Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   3 *   {mikejc|engebret}@us.ibm.com
   4 *
   5 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   6 *
   7 * SMP scalability work:
   8 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
   9 * 
  10 *    Module name: htab.c
  11 *
  12 *    Description:
  13 *      PowerPC Hashed Page Table functions
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 */
  20
  21#undef DEBUG
  22#undef DEBUG_LOW
  23
  24#define pr_fmt(fmt) "hash-mmu: " fmt
  25#include <linux/spinlock.h>
  26#include <linux/errno.h>
  27#include <linux/sched/mm.h>
  28#include <linux/proc_fs.h>
  29#include <linux/stat.h>
  30#include <linux/sysctl.h>
  31#include <linux/export.h>
  32#include <linux/ctype.h>
  33#include <linux/cache.h>
  34#include <linux/init.h>
  35#include <linux/signal.h>
  36#include <linux/memblock.h>
  37#include <linux/context_tracking.h>
  38#include <linux/libfdt.h>
  39#include <linux/pkeys.h>
  40
  41#include <asm/debugfs.h>
  42#include <asm/processor.h>
  43#include <asm/pgtable.h>
  44#include <asm/mmu.h>
  45#include <asm/mmu_context.h>
  46#include <asm/page.h>
  47#include <asm/types.h>
  48#include <linux/uaccess.h>
  49#include <asm/machdep.h>
  50#include <asm/prom.h>
  51#include <asm/tlbflush.h>
  52#include <asm/io.h>
  53#include <asm/eeh.h>
  54#include <asm/tlb.h>
  55#include <asm/cacheflush.h>
  56#include <asm/cputable.h>
  57#include <asm/sections.h>
  58#include <asm/copro.h>
  59#include <asm/udbg.h>
  60#include <asm/code-patching.h>
  61#include <asm/fadump.h>
  62#include <asm/firmware.h>
  63#include <asm/tm.h>
  64#include <asm/trace.h>
  65#include <asm/ps3.h>
  66#include <asm/pte-walk.h>
  67
  68#ifdef DEBUG
  69#define DBG(fmt...) udbg_printf(fmt)
  70#else
  71#define DBG(fmt...)
  72#endif
  73
  74#ifdef DEBUG_LOW
  75#define DBG_LOW(fmt...) udbg_printf(fmt)
  76#else
  77#define DBG_LOW(fmt...)
  78#endif
  79
  80#define KB (1024)
  81#define MB (1024*KB)
  82#define GB (1024L*MB)
  83
  84/*
  85 * Note:  pte   --> Linux PTE
  86 *        HPTE  --> PowerPC Hashed Page Table Entry
  87 *
  88 * Execution context:
  89 *   htab_initialize is called with the MMU off (of course), but
  90 *   the kernel has been copied down to zero so it can directly
  91 *   reference global data.  At this point it is very difficult
  92 *   to print debug info.
  93 *
  94 */
  95
  96static unsigned long _SDR1;
  97struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  98EXPORT_SYMBOL_GPL(mmu_psize_defs);
  99
 100u8 hpte_page_sizes[1 << LP_BITS];
 101EXPORT_SYMBOL_GPL(hpte_page_sizes);
 102
 103struct hash_pte *htab_address;
 104unsigned long htab_size_bytes;
 105unsigned long htab_hash_mask;
 106EXPORT_SYMBOL_GPL(htab_hash_mask);
 107int mmu_linear_psize = MMU_PAGE_4K;
 108EXPORT_SYMBOL_GPL(mmu_linear_psize);
 109int mmu_virtual_psize = MMU_PAGE_4K;
 110int mmu_vmalloc_psize = MMU_PAGE_4K;
 111#ifdef CONFIG_SPARSEMEM_VMEMMAP
 112int mmu_vmemmap_psize = MMU_PAGE_4K;
 113#endif
 114int mmu_io_psize = MMU_PAGE_4K;
 115int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 116EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 117int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 118u16 mmu_slb_size = 64;
 119EXPORT_SYMBOL_GPL(mmu_slb_size);
 120#ifdef CONFIG_PPC_64K_PAGES
 121int mmu_ci_restrictions;
 122#endif
 123#ifdef CONFIG_DEBUG_PAGEALLOC
 124static u8 *linear_map_hash_slots;
 125static unsigned long linear_map_hash_count;
 126static DEFINE_SPINLOCK(linear_map_hash_lock);
 127#endif /* CONFIG_DEBUG_PAGEALLOC */
 128struct mmu_hash_ops mmu_hash_ops;
 129EXPORT_SYMBOL(mmu_hash_ops);
 130
 131/* There are definitions of page sizes arrays to be used when none
 132 * is provided by the firmware.
 133 */
 134
 135/*
 136 * Fallback (4k pages only)
 137 */
 138static struct mmu_psize_def mmu_psize_defaults[] = {
 139	[MMU_PAGE_4K] = {
 140		.shift	= 12,
 141		.sllp	= 0,
 142		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 143		.avpnm	= 0,
 144		.tlbiel = 0,
 145	},
 146};
 147
 148/* POWER4, GPUL, POWER5
 149 *
 150 * Support for 16Mb large pages
 151 */
 152static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 153	[MMU_PAGE_4K] = {
 154		.shift	= 12,
 155		.sllp	= 0,
 156		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 157		.avpnm	= 0,
 158		.tlbiel = 1,
 159	},
 160	[MMU_PAGE_16M] = {
 161		.shift	= 24,
 162		.sllp	= SLB_VSID_L,
 163		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 164			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 165		.avpnm	= 0x1UL,
 166		.tlbiel = 0,
 167	},
 168};
 169
 170/*
 171 * 'R' and 'C' update notes:
 172 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 173 *     create writeable HPTEs without C set, because the hcall H_PROTECT
 174 *     that we use in that case will not update C
 175 *  - The above is however not a problem, because we also don't do that
 176 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 177 *     do the right thing and thus we don't have the race I described earlier
 178 *
 179 *    - Under bare metal,  we do have the race, so we need R and C set
 180 *    - We make sure R is always set and never lost
 181 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 182 */
 183unsigned long htab_convert_pte_flags(unsigned long pteflags)
 184{
 185	unsigned long rflags = 0;
 186
 187	/* _PAGE_EXEC -> NOEXEC */
 188	if ((pteflags & _PAGE_EXEC) == 0)
 189		rflags |= HPTE_R_N;
 190	/*
 191	 * PPP bits:
 192	 * Linux uses slb key 0 for kernel and 1 for user.
 193	 * kernel RW areas are mapped with PPP=0b000
 194	 * User area is mapped with PPP=0b010 for read/write
 195	 * or PPP=0b011 for read-only (including writeable but clean pages).
 196	 */
 197	if (pteflags & _PAGE_PRIVILEGED) {
 198		/*
 199		 * Kernel read only mapped with ppp bits 0b110
 200		 */
 201		if (!(pteflags & _PAGE_WRITE)) {
 202			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 203				rflags |= (HPTE_R_PP0 | 0x2);
 204			else
 205				rflags |= 0x3;
 206		}
 207	} else {
 208		if (pteflags & _PAGE_RWX)
 209			rflags |= 0x2;
 210		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 211			rflags |= 0x1;
 212	}
 213	/*
 214	 * We can't allow hardware to update hpte bits. Hence always
 215	 * set 'R' bit and set 'C' if it is a write fault
 216	 */
 217	rflags |=  HPTE_R_R;
 218
 219	if (pteflags & _PAGE_DIRTY)
 220		rflags |= HPTE_R_C;
 221	/*
 222	 * Add in WIG bits
 223	 */
 224
 225	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 226		rflags |= HPTE_R_I;
 227	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 228		rflags |= (HPTE_R_I | HPTE_R_G);
 229	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 230		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 231	else
 232		/*
 233		 * Add memory coherence if cache inhibited is not set
 234		 */
 235		rflags |= HPTE_R_M;
 236
 237	rflags |= pte_to_hpte_pkey_bits(pteflags);
 238	return rflags;
 239}
 240
 241int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 242		      unsigned long pstart, unsigned long prot,
 243		      int psize, int ssize)
 244{
 245	unsigned long vaddr, paddr;
 246	unsigned int step, shift;
 247	int ret = 0;
 248
 249	shift = mmu_psize_defs[psize].shift;
 250	step = 1 << shift;
 251
 252	prot = htab_convert_pte_flags(prot);
 253
 254	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 255	    vstart, vend, pstart, prot, psize, ssize);
 256
 257	for (vaddr = vstart, paddr = pstart; vaddr < vend;
 258	     vaddr += step, paddr += step) {
 259		unsigned long hash, hpteg;
 260		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 261		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 262		unsigned long tprot = prot;
 263
 264		/*
 265		 * If we hit a bad address return error.
 266		 */
 267		if (!vsid)
 268			return -1;
 269		/* Make kernel text executable */
 270		if (overlaps_kernel_text(vaddr, vaddr + step))
 271			tprot &= ~HPTE_R_N;
 272
 273		/* Make kvm guest trampolines executable */
 274		if (overlaps_kvm_tmp(vaddr, vaddr + step))
 275			tprot &= ~HPTE_R_N;
 276
 277		/*
 278		 * If relocatable, check if it overlaps interrupt vectors that
 279		 * are copied down to real 0. For relocatable kernel
 280		 * (e.g. kdump case) we copy interrupt vectors down to real
 281		 * address 0. Mark that region as executable. This is
 282		 * because on p8 system with relocation on exception feature
 283		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 284		 * in order to execute the interrupt handlers in virtual
 285		 * mode the vector region need to be marked as executable.
 286		 */
 287		if ((PHYSICAL_START > MEMORY_START) &&
 288			overlaps_interrupt_vector_text(vaddr, vaddr + step))
 289				tprot &= ~HPTE_R_N;
 290
 291		hash = hpt_hash(vpn, shift, ssize);
 292		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 293
 294		BUG_ON(!mmu_hash_ops.hpte_insert);
 295		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 296					       HPTE_V_BOLTED, psize, psize,
 297					       ssize);
 298
 299		if (ret < 0)
 300			break;
 301
 302#ifdef CONFIG_DEBUG_PAGEALLOC
 303		if (debug_pagealloc_enabled() &&
 304			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
 305			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 306#endif /* CONFIG_DEBUG_PAGEALLOC */
 307	}
 308	return ret < 0 ? ret : 0;
 309}
 310
 311int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 312		      int psize, int ssize)
 313{
 314	unsigned long vaddr;
 315	unsigned int step, shift;
 316	int rc;
 317	int ret = 0;
 318
 319	shift = mmu_psize_defs[psize].shift;
 320	step = 1 << shift;
 321
 322	if (!mmu_hash_ops.hpte_removebolted)
 323		return -ENODEV;
 324
 325	for (vaddr = vstart; vaddr < vend; vaddr += step) {
 326		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 327		if (rc == -ENOENT) {
 328			ret = -ENOENT;
 329			continue;
 330		}
 331		if (rc < 0)
 332			return rc;
 333	}
 334
 335	return ret;
 336}
 337
 338static bool disable_1tb_segments = false;
 339
 340static int __init parse_disable_1tb_segments(char *p)
 341{
 342	disable_1tb_segments = true;
 343	return 0;
 344}
 345early_param("disable_1tb_segments", parse_disable_1tb_segments);
 346
 347static int __init htab_dt_scan_seg_sizes(unsigned long node,
 348					 const char *uname, int depth,
 349					 void *data)
 350{
 351	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 352	const __be32 *prop;
 353	int size = 0;
 354
 355	/* We are scanning "cpu" nodes only */
 356	if (type == NULL || strcmp(type, "cpu") != 0)
 357		return 0;
 358
 359	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 360	if (prop == NULL)
 361		return 0;
 362	for (; size >= 4; size -= 4, ++prop) {
 363		if (be32_to_cpu(prop[0]) == 40) {
 364			DBG("1T segment support detected\n");
 365
 366			if (disable_1tb_segments) {
 367				DBG("1T segments disabled by command line\n");
 368				break;
 369			}
 370
 371			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 372			return 1;
 373		}
 374	}
 375	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 376	return 0;
 377}
 378
 379static int __init get_idx_from_shift(unsigned int shift)
 380{
 381	int idx = -1;
 382
 383	switch (shift) {
 384	case 0xc:
 385		idx = MMU_PAGE_4K;
 386		break;
 387	case 0x10:
 388		idx = MMU_PAGE_64K;
 389		break;
 390	case 0x14:
 391		idx = MMU_PAGE_1M;
 392		break;
 393	case 0x18:
 394		idx = MMU_PAGE_16M;
 395		break;
 396	case 0x22:
 397		idx = MMU_PAGE_16G;
 398		break;
 399	}
 400	return idx;
 401}
 402
 403static int __init htab_dt_scan_page_sizes(unsigned long node,
 404					  const char *uname, int depth,
 405					  void *data)
 406{
 407	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 408	const __be32 *prop;
 409	int size = 0;
 410
 411	/* We are scanning "cpu" nodes only */
 412	if (type == NULL || strcmp(type, "cpu") != 0)
 413		return 0;
 414
 415	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 416	if (!prop)
 417		return 0;
 418
 419	pr_info("Page sizes from device-tree:\n");
 420	size /= 4;
 421	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 422	while(size > 0) {
 423		unsigned int base_shift = be32_to_cpu(prop[0]);
 424		unsigned int slbenc = be32_to_cpu(prop[1]);
 425		unsigned int lpnum = be32_to_cpu(prop[2]);
 426		struct mmu_psize_def *def;
 427		int idx, base_idx;
 428
 429		size -= 3; prop += 3;
 430		base_idx = get_idx_from_shift(base_shift);
 431		if (base_idx < 0) {
 432			/* skip the pte encoding also */
 433			prop += lpnum * 2; size -= lpnum * 2;
 434			continue;
 435		}
 436		def = &mmu_psize_defs[base_idx];
 437		if (base_idx == MMU_PAGE_16M)
 438			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 439
 440		def->shift = base_shift;
 441		if (base_shift <= 23)
 442			def->avpnm = 0;
 443		else
 444			def->avpnm = (1 << (base_shift - 23)) - 1;
 445		def->sllp = slbenc;
 446		/*
 447		 * We don't know for sure what's up with tlbiel, so
 448		 * for now we only set it for 4K and 64K pages
 449		 */
 450		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 451			def->tlbiel = 1;
 452		else
 453			def->tlbiel = 0;
 454
 455		while (size > 0 && lpnum) {
 456			unsigned int shift = be32_to_cpu(prop[0]);
 457			int penc  = be32_to_cpu(prop[1]);
 458
 459			prop += 2; size -= 2;
 460			lpnum--;
 461
 462			idx = get_idx_from_shift(shift);
 463			if (idx < 0)
 464				continue;
 465
 466			if (penc == -1)
 467				pr_err("Invalid penc for base_shift=%d "
 468				       "shift=%d\n", base_shift, shift);
 469
 470			def->penc[idx] = penc;
 471			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 472				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 473				base_shift, shift, def->sllp,
 474				def->avpnm, def->tlbiel, def->penc[idx]);
 475		}
 476	}
 477
 478	return 1;
 479}
 480
 481#ifdef CONFIG_HUGETLB_PAGE
 482/* Scan for 16G memory blocks that have been set aside for huge pages
 483 * and reserve those blocks for 16G huge pages.
 484 */
 485static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 486					const char *uname, int depth,
 487					void *data) {
 488	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 489	const __be64 *addr_prop;
 490	const __be32 *page_count_prop;
 491	unsigned int expected_pages;
 492	long unsigned int phys_addr;
 493	long unsigned int block_size;
 494
 495	/* We are scanning "memory" nodes only */
 496	if (type == NULL || strcmp(type, "memory") != 0)
 497		return 0;
 498
 499	/* This property is the log base 2 of the number of virtual pages that
 500	 * will represent this memory block. */
 501	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 502	if (page_count_prop == NULL)
 503		return 0;
 504	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 505	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 506	if (addr_prop == NULL)
 507		return 0;
 508	phys_addr = be64_to_cpu(addr_prop[0]);
 509	block_size = be64_to_cpu(addr_prop[1]);
 510	if (block_size != (16 * GB))
 511		return 0;
 512	printk(KERN_INFO "Huge page(16GB) memory: "
 513			"addr = 0x%lX size = 0x%lX pages = %d\n",
 514			phys_addr, block_size, expected_pages);
 515	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 516		memblock_reserve(phys_addr, block_size * expected_pages);
 517		pseries_add_gpage(phys_addr, block_size, expected_pages);
 518	}
 519	return 0;
 520}
 521#endif /* CONFIG_HUGETLB_PAGE */
 522
 523static void mmu_psize_set_default_penc(void)
 524{
 525	int bpsize, apsize;
 526	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 527		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 528			mmu_psize_defs[bpsize].penc[apsize] = -1;
 529}
 530
 531#ifdef CONFIG_PPC_64K_PAGES
 532
 533static bool might_have_hea(void)
 534{
 535	/*
 536	 * The HEA ethernet adapter requires awareness of the
 537	 * GX bus. Without that awareness we can easily assume
 538	 * we will never see an HEA ethernet device.
 539	 */
 540#ifdef CONFIG_IBMEBUS
 541	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 542		firmware_has_feature(FW_FEATURE_SPLPAR);
 543#else
 544	return false;
 545#endif
 546}
 547
 548#endif /* #ifdef CONFIG_PPC_64K_PAGES */
 549
 550static void __init htab_scan_page_sizes(void)
 551{
 552	int rc;
 553
 554	/* se the invalid penc to -1 */
 555	mmu_psize_set_default_penc();
 556
 557	/* Default to 4K pages only */
 558	memcpy(mmu_psize_defs, mmu_psize_defaults,
 559	       sizeof(mmu_psize_defaults));
 560
 561	/*
 562	 * Try to find the available page sizes in the device-tree
 563	 */
 564	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 565	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 566		/*
 567		 * Nothing in the device-tree, but the CPU supports 16M pages,
 568		 * so let's fallback on a known size list for 16M capable CPUs.
 569		 */
 570		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 571		       sizeof(mmu_psize_defaults_gp));
 572	}
 573
 574#ifdef CONFIG_HUGETLB_PAGE
 575	/* Reserve 16G huge page memory sections for huge pages */
 576	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 577#endif /* CONFIG_HUGETLB_PAGE */
 578}
 579
 580/*
 581 * Fill in the hpte_page_sizes[] array.
 582 * We go through the mmu_psize_defs[] array looking for all the
 583 * supported base/actual page size combinations.  Each combination
 584 * has a unique pagesize encoding (penc) value in the low bits of
 585 * the LP field of the HPTE.  For actual page sizes less than 1MB,
 586 * some of the upper LP bits are used for RPN bits, meaning that
 587 * we need to fill in several entries in hpte_page_sizes[].
 588 *
 589 * In diagrammatic form, with r = RPN bits and z = page size bits:
 590 *        PTE LP     actual page size
 591 *    rrrr rrrz		>=8KB
 592 *    rrrr rrzz		>=16KB
 593 *    rrrr rzzz		>=32KB
 594 *    rrrr zzzz		>=64KB
 595 *    ...
 596 *
 597 * The zzzz bits are implementation-specific but are chosen so that
 598 * no encoding for a larger page size uses the same value in its
 599 * low-order N bits as the encoding for the 2^(12+N) byte page size
 600 * (if it exists).
 601 */
 602static void init_hpte_page_sizes(void)
 603{
 604	long int ap, bp;
 605	long int shift, penc;
 606
 607	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 608		if (!mmu_psize_defs[bp].shift)
 609			continue;	/* not a supported page size */
 610		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 611			penc = mmu_psize_defs[bp].penc[ap];
 612			if (penc == -1 || !mmu_psize_defs[ap].shift)
 613				continue;
 614			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 615			if (shift <= 0)
 616				continue;	/* should never happen */
 617			/*
 618			 * For page sizes less than 1MB, this loop
 619			 * replicates the entry for all possible values
 620			 * of the rrrr bits.
 621			 */
 622			while (penc < (1 << LP_BITS)) {
 623				hpte_page_sizes[penc] = (ap << 4) | bp;
 624				penc += 1 << shift;
 625			}
 626		}
 627	}
 628}
 629
 630static void __init htab_init_page_sizes(void)
 631{
 632	init_hpte_page_sizes();
 633
 634	if (!debug_pagealloc_enabled()) {
 635		/*
 636		 * Pick a size for the linear mapping. Currently, we only
 637		 * support 16M, 1M and 4K which is the default
 638		 */
 639		if (mmu_psize_defs[MMU_PAGE_16M].shift)
 640			mmu_linear_psize = MMU_PAGE_16M;
 641		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 642			mmu_linear_psize = MMU_PAGE_1M;
 643	}
 644
 645#ifdef CONFIG_PPC_64K_PAGES
 646	/*
 647	 * Pick a size for the ordinary pages. Default is 4K, we support
 648	 * 64K for user mappings and vmalloc if supported by the processor.
 649	 * We only use 64k for ioremap if the processor
 650	 * (and firmware) support cache-inhibited large pages.
 651	 * If not, we use 4k and set mmu_ci_restrictions so that
 652	 * hash_page knows to switch processes that use cache-inhibited
 653	 * mappings to 4k pages.
 654	 */
 655	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 656		mmu_virtual_psize = MMU_PAGE_64K;
 657		mmu_vmalloc_psize = MMU_PAGE_64K;
 658		if (mmu_linear_psize == MMU_PAGE_4K)
 659			mmu_linear_psize = MMU_PAGE_64K;
 660		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 661			/*
 662			 * When running on pSeries using 64k pages for ioremap
 663			 * would stop us accessing the HEA ethernet. So if we
 664			 * have the chance of ever seeing one, stay at 4k.
 665			 */
 666			if (!might_have_hea())
 667				mmu_io_psize = MMU_PAGE_64K;
 668		} else
 669			mmu_ci_restrictions = 1;
 670	}
 671#endif /* CONFIG_PPC_64K_PAGES */
 672
 673#ifdef CONFIG_SPARSEMEM_VMEMMAP
 674	/* We try to use 16M pages for vmemmap if that is supported
 675	 * and we have at least 1G of RAM at boot
 676	 */
 677	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 678	    memblock_phys_mem_size() >= 0x40000000)
 679		mmu_vmemmap_psize = MMU_PAGE_16M;
 680	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 681		mmu_vmemmap_psize = MMU_PAGE_64K;
 682	else
 683		mmu_vmemmap_psize = MMU_PAGE_4K;
 684#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 685
 686	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 687	       "virtual = %d, io = %d"
 688#ifdef CONFIG_SPARSEMEM_VMEMMAP
 689	       ", vmemmap = %d"
 690#endif
 691	       "\n",
 692	       mmu_psize_defs[mmu_linear_psize].shift,
 693	       mmu_psize_defs[mmu_virtual_psize].shift,
 694	       mmu_psize_defs[mmu_io_psize].shift
 695#ifdef CONFIG_SPARSEMEM_VMEMMAP
 696	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
 697#endif
 698	       );
 699}
 700
 701static int __init htab_dt_scan_pftsize(unsigned long node,
 702				       const char *uname, int depth,
 703				       void *data)
 704{
 705	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 706	const __be32 *prop;
 707
 708	/* We are scanning "cpu" nodes only */
 709	if (type == NULL || strcmp(type, "cpu") != 0)
 710		return 0;
 711
 712	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 713	if (prop != NULL) {
 714		/* pft_size[0] is the NUMA CEC cookie */
 715		ppc64_pft_size = be32_to_cpu(prop[1]);
 716		return 1;
 717	}
 718	return 0;
 719}
 720
 721unsigned htab_shift_for_mem_size(unsigned long mem_size)
 722{
 723	unsigned memshift = __ilog2(mem_size);
 724	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 725	unsigned pteg_shift;
 726
 727	/* round mem_size up to next power of 2 */
 728	if ((1UL << memshift) < mem_size)
 729		memshift += 1;
 730
 731	/* aim for 2 pages / pteg */
 732	pteg_shift = memshift - (pshift + 1);
 733
 734	/*
 735	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 736	 * size permitted by the architecture.
 737	 */
 738	return max(pteg_shift + 7, 18U);
 739}
 740
 741static unsigned long __init htab_get_table_size(void)
 742{
 743	/* If hash size isn't already provided by the platform, we try to
 744	 * retrieve it from the device-tree. If it's not there neither, we
 745	 * calculate it now based on the total RAM size
 746	 */
 747	if (ppc64_pft_size == 0)
 748		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 749	if (ppc64_pft_size)
 750		return 1UL << ppc64_pft_size;
 751
 752	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 753}
 754
 755#ifdef CONFIG_MEMORY_HOTPLUG
 756void resize_hpt_for_hotplug(unsigned long new_mem_size)
 757{
 758	unsigned target_hpt_shift;
 759
 760	if (!mmu_hash_ops.resize_hpt)
 761		return;
 762
 763	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 764
 765	/*
 766	 * To avoid lots of HPT resizes if memory size is fluctuating
 767	 * across a boundary, we deliberately have some hysterisis
 768	 * here: we immediately increase the HPT size if the target
 769	 * shift exceeds the current shift, but we won't attempt to
 770	 * reduce unless the target shift is at least 2 below the
 771	 * current shift
 772	 */
 773	if ((target_hpt_shift > ppc64_pft_size)
 774	    || (target_hpt_shift < (ppc64_pft_size - 1))) {
 775		int rc;
 776
 777		rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
 778		if (rc && (rc != -ENODEV))
 779			printk(KERN_WARNING
 780			       "Unable to resize hash page table to target order %d: %d\n",
 781			       target_hpt_shift, rc);
 782	}
 783}
 784
 785int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 786{
 787	int rc = htab_bolt_mapping(start, end, __pa(start),
 788				   pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 789				   mmu_kernel_ssize);
 790
 791	if (rc < 0) {
 792		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 793					      mmu_kernel_ssize);
 794		BUG_ON(rc2 && (rc2 != -ENOENT));
 795	}
 796	return rc;
 797}
 798
 799int hash__remove_section_mapping(unsigned long start, unsigned long end)
 800{
 801	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 802				     mmu_kernel_ssize);
 803	WARN_ON(rc < 0);
 804	return rc;
 805}
 806#endif /* CONFIG_MEMORY_HOTPLUG */
 807
 808static void update_hid_for_hash(void)
 809{
 810	unsigned long hid0;
 811	unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
 812
 813	asm volatile("ptesync": : :"memory");
 814	/* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
 815	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 816		     : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
 817	asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
 818	trace_tlbie(0, 0, rb, 0, 2, 0, 0);
 819
 820	/*
 821	 * now switch the HID
 822	 */
 823	hid0  = mfspr(SPRN_HID0);
 824	hid0 &= ~HID0_POWER9_RADIX;
 825	mtspr(SPRN_HID0, hid0);
 826	asm volatile("isync": : :"memory");
 827
 828	/* Wait for it to happen */
 829	while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
 830		cpu_relax();
 831}
 832
 833static void __init hash_init_partition_table(phys_addr_t hash_table,
 834					     unsigned long htab_size)
 835{
 836	mmu_partition_table_init();
 837
 838	/*
 839	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 840	 * For now, UPRT is 0 and we have no segment table.
 841	 */
 842	htab_size =  __ilog2(htab_size) - 18;
 843	mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
 844	pr_info("Partition table %p\n", partition_tb);
 845	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
 846		update_hid_for_hash();
 847}
 848
 849static void __init htab_initialize(void)
 850{
 851	unsigned long table;
 852	unsigned long pteg_count;
 853	unsigned long prot;
 854	unsigned long base = 0, size = 0;
 855	struct memblock_region *reg;
 856
 857	DBG(" -> htab_initialize()\n");
 858
 859	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 860		mmu_kernel_ssize = MMU_SEGSIZE_1T;
 861		mmu_highuser_ssize = MMU_SEGSIZE_1T;
 862		printk(KERN_INFO "Using 1TB segments\n");
 863	}
 864
 865	/*
 866	 * Calculate the required size of the htab.  We want the number of
 867	 * PTEGs to equal one half the number of real pages.
 868	 */ 
 869	htab_size_bytes = htab_get_table_size();
 870	pteg_count = htab_size_bytes >> 7;
 871
 872	htab_hash_mask = pteg_count - 1;
 873
 874	if (firmware_has_feature(FW_FEATURE_LPAR) ||
 875	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 876		/* Using a hypervisor which owns the htab */
 877		htab_address = NULL;
 878		_SDR1 = 0; 
 879		/*
 880		 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
 881		 * to inform the hypervisor that we wish to use the HPT.
 882		 */
 883		if (cpu_has_feature(CPU_FTR_ARCH_300))
 884			register_process_table(0, 0, 0);
 885#ifdef CONFIG_FA_DUMP
 886		/*
 887		 * If firmware assisted dump is active firmware preserves
 888		 * the contents of htab along with entire partition memory.
 889		 * Clear the htab if firmware assisted dump is active so
 890		 * that we dont end up using old mappings.
 891		 */
 892		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 893			mmu_hash_ops.hpte_clear_all();
 894#endif
 895	} else {
 896		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 897
 898#ifdef CONFIG_PPC_CELL
 899		/*
 900		 * Cell may require the hash table down low when using the
 901		 * Axon IOMMU in order to fit the dynamic region over it, see
 902		 * comments in cell/iommu.c
 903		 */
 904		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 905			limit = 0x80000000;
 906			pr_info("Hash table forced below 2G for Axon IOMMU\n");
 907		}
 908#endif /* CONFIG_PPC_CELL */
 909
 910		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
 911					    limit);
 912
 913		DBG("Hash table allocated at %lx, size: %lx\n", table,
 914		    htab_size_bytes);
 915
 916		htab_address = __va(table);
 917
 918		/* htab absolute addr + encoded htabsize */
 919		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
 920
 921		/* Initialize the HPT with no entries */
 922		memset((void *)table, 0, htab_size_bytes);
 923
 924		if (!cpu_has_feature(CPU_FTR_ARCH_300))
 925			/* Set SDR1 */
 926			mtspr(SPRN_SDR1, _SDR1);
 927		else
 928			hash_init_partition_table(table, htab_size_bytes);
 929	}
 930
 931	prot = pgprot_val(PAGE_KERNEL);
 932
 933#ifdef CONFIG_DEBUG_PAGEALLOC
 934	if (debug_pagealloc_enabled()) {
 935		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 936		linear_map_hash_slots = __va(memblock_alloc_base(
 937				linear_map_hash_count, 1, ppc64_rma_size));
 938		memset(linear_map_hash_slots, 0, linear_map_hash_count);
 939	}
 940#endif /* CONFIG_DEBUG_PAGEALLOC */
 941
 942	/* create bolted the linear mapping in the hash table */
 943	for_each_memblock(memory, reg) {
 944		base = (unsigned long)__va(reg->base);
 945		size = reg->size;
 946
 947		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 948		    base, size, prot);
 949
 950		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 951				prot, mmu_linear_psize, mmu_kernel_ssize));
 952	}
 953	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 954
 955	/*
 956	 * If we have a memory_limit and we've allocated TCEs then we need to
 957	 * explicitly map the TCE area at the top of RAM. We also cope with the
 958	 * case that the TCEs start below memory_limit.
 959	 * tce_alloc_start/end are 16MB aligned so the mapping should work
 960	 * for either 4K or 16MB pages.
 961	 */
 962	if (tce_alloc_start) {
 963		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 964		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 965
 966		if (base + size >= tce_alloc_start)
 967			tce_alloc_start = base + size + 1;
 968
 969		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 970					 __pa(tce_alloc_start), prot,
 971					 mmu_linear_psize, mmu_kernel_ssize));
 972	}
 973
 974
 975	DBG(" <- htab_initialize()\n");
 976}
 977#undef KB
 978#undef MB
 979
 980void __init hash__early_init_devtree(void)
 981{
 982	/* Initialize segment sizes */
 983	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 984
 985	/* Initialize page sizes */
 986	htab_scan_page_sizes();
 987}
 988
 989void __init hash__early_init_mmu(void)
 990{
 991#ifndef CONFIG_PPC_64K_PAGES
 992	/*
 993	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
 994	 * do the following:
 995	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 996	 *
 997	 * Where the slot number is between 0-15, and values of 8-15 indicate
 998	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 999	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1000	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1001	 * with a BUILD_BUG_ON().
1002	 */
1003	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1004#endif /* CONFIG_PPC_64K_PAGES */
1005
1006	htab_init_page_sizes();
1007
1008	/*
1009	 * initialize page table size
1010	 */
1011	__pte_frag_nr = H_PTE_FRAG_NR;
1012	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1013
1014	__pte_index_size = H_PTE_INDEX_SIZE;
1015	__pmd_index_size = H_PMD_INDEX_SIZE;
1016	__pud_index_size = H_PUD_INDEX_SIZE;
1017	__pgd_index_size = H_PGD_INDEX_SIZE;
1018	__pud_cache_index = H_PUD_CACHE_INDEX;
1019	__pmd_cache_index = H_PMD_CACHE_INDEX;
1020	__pte_table_size = H_PTE_TABLE_SIZE;
1021	__pmd_table_size = H_PMD_TABLE_SIZE;
1022	__pud_table_size = H_PUD_TABLE_SIZE;
1023	__pgd_table_size = H_PGD_TABLE_SIZE;
1024	/*
1025	 * 4k use hugepd format, so for hash set then to
1026	 * zero
1027	 */
1028	__pmd_val_bits = 0;
1029	__pud_val_bits = 0;
1030	__pgd_val_bits = 0;
1031
1032	__kernel_virt_start = H_KERN_VIRT_START;
1033	__kernel_virt_size = H_KERN_VIRT_SIZE;
1034	__vmalloc_start = H_VMALLOC_START;
1035	__vmalloc_end = H_VMALLOC_END;
1036	__kernel_io_start = H_KERN_IO_START;
1037	vmemmap = (struct page *)H_VMEMMAP_BASE;
1038	ioremap_bot = IOREMAP_BASE;
1039
1040#ifdef CONFIG_PCI
1041	pci_io_base = ISA_IO_BASE;
1042#endif
1043
1044	/* Select appropriate backend */
1045	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1046		ps3_early_mm_init();
1047	else if (firmware_has_feature(FW_FEATURE_LPAR))
1048		hpte_init_pseries();
1049	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1050		hpte_init_native();
1051
1052	if (!mmu_hash_ops.hpte_insert)
1053		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1054
1055	/* Initialize the MMU Hash table and create the linear mapping
1056	 * of memory. Has to be done before SLB initialization as this is
1057	 * currently where the page size encoding is obtained.
1058	 */
1059	htab_initialize();
1060
1061	pr_info("Initializing hash mmu with SLB\n");
1062	/* Initialize SLB management */
1063	slb_initialize();
1064
1065	if (cpu_has_feature(CPU_FTR_ARCH_206)
1066			&& cpu_has_feature(CPU_FTR_HVMODE))
1067		tlbiel_all();
1068}
1069
1070#ifdef CONFIG_SMP
1071void hash__early_init_mmu_secondary(void)
1072{
1073	/* Initialize hash table for that CPU */
1074	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1075
1076		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1077			update_hid_for_hash();
1078
1079		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1080			mtspr(SPRN_SDR1, _SDR1);
1081		else
1082			mtspr(SPRN_PTCR,
1083			      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1084	}
1085	/* Initialize SLB */
1086	slb_initialize();
1087
1088	if (cpu_has_feature(CPU_FTR_ARCH_206)
1089			&& cpu_has_feature(CPU_FTR_HVMODE))
1090		tlbiel_all();
1091}
1092#endif /* CONFIG_SMP */
1093
1094/*
1095 * Called by asm hashtable.S for doing lazy icache flush
1096 */
1097unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1098{
1099	struct page *page;
1100
1101	if (!pfn_valid(pte_pfn(pte)))
1102		return pp;
1103
1104	page = pte_page(pte);
1105
1106	/* page is dirty */
1107	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1108		if (trap == 0x400) {
1109			flush_dcache_icache_page(page);
1110			set_bit(PG_arch_1, &page->flags);
1111		} else
1112			pp |= HPTE_R_N;
1113	}
1114	return pp;
1115}
1116
1117#ifdef CONFIG_PPC_MM_SLICES
1118static unsigned int get_paca_psize(unsigned long addr)
1119{
1120	unsigned char *psizes;
1121	unsigned long index, mask_index;
1122
1123	if (addr < SLICE_LOW_TOP) {
1124		psizes = get_paca()->mm_ctx_low_slices_psize;
1125		index = GET_LOW_SLICE_INDEX(addr);
1126	} else {
1127		psizes = get_paca()->mm_ctx_high_slices_psize;
1128		index = GET_HIGH_SLICE_INDEX(addr);
1129	}
1130	mask_index = index & 0x1;
1131	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1132}
1133
1134#else
1135unsigned int get_paca_psize(unsigned long addr)
1136{
1137	return get_paca()->mm_ctx_user_psize;
1138}
1139#endif
1140
1141/*
1142 * Demote a segment to using 4k pages.
1143 * For now this makes the whole process use 4k pages.
1144 */
1145#ifdef CONFIG_PPC_64K_PAGES
1146void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1147{
1148	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1149		return;
1150	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1151	copro_flush_all_slbs(mm);
1152	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1153
1154		copy_mm_to_paca(mm);
1155		slb_flush_and_rebolt();
1156	}
1157}
1158#endif /* CONFIG_PPC_64K_PAGES */
1159
1160#ifdef CONFIG_PPC_SUBPAGE_PROT
1161/*
1162 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1163 * Userspace sets the subpage permissions using the subpage_prot system call.
1164 *
1165 * Result is 0: full permissions, _PAGE_RW: read-only,
1166 * _PAGE_RWX: no access.
1167 */
1168static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1169{
1170	struct subpage_prot_table *spt = &mm->context.spt;
1171	u32 spp = 0;
1172	u32 **sbpm, *sbpp;
1173
1174	if (ea >= spt->maxaddr)
1175		return 0;
1176	if (ea < 0x100000000UL) {
1177		/* addresses below 4GB use spt->low_prot */
1178		sbpm = spt->low_prot;
1179	} else {
1180		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1181		if (!sbpm)
1182			return 0;
1183	}
1184	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1185	if (!sbpp)
1186		return 0;
1187	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1188
1189	/* extract 2-bit bitfield for this 4k subpage */
1190	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1191
1192	/*
1193	 * 0 -> full premission
1194	 * 1 -> Read only
1195	 * 2 -> no access.
1196	 * We return the flag that need to be cleared.
1197	 */
1198	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1199	return spp;
1200}
1201
1202#else /* CONFIG_PPC_SUBPAGE_PROT */
1203static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1204{
1205	return 0;
1206}
1207#endif
1208
1209void hash_failure_debug(unsigned long ea, unsigned long access,
1210			unsigned long vsid, unsigned long trap,
1211			int ssize, int psize, int lpsize, unsigned long pte)
1212{
1213	if (!printk_ratelimit())
1214		return;
1215	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1216		ea, access, current->comm);
1217	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1218		trap, vsid, ssize, psize, lpsize, pte);
1219}
1220
1221static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1222			     int psize, bool user_region)
1223{
1224	if (user_region) {
1225		if (psize != get_paca_psize(ea)) {
1226			copy_mm_to_paca(mm);
1227			slb_flush_and_rebolt();
1228		}
1229	} else if (get_paca()->vmalloc_sllp !=
1230		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1231		get_paca()->vmalloc_sllp =
1232			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1233		slb_vmalloc_update();
1234	}
1235}
1236
1237/* Result code is:
1238 *  0 - handled
1239 *  1 - normal page fault
1240 * -1 - critical hash insertion error
1241 * -2 - access not permitted by subpage protection mechanism
1242 */
1243int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1244		 unsigned long access, unsigned long trap,
1245		 unsigned long flags)
1246{
1247	bool is_thp;
1248	enum ctx_state prev_state = exception_enter();
1249	pgd_t *pgdir;
1250	unsigned long vsid;
1251	pte_t *ptep;
1252	unsigned hugeshift;
1253	int rc, user_region = 0;
1254	int psize, ssize;
1255
1256	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1257		ea, access, trap);
1258	trace_hash_fault(ea, access, trap);
1259
1260	/* Get region & vsid */
1261 	switch (REGION_ID(ea)) {
1262	case USER_REGION_ID:
1263		user_region = 1;
1264		if (! mm) {
1265			DBG_LOW(" user region with no mm !\n");
1266			rc = 1;
1267			goto bail;
1268		}
1269		psize = get_slice_psize(mm, ea);
1270		ssize = user_segment_size(ea);
1271		vsid = get_user_vsid(&mm->context, ea, ssize);
1272		break;
1273	case VMALLOC_REGION_ID:
1274		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1275		if (ea < VMALLOC_END)
1276			psize = mmu_vmalloc_psize;
1277		else
1278			psize = mmu_io_psize;
1279		ssize = mmu_kernel_ssize;
1280		break;
1281	default:
1282		/* Not a valid range
1283		 * Send the problem up to do_page_fault 
1284		 */
1285		rc = 1;
1286		goto bail;
1287	}
1288	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1289
1290	/* Bad address. */
1291	if (!vsid) {
1292		DBG_LOW("Bad address!\n");
1293		rc = 1;
1294		goto bail;
1295	}
1296	/* Get pgdir */
1297	pgdir = mm->pgd;
1298	if (pgdir == NULL) {
1299		rc = 1;
1300		goto bail;
1301	}
1302
1303	/* Check CPU locality */
1304	if (user_region && mm_is_thread_local(mm))
1305		flags |= HPTE_LOCAL_UPDATE;
1306
1307#ifndef CONFIG_PPC_64K_PAGES
1308	/* If we use 4K pages and our psize is not 4K, then we might
1309	 * be hitting a special driver mapping, and need to align the
1310	 * address before we fetch the PTE.
1311	 *
1312	 * It could also be a hugepage mapping, in which case this is
1313	 * not necessary, but it's not harmful, either.
1314	 */
1315	if (psize != MMU_PAGE_4K)
1316		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1317#endif /* CONFIG_PPC_64K_PAGES */
1318
1319	/* Get PTE and page size from page tables */
1320	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1321	if (ptep == NULL || !pte_present(*ptep)) {
1322		DBG_LOW(" no PTE !\n");
1323		rc = 1;
1324		goto bail;
1325	}
1326
1327	/* Add _PAGE_PRESENT to the required access perm */
1328	access |= _PAGE_PRESENT;
1329
1330	/* Pre-check access permissions (will be re-checked atomically
1331	 * in __hash_page_XX but this pre-check is a fast path
1332	 */
1333	if (!check_pte_access(access, pte_val(*ptep))) {
1334		DBG_LOW(" no access !\n");
1335		rc = 1;
1336		goto bail;
1337	}
1338
1339	if (hugeshift) {
1340		if (is_thp)
1341			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1342					     trap, flags, ssize, psize);
1343#ifdef CONFIG_HUGETLB_PAGE
1344		else
1345			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1346					      flags, ssize, hugeshift, psize);
1347#else
1348		else {
1349			/*
1350			 * if we have hugeshift, and is not transhuge with
1351			 * hugetlb disabled, something is really wrong.
1352			 */
1353			rc = 1;
1354			WARN_ON(1);
1355		}
1356#endif
1357		if (current->mm == mm)
1358			check_paca_psize(ea, mm, psize, user_region);
1359
1360		goto bail;
1361	}
1362
1363#ifndef CONFIG_PPC_64K_PAGES
1364	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1365#else
1366	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1367		pte_val(*(ptep + PTRS_PER_PTE)));
1368#endif
1369	/* Do actual hashing */
1370#ifdef CONFIG_PPC_64K_PAGES
1371	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1372	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1373		demote_segment_4k(mm, ea);
1374		psize = MMU_PAGE_4K;
1375	}
1376
1377	/* If this PTE is non-cacheable and we have restrictions on
1378	 * using non cacheable large pages, then we switch to 4k
1379	 */
1380	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1381		if (user_region) {
1382			demote_segment_4k(mm, ea);
1383			psize = MMU_PAGE_4K;
1384		} else if (ea < VMALLOC_END) {
1385			/*
1386			 * some driver did a non-cacheable mapping
1387			 * in vmalloc space, so switch vmalloc
1388			 * to 4k pages
1389			 */
1390			printk(KERN_ALERT "Reducing vmalloc segment "
1391			       "to 4kB pages because of "
1392			       "non-cacheable mapping\n");
1393			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1394			copro_flush_all_slbs(mm);
1395		}
1396	}
1397
1398#endif /* CONFIG_PPC_64K_PAGES */
1399
1400	if (current->mm == mm)
1401		check_paca_psize(ea, mm, psize, user_region);
1402
1403#ifdef CONFIG_PPC_64K_PAGES
1404	if (psize == MMU_PAGE_64K)
1405		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1406				     flags, ssize);
1407	else
1408#endif /* CONFIG_PPC_64K_PAGES */
1409	{
1410		int spp = subpage_protection(mm, ea);
1411		if (access & spp)
1412			rc = -2;
1413		else
1414			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1415					    flags, ssize, spp);
1416	}
1417
1418	/* Dump some info in case of hash insertion failure, they should
1419	 * never happen so it is really useful to know if/when they do
1420	 */
1421	if (rc == -1)
1422		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1423				   psize, pte_val(*ptep));
1424#ifndef CONFIG_PPC_64K_PAGES
1425	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1426#else
1427	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1428		pte_val(*(ptep + PTRS_PER_PTE)));
1429#endif
1430	DBG_LOW(" -> rc=%d\n", rc);
1431
1432bail:
1433	exception_exit(prev_state);
1434	return rc;
1435}
1436EXPORT_SYMBOL_GPL(hash_page_mm);
1437
1438int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1439	      unsigned long dsisr)
1440{
1441	unsigned long flags = 0;
1442	struct mm_struct *mm = current->mm;
1443
1444	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1445		mm = &init_mm;
1446
1447	if (dsisr & DSISR_NOHPTE)
1448		flags |= HPTE_NOHPTE_UPDATE;
1449
1450	return hash_page_mm(mm, ea, access, trap, flags);
1451}
1452EXPORT_SYMBOL_GPL(hash_page);
1453
1454int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1455		unsigned long dsisr)
1456{
1457	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1458	unsigned long flags = 0;
1459	struct mm_struct *mm = current->mm;
1460
1461	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1462		mm = &init_mm;
1463
1464	if (dsisr & DSISR_NOHPTE)
1465		flags |= HPTE_NOHPTE_UPDATE;
1466
1467	if (dsisr & DSISR_ISSTORE)
1468		access |= _PAGE_WRITE;
1469	/*
1470	 * We set _PAGE_PRIVILEGED only when
1471	 * kernel mode access kernel space.
1472	 *
1473	 * _PAGE_PRIVILEGED is NOT set
1474	 * 1) when kernel mode access user space
1475	 * 2) user space access kernel space.
1476	 */
1477	access |= _PAGE_PRIVILEGED;
1478	if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1479		access &= ~_PAGE_PRIVILEGED;
1480
1481	if (trap == 0x400)
1482		access |= _PAGE_EXEC;
1483
1484	return hash_page_mm(mm, ea, access, trap, flags);
1485}
1486
1487#ifdef CONFIG_PPC_MM_SLICES
1488static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1489{
1490	int psize = get_slice_psize(mm, ea);
1491
1492	/* We only prefault standard pages for now */
1493	if (unlikely(psize != mm->context.user_psize))
1494		return false;
1495
1496	/*
1497	 * Don't prefault if subpage protection is enabled for the EA.
1498	 */
1499	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1500		return false;
1501
1502	return true;
1503}
1504#else
1505static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1506{
1507	return true;
1508}
1509#endif
1510
1511void hash_preload(struct mm_struct *mm, unsigned long ea,
1512		  unsigned long access, unsigned long trap)
1513{
1514	int hugepage_shift;
1515	unsigned long vsid;
1516	pgd_t *pgdir;
1517	pte_t *ptep;
1518	unsigned long flags;
1519	int rc, ssize, update_flags = 0;
1520
1521	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1522
1523	if (!should_hash_preload(mm, ea))
1524		return;
1525
1526	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1527		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1528
1529	/* Get Linux PTE if available */
1530	pgdir = mm->pgd;
1531	if (pgdir == NULL)
1532		return;
1533
1534	/* Get VSID */
1535	ssize = user_segment_size(ea);
1536	vsid = get_user_vsid(&mm->context, ea, ssize);
1537	if (!vsid)
1538		return;
1539	/*
1540	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1541	 * saves us from holding multiple locks.
1542	 */
1543	local_irq_save(flags);
1544
1545	/*
1546	 * THP pages use update_mmu_cache_pmd. We don't do
1547	 * hash preload there. Hence can ignore THP here
1548	 */
1549	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1550	if (!ptep)
1551		goto out_exit;
1552
1553	WARN_ON(hugepage_shift);
1554#ifdef CONFIG_PPC_64K_PAGES
1555	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1556	 * a 64K kernel), then we don't preload, hash_page() will take
1557	 * care of it once we actually try to access the page.
1558	 * That way we don't have to duplicate all of the logic for segment
1559	 * page size demotion here
1560	 */
1561	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1562		goto out_exit;
1563#endif /* CONFIG_PPC_64K_PAGES */
1564
1565	/* Is that local to this CPU ? */
1566	if (mm_is_thread_local(mm))
1567		update_flags |= HPTE_LOCAL_UPDATE;
1568
1569	/* Hash it in */
1570#ifdef CONFIG_PPC_64K_PAGES
1571	if (mm->context.user_psize == MMU_PAGE_64K)
1572		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1573				     update_flags, ssize);
1574	else
1575#endif /* CONFIG_PPC_64K_PAGES */
1576		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1577				    ssize, subpage_protection(mm, ea));
1578
1579	/* Dump some info in case of hash insertion failure, they should
1580	 * never happen so it is really useful to know if/when they do
1581	 */
1582	if (rc == -1)
1583		hash_failure_debug(ea, access, vsid, trap, ssize,
1584				   mm->context.user_psize,
1585				   mm->context.user_psize,
1586				   pte_val(*ptep));
1587out_exit:
1588	local_irq_restore(flags);
1589}
1590
1591#ifdef CONFIG_PPC_MEM_KEYS
1592/*
1593 * Return the protection key associated with the given address and the
1594 * mm_struct.
1595 */
1596u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1597{
1598	pte_t *ptep;
1599	u16 pkey = 0;
1600	unsigned long flags;
1601
1602	if (!mm || !mm->pgd)
1603		return 0;
1604
1605	local_irq_save(flags);
1606	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1607	if (ptep)
1608		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1609	local_irq_restore(flags);
1610
1611	return pkey;
1612}
1613#endif /* CONFIG_PPC_MEM_KEYS */
1614
1615#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1616static inline void tm_flush_hash_page(int local)
1617{
1618	/*
1619	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1620	 * page back to a block device w/PIO could pick up transactional data
1621	 * (bad!) so we force an abort here. Before the sync the page will be
1622	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1623	 * kernel uses a page from userspace without unmapping it first, it may
1624	 * see the speculated version.
1625	 */
1626	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1627	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1628		tm_enable();
1629		tm_abort(TM_CAUSE_TLBI);
1630	}
1631}
1632#else
1633static inline void tm_flush_hash_page(int local)
1634{
1635}
1636#endif
1637
1638/*
1639 * Return the global hash slot, corresponding to the given PTE, which contains
1640 * the HPTE.
1641 */
1642unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1643		int ssize, real_pte_t rpte, unsigned int subpg_index)
1644{
1645	unsigned long hash, gslot, hidx;
1646
1647	hash = hpt_hash(vpn, shift, ssize);
1648	hidx = __rpte_to_hidx(rpte, subpg_index);
1649	if (hidx & _PTEIDX_SECONDARY)
1650		hash = ~hash;
1651	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1652	gslot += hidx & _PTEIDX_GROUP_IX;
1653	return gslot;
1654}
1655
1656/* WARNING: This is called from hash_low_64.S, if you change this prototype,
1657 *          do not forget to update the assembly call site !
1658 */
1659void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1660		     unsigned long flags)
1661{
1662	unsigned long index, shift, gslot;
1663	int local = flags & HPTE_LOCAL_UPDATE;
1664
1665	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1666	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1667		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1668		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1669		/*
1670		 * We use same base page size and actual psize, because we don't
1671		 * use these functions for hugepage
1672		 */
1673		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1674					     ssize, local);
1675	} pte_iterate_hashed_end();
1676
1677	tm_flush_hash_page(local);
1678}
1679
1680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1681void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1682			 pmd_t *pmdp, unsigned int psize, int ssize,
1683			 unsigned long flags)
1684{
1685	int i, max_hpte_count, valid;
1686	unsigned long s_addr;
1687	unsigned char *hpte_slot_array;
1688	unsigned long hidx, shift, vpn, hash, slot;
1689	int local = flags & HPTE_LOCAL_UPDATE;
1690
1691	s_addr = addr & HPAGE_PMD_MASK;
1692	hpte_slot_array = get_hpte_slot_array(pmdp);
1693	/*
1694	 * IF we try to do a HUGE PTE update after a withdraw is done.
1695	 * we will find the below NULL. This happens when we do
1696	 * split_huge_page_pmd
1697	 */
1698	if (!hpte_slot_array)
1699		return;
1700
1701	if (mmu_hash_ops.hugepage_invalidate) {
1702		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1703						 psize, ssize, local);
1704		goto tm_abort;
1705	}
1706	/*
1707	 * No bluk hpte removal support, invalidate each entry
1708	 */
1709	shift = mmu_psize_defs[psize].shift;
1710	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1711	for (i = 0; i < max_hpte_count; i++) {
1712		/*
1713		 * 8 bits per each hpte entries
1714		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1715		 */
1716		valid = hpte_valid(hpte_slot_array, i);
1717		if (!valid)
1718			continue;
1719		hidx =  hpte_hash_index(hpte_slot_array, i);
1720
1721		/* get the vpn */
1722		addr = s_addr + (i * (1ul << shift));
1723		vpn = hpt_vpn(addr, vsid, ssize);
1724		hash = hpt_hash(vpn, shift, ssize);
1725		if (hidx & _PTEIDX_SECONDARY)
1726			hash = ~hash;
1727
1728		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1729		slot += hidx & _PTEIDX_GROUP_IX;
1730		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1731					     MMU_PAGE_16M, ssize, local);
1732	}
1733tm_abort:
1734	tm_flush_hash_page(local);
1735}
1736#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1737
1738void flush_hash_range(unsigned long number, int local)
1739{
1740	if (mmu_hash_ops.flush_hash_range)
1741		mmu_hash_ops.flush_hash_range(number, local);
1742	else {
1743		int i;
1744		struct ppc64_tlb_batch *batch =
1745			this_cpu_ptr(&ppc64_tlb_batch);
1746
1747		for (i = 0; i < number; i++)
1748			flush_hash_page(batch->vpn[i], batch->pte[i],
1749					batch->psize, batch->ssize, local);
1750	}
1751}
1752
1753/*
1754 * low_hash_fault is called when we the low level hash code failed
1755 * to instert a PTE due to an hypervisor error
1756 */
1757void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1758{
1759	enum ctx_state prev_state = exception_enter();
1760
1761	if (user_mode(regs)) {
1762#ifdef CONFIG_PPC_SUBPAGE_PROT
1763		if (rc == -2)
1764			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1765		else
1766#endif
1767			_exception(SIGBUS, regs, BUS_ADRERR, address);
1768	} else
1769		bad_page_fault(regs, address, SIGBUS);
1770
1771	exception_exit(prev_state);
1772}
1773
1774long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1775			   unsigned long pa, unsigned long rflags,
1776			   unsigned long vflags, int psize, int ssize)
1777{
1778	unsigned long hpte_group;
1779	long slot;
1780
1781repeat:
1782	hpte_group = ((hash & htab_hash_mask) *
1783		       HPTES_PER_GROUP) & ~0x7UL;
1784
1785	/* Insert into the hash table, primary slot */
1786	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1787					psize, psize, ssize);
1788
1789	/* Primary is full, try the secondary */
1790	if (unlikely(slot == -1)) {
1791		hpte_group = ((~hash & htab_hash_mask) *
1792			      HPTES_PER_GROUP) & ~0x7UL;
1793		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1794						vflags | HPTE_V_SECONDARY,
1795						psize, psize, ssize);
1796		if (slot == -1) {
1797			if (mftb() & 0x1)
1798				hpte_group = ((hash & htab_hash_mask) *
1799					      HPTES_PER_GROUP)&~0x7UL;
1800
1801			mmu_hash_ops.hpte_remove(hpte_group);
1802			goto repeat;
1803		}
1804	}
1805
1806	return slot;
1807}
1808
1809#ifdef CONFIG_DEBUG_PAGEALLOC
1810static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1811{
1812	unsigned long hash;
1813	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1814	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1815	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1816	long ret;
1817
1818	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1819
1820	/* Don't create HPTE entries for bad address */
1821	if (!vsid)
1822		return;
1823
1824	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1825				    HPTE_V_BOLTED,
1826				    mmu_linear_psize, mmu_kernel_ssize);
1827
1828	BUG_ON (ret < 0);
1829	spin_lock(&linear_map_hash_lock);
1830	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1831	linear_map_hash_slots[lmi] = ret | 0x80;
1832	spin_unlock(&linear_map_hash_lock);
1833}
1834
1835static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1836{
1837	unsigned long hash, hidx, slot;
1838	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1839	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1840
1841	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1842	spin_lock(&linear_map_hash_lock);
1843	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1844	hidx = linear_map_hash_slots[lmi] & 0x7f;
1845	linear_map_hash_slots[lmi] = 0;
1846	spin_unlock(&linear_map_hash_lock);
1847	if (hidx & _PTEIDX_SECONDARY)
1848		hash = ~hash;
1849	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1850	slot += hidx & _PTEIDX_GROUP_IX;
1851	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1852				     mmu_linear_psize,
1853				     mmu_kernel_ssize, 0);
1854}
1855
1856void __kernel_map_pages(struct page *page, int numpages, int enable)
1857{
1858	unsigned long flags, vaddr, lmi;
1859	int i;
1860
1861	local_irq_save(flags);
1862	for (i = 0; i < numpages; i++, page++) {
1863		vaddr = (unsigned long)page_address(page);
1864		lmi = __pa(vaddr) >> PAGE_SHIFT;
1865		if (lmi >= linear_map_hash_count)
1866			continue;
1867		if (enable)
1868			kernel_map_linear_page(vaddr, lmi);
1869		else
1870			kernel_unmap_linear_page(vaddr, lmi);
1871	}
1872	local_irq_restore(flags);
1873}
1874#endif /* CONFIG_DEBUG_PAGEALLOC */
1875
1876void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1877				phys_addr_t first_memblock_size)
1878{
1879	/* We don't currently support the first MEMBLOCK not mapping 0
1880	 * physical on those processors
1881	 */
1882	BUG_ON(first_memblock_base != 0);
1883
1884	/*
1885	 * On virtualized systems the first entry is our RMA region aka VRMA,
1886	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1887	 * on real mode access.
1888	 *
1889	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1890	 * to avoid some funky things such as RTAS bugs etc...
1891	 */
1892	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1893		ppc64_rma_size = first_memblock_size;
1894		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1895			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1896
1897		/* Finally limit subsequent allocations */
1898		memblock_set_current_limit(ppc64_rma_size);
1899	} else {
1900		ppc64_rma_size = ULONG_MAX;
1901	}
1902}
1903
1904#ifdef CONFIG_DEBUG_FS
1905
1906static int hpt_order_get(void *data, u64 *val)
1907{
1908	*val = ppc64_pft_size;
1909	return 0;
1910}
1911
1912static int hpt_order_set(void *data, u64 val)
1913{
1914	if (!mmu_hash_ops.resize_hpt)
1915		return -ENODEV;
1916
1917	return mmu_hash_ops.resize_hpt(val);
1918}
1919
1920DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1921
1922static int __init hash64_debugfs(void)
1923{
1924	if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1925				 NULL, &fops_hpt_order)) {
1926		pr_err("lpar: unable to create hpt_order debugsfs file\n");
1927	}
1928
1929	return 0;
1930}
1931machine_device_initcall(pseries, hash64_debugfs);
1932#endif /* CONFIG_DEBUG_FS */