_drvdata(pdev, host);
1558
1559	as = spi_controller_get_devdata(host);
1560
1561	spin_lock_init(&as->lock);
1562
1563	as->pdev = pdev;
1564	as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1565	if (IS_ERR(as->regs)) {
1566		ret = PTR_ERR(as->regs);
1567		goto out_unmap_regs;
1568	}
1569	as->phybase = regs->start;
1570	as->irq = irq;
1571	as->clk = clk;
1572
1573	init_completion(&as->xfer_completion);
1574
1575	atmel_get_caps(as);
1576
 
 
 
 
 
 
 
 
 
 
 
 
1577	as->use_dma = false;
1578	as->use_pdc = false;
1579	if (as->caps.has_dma_support) {
1580		ret = atmel_spi_configure_dma(host, as);
1581		if (ret == 0) {
1582			as->use_dma = true;
1583		} else if (ret == -EPROBE_DEFER) {
1584			goto out_unmap_regs;
1585		}
1586	} else if (as->caps.has_pdc_support) {
1587		as->use_pdc = true;
1588	}
1589
1590	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1591		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1592						      SPI_MAX_DMA_XFER,
1593						      &as->dma_addr_rx_bbuf,
1594						      GFP_KERNEL | GFP_DMA);
1595		if (!as->addr_rx_bbuf) {
1596			as->use_dma = false;
1597		} else {
1598			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1599					SPI_MAX_DMA_XFER,
1600					&as->dma_addr_tx_bbuf,
1601					GFP_KERNEL | GFP_DMA);
1602			if (!as->addr_tx_bbuf) {
1603				as->use_dma = false;
1604				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1605						  as->addr_rx_bbuf,
1606						  as->dma_addr_rx_bbuf);
1607			}
1608		}
1609		if (!as->use_dma)
1610			dev_info(host->dev.parent,
1611				 "  can not allocate dma coherent memory\n");
1612	}
1613
1614	if (as->caps.has_dma_support && !as->use_dma)
1615		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1616
1617	if (as->use_pdc) {
1618		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1619					0, dev_name(&pdev->dev), host);
1620	} else {
1621		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1622					0, dev_name(&pdev->dev), host);
1623	}
1624	if (ret)
1625		goto out_unmap_regs;
1626
1627	/* Initialize the hardware */
1628	ret = clk_prepare_enable(clk);
1629	if (ret)
1630		goto out_free_irq;
1631
1632	as->spi_clk = clk_get_rate(clk);
1633
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	as->fifo_size = 0;
1635	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1636				  &as->fifo_size)) {
1637		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
 
1638	}
1639
1640	atmel_spi_init(as);
1641
1642	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1643	pm_runtime_use_autosuspend(&pdev->dev);
1644	pm_runtime_set_active(&pdev->dev);
1645	pm_runtime_enable(&pdev->dev);
1646
1647	ret = devm_spi_register_controller(&pdev->dev, host);
1648	if (ret)
1649		goto out_free_dma;
1650
1651	/* go! */
1652	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1653			atmel_get_version(as), (unsigned long)regs->start,
1654			irq);
1655
1656	return 0;
1657
1658out_free_dma:
1659	pm_runtime_disable(&pdev->dev);
1660	pm_runtime_set_suspended(&pdev->dev);
1661
1662	if (as->use_dma)
1663		atmel_spi_release_dma(host);
1664
1665	spi_writel(as, CR, SPI_BIT(SWRST));
1666	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1667	clk_disable_unprepare(clk);
1668out_free_irq:
1669out_unmap_regs:
1670	spi_controller_put(host);
 
1671	return ret;
1672}
1673
1674static void atmel_spi_remove(struct platform_device *pdev)
1675{
1676	struct spi_controller	*host = platform_get_drvdata(pdev);
1677	struct atmel_spi	*as = spi_controller_get_devdata(host);
1678
1679	pm_runtime_get_sync(&pdev->dev);
1680
1681	/* reset the hardware and block queue progress */
 
1682	if (as->use_dma) {
1683		atmel_spi_stop_dma(host);
1684		atmel_spi_release_dma(host);
1685		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1686			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1687					  as->addr_tx_bbuf,
1688					  as->dma_addr_tx_bbuf);
1689			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1690					  as->addr_rx_bbuf,
1691					  as->dma_addr_rx_bbuf);
1692		}
1693	}
1694
1695	spin_lock_irq(&as->lock);
1696	spi_writel(as, CR, SPI_BIT(SWRST));
1697	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1698	spi_readl(as, SR);
1699	spin_unlock_irq(&as->lock);
1700
1701	clk_disable_unprepare(as->clk);
1702
1703	pm_runtime_put_noidle(&pdev->dev);
1704	pm_runtime_disable(&pdev->dev);
 
 
1705}
1706
 
1707static int atmel_spi_runtime_suspend(struct device *dev)
1708{
1709	struct spi_controller *host = dev_get_drvdata(dev);
1710	struct atmel_spi *as = spi_controller_get_devdata(host);
1711
1712	clk_disable_unprepare(as->clk);
1713	pinctrl_pm_select_sleep_state(dev);
1714
1715	return 0;
1716}
1717
1718static int atmel_spi_runtime_resume(struct device *dev)
1719{
1720	struct spi_controller *host = dev_get_drvdata(dev);
1721	struct atmel_spi *as = spi_controller_get_devdata(host);
1722
1723	pinctrl_pm_select_default_state(dev);
1724
1725	return clk_prepare_enable(as->clk);
1726}
1727
 
1728static int atmel_spi_suspend(struct device *dev)
1729{
1730	struct spi_controller *host = dev_get_drvdata(dev);
1731	int ret;
1732
1733	/* Stop the queue running */
1734	ret = spi_controller_suspend(host);
1735	if (ret)
 
1736		return ret;
 
1737
1738	if (!pm_runtime_suspended(dev))
1739		atmel_spi_runtime_suspend(dev);
1740
1741	return 0;
1742}
1743
1744static int atmel_spi_resume(struct device *dev)
1745{
1746	struct spi_controller *host = dev_get_drvdata(dev);
1747	struct atmel_spi *as = spi_controller_get_devdata(host);
1748	int ret;
1749
1750	ret = clk_prepare_enable(as->clk);
1751	if (ret)
1752		return ret;
1753
1754	atmel_spi_init(as);
1755
1756	clk_disable_unprepare(as->clk);
1757
1758	if (!pm_runtime_suspended(dev)) {
1759		ret = atmel_spi_runtime_resume(dev);
1760		if (ret)
1761			return ret;
1762	}
1763
1764	/* Start the queue running */
1765	return spi_controller_resume(host);
 
 
 
 
1766}
 
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771		       atmel_spi_runtime_resume, NULL)
1772};
 
 
 
 
1773
 
1774static const struct of_device_id atmel_spi_dt_ids[] = {
1775	{ .compatible = "atmel,at91rm9200-spi" },
1776	{ /* sentinel */ }
1777};
1778
1779MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
 
1780
1781static struct platform_driver atmel_spi_driver = {
1782	.driver		= {
1783		.name	= "atmel_spi",
1784		.pm	= pm_ptr(&atmel_spi_pm_ops),
1785		.of_match_table	= atmel_spi_dt_ids,
1786	},
1787	.probe		= atmel_spi_probe,
1788	.remove_new	= atmel_spi_remove,
1789};
1790module_platform_driver(atmel_spi_driver);
1791
1792MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794MODULE_LICENSE("GPL");
1795MODULE_ALIAS("platform:atmel_spi");
v4.10.11
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
 
 
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 
 272};
 273
 274/*
 275 * The core SPI transfer engine just talks to a register bank to set up
 276 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 277 * framework provides the base clock, subdivided for each spi_device.
 278 */
 279struct atmel_spi {
 280	spinlock_t		lock;
 281	unsigned long		flags;
 282
 283	phys_addr_t		phybase;
 284	void __iomem		*regs;
 285	int			irq;
 286	struct clk		*clk;
 287	struct platform_device	*pdev;
 288	unsigned long		spi_clk;
 289
 290	struct spi_transfer	*current_transfer;
 291	int			current_remaining_bytes;
 292	int			done_status;
 
 
 
 
 293
 294	struct completion	xfer_completion;
 295
 296	struct atmel_spi_caps	caps;
 297
 298	bool			use_dma;
 299	bool			use_pdc;
 300	bool			use_cs_gpios;
 301
 302	bool			keep_cs;
 303	bool			cs_active;
 304
 305	u32			fifo_size;
 
 
 
 306};
 307
 308/* Controller-specific per-slave state */
 309struct atmel_spi_device {
 310	unsigned int		npcs_pin;
 311	u32			csr;
 312};
 313
 314#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 315#define INVALID_DMA_ADDRESS	0xffffffff
 316
 317/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318 * Version 2 of the SPI controller has
 319 *  - CR.LASTXFER
 320 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 321 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 322 *  - SPI_CSRx.CSAAT
 323 *  - SPI_CSRx.SBCR allows faster clocking
 324 */
 325static bool atmel_spi_is_v2(struct atmel_spi *as)
 326{
 327	return as->caps.is_spi2;
 328}
 329
 330/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 332 * they assume that spi slave device state will not change on deselect, so
 333 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 334 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 335 * controllers have CSAAT and friends.
 336 *
 337 * Since the CSAAT functionality is a bit weird on newer controllers as
 338 * well, we use GPIO to control nCSx pins on all controllers, updating
 339 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 340 * support active-high chipselects despite the controller's belief that
 341 * only active-low devices/systems exists.
 342 *
 343 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 344 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 345 * Master on Chip Select 0.")  No workaround exists for that ... so for
 346 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 347 * and (c) will trigger that first erratum in some cases.
 
 
 
 
 
 
 348 */
 349
 350static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 351{
 352	struct atmel_spi_device *asd = spi->controller_state;
 353	unsigned active = spi->mode & SPI_CS_HIGH;
 
 354	u32 mr;
 355
 
 
 
 
 
 356	if (atmel_spi_is_v2(as)) {
 357		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 358		/* For the low SPI version, there is a issue that PDC transfer
 359		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 360		 */
 361		spi_writel(as, CSR0, asd->csr);
 362		if (as->caps.has_wdrbt) {
 363			spi_writel(as, MR,
 364					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 365					| SPI_BIT(WDRBT)
 366					| SPI_BIT(MODFDIS)
 367					| SPI_BIT(MSTR));
 368		} else {
 369			spi_writel(as, MR,
 370					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		}
 374
 375		mr = spi_readl(as, MR);
 376		if (as->use_cs_gpios)
 377			gpio_set_value(asd->npcs_pin, active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378	} else {
 379		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 380		int i;
 381		u32 csr;
 382
 383		/* Make sure clock polarity is correct */
 384		for (i = 0; i < spi->master->num_chipselect; i++) {
 385			csr = spi_readl(as, CSR0 + 4 * i);
 386			if ((csr ^ cpol) & SPI_BIT(CPOL))
 387				spi_writel(as, CSR0 + 4 * i,
 388						csr ^ SPI_BIT(CPOL));
 389		}
 390
 391		mr = spi_readl(as, MR);
 392		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 393		if (as->use_cs_gpios && spi->chip_select != 0)
 394			gpio_set_value(asd->npcs_pin, active);
 395		spi_writel(as, MR, mr);
 396	}
 397
 398	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 399			asd->npcs_pin, active ? " (high)" : "",
 400			mr);
 401}
 402
 403static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 404{
 405	struct atmel_spi_device *asd = spi->controller_state;
 406	unsigned active = spi->mode & SPI_CS_HIGH;
 407	u32 mr;
 408
 
 
 
 
 
 409	/* only deactivate *this* device; sometimes transfers to
 410	 * another device may be active when this routine is called.
 411	 */
 412	mr = spi_readl(as, MR);
 413	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 414		mr = SPI_BFINS(PCS, 0xf, mr);
 415		spi_writel(as, MR, mr);
 416	}
 417
 418	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 419			asd->npcs_pin, active ? " (low)" : "",
 420			mr);
 421
 422	if (!as->use_cs_gpios)
 423		spi_writel(as, CR, SPI_BIT(LASTXFER));
 424	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 425		gpio_set_value(asd->npcs_pin, !active);
 426}
 427
 428static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 429{
 430	spin_lock_irqsave(&as->lock, as->flags);
 431}
 432
 433static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 434{
 435	spin_unlock_irqrestore(&as->lock, as->flags);
 436}
 437
 
 
 
 
 
 438static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 439				struct spi_transfer *xfer)
 440{
 441	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 442}
 443
 444static bool atmel_spi_can_dma(struct spi_master *master,
 445			      struct spi_device *spi,
 446			      struct spi_transfer *xfer)
 447{
 448	struct atmel_spi *as = spi_master_get_devdata(master);
 
 
 
 
 
 
 449
 450	return atmel_spi_use_dma(as, xfer);
 451}
 452
 453static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 454				struct dma_slave_config *slave_config,
 455				u8 bits_per_word)
 456{
 457	struct spi_master *master = platform_get_drvdata(as->pdev);
 
 458	int err = 0;
 459
 460	if (bits_per_word > 8) {
 461		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 462		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 463	} else {
 464		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 465		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 466	}
 467
 468	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 469	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 470	slave_config->src_maxburst = 1;
 471	slave_config->dst_maxburst = 1;
 472	slave_config->device_fc = false;
 473
 474	/*
 475	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 476	 * the Mode Register).
 477	 * So according to the datasheet, when FIFOs are available (and
 478	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 479	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 480	 * Data Register in a single access.
 481	 * However, the first data has to be written into the lowest 16 bits and
 482	 * the second data into the highest 16 bits of the Transmit
 483	 * Data Register. For 8bit data (the most frequent case), it would
 484	 * require to rework tx_buf so each data would actualy fit 16 bits.
 485	 * So we'd rather write only one data at the time. Hence the transmit
 486	 * path works the same whether FIFOs are available (and enabled) or not.
 487	 */
 488	slave_config->direction = DMA_MEM_TO_DEV;
 489	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 490		dev_err(&as->pdev->dev,
 491			"failed to configure tx dma channel\n");
 492		err = -EINVAL;
 493	}
 494
 495	/*
 496	 * This driver configures the spi controller for master mode (MSTR bit
 497	 * set to '1' in the Mode Register).
 498	 * So according to the datasheet, when FIFOs are available (and
 499	 * enabled), the Receive FIFO operates in Single Data Mode.
 500	 * So the receive path works the same whether FIFOs are available (and
 501	 * enabled) or not.
 502	 */
 503	slave_config->direction = DMA_DEV_TO_MEM;
 504	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure rx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	return err;
 511}
 512
 513static int atmel_spi_configure_dma(struct spi_master *master,
 514				   struct atmel_spi *as)
 515{
 516	struct dma_slave_config	slave_config;
 517	struct device *dev = &as->pdev->dev;
 518	int err;
 519
 520	dma_cap_mask_t mask;
 521	dma_cap_zero(mask);
 522	dma_cap_set(DMA_SLAVE, mask);
 523
 524	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 525	if (IS_ERR(master->dma_tx)) {
 526		err = PTR_ERR(master->dma_tx);
 527		if (err == -EPROBE_DEFER) {
 528			dev_warn(dev, "no DMA channel available at the moment\n");
 529			goto error_clear;
 530		}
 531		dev_err(dev,
 532			"DMA TX channel not available, SPI unable to use DMA\n");
 533		err = -EBUSY;
 534		goto error_clear;
 535	}
 536
 537	/*
 538	 * No reason to check EPROBE_DEFER here since we have already requested
 539	 * tx channel. If it fails here, it's for another reason.
 540	 */
 541	master->dma_rx = dma_request_slave_channel(dev, "rx");
 542
 543	if (!master->dma_rx) {
 544		dev_err(dev,
 545			"DMA RX channel not available, SPI unable to use DMA\n");
 546		err = -EBUSY;
 547		goto error;
 548	}
 549
 550	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 551	if (err)
 552		goto error;
 553
 554	dev_info(&as->pdev->dev,
 555			"Using %s (tx) and %s (rx) for DMA transfers\n",
 556			dma_chan_name(master->dma_tx),
 557			dma_chan_name(master->dma_rx));
 558
 559	return 0;
 560error:
 561	if (master->dma_rx)
 562		dma_release_channel(master->dma_rx);
 563	if (!IS_ERR(master->dma_tx))
 564		dma_release_channel(master->dma_tx);
 565error_clear:
 566	master->dma_tx = master->dma_rx = NULL;
 567	return err;
 568}
 569
 570static void atmel_spi_stop_dma(struct spi_master *master)
 571{
 572	if (master->dma_rx)
 573		dmaengine_terminate_all(master->dma_rx);
 574	if (master->dma_tx)
 575		dmaengine_terminate_all(master->dma_tx);
 576}
 577
 578static void atmel_spi_release_dma(struct spi_master *master)
 579{
 580	if (master->dma_rx) {
 581		dma_release_channel(master->dma_rx);
 582		master->dma_rx = NULL;
 583	}
 584	if (master->dma_tx) {
 585		dma_release_channel(master->dma_tx);
 586		master->dma_tx = NULL;
 587	}
 588}
 589
 590/* This function is called by the DMA driver from tasklet context */
 591static void dma_callback(void *data)
 592{
 593	struct spi_master	*master = data;
 594	struct atmel_spi	*as = spi_master_get_devdata(master);
 595
 
 
 
 
 
 596	complete(&as->xfer_completion);
 597}
 598
 599/*
 600 * Next transfer using PIO without FIFO.
 601 */
 602static void atmel_spi_next_xfer_single(struct spi_master *master,
 603				       struct spi_transfer *xfer)
 604{
 605	struct atmel_spi	*as = spi_master_get_devdata(master);
 606	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 607
 608	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 609
 610	/* Make sure data is not remaining in RDR */
 611	spi_readl(as, RDR);
 612	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 613		spi_readl(as, RDR);
 614		cpu_relax();
 615	}
 616
 617	if (xfer->bits_per_word > 8)
 618		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 619	else
 620		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 621
 622	dev_dbg(master->dev.parent,
 623		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 624		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 625		xfer->bits_per_word);
 626
 627	/* Enable relevant interrupts */
 628	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 629}
 630
 631/*
 632 * Next transfer using PIO with FIFO.
 633 */
 634static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 635				     struct spi_transfer *xfer)
 636{
 637	struct atmel_spi *as = spi_master_get_devdata(master);
 638	u32 current_remaining_data, num_data;
 639	u32 offset = xfer->len - as->current_remaining_bytes;
 640	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 641	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 642	u16 td0, td1;
 643	u32 fifomr;
 644
 645	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 646
 647	/* Compute the number of data to transfer in the current iteration */
 648	current_remaining_data = ((xfer->bits_per_word > 8) ?
 649				  ((u32)as->current_remaining_bytes >> 1) :
 650				  (u32)as->current_remaining_bytes);
 651	num_data = min(current_remaining_data, as->fifo_size);
 652
 653	/* Flush RX and TX FIFOs */
 654	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 655	while (spi_readl(as, FLR))
 656		cpu_relax();
 657
 658	/* Set RX FIFO Threshold to the number of data to transfer */
 659	fifomr = spi_readl(as, FMR);
 660	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 661
 662	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 663	(void)spi_readl(as, SR);
 664
 665	/* Fill TX FIFO */
 666	while (num_data >= 2) {
 667		if (xfer->bits_per_word > 8) {
 668			td0 = *words++;
 669			td1 = *words++;
 670		} else {
 671			td0 = *bytes++;
 672			td1 = *bytes++;
 673		}
 674
 675		spi_writel(as, TDR, (td1 << 16) | td0);
 676		num_data -= 2;
 677	}
 678
 679	if (num_data) {
 680		if (xfer->bits_per_word > 8)
 681			td0 = *words++;
 682		else
 683			td0 = *bytes++;
 684
 685		spi_writew(as, TDR, td0);
 686		num_data--;
 687	}
 688
 689	dev_dbg(master->dev.parent,
 690		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 691		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 692		xfer->bits_per_word);
 693
 694	/*
 695	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 696	 * transfer completion.
 697	 */
 698	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 699}
 700
 701/*
 702 * Next transfer using PIO.
 703 */
 704static void atmel_spi_next_xfer_pio(struct spi_master *master,
 705				    struct spi_transfer *xfer)
 706{
 707	struct atmel_spi *as = spi_master_get_devdata(master);
 708
 709	if (as->fifo_size)
 710		atmel_spi_next_xfer_fifo(master, xfer);
 711	else
 712		atmel_spi_next_xfer_single(master, xfer);
 713}
 714
 715/*
 716 * Submit next transfer for DMA.
 717 */
 718static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 719				struct spi_transfer *xfer,
 720				u32 *plen)
 721{
 722	struct atmel_spi	*as = spi_master_get_devdata(master);
 723	struct dma_chan		*rxchan = master->dma_rx;
 724	struct dma_chan		*txchan = master->dma_tx;
 725	struct dma_async_tx_descriptor *rxdesc;
 726	struct dma_async_tx_descriptor *txdesc;
 727	struct dma_slave_config	slave_config;
 728	dma_cookie_t		cookie;
 729
 730	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 731
 732	/* Check that the channels are available */
 733	if (!rxchan || !txchan)
 734		return -ENODEV;
 735
 736	/* release lock for DMA operations */
 737	atmel_spi_unlock(as);
 738
 739	*plen = xfer->len;
 740
 741	if (atmel_spi_dma_slave_config(as, &slave_config,
 742				       xfer->bits_per_word))
 743		goto err_exit;
 744
 745	/* Send both scatterlists */
 746	rxdesc = dmaengine_prep_slave_sg(rxchan,
 747					 xfer->rx_sg.sgl, xfer->rx_sg.nents,
 748					 DMA_FROM_DEVICE,
 749					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 750	if (!rxdesc)
 751		goto err_dma;
 752
 753	txdesc = dmaengine_prep_slave_sg(txchan,
 754					 xfer->tx_sg.sgl, xfer->tx_sg.nents,
 755					 DMA_TO_DEVICE,
 756					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 757	if (!txdesc)
 758		goto err_dma;
 759
 760	dev_dbg(master->dev.parent,
 761		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 762		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 763		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 764
 765	/* Enable relevant interrupts */
 766	spi_writel(as, IER, SPI_BIT(OVRES));
 767
 768	/* Put the callback on the RX transfer only, that should finish last */
 769	rxdesc->callback = dma_callback;
 770	rxdesc->callback_param = master;
 771
 772	/* Submit and fire RX and TX with TX last so we're ready to read! */
 773	cookie = rxdesc->tx_submit(rxdesc);
 774	if (dma_submit_error(cookie))
 775		goto err_dma;
 776	cookie = txdesc->tx_submit(txdesc);
 777	if (dma_submit_error(cookie))
 778		goto err_dma;
 779	rxchan->device->device_issue_pending(rxchan);
 780	txchan->device->device_issue_pending(txchan);
 781
 782	/* take back lock */
 783	atmel_spi_lock(as);
 784	return 0;
 785
 786err_dma:
 787	spi_writel(as, IDR, SPI_BIT(OVRES));
 788	atmel_spi_stop_dma(master);
 789err_exit:
 790	atmel_spi_lock(as);
 791	return -ENOMEM;
 792}
 793
 794static void atmel_spi_next_xfer_data(struct spi_master *master,
 795				struct spi_transfer *xfer,
 796				dma_addr_t *tx_dma,
 797				dma_addr_t *rx_dma,
 798				u32 *plen)
 799{
 800	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 801	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 802	if (*plen > master->max_dma_len)
 803		*plen = master->max_dma_len;
 804}
 805
 806static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 807				    struct spi_device *spi,
 808				    struct spi_transfer *xfer)
 809{
 810	u32			scbr, csr;
 811	unsigned long		bus_hz;
 
 
 
 
 
 
 812
 813	/* v1 chips start out at half the peripheral bus speed. */
 814	bus_hz = as->spi_clk;
 815	if (!atmel_spi_is_v2(as))
 816		bus_hz /= 2;
 817
 818	/*
 819	 * Calculate the lowest divider that satisfies the
 820	 * constraint, assuming div32/fdiv/mbz == 0.
 821	 */
 822	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 823
 824	/*
 825	 * If the resulting divider doesn't fit into the
 826	 * register bitfield, we can't satisfy the constraint.
 827	 */
 828	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 829		dev_err(&spi->dev,
 830			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 831			xfer->speed_hz, scbr, bus_hz/255);
 832		return -EINVAL;
 833	}
 834	if (scbr == 0) {
 835		dev_err(&spi->dev,
 836			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 837			xfer->speed_hz, scbr, bus_hz);
 838		return -EINVAL;
 839	}
 840	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 841	csr = SPI_BFINS(SCBR, scbr, csr);
 842	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 
 843
 844	return 0;
 845}
 846
 847/*
 848 * Submit next transfer for PDC.
 849 * lock is held, spi irq is blocked
 850 */
 851static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 852					struct spi_message *msg,
 853					struct spi_transfer *xfer)
 854{
 855	struct atmel_spi	*as = spi_master_get_devdata(master);
 856	u32			len;
 857	dma_addr_t		tx_dma, rx_dma;
 858
 859	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 860
 861	len = as->current_remaining_bytes;
 862	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 863	as->current_remaining_bytes -= len;
 864
 865	spi_writel(as, RPR, rx_dma);
 866	spi_writel(as, TPR, tx_dma);
 867
 868	if (msg->spi->bits_per_word > 8)
 869		len >>= 1;
 870	spi_writel(as, RCR, len);
 871	spi_writel(as, TCR, len);
 872
 873	dev_dbg(&msg->spi->dev,
 874		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 875		xfer, xfer->len, xfer->tx_buf,
 876		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 877		(unsigned long long)xfer->rx_dma);
 878
 879	if (as->current_remaining_bytes) {
 880		len = as->current_remaining_bytes;
 881		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882		as->current_remaining_bytes -= len;
 883
 884		spi_writel(as, RNPR, rx_dma);
 885		spi_writel(as, TNPR, tx_dma);
 886
 887		if (msg->spi->bits_per_word > 8)
 888			len >>= 1;
 889		spi_writel(as, RNCR, len);
 890		spi_writel(as, TNCR, len);
 891
 892		dev_dbg(&msg->spi->dev,
 893			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894			xfer, xfer->len, xfer->tx_buf,
 895			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896			(unsigned long long)xfer->rx_dma);
 897	}
 898
 899	/* REVISIT: We're waiting for RXBUFF before we start the next
 900	 * transfer because we need to handle some difficult timing
 901	 * issues otherwise. If we wait for TXBUFE in one transfer and
 902	 * then starts waiting for RXBUFF in the next, it's difficult
 903	 * to tell the difference between the RXBUFF interrupt we're
 904	 * actually waiting for and the RXBUFF interrupt of the
 905	 * previous transfer.
 906	 *
 907	 * It should be doable, though. Just not now...
 908	 */
 909	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 910	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 911}
 912
 913/*
 914 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 915 *  - The buffer is either valid for CPU access, else NULL
 916 *  - If the buffer is valid, so is its DMA address
 917 *
 918 * This driver manages the dma address unless message->is_dma_mapped.
 919 */
 920static int
 921atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 922{
 923	struct device	*dev = &as->pdev->dev;
 924
 925	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 926	if (xfer->tx_buf) {
 927		/* tx_buf is a const void* where we need a void * for the dma
 928		 * mapping */
 929		void *nonconst_tx = (void *)xfer->tx_buf;
 930
 931		xfer->tx_dma = dma_map_single(dev,
 932				nonconst_tx, xfer->len,
 933				DMA_TO_DEVICE);
 934		if (dma_mapping_error(dev, xfer->tx_dma))
 935			return -ENOMEM;
 936	}
 937	if (xfer->rx_buf) {
 938		xfer->rx_dma = dma_map_single(dev,
 939				xfer->rx_buf, xfer->len,
 940				DMA_FROM_DEVICE);
 941		if (dma_mapping_error(dev, xfer->rx_dma)) {
 942			if (xfer->tx_buf)
 943				dma_unmap_single(dev,
 944						xfer->tx_dma, xfer->len,
 945						DMA_TO_DEVICE);
 946			return -ENOMEM;
 947		}
 948	}
 949	return 0;
 950}
 951
 952static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 953				     struct spi_transfer *xfer)
 954{
 955	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 956		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 957				 xfer->len, DMA_TO_DEVICE);
 958	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 959		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 960				 xfer->len, DMA_FROM_DEVICE);
 961}
 962
 963static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 964{
 965	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 966}
 967
 968static void
 969atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 970{
 971	u8		*rxp;
 972	u16		*rxp16;
 973	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 974
 975	if (xfer->bits_per_word > 8) {
 976		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 977		*rxp16 = spi_readl(as, RDR);
 978	} else {
 979		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 980		*rxp = spi_readl(as, RDR);
 981	}
 982	if (xfer->bits_per_word > 8) {
 983		if (as->current_remaining_bytes > 2)
 984			as->current_remaining_bytes -= 2;
 985		else
 986			as->current_remaining_bytes = 0;
 987	} else {
 988		as->current_remaining_bytes--;
 989	}
 990}
 991
 992static void
 993atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 994{
 995	u32 fifolr = spi_readl(as, FLR);
 996	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 997	u32 offset = xfer->len - as->current_remaining_bytes;
 998	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 999	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1000	u16 rd; /* RD field is the lowest 16 bits of RDR */
1001
1002	/* Update the number of remaining bytes to transfer */
1003	num_bytes = ((xfer->bits_per_word > 8) ?
1004		     (num_data << 1) :
1005		     num_data);
1006
1007	if (as->current_remaining_bytes > num_bytes)
1008		as->current_remaining_bytes -= num_bytes;
1009	else
1010		as->current_remaining_bytes = 0;
1011
1012	/* Handle odd number of bytes when data are more than 8bit width */
1013	if (xfer->bits_per_word > 8)
1014		as->current_remaining_bytes &= ~0x1;
1015
1016	/* Read data */
1017	while (num_data) {
1018		rd = spi_readl(as, RDR);
1019		if (xfer->bits_per_word > 8)
1020			*words++ = rd;
1021		else
1022			*bytes++ = rd;
1023		num_data--;
1024	}
1025}
1026
1027/* Called from IRQ
1028 *
1029 * Must update "current_remaining_bytes" to keep track of data
1030 * to transfer.
1031 */
1032static void
1033atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1034{
1035	if (as->fifo_size)
1036		atmel_spi_pump_fifo_data(as, xfer);
1037	else
1038		atmel_spi_pump_single_data(as, xfer);
1039}
1040
1041/* Interrupt
1042 *
1043 * No need for locking in this Interrupt handler: done_status is the
1044 * only information modified.
1045 */
1046static irqreturn_t
1047atmel_spi_pio_interrupt(int irq, void *dev_id)
1048{
1049	struct spi_master	*master = dev_id;
1050	struct atmel_spi	*as = spi_master_get_devdata(master);
1051	u32			status, pending, imr;
1052	struct spi_transfer	*xfer;
1053	int			ret = IRQ_NONE;
1054
1055	imr = spi_readl(as, IMR);
1056	status = spi_readl(as, SR);
1057	pending = status & imr;
1058
1059	if (pending & SPI_BIT(OVRES)) {
1060		ret = IRQ_HANDLED;
1061		spi_writel(as, IDR, SPI_BIT(OVRES));
1062		dev_warn(master->dev.parent, "overrun\n");
1063
1064		/*
1065		 * When we get an overrun, we disregard the current
1066		 * transfer. Data will not be copied back from any
1067		 * bounce buffer and msg->actual_len will not be
1068		 * updated with the last xfer.
1069		 *
1070		 * We will also not process any remaning transfers in
1071		 * the message.
1072		 */
1073		as->done_status = -EIO;
1074		smp_wmb();
1075
1076		/* Clear any overrun happening while cleaning up */
1077		spi_readl(as, SR);
1078
1079		complete(&as->xfer_completion);
1080
1081	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1082		atmel_spi_lock(as);
1083
1084		if (as->current_remaining_bytes) {
1085			ret = IRQ_HANDLED;
1086			xfer = as->current_transfer;
1087			atmel_spi_pump_pio_data(as, xfer);
1088			if (!as->current_remaining_bytes)
1089				spi_writel(as, IDR, pending);
1090
1091			complete(&as->xfer_completion);
1092		}
1093
1094		atmel_spi_unlock(as);
1095	} else {
1096		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1097		ret = IRQ_HANDLED;
1098		spi_writel(as, IDR, pending);
1099	}
1100
1101	return ret;
1102}
1103
1104static irqreturn_t
1105atmel_spi_pdc_interrupt(int irq, void *dev_id)
1106{
1107	struct spi_master	*master = dev_id;
1108	struct atmel_spi	*as = spi_master_get_devdata(master);
1109	u32			status, pending, imr;
1110	int			ret = IRQ_NONE;
1111
1112	imr = spi_readl(as, IMR);
1113	status = spi_readl(as, SR);
1114	pending = status & imr;
1115
1116	if (pending & SPI_BIT(OVRES)) {
1117
1118		ret = IRQ_HANDLED;
1119
1120		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1121				     | SPI_BIT(OVRES)));
1122
1123		/* Clear any overrun happening while cleaning up */
1124		spi_readl(as, SR);
1125
1126		as->done_status = -EIO;
1127
1128		complete(&as->xfer_completion);
1129
1130	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1131		ret = IRQ_HANDLED;
1132
1133		spi_writel(as, IDR, pending);
1134
1135		complete(&as->xfer_completion);
1136	}
1137
1138	return ret;
1139}
1140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141static int atmel_spi_setup(struct spi_device *spi)
1142{
1143	struct atmel_spi	*as;
1144	struct atmel_spi_device	*asd;
1145	u32			csr;
1146	unsigned int		bits = spi->bits_per_word;
1147	unsigned int		npcs_pin;
 
1148
1149	as = spi_master_get_devdata(spi->master);
1150
1151	/* see notes above re chipselect */
1152	if (!atmel_spi_is_v2(as)
1153			&& spi->chip_select == 0
1154			&& (spi->mode & SPI_CS_HIGH)) {
1155		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1156		return -EINVAL;
1157	}
1158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159	csr = SPI_BF(BITS, bits - 8);
1160	if (spi->mode & SPI_CPOL)
1161		csr |= SPI_BIT(CPOL);
1162	if (!(spi->mode & SPI_CPHA))
1163		csr |= SPI_BIT(NCPHA);
1164	if (!as->use_cs_gpios)
 
1165		csr |= SPI_BIT(CSAAT);
1166
1167	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1168	 *
1169	 * DLYBCT would add delays between words, slowing down transfers.
1170	 * It could potentially be useful to cope with DMA bottlenecks, but
1171	 * in those cases it's probably best to just use a lower bitrate.
1172	 */
1173	csr |= SPI_BF(DLYBS, 0);
1174	csr |= SPI_BF(DLYBCT, 0);
1175
1176	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1177	npcs_pin = (unsigned long)spi->controller_data;
 
1178
1179	if (!as->use_cs_gpios)
1180		npcs_pin = spi->chip_select;
1181	else if (gpio_is_valid(spi->cs_gpio))
1182		npcs_pin = spi->cs_gpio;
1183
1184	asd = spi->controller_state;
1185	if (!asd) {
1186		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1187		if (!asd)
1188			return -ENOMEM;
1189
1190		if (as->use_cs_gpios)
1191			gpio_direction_output(npcs_pin,
1192					      !(spi->mode & SPI_CS_HIGH));
1193
1194		asd->npcs_pin = npcs_pin;
1195		spi->controller_state = asd;
1196	}
1197
1198	asd->csr = csr;
1199
1200	dev_dbg(&spi->dev,
1201		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1202		bits, spi->mode, spi->chip_select, csr);
1203
1204	if (!atmel_spi_is_v2(as))
1205		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1206
1207	return 0;
1208}
1209
1210static int atmel_spi_one_transfer(struct spi_master *master,
1211					struct spi_message *msg,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212					struct spi_transfer *xfer)
1213{
1214	struct atmel_spi	*as;
1215	struct spi_device	*spi = msg->spi;
1216	u8			bits;
1217	u32			len;
1218	struct atmel_spi_device	*asd;
1219	int			timeout;
1220	int			ret;
1221	unsigned long		dma_timeout;
 
1222
1223	as = spi_master_get_devdata(master);
1224
1225	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1226		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1227		return -EINVAL;
1228	}
1229
1230	asd = spi->controller_state;
1231	bits = (asd->csr >> 4) & 0xf;
1232	if (bits != xfer->bits_per_word - 8) {
1233		dev_dbg(&spi->dev,
1234			"you can't yet change bits_per_word in transfers\n");
1235		return -ENOPROTOOPT;
1236	}
1237
1238	/*
1239	 * DMA map early, for performance (empties dcache ASAP) and
1240	 * better fault reporting.
1241	 */
1242	if ((!msg->is_dma_mapped)
1243		&& as->use_pdc) {
1244		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1245			return -ENOMEM;
1246	}
1247
1248	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1249
1250	as->done_status = 0;
1251	as->current_transfer = xfer;
1252	as->current_remaining_bytes = xfer->len;
1253	while (as->current_remaining_bytes) {
1254		reinit_completion(&as->xfer_completion);
1255
1256		if (as->use_pdc) {
1257			atmel_spi_pdc_next_xfer(master, msg, xfer);
 
 
1258		} else if (atmel_spi_use_dma(as, xfer)) {
1259			len = as->current_remaining_bytes;
1260			ret = atmel_spi_next_xfer_dma_submit(master,
1261								xfer, &len);
1262			if (ret) {
1263				dev_err(&spi->dev,
1264					"unable to use DMA, fallback to PIO\n");
1265				atmel_spi_next_xfer_pio(master, xfer);
 
1266			} else {
1267				as->current_remaining_bytes -= len;
1268				if (as->current_remaining_bytes < 0)
1269					as->current_remaining_bytes = 0;
1270			}
1271		} else {
1272			atmel_spi_next_xfer_pio(master, xfer);
 
 
1273		}
1274
1275		/* interrupts are disabled, so free the lock for schedule */
1276		atmel_spi_unlock(as);
1277		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1278							  SPI_DMA_TIMEOUT);
1279		atmel_spi_lock(as);
1280		if (WARN_ON(dma_timeout == 0)) {
1281			dev_err(&spi->dev, "spi transfer timeout\n");
1282			as->done_status = -EIO;
1283		}
1284
1285		if (as->done_status)
1286			break;
1287	}
1288
1289	if (as->done_status) {
1290		if (as->use_pdc) {
1291			dev_warn(master->dev.parent,
1292				"overrun (%u/%u remaining)\n",
1293				spi_readl(as, TCR), spi_readl(as, RCR));
1294
1295			/*
1296			 * Clean up DMA registers and make sure the data
1297			 * registers are empty.
1298			 */
1299			spi_writel(as, RNCR, 0);
1300			spi_writel(as, TNCR, 0);
1301			spi_writel(as, RCR, 0);
1302			spi_writel(as, TCR, 0);
1303			for (timeout = 1000; timeout; timeout--)
1304				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1305					break;
1306			if (!timeout)
1307				dev_warn(master->dev.parent,
1308					 "timeout waiting for TXEMPTY");
1309			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1310				spi_readl(as, RDR);
1311
1312			/* Clear any overrun happening while cleaning up */
1313			spi_readl(as, SR);
1314
1315		} else if (atmel_spi_use_dma(as, xfer)) {
1316			atmel_spi_stop_dma(master);
1317		}
1318
1319		if (!msg->is_dma_mapped
1320			&& as->use_pdc)
1321			atmel_spi_dma_unmap_xfer(master, xfer);
1322
1323		return 0;
1324
1325	} else {
1326		/* only update length if no error */
1327		msg->actual_length += xfer->len;
1328	}
1329
1330	if (!msg->is_dma_mapped
1331		&& as->use_pdc)
1332		atmel_spi_dma_unmap_xfer(master, xfer);
1333
1334	if (xfer->delay_usecs)
1335		udelay(xfer->delay_usecs);
1336
1337	if (xfer->cs_change) {
1338		if (list_is_last(&xfer->transfer_list,
1339				 &msg->transfers)) {
1340			as->keep_cs = true;
1341		} else {
1342			as->cs_active = !as->cs_active;
1343			if (as->cs_active)
1344				cs_activate(as, msg->spi);
1345			else
1346				cs_deactivate(as, msg->spi);
1347		}
1348	}
1349
1350	return 0;
1351}
1352
1353static int atmel_spi_transfer_one_message(struct spi_master *master,
1354						struct spi_message *msg)
1355{
1356	struct atmel_spi *as;
1357	struct spi_transfer *xfer;
1358	struct spi_device *spi = msg->spi;
1359	int ret = 0;
1360
1361	as = spi_master_get_devdata(master);
1362
1363	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1364					msg, dev_name(&spi->dev));
1365
1366	atmel_spi_lock(as);
1367	cs_activate(as, spi);
1368
1369	as->cs_active = true;
1370	as->keep_cs = false;
1371
1372	msg->status = 0;
1373	msg->actual_length = 0;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		ret = atmel_spi_one_transfer(master, msg, xfer);
1377		if (ret)
1378			goto msg_done;
1379	}
1380
1381	if (as->use_pdc)
1382		atmel_spi_disable_pdc_transfer(as);
1383
1384	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1385		dev_dbg(&spi->dev,
1386			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1387			xfer, xfer->len,
1388			xfer->tx_buf, &xfer->tx_dma,
1389			xfer->rx_buf, &xfer->rx_dma);
1390	}
1391
1392msg_done:
1393	if (!as->keep_cs)
1394		cs_deactivate(as, msg->spi);
1395
1396	atmel_spi_unlock(as);
1397
1398	msg->status = as->done_status;
1399	spi_finalize_current_message(spi->master);
1400
1401	return ret;
1402}
1403
1404static void atmel_spi_cleanup(struct spi_device *spi)
1405{
1406	struct atmel_spi_device	*asd = spi->controller_state;
1407
1408	if (!asd)
1409		return;
1410
1411	spi->controller_state = NULL;
1412	kfree(asd);
1413}
1414
1415static inline unsigned int atmel_get_version(struct atmel_spi *as)
1416{
1417	return spi_readl(as, VERSION) & 0x00000fff;
1418}
1419
1420static void atmel_get_caps(struct atmel_spi *as)
1421{
1422	unsigned int version;
1423
1424	version = atmel_get_version(as);
1425	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1426
1427	as->caps.is_spi2 = version > 0x121;
1428	as->caps.has_wdrbt = version >= 0x210;
1429	as->caps.has_dma_support = version >= 0x212;
 
1430}
1431
1432/*-------------------------------------------------------------------------*/
1433static int atmel_spi_gpio_cs(struct platform_device *pdev)
1434{
1435	struct spi_master	*master = platform_get_drvdata(pdev);
1436	struct atmel_spi	*as = spi_master_get_devdata(master);
1437	struct device_node	*np = master->dev.of_node;
1438	int			i;
1439	int			ret = 0;
1440	int			nb = 0;
1441
1442	if (!as->use_cs_gpios)
1443		return 0;
1444
1445	if (!np)
1446		return 0;
1447
1448	nb = of_gpio_named_count(np, "cs-gpios");
1449	for (i = 0; i < nb; i++) {
1450		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1451						"cs-gpios", i);
1452
1453		if (cs_gpio == -EPROBE_DEFER)
1454			return cs_gpio;
1455
1456		if (gpio_is_valid(cs_gpio)) {
1457			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1458						dev_name(&pdev->dev));
1459			if (ret)
1460				return ret;
1461		}
1462	}
1463
1464	return 0;
 
 
1465}
1466
1467static int atmel_spi_probe(struct platform_device *pdev)
1468{
1469	struct resource		*regs;
1470	int			irq;
1471	struct clk		*clk;
1472	int			ret;
1473	struct spi_master	*master;
1474	struct atmel_spi	*as;
1475
1476	/* Select default pin state */
1477	pinctrl_pm_select_default_state(&pdev->dev);
1478
1479	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480	if (!regs)
1481		return -ENXIO;
1482
1483	irq = platform_get_irq(pdev, 0);
1484	if (irq < 0)
1485		return irq;
1486
1487	clk = devm_clk_get(&pdev->dev, "spi_clk");
1488	if (IS_ERR(clk))
1489		return PTR_ERR(clk);
1490
1491	/* setup spi core then atmel-specific driver state */
1492	ret = -ENOMEM;
1493	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1494	if (!master)
1495		goto out_free;
1496
1497	/* the spi->mode bits understood by this driver: */
1498	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1499	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1500	master->dev.of_node = pdev->dev.of_node;
1501	master->bus_num = pdev->id;
1502	master->num_chipselect = master->dev.of_node ? 0 : 4;
1503	master->setup = atmel_spi_setup;
1504	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1505	master->transfer_one_message = atmel_spi_transfer_one_message;
1506	master->cleanup = atmel_spi_cleanup;
1507	master->auto_runtime_pm = true;
1508	master->max_dma_len = SPI_MAX_DMA_XFER;
1509	master->can_dma = atmel_spi_can_dma;
1510	platform_set_drvdata(pdev, master);
 
 
 
1511
1512	as = spi_master_get_devdata(master);
1513
1514	spin_lock_init(&as->lock);
1515
1516	as->pdev = pdev;
1517	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1518	if (IS_ERR(as->regs)) {
1519		ret = PTR_ERR(as->regs);
1520		goto out_unmap_regs;
1521	}
1522	as->phybase = regs->start;
1523	as->irq = irq;
1524	as->clk = clk;
1525
1526	init_completion(&as->xfer_completion);
1527
1528	atmel_get_caps(as);
1529
1530	as->use_cs_gpios = true;
1531	if (atmel_spi_is_v2(as) &&
1532	    pdev->dev.of_node &&
1533	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1534		as->use_cs_gpios = false;
1535		master->num_chipselect = 4;
1536	}
1537
1538	ret = atmel_spi_gpio_cs(pdev);
1539	if (ret)
1540		goto out_unmap_regs;
1541
1542	as->use_dma = false;
1543	as->use_pdc = false;
1544	if (as->caps.has_dma_support) {
1545		ret = atmel_spi_configure_dma(master, as);
1546		if (ret == 0) {
1547			as->use_dma = true;
1548		} else if (ret == -EPROBE_DEFER) {
1549			return ret;
1550		}
1551	} else {
1552		as->use_pdc = true;
1553	}
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555	if (as->caps.has_dma_support && !as->use_dma)
1556		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1557
1558	if (as->use_pdc) {
1559		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1560					0, dev_name(&pdev->dev), master);
1561	} else {
1562		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1563					0, dev_name(&pdev->dev), master);
1564	}
1565	if (ret)
1566		goto out_unmap_regs;
1567
1568	/* Initialize the hardware */
1569	ret = clk_prepare_enable(clk);
1570	if (ret)
1571		goto out_free_irq;
1572
1573	as->spi_clk = clk_get_rate(clk);
1574
1575	spi_writel(as, CR, SPI_BIT(SWRST));
1576	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1577	if (as->caps.has_wdrbt) {
1578		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1579				| SPI_BIT(MSTR));
1580	} else {
1581		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1582	}
1583
1584	if (as->use_pdc)
1585		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1586	spi_writel(as, CR, SPI_BIT(SPIEN));
1587
1588	as->fifo_size = 0;
1589	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1590				  &as->fifo_size)) {
1591		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1592		spi_writel(as, CR, SPI_BIT(FIFOEN));
1593	}
1594
 
 
1595	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1596	pm_runtime_use_autosuspend(&pdev->dev);
1597	pm_runtime_set_active(&pdev->dev);
1598	pm_runtime_enable(&pdev->dev);
1599
1600	ret = devm_spi_register_master(&pdev->dev, master);
1601	if (ret)
1602		goto out_free_dma;
1603
1604	/* go! */
1605	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1606			(unsigned long)regs->start, irq);
 
1607
1608	return 0;
1609
1610out_free_dma:
1611	pm_runtime_disable(&pdev->dev);
1612	pm_runtime_set_suspended(&pdev->dev);
1613
1614	if (as->use_dma)
1615		atmel_spi_release_dma(master);
1616
1617	spi_writel(as, CR, SPI_BIT(SWRST));
1618	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619	clk_disable_unprepare(clk);
1620out_free_irq:
1621out_unmap_regs:
1622out_free:
1623	spi_master_put(master);
1624	return ret;
1625}
1626
1627static int atmel_spi_remove(struct platform_device *pdev)
1628{
1629	struct spi_master	*master = platform_get_drvdata(pdev);
1630	struct atmel_spi	*as = spi_master_get_devdata(master);
1631
1632	pm_runtime_get_sync(&pdev->dev);
1633
1634	/* reset the hardware and block queue progress */
1635	spin_lock_irq(&as->lock);
1636	if (as->use_dma) {
1637		atmel_spi_stop_dma(master);
1638		atmel_spi_release_dma(master);
 
 
 
 
 
 
 
 
1639	}
1640
 
1641	spi_writel(as, CR, SPI_BIT(SWRST));
1642	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1643	spi_readl(as, SR);
1644	spin_unlock_irq(&as->lock);
1645
1646	clk_disable_unprepare(as->clk);
1647
1648	pm_runtime_put_noidle(&pdev->dev);
1649	pm_runtime_disable(&pdev->dev);
1650
1651	return 0;
1652}
1653
1654#ifdef CONFIG_PM
1655static int atmel_spi_runtime_suspend(struct device *dev)
1656{
1657	struct spi_master *master = dev_get_drvdata(dev);
1658	struct atmel_spi *as = spi_master_get_devdata(master);
1659
1660	clk_disable_unprepare(as->clk);
1661	pinctrl_pm_select_sleep_state(dev);
1662
1663	return 0;
1664}
1665
1666static int atmel_spi_runtime_resume(struct device *dev)
1667{
1668	struct spi_master *master = dev_get_drvdata(dev);
1669	struct atmel_spi *as = spi_master_get_devdata(master);
1670
1671	pinctrl_pm_select_default_state(dev);
1672
1673	return clk_prepare_enable(as->clk);
1674}
1675
1676#ifdef CONFIG_PM_SLEEP
1677static int atmel_spi_suspend(struct device *dev)
1678{
1679	struct spi_master *master = dev_get_drvdata(dev);
1680	int ret;
1681
1682	/* Stop the queue running */
1683	ret = spi_master_suspend(master);
1684	if (ret) {
1685		dev_warn(dev, "cannot suspend master\n");
1686		return ret;
1687	}
1688
1689	if (!pm_runtime_suspended(dev))
1690		atmel_spi_runtime_suspend(dev);
1691
1692	return 0;
1693}
1694
1695static int atmel_spi_resume(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
 
1698	int ret;
1699
 
 
 
 
 
 
 
 
1700	if (!pm_runtime_suspended(dev)) {
1701		ret = atmel_spi_runtime_resume(dev);
1702		if (ret)
1703			return ret;
1704	}
1705
1706	/* Start the queue running */
1707	ret = spi_master_resume(master);
1708	if (ret)
1709		dev_err(dev, "problem starting queue (%d)\n", ret);
1710
1711	return ret;
1712}
1713#endif
1714
1715static const struct dev_pm_ops atmel_spi_pm_ops = {
1716	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1717	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1718			   atmel_spi_runtime_resume, NULL)
1719};
1720#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1721#else
1722#define ATMEL_SPI_PM_OPS	NULL
1723#endif
1724
1725#if defined(CONFIG_OF)
1726static const struct of_device_id atmel_spi_dt_ids[] = {
1727	{ .compatible = "atmel,at91rm9200-spi" },
1728	{ /* sentinel */ }
1729};
1730
1731MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1732#endif
1733
1734static struct platform_driver atmel_spi_driver = {
1735	.driver		= {
1736		.name	= "atmel_spi",
1737		.pm	= ATMEL_SPI_PM_OPS,
1738		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1739	},
1740	.probe		= atmel_spi_probe,
1741	.remove		= atmel_spi_remove,
1742};
1743module_platform_driver(atmel_spi_driver);
1744
1745MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1746MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1747MODULE_LICENSE("GPL");
1748MODULE_ALIAS("platform:atmel_spi");