Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18#define pr_fmt(fmt) "PM: " fmt
19#define dev_fmt pr_fmt
20
21#include <linux/device.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm-trace.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/interrupt.h>
29#include <linux/sched.h>
30#include <linux/sched/debug.h>
31#include <linux/async.h>
32#include <linux/suspend.h>
33#include <trace/events/power.h>
34#include <linux/cpufreq.h>
35#include <linux/devfreq.h>
36#include <linux/timer.h>
37
38#include "../base.h"
39#include "power.h"
40
41typedef int (*pm_callback_t)(struct device *);
42
43#define list_for_each_entry_rcu_locked(pos, head, member) \
44 list_for_each_entry_rcu(pos, head, member, \
45 device_links_read_lock_held())
46
47/*
48 * The entries in the dpm_list list are in a depth first order, simply
49 * because children are guaranteed to be discovered after parents, and
50 * are inserted at the back of the list on discovery.
51 *
52 * Since device_pm_add() may be called with a device lock held,
53 * we must never try to acquire a device lock while holding
54 * dpm_list_mutex.
55 */
56
57LIST_HEAD(dpm_list);
58static LIST_HEAD(dpm_prepared_list);
59static LIST_HEAD(dpm_suspended_list);
60static LIST_HEAD(dpm_late_early_list);
61static LIST_HEAD(dpm_noirq_list);
62
63struct suspend_stats suspend_stats;
64static DEFINE_MUTEX(dpm_list_mtx);
65static pm_message_t pm_transition;
66
67static int async_error;
68
69static const char *pm_verb(int event)
70{
71 switch (event) {
72 case PM_EVENT_SUSPEND:
73 return "suspend";
74 case PM_EVENT_RESUME:
75 return "resume";
76 case PM_EVENT_FREEZE:
77 return "freeze";
78 case PM_EVENT_QUIESCE:
79 return "quiesce";
80 case PM_EVENT_HIBERNATE:
81 return "hibernate";
82 case PM_EVENT_THAW:
83 return "thaw";
84 case PM_EVENT_RESTORE:
85 return "restore";
86 case PM_EVENT_RECOVER:
87 return "recover";
88 default:
89 return "(unknown PM event)";
90 }
91}
92
93/**
94 * device_pm_sleep_init - Initialize system suspend-related device fields.
95 * @dev: Device object being initialized.
96 */
97void device_pm_sleep_init(struct device *dev)
98{
99 dev->power.is_prepared = false;
100 dev->power.is_suspended = false;
101 dev->power.is_noirq_suspended = false;
102 dev->power.is_late_suspended = false;
103 init_completion(&dev->power.completion);
104 complete_all(&dev->power.completion);
105 dev->power.wakeup = NULL;
106 INIT_LIST_HEAD(&dev->power.entry);
107}
108
109/**
110 * device_pm_lock - Lock the list of active devices used by the PM core.
111 */
112void device_pm_lock(void)
113{
114 mutex_lock(&dpm_list_mtx);
115}
116
117/**
118 * device_pm_unlock - Unlock the list of active devices used by the PM core.
119 */
120void device_pm_unlock(void)
121{
122 mutex_unlock(&dpm_list_mtx);
123}
124
125/**
126 * device_pm_add - Add a device to the PM core's list of active devices.
127 * @dev: Device to add to the list.
128 */
129void device_pm_add(struct device *dev)
130{
131 /* Skip PM setup/initialization. */
132 if (device_pm_not_required(dev))
133 return;
134
135 pr_debug("Adding info for %s:%s\n",
136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 device_pm_check_callbacks(dev);
138 mutex_lock(&dpm_list_mtx);
139 if (dev->parent && dev->parent->power.is_prepared)
140 dev_warn(dev, "parent %s should not be sleeping\n",
141 dev_name(dev->parent));
142 list_add_tail(&dev->power.entry, &dpm_list);
143 dev->power.in_dpm_list = true;
144 mutex_unlock(&dpm_list_mtx);
145}
146
147/**
148 * device_pm_remove - Remove a device from the PM core's list of active devices.
149 * @dev: Device to be removed from the list.
150 */
151void device_pm_remove(struct device *dev)
152{
153 if (device_pm_not_required(dev))
154 return;
155
156 pr_debug("Removing info for %s:%s\n",
157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 complete_all(&dev->power.completion);
159 mutex_lock(&dpm_list_mtx);
160 list_del_init(&dev->power.entry);
161 dev->power.in_dpm_list = false;
162 mutex_unlock(&dpm_list_mtx);
163 device_wakeup_disable(dev);
164 pm_runtime_remove(dev);
165 device_pm_check_callbacks(dev);
166}
167
168/**
169 * device_pm_move_before - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come before.
172 */
173void device_pm_move_before(struct device *deva, struct device *devb)
174{
175 pr_debug("Moving %s:%s before %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert before devb. */
179 list_move_tail(&deva->power.entry, &devb->power.entry);
180}
181
182/**
183 * device_pm_move_after - Move device in the PM core's list of active devices.
184 * @deva: Device to move in dpm_list.
185 * @devb: Device @deva should come after.
186 */
187void device_pm_move_after(struct device *deva, struct device *devb)
188{
189 pr_debug("Moving %s:%s after %s:%s\n",
190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 /* Delete deva from dpm_list and reinsert after devb. */
193 list_move(&deva->power.entry, &devb->power.entry);
194}
195
196/**
197 * device_pm_move_last - Move device to end of the PM core's list of devices.
198 * @dev: Device to move in dpm_list.
199 */
200void device_pm_move_last(struct device *dev)
201{
202 pr_debug("Moving %s:%s to end of list\n",
203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 list_move_tail(&dev->power.entry, &dpm_list);
205}
206
207static ktime_t initcall_debug_start(struct device *dev, void *cb)
208{
209 if (!pm_print_times_enabled)
210 return 0;
211
212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 task_pid_nr(current),
214 dev->parent ? dev_name(dev->parent) : "none");
215 return ktime_get();
216}
217
218static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 void *cb, int error)
220{
221 ktime_t rettime;
222
223 if (!pm_print_times_enabled)
224 return;
225
226 rettime = ktime_get();
227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 (unsigned long long)ktime_us_delta(rettime, calltime));
229}
230
231/**
232 * dpm_wait - Wait for a PM operation to complete.
233 * @dev: Device to wait for.
234 * @async: If unset, wait only if the device's power.async_suspend flag is set.
235 */
236static void dpm_wait(struct device *dev, bool async)
237{
238 if (!dev)
239 return;
240
241 if (async || (pm_async_enabled && dev->power.async_suspend))
242 wait_for_completion(&dev->power.completion);
243}
244
245static int dpm_wait_fn(struct device *dev, void *async_ptr)
246{
247 dpm_wait(dev, *((bool *)async_ptr));
248 return 0;
249}
250
251static void dpm_wait_for_children(struct device *dev, bool async)
252{
253 device_for_each_child(dev, &async, dpm_wait_fn);
254}
255
256static void dpm_wait_for_suppliers(struct device *dev, bool async)
257{
258 struct device_link *link;
259 int idx;
260
261 idx = device_links_read_lock();
262
263 /*
264 * If the supplier goes away right after we've checked the link to it,
265 * we'll wait for its completion to change the state, but that's fine,
266 * because the only things that will block as a result are the SRCU
267 * callbacks freeing the link objects for the links in the list we're
268 * walking.
269 */
270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 dpm_wait(link->supplier, async);
273
274 device_links_read_unlock(idx);
275}
276
277static bool dpm_wait_for_superior(struct device *dev, bool async)
278{
279 struct device *parent;
280
281 /*
282 * If the device is resumed asynchronously and the parent's callback
283 * deletes both the device and the parent itself, the parent object may
284 * be freed while this function is running, so avoid that by reference
285 * counting the parent once more unless the device has been deleted
286 * already (in which case return right away).
287 */
288 mutex_lock(&dpm_list_mtx);
289
290 if (!device_pm_initialized(dev)) {
291 mutex_unlock(&dpm_list_mtx);
292 return false;
293 }
294
295 parent = get_device(dev->parent);
296
297 mutex_unlock(&dpm_list_mtx);
298
299 dpm_wait(parent, async);
300 put_device(parent);
301
302 dpm_wait_for_suppliers(dev, async);
303
304 /*
305 * If the parent's callback has deleted the device, attempting to resume
306 * it would be invalid, so avoid doing that then.
307 */
308 return device_pm_initialized(dev);
309}
310
311static void dpm_wait_for_consumers(struct device *dev, bool async)
312{
313 struct device_link *link;
314 int idx;
315
316 idx = device_links_read_lock();
317
318 /*
319 * The status of a device link can only be changed from "dormant" by a
320 * probe, but that cannot happen during system suspend/resume. In
321 * theory it can change to "dormant" at that time, but then it is
322 * reasonable to wait for the target device anyway (eg. if it goes
323 * away, it's better to wait for it to go away completely and then
324 * continue instead of trying to continue in parallel with its
325 * unregistration).
326 */
327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 dpm_wait(link->consumer, async);
330
331 device_links_read_unlock(idx);
332}
333
334static void dpm_wait_for_subordinate(struct device *dev, bool async)
335{
336 dpm_wait_for_children(dev, async);
337 dpm_wait_for_consumers(dev, async);
338}
339
340/**
341 * pm_op - Return the PM operation appropriate for given PM event.
342 * @ops: PM operations to choose from.
343 * @state: PM transition of the system being carried out.
344 */
345static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346{
347 switch (state.event) {
348#ifdef CONFIG_SUSPEND
349 case PM_EVENT_SUSPEND:
350 return ops->suspend;
351 case PM_EVENT_RESUME:
352 return ops->resume;
353#endif /* CONFIG_SUSPEND */
354#ifdef CONFIG_HIBERNATE_CALLBACKS
355 case PM_EVENT_FREEZE:
356 case PM_EVENT_QUIESCE:
357 return ops->freeze;
358 case PM_EVENT_HIBERNATE:
359 return ops->poweroff;
360 case PM_EVENT_THAW:
361 case PM_EVENT_RECOVER:
362 return ops->thaw;
363 case PM_EVENT_RESTORE:
364 return ops->restore;
365#endif /* CONFIG_HIBERNATE_CALLBACKS */
366 }
367
368 return NULL;
369}
370
371/**
372 * pm_late_early_op - Return the PM operation appropriate for given PM event.
373 * @ops: PM operations to choose from.
374 * @state: PM transition of the system being carried out.
375 *
376 * Runtime PM is disabled for @dev while this function is being executed.
377 */
378static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 pm_message_t state)
380{
381 switch (state.event) {
382#ifdef CONFIG_SUSPEND
383 case PM_EVENT_SUSPEND:
384 return ops->suspend_late;
385 case PM_EVENT_RESUME:
386 return ops->resume_early;
387#endif /* CONFIG_SUSPEND */
388#ifdef CONFIG_HIBERNATE_CALLBACKS
389 case PM_EVENT_FREEZE:
390 case PM_EVENT_QUIESCE:
391 return ops->freeze_late;
392 case PM_EVENT_HIBERNATE:
393 return ops->poweroff_late;
394 case PM_EVENT_THAW:
395 case PM_EVENT_RECOVER:
396 return ops->thaw_early;
397 case PM_EVENT_RESTORE:
398 return ops->restore_early;
399#endif /* CONFIG_HIBERNATE_CALLBACKS */
400 }
401
402 return NULL;
403}
404
405/**
406 * pm_noirq_op - Return the PM operation appropriate for given PM event.
407 * @ops: PM operations to choose from.
408 * @state: PM transition of the system being carried out.
409 *
410 * The driver of @dev will not receive interrupts while this function is being
411 * executed.
412 */
413static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414{
415 switch (state.event) {
416#ifdef CONFIG_SUSPEND
417 case PM_EVENT_SUSPEND:
418 return ops->suspend_noirq;
419 case PM_EVENT_RESUME:
420 return ops->resume_noirq;
421#endif /* CONFIG_SUSPEND */
422#ifdef CONFIG_HIBERNATE_CALLBACKS
423 case PM_EVENT_FREEZE:
424 case PM_EVENT_QUIESCE:
425 return ops->freeze_noirq;
426 case PM_EVENT_HIBERNATE:
427 return ops->poweroff_noirq;
428 case PM_EVENT_THAW:
429 case PM_EVENT_RECOVER:
430 return ops->thaw_noirq;
431 case PM_EVENT_RESTORE:
432 return ops->restore_noirq;
433#endif /* CONFIG_HIBERNATE_CALLBACKS */
434 }
435
436 return NULL;
437}
438
439static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440{
441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 ", may wakeup" : "", dev->power.driver_flags);
444}
445
446static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 int error)
448{
449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 error);
451}
452
453static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 const char *info)
455{
456 ktime_t calltime;
457 u64 usecs64;
458 int usecs;
459
460 calltime = ktime_get();
461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 do_div(usecs64, NSEC_PER_USEC);
463 usecs = usecs64;
464 if (usecs == 0)
465 usecs = 1;
466
467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 info ?: "", info ? " " : "", pm_verb(state.event),
469 error ? "aborted" : "complete",
470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471}
472
473static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 pm_message_t state, const char *info)
475{
476 ktime_t calltime;
477 int error;
478
479 if (!cb)
480 return 0;
481
482 calltime = initcall_debug_start(dev, cb);
483
484 pm_dev_dbg(dev, state, info);
485 trace_device_pm_callback_start(dev, info, state.event);
486 error = cb(dev);
487 trace_device_pm_callback_end(dev, error);
488 suspend_report_result(dev, cb, error);
489
490 initcall_debug_report(dev, calltime, cb, error);
491
492 return error;
493}
494
495#ifdef CONFIG_DPM_WATCHDOG
496struct dpm_watchdog {
497 struct device *dev;
498 struct task_struct *tsk;
499 struct timer_list timer;
500};
501
502#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 struct dpm_watchdog wd
504
505/**
506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507 * @t: The timer that PM watchdog depends on.
508 *
509 * Called when a driver has timed out suspending or resuming.
510 * There's not much we can do here to recover so panic() to
511 * capture a crash-dump in pstore.
512 */
513static void dpm_watchdog_handler(struct timer_list *t)
514{
515 struct dpm_watchdog *wd = from_timer(wd, t, timer);
516
517 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 show_stack(wd->tsk, NULL, KERN_EMERG);
519 panic("%s %s: unrecoverable failure\n",
520 dev_driver_string(wd->dev), dev_name(wd->dev));
521}
522
523/**
524 * dpm_watchdog_set - Enable pm watchdog for given device.
525 * @wd: Watchdog. Must be allocated on the stack.
526 * @dev: Device to handle.
527 */
528static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529{
530 struct timer_list *timer = &wd->timer;
531
532 wd->dev = dev;
533 wd->tsk = current;
534
535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 /* use same timeout value for both suspend and resume */
537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 add_timer(timer);
539}
540
541/**
542 * dpm_watchdog_clear - Disable suspend/resume watchdog.
543 * @wd: Watchdog to disable.
544 */
545static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546{
547 struct timer_list *timer = &wd->timer;
548
549 del_timer_sync(timer);
550 destroy_timer_on_stack(timer);
551}
552#else
553#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554#define dpm_watchdog_set(x, y)
555#define dpm_watchdog_clear(x)
556#endif
557
558/*------------------------- Resume routines -------------------------*/
559
560/**
561 * dev_pm_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Return:
565 * - %false if the transition under way is RESTORE.
566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567 * - The logical negation of %power.must_resume otherwise (that is, when the
568 * transition under way is RESUME).
569 */
570bool dev_pm_skip_resume(struct device *dev)
571{
572 if (pm_transition.event == PM_EVENT_RESTORE)
573 return false;
574
575 if (pm_transition.event == PM_EVENT_THAW)
576 return dev_pm_skip_suspend(dev);
577
578 return !dev->power.must_resume;
579}
580
581/**
582 * device_resume_noirq - Execute a "noirq resume" callback for given device.
583 * @dev: Device to handle.
584 * @state: PM transition of the system being carried out.
585 * @async: If true, the device is being resumed asynchronously.
586 *
587 * The driver of @dev will not receive interrupts while this function is being
588 * executed.
589 */
590static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591{
592 pm_callback_t callback = NULL;
593 const char *info = NULL;
594 bool skip_resume;
595 int error = 0;
596
597 TRACE_DEVICE(dev);
598 TRACE_RESUME(0);
599
600 if (dev->power.syscore || dev->power.direct_complete)
601 goto Out;
602
603 if (!dev->power.is_noirq_suspended)
604 goto Out;
605
606 if (!dpm_wait_for_superior(dev, async))
607 goto Out;
608
609 skip_resume = dev_pm_skip_resume(dev);
610 /*
611 * If the driver callback is skipped below or by the middle layer
612 * callback and device_resume_early() also skips the driver callback for
613 * this device later, it needs to appear as "suspended" to PM-runtime,
614 * so change its status accordingly.
615 *
616 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 * to avoid confusing drivers that don't use it.
619 */
620 if (skip_resume)
621 pm_runtime_set_suspended(dev);
622 else if (dev_pm_skip_suspend(dev))
623 pm_runtime_set_active(dev);
624
625 if (dev->pm_domain) {
626 info = "noirq power domain ";
627 callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 } else if (dev->type && dev->type->pm) {
629 info = "noirq type ";
630 callback = pm_noirq_op(dev->type->pm, state);
631 } else if (dev->class && dev->class->pm) {
632 info = "noirq class ";
633 callback = pm_noirq_op(dev->class->pm, state);
634 } else if (dev->bus && dev->bus->pm) {
635 info = "noirq bus ";
636 callback = pm_noirq_op(dev->bus->pm, state);
637 }
638 if (callback)
639 goto Run;
640
641 if (skip_resume)
642 goto Skip;
643
644 if (dev->driver && dev->driver->pm) {
645 info = "noirq driver ";
646 callback = pm_noirq_op(dev->driver->pm, state);
647 }
648
649Run:
650 error = dpm_run_callback(callback, dev, state, info);
651
652Skip:
653 dev->power.is_noirq_suspended = false;
654
655Out:
656 complete_all(&dev->power.completion);
657 TRACE_RESUME(error);
658
659 if (error) {
660 suspend_stats.failed_resume_noirq++;
661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
662 dpm_save_failed_dev(dev_name(dev));
663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
664 }
665}
666
667static bool is_async(struct device *dev)
668{
669 return dev->power.async_suspend && pm_async_enabled
670 && !pm_trace_is_enabled();
671}
672
673static bool dpm_async_fn(struct device *dev, async_func_t func)
674{
675 reinit_completion(&dev->power.completion);
676
677 if (is_async(dev)) {
678 dev->power.async_in_progress = true;
679
680 get_device(dev);
681
682 if (async_schedule_dev_nocall(func, dev))
683 return true;
684
685 put_device(dev);
686 }
687 /*
688 * Because async_schedule_dev_nocall() above has returned false or it
689 * has not been called at all, func() is not running and it is safe to
690 * update the async_in_progress flag without extra synchronization.
691 */
692 dev->power.async_in_progress = false;
693 return false;
694}
695
696static void async_resume_noirq(void *data, async_cookie_t cookie)
697{
698 struct device *dev = data;
699
700 device_resume_noirq(dev, pm_transition, true);
701 put_device(dev);
702}
703
704static void dpm_noirq_resume_devices(pm_message_t state)
705{
706 struct device *dev;
707 ktime_t starttime = ktime_get();
708
709 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
710 mutex_lock(&dpm_list_mtx);
711 pm_transition = state;
712
713 /*
714 * Trigger the resume of "async" devices upfront so they don't have to
715 * wait for the "non-async" ones they don't depend on.
716 */
717 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
718 dpm_async_fn(dev, async_resume_noirq);
719
720 while (!list_empty(&dpm_noirq_list)) {
721 dev = to_device(dpm_noirq_list.next);
722 list_move_tail(&dev->power.entry, &dpm_late_early_list);
723
724 if (!dev->power.async_in_progress) {
725 get_device(dev);
726
727 mutex_unlock(&dpm_list_mtx);
728
729 device_resume_noirq(dev, state, false);
730
731 put_device(dev);
732
733 mutex_lock(&dpm_list_mtx);
734 }
735 }
736 mutex_unlock(&dpm_list_mtx);
737 async_synchronize_full();
738 dpm_show_time(starttime, state, 0, "noirq");
739 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
740}
741
742/**
743 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
744 * @state: PM transition of the system being carried out.
745 *
746 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
747 * allow device drivers' interrupt handlers to be called.
748 */
749void dpm_resume_noirq(pm_message_t state)
750{
751 dpm_noirq_resume_devices(state);
752
753 resume_device_irqs();
754 device_wakeup_disarm_wake_irqs();
755}
756
757/**
758 * device_resume_early - Execute an "early resume" callback for given device.
759 * @dev: Device to handle.
760 * @state: PM transition of the system being carried out.
761 * @async: If true, the device is being resumed asynchronously.
762 *
763 * Runtime PM is disabled for @dev while this function is being executed.
764 */
765static void device_resume_early(struct device *dev, pm_message_t state, bool async)
766{
767 pm_callback_t callback = NULL;
768 const char *info = NULL;
769 int error = 0;
770
771 TRACE_DEVICE(dev);
772 TRACE_RESUME(0);
773
774 if (dev->power.syscore || dev->power.direct_complete)
775 goto Out;
776
777 if (!dev->power.is_late_suspended)
778 goto Out;
779
780 if (!dpm_wait_for_superior(dev, async))
781 goto Out;
782
783 if (dev->pm_domain) {
784 info = "early power domain ";
785 callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 } else if (dev->type && dev->type->pm) {
787 info = "early type ";
788 callback = pm_late_early_op(dev->type->pm, state);
789 } else if (dev->class && dev->class->pm) {
790 info = "early class ";
791 callback = pm_late_early_op(dev->class->pm, state);
792 } else if (dev->bus && dev->bus->pm) {
793 info = "early bus ";
794 callback = pm_late_early_op(dev->bus->pm, state);
795 }
796 if (callback)
797 goto Run;
798
799 if (dev_pm_skip_resume(dev))
800 goto Skip;
801
802 if (dev->driver && dev->driver->pm) {
803 info = "early driver ";
804 callback = pm_late_early_op(dev->driver->pm, state);
805 }
806
807Run:
808 error = dpm_run_callback(callback, dev, state, info);
809
810Skip:
811 dev->power.is_late_suspended = false;
812
813Out:
814 TRACE_RESUME(error);
815
816 pm_runtime_enable(dev);
817 complete_all(&dev->power.completion);
818
819 if (error) {
820 suspend_stats.failed_resume_early++;
821 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
822 dpm_save_failed_dev(dev_name(dev));
823 pm_dev_err(dev, state, async ? " async early" : " early", error);
824 }
825}
826
827static void async_resume_early(void *data, async_cookie_t cookie)
828{
829 struct device *dev = data;
830
831 device_resume_early(dev, pm_transition, true);
832 put_device(dev);
833}
834
835/**
836 * dpm_resume_early - Execute "early resume" callbacks for all devices.
837 * @state: PM transition of the system being carried out.
838 */
839void dpm_resume_early(pm_message_t state)
840{
841 struct device *dev;
842 ktime_t starttime = ktime_get();
843
844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
845 mutex_lock(&dpm_list_mtx);
846 pm_transition = state;
847
848 /*
849 * Trigger the resume of "async" devices upfront so they don't have to
850 * wait for the "non-async" ones they don't depend on.
851 */
852 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
853 dpm_async_fn(dev, async_resume_early);
854
855 while (!list_empty(&dpm_late_early_list)) {
856 dev = to_device(dpm_late_early_list.next);
857 list_move_tail(&dev->power.entry, &dpm_suspended_list);
858
859 if (!dev->power.async_in_progress) {
860 get_device(dev);
861
862 mutex_unlock(&dpm_list_mtx);
863
864 device_resume_early(dev, state, false);
865
866 put_device(dev);
867
868 mutex_lock(&dpm_list_mtx);
869 }
870 }
871 mutex_unlock(&dpm_list_mtx);
872 async_synchronize_full();
873 dpm_show_time(starttime, state, 0, "early");
874 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
875}
876
877/**
878 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
879 * @state: PM transition of the system being carried out.
880 */
881void dpm_resume_start(pm_message_t state)
882{
883 dpm_resume_noirq(state);
884 dpm_resume_early(state);
885}
886EXPORT_SYMBOL_GPL(dpm_resume_start);
887
888/**
889 * device_resume - Execute "resume" callbacks for given device.
890 * @dev: Device to handle.
891 * @state: PM transition of the system being carried out.
892 * @async: If true, the device is being resumed asynchronously.
893 */
894static void device_resume(struct device *dev, pm_message_t state, bool async)
895{
896 pm_callback_t callback = NULL;
897 const char *info = NULL;
898 int error = 0;
899 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
900
901 TRACE_DEVICE(dev);
902 TRACE_RESUME(0);
903
904 if (dev->power.syscore)
905 goto Complete;
906
907 if (dev->power.direct_complete) {
908 /* Match the pm_runtime_disable() in __device_suspend(). */
909 pm_runtime_enable(dev);
910 goto Complete;
911 }
912
913 if (!dpm_wait_for_superior(dev, async))
914 goto Complete;
915
916 dpm_watchdog_set(&wd, dev);
917 device_lock(dev);
918
919 /*
920 * This is a fib. But we'll allow new children to be added below
921 * a resumed device, even if the device hasn't been completed yet.
922 */
923 dev->power.is_prepared = false;
924
925 if (!dev->power.is_suspended)
926 goto Unlock;
927
928 if (dev->pm_domain) {
929 info = "power domain ";
930 callback = pm_op(&dev->pm_domain->ops, state);
931 goto Driver;
932 }
933
934 if (dev->type && dev->type->pm) {
935 info = "type ";
936 callback = pm_op(dev->type->pm, state);
937 goto Driver;
938 }
939
940 if (dev->class && dev->class->pm) {
941 info = "class ";
942 callback = pm_op(dev->class->pm, state);
943 goto Driver;
944 }
945
946 if (dev->bus) {
947 if (dev->bus->pm) {
948 info = "bus ";
949 callback = pm_op(dev->bus->pm, state);
950 } else if (dev->bus->resume) {
951 info = "legacy bus ";
952 callback = dev->bus->resume;
953 goto End;
954 }
955 }
956
957 Driver:
958 if (!callback && dev->driver && dev->driver->pm) {
959 info = "driver ";
960 callback = pm_op(dev->driver->pm, state);
961 }
962
963 End:
964 error = dpm_run_callback(callback, dev, state, info);
965 dev->power.is_suspended = false;
966
967 Unlock:
968 device_unlock(dev);
969 dpm_watchdog_clear(&wd);
970
971 Complete:
972 complete_all(&dev->power.completion);
973
974 TRACE_RESUME(error);
975
976 if (error) {
977 suspend_stats.failed_resume++;
978 dpm_save_failed_step(SUSPEND_RESUME);
979 dpm_save_failed_dev(dev_name(dev));
980 pm_dev_err(dev, state, async ? " async" : "", error);
981 }
982}
983
984static void async_resume(void *data, async_cookie_t cookie)
985{
986 struct device *dev = data;
987
988 device_resume(dev, pm_transition, true);
989 put_device(dev);
990}
991
992/**
993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
994 * @state: PM transition of the system being carried out.
995 *
996 * Execute the appropriate "resume" callback for all devices whose status
997 * indicates that they are suspended.
998 */
999void dpm_resume(pm_message_t state)
1000{
1001 struct device *dev;
1002 ktime_t starttime = ktime_get();
1003
1004 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1005 might_sleep();
1006
1007 mutex_lock(&dpm_list_mtx);
1008 pm_transition = state;
1009 async_error = 0;
1010
1011 /*
1012 * Trigger the resume of "async" devices upfront so they don't have to
1013 * wait for the "non-async" ones they don't depend on.
1014 */
1015 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1016 dpm_async_fn(dev, async_resume);
1017
1018 while (!list_empty(&dpm_suspended_list)) {
1019 dev = to_device(dpm_suspended_list.next);
1020
1021 get_device(dev);
1022
1023 if (!dev->power.async_in_progress) {
1024 mutex_unlock(&dpm_list_mtx);
1025
1026 device_resume(dev, state, false);
1027
1028 mutex_lock(&dpm_list_mtx);
1029 }
1030
1031 if (!list_empty(&dev->power.entry))
1032 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1033
1034 mutex_unlock(&dpm_list_mtx);
1035
1036 put_device(dev);
1037
1038 mutex_lock(&dpm_list_mtx);
1039 }
1040 mutex_unlock(&dpm_list_mtx);
1041 async_synchronize_full();
1042 dpm_show_time(starttime, state, 0, NULL);
1043
1044 cpufreq_resume();
1045 devfreq_resume();
1046 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1047}
1048
1049/**
1050 * device_complete - Complete a PM transition for given device.
1051 * @dev: Device to handle.
1052 * @state: PM transition of the system being carried out.
1053 */
1054static void device_complete(struct device *dev, pm_message_t state)
1055{
1056 void (*callback)(struct device *) = NULL;
1057 const char *info = NULL;
1058
1059 if (dev->power.syscore)
1060 goto out;
1061
1062 device_lock(dev);
1063
1064 if (dev->pm_domain) {
1065 info = "completing power domain ";
1066 callback = dev->pm_domain->ops.complete;
1067 } else if (dev->type && dev->type->pm) {
1068 info = "completing type ";
1069 callback = dev->type->pm->complete;
1070 } else if (dev->class && dev->class->pm) {
1071 info = "completing class ";
1072 callback = dev->class->pm->complete;
1073 } else if (dev->bus && dev->bus->pm) {
1074 info = "completing bus ";
1075 callback = dev->bus->pm->complete;
1076 }
1077
1078 if (!callback && dev->driver && dev->driver->pm) {
1079 info = "completing driver ";
1080 callback = dev->driver->pm->complete;
1081 }
1082
1083 if (callback) {
1084 pm_dev_dbg(dev, state, info);
1085 callback(dev);
1086 }
1087
1088 device_unlock(dev);
1089
1090out:
1091 pm_runtime_put(dev);
1092}
1093
1094/**
1095 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1096 * @state: PM transition of the system being carried out.
1097 *
1098 * Execute the ->complete() callbacks for all devices whose PM status is not
1099 * DPM_ON (this allows new devices to be registered).
1100 */
1101void dpm_complete(pm_message_t state)
1102{
1103 struct list_head list;
1104
1105 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1106 might_sleep();
1107
1108 INIT_LIST_HEAD(&list);
1109 mutex_lock(&dpm_list_mtx);
1110 while (!list_empty(&dpm_prepared_list)) {
1111 struct device *dev = to_device(dpm_prepared_list.prev);
1112
1113 get_device(dev);
1114 dev->power.is_prepared = false;
1115 list_move(&dev->power.entry, &list);
1116
1117 mutex_unlock(&dpm_list_mtx);
1118
1119 trace_device_pm_callback_start(dev, "", state.event);
1120 device_complete(dev, state);
1121 trace_device_pm_callback_end(dev, 0);
1122
1123 put_device(dev);
1124
1125 mutex_lock(&dpm_list_mtx);
1126 }
1127 list_splice(&list, &dpm_list);
1128 mutex_unlock(&dpm_list_mtx);
1129
1130 /* Allow device probing and trigger re-probing of deferred devices */
1131 device_unblock_probing();
1132 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1133}
1134
1135/**
1136 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1137 * @state: PM transition of the system being carried out.
1138 *
1139 * Execute "resume" callbacks for all devices and complete the PM transition of
1140 * the system.
1141 */
1142void dpm_resume_end(pm_message_t state)
1143{
1144 dpm_resume(state);
1145 dpm_complete(state);
1146}
1147EXPORT_SYMBOL_GPL(dpm_resume_end);
1148
1149
1150/*------------------------- Suspend routines -------------------------*/
1151
1152/**
1153 * resume_event - Return a "resume" message for given "suspend" sleep state.
1154 * @sleep_state: PM message representing a sleep state.
1155 *
1156 * Return a PM message representing the resume event corresponding to given
1157 * sleep state.
1158 */
1159static pm_message_t resume_event(pm_message_t sleep_state)
1160{
1161 switch (sleep_state.event) {
1162 case PM_EVENT_SUSPEND:
1163 return PMSG_RESUME;
1164 case PM_EVENT_FREEZE:
1165 case PM_EVENT_QUIESCE:
1166 return PMSG_RECOVER;
1167 case PM_EVENT_HIBERNATE:
1168 return PMSG_RESTORE;
1169 }
1170 return PMSG_ON;
1171}
1172
1173static void dpm_superior_set_must_resume(struct device *dev)
1174{
1175 struct device_link *link;
1176 int idx;
1177
1178 if (dev->parent)
1179 dev->parent->power.must_resume = true;
1180
1181 idx = device_links_read_lock();
1182
1183 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1184 link->supplier->power.must_resume = true;
1185
1186 device_links_read_unlock(idx);
1187}
1188
1189/**
1190 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1191 * @dev: Device to handle.
1192 * @state: PM transition of the system being carried out.
1193 * @async: If true, the device is being suspended asynchronously.
1194 *
1195 * The driver of @dev will not receive interrupts while this function is being
1196 * executed.
1197 */
1198static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1199{
1200 pm_callback_t callback = NULL;
1201 const char *info = NULL;
1202 int error = 0;
1203
1204 TRACE_DEVICE(dev);
1205 TRACE_SUSPEND(0);
1206
1207 dpm_wait_for_subordinate(dev, async);
1208
1209 if (async_error)
1210 goto Complete;
1211
1212 if (dev->power.syscore || dev->power.direct_complete)
1213 goto Complete;
1214
1215 if (dev->pm_domain) {
1216 info = "noirq power domain ";
1217 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1218 } else if (dev->type && dev->type->pm) {
1219 info = "noirq type ";
1220 callback = pm_noirq_op(dev->type->pm, state);
1221 } else if (dev->class && dev->class->pm) {
1222 info = "noirq class ";
1223 callback = pm_noirq_op(dev->class->pm, state);
1224 } else if (dev->bus && dev->bus->pm) {
1225 info = "noirq bus ";
1226 callback = pm_noirq_op(dev->bus->pm, state);
1227 }
1228 if (callback)
1229 goto Run;
1230
1231 if (dev_pm_skip_suspend(dev))
1232 goto Skip;
1233
1234 if (dev->driver && dev->driver->pm) {
1235 info = "noirq driver ";
1236 callback = pm_noirq_op(dev->driver->pm, state);
1237 }
1238
1239Run:
1240 error = dpm_run_callback(callback, dev, state, info);
1241 if (error) {
1242 async_error = error;
1243 goto Complete;
1244 }
1245
1246Skip:
1247 dev->power.is_noirq_suspended = true;
1248
1249 /*
1250 * Skipping the resume of devices that were in use right before the
1251 * system suspend (as indicated by their PM-runtime usage counters)
1252 * would be suboptimal. Also resume them if doing that is not allowed
1253 * to be skipped.
1254 */
1255 if (atomic_read(&dev->power.usage_count) > 1 ||
1256 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1257 dev->power.may_skip_resume))
1258 dev->power.must_resume = true;
1259
1260 if (dev->power.must_resume)
1261 dpm_superior_set_must_resume(dev);
1262
1263Complete:
1264 complete_all(&dev->power.completion);
1265 TRACE_SUSPEND(error);
1266 return error;
1267}
1268
1269static void async_suspend_noirq(void *data, async_cookie_t cookie)
1270{
1271 struct device *dev = data;
1272 int error;
1273
1274 error = __device_suspend_noirq(dev, pm_transition, true);
1275 if (error) {
1276 dpm_save_failed_dev(dev_name(dev));
1277 pm_dev_err(dev, pm_transition, " async", error);
1278 }
1279
1280 put_device(dev);
1281}
1282
1283static int device_suspend_noirq(struct device *dev)
1284{
1285 if (dpm_async_fn(dev, async_suspend_noirq))
1286 return 0;
1287
1288 return __device_suspend_noirq(dev, pm_transition, false);
1289}
1290
1291static int dpm_noirq_suspend_devices(pm_message_t state)
1292{
1293 ktime_t starttime = ktime_get();
1294 int error = 0;
1295
1296 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1297 mutex_lock(&dpm_list_mtx);
1298 pm_transition = state;
1299 async_error = 0;
1300
1301 while (!list_empty(&dpm_late_early_list)) {
1302 struct device *dev = to_device(dpm_late_early_list.prev);
1303
1304 get_device(dev);
1305 mutex_unlock(&dpm_list_mtx);
1306
1307 error = device_suspend_noirq(dev);
1308
1309 mutex_lock(&dpm_list_mtx);
1310
1311 if (error) {
1312 pm_dev_err(dev, state, " noirq", error);
1313 dpm_save_failed_dev(dev_name(dev));
1314 } else if (!list_empty(&dev->power.entry)) {
1315 list_move(&dev->power.entry, &dpm_noirq_list);
1316 }
1317
1318 mutex_unlock(&dpm_list_mtx);
1319
1320 put_device(dev);
1321
1322 mutex_lock(&dpm_list_mtx);
1323
1324 if (error || async_error)
1325 break;
1326 }
1327 mutex_unlock(&dpm_list_mtx);
1328 async_synchronize_full();
1329 if (!error)
1330 error = async_error;
1331
1332 if (error) {
1333 suspend_stats.failed_suspend_noirq++;
1334 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1335 }
1336 dpm_show_time(starttime, state, error, "noirq");
1337 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1338 return error;
1339}
1340
1341/**
1342 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1343 * @state: PM transition of the system being carried out.
1344 *
1345 * Prevent device drivers' interrupt handlers from being called and invoke
1346 * "noirq" suspend callbacks for all non-sysdev devices.
1347 */
1348int dpm_suspend_noirq(pm_message_t state)
1349{
1350 int ret;
1351
1352 device_wakeup_arm_wake_irqs();
1353 suspend_device_irqs();
1354
1355 ret = dpm_noirq_suspend_devices(state);
1356 if (ret)
1357 dpm_resume_noirq(resume_event(state));
1358
1359 return ret;
1360}
1361
1362static void dpm_propagate_wakeup_to_parent(struct device *dev)
1363{
1364 struct device *parent = dev->parent;
1365
1366 if (!parent)
1367 return;
1368
1369 spin_lock_irq(&parent->power.lock);
1370
1371 if (device_wakeup_path(dev) && !parent->power.ignore_children)
1372 parent->power.wakeup_path = true;
1373
1374 spin_unlock_irq(&parent->power.lock);
1375}
1376
1377/**
1378 * __device_suspend_late - Execute a "late suspend" callback for given device.
1379 * @dev: Device to handle.
1380 * @state: PM transition of the system being carried out.
1381 * @async: If true, the device is being suspended asynchronously.
1382 *
1383 * Runtime PM is disabled for @dev while this function is being executed.
1384 */
1385static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1386{
1387 pm_callback_t callback = NULL;
1388 const char *info = NULL;
1389 int error = 0;
1390
1391 TRACE_DEVICE(dev);
1392 TRACE_SUSPEND(0);
1393
1394 __pm_runtime_disable(dev, false);
1395
1396 dpm_wait_for_subordinate(dev, async);
1397
1398 if (async_error)
1399 goto Complete;
1400
1401 if (pm_wakeup_pending()) {
1402 async_error = -EBUSY;
1403 goto Complete;
1404 }
1405
1406 if (dev->power.syscore || dev->power.direct_complete)
1407 goto Complete;
1408
1409 if (dev->pm_domain) {
1410 info = "late power domain ";
1411 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1412 } else if (dev->type && dev->type->pm) {
1413 info = "late type ";
1414 callback = pm_late_early_op(dev->type->pm, state);
1415 } else if (dev->class && dev->class->pm) {
1416 info = "late class ";
1417 callback = pm_late_early_op(dev->class->pm, state);
1418 } else if (dev->bus && dev->bus->pm) {
1419 info = "late bus ";
1420 callback = pm_late_early_op(dev->bus->pm, state);
1421 }
1422 if (callback)
1423 goto Run;
1424
1425 if (dev_pm_skip_suspend(dev))
1426 goto Skip;
1427
1428 if (dev->driver && dev->driver->pm) {
1429 info = "late driver ";
1430 callback = pm_late_early_op(dev->driver->pm, state);
1431 }
1432
1433Run:
1434 error = dpm_run_callback(callback, dev, state, info);
1435 if (error) {
1436 async_error = error;
1437 goto Complete;
1438 }
1439 dpm_propagate_wakeup_to_parent(dev);
1440
1441Skip:
1442 dev->power.is_late_suspended = true;
1443
1444Complete:
1445 TRACE_SUSPEND(error);
1446 complete_all(&dev->power.completion);
1447 return error;
1448}
1449
1450static void async_suspend_late(void *data, async_cookie_t cookie)
1451{
1452 struct device *dev = data;
1453 int error;
1454
1455 error = __device_suspend_late(dev, pm_transition, true);
1456 if (error) {
1457 dpm_save_failed_dev(dev_name(dev));
1458 pm_dev_err(dev, pm_transition, " async", error);
1459 }
1460 put_device(dev);
1461}
1462
1463static int device_suspend_late(struct device *dev)
1464{
1465 if (dpm_async_fn(dev, async_suspend_late))
1466 return 0;
1467
1468 return __device_suspend_late(dev, pm_transition, false);
1469}
1470
1471/**
1472 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1473 * @state: PM transition of the system being carried out.
1474 */
1475int dpm_suspend_late(pm_message_t state)
1476{
1477 ktime_t starttime = ktime_get();
1478 int error = 0;
1479
1480 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1481 wake_up_all_idle_cpus();
1482 mutex_lock(&dpm_list_mtx);
1483 pm_transition = state;
1484 async_error = 0;
1485
1486 while (!list_empty(&dpm_suspended_list)) {
1487 struct device *dev = to_device(dpm_suspended_list.prev);
1488
1489 get_device(dev);
1490
1491 mutex_unlock(&dpm_list_mtx);
1492
1493 error = device_suspend_late(dev);
1494
1495 mutex_lock(&dpm_list_mtx);
1496
1497 if (!list_empty(&dev->power.entry))
1498 list_move(&dev->power.entry, &dpm_late_early_list);
1499
1500 if (error) {
1501 pm_dev_err(dev, state, " late", error);
1502 dpm_save_failed_dev(dev_name(dev));
1503 }
1504
1505 mutex_unlock(&dpm_list_mtx);
1506
1507 put_device(dev);
1508
1509 mutex_lock(&dpm_list_mtx);
1510
1511 if (error || async_error)
1512 break;
1513 }
1514 mutex_unlock(&dpm_list_mtx);
1515 async_synchronize_full();
1516 if (!error)
1517 error = async_error;
1518 if (error) {
1519 suspend_stats.failed_suspend_late++;
1520 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1521 dpm_resume_early(resume_event(state));
1522 }
1523 dpm_show_time(starttime, state, error, "late");
1524 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1525 return error;
1526}
1527
1528/**
1529 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1530 * @state: PM transition of the system being carried out.
1531 */
1532int dpm_suspend_end(pm_message_t state)
1533{
1534 ktime_t starttime = ktime_get();
1535 int error;
1536
1537 error = dpm_suspend_late(state);
1538 if (error)
1539 goto out;
1540
1541 error = dpm_suspend_noirq(state);
1542 if (error)
1543 dpm_resume_early(resume_event(state));
1544
1545out:
1546 dpm_show_time(starttime, state, error, "end");
1547 return error;
1548}
1549EXPORT_SYMBOL_GPL(dpm_suspend_end);
1550
1551/**
1552 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1553 * @dev: Device to suspend.
1554 * @state: PM transition of the system being carried out.
1555 * @cb: Suspend callback to execute.
1556 * @info: string description of caller.
1557 */
1558static int legacy_suspend(struct device *dev, pm_message_t state,
1559 int (*cb)(struct device *dev, pm_message_t state),
1560 const char *info)
1561{
1562 int error;
1563 ktime_t calltime;
1564
1565 calltime = initcall_debug_start(dev, cb);
1566
1567 trace_device_pm_callback_start(dev, info, state.event);
1568 error = cb(dev, state);
1569 trace_device_pm_callback_end(dev, error);
1570 suspend_report_result(dev, cb, error);
1571
1572 initcall_debug_report(dev, calltime, cb, error);
1573
1574 return error;
1575}
1576
1577static void dpm_clear_superiors_direct_complete(struct device *dev)
1578{
1579 struct device_link *link;
1580 int idx;
1581
1582 if (dev->parent) {
1583 spin_lock_irq(&dev->parent->power.lock);
1584 dev->parent->power.direct_complete = false;
1585 spin_unlock_irq(&dev->parent->power.lock);
1586 }
1587
1588 idx = device_links_read_lock();
1589
1590 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1591 spin_lock_irq(&link->supplier->power.lock);
1592 link->supplier->power.direct_complete = false;
1593 spin_unlock_irq(&link->supplier->power.lock);
1594 }
1595
1596 device_links_read_unlock(idx);
1597}
1598
1599/**
1600 * __device_suspend - Execute "suspend" callbacks for given device.
1601 * @dev: Device to handle.
1602 * @state: PM transition of the system being carried out.
1603 * @async: If true, the device is being suspended asynchronously.
1604 */
1605static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1606{
1607 pm_callback_t callback = NULL;
1608 const char *info = NULL;
1609 int error = 0;
1610 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1611
1612 TRACE_DEVICE(dev);
1613 TRACE_SUSPEND(0);
1614
1615 dpm_wait_for_subordinate(dev, async);
1616
1617 if (async_error) {
1618 dev->power.direct_complete = false;
1619 goto Complete;
1620 }
1621
1622 /*
1623 * Wait for possible runtime PM transitions of the device in progress
1624 * to complete and if there's a runtime resume request pending for it,
1625 * resume it before proceeding with invoking the system-wide suspend
1626 * callbacks for it.
1627 *
1628 * If the system-wide suspend callbacks below change the configuration
1629 * of the device, they must disable runtime PM for it or otherwise
1630 * ensure that its runtime-resume callbacks will not be confused by that
1631 * change in case they are invoked going forward.
1632 */
1633 pm_runtime_barrier(dev);
1634
1635 if (pm_wakeup_pending()) {
1636 dev->power.direct_complete = false;
1637 async_error = -EBUSY;
1638 goto Complete;
1639 }
1640
1641 if (dev->power.syscore)
1642 goto Complete;
1643
1644 /* Avoid direct_complete to let wakeup_path propagate. */
1645 if (device_may_wakeup(dev) || device_wakeup_path(dev))
1646 dev->power.direct_complete = false;
1647
1648 if (dev->power.direct_complete) {
1649 if (pm_runtime_status_suspended(dev)) {
1650 pm_runtime_disable(dev);
1651 if (pm_runtime_status_suspended(dev)) {
1652 pm_dev_dbg(dev, state, "direct-complete ");
1653 goto Complete;
1654 }
1655
1656 pm_runtime_enable(dev);
1657 }
1658 dev->power.direct_complete = false;
1659 }
1660
1661 dev->power.may_skip_resume = true;
1662 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1663
1664 dpm_watchdog_set(&wd, dev);
1665 device_lock(dev);
1666
1667 if (dev->pm_domain) {
1668 info = "power domain ";
1669 callback = pm_op(&dev->pm_domain->ops, state);
1670 goto Run;
1671 }
1672
1673 if (dev->type && dev->type->pm) {
1674 info = "type ";
1675 callback = pm_op(dev->type->pm, state);
1676 goto Run;
1677 }
1678
1679 if (dev->class && dev->class->pm) {
1680 info = "class ";
1681 callback = pm_op(dev->class->pm, state);
1682 goto Run;
1683 }
1684
1685 if (dev->bus) {
1686 if (dev->bus->pm) {
1687 info = "bus ";
1688 callback = pm_op(dev->bus->pm, state);
1689 } else if (dev->bus->suspend) {
1690 pm_dev_dbg(dev, state, "legacy bus ");
1691 error = legacy_suspend(dev, state, dev->bus->suspend,
1692 "legacy bus ");
1693 goto End;
1694 }
1695 }
1696
1697 Run:
1698 if (!callback && dev->driver && dev->driver->pm) {
1699 info = "driver ";
1700 callback = pm_op(dev->driver->pm, state);
1701 }
1702
1703 error = dpm_run_callback(callback, dev, state, info);
1704
1705 End:
1706 if (!error) {
1707 dev->power.is_suspended = true;
1708 if (device_may_wakeup(dev))
1709 dev->power.wakeup_path = true;
1710
1711 dpm_propagate_wakeup_to_parent(dev);
1712 dpm_clear_superiors_direct_complete(dev);
1713 }
1714
1715 device_unlock(dev);
1716 dpm_watchdog_clear(&wd);
1717
1718 Complete:
1719 if (error)
1720 async_error = error;
1721
1722 complete_all(&dev->power.completion);
1723 TRACE_SUSPEND(error);
1724 return error;
1725}
1726
1727static void async_suspend(void *data, async_cookie_t cookie)
1728{
1729 struct device *dev = data;
1730 int error;
1731
1732 error = __device_suspend(dev, pm_transition, true);
1733 if (error) {
1734 dpm_save_failed_dev(dev_name(dev));
1735 pm_dev_err(dev, pm_transition, " async", error);
1736 }
1737
1738 put_device(dev);
1739}
1740
1741static int device_suspend(struct device *dev)
1742{
1743 if (dpm_async_fn(dev, async_suspend))
1744 return 0;
1745
1746 return __device_suspend(dev, pm_transition, false);
1747}
1748
1749/**
1750 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1751 * @state: PM transition of the system being carried out.
1752 */
1753int dpm_suspend(pm_message_t state)
1754{
1755 ktime_t starttime = ktime_get();
1756 int error = 0;
1757
1758 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1759 might_sleep();
1760
1761 devfreq_suspend();
1762 cpufreq_suspend();
1763
1764 mutex_lock(&dpm_list_mtx);
1765 pm_transition = state;
1766 async_error = 0;
1767 while (!list_empty(&dpm_prepared_list)) {
1768 struct device *dev = to_device(dpm_prepared_list.prev);
1769
1770 get_device(dev);
1771
1772 mutex_unlock(&dpm_list_mtx);
1773
1774 error = device_suspend(dev);
1775
1776 mutex_lock(&dpm_list_mtx);
1777
1778 if (error) {
1779 pm_dev_err(dev, state, "", error);
1780 dpm_save_failed_dev(dev_name(dev));
1781 } else if (!list_empty(&dev->power.entry)) {
1782 list_move(&dev->power.entry, &dpm_suspended_list);
1783 }
1784
1785 mutex_unlock(&dpm_list_mtx);
1786
1787 put_device(dev);
1788
1789 mutex_lock(&dpm_list_mtx);
1790
1791 if (error || async_error)
1792 break;
1793 }
1794 mutex_unlock(&dpm_list_mtx);
1795 async_synchronize_full();
1796 if (!error)
1797 error = async_error;
1798 if (error) {
1799 suspend_stats.failed_suspend++;
1800 dpm_save_failed_step(SUSPEND_SUSPEND);
1801 }
1802 dpm_show_time(starttime, state, error, NULL);
1803 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1804 return error;
1805}
1806
1807/**
1808 * device_prepare - Prepare a device for system power transition.
1809 * @dev: Device to handle.
1810 * @state: PM transition of the system being carried out.
1811 *
1812 * Execute the ->prepare() callback(s) for given device. No new children of the
1813 * device may be registered after this function has returned.
1814 */
1815static int device_prepare(struct device *dev, pm_message_t state)
1816{
1817 int (*callback)(struct device *) = NULL;
1818 int ret = 0;
1819
1820 /*
1821 * If a device's parent goes into runtime suspend at the wrong time,
1822 * it won't be possible to resume the device. To prevent this we
1823 * block runtime suspend here, during the prepare phase, and allow
1824 * it again during the complete phase.
1825 */
1826 pm_runtime_get_noresume(dev);
1827
1828 if (dev->power.syscore)
1829 return 0;
1830
1831 device_lock(dev);
1832
1833 dev->power.wakeup_path = false;
1834
1835 if (dev->power.no_pm_callbacks)
1836 goto unlock;
1837
1838 if (dev->pm_domain)
1839 callback = dev->pm_domain->ops.prepare;
1840 else if (dev->type && dev->type->pm)
1841 callback = dev->type->pm->prepare;
1842 else if (dev->class && dev->class->pm)
1843 callback = dev->class->pm->prepare;
1844 else if (dev->bus && dev->bus->pm)
1845 callback = dev->bus->pm->prepare;
1846
1847 if (!callback && dev->driver && dev->driver->pm)
1848 callback = dev->driver->pm->prepare;
1849
1850 if (callback)
1851 ret = callback(dev);
1852
1853unlock:
1854 device_unlock(dev);
1855
1856 if (ret < 0) {
1857 suspend_report_result(dev, callback, ret);
1858 pm_runtime_put(dev);
1859 return ret;
1860 }
1861 /*
1862 * A positive return value from ->prepare() means "this device appears
1863 * to be runtime-suspended and its state is fine, so if it really is
1864 * runtime-suspended, you can leave it in that state provided that you
1865 * will do the same thing with all of its descendants". This only
1866 * applies to suspend transitions, however.
1867 */
1868 spin_lock_irq(&dev->power.lock);
1869 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1870 (ret > 0 || dev->power.no_pm_callbacks) &&
1871 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1872 spin_unlock_irq(&dev->power.lock);
1873 return 0;
1874}
1875
1876/**
1877 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1878 * @state: PM transition of the system being carried out.
1879 *
1880 * Execute the ->prepare() callback(s) for all devices.
1881 */
1882int dpm_prepare(pm_message_t state)
1883{
1884 int error = 0;
1885
1886 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1887 might_sleep();
1888
1889 /*
1890 * Give a chance for the known devices to complete their probes, before
1891 * disable probing of devices. This sync point is important at least
1892 * at boot time + hibernation restore.
1893 */
1894 wait_for_device_probe();
1895 /*
1896 * It is unsafe if probing of devices will happen during suspend or
1897 * hibernation and system behavior will be unpredictable in this case.
1898 * So, let's prohibit device's probing here and defer their probes
1899 * instead. The normal behavior will be restored in dpm_complete().
1900 */
1901 device_block_probing();
1902
1903 mutex_lock(&dpm_list_mtx);
1904 while (!list_empty(&dpm_list) && !error) {
1905 struct device *dev = to_device(dpm_list.next);
1906
1907 get_device(dev);
1908
1909 mutex_unlock(&dpm_list_mtx);
1910
1911 trace_device_pm_callback_start(dev, "", state.event);
1912 error = device_prepare(dev, state);
1913 trace_device_pm_callback_end(dev, error);
1914
1915 mutex_lock(&dpm_list_mtx);
1916
1917 if (!error) {
1918 dev->power.is_prepared = true;
1919 if (!list_empty(&dev->power.entry))
1920 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1921 } else if (error == -EAGAIN) {
1922 error = 0;
1923 } else {
1924 dev_info(dev, "not prepared for power transition: code %d\n",
1925 error);
1926 }
1927
1928 mutex_unlock(&dpm_list_mtx);
1929
1930 put_device(dev);
1931
1932 mutex_lock(&dpm_list_mtx);
1933 }
1934 mutex_unlock(&dpm_list_mtx);
1935 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1936 return error;
1937}
1938
1939/**
1940 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1941 * @state: PM transition of the system being carried out.
1942 *
1943 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1944 * callbacks for them.
1945 */
1946int dpm_suspend_start(pm_message_t state)
1947{
1948 ktime_t starttime = ktime_get();
1949 int error;
1950
1951 error = dpm_prepare(state);
1952 if (error) {
1953 suspend_stats.failed_prepare++;
1954 dpm_save_failed_step(SUSPEND_PREPARE);
1955 } else
1956 error = dpm_suspend(state);
1957 dpm_show_time(starttime, state, error, "start");
1958 return error;
1959}
1960EXPORT_SYMBOL_GPL(dpm_suspend_start);
1961
1962void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1963{
1964 if (ret)
1965 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1966}
1967EXPORT_SYMBOL_GPL(__suspend_report_result);
1968
1969/**
1970 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1971 * @subordinate: Device that needs to wait for @dev.
1972 * @dev: Device to wait for.
1973 */
1974int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1975{
1976 dpm_wait(dev, subordinate->power.async_suspend);
1977 return async_error;
1978}
1979EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1980
1981/**
1982 * dpm_for_each_dev - device iterator.
1983 * @data: data for the callback.
1984 * @fn: function to be called for each device.
1985 *
1986 * Iterate over devices in dpm_list, and call @fn for each device,
1987 * passing it @data.
1988 */
1989void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1990{
1991 struct device *dev;
1992
1993 if (!fn)
1994 return;
1995
1996 device_pm_lock();
1997 list_for_each_entry(dev, &dpm_list, power.entry)
1998 fn(dev, data);
1999 device_pm_unlock();
2000}
2001EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2002
2003static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2004{
2005 if (!ops)
2006 return true;
2007
2008 return !ops->prepare &&
2009 !ops->suspend &&
2010 !ops->suspend_late &&
2011 !ops->suspend_noirq &&
2012 !ops->resume_noirq &&
2013 !ops->resume_early &&
2014 !ops->resume &&
2015 !ops->complete;
2016}
2017
2018void device_pm_check_callbacks(struct device *dev)
2019{
2020 unsigned long flags;
2021
2022 spin_lock_irqsave(&dev->power.lock, flags);
2023 dev->power.no_pm_callbacks =
2024 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2025 !dev->bus->suspend && !dev->bus->resume)) &&
2026 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2027 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2028 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2029 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2030 !dev->driver->suspend && !dev->driver->resume));
2031 spin_unlock_irqrestore(&dev->power.lock, flags);
2032}
2033
2034bool dev_pm_skip_suspend(struct device *dev)
2035{
2036 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2037 pm_runtime_status_suspended(dev);
2038}
1/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/export.h>
22#include <linux/mutex.h>
23#include <linux/pm.h>
24#include <linux/pm_runtime.h>
25#include <linux/pm-trace.h>
26#include <linux/pm_wakeirq.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/sched/debug.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36
37#include "../base.h"
38#include "power.h"
39
40typedef int (*pm_callback_t)(struct device *);
41
42/*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52LIST_HEAD(dpm_list);
53static LIST_HEAD(dpm_prepared_list);
54static LIST_HEAD(dpm_suspended_list);
55static LIST_HEAD(dpm_late_early_list);
56static LIST_HEAD(dpm_noirq_list);
57
58struct suspend_stats suspend_stats;
59static DEFINE_MUTEX(dpm_list_mtx);
60static pm_message_t pm_transition;
61
62static int async_error;
63
64static const char *pm_verb(int event)
65{
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86}
87
88/**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92void device_pm_sleep_init(struct device *dev)
93{
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102}
103
104/**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107void device_pm_lock(void)
108{
109 mutex_lock(&dpm_list_mtx);
110}
111
112/**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115void device_pm_unlock(void)
116{
117 mutex_unlock(&dpm_list_mtx);
118}
119
120/**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124void device_pm_add(struct device *dev)
125{
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 dev->power.in_dpm_list = true;
135 mutex_unlock(&dpm_list_mtx);
136}
137
138/**
139 * device_pm_remove - Remove a device from the PM core's list of active devices.
140 * @dev: Device to be removed from the list.
141 */
142void device_pm_remove(struct device *dev)
143{
144 pr_debug("PM: Removing info for %s:%s\n",
145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 complete_all(&dev->power.completion);
147 mutex_lock(&dpm_list_mtx);
148 list_del_init(&dev->power.entry);
149 dev->power.in_dpm_list = false;
150 mutex_unlock(&dpm_list_mtx);
151 device_wakeup_disable(dev);
152 pm_runtime_remove(dev);
153 device_pm_check_callbacks(dev);
154}
155
156/**
157 * device_pm_move_before - Move device in the PM core's list of active devices.
158 * @deva: Device to move in dpm_list.
159 * @devb: Device @deva should come before.
160 */
161void device_pm_move_before(struct device *deva, struct device *devb)
162{
163 pr_debug("PM: Moving %s:%s before %s:%s\n",
164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 /* Delete deva from dpm_list and reinsert before devb. */
167 list_move_tail(&deva->power.entry, &devb->power.entry);
168}
169
170/**
171 * device_pm_move_after - Move device in the PM core's list of active devices.
172 * @deva: Device to move in dpm_list.
173 * @devb: Device @deva should come after.
174 */
175void device_pm_move_after(struct device *deva, struct device *devb)
176{
177 pr_debug("PM: Moving %s:%s after %s:%s\n",
178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 /* Delete deva from dpm_list and reinsert after devb. */
181 list_move(&deva->power.entry, &devb->power.entry);
182}
183
184/**
185 * device_pm_move_last - Move device to end of the PM core's list of devices.
186 * @dev: Device to move in dpm_list.
187 */
188void device_pm_move_last(struct device *dev)
189{
190 pr_debug("PM: Moving %s:%s to end of list\n",
191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 list_move_tail(&dev->power.entry, &dpm_list);
193}
194
195static ktime_t initcall_debug_start(struct device *dev)
196{
197 ktime_t calltime = 0;
198
199 if (pm_print_times_enabled) {
200 pr_info("calling %s+ @ %i, parent: %s\n",
201 dev_name(dev), task_pid_nr(current),
202 dev->parent ? dev_name(dev->parent) : "none");
203 calltime = ktime_get();
204 }
205
206 return calltime;
207}
208
209static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 int error, pm_message_t state,
211 const char *info)
212{
213 ktime_t rettime;
214 s64 nsecs;
215
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
222 }
223}
224
225/**
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
229 */
230static void dpm_wait(struct device *dev, bool async)
231{
232 if (!dev)
233 return;
234
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
237}
238
239static int dpm_wait_fn(struct device *dev, void *async_ptr)
240{
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
243}
244
245static void dpm_wait_for_children(struct device *dev, bool async)
246{
247 device_for_each_child(dev, &async, dpm_wait_fn);
248}
249
250static void dpm_wait_for_suppliers(struct device *dev, bool async)
251{
252 struct device_link *link;
253 int idx;
254
255 idx = device_links_read_lock();
256
257 /*
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
263 */
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
267
268 device_links_read_unlock(idx);
269}
270
271static void dpm_wait_for_superior(struct device *dev, bool async)
272{
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
275}
276
277static void dpm_wait_for_consumers(struct device *dev, bool async)
278{
279 struct device_link *link;
280 int idx;
281
282 idx = device_links_read_lock();
283
284 /*
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
292 */
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
296
297 device_links_read_unlock(idx);
298}
299
300static void dpm_wait_for_subordinate(struct device *dev, bool async)
301{
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
304}
305
306/**
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
310 */
311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312{
313 switch (state.event) {
314#ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319#endif /* CONFIG_SUSPEND */
320#ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332#endif /* CONFIG_HIBERNATE_CALLBACKS */
333 }
334
335 return NULL;
336}
337
338/**
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
342 *
343 * Runtime PM is disabled for @dev while this function is being executed.
344 */
345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
347{
348 switch (state.event) {
349#ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354#endif /* CONFIG_SUSPEND */
355#ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366#endif /* CONFIG_HIBERNATE_CALLBACKS */
367 }
368
369 return NULL;
370}
371
372/**
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
376 *
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
379 */
380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381{
382 switch (state.event) {
383#ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388#endif /* CONFIG_SUSPEND */
389#ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400#endif /* CONFIG_HIBERNATE_CALLBACKS */
401 }
402
403 return NULL;
404}
405
406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
407{
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
411}
412
413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
414 int error)
415{
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
418}
419
420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
421 const char *info)
422{
423 ktime_t calltime;
424 u64 usecs64;
425 int usecs;
426
427 calltime = ktime_get();
428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429 do_div(usecs64, NSEC_PER_USEC);
430 usecs = usecs64;
431 if (usecs == 0)
432 usecs = 1;
433
434 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
435 info ?: "", info ? " " : "", pm_verb(state.event),
436 error ? "aborted" : "complete",
437 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
438}
439
440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
441 pm_message_t state, const char *info)
442{
443 ktime_t calltime;
444 int error;
445
446 if (!cb)
447 return 0;
448
449 calltime = initcall_debug_start(dev);
450
451 pm_dev_dbg(dev, state, info);
452 trace_device_pm_callback_start(dev, info, state.event);
453 error = cb(dev);
454 trace_device_pm_callback_end(dev, error);
455 suspend_report_result(cb, error);
456
457 initcall_debug_report(dev, calltime, error, state, info);
458
459 return error;
460}
461
462#ifdef CONFIG_DPM_WATCHDOG
463struct dpm_watchdog {
464 struct device *dev;
465 struct task_struct *tsk;
466 struct timer_list timer;
467};
468
469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
470 struct dpm_watchdog wd
471
472/**
473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
474 * @data: Watchdog object address.
475 *
476 * Called when a driver has timed out suspending or resuming.
477 * There's not much we can do here to recover so panic() to
478 * capture a crash-dump in pstore.
479 */
480static void dpm_watchdog_handler(struct timer_list *t)
481{
482 struct dpm_watchdog *wd = from_timer(wd, t, timer);
483
484 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
485 show_stack(wd->tsk, NULL);
486 panic("%s %s: unrecoverable failure\n",
487 dev_driver_string(wd->dev), dev_name(wd->dev));
488}
489
490/**
491 * dpm_watchdog_set - Enable pm watchdog for given device.
492 * @wd: Watchdog. Must be allocated on the stack.
493 * @dev: Device to handle.
494 */
495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
496{
497 struct timer_list *timer = &wd->timer;
498
499 wd->dev = dev;
500 wd->tsk = current;
501
502 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
503 /* use same timeout value for both suspend and resume */
504 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
505 add_timer(timer);
506}
507
508/**
509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
510 * @wd: Watchdog to disable.
511 */
512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
513{
514 struct timer_list *timer = &wd->timer;
515
516 del_timer_sync(timer);
517 destroy_timer_on_stack(timer);
518}
519#else
520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
521#define dpm_watchdog_set(x, y)
522#define dpm_watchdog_clear(x)
523#endif
524
525/*------------------------- Resume routines -------------------------*/
526
527/**
528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
529 * @dev: Target device.
530 *
531 * Make the core skip the "early resume" and "resume" phases for @dev.
532 *
533 * This function can be called by middle-layer code during the "noirq" phase of
534 * system resume if necessary, but not by device drivers.
535 */
536void dev_pm_skip_next_resume_phases(struct device *dev)
537{
538 dev->power.is_late_suspended = false;
539 dev->power.is_suspended = false;
540}
541
542/**
543 * suspend_event - Return a "suspend" message for given "resume" one.
544 * @resume_msg: PM message representing a system-wide resume transition.
545 */
546static pm_message_t suspend_event(pm_message_t resume_msg)
547{
548 switch (resume_msg.event) {
549 case PM_EVENT_RESUME:
550 return PMSG_SUSPEND;
551 case PM_EVENT_THAW:
552 case PM_EVENT_RESTORE:
553 return PMSG_FREEZE;
554 case PM_EVENT_RECOVER:
555 return PMSG_HIBERNATE;
556 }
557 return PMSG_ON;
558}
559
560/**
561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Checks whether or not the device may be left in suspend after a system-wide
565 * transition to the working state.
566 */
567bool dev_pm_may_skip_resume(struct device *dev)
568{
569 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
570}
571
572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
573 pm_message_t state,
574 const char **info_p)
575{
576 pm_callback_t callback;
577 const char *info;
578
579 if (dev->pm_domain) {
580 info = "noirq power domain ";
581 callback = pm_noirq_op(&dev->pm_domain->ops, state);
582 } else if (dev->type && dev->type->pm) {
583 info = "noirq type ";
584 callback = pm_noirq_op(dev->type->pm, state);
585 } else if (dev->class && dev->class->pm) {
586 info = "noirq class ";
587 callback = pm_noirq_op(dev->class->pm, state);
588 } else if (dev->bus && dev->bus->pm) {
589 info = "noirq bus ";
590 callback = pm_noirq_op(dev->bus->pm, state);
591 } else {
592 return NULL;
593 }
594
595 if (info_p)
596 *info_p = info;
597
598 return callback;
599}
600
601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
602 pm_message_t state,
603 const char **info_p);
604
605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
606 pm_message_t state,
607 const char **info_p);
608
609/**
610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
611 * @dev: Device to handle.
612 * @state: PM transition of the system being carried out.
613 * @async: If true, the device is being resumed asynchronously.
614 *
615 * The driver of @dev will not receive interrupts while this function is being
616 * executed.
617 */
618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619{
620 pm_callback_t callback;
621 const char *info;
622 bool skip_resume;
623 int error = 0;
624
625 TRACE_DEVICE(dev);
626 TRACE_RESUME(0);
627
628 if (dev->power.syscore || dev->power.direct_complete)
629 goto Out;
630
631 if (!dev->power.is_noirq_suspended)
632 goto Out;
633
634 dpm_wait_for_superior(dev, async);
635
636 skip_resume = dev_pm_may_skip_resume(dev);
637
638 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
639 if (callback)
640 goto Run;
641
642 if (skip_resume)
643 goto Skip;
644
645 if (dev_pm_smart_suspend_and_suspended(dev)) {
646 pm_message_t suspend_msg = suspend_event(state);
647
648 /*
649 * If "freeze" callbacks have been skipped during a transition
650 * related to hibernation, the subsequent "thaw" callbacks must
651 * be skipped too or bad things may happen. Otherwise, resume
652 * callbacks are going to be run for the device, so its runtime
653 * PM status must be changed to reflect the new state after the
654 * transition under way.
655 */
656 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
657 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
658 if (state.event == PM_EVENT_THAW) {
659 skip_resume = true;
660 goto Skip;
661 } else {
662 pm_runtime_set_active(dev);
663 }
664 }
665 }
666
667 if (dev->driver && dev->driver->pm) {
668 info = "noirq driver ";
669 callback = pm_noirq_op(dev->driver->pm, state);
670 }
671
672Run:
673 error = dpm_run_callback(callback, dev, state, info);
674
675Skip:
676 dev->power.is_noirq_suspended = false;
677
678 if (skip_resume) {
679 /*
680 * The device is going to be left in suspend, but it might not
681 * have been in runtime suspend before the system suspended, so
682 * its runtime PM status needs to be updated to avoid confusing
683 * the runtime PM framework when runtime PM is enabled for the
684 * device again.
685 */
686 pm_runtime_set_suspended(dev);
687 dev_pm_skip_next_resume_phases(dev);
688 }
689
690Out:
691 complete_all(&dev->power.completion);
692 TRACE_RESUME(error);
693 return error;
694}
695
696static bool is_async(struct device *dev)
697{
698 return dev->power.async_suspend && pm_async_enabled
699 && !pm_trace_is_enabled();
700}
701
702static void async_resume_noirq(void *data, async_cookie_t cookie)
703{
704 struct device *dev = (struct device *)data;
705 int error;
706
707 error = device_resume_noirq(dev, pm_transition, true);
708 if (error)
709 pm_dev_err(dev, pm_transition, " async", error);
710
711 put_device(dev);
712}
713
714void dpm_noirq_resume_devices(pm_message_t state)
715{
716 struct device *dev;
717 ktime_t starttime = ktime_get();
718
719 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
720 mutex_lock(&dpm_list_mtx);
721 pm_transition = state;
722
723 /*
724 * Advanced the async threads upfront,
725 * in case the starting of async threads is
726 * delayed by non-async resuming devices.
727 */
728 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
729 reinit_completion(&dev->power.completion);
730 if (is_async(dev)) {
731 get_device(dev);
732 async_schedule(async_resume_noirq, dev);
733 }
734 }
735
736 while (!list_empty(&dpm_noirq_list)) {
737 dev = to_device(dpm_noirq_list.next);
738 get_device(dev);
739 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740 mutex_unlock(&dpm_list_mtx);
741
742 if (!is_async(dev)) {
743 int error;
744
745 error = device_resume_noirq(dev, state, false);
746 if (error) {
747 suspend_stats.failed_resume_noirq++;
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749 dpm_save_failed_dev(dev_name(dev));
750 pm_dev_err(dev, state, " noirq", error);
751 }
752 }
753
754 mutex_lock(&dpm_list_mtx);
755 put_device(dev);
756 }
757 mutex_unlock(&dpm_list_mtx);
758 async_synchronize_full();
759 dpm_show_time(starttime, state, 0, "noirq");
760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
761}
762
763void dpm_noirq_end(void)
764{
765 resume_device_irqs();
766 device_wakeup_disarm_wake_irqs();
767 cpuidle_resume();
768}
769
770/**
771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
772 * @state: PM transition of the system being carried out.
773 *
774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
775 * allow device drivers' interrupt handlers to be called.
776 */
777void dpm_resume_noirq(pm_message_t state)
778{
779 dpm_noirq_resume_devices(state);
780 dpm_noirq_end();
781}
782
783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
784 pm_message_t state,
785 const char **info_p)
786{
787 pm_callback_t callback;
788 const char *info;
789
790 if (dev->pm_domain) {
791 info = "early power domain ";
792 callback = pm_late_early_op(&dev->pm_domain->ops, state);
793 } else if (dev->type && dev->type->pm) {
794 info = "early type ";
795 callback = pm_late_early_op(dev->type->pm, state);
796 } else if (dev->class && dev->class->pm) {
797 info = "early class ";
798 callback = pm_late_early_op(dev->class->pm, state);
799 } else if (dev->bus && dev->bus->pm) {
800 info = "early bus ";
801 callback = pm_late_early_op(dev->bus->pm, state);
802 } else {
803 return NULL;
804 }
805
806 if (info_p)
807 *info_p = info;
808
809 return callback;
810}
811
812/**
813 * device_resume_early - Execute an "early resume" callback for given device.
814 * @dev: Device to handle.
815 * @state: PM transition of the system being carried out.
816 * @async: If true, the device is being resumed asynchronously.
817 *
818 * Runtime PM is disabled for @dev while this function is being executed.
819 */
820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
821{
822 pm_callback_t callback;
823 const char *info;
824 int error = 0;
825
826 TRACE_DEVICE(dev);
827 TRACE_RESUME(0);
828
829 if (dev->power.syscore || dev->power.direct_complete)
830 goto Out;
831
832 if (!dev->power.is_late_suspended)
833 goto Out;
834
835 dpm_wait_for_superior(dev, async);
836
837 callback = dpm_subsys_resume_early_cb(dev, state, &info);
838
839 if (!callback && dev->driver && dev->driver->pm) {
840 info = "early driver ";
841 callback = pm_late_early_op(dev->driver->pm, state);
842 }
843
844 error = dpm_run_callback(callback, dev, state, info);
845 dev->power.is_late_suspended = false;
846
847 Out:
848 TRACE_RESUME(error);
849
850 pm_runtime_enable(dev);
851 complete_all(&dev->power.completion);
852 return error;
853}
854
855static void async_resume_early(void *data, async_cookie_t cookie)
856{
857 struct device *dev = (struct device *)data;
858 int error;
859
860 error = device_resume_early(dev, pm_transition, true);
861 if (error)
862 pm_dev_err(dev, pm_transition, " async", error);
863
864 put_device(dev);
865}
866
867/**
868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
869 * @state: PM transition of the system being carried out.
870 */
871void dpm_resume_early(pm_message_t state)
872{
873 struct device *dev;
874 ktime_t starttime = ktime_get();
875
876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
877 mutex_lock(&dpm_list_mtx);
878 pm_transition = state;
879
880 /*
881 * Advanced the async threads upfront,
882 * in case the starting of async threads is
883 * delayed by non-async resuming devices.
884 */
885 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
886 reinit_completion(&dev->power.completion);
887 if (is_async(dev)) {
888 get_device(dev);
889 async_schedule(async_resume_early, dev);
890 }
891 }
892
893 while (!list_empty(&dpm_late_early_list)) {
894 dev = to_device(dpm_late_early_list.next);
895 get_device(dev);
896 list_move_tail(&dev->power.entry, &dpm_suspended_list);
897 mutex_unlock(&dpm_list_mtx);
898
899 if (!is_async(dev)) {
900 int error;
901
902 error = device_resume_early(dev, state, false);
903 if (error) {
904 suspend_stats.failed_resume_early++;
905 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
906 dpm_save_failed_dev(dev_name(dev));
907 pm_dev_err(dev, state, " early", error);
908 }
909 }
910 mutex_lock(&dpm_list_mtx);
911 put_device(dev);
912 }
913 mutex_unlock(&dpm_list_mtx);
914 async_synchronize_full();
915 dpm_show_time(starttime, state, 0, "early");
916 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
917}
918
919/**
920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
921 * @state: PM transition of the system being carried out.
922 */
923void dpm_resume_start(pm_message_t state)
924{
925 dpm_resume_noirq(state);
926 dpm_resume_early(state);
927}
928EXPORT_SYMBOL_GPL(dpm_resume_start);
929
930/**
931 * device_resume - Execute "resume" callbacks for given device.
932 * @dev: Device to handle.
933 * @state: PM transition of the system being carried out.
934 * @async: If true, the device is being resumed asynchronously.
935 */
936static int device_resume(struct device *dev, pm_message_t state, bool async)
937{
938 pm_callback_t callback = NULL;
939 const char *info = NULL;
940 int error = 0;
941 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
942
943 TRACE_DEVICE(dev);
944 TRACE_RESUME(0);
945
946 if (dev->power.syscore)
947 goto Complete;
948
949 if (dev->power.direct_complete) {
950 /* Match the pm_runtime_disable() in __device_suspend(). */
951 pm_runtime_enable(dev);
952 goto Complete;
953 }
954
955 dpm_wait_for_superior(dev, async);
956 dpm_watchdog_set(&wd, dev);
957 device_lock(dev);
958
959 /*
960 * This is a fib. But we'll allow new children to be added below
961 * a resumed device, even if the device hasn't been completed yet.
962 */
963 dev->power.is_prepared = false;
964
965 if (!dev->power.is_suspended)
966 goto Unlock;
967
968 if (dev->pm_domain) {
969 info = "power domain ";
970 callback = pm_op(&dev->pm_domain->ops, state);
971 goto Driver;
972 }
973
974 if (dev->type && dev->type->pm) {
975 info = "type ";
976 callback = pm_op(dev->type->pm, state);
977 goto Driver;
978 }
979
980 if (dev->class && dev->class->pm) {
981 info = "class ";
982 callback = pm_op(dev->class->pm, state);
983 goto Driver;
984 }
985
986 if (dev->bus) {
987 if (dev->bus->pm) {
988 info = "bus ";
989 callback = pm_op(dev->bus->pm, state);
990 } else if (dev->bus->resume) {
991 info = "legacy bus ";
992 callback = dev->bus->resume;
993 goto End;
994 }
995 }
996
997 Driver:
998 if (!callback && dev->driver && dev->driver->pm) {
999 info = "driver ";
1000 callback = pm_op(dev->driver->pm, state);
1001 }
1002
1003 End:
1004 error = dpm_run_callback(callback, dev, state, info);
1005 dev->power.is_suspended = false;
1006
1007 Unlock:
1008 device_unlock(dev);
1009 dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012 complete_all(&dev->power.completion);
1013
1014 TRACE_RESUME(error);
1015
1016 return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021 struct device *dev = (struct device *)data;
1022 int error;
1023
1024 error = device_resume(dev, pm_transition, true);
1025 if (error)
1026 pm_dev_err(dev, pm_transition, " async", error);
1027 put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039 struct device *dev;
1040 ktime_t starttime = ktime_get();
1041
1042 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043 might_sleep();
1044
1045 mutex_lock(&dpm_list_mtx);
1046 pm_transition = state;
1047 async_error = 0;
1048
1049 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050 reinit_completion(&dev->power.completion);
1051 if (is_async(dev)) {
1052 get_device(dev);
1053 async_schedule(async_resume, dev);
1054 }
1055 }
1056
1057 while (!list_empty(&dpm_suspended_list)) {
1058 dev = to_device(dpm_suspended_list.next);
1059 get_device(dev);
1060 if (!is_async(dev)) {
1061 int error;
1062
1063 mutex_unlock(&dpm_list_mtx);
1064
1065 error = device_resume(dev, state, false);
1066 if (error) {
1067 suspend_stats.failed_resume++;
1068 dpm_save_failed_step(SUSPEND_RESUME);
1069 dpm_save_failed_dev(dev_name(dev));
1070 pm_dev_err(dev, state, "", error);
1071 }
1072
1073 mutex_lock(&dpm_list_mtx);
1074 }
1075 if (!list_empty(&dev->power.entry))
1076 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077 put_device(dev);
1078 }
1079 mutex_unlock(&dpm_list_mtx);
1080 async_synchronize_full();
1081 dpm_show_time(starttime, state, 0, NULL);
1082
1083 cpufreq_resume();
1084 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094 void (*callback)(struct device *) = NULL;
1095 const char *info = NULL;
1096
1097 if (dev->power.syscore)
1098 return;
1099
1100 device_lock(dev);
1101
1102 if (dev->pm_domain) {
1103 info = "completing power domain ";
1104 callback = dev->pm_domain->ops.complete;
1105 } else if (dev->type && dev->type->pm) {
1106 info = "completing type ";
1107 callback = dev->type->pm->complete;
1108 } else if (dev->class && dev->class->pm) {
1109 info = "completing class ";
1110 callback = dev->class->pm->complete;
1111 } else if (dev->bus && dev->bus->pm) {
1112 info = "completing bus ";
1113 callback = dev->bus->pm->complete;
1114 }
1115
1116 if (!callback && dev->driver && dev->driver->pm) {
1117 info = "completing driver ";
1118 callback = dev->driver->pm->complete;
1119 }
1120
1121 if (callback) {
1122 pm_dev_dbg(dev, state, info);
1123 callback(dev);
1124 }
1125
1126 device_unlock(dev);
1127
1128 pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140 struct list_head list;
1141
1142 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143 might_sleep();
1144
1145 INIT_LIST_HEAD(&list);
1146 mutex_lock(&dpm_list_mtx);
1147 while (!list_empty(&dpm_prepared_list)) {
1148 struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150 get_device(dev);
1151 dev->power.is_prepared = false;
1152 list_move(&dev->power.entry, &list);
1153 mutex_unlock(&dpm_list_mtx);
1154
1155 trace_device_pm_callback_start(dev, "", state.event);
1156 device_complete(dev, state);
1157 trace_device_pm_callback_end(dev, 0);
1158
1159 mutex_lock(&dpm_list_mtx);
1160 put_device(dev);
1161 }
1162 list_splice(&list, &dpm_list);
1163 mutex_unlock(&dpm_list_mtx);
1164
1165 /* Allow device probing and trigger re-probing of deferred devices */
1166 device_unblock_probing();
1167 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179 dpm_resume(state);
1180 dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196 switch (sleep_state.event) {
1197 case PM_EVENT_SUSPEND:
1198 return PMSG_RESUME;
1199 case PM_EVENT_FREEZE:
1200 case PM_EVENT_QUIESCE:
1201 return PMSG_RECOVER;
1202 case PM_EVENT_HIBERNATE:
1203 return PMSG_RESTORE;
1204 }
1205 return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210 struct device_link *link;
1211 int idx;
1212
1213 if (dev->parent)
1214 dev->parent->power.must_resume = true;
1215
1216 idx = device_links_read_lock();
1217
1218 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219 link->supplier->power.must_resume = true;
1220
1221 device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225 pm_message_t state,
1226 const char **info_p)
1227{
1228 pm_callback_t callback;
1229 const char *info;
1230
1231 if (dev->pm_domain) {
1232 info = "noirq power domain ";
1233 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234 } else if (dev->type && dev->type->pm) {
1235 info = "noirq type ";
1236 callback = pm_noirq_op(dev->type->pm, state);
1237 } else if (dev->class && dev->class->pm) {
1238 info = "noirq class ";
1239 callback = pm_noirq_op(dev->class->pm, state);
1240 } else if (dev->bus && dev->bus->pm) {
1241 info = "noirq bus ";
1242 callback = pm_noirq_op(dev->bus->pm, state);
1243 } else {
1244 return NULL;
1245 }
1246
1247 if (info_p)
1248 *info_p = info;
1249
1250 return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254 bool no_subsys_suspend_noirq)
1255{
1256 pm_message_t resume_msg = resume_event(state);
1257
1258 /*
1259 * If all of the device driver's "noirq", "late" and "early" callbacks
1260 * are invoked directly by the core, the decision to allow the device to
1261 * stay in suspend can be based on its current runtime PM status and its
1262 * wakeup settings.
1263 */
1264 if (no_subsys_suspend_noirq &&
1265 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268 return !pm_runtime_status_suspended(dev) &&
1269 (resume_msg.event != PM_EVENT_RESUME ||
1270 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272 /*
1273 * The only safe strategy here is to require that if the device may not
1274 * be left in suspend, resume callbacks must be invoked for it.
1275 */
1276 return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290 pm_callback_t callback;
1291 const char *info;
1292 bool no_subsys_cb = false;
1293 int error = 0;
1294
1295 TRACE_DEVICE(dev);
1296 TRACE_SUSPEND(0);
1297
1298 dpm_wait_for_subordinate(dev, async);
1299
1300 if (async_error)
1301 goto Complete;
1302
1303 if (pm_wakeup_pending()) {
1304 async_error = -EBUSY;
1305 goto Complete;
1306 }
1307
1308 if (dev->power.syscore || dev->power.direct_complete)
1309 goto Complete;
1310
1311 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312 if (callback)
1313 goto Run;
1314
1315 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318 goto Skip;
1319
1320 if (dev->driver && dev->driver->pm) {
1321 info = "noirq driver ";
1322 callback = pm_noirq_op(dev->driver->pm, state);
1323 }
1324
1325Run:
1326 error = dpm_run_callback(callback, dev, state, info);
1327 if (error) {
1328 async_error = error;
1329 goto Complete;
1330 }
1331
1332Skip:
1333 dev->power.is_noirq_suspended = true;
1334
1335 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336 dev->power.must_resume = dev->power.must_resume ||
1337 atomic_read(&dev->power.usage_count) > 1 ||
1338 device_must_resume(dev, state, no_subsys_cb);
1339 } else {
1340 dev->power.must_resume = true;
1341 }
1342
1343 if (dev->power.must_resume)
1344 dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347 complete_all(&dev->power.completion);
1348 TRACE_SUSPEND(error);
1349 return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354 struct device *dev = (struct device *)data;
1355 int error;
1356
1357 error = __device_suspend_noirq(dev, pm_transition, true);
1358 if (error) {
1359 dpm_save_failed_dev(dev_name(dev));
1360 pm_dev_err(dev, pm_transition, " async", error);
1361 }
1362
1363 put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368 reinit_completion(&dev->power.completion);
1369
1370 if (is_async(dev)) {
1371 get_device(dev);
1372 async_schedule(async_suspend_noirq, dev);
1373 return 0;
1374 }
1375 return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380 cpuidle_pause();
1381 device_wakeup_arm_wake_irqs();
1382 suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387 ktime_t starttime = ktime_get();
1388 int error = 0;
1389
1390 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391 mutex_lock(&dpm_list_mtx);
1392 pm_transition = state;
1393 async_error = 0;
1394
1395 while (!list_empty(&dpm_late_early_list)) {
1396 struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398 get_device(dev);
1399 mutex_unlock(&dpm_list_mtx);
1400
1401 error = device_suspend_noirq(dev);
1402
1403 mutex_lock(&dpm_list_mtx);
1404 if (error) {
1405 pm_dev_err(dev, state, " noirq", error);
1406 dpm_save_failed_dev(dev_name(dev));
1407 put_device(dev);
1408 break;
1409 }
1410 if (!list_empty(&dev->power.entry))
1411 list_move(&dev->power.entry, &dpm_noirq_list);
1412 put_device(dev);
1413
1414 if (async_error)
1415 break;
1416 }
1417 mutex_unlock(&dpm_list_mtx);
1418 async_synchronize_full();
1419 if (!error)
1420 error = async_error;
1421
1422 if (error) {
1423 suspend_stats.failed_suspend_noirq++;
1424 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425 }
1426 dpm_show_time(starttime, state, error, "noirq");
1427 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428 return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440 int ret;
1441
1442 dpm_noirq_begin();
1443 ret = dpm_noirq_suspend_devices(state);
1444 if (ret)
1445 dpm_resume_noirq(resume_event(state));
1446
1447 return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452 struct device *parent = dev->parent;
1453
1454 if (!parent)
1455 return;
1456
1457 spin_lock_irq(&parent->power.lock);
1458
1459 if (dev->power.wakeup_path && !parent->power.ignore_children)
1460 parent->power.wakeup_path = true;
1461
1462 spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466 pm_message_t state,
1467 const char **info_p)
1468{
1469 pm_callback_t callback;
1470 const char *info;
1471
1472 if (dev->pm_domain) {
1473 info = "late power domain ";
1474 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475 } else if (dev->type && dev->type->pm) {
1476 info = "late type ";
1477 callback = pm_late_early_op(dev->type->pm, state);
1478 } else if (dev->class && dev->class->pm) {
1479 info = "late class ";
1480 callback = pm_late_early_op(dev->class->pm, state);
1481 } else if (dev->bus && dev->bus->pm) {
1482 info = "late bus ";
1483 callback = pm_late_early_op(dev->bus->pm, state);
1484 } else {
1485 return NULL;
1486 }
1487
1488 if (info_p)
1489 *info_p = info;
1490
1491 return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504 pm_callback_t callback;
1505 const char *info;
1506 int error = 0;
1507
1508 TRACE_DEVICE(dev);
1509 TRACE_SUSPEND(0);
1510
1511 __pm_runtime_disable(dev, false);
1512
1513 dpm_wait_for_subordinate(dev, async);
1514
1515 if (async_error)
1516 goto Complete;
1517
1518 if (pm_wakeup_pending()) {
1519 async_error = -EBUSY;
1520 goto Complete;
1521 }
1522
1523 if (dev->power.syscore || dev->power.direct_complete)
1524 goto Complete;
1525
1526 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527 if (callback)
1528 goto Run;
1529
1530 if (dev_pm_smart_suspend_and_suspended(dev) &&
1531 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532 goto Skip;
1533
1534 if (dev->driver && dev->driver->pm) {
1535 info = "late driver ";
1536 callback = pm_late_early_op(dev->driver->pm, state);
1537 }
1538
1539Run:
1540 error = dpm_run_callback(callback, dev, state, info);
1541 if (error) {
1542 async_error = error;
1543 goto Complete;
1544 }
1545 dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548 dev->power.is_late_suspended = true;
1549
1550Complete:
1551 TRACE_SUSPEND(error);
1552 complete_all(&dev->power.completion);
1553 return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558 struct device *dev = (struct device *)data;
1559 int error;
1560
1561 error = __device_suspend_late(dev, pm_transition, true);
1562 if (error) {
1563 dpm_save_failed_dev(dev_name(dev));
1564 pm_dev_err(dev, pm_transition, " async", error);
1565 }
1566 put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571 reinit_completion(&dev->power.completion);
1572
1573 if (is_async(dev)) {
1574 get_device(dev);
1575 async_schedule(async_suspend_late, dev);
1576 return 0;
1577 }
1578
1579 return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588 ktime_t starttime = ktime_get();
1589 int error = 0;
1590
1591 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592 mutex_lock(&dpm_list_mtx);
1593 pm_transition = state;
1594 async_error = 0;
1595
1596 while (!list_empty(&dpm_suspended_list)) {
1597 struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599 get_device(dev);
1600 mutex_unlock(&dpm_list_mtx);
1601
1602 error = device_suspend_late(dev);
1603
1604 mutex_lock(&dpm_list_mtx);
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608 if (error) {
1609 pm_dev_err(dev, state, " late", error);
1610 dpm_save_failed_dev(dev_name(dev));
1611 put_device(dev);
1612 break;
1613 }
1614 put_device(dev);
1615
1616 if (async_error)
1617 break;
1618 }
1619 mutex_unlock(&dpm_list_mtx);
1620 async_synchronize_full();
1621 if (!error)
1622 error = async_error;
1623 if (error) {
1624 suspend_stats.failed_suspend_late++;
1625 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626 dpm_resume_early(resume_event(state));
1627 }
1628 dpm_show_time(starttime, state, error, "late");
1629 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630 return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639 int error = dpm_suspend_late(state);
1640 if (error)
1641 return error;
1642
1643 error = dpm_suspend_noirq(state);
1644 if (error) {
1645 dpm_resume_early(resume_event(state));
1646 return error;
1647 }
1648
1649 return 0;
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661 int (*cb)(struct device *dev, pm_message_t state),
1662 const char *info)
1663{
1664 int error;
1665 ktime_t calltime;
1666
1667 calltime = initcall_debug_start(dev);
1668
1669 trace_device_pm_callback_start(dev, info, state.event);
1670 error = cb(dev, state);
1671 trace_device_pm_callback_end(dev, error);
1672 suspend_report_result(cb, error);
1673
1674 initcall_debug_report(dev, calltime, error, state, info);
1675
1676 return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681 struct device_link *link;
1682 int idx;
1683
1684 if (dev->parent) {
1685 spin_lock_irq(&dev->parent->power.lock);
1686 dev->parent->power.direct_complete = false;
1687 spin_unlock_irq(&dev->parent->power.lock);
1688 }
1689
1690 idx = device_links_read_lock();
1691
1692 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693 spin_lock_irq(&link->supplier->power.lock);
1694 link->supplier->power.direct_complete = false;
1695 spin_unlock_irq(&link->supplier->power.lock);
1696 }
1697
1698 device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709 pm_callback_t callback = NULL;
1710 const char *info = NULL;
1711 int error = 0;
1712 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714 TRACE_DEVICE(dev);
1715 TRACE_SUSPEND(0);
1716
1717 dpm_wait_for_subordinate(dev, async);
1718
1719 if (async_error)
1720 goto Complete;
1721
1722 /*
1723 * If a device configured to wake up the system from sleep states
1724 * has been suspended at run time and there's a resume request pending
1725 * for it, this is equivalent to the device signaling wakeup, so the
1726 * system suspend operation should be aborted.
1727 */
1728 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729 pm_wakeup_event(dev, 0);
1730
1731 if (pm_wakeup_pending()) {
1732 async_error = -EBUSY;
1733 goto Complete;
1734 }
1735
1736 if (dev->power.syscore)
1737 goto Complete;
1738
1739 if (dev->power.direct_complete) {
1740 if (pm_runtime_status_suspended(dev)) {
1741 pm_runtime_disable(dev);
1742 if (pm_runtime_status_suspended(dev))
1743 goto Complete;
1744
1745 pm_runtime_enable(dev);
1746 }
1747 dev->power.direct_complete = false;
1748 }
1749
1750 dev->power.may_skip_resume = false;
1751 dev->power.must_resume = false;
1752
1753 dpm_watchdog_set(&wd, dev);
1754 device_lock(dev);
1755
1756 if (dev->pm_domain) {
1757 info = "power domain ";
1758 callback = pm_op(&dev->pm_domain->ops, state);
1759 goto Run;
1760 }
1761
1762 if (dev->type && dev->type->pm) {
1763 info = "type ";
1764 callback = pm_op(dev->type->pm, state);
1765 goto Run;
1766 }
1767
1768 if (dev->class && dev->class->pm) {
1769 info = "class ";
1770 callback = pm_op(dev->class->pm, state);
1771 goto Run;
1772 }
1773
1774 if (dev->bus) {
1775 if (dev->bus->pm) {
1776 info = "bus ";
1777 callback = pm_op(dev->bus->pm, state);
1778 } else if (dev->bus->suspend) {
1779 pm_dev_dbg(dev, state, "legacy bus ");
1780 error = legacy_suspend(dev, state, dev->bus->suspend,
1781 "legacy bus ");
1782 goto End;
1783 }
1784 }
1785
1786 Run:
1787 if (!callback && dev->driver && dev->driver->pm) {
1788 info = "driver ";
1789 callback = pm_op(dev->driver->pm, state);
1790 }
1791
1792 error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795 if (!error) {
1796 dev->power.is_suspended = true;
1797 if (device_may_wakeup(dev))
1798 dev->power.wakeup_path = true;
1799
1800 dpm_propagate_wakeup_to_parent(dev);
1801 dpm_clear_superiors_direct_complete(dev);
1802 }
1803
1804 device_unlock(dev);
1805 dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808 if (error)
1809 async_error = error;
1810
1811 complete_all(&dev->power.completion);
1812 TRACE_SUSPEND(error);
1813 return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818 struct device *dev = (struct device *)data;
1819 int error;
1820
1821 error = __device_suspend(dev, pm_transition, true);
1822 if (error) {
1823 dpm_save_failed_dev(dev_name(dev));
1824 pm_dev_err(dev, pm_transition, " async", error);
1825 }
1826
1827 put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832 reinit_completion(&dev->power.completion);
1833
1834 if (is_async(dev)) {
1835 get_device(dev);
1836 async_schedule(async_suspend, dev);
1837 return 0;
1838 }
1839
1840 return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849 ktime_t starttime = ktime_get();
1850 int error = 0;
1851
1852 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853 might_sleep();
1854
1855 cpufreq_suspend();
1856
1857 mutex_lock(&dpm_list_mtx);
1858 pm_transition = state;
1859 async_error = 0;
1860 while (!list_empty(&dpm_prepared_list)) {
1861 struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863 get_device(dev);
1864 mutex_unlock(&dpm_list_mtx);
1865
1866 error = device_suspend(dev);
1867
1868 mutex_lock(&dpm_list_mtx);
1869 if (error) {
1870 pm_dev_err(dev, state, "", error);
1871 dpm_save_failed_dev(dev_name(dev));
1872 put_device(dev);
1873 break;
1874 }
1875 if (!list_empty(&dev->power.entry))
1876 list_move(&dev->power.entry, &dpm_suspended_list);
1877 put_device(dev);
1878 if (async_error)
1879 break;
1880 }
1881 mutex_unlock(&dpm_list_mtx);
1882 async_synchronize_full();
1883 if (!error)
1884 error = async_error;
1885 if (error) {
1886 suspend_stats.failed_suspend++;
1887 dpm_save_failed_step(SUSPEND_SUSPEND);
1888 }
1889 dpm_show_time(starttime, state, error, NULL);
1890 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891 return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device. No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904 int (*callback)(struct device *) = NULL;
1905 int ret = 0;
1906
1907 if (dev->power.syscore)
1908 return 0;
1909
1910 WARN_ON(!pm_runtime_enabled(dev) &&
1911 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912 DPM_FLAG_LEAVE_SUSPENDED));
1913
1914 /*
1915 * If a device's parent goes into runtime suspend at the wrong time,
1916 * it won't be possible to resume the device. To prevent this we
1917 * block runtime suspend here, during the prepare phase, and allow
1918 * it again during the complete phase.
1919 */
1920 pm_runtime_get_noresume(dev);
1921
1922 device_lock(dev);
1923
1924 dev->power.wakeup_path = false;
1925
1926 if (dev->power.no_pm_callbacks)
1927 goto unlock;
1928
1929 if (dev->pm_domain)
1930 callback = dev->pm_domain->ops.prepare;
1931 else if (dev->type && dev->type->pm)
1932 callback = dev->type->pm->prepare;
1933 else if (dev->class && dev->class->pm)
1934 callback = dev->class->pm->prepare;
1935 else if (dev->bus && dev->bus->pm)
1936 callback = dev->bus->pm->prepare;
1937
1938 if (!callback && dev->driver && dev->driver->pm)
1939 callback = dev->driver->pm->prepare;
1940
1941 if (callback)
1942 ret = callback(dev);
1943
1944unlock:
1945 device_unlock(dev);
1946
1947 if (ret < 0) {
1948 suspend_report_result(callback, ret);
1949 pm_runtime_put(dev);
1950 return ret;
1951 }
1952 /*
1953 * A positive return value from ->prepare() means "this device appears
1954 * to be runtime-suspended and its state is fine, so if it really is
1955 * runtime-suspended, you can leave it in that state provided that you
1956 * will do the same thing with all of its descendants". This only
1957 * applies to suspend transitions, however.
1958 */
1959 spin_lock_irq(&dev->power.lock);
1960 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961 ((pm_runtime_suspended(dev) && ret > 0) ||
1962 dev->power.no_pm_callbacks) &&
1963 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964 spin_unlock_irq(&dev->power.lock);
1965 return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976 int error = 0;
1977
1978 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979 might_sleep();
1980
1981 /*
1982 * Give a chance for the known devices to complete their probes, before
1983 * disable probing of devices. This sync point is important at least
1984 * at boot time + hibernation restore.
1985 */
1986 wait_for_device_probe();
1987 /*
1988 * It is unsafe if probing of devices will happen during suspend or
1989 * hibernation and system behavior will be unpredictable in this case.
1990 * So, let's prohibit device's probing here and defer their probes
1991 * instead. The normal behavior will be restored in dpm_complete().
1992 */
1993 device_block_probing();
1994
1995 mutex_lock(&dpm_list_mtx);
1996 while (!list_empty(&dpm_list)) {
1997 struct device *dev = to_device(dpm_list.next);
1998
1999 get_device(dev);
2000 mutex_unlock(&dpm_list_mtx);
2001
2002 trace_device_pm_callback_start(dev, "", state.event);
2003 error = device_prepare(dev, state);
2004 trace_device_pm_callback_end(dev, error);
2005
2006 mutex_lock(&dpm_list_mtx);
2007 if (error) {
2008 if (error == -EAGAIN) {
2009 put_device(dev);
2010 error = 0;
2011 continue;
2012 }
2013 printk(KERN_INFO "PM: Device %s not prepared "
2014 "for power transition: code %d\n",
2015 dev_name(dev), error);
2016 put_device(dev);
2017 break;
2018 }
2019 dev->power.is_prepared = true;
2020 if (!list_empty(&dev->power.entry))
2021 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022 put_device(dev);
2023 }
2024 mutex_unlock(&dpm_list_mtx);
2025 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026 return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
2038 int error;
2039
2040 error = dpm_prepare(state);
2041 if (error) {
2042 suspend_stats.failed_prepare++;
2043 dpm_save_failed_step(SUSPEND_PREPARE);
2044 } else
2045 error = dpm_suspend(state);
2046 return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052 if (ret)
2053 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064 dpm_wait(dev, subordinate->power.async_suspend);
2065 return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079 struct device *dev;
2080
2081 if (!fn)
2082 return;
2083
2084 device_pm_lock();
2085 list_for_each_entry(dev, &dpm_list, power.entry)
2086 fn(dev, data);
2087 device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093 if (!ops)
2094 return true;
2095
2096 return !ops->prepare &&
2097 !ops->suspend &&
2098 !ops->suspend_late &&
2099 !ops->suspend_noirq &&
2100 !ops->resume_noirq &&
2101 !ops->resume_early &&
2102 !ops->resume &&
2103 !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108 spin_lock_irq(&dev->power.lock);
2109 dev->power.no_pm_callbacks =
2110 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111 !dev->bus->suspend && !dev->bus->resume)) &&
2112 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116 !dev->driver->suspend && !dev->driver->resume));
2117 spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123 pm_runtime_status_suspended(dev);
2124}