Linux Audio

Check our new training course

Loading...
   1/*
   2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   3 *   {mikejc|engebret}@us.ibm.com
   4 *
   5 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   6 *
   7 * SMP scalability work:
   8 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
   9 * 
  10 *    Module name: htab.c
  11 *
  12 *    Description:
  13 *      PowerPC Hashed Page Table functions
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 */
  20
  21#undef DEBUG
  22#undef DEBUG_LOW
  23
  24#include <linux/spinlock.h>
  25#include <linux/errno.h>
  26#include <linux/sched.h>
  27#include <linux/proc_fs.h>
  28#include <linux/stat.h>
  29#include <linux/sysctl.h>
  30#include <linux/export.h>
  31#include <linux/ctype.h>
  32#include <linux/cache.h>
  33#include <linux/init.h>
  34#include <linux/signal.h>
  35#include <linux/memblock.h>
  36
  37#include <asm/processor.h>
  38#include <asm/pgtable.h>
  39#include <asm/mmu.h>
  40#include <asm/mmu_context.h>
  41#include <asm/page.h>
  42#include <asm/types.h>
  43#include <asm/uaccess.h>
  44#include <asm/machdep.h>
  45#include <asm/prom.h>
  46#include <asm/abs_addr.h>
  47#include <asm/tlbflush.h>
  48#include <asm/io.h>
  49#include <asm/eeh.h>
  50#include <asm/tlb.h>
  51#include <asm/cacheflush.h>
  52#include <asm/cputable.h>
  53#include <asm/sections.h>
  54#include <asm/spu.h>
  55#include <asm/udbg.h>
  56#include <asm/code-patching.h>
  57#include <asm/fadump.h>
  58#include <asm/firmware.h>
  59
  60#ifdef DEBUG
  61#define DBG(fmt...) udbg_printf(fmt)
  62#else
  63#define DBG(fmt...)
  64#endif
  65
  66#ifdef DEBUG_LOW
  67#define DBG_LOW(fmt...) udbg_printf(fmt)
  68#else
  69#define DBG_LOW(fmt...)
  70#endif
  71
  72#define KB (1024)
  73#define MB (1024*KB)
  74#define GB (1024L*MB)
  75
  76/*
  77 * Note:  pte   --> Linux PTE
  78 *        HPTE  --> PowerPC Hashed Page Table Entry
  79 *
  80 * Execution context:
  81 *   htab_initialize is called with the MMU off (of course), but
  82 *   the kernel has been copied down to zero so it can directly
  83 *   reference global data.  At this point it is very difficult
  84 *   to print debug info.
  85 *
  86 */
  87
  88#ifdef CONFIG_U3_DART
  89extern unsigned long dart_tablebase;
  90#endif /* CONFIG_U3_DART */
  91
  92static unsigned long _SDR1;
  93struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  94
  95struct hash_pte *htab_address;
  96unsigned long htab_size_bytes;
  97unsigned long htab_hash_mask;
  98EXPORT_SYMBOL_GPL(htab_hash_mask);
  99int mmu_linear_psize = MMU_PAGE_4K;
 100int mmu_virtual_psize = MMU_PAGE_4K;
 101int mmu_vmalloc_psize = MMU_PAGE_4K;
 102#ifdef CONFIG_SPARSEMEM_VMEMMAP
 103int mmu_vmemmap_psize = MMU_PAGE_4K;
 104#endif
 105int mmu_io_psize = MMU_PAGE_4K;
 106int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 107int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 108u16 mmu_slb_size = 64;
 109EXPORT_SYMBOL_GPL(mmu_slb_size);
 110#ifdef CONFIG_PPC_64K_PAGES
 111int mmu_ci_restrictions;
 112#endif
 113#ifdef CONFIG_DEBUG_PAGEALLOC
 114static u8 *linear_map_hash_slots;
 115static unsigned long linear_map_hash_count;
 116static DEFINE_SPINLOCK(linear_map_hash_lock);
 117#endif /* CONFIG_DEBUG_PAGEALLOC */
 118
 119/* There are definitions of page sizes arrays to be used when none
 120 * is provided by the firmware.
 121 */
 122
 123/* Pre-POWER4 CPUs (4k pages only)
 124 */
 125static struct mmu_psize_def mmu_psize_defaults_old[] = {
 126	[MMU_PAGE_4K] = {
 127		.shift	= 12,
 128		.sllp	= 0,
 129		.penc	= 0,
 130		.avpnm	= 0,
 131		.tlbiel = 0,
 132	},
 133};
 134
 135/* POWER4, GPUL, POWER5
 136 *
 137 * Support for 16Mb large pages
 138 */
 139static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 140	[MMU_PAGE_4K] = {
 141		.shift	= 12,
 142		.sllp	= 0,
 143		.penc	= 0,
 144		.avpnm	= 0,
 145		.tlbiel = 1,
 146	},
 147	[MMU_PAGE_16M] = {
 148		.shift	= 24,
 149		.sllp	= SLB_VSID_L,
 150		.penc	= 0,
 151		.avpnm	= 0x1UL,
 152		.tlbiel = 0,
 153	},
 154};
 155
 156static unsigned long htab_convert_pte_flags(unsigned long pteflags)
 157{
 158	unsigned long rflags = pteflags & 0x1fa;
 159
 160	/* _PAGE_EXEC -> NOEXEC */
 161	if ((pteflags & _PAGE_EXEC) == 0)
 162		rflags |= HPTE_R_N;
 163
 164	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
 165	 * need to add in 0x1 if it's a read-only user page
 166	 */
 167	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
 168					 (pteflags & _PAGE_DIRTY)))
 169		rflags |= 1;
 170
 171	/* Always add C */
 172	return rflags | HPTE_R_C;
 173}
 174
 175int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 176		      unsigned long pstart, unsigned long prot,
 177		      int psize, int ssize)
 178{
 179	unsigned long vaddr, paddr;
 180	unsigned int step, shift;
 181	int ret = 0;
 182
 183	shift = mmu_psize_defs[psize].shift;
 184	step = 1 << shift;
 185
 186	prot = htab_convert_pte_flags(prot);
 187
 188	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 189	    vstart, vend, pstart, prot, psize, ssize);
 190
 191	for (vaddr = vstart, paddr = pstart; vaddr < vend;
 192	     vaddr += step, paddr += step) {
 193		unsigned long hash, hpteg;
 194		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 195		unsigned long va = hpt_va(vaddr, vsid, ssize);
 196		unsigned long tprot = prot;
 197
 198		/* Make kernel text executable */
 199		if (overlaps_kernel_text(vaddr, vaddr + step))
 200			tprot &= ~HPTE_R_N;
 201
 202		hash = hpt_hash(va, shift, ssize);
 203		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 204
 205		BUG_ON(!ppc_md.hpte_insert);
 206		ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
 207					 HPTE_V_BOLTED, psize, ssize);
 208
 209		if (ret < 0)
 210			break;
 211#ifdef CONFIG_DEBUG_PAGEALLOC
 212		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
 213			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 214#endif /* CONFIG_DEBUG_PAGEALLOC */
 215	}
 216	return ret < 0 ? ret : 0;
 217}
 218
 219#ifdef CONFIG_MEMORY_HOTPLUG
 220static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 221		      int psize, int ssize)
 222{
 223	unsigned long vaddr;
 224	unsigned int step, shift;
 225
 226	shift = mmu_psize_defs[psize].shift;
 227	step = 1 << shift;
 228
 229	if (!ppc_md.hpte_removebolted) {
 230		printk(KERN_WARNING "Platform doesn't implement "
 231				"hpte_removebolted\n");
 232		return -EINVAL;
 233	}
 234
 235	for (vaddr = vstart; vaddr < vend; vaddr += step)
 236		ppc_md.hpte_removebolted(vaddr, psize, ssize);
 237
 238	return 0;
 239}
 240#endif /* CONFIG_MEMORY_HOTPLUG */
 241
 242static int __init htab_dt_scan_seg_sizes(unsigned long node,
 243					 const char *uname, int depth,
 244					 void *data)
 245{
 246	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 247	u32 *prop;
 248	unsigned long size = 0;
 249
 250	/* We are scanning "cpu" nodes only */
 251	if (type == NULL || strcmp(type, "cpu") != 0)
 252		return 0;
 253
 254	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
 255					  &size);
 256	if (prop == NULL)
 257		return 0;
 258	for (; size >= 4; size -= 4, ++prop) {
 259		if (prop[0] == 40) {
 260			DBG("1T segment support detected\n");
 261			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 262			return 1;
 263		}
 264	}
 265	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 266	return 0;
 267}
 268
 269static void __init htab_init_seg_sizes(void)
 270{
 271	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 272}
 273
 274static int __init htab_dt_scan_page_sizes(unsigned long node,
 275					  const char *uname, int depth,
 276					  void *data)
 277{
 278	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 279	u32 *prop;
 280	unsigned long size = 0;
 281
 282	/* We are scanning "cpu" nodes only */
 283	if (type == NULL || strcmp(type, "cpu") != 0)
 284		return 0;
 285
 286	prop = (u32 *)of_get_flat_dt_prop(node,
 287					  "ibm,segment-page-sizes", &size);
 288	if (prop != NULL) {
 289		DBG("Page sizes from device-tree:\n");
 290		size /= 4;
 291		cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 292		while(size > 0) {
 293			unsigned int shift = prop[0];
 294			unsigned int slbenc = prop[1];
 295			unsigned int lpnum = prop[2];
 296			unsigned int lpenc = 0;
 297			struct mmu_psize_def *def;
 298			int idx = -1;
 299
 300			size -= 3; prop += 3;
 301			while(size > 0 && lpnum) {
 302				if (prop[0] == shift)
 303					lpenc = prop[1];
 304				prop += 2; size -= 2;
 305				lpnum--;
 306			}
 307			switch(shift) {
 308			case 0xc:
 309				idx = MMU_PAGE_4K;
 310				break;
 311			case 0x10:
 312				idx = MMU_PAGE_64K;
 313				break;
 314			case 0x14:
 315				idx = MMU_PAGE_1M;
 316				break;
 317			case 0x18:
 318				idx = MMU_PAGE_16M;
 319				cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 320				break;
 321			case 0x22:
 322				idx = MMU_PAGE_16G;
 323				break;
 324			}
 325			if (idx < 0)
 326				continue;
 327			def = &mmu_psize_defs[idx];
 328			def->shift = shift;
 329			if (shift <= 23)
 330				def->avpnm = 0;
 331			else
 332				def->avpnm = (1 << (shift - 23)) - 1;
 333			def->sllp = slbenc;
 334			def->penc = lpenc;
 335			/* We don't know for sure what's up with tlbiel, so
 336			 * for now we only set it for 4K and 64K pages
 337			 */
 338			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
 339				def->tlbiel = 1;
 340			else
 341				def->tlbiel = 0;
 342
 343			DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
 344			    "tlbiel=%d, penc=%d\n",
 345			    idx, shift, def->sllp, def->avpnm, def->tlbiel,
 346			    def->penc);
 347		}
 348		return 1;
 349	}
 350	return 0;
 351}
 352
 353#ifdef CONFIG_HUGETLB_PAGE
 354/* Scan for 16G memory blocks that have been set aside for huge pages
 355 * and reserve those blocks for 16G huge pages.
 356 */
 357static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 358					const char *uname, int depth,
 359					void *data) {
 360	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 361	unsigned long *addr_prop;
 362	u32 *page_count_prop;
 363	unsigned int expected_pages;
 364	long unsigned int phys_addr;
 365	long unsigned int block_size;
 366
 367	/* We are scanning "memory" nodes only */
 368	if (type == NULL || strcmp(type, "memory") != 0)
 369		return 0;
 370
 371	/* This property is the log base 2 of the number of virtual pages that
 372	 * will represent this memory block. */
 373	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 374	if (page_count_prop == NULL)
 375		return 0;
 376	expected_pages = (1 << page_count_prop[0]);
 377	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 378	if (addr_prop == NULL)
 379		return 0;
 380	phys_addr = addr_prop[0];
 381	block_size = addr_prop[1];
 382	if (block_size != (16 * GB))
 383		return 0;
 384	printk(KERN_INFO "Huge page(16GB) memory: "
 385			"addr = 0x%lX size = 0x%lX pages = %d\n",
 386			phys_addr, block_size, expected_pages);
 387	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
 388		memblock_reserve(phys_addr, block_size * expected_pages);
 389		add_gpage(phys_addr, block_size, expected_pages);
 390	}
 391	return 0;
 392}
 393#endif /* CONFIG_HUGETLB_PAGE */
 394
 395static void __init htab_init_page_sizes(void)
 396{
 397	int rc;
 398
 399	/* Default to 4K pages only */
 400	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
 401	       sizeof(mmu_psize_defaults_old));
 402
 403	/*
 404	 * Try to find the available page sizes in the device-tree
 405	 */
 406	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 407	if (rc != 0)  /* Found */
 408		goto found;
 409
 410	/*
 411	 * Not in the device-tree, let's fallback on known size
 412	 * list for 16M capable GP & GR
 413	 */
 414	if (mmu_has_feature(MMU_FTR_16M_PAGE))
 415		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 416		       sizeof(mmu_psize_defaults_gp));
 417 found:
 418#ifndef CONFIG_DEBUG_PAGEALLOC
 419	/*
 420	 * Pick a size for the linear mapping. Currently, we only support
 421	 * 16M, 1M and 4K which is the default
 422	 */
 423	if (mmu_psize_defs[MMU_PAGE_16M].shift)
 424		mmu_linear_psize = MMU_PAGE_16M;
 425	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 426		mmu_linear_psize = MMU_PAGE_1M;
 427#endif /* CONFIG_DEBUG_PAGEALLOC */
 428
 429#ifdef CONFIG_PPC_64K_PAGES
 430	/*
 431	 * Pick a size for the ordinary pages. Default is 4K, we support
 432	 * 64K for user mappings and vmalloc if supported by the processor.
 433	 * We only use 64k for ioremap if the processor
 434	 * (and firmware) support cache-inhibited large pages.
 435	 * If not, we use 4k and set mmu_ci_restrictions so that
 436	 * hash_page knows to switch processes that use cache-inhibited
 437	 * mappings to 4k pages.
 438	 */
 439	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 440		mmu_virtual_psize = MMU_PAGE_64K;
 441		mmu_vmalloc_psize = MMU_PAGE_64K;
 442		if (mmu_linear_psize == MMU_PAGE_4K)
 443			mmu_linear_psize = MMU_PAGE_64K;
 444		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 445			/*
 446			 * Don't use 64k pages for ioremap on pSeries, since
 447			 * that would stop us accessing the HEA ethernet.
 448			 */
 449			if (!machine_is(pseries))
 450				mmu_io_psize = MMU_PAGE_64K;
 451		} else
 452			mmu_ci_restrictions = 1;
 453	}
 454#endif /* CONFIG_PPC_64K_PAGES */
 455
 456#ifdef CONFIG_SPARSEMEM_VMEMMAP
 457	/* We try to use 16M pages for vmemmap if that is supported
 458	 * and we have at least 1G of RAM at boot
 459	 */
 460	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 461	    memblock_phys_mem_size() >= 0x40000000)
 462		mmu_vmemmap_psize = MMU_PAGE_16M;
 463	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
 464		mmu_vmemmap_psize = MMU_PAGE_64K;
 465	else
 466		mmu_vmemmap_psize = MMU_PAGE_4K;
 467#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 468
 469	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 470	       "virtual = %d, io = %d"
 471#ifdef CONFIG_SPARSEMEM_VMEMMAP
 472	       ", vmemmap = %d"
 473#endif
 474	       "\n",
 475	       mmu_psize_defs[mmu_linear_psize].shift,
 476	       mmu_psize_defs[mmu_virtual_psize].shift,
 477	       mmu_psize_defs[mmu_io_psize].shift
 478#ifdef CONFIG_SPARSEMEM_VMEMMAP
 479	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
 480#endif
 481	       );
 482
 483#ifdef CONFIG_HUGETLB_PAGE
 484	/* Reserve 16G huge page memory sections for huge pages */
 485	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 486#endif /* CONFIG_HUGETLB_PAGE */
 487}
 488
 489static int __init htab_dt_scan_pftsize(unsigned long node,
 490				       const char *uname, int depth,
 491				       void *data)
 492{
 493	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 494	u32 *prop;
 495
 496	/* We are scanning "cpu" nodes only */
 497	if (type == NULL || strcmp(type, "cpu") != 0)
 498		return 0;
 499
 500	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 501	if (prop != NULL) {
 502		/* pft_size[0] is the NUMA CEC cookie */
 503		ppc64_pft_size = prop[1];
 504		return 1;
 505	}
 506	return 0;
 507}
 508
 509static unsigned long __init htab_get_table_size(void)
 510{
 511	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
 512
 513	/* If hash size isn't already provided by the platform, we try to
 514	 * retrieve it from the device-tree. If it's not there neither, we
 515	 * calculate it now based on the total RAM size
 516	 */
 517	if (ppc64_pft_size == 0)
 518		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 519	if (ppc64_pft_size)
 520		return 1UL << ppc64_pft_size;
 521
 522	/* round mem_size up to next power of 2 */
 523	mem_size = memblock_phys_mem_size();
 524	rnd_mem_size = 1UL << __ilog2(mem_size);
 525	if (rnd_mem_size < mem_size)
 526		rnd_mem_size <<= 1;
 527
 528	/* # pages / 2 */
 529	psize = mmu_psize_defs[mmu_virtual_psize].shift;
 530	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
 531
 532	return pteg_count << 7;
 533}
 534
 535#ifdef CONFIG_MEMORY_HOTPLUG
 536int create_section_mapping(unsigned long start, unsigned long end)
 537{
 538	return htab_bolt_mapping(start, end, __pa(start),
 539				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 540				 mmu_kernel_ssize);
 541}
 542
 543int remove_section_mapping(unsigned long start, unsigned long end)
 544{
 545	return htab_remove_mapping(start, end, mmu_linear_psize,
 546			mmu_kernel_ssize);
 547}
 548#endif /* CONFIG_MEMORY_HOTPLUG */
 549
 550#define FUNCTION_TEXT(A)	((*(unsigned long *)(A)))
 551
 552static void __init htab_finish_init(void)
 553{
 554	extern unsigned int *htab_call_hpte_insert1;
 555	extern unsigned int *htab_call_hpte_insert2;
 556	extern unsigned int *htab_call_hpte_remove;
 557	extern unsigned int *htab_call_hpte_updatepp;
 558
 559#ifdef CONFIG_PPC_HAS_HASH_64K
 560	extern unsigned int *ht64_call_hpte_insert1;
 561	extern unsigned int *ht64_call_hpte_insert2;
 562	extern unsigned int *ht64_call_hpte_remove;
 563	extern unsigned int *ht64_call_hpte_updatepp;
 564
 565	patch_branch(ht64_call_hpte_insert1,
 566		FUNCTION_TEXT(ppc_md.hpte_insert),
 567		BRANCH_SET_LINK);
 568	patch_branch(ht64_call_hpte_insert2,
 569		FUNCTION_TEXT(ppc_md.hpte_insert),
 570		BRANCH_SET_LINK);
 571	patch_branch(ht64_call_hpte_remove,
 572		FUNCTION_TEXT(ppc_md.hpte_remove),
 573		BRANCH_SET_LINK);
 574	patch_branch(ht64_call_hpte_updatepp,
 575		FUNCTION_TEXT(ppc_md.hpte_updatepp),
 576		BRANCH_SET_LINK);
 577
 578#endif /* CONFIG_PPC_HAS_HASH_64K */
 579
 580	patch_branch(htab_call_hpte_insert1,
 581		FUNCTION_TEXT(ppc_md.hpte_insert),
 582		BRANCH_SET_LINK);
 583	patch_branch(htab_call_hpte_insert2,
 584		FUNCTION_TEXT(ppc_md.hpte_insert),
 585		BRANCH_SET_LINK);
 586	patch_branch(htab_call_hpte_remove,
 587		FUNCTION_TEXT(ppc_md.hpte_remove),
 588		BRANCH_SET_LINK);
 589	patch_branch(htab_call_hpte_updatepp,
 590		FUNCTION_TEXT(ppc_md.hpte_updatepp),
 591		BRANCH_SET_LINK);
 592}
 593
 594static void __init htab_initialize(void)
 595{
 596	unsigned long table;
 597	unsigned long pteg_count;
 598	unsigned long prot;
 599	unsigned long base = 0, size = 0, limit;
 600	struct memblock_region *reg;
 601
 602	DBG(" -> htab_initialize()\n");
 603
 604	/* Initialize segment sizes */
 605	htab_init_seg_sizes();
 606
 607	/* Initialize page sizes */
 608	htab_init_page_sizes();
 609
 610	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 611		mmu_kernel_ssize = MMU_SEGSIZE_1T;
 612		mmu_highuser_ssize = MMU_SEGSIZE_1T;
 613		printk(KERN_INFO "Using 1TB segments\n");
 614	}
 615
 616	/*
 617	 * Calculate the required size of the htab.  We want the number of
 618	 * PTEGs to equal one half the number of real pages.
 619	 */ 
 620	htab_size_bytes = htab_get_table_size();
 621	pteg_count = htab_size_bytes >> 7;
 622
 623	htab_hash_mask = pteg_count - 1;
 624
 625	if (firmware_has_feature(FW_FEATURE_LPAR)) {
 626		/* Using a hypervisor which owns the htab */
 627		htab_address = NULL;
 628		_SDR1 = 0; 
 629#ifdef CONFIG_FA_DUMP
 630		/*
 631		 * If firmware assisted dump is active firmware preserves
 632		 * the contents of htab along with entire partition memory.
 633		 * Clear the htab if firmware assisted dump is active so
 634		 * that we dont end up using old mappings.
 635		 */
 636		if (is_fadump_active() && ppc_md.hpte_clear_all)
 637			ppc_md.hpte_clear_all();
 638#endif
 639	} else {
 640		/* Find storage for the HPT.  Must be contiguous in
 641		 * the absolute address space. On cell we want it to be
 642		 * in the first 2 Gig so we can use it for IOMMU hacks.
 643		 */
 644		if (machine_is(cell))
 645			limit = 0x80000000;
 646		else
 647			limit = MEMBLOCK_ALLOC_ANYWHERE;
 648
 649		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
 650
 651		DBG("Hash table allocated at %lx, size: %lx\n", table,
 652		    htab_size_bytes);
 653
 654		htab_address = abs_to_virt(table);
 655
 656		/* htab absolute addr + encoded htabsize */
 657		_SDR1 = table + __ilog2(pteg_count) - 11;
 658
 659		/* Initialize the HPT with no entries */
 660		memset((void *)table, 0, htab_size_bytes);
 661
 662		/* Set SDR1 */
 663		mtspr(SPRN_SDR1, _SDR1);
 664	}
 665
 666	prot = pgprot_val(PAGE_KERNEL);
 667
 668#ifdef CONFIG_DEBUG_PAGEALLOC
 669	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 670	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
 671						    1, ppc64_rma_size));
 672	memset(linear_map_hash_slots, 0, linear_map_hash_count);
 673#endif /* CONFIG_DEBUG_PAGEALLOC */
 674
 675	/* On U3 based machines, we need to reserve the DART area and
 676	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
 677	 * cacheable later on
 678	 */
 679
 680	/* create bolted the linear mapping in the hash table */
 681	for_each_memblock(memory, reg) {
 682		base = (unsigned long)__va(reg->base);
 683		size = reg->size;
 684
 685		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 686		    base, size, prot);
 687
 688#ifdef CONFIG_U3_DART
 689		/* Do not map the DART space. Fortunately, it will be aligned
 690		 * in such a way that it will not cross two memblock regions and
 691		 * will fit within a single 16Mb page.
 692		 * The DART space is assumed to be a full 16Mb region even if
 693		 * we only use 2Mb of that space. We will use more of it later
 694		 * for AGP GART. We have to use a full 16Mb large page.
 695		 */
 696		DBG("DART base: %lx\n", dart_tablebase);
 697
 698		if (dart_tablebase != 0 && dart_tablebase >= base
 699		    && dart_tablebase < (base + size)) {
 700			unsigned long dart_table_end = dart_tablebase + 16 * MB;
 701			if (base != dart_tablebase)
 702				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
 703							__pa(base), prot,
 704							mmu_linear_psize,
 705							mmu_kernel_ssize));
 706			if ((base + size) > dart_table_end)
 707				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
 708							base + size,
 709							__pa(dart_table_end),
 710							 prot,
 711							 mmu_linear_psize,
 712							 mmu_kernel_ssize));
 713			continue;
 714		}
 715#endif /* CONFIG_U3_DART */
 716		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 717				prot, mmu_linear_psize, mmu_kernel_ssize));
 718	}
 719	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 720
 721	/*
 722	 * If we have a memory_limit and we've allocated TCEs then we need to
 723	 * explicitly map the TCE area at the top of RAM. We also cope with the
 724	 * case that the TCEs start below memory_limit.
 725	 * tce_alloc_start/end are 16MB aligned so the mapping should work
 726	 * for either 4K or 16MB pages.
 727	 */
 728	if (tce_alloc_start) {
 729		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 730		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 731
 732		if (base + size >= tce_alloc_start)
 733			tce_alloc_start = base + size + 1;
 734
 735		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 736					 __pa(tce_alloc_start), prot,
 737					 mmu_linear_psize, mmu_kernel_ssize));
 738	}
 739
 740	htab_finish_init();
 741
 742	DBG(" <- htab_initialize()\n");
 743}
 744#undef KB
 745#undef MB
 746
 747void __init early_init_mmu(void)
 748{
 749	/* Setup initial STAB address in the PACA */
 750	get_paca()->stab_real = __pa((u64)&initial_stab);
 751	get_paca()->stab_addr = (u64)&initial_stab;
 752
 753	/* Initialize the MMU Hash table and create the linear mapping
 754	 * of memory. Has to be done before stab/slb initialization as
 755	 * this is currently where the page size encoding is obtained
 756	 */
 757	htab_initialize();
 758
 759	/* Initialize stab / SLB management */
 760	if (mmu_has_feature(MMU_FTR_SLB))
 761		slb_initialize();
 762}
 763
 764#ifdef CONFIG_SMP
 765void __cpuinit early_init_mmu_secondary(void)
 766{
 767	/* Initialize hash table for that CPU */
 768	if (!firmware_has_feature(FW_FEATURE_LPAR))
 769		mtspr(SPRN_SDR1, _SDR1);
 770
 771	/* Initialize STAB/SLB. We use a virtual address as it works
 772	 * in real mode on pSeries.
 773	 */
 774	if (mmu_has_feature(MMU_FTR_SLB))
 775		slb_initialize();
 776	else
 777		stab_initialize(get_paca()->stab_addr);
 778}
 779#endif /* CONFIG_SMP */
 780
 781/*
 782 * Called by asm hashtable.S for doing lazy icache flush
 783 */
 784unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
 785{
 786	struct page *page;
 787
 788	if (!pfn_valid(pte_pfn(pte)))
 789		return pp;
 790
 791	page = pte_page(pte);
 792
 793	/* page is dirty */
 794	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 795		if (trap == 0x400) {
 796			flush_dcache_icache_page(page);
 797			set_bit(PG_arch_1, &page->flags);
 798		} else
 799			pp |= HPTE_R_N;
 800	}
 801	return pp;
 802}
 803
 804#ifdef CONFIG_PPC_MM_SLICES
 805unsigned int get_paca_psize(unsigned long addr)
 806{
 807	unsigned long index, slices;
 808
 809	if (addr < SLICE_LOW_TOP) {
 810		slices = get_paca()->context.low_slices_psize;
 811		index = GET_LOW_SLICE_INDEX(addr);
 812	} else {
 813		slices = get_paca()->context.high_slices_psize;
 814		index = GET_HIGH_SLICE_INDEX(addr);
 815	}
 816	return (slices >> (index * 4)) & 0xF;
 817}
 818
 819#else
 820unsigned int get_paca_psize(unsigned long addr)
 821{
 822	return get_paca()->context.user_psize;
 823}
 824#endif
 825
 826/*
 827 * Demote a segment to using 4k pages.
 828 * For now this makes the whole process use 4k pages.
 829 */
 830#ifdef CONFIG_PPC_64K_PAGES
 831void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
 832{
 833	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
 834		return;
 835	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
 836#ifdef CONFIG_SPU_BASE
 837	spu_flush_all_slbs(mm);
 838#endif
 839	if (get_paca_psize(addr) != MMU_PAGE_4K) {
 840		get_paca()->context = mm->context;
 841		slb_flush_and_rebolt();
 842	}
 843}
 844#endif /* CONFIG_PPC_64K_PAGES */
 845
 846#ifdef CONFIG_PPC_SUBPAGE_PROT
 847/*
 848 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
 849 * Userspace sets the subpage permissions using the subpage_prot system call.
 850 *
 851 * Result is 0: full permissions, _PAGE_RW: read-only,
 852 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
 853 */
 854static int subpage_protection(struct mm_struct *mm, unsigned long ea)
 855{
 856	struct subpage_prot_table *spt = &mm->context.spt;
 857	u32 spp = 0;
 858	u32 **sbpm, *sbpp;
 859
 860	if (ea >= spt->maxaddr)
 861		return 0;
 862	if (ea < 0x100000000) {
 863		/* addresses below 4GB use spt->low_prot */
 864		sbpm = spt->low_prot;
 865	} else {
 866		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
 867		if (!sbpm)
 868			return 0;
 869	}
 870	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
 871	if (!sbpp)
 872		return 0;
 873	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
 874
 875	/* extract 2-bit bitfield for this 4k subpage */
 876	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
 877
 878	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
 879	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
 880	return spp;
 881}
 882
 883#else /* CONFIG_PPC_SUBPAGE_PROT */
 884static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
 885{
 886	return 0;
 887}
 888#endif
 889
 890void hash_failure_debug(unsigned long ea, unsigned long access,
 891			unsigned long vsid, unsigned long trap,
 892			int ssize, int psize, unsigned long pte)
 893{
 894	if (!printk_ratelimit())
 895		return;
 896	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
 897		ea, access, current->comm);
 898	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
 899		trap, vsid, ssize, psize, pte);
 900}
 901
 902/* Result code is:
 903 *  0 - handled
 904 *  1 - normal page fault
 905 * -1 - critical hash insertion error
 906 * -2 - access not permitted by subpage protection mechanism
 907 */
 908int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
 909{
 910	pgd_t *pgdir;
 911	unsigned long vsid;
 912	struct mm_struct *mm;
 913	pte_t *ptep;
 914	unsigned hugeshift;
 915	const struct cpumask *tmp;
 916	int rc, user_region = 0, local = 0;
 917	int psize, ssize;
 918
 919	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
 920		ea, access, trap);
 921
 922	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
 923		DBG_LOW(" out of pgtable range !\n");
 924 		return 1;
 925	}
 926
 927	/* Get region & vsid */
 928 	switch (REGION_ID(ea)) {
 929	case USER_REGION_ID:
 930		user_region = 1;
 931		mm = current->mm;
 932		if (! mm) {
 933			DBG_LOW(" user region with no mm !\n");
 934			return 1;
 935		}
 936		psize = get_slice_psize(mm, ea);
 937		ssize = user_segment_size(ea);
 938		vsid = get_vsid(mm->context.id, ea, ssize);
 939		break;
 940	case VMALLOC_REGION_ID:
 941		mm = &init_mm;
 942		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
 943		if (ea < VMALLOC_END)
 944			psize = mmu_vmalloc_psize;
 945		else
 946			psize = mmu_io_psize;
 947		ssize = mmu_kernel_ssize;
 948		break;
 949	default:
 950		/* Not a valid range
 951		 * Send the problem up to do_page_fault 
 952		 */
 953		return 1;
 954	}
 955	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
 956
 957	/* Get pgdir */
 958	pgdir = mm->pgd;
 959	if (pgdir == NULL)
 960		return 1;
 961
 962	/* Check CPU locality */
 963	tmp = cpumask_of(smp_processor_id());
 964	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
 965		local = 1;
 966
 967#ifndef CONFIG_PPC_64K_PAGES
 968	/* If we use 4K pages and our psize is not 4K, then we might
 969	 * be hitting a special driver mapping, and need to align the
 970	 * address before we fetch the PTE.
 971	 *
 972	 * It could also be a hugepage mapping, in which case this is
 973	 * not necessary, but it's not harmful, either.
 974	 */
 975	if (psize != MMU_PAGE_4K)
 976		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
 977#endif /* CONFIG_PPC_64K_PAGES */
 978
 979	/* Get PTE and page size from page tables */
 980	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
 981	if (ptep == NULL || !pte_present(*ptep)) {
 982		DBG_LOW(" no PTE !\n");
 983		return 1;
 984	}
 985
 986	/* Add _PAGE_PRESENT to the required access perm */
 987	access |= _PAGE_PRESENT;
 988
 989	/* Pre-check access permissions (will be re-checked atomically
 990	 * in __hash_page_XX but this pre-check is a fast path
 991	 */
 992	if (access & ~pte_val(*ptep)) {
 993		DBG_LOW(" no access !\n");
 994		return 1;
 995	}
 996
 997#ifdef CONFIG_HUGETLB_PAGE
 998	if (hugeshift)
 999		return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1000					ssize, hugeshift, psize);
1001#endif /* CONFIG_HUGETLB_PAGE */
1002
1003#ifndef CONFIG_PPC_64K_PAGES
1004	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1005#else
1006	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1007		pte_val(*(ptep + PTRS_PER_PTE)));
1008#endif
1009	/* Do actual hashing */
1010#ifdef CONFIG_PPC_64K_PAGES
1011	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1012	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1013		demote_segment_4k(mm, ea);
1014		psize = MMU_PAGE_4K;
1015	}
1016
1017	/* If this PTE is non-cacheable and we have restrictions on
1018	 * using non cacheable large pages, then we switch to 4k
1019	 */
1020	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1021	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1022		if (user_region) {
1023			demote_segment_4k(mm, ea);
1024			psize = MMU_PAGE_4K;
1025		} else if (ea < VMALLOC_END) {
1026			/*
1027			 * some driver did a non-cacheable mapping
1028			 * in vmalloc space, so switch vmalloc
1029			 * to 4k pages
1030			 */
1031			printk(KERN_ALERT "Reducing vmalloc segment "
1032			       "to 4kB pages because of "
1033			       "non-cacheable mapping\n");
1034			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1035#ifdef CONFIG_SPU_BASE
1036			spu_flush_all_slbs(mm);
1037#endif
1038		}
1039	}
1040	if (user_region) {
1041		if (psize != get_paca_psize(ea)) {
1042			get_paca()->context = mm->context;
1043			slb_flush_and_rebolt();
1044		}
1045	} else if (get_paca()->vmalloc_sllp !=
1046		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1047		get_paca()->vmalloc_sllp =
1048			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1049		slb_vmalloc_update();
1050	}
1051#endif /* CONFIG_PPC_64K_PAGES */
1052
1053#ifdef CONFIG_PPC_HAS_HASH_64K
1054	if (psize == MMU_PAGE_64K)
1055		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1056	else
1057#endif /* CONFIG_PPC_HAS_HASH_64K */
1058	{
1059		int spp = subpage_protection(mm, ea);
1060		if (access & spp)
1061			rc = -2;
1062		else
1063			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1064					    local, ssize, spp);
1065	}
1066
1067	/* Dump some info in case of hash insertion failure, they should
1068	 * never happen so it is really useful to know if/when they do
1069	 */
1070	if (rc == -1)
1071		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1072				   pte_val(*ptep));
1073#ifndef CONFIG_PPC_64K_PAGES
1074	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1075#else
1076	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1077		pte_val(*(ptep + PTRS_PER_PTE)));
1078#endif
1079	DBG_LOW(" -> rc=%d\n", rc);
1080	return rc;
1081}
1082EXPORT_SYMBOL_GPL(hash_page);
1083
1084void hash_preload(struct mm_struct *mm, unsigned long ea,
1085		  unsigned long access, unsigned long trap)
1086{
1087	unsigned long vsid;
1088	pgd_t *pgdir;
1089	pte_t *ptep;
1090	unsigned long flags;
1091	int rc, ssize, local = 0;
1092
1093	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1094
1095#ifdef CONFIG_PPC_MM_SLICES
1096	/* We only prefault standard pages for now */
1097	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1098		return;
1099#endif
1100
1101	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1102		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1103
1104	/* Get Linux PTE if available */
1105	pgdir = mm->pgd;
1106	if (pgdir == NULL)
1107		return;
1108	ptep = find_linux_pte(pgdir, ea);
1109	if (!ptep)
1110		return;
1111
1112#ifdef CONFIG_PPC_64K_PAGES
1113	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1114	 * a 64K kernel), then we don't preload, hash_page() will take
1115	 * care of it once we actually try to access the page.
1116	 * That way we don't have to duplicate all of the logic for segment
1117	 * page size demotion here
1118	 */
1119	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1120		return;
1121#endif /* CONFIG_PPC_64K_PAGES */
1122
1123	/* Get VSID */
1124	ssize = user_segment_size(ea);
1125	vsid = get_vsid(mm->context.id, ea, ssize);
1126
1127	/* Hash doesn't like irqs */
1128	local_irq_save(flags);
1129
1130	/* Is that local to this CPU ? */
1131	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1132		local = 1;
1133
1134	/* Hash it in */
1135#ifdef CONFIG_PPC_HAS_HASH_64K
1136	if (mm->context.user_psize == MMU_PAGE_64K)
1137		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1138	else
1139#endif /* CONFIG_PPC_HAS_HASH_64K */
1140		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1141				    subpage_protection(mm, ea));
1142
1143	/* Dump some info in case of hash insertion failure, they should
1144	 * never happen so it is really useful to know if/when they do
1145	 */
1146	if (rc == -1)
1147		hash_failure_debug(ea, access, vsid, trap, ssize,
1148				   mm->context.user_psize, pte_val(*ptep));
1149
1150	local_irq_restore(flags);
1151}
1152
1153/* WARNING: This is called from hash_low_64.S, if you change this prototype,
1154 *          do not forget to update the assembly call site !
1155 */
1156void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1157		     int local)
1158{
1159	unsigned long hash, index, shift, hidx, slot;
1160
1161	DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1162	pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1163		hash = hpt_hash(va, shift, ssize);
1164		hidx = __rpte_to_hidx(pte, index);
1165		if (hidx & _PTEIDX_SECONDARY)
1166			hash = ~hash;
1167		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1168		slot += hidx & _PTEIDX_GROUP_IX;
1169		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1170		ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1171	} pte_iterate_hashed_end();
1172}
1173
1174void flush_hash_range(unsigned long number, int local)
1175{
1176	if (ppc_md.flush_hash_range)
1177		ppc_md.flush_hash_range(number, local);
1178	else {
1179		int i;
1180		struct ppc64_tlb_batch *batch =
1181			&__get_cpu_var(ppc64_tlb_batch);
1182
1183		for (i = 0; i < number; i++)
1184			flush_hash_page(batch->vaddr[i], batch->pte[i],
1185					batch->psize, batch->ssize, local);
1186	}
1187}
1188
1189/*
1190 * low_hash_fault is called when we the low level hash code failed
1191 * to instert a PTE due to an hypervisor error
1192 */
1193void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1194{
1195	if (user_mode(regs)) {
1196#ifdef CONFIG_PPC_SUBPAGE_PROT
1197		if (rc == -2)
1198			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1199		else
1200#endif
1201			_exception(SIGBUS, regs, BUS_ADRERR, address);
1202	} else
1203		bad_page_fault(regs, address, SIGBUS);
1204}
1205
1206#ifdef CONFIG_DEBUG_PAGEALLOC
1207static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1208{
1209	unsigned long hash, hpteg;
1210	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1211	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1212	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1213	int ret;
1214
1215	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1216	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1217
1218	ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1219				 mode, HPTE_V_BOLTED,
1220				 mmu_linear_psize, mmu_kernel_ssize);
1221	BUG_ON (ret < 0);
1222	spin_lock(&linear_map_hash_lock);
1223	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1224	linear_map_hash_slots[lmi] = ret | 0x80;
1225	spin_unlock(&linear_map_hash_lock);
1226}
1227
1228static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1229{
1230	unsigned long hash, hidx, slot;
1231	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1232	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1233
1234	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1235	spin_lock(&linear_map_hash_lock);
1236	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1237	hidx = linear_map_hash_slots[lmi] & 0x7f;
1238	linear_map_hash_slots[lmi] = 0;
1239	spin_unlock(&linear_map_hash_lock);
1240	if (hidx & _PTEIDX_SECONDARY)
1241		hash = ~hash;
1242	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1243	slot += hidx & _PTEIDX_GROUP_IX;
1244	ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1245}
1246
1247void kernel_map_pages(struct page *page, int numpages, int enable)
1248{
1249	unsigned long flags, vaddr, lmi;
1250	int i;
1251
1252	local_irq_save(flags);
1253	for (i = 0; i < numpages; i++, page++) {
1254		vaddr = (unsigned long)page_address(page);
1255		lmi = __pa(vaddr) >> PAGE_SHIFT;
1256		if (lmi >= linear_map_hash_count)
1257			continue;
1258		if (enable)
1259			kernel_map_linear_page(vaddr, lmi);
1260		else
1261			kernel_unmap_linear_page(vaddr, lmi);
1262	}
1263	local_irq_restore(flags);
1264}
1265#endif /* CONFIG_DEBUG_PAGEALLOC */
1266
1267void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1268				phys_addr_t first_memblock_size)
1269{
1270	/* We don't currently support the first MEMBLOCK not mapping 0
1271	 * physical on those processors
1272	 */
1273	BUG_ON(first_memblock_base != 0);
1274
1275	/* On LPAR systems, the first entry is our RMA region,
1276	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1277	 * on real mode access, but using the first entry works well
1278	 * enough. We also clamp it to 1G to avoid some funky things
1279	 * such as RTAS bugs etc...
1280	 */
1281	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1282
1283	/* Finally limit subsequent allocations */
1284	memblock_set_current_limit(ppc64_rma_size);
1285}