Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * USB Gadget driver for LPC32xx
   4 *
   5 * Authors:
   6 *    Kevin Wells <kevin.wells@nxp.com>
   7 *    Mike James
   8 *    Roland Stigge <stigge@antcom.de>
   9 *
  10 * Copyright (C) 2006 Philips Semiconductors
  11 * Copyright (C) 2009 NXP Semiconductors
  12 * Copyright (C) 2012 Roland Stigge
  13 *
  14 * Note: This driver is based on original work done by Mike James for
  15 *       the LPC3180.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  16 */
  17
  18#include <linux/clk.h>
  19#include <linux/delay.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/dmapool.h>
  22#include <linux/i2c.h>
  23#include <linux/interrupt.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/prefetch.h>
  28#include <linux/proc_fs.h>
  29#include <linux/slab.h>
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/isp1301.h>
  33
  34#ifdef CONFIG_USB_GADGET_DEBUG_FILES
  35#include <linux/debugfs.h>
  36#include <linux/seq_file.h>
  37#endif
  38
 
 
  39/*
  40 * USB device configuration structure
  41 */
  42typedef void (*usc_chg_event)(int);
  43struct lpc32xx_usbd_cfg {
  44	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
  45	usc_chg_event conn_chgb; /* Connection change event (optional) */
  46	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
  47	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
  48};
  49
  50/*
  51 * controller driver data structures
  52 */
  53
  54/* 16 endpoints (not to be confused with 32 hardware endpoints) */
  55#define	NUM_ENDPOINTS	16
  56
  57/*
  58 * IRQ indices make reading the code a little easier
  59 */
  60#define IRQ_USB_LP	0
  61#define IRQ_USB_HP	1
  62#define IRQ_USB_DEVDMA	2
  63#define IRQ_USB_ATX	3
  64
  65#define EP_OUT 0 /* RX (from host) */
  66#define EP_IN 1 /* TX (to host) */
  67
  68/* Returns the interrupt mask for the selected hardware endpoint */
  69#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
  70
  71#define EP_INT_TYPE 0
  72#define EP_ISO_TYPE 1
  73#define EP_BLK_TYPE 2
  74#define EP_CTL_TYPE 3
  75
  76/* EP0 states */
  77#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
  78#define DATA_IN        1 /* Expect dev->host transfer */
  79#define DATA_OUT       2 /* Expect host->dev transfer */
  80
  81/* DD (DMA Descriptor) structure, requires word alignment, this is already
  82 * defined in the LPC32XX USB device header file, but this version is slightly
  83 * modified to tag some work data with each DMA descriptor. */
  84struct lpc32xx_usbd_dd_gad {
  85	u32 dd_next_phy;
  86	u32 dd_setup;
  87	u32 dd_buffer_addr;
  88	u32 dd_status;
  89	u32 dd_iso_ps_mem_addr;
  90	u32 this_dma;
  91	u32 iso_status[6]; /* 5 spare */
  92	u32 dd_next_v;
  93};
  94
  95/*
  96 * Logical endpoint structure
  97 */
  98struct lpc32xx_ep {
  99	struct usb_ep		ep;
 100	struct list_head	queue;
 101	struct lpc32xx_udc	*udc;
 102
 103	u32			hwep_num_base; /* Physical hardware EP */
 104	u32			hwep_num; /* Maps to hardware endpoint */
 105	u32			maxpacket;
 106	u32			lep;
 107
 108	bool			is_in;
 109	bool			req_pending;
 110	u32			eptype;
 111
 112	u32                     totalints;
 113
 114	bool			wedge;
 115};
 116
 117enum atx_type {
 118	ISP1301,
 119	STOTG04,
 120};
 121
 122/*
 123 * Common UDC structure
 124 */
 125struct lpc32xx_udc {
 126	struct usb_gadget	gadget;
 127	struct usb_gadget_driver *driver;
 128	struct platform_device	*pdev;
 129	struct device		*dev;
 
 130	spinlock_t		lock;
 131	struct i2c_client	*isp1301_i2c_client;
 132
 133	/* Board and device specific */
 134	struct lpc32xx_usbd_cfg	*board;
 
 
 135	void __iomem		*udp_baseaddr;
 136	int			udp_irq[4];
 137	struct clk		*usb_slv_clk;
 138
 139	/* DMA support */
 140	u32			*udca_v_base;
 141	u32			udca_p_base;
 142	struct dma_pool		*dd_cache;
 143
 144	/* Common EP and control data */
 145	u32			enabled_devints;
 146	u32			enabled_hwepints;
 147	u32			dev_status;
 148	u32			realized_eps;
 149
 150	/* VBUS detection, pullup, and power flags */
 151	u8			vbus;
 152	u8			last_vbus;
 153	int			pullup;
 154	int			poweron;
 155	enum atx_type		atx;
 156
 157	/* Work queues related to I2C support */
 158	struct work_struct	pullup_job;
 
 159	struct work_struct	power_job;
 160
 161	/* USB device peripheral - various */
 162	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
 163	bool			enabled;
 164	bool			clocked;
 165	bool			suspended;
 166	int                     ep0state;
 167	atomic_t                enabled_ep_cnt;
 168	wait_queue_head_t       ep_disable_wait_queue;
 169};
 170
 171/*
 172 * Endpoint request
 173 */
 174struct lpc32xx_request {
 175	struct usb_request	req;
 176	struct list_head	queue;
 177	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
 178	bool			mapped;
 179	bool			send_zlp;
 180};
 181
 182static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
 183{
 184	return container_of(g, struct lpc32xx_udc, gadget);
 185}
 186
 187#define ep_dbg(epp, fmt, arg...) \
 188	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 189#define ep_err(epp, fmt, arg...) \
 190	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 191#define ep_info(epp, fmt, arg...) \
 192	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 193#define ep_warn(epp, fmt, arg...) \
 194	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
 195
 196#define UDCA_BUFF_SIZE (128)
 197
 198/**********************************************************************
 199 * USB device controller register offsets
 200 **********************************************************************/
 201
 202#define USBD_DEVINTST(x)	((x) + 0x200)
 203#define USBD_DEVINTEN(x)	((x) + 0x204)
 204#define USBD_DEVINTCLR(x)	((x) + 0x208)
 205#define USBD_DEVINTSET(x)	((x) + 0x20C)
 206#define USBD_CMDCODE(x)		((x) + 0x210)
 207#define USBD_CMDDATA(x)		((x) + 0x214)
 208#define USBD_RXDATA(x)		((x) + 0x218)
 209#define USBD_TXDATA(x)		((x) + 0x21C)
 210#define USBD_RXPLEN(x)		((x) + 0x220)
 211#define USBD_TXPLEN(x)		((x) + 0x224)
 212#define USBD_CTRL(x)		((x) + 0x228)
 213#define USBD_DEVINTPRI(x)	((x) + 0x22C)
 214#define USBD_EPINTST(x)		((x) + 0x230)
 215#define USBD_EPINTEN(x)		((x) + 0x234)
 216#define USBD_EPINTCLR(x)	((x) + 0x238)
 217#define USBD_EPINTSET(x)	((x) + 0x23C)
 218#define USBD_EPINTPRI(x)	((x) + 0x240)
 219#define USBD_REEP(x)		((x) + 0x244)
 220#define USBD_EPIND(x)		((x) + 0x248)
 221#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
 222/* DMA support registers only below */
 223/* Set, clear, or get enabled state of the DMA request status. If
 224 * enabled, an IN or OUT token will start a DMA transfer for the EP */
 225#define USBD_DMARST(x)		((x) + 0x250)
 226#define USBD_DMARCLR(x)		((x) + 0x254)
 227#define USBD_DMARSET(x)		((x) + 0x258)
 228/* DMA UDCA head pointer */
 229#define USBD_UDCAH(x)		((x) + 0x280)
 230/* EP DMA status, enable, and disable. This is used to specifically
 231 * enabled or disable DMA for a specific EP */
 232#define USBD_EPDMAST(x)		((x) + 0x284)
 233#define USBD_EPDMAEN(x)		((x) + 0x288)
 234#define USBD_EPDMADIS(x)	((x) + 0x28C)
 235/* DMA master interrupts enable and pending interrupts */
 236#define USBD_DMAINTST(x)	((x) + 0x290)
 237#define USBD_DMAINTEN(x)	((x) + 0x294)
 238/* DMA end of transfer interrupt enable, disable, status */
 239#define USBD_EOTINTST(x)	((x) + 0x2A0)
 240#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
 241#define USBD_EOTINTSET(x)	((x) + 0x2A8)
 242/* New DD request interrupt enable, disable, status */
 243#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
 244#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
 245#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
 246/* DMA error interrupt enable, disable, status */
 247#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
 248#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
 249#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
 250
 251/**********************************************************************
 252 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
 253 * USBD_DEVINTPRI register definitions
 254 **********************************************************************/
 255#define USBD_ERR_INT		(1 << 9)
 256#define USBD_EP_RLZED		(1 << 8)
 257#define USBD_TXENDPKT		(1 << 7)
 258#define USBD_RXENDPKT		(1 << 6)
 259#define USBD_CDFULL		(1 << 5)
 260#define USBD_CCEMPTY		(1 << 4)
 261#define USBD_DEV_STAT		(1 << 3)
 262#define USBD_EP_SLOW		(1 << 2)
 263#define USBD_EP_FAST		(1 << 1)
 264#define USBD_FRAME		(1 << 0)
 265
 266/**********************************************************************
 267 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
 268 * USBD_EPINTPRI register definitions
 269 **********************************************************************/
 270/* End point selection macro (RX) */
 271#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
 272
 273/* End point selection macro (TX) */
 274#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
 275
 276/**********************************************************************
 277 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
 278 * USBD_EPDMAEN/USBD_EPDMADIS/
 279 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
 280 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
 281 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
 282 * register definitions
 283 **********************************************************************/
 284/* Endpoint selection macro */
 285#define USBD_EP_SEL(e)		(1 << (e))
 286
 287/**********************************************************************
 288 * SBD_DMAINTST/USBD_DMAINTEN
 289 **********************************************************************/
 290#define USBD_SYS_ERR_INT	(1 << 2)
 291#define USBD_NEW_DD_INT		(1 << 1)
 292#define USBD_EOT_INT		(1 << 0)
 293
 294/**********************************************************************
 295 * USBD_RXPLEN register definitions
 296 **********************************************************************/
 297#define USBD_PKT_RDY		(1 << 11)
 298#define USBD_DV			(1 << 10)
 299#define USBD_PK_LEN_MASK	0x3FF
 300
 301/**********************************************************************
 302 * USBD_CTRL register definitions
 303 **********************************************************************/
 304#define USBD_LOG_ENDPOINT(e)	((e) << 2)
 305#define USBD_WR_EN		(1 << 1)
 306#define USBD_RD_EN		(1 << 0)
 307
 308/**********************************************************************
 309 * USBD_CMDCODE register definitions
 310 **********************************************************************/
 311#define USBD_CMD_CODE(c)	((c) << 16)
 312#define USBD_CMD_PHASE(p)	((p) << 8)
 313
 314/**********************************************************************
 315 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
 316 **********************************************************************/
 317#define USBD_DMAEP(e)		(1 << (e))
 318
 319/* DD (DMA Descriptor) structure, requires word alignment */
 320struct lpc32xx_usbd_dd {
 321	u32 *dd_next;
 322	u32 dd_setup;
 323	u32 dd_buffer_addr;
 324	u32 dd_status;
 325	u32 dd_iso_ps_mem_addr;
 326};
 327
 328/* dd_setup bit defines */
 329#define DD_SETUP_ATLE_DMA_MODE	0x01
 330#define DD_SETUP_NEXT_DD_VALID	0x04
 331#define DD_SETUP_ISO_EP		0x10
 332#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
 333#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
 334
 335/* dd_status bit defines */
 336#define DD_STATUS_DD_RETIRED	0x01
 337#define DD_STATUS_STS_MASK	0x1E
 338#define DD_STATUS_STS_NS	0x00 /* Not serviced */
 339#define DD_STATUS_STS_BS	0x02 /* Being serviced */
 340#define DD_STATUS_STS_NC	0x04 /* Normal completion */
 341#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
 342#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
 343#define DD_STATUS_STS_SE	0x12 /* System error */
 344#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
 345#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
 346#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
 347#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
 348#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
 349
 350/*
 351 *
 352 * Protocol engine bits below
 353 *
 354 */
 355/* Device Interrupt Bit Definitions */
 356#define FRAME_INT		0x00000001
 357#define EP_FAST_INT		0x00000002
 358#define EP_SLOW_INT		0x00000004
 359#define DEV_STAT_INT		0x00000008
 360#define CCEMTY_INT		0x00000010
 361#define CDFULL_INT		0x00000020
 362#define RxENDPKT_INT		0x00000040
 363#define TxENDPKT_INT		0x00000080
 364#define EP_RLZED_INT		0x00000100
 365#define ERR_INT			0x00000200
 366
 367/* Rx & Tx Packet Length Definitions */
 368#define PKT_LNGTH_MASK		0x000003FF
 369#define PKT_DV			0x00000400
 370#define PKT_RDY			0x00000800
 371
 372/* USB Control Definitions */
 373#define CTRL_RD_EN		0x00000001
 374#define CTRL_WR_EN		0x00000002
 375
 376/* Command Codes */
 377#define CMD_SET_ADDR		0x00D00500
 378#define CMD_CFG_DEV		0x00D80500
 379#define CMD_SET_MODE		0x00F30500
 380#define CMD_RD_FRAME		0x00F50500
 381#define DAT_RD_FRAME		0x00F50200
 382#define CMD_RD_TEST		0x00FD0500
 383#define DAT_RD_TEST		0x00FD0200
 384#define CMD_SET_DEV_STAT	0x00FE0500
 385#define CMD_GET_DEV_STAT	0x00FE0500
 386#define DAT_GET_DEV_STAT	0x00FE0200
 387#define CMD_GET_ERR_CODE	0x00FF0500
 388#define DAT_GET_ERR_CODE	0x00FF0200
 389#define CMD_RD_ERR_STAT		0x00FB0500
 390#define DAT_RD_ERR_STAT		0x00FB0200
 391#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
 392#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
 393#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
 394#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
 395#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
 396#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
 397#define CMD_CLR_BUF		0x00F20500
 398#define DAT_CLR_BUF		0x00F20200
 399#define CMD_VALID_BUF		0x00FA0500
 400
 401/* Device Address Register Definitions */
 402#define DEV_ADDR_MASK		0x7F
 403#define DEV_EN			0x80
 404
 405/* Device Configure Register Definitions */
 406#define CONF_DVICE		0x01
 407
 408/* Device Mode Register Definitions */
 409#define AP_CLK			0x01
 410#define INAK_CI			0x02
 411#define INAK_CO			0x04
 412#define INAK_II			0x08
 413#define INAK_IO			0x10
 414#define INAK_BI			0x20
 415#define INAK_BO			0x40
 416
 417/* Device Status Register Definitions */
 418#define DEV_CON			0x01
 419#define DEV_CON_CH		0x02
 420#define DEV_SUS			0x04
 421#define DEV_SUS_CH		0x08
 422#define DEV_RST			0x10
 423
 424/* Error Code Register Definitions */
 425#define ERR_EC_MASK		0x0F
 426#define ERR_EA			0x10
 427
 428/* Error Status Register Definitions */
 429#define ERR_PID			0x01
 430#define ERR_UEPKT		0x02
 431#define ERR_DCRC		0x04
 432#define ERR_TIMOUT		0x08
 433#define ERR_EOP			0x10
 434#define ERR_B_OVRN		0x20
 435#define ERR_BTSTF		0x40
 436#define ERR_TGL			0x80
 437
 438/* Endpoint Select Register Definitions */
 439#define EP_SEL_F		0x01
 440#define EP_SEL_ST		0x02
 441#define EP_SEL_STP		0x04
 442#define EP_SEL_PO		0x08
 443#define EP_SEL_EPN		0x10
 444#define EP_SEL_B_1_FULL		0x20
 445#define EP_SEL_B_2_FULL		0x40
 446
 447/* Endpoint Status Register Definitions */
 448#define EP_STAT_ST		0x01
 449#define EP_STAT_DA		0x20
 450#define EP_STAT_RF_MO		0x40
 451#define EP_STAT_CND_ST		0x80
 452
 453/* Clear Buffer Register Definitions */
 454#define CLR_BUF_PO		0x01
 455
 456/* DMA Interrupt Bit Definitions */
 457#define EOT_INT			0x01
 458#define NDD_REQ_INT		0x02
 459#define SYS_ERR_INT		0x04
 460
 461#define	DRIVER_VERSION	"1.03"
 462static const char driver_name[] = "lpc32xx_udc";
 463
 464/*
 465 *
 466 * proc interface support
 467 *
 468 */
 469#ifdef CONFIG_USB_GADGET_DEBUG_FILES
 470static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
 471static const char debug_filename[] = "driver/udc";
 472
 473static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
 474{
 475	struct lpc32xx_request *req;
 476
 477	seq_printf(s, "\n");
 478	seq_printf(s, "%12s, maxpacket %4d %3s",
 479			ep->ep.name, ep->ep.maxpacket,
 480			ep->is_in ? "in" : "out");
 481	seq_printf(s, " type %4s", epnames[ep->eptype]);
 482	seq_printf(s, " ints: %12d", ep->totalints);
 483
 484	if (list_empty(&ep->queue))
 485		seq_printf(s, "\t(queue empty)\n");
 486	else {
 487		list_for_each_entry(req, &ep->queue, queue) {
 488			u32 length = req->req.actual;
 489
 490			seq_printf(s, "\treq %p len %d/%d buf %p\n",
 491				   &req->req, length,
 492				   req->req.length, req->req.buf);
 493		}
 494	}
 495}
 496
 497static int udc_show(struct seq_file *s, void *unused)
 498{
 499	struct lpc32xx_udc *udc = s->private;
 500	struct lpc32xx_ep *ep;
 501	unsigned long flags;
 502
 503	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
 504
 505	spin_lock_irqsave(&udc->lock, flags);
 506
 507	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
 508		   udc->vbus ? "present" : "off",
 509		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
 510		   "disabled",
 511		   udc->gadget.is_selfpowered ? "self" : "VBUS",
 512		   udc->suspended ? ", suspended" : "",
 513		   udc->driver ? udc->driver->driver.name : "(none)");
 514
 515	if (udc->enabled && udc->vbus) {
 516		proc_ep_show(s, &udc->ep[0]);
 517		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
 518			proc_ep_show(s, ep);
 519	}
 520
 521	spin_unlock_irqrestore(&udc->lock, flags);
 522
 523	return 0;
 524}
 525
 526DEFINE_SHOW_ATTRIBUTE(udc);
 
 
 
 
 
 
 
 
 
 
 
 527
 528static void create_debug_file(struct lpc32xx_udc *udc)
 529{
 530	debugfs_create_file(debug_filename, 0, NULL, udc, &udc_fops);
 531}
 532
 533static void remove_debug_file(struct lpc32xx_udc *udc)
 534{
 535	debugfs_lookup_and_remove(debug_filename, NULL);
 536}
 537
 538#else
 539static inline void create_debug_file(struct lpc32xx_udc *udc) {}
 540static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
 541#endif
 542
 543/* Primary initialization sequence for the ISP1301 transceiver */
 544static void isp1301_udc_configure(struct lpc32xx_udc *udc)
 545{
 546	u8 value;
 547	s32 vendor, product;
 548
 549	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
 550	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
 551
 552	if (vendor == 0x0483 && product == 0xa0c4)
 553		udc->atx = STOTG04;
 554
 555	/* LPC32XX only supports DAT_SE0 USB mode */
 556	/* This sequence is important */
 557
 558	/* Disable transparent UART mode first */
 559	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 560		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 561		MC1_UART_EN);
 562
 563	/* Set full speed and SE0 mode */
 564	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 565		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 566	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 567		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
 568
 569	/*
 570	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
 571	 */
 572	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 573		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 574
 575	value = MC2_BI_DI;
 576	if (udc->atx != STOTG04)
 577		value |= MC2_SPD_SUSP_CTRL;
 578	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 579		ISP1301_I2C_MODE_CONTROL_2, value);
 580
 581	/* Driver VBUS_DRV high or low depending on board setup */
 582	if (udc->board->vbus_drv_pol != 0)
 583		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 584			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
 585	else
 586		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 587			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 588			OTG1_VBUS_DRV);
 589
 590	/* Bi-directional mode with suspend control
 591	 * Enable both pulldowns for now - the pullup will be enable when VBUS
 592	 * is detected */
 593	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 594		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 595	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 596		ISP1301_I2C_OTG_CONTROL_1,
 597		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
 598
 599	/* Discharge VBUS (just in case) */
 600	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 601		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
 602	msleep(1);
 603	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 604		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 605		OTG1_VBUS_DISCHRG);
 606
 
 607	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 608		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 609
 610	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 611		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 612	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 
 
 613		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 
 
 614
 615	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
 616	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
 
 
 617	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
 618		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
 619
 620}
 621
 622/* Enables or disables the USB device pullup via the ISP1301 transceiver */
 623static void isp1301_pullup_set(struct lpc32xx_udc *udc)
 624{
 625	if (udc->pullup)
 626		/* Enable pullup for bus signalling */
 627		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 628			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
 629	else
 630		/* Enable pullup for bus signalling */
 631		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 632			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 633			OTG1_DP_PULLUP);
 634}
 635
 636static void pullup_work(struct work_struct *work)
 637{
 638	struct lpc32xx_udc *udc =
 639		container_of(work, struct lpc32xx_udc, pullup_job);
 640
 641	isp1301_pullup_set(udc);
 642}
 643
 644static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
 645				  int block)
 646{
 647	if (en_pullup == udc->pullup)
 648		return;
 649
 650	udc->pullup = en_pullup;
 651	if (block)
 652		isp1301_pullup_set(udc);
 653	else
 654		/* defer slow i2c pull up setting */
 655		schedule_work(&udc->pullup_job);
 656}
 657
 658#ifdef CONFIG_PM
 659/* Powers up or down the ISP1301 transceiver */
 660static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
 661{
 662	/* There is no "global power down" register for stotg04 */
 663	if (udc->atx == STOTG04)
 664		return;
 665
 666	if (enable != 0)
 667		/* Power up ISP1301 - this ISP1301 will automatically wakeup
 668		   when VBUS is detected */
 669		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 670			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
 671			MC2_GLOBAL_PWR_DN);
 672	else
 673		/* Power down ISP1301 */
 674		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 675			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
 676}
 677
 678static void power_work(struct work_struct *work)
 679{
 680	struct lpc32xx_udc *udc =
 681		container_of(work, struct lpc32xx_udc, power_job);
 682
 683	isp1301_set_powerstate(udc, udc->poweron);
 684}
 685#endif
 686
 687/*
 688 *
 689 * USB protocol engine command/data read/write helper functions
 690 *
 691 */
 692/* Issues a single command to the USB device state machine */
 693static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
 694{
 695	u32 pass = 0;
 696	int to;
 697
 698	/* EP may lock on CLRI if this read isn't done */
 699	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
 700	(void) tmp;
 701
 702	while (pass == 0) {
 703		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
 704
 705		/* Write command code */
 706		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
 707		to = 10000;
 708		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 709			 USBD_CCEMPTY) == 0) && (to > 0)) {
 710			to--;
 711		}
 712
 713		if (to > 0)
 714			pass = 1;
 715
 716		cpu_relax();
 717	}
 718}
 719
 720/* Issues 2 commands (or command and data) to the USB device state machine */
 721static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
 722					   u32 data)
 723{
 724	udc_protocol_cmd_w(udc, cmd);
 725	udc_protocol_cmd_w(udc, data);
 726}
 727
 728/* Issues a single command to the USB device state machine and reads
 729 * response data */
 730static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
 731{
 
 732	int to = 1000;
 733
 734	/* Write a command and read data from the protocol engine */
 735	writel((USBD_CDFULL | USBD_CCEMPTY),
 736		     USBD_DEVINTCLR(udc->udp_baseaddr));
 737
 738	/* Write command code */
 739	udc_protocol_cmd_w(udc, cmd);
 740
 
 741	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
 742	       && (to > 0))
 743		to--;
 744	if (!to)
 745		dev_dbg(udc->dev,
 746			"Protocol engine didn't receive response (CDFULL)\n");
 747
 748	return readl(USBD_CMDDATA(udc->udp_baseaddr));
 749}
 750
 751/*
 752 *
 753 * USB device interrupt mask support functions
 754 *
 755 */
 756/* Enable one or more USB device interrupts */
 757static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
 758{
 759	udc->enabled_devints |= devmask;
 760	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 761}
 762
 763/* Disable one or more USB device interrupts */
 764static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
 765{
 766	udc->enabled_devints &= ~mask;
 767	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 768}
 769
 770/* Clear one or more USB device interrupts */
 771static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
 772{
 773	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
 774}
 775
 776/*
 777 *
 778 * Endpoint interrupt disable/enable functions
 779 *
 780 */
 781/* Enable one or more USB endpoint interrupts */
 782static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 783{
 784	udc->enabled_hwepints |= (1 << hwep);
 785	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 786}
 787
 788/* Disable one or more USB endpoint interrupts */
 789static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 790{
 791	udc->enabled_hwepints &= ~(1 << hwep);
 792	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 793}
 794
 795/* Clear one or more USB endpoint interrupts */
 796static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 797{
 798	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
 799}
 800
 801/* Enable DMA for the HW channel */
 802static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
 803{
 804	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
 805}
 806
 807/* Disable DMA for the HW channel */
 808static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
 809{
 810	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
 811}
 812
 813/*
 814 *
 815 * Endpoint realize/unrealize functions
 816 *
 817 */
 818/* Before an endpoint can be used, it needs to be realized
 819 * in the USB protocol engine - this realizes the endpoint.
 820 * The interrupt (FIFO or DMA) is not enabled with this function */
 821static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
 822			     u32 maxpacket)
 823{
 824	int to = 1000;
 825
 826	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 827	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
 828	udc->realized_eps |= (1 << hwep);
 829	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 830	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
 831
 832	/* Wait until endpoint is realized in hardware */
 833	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 834		  USBD_EP_RLZED)) && (to > 0))
 835		to--;
 836	if (!to)
 837		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
 838
 839	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 840}
 841
 842/* Unrealize an EP */
 843static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
 844{
 845	udc->realized_eps &= ~(1 << hwep);
 846	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 847}
 848
 849/*
 850 *
 851 * Endpoint support functions
 852 *
 853 */
 854/* Select and clear endpoint interrupt */
 855static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
 856{
 857	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
 858	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
 859}
 860
 861/* Disables the endpoint in the USB protocol engine */
 862static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
 863{
 864	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 865				DAT_WR_BYTE(EP_STAT_DA));
 866}
 867
 868/* Stalls the endpoint - endpoint will return STALL */
 869static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 870{
 871	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 872				DAT_WR_BYTE(EP_STAT_ST));
 873}
 874
 875/* Clear stall or reset endpoint */
 876static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 877{
 878	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 879				DAT_WR_BYTE(0));
 880}
 881
 882/* Select an endpoint for endpoint status, clear, validate */
 883static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
 884{
 885	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
 886}
 887
 888/*
 889 *
 890 * Endpoint buffer management functions
 891 *
 892 */
 893/* Clear the current endpoint's buffer */
 894static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 895{
 896	udc_select_hwep(udc, hwep);
 897	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
 898}
 899
 900/* Validate the current endpoint's buffer */
 901static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 902{
 903	udc_select_hwep(udc, hwep);
 904	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
 905}
 906
 907static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
 908{
 909	/* Clear EP interrupt */
 910	uda_clear_hwepint(udc, hwep);
 911	return udc_selep_clrint(udc, hwep);
 912}
 913
 914/*
 915 *
 916 * USB EP DMA support
 917 *
 918 */
 919/* Allocate a DMA Descriptor */
 920static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
 921{
 922	dma_addr_t			dma;
 923	struct lpc32xx_usbd_dd_gad	*dd;
 924
 925	dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
 
 926	if (dd)
 927		dd->this_dma = dma;
 928
 929	return dd;
 930}
 931
 932/* Free a DMA Descriptor */
 933static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
 934{
 935	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
 936}
 937
 938/*
 939 *
 940 * USB setup and shutdown functions
 941 *
 942 */
 943/* Enables or disables most of the USB system clocks when low power mode is
 944 * needed. Clocks are typically started on a connection event, and disabled
 945 * when a cable is disconnected */
 946static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
 947{
 948	if (enable != 0) {
 949		if (udc->clocked)
 950			return;
 951
 952		udc->clocked = 1;
 953		clk_prepare_enable(udc->usb_slv_clk);
 954	} else {
 955		if (!udc->clocked)
 956			return;
 957
 958		udc->clocked = 0;
 959		clk_disable_unprepare(udc->usb_slv_clk);
 960	}
 961}
 962
 963/* Set/reset USB device address */
 964static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
 965{
 966	/* Address will be latched at the end of the status phase, or
 967	   latched immediately if function is called twice */
 968	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
 969				DAT_WR_BYTE(DEV_EN | addr));
 970}
 971
 972/* Setup up a IN request for DMA transfer - this consists of determining the
 973 * list of DMA addresses for the transfer, allocating DMA Descriptors,
 974 * installing the DD into the UDCA, and then enabling the DMA for that EP */
 975static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
 976{
 977	struct lpc32xx_request *req;
 978	u32 hwep = ep->hwep_num;
 979
 980	ep->req_pending = 1;
 981
 982	/* There will always be a request waiting here */
 983	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
 984
 985	/* Place the DD Descriptor into the UDCA */
 986	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
 987
 988	/* Enable DMA and interrupt for the HW EP */
 989	udc_ep_dma_enable(udc, hwep);
 990
 991	/* Clear ZLP if last packet is not of MAXP size */
 992	if (req->req.length % ep->ep.maxpacket)
 993		req->send_zlp = 0;
 994
 995	return 0;
 996}
 997
 998/* Setup up a OUT request for DMA transfer - this consists of determining the
 999 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1000 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1001static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1002{
1003	struct lpc32xx_request *req;
1004	u32 hwep = ep->hwep_num;
1005
1006	ep->req_pending = 1;
1007
1008	/* There will always be a request waiting here */
1009	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1010
1011	/* Place the DD Descriptor into the UDCA */
1012	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1013
1014	/* Enable DMA and interrupt for the HW EP */
1015	udc_ep_dma_enable(udc, hwep);
1016	return 0;
1017}
1018
1019static void udc_disable(struct lpc32xx_udc *udc)
1020{
1021	u32 i;
1022
1023	/* Disable device */
1024	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1025	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1026
1027	/* Disable all device interrupts (including EP0) */
1028	uda_disable_devint(udc, 0x3FF);
1029
1030	/* Disable and reset all endpoint interrupts */
1031	for (i = 0; i < 32; i++) {
1032		uda_disable_hwepint(udc, i);
1033		uda_clear_hwepint(udc, i);
1034		udc_disable_hwep(udc, i);
1035		udc_unrealize_hwep(udc, i);
1036		udc->udca_v_base[i] = 0;
1037
1038		/* Disable and clear all interrupts and DMA */
1039		udc_ep_dma_disable(udc, i);
1040		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1041		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1042		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1043		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1044	}
1045
1046	/* Disable DMA interrupts */
1047	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1048
1049	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1050}
1051
1052static void udc_enable(struct lpc32xx_udc *udc)
1053{
1054	u32 i;
1055	struct lpc32xx_ep *ep = &udc->ep[0];
1056
1057	/* Start with known state */
1058	udc_disable(udc);
1059
1060	/* Enable device */
1061	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1062
1063	/* EP interrupts on high priority, FRAME interrupt on low priority */
1064	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1065	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1066
1067	/* Clear any pending device interrupts */
1068	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1069
1070	/* Setup UDCA - not yet used (DMA) */
1071	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1072
1073	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1074	for (i = 0; i <= 1; i++) {
1075		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1076		uda_enable_hwepint(udc, i);
1077		udc_select_hwep(udc, i);
1078		udc_clrstall_hwep(udc, i);
1079		udc_clr_buffer_hwep(udc, i);
1080	}
1081
1082	/* Device interrupt setup */
1083	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1084			       USBD_EP_FAST));
1085	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1086				USBD_EP_FAST));
1087
1088	/* Set device address to 0 - called twice to force a latch in the USB
1089	   engine without the need of a setup packet status closure */
1090	udc_set_address(udc, 0);
1091	udc_set_address(udc, 0);
1092
1093	/* Enable master DMA interrupts */
1094	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1095		     USBD_DMAINTEN(udc->udp_baseaddr));
1096
1097	udc->dev_status = 0;
1098}
1099
1100/*
1101 *
1102 * USB device board specific events handled via callbacks
1103 *
1104 */
1105/* Connection change event - notify board function of change */
1106static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1107{
1108	/* Just notify of a connection change event (optional) */
1109	if (udc->board->conn_chgb != NULL)
1110		udc->board->conn_chgb(conn);
1111}
1112
1113/* Suspend/resume event - notify board function of change */
1114static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1115{
1116	/* Just notify of a Suspend/resume change event (optional) */
1117	if (udc->board->susp_chgb != NULL)
1118		udc->board->susp_chgb(conn);
1119
1120	if (conn)
1121		udc->suspended = 0;
1122	else
1123		udc->suspended = 1;
1124}
1125
1126/* Remote wakeup enable/disable - notify board function of change */
1127static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1128{
1129	if (udc->board->rmwk_chgb != NULL)
1130		udc->board->rmwk_chgb(udc->dev_status &
1131				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1132}
1133
1134/* Reads data from FIFO, adjusts for alignment and data size */
1135static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1136{
1137	int n, i, bl;
1138	u16 *p16;
1139	u32 *p32, tmp, cbytes;
1140
1141	/* Use optimal data transfer method based on source address and size */
1142	switch (((uintptr_t) data) & 0x3) {
1143	case 0: /* 32-bit aligned */
1144		p32 = (u32 *) data;
1145		cbytes = (bytes & ~0x3);
1146
1147		/* Copy 32-bit aligned data first */
1148		for (n = 0; n < cbytes; n += 4)
1149			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1150
1151		/* Handle any remaining bytes */
1152		bl = bytes - cbytes;
1153		if (bl) {
1154			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1155			for (n = 0; n < bl; n++)
1156				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1157
1158		}
1159		break;
1160
1161	case 1: /* 8-bit aligned */
1162	case 3:
1163		/* Each byte has to be handled independently */
1164		for (n = 0; n < bytes; n += 4) {
1165			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1166
1167			bl = bytes - n;
1168			if (bl > 4)
1169				bl = 4;
1170
1171			for (i = 0; i < bl; i++)
1172				data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1173		}
1174		break;
1175
1176	case 2: /* 16-bit aligned */
1177		p16 = (u16 *) data;
1178		cbytes = (bytes & ~0x3);
1179
1180		/* Copy 32-bit sized objects first with 16-bit alignment */
1181		for (n = 0; n < cbytes; n += 4) {
1182			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1183			*p16++ = (u16)(tmp & 0xFFFF);
1184			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1185		}
1186
1187		/* Handle any remaining bytes */
1188		bl = bytes - cbytes;
1189		if (bl) {
1190			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1191			for (n = 0; n < bl; n++)
1192				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1193		}
1194		break;
1195	}
1196}
1197
1198/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1199 * as EP0) that don't use DMA. This function should only be called if a packet
1200 * is known to be ready to read for the endpoint. Note that the endpoint must
1201 * be selected in the protocol engine prior to this call. */
1202static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1203			 u32 bytes)
1204{
1205	u32 tmpv;
1206	int to = 1000;
1207	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1208
1209	/* Setup read of endpoint */
1210	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1211
1212	/* Wait until packet is ready */
1213	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1214		 PKT_RDY) == 0)	&& (to > 0))
1215		to--;
1216	if (!to)
1217		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1218
1219	/* Mask out count */
1220	tmp = tmpv & PKT_LNGTH_MASK;
1221	if (bytes < tmp)
1222		tmp = bytes;
1223
1224	if ((tmp > 0) && (data != NULL))
1225		udc_pop_fifo(udc, (u8 *) data, tmp);
1226
1227	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1228
1229	/* Clear the buffer */
1230	udc_clr_buffer_hwep(udc, hwep);
1231
1232	return tmp;
1233}
1234
1235/* Stuffs data into the FIFO, adjusts for alignment and data size */
1236static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1237{
1238	int n, i, bl;
1239	u16 *p16;
1240	u32 *p32, tmp, cbytes;
1241
1242	/* Use optimal data transfer method based on source address and size */
1243	switch (((uintptr_t) data) & 0x3) {
1244	case 0: /* 32-bit aligned */
1245		p32 = (u32 *) data;
1246		cbytes = (bytes & ~0x3);
1247
1248		/* Copy 32-bit aligned data first */
1249		for (n = 0; n < cbytes; n += 4)
1250			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1251
1252		/* Handle any remaining bytes */
1253		bl = bytes - cbytes;
1254		if (bl) {
1255			tmp = 0;
1256			for (n = 0; n < bl; n++)
1257				tmp |= data[cbytes + n] << (n * 8);
1258
1259			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1260		}
1261		break;
1262
1263	case 1: /* 8-bit aligned */
1264	case 3:
1265		/* Each byte has to be handled independently */
1266		for (n = 0; n < bytes; n += 4) {
1267			bl = bytes - n;
1268			if (bl > 4)
1269				bl = 4;
1270
1271			tmp = 0;
1272			for (i = 0; i < bl; i++)
1273				tmp |= data[n + i] << (i * 8);
1274
1275			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1276		}
1277		break;
1278
1279	case 2: /* 16-bit aligned */
1280		p16 = (u16 *) data;
1281		cbytes = (bytes & ~0x3);
1282
1283		/* Copy 32-bit aligned data first */
1284		for (n = 0; n < cbytes; n += 4) {
1285			tmp = *p16++ & 0xFFFF;
1286			tmp |= (*p16++ & 0xFFFF) << 16;
1287			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1288		}
1289
1290		/* Handle any remaining bytes */
1291		bl = bytes - cbytes;
1292		if (bl) {
1293			tmp = 0;
1294			for (n = 0; n < bl; n++)
1295				tmp |= data[cbytes + n] << (n * 8);
1296
1297			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1298		}
1299		break;
1300	}
1301}
1302
1303/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1304 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1305 * protocol engine prior to this call. */
1306static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1307			   u32 bytes)
1308{
1309	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1310
1311	if ((bytes > 0) && (data == NULL))
1312		return;
1313
1314	/* Setup write of endpoint */
1315	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1316
1317	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1318
1319	/* Need at least 1 byte to trigger TX */
1320	if (bytes == 0)
1321		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1322	else
1323		udc_stuff_fifo(udc, (u8 *) data, bytes);
1324
1325	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1326
1327	udc_val_buffer_hwep(udc, hwep);
1328}
1329
1330/* USB device reset - resets USB to a default state with just EP0
1331   enabled */
1332static void uda_usb_reset(struct lpc32xx_udc *udc)
1333{
1334	u32 i = 0;
1335	/* Re-init device controller and EP0 */
1336	udc_enable(udc);
1337	udc->gadget.speed = USB_SPEED_FULL;
1338
1339	for (i = 1; i < NUM_ENDPOINTS; i++) {
1340		struct lpc32xx_ep *ep = &udc->ep[i];
1341		ep->req_pending = 0;
1342	}
1343}
1344
1345/* Send a ZLP on EP0 */
1346static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1347{
1348	udc_write_hwep(udc, EP_IN, NULL, 0);
1349}
1350
1351/* Get current frame number */
1352static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1353{
1354	u16 flo, fhi;
1355
1356	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1357	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1358	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359
1360	return (fhi << 8) | flo;
1361}
1362
1363/* Set the device as configured - enables all endpoints */
1364static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1365{
1366	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1367}
1368
1369/* Set the device as unconfigured - disables all endpoints */
1370static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1371{
1372	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1373}
1374
1375/* reinit == restore initial software state */
1376static void udc_reinit(struct lpc32xx_udc *udc)
1377{
1378	u32 i;
1379
1380	INIT_LIST_HEAD(&udc->gadget.ep_list);
1381	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1382
1383	for (i = 0; i < NUM_ENDPOINTS; i++) {
1384		struct lpc32xx_ep *ep = &udc->ep[i];
1385
1386		if (i != 0)
1387			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1388		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1389		INIT_LIST_HEAD(&ep->queue);
1390		ep->req_pending = 0;
1391	}
1392
1393	udc->ep0state = WAIT_FOR_SETUP;
1394}
1395
1396/* Must be called with lock */
1397static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1398{
1399	struct lpc32xx_udc *udc = ep->udc;
1400
1401	list_del_init(&req->queue);
1402	if (req->req.status == -EINPROGRESS)
1403		req->req.status = status;
1404	else
1405		status = req->req.status;
1406
1407	if (ep->lep) {
1408		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1409
1410		/* Free DDs */
1411		udc_dd_free(udc, req->dd_desc_ptr);
1412	}
1413
1414	if (status && status != -ESHUTDOWN)
1415		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1416
1417	ep->req_pending = 0;
1418	spin_unlock(&udc->lock);
1419	usb_gadget_giveback_request(&ep->ep, &req->req);
1420	spin_lock(&udc->lock);
1421}
1422
1423/* Must be called with lock */
1424static void nuke(struct lpc32xx_ep *ep, int status)
1425{
1426	struct lpc32xx_request *req;
1427
1428	while (!list_empty(&ep->queue)) {
1429		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1430		done(ep, req, status);
1431	}
1432
1433	if (status == -ESHUTDOWN) {
1434		uda_disable_hwepint(ep->udc, ep->hwep_num);
1435		udc_disable_hwep(ep->udc, ep->hwep_num);
1436	}
1437}
1438
1439/* IN endpoint 0 transfer */
1440static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1441{
1442	struct lpc32xx_request *req;
1443	struct lpc32xx_ep *ep0 = &udc->ep[0];
1444	u32 tsend, ts = 0;
1445
1446	if (list_empty(&ep0->queue))
1447		/* Nothing to send */
1448		return 0;
1449	else
1450		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1451				 queue);
1452
1453	tsend = ts = req->req.length - req->req.actual;
1454	if (ts == 0) {
1455		/* Send a ZLP */
1456		udc_ep0_send_zlp(udc);
1457		done(ep0, req, 0);
1458		return 1;
1459	} else if (ts > ep0->ep.maxpacket)
1460		ts = ep0->ep.maxpacket; /* Just send what we can */
1461
1462	/* Write data to the EP0 FIFO and start transfer */
1463	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1464
1465	/* Increment data pointer */
1466	req->req.actual += ts;
1467
1468	if (tsend >= ep0->ep.maxpacket)
1469		return 0; /* Stay in data transfer state */
1470
1471	/* Transfer request is complete */
1472	udc->ep0state = WAIT_FOR_SETUP;
1473	done(ep0, req, 0);
1474	return 1;
1475}
1476
1477/* OUT endpoint 0 transfer */
1478static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1479{
1480	struct lpc32xx_request *req;
1481	struct lpc32xx_ep *ep0 = &udc->ep[0];
1482	u32 tr, bufferspace;
1483
1484	if (list_empty(&ep0->queue))
1485		return 0;
1486	else
1487		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1488				 queue);
1489
1490	if (req) {
1491		if (req->req.length == 0) {
1492			/* Just dequeue request */
1493			done(ep0, req, 0);
1494			udc->ep0state = WAIT_FOR_SETUP;
1495			return 1;
1496		}
1497
1498		/* Get data from FIFO */
1499		bufferspace = req->req.length - req->req.actual;
1500		if (bufferspace > ep0->ep.maxpacket)
1501			bufferspace = ep0->ep.maxpacket;
1502
1503		/* Copy data to buffer */
1504		prefetchw(req->req.buf + req->req.actual);
1505		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1506				   bufferspace);
1507		req->req.actual += bufferspace;
1508
1509		if (tr < ep0->ep.maxpacket) {
1510			/* This is the last packet */
1511			done(ep0, req, 0);
1512			udc->ep0state = WAIT_FOR_SETUP;
1513			return 1;
1514		}
1515	}
1516
1517	return 0;
1518}
1519
1520/* Must be called with lock */
1521static void stop_activity(struct lpc32xx_udc *udc)
1522{
1523	struct usb_gadget_driver *driver = udc->driver;
1524	int i;
1525
1526	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1527		driver = NULL;
1528
1529	udc->gadget.speed = USB_SPEED_UNKNOWN;
1530	udc->suspended = 0;
1531
1532	for (i = 0; i < NUM_ENDPOINTS; i++) {
1533		struct lpc32xx_ep *ep = &udc->ep[i];
1534		nuke(ep, -ESHUTDOWN);
1535	}
1536	if (driver) {
1537		spin_unlock(&udc->lock);
1538		driver->disconnect(&udc->gadget);
1539		spin_lock(&udc->lock);
1540	}
1541
1542	isp1301_pullup_enable(udc, 0, 0);
1543	udc_disable(udc);
1544	udc_reinit(udc);
1545}
1546
1547/*
1548 * Activate or kill host pullup
1549 * Can be called with or without lock
1550 */
1551static void pullup(struct lpc32xx_udc *udc, int is_on)
1552{
1553	if (!udc->clocked)
1554		return;
1555
1556	if (!udc->enabled || !udc->vbus)
1557		is_on = 0;
1558
1559	if (is_on != udc->pullup)
1560		isp1301_pullup_enable(udc, is_on, 0);
1561}
1562
1563/* Must be called without lock */
1564static int lpc32xx_ep_disable(struct usb_ep *_ep)
1565{
1566	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1567	struct lpc32xx_udc *udc = ep->udc;
1568	unsigned long	flags;
1569
1570	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1571		return -EINVAL;
1572	spin_lock_irqsave(&udc->lock, flags);
1573
1574	nuke(ep, -ESHUTDOWN);
1575
1576	/* Clear all DMA statuses for this EP */
1577	udc_ep_dma_disable(udc, ep->hwep_num);
1578	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1579	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1580	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1581	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1582
1583	/* Remove the DD pointer in the UDCA */
1584	udc->udca_v_base[ep->hwep_num] = 0;
1585
1586	/* Disable and reset endpoint and interrupt */
1587	uda_clear_hwepint(udc, ep->hwep_num);
1588	udc_unrealize_hwep(udc, ep->hwep_num);
1589
1590	ep->hwep_num = 0;
1591
1592	spin_unlock_irqrestore(&udc->lock, flags);
1593
1594	atomic_dec(&udc->enabled_ep_cnt);
1595	wake_up(&udc->ep_disable_wait_queue);
1596
1597	return 0;
1598}
1599
1600/* Must be called without lock */
1601static int lpc32xx_ep_enable(struct usb_ep *_ep,
1602			     const struct usb_endpoint_descriptor *desc)
1603{
1604	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1605	struct lpc32xx_udc *udc;
1606	u16 maxpacket;
1607	u32 tmp;
1608	unsigned long flags;
1609
1610	/* Verify EP data */
1611	if ((!_ep) || (!ep) || (!desc) ||
1612	    (desc->bDescriptorType != USB_DT_ENDPOINT))
 
1613		return -EINVAL;
1614
1615	udc = ep->udc;
1616	maxpacket = usb_endpoint_maxp(desc);
1617	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1618		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1619		return -EINVAL;
1620	}
1621
1622	/* Don't touch EP0 */
1623	if (ep->hwep_num_base == 0) {
1624		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1625		return -EINVAL;
1626	}
1627
1628	/* Is driver ready? */
1629	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1630		dev_dbg(udc->dev, "bogus device state\n");
1631		return -ESHUTDOWN;
1632	}
1633
1634	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1635	switch (tmp) {
1636	case USB_ENDPOINT_XFER_CONTROL:
1637		return -EINVAL;
1638
1639	case USB_ENDPOINT_XFER_INT:
1640		if (maxpacket > ep->maxpacket) {
1641			dev_dbg(udc->dev,
1642				"Bad INT endpoint maxpacket %d\n", maxpacket);
1643			return -EINVAL;
1644		}
1645		break;
1646
1647	case USB_ENDPOINT_XFER_BULK:
1648		switch (maxpacket) {
1649		case 8:
1650		case 16:
1651		case 32:
1652		case 64:
1653			break;
1654
1655		default:
1656			dev_dbg(udc->dev,
1657				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1658			return -EINVAL;
1659		}
1660		break;
1661
1662	case USB_ENDPOINT_XFER_ISOC:
1663		break;
1664	}
1665	spin_lock_irqsave(&udc->lock, flags);
1666
1667	/* Initialize endpoint to match the selected descriptor */
1668	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1669	ep->ep.maxpacket = maxpacket;
1670
1671	/* Map hardware endpoint from base and direction */
1672	if (ep->is_in)
1673		/* IN endpoints are offset 1 from the OUT endpoint */
1674		ep->hwep_num = ep->hwep_num_base + EP_IN;
1675	else
1676		ep->hwep_num = ep->hwep_num_base;
1677
1678	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1679	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1680
1681	/* Realize the endpoint, interrupt is enabled later when
1682	 * buffers are queued, IN EPs will NAK until buffers are ready */
1683	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1684	udc_clr_buffer_hwep(udc, ep->hwep_num);
1685	uda_disable_hwepint(udc, ep->hwep_num);
1686	udc_clrstall_hwep(udc, ep->hwep_num);
1687
1688	/* Clear all DMA statuses for this EP */
1689	udc_ep_dma_disable(udc, ep->hwep_num);
1690	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1691	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1692	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1693	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1694
1695	spin_unlock_irqrestore(&udc->lock, flags);
1696
1697	atomic_inc(&udc->enabled_ep_cnt);
1698	return 0;
1699}
1700
1701/*
1702 * Allocate a USB request list
1703 * Can be called with or without lock
1704 */
1705static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1706						    gfp_t gfp_flags)
1707{
1708	struct lpc32xx_request *req;
1709
1710	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1711	if (!req)
1712		return NULL;
1713
1714	INIT_LIST_HEAD(&req->queue);
1715	return &req->req;
1716}
1717
1718/*
1719 * De-allocate a USB request list
1720 * Can be called with or without lock
1721 */
1722static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1723				    struct usb_request *_req)
1724{
1725	struct lpc32xx_request *req;
1726
1727	req = container_of(_req, struct lpc32xx_request, req);
1728	BUG_ON(!list_empty(&req->queue));
1729	kfree(req);
1730}
1731
1732/* Must be called without lock */
1733static int lpc32xx_ep_queue(struct usb_ep *_ep,
1734			    struct usb_request *_req, gfp_t gfp_flags)
1735{
1736	struct lpc32xx_request *req;
1737	struct lpc32xx_ep *ep;
1738	struct lpc32xx_udc *udc;
1739	unsigned long flags;
1740	int status = 0;
1741
1742	req = container_of(_req, struct lpc32xx_request, req);
1743	ep = container_of(_ep, struct lpc32xx_ep, ep);
1744
1745	if (!_ep || !_req || !_req->complete || !_req->buf ||
1746	    !list_empty(&req->queue))
1747		return -EINVAL;
1748
1749	udc = ep->udc;
1750
1751	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1752		return -EPIPE;
1753
1754	if (ep->lep) {
1755		struct lpc32xx_usbd_dd_gad *dd;
1756
1757		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1758		if (status)
1759			return status;
1760
1761		/* For the request, build a list of DDs */
1762		dd = udc_dd_alloc(udc);
1763		if (!dd) {
1764			/* Error allocating DD */
1765			return -ENOMEM;
1766		}
1767		req->dd_desc_ptr = dd;
1768
1769		/* Setup the DMA descriptor */
1770		dd->dd_next_phy = dd->dd_next_v = 0;
1771		dd->dd_buffer_addr = req->req.dma;
1772		dd->dd_status = 0;
1773
1774		/* Special handling for ISO EPs */
1775		if (ep->eptype == EP_ISO_TYPE) {
1776			dd->dd_setup = DD_SETUP_ISO_EP |
1777				DD_SETUP_PACKETLEN(0) |
1778				DD_SETUP_DMALENBYTES(1);
1779			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1780			if (ep->is_in)
1781				dd->iso_status[0] = req->req.length;
1782			else
1783				dd->iso_status[0] = 0;
1784		} else
1785			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1786				DD_SETUP_DMALENBYTES(req->req.length);
1787	}
1788
1789	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1790	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1791
1792	spin_lock_irqsave(&udc->lock, flags);
1793
1794	_req->status = -EINPROGRESS;
1795	_req->actual = 0;
1796	req->send_zlp = _req->zero;
1797
1798	/* Kickstart empty queues */
1799	if (list_empty(&ep->queue)) {
1800		list_add_tail(&req->queue, &ep->queue);
1801
1802		if (ep->hwep_num_base == 0) {
1803			/* Handle expected data direction */
1804			if (ep->is_in) {
1805				/* IN packet to host */
1806				udc->ep0state = DATA_IN;
1807				status = udc_ep0_in_req(udc);
1808			} else {
1809				/* OUT packet from host */
1810				udc->ep0state = DATA_OUT;
1811				status = udc_ep0_out_req(udc);
1812			}
1813		} else if (ep->is_in) {
1814			/* IN packet to host and kick off transfer */
1815			if (!ep->req_pending)
1816				udc_ep_in_req_dma(udc, ep);
1817		} else
1818			/* OUT packet from host and kick off list */
1819			if (!ep->req_pending)
1820				udc_ep_out_req_dma(udc, ep);
1821	} else
1822		list_add_tail(&req->queue, &ep->queue);
1823
1824	spin_unlock_irqrestore(&udc->lock, flags);
1825
1826	return (status < 0) ? status : 0;
1827}
1828
1829/* Must be called without lock */
1830static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1831{
1832	struct lpc32xx_ep *ep;
1833	struct lpc32xx_request *req = NULL, *iter;
1834	unsigned long flags;
1835
1836	ep = container_of(_ep, struct lpc32xx_ep, ep);
1837	if (!_ep || ep->hwep_num_base == 0)
1838		return -EINVAL;
1839
1840	spin_lock_irqsave(&ep->udc->lock, flags);
1841
1842	/* make sure it's actually queued on this endpoint */
1843	list_for_each_entry(iter, &ep->queue, queue) {
1844		if (&iter->req != _req)
1845			continue;
1846		req = iter;
1847		break;
1848	}
1849	if (!req) {
1850		spin_unlock_irqrestore(&ep->udc->lock, flags);
1851		return -EINVAL;
1852	}
1853
1854	done(ep, req, -ECONNRESET);
1855
1856	spin_unlock_irqrestore(&ep->udc->lock, flags);
1857
1858	return 0;
1859}
1860
1861/* Must be called without lock */
1862static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1863{
1864	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1865	struct lpc32xx_udc *udc;
1866	unsigned long flags;
1867
1868	if ((!ep) || (ep->hwep_num <= 1))
1869		return -EINVAL;
1870
1871	/* Don't halt an IN EP */
1872	if (ep->is_in)
1873		return -EAGAIN;
1874
1875	udc = ep->udc;
1876	spin_lock_irqsave(&udc->lock, flags);
1877
1878	if (value == 1) {
1879		/* stall */
1880		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1881					DAT_WR_BYTE(EP_STAT_ST));
1882	} else {
1883		/* End stall */
1884		ep->wedge = 0;
1885		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1886					DAT_WR_BYTE(0));
1887	}
1888
1889	spin_unlock_irqrestore(&udc->lock, flags);
1890
1891	return 0;
1892}
1893
1894/* set the halt feature and ignores clear requests */
1895static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1896{
1897	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1898
1899	if (!_ep || !ep->udc)
1900		return -EINVAL;
1901
1902	ep->wedge = 1;
1903
1904	return usb_ep_set_halt(_ep);
1905}
1906
1907static const struct usb_ep_ops lpc32xx_ep_ops = {
1908	.enable		= lpc32xx_ep_enable,
1909	.disable	= lpc32xx_ep_disable,
1910	.alloc_request	= lpc32xx_ep_alloc_request,
1911	.free_request	= lpc32xx_ep_free_request,
1912	.queue		= lpc32xx_ep_queue,
1913	.dequeue	= lpc32xx_ep_dequeue,
1914	.set_halt	= lpc32xx_ep_set_halt,
1915	.set_wedge	= lpc32xx_ep_set_wedge,
1916};
1917
1918/* Send a ZLP on a non-0 IN EP */
1919static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1920{
1921	/* Clear EP status */
1922	udc_clearep_getsts(udc, ep->hwep_num);
1923
1924	/* Send ZLP via FIFO mechanism */
1925	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1926}
1927
1928/*
1929 * Handle EP completion for ZLP
1930 * This function will only be called when a delayed ZLP needs to be sent out
1931 * after a DMA transfer has filled both buffers.
1932 */
1933static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1934{
1935	u32 epstatus;
1936	struct lpc32xx_request *req;
1937
1938	if (ep->hwep_num <= 0)
1939		return;
1940
1941	uda_clear_hwepint(udc, ep->hwep_num);
1942
1943	/* If this interrupt isn't enabled, return now */
1944	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1945		return;
1946
1947	/* Get endpoint status */
1948	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1949
1950	/*
1951	 * This should never happen, but protect against writing to the
1952	 * buffer when full.
1953	 */
1954	if (epstatus & EP_SEL_F)
1955		return;
1956
1957	if (ep->is_in) {
1958		udc_send_in_zlp(udc, ep);
1959		uda_disable_hwepint(udc, ep->hwep_num);
1960	} else
1961		return;
1962
1963	/* If there isn't a request waiting, something went wrong */
1964	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1965	if (req) {
1966		done(ep, req, 0);
1967
1968		/* Start another request if ready */
1969		if (!list_empty(&ep->queue)) {
1970			if (ep->is_in)
1971				udc_ep_in_req_dma(udc, ep);
1972			else
1973				udc_ep_out_req_dma(udc, ep);
1974		} else
1975			ep->req_pending = 0;
1976	}
1977}
1978
1979
1980/* DMA end of transfer completion */
1981static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1982{
1983	u32 status;
1984	struct lpc32xx_request *req;
1985	struct lpc32xx_usbd_dd_gad *dd;
1986
1987#ifdef CONFIG_USB_GADGET_DEBUG_FILES
1988	ep->totalints++;
1989#endif
1990
1991	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1992	if (!req) {
1993		ep_err(ep, "DMA interrupt on no req!\n");
1994		return;
1995	}
1996	dd = req->dd_desc_ptr;
1997
1998	/* DMA descriptor should always be retired for this call */
1999	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2000		ep_warn(ep, "DMA descriptor did not retire\n");
2001
2002	/* Disable DMA */
2003	udc_ep_dma_disable(udc, ep->hwep_num);
2004	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2005	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2006
2007	/* System error? */
2008	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2009	    (1 << ep->hwep_num)) {
2010		writel((1 << ep->hwep_num),
2011			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2012		ep_err(ep, "AHB critical error!\n");
2013		ep->req_pending = 0;
2014
2015		/* The error could have occurred on a packet of a multipacket
2016		 * transfer, so recovering the transfer is not possible. Close
2017		 * the request with an error */
2018		done(ep, req, -ECONNABORTED);
2019		return;
2020	}
2021
2022	/* Handle the current DD's status */
2023	status = dd->dd_status;
2024	switch (status & DD_STATUS_STS_MASK) {
2025	case DD_STATUS_STS_NS:
2026		/* DD not serviced? This shouldn't happen! */
2027		ep->req_pending = 0;
2028		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2029		       status);
2030
2031		done(ep, req, -ECONNABORTED);
2032		return;
2033
2034	case DD_STATUS_STS_BS:
2035		/* Interrupt only fires on EOT - This shouldn't happen! */
2036		ep->req_pending = 0;
2037		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2038		       status);
2039		done(ep, req, -ECONNABORTED);
2040		return;
2041
2042	case DD_STATUS_STS_NC:
2043	case DD_STATUS_STS_DUR:
2044		/* Really just a short packet, not an underrun */
2045		/* This is a good status and what we expect */
2046		break;
2047
2048	default:
2049		/* Data overrun, system error, or unknown */
2050		ep->req_pending = 0;
2051		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2052		       status);
2053		done(ep, req, -ECONNABORTED);
2054		return;
2055	}
2056
2057	/* ISO endpoints are handled differently */
2058	if (ep->eptype == EP_ISO_TYPE) {
2059		if (ep->is_in)
2060			req->req.actual = req->req.length;
2061		else
2062			req->req.actual = dd->iso_status[0] & 0xFFFF;
2063	} else
2064		req->req.actual += DD_STATUS_CURDMACNT(status);
2065
2066	/* Send a ZLP if necessary. This will be done for non-int
2067	 * packets which have a size that is a divisor of MAXP */
2068	if (req->send_zlp) {
2069		/*
2070		 * If at least 1 buffer is available, send the ZLP now.
2071		 * Otherwise, the ZLP send needs to be deferred until a
2072		 * buffer is available.
2073		 */
2074		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2075			udc_clearep_getsts(udc, ep->hwep_num);
2076			uda_enable_hwepint(udc, ep->hwep_num);
2077			udc_clearep_getsts(udc, ep->hwep_num);
2078
2079			/* Let the EP interrupt handle the ZLP */
2080			return;
2081		} else
2082			udc_send_in_zlp(udc, ep);
2083	}
2084
2085	/* Transfer request is complete */
2086	done(ep, req, 0);
2087
2088	/* Start another request if ready */
2089	udc_clearep_getsts(udc, ep->hwep_num);
2090	if (!list_empty((&ep->queue))) {
2091		if (ep->is_in)
2092			udc_ep_in_req_dma(udc, ep);
2093		else
2094			udc_ep_out_req_dma(udc, ep);
2095	} else
2096		ep->req_pending = 0;
2097
2098}
2099
2100/*
2101 *
2102 * Endpoint 0 functions
2103 *
2104 */
2105static void udc_handle_dev(struct lpc32xx_udc *udc)
2106{
2107	u32 tmp;
2108
2109	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2110	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2111
2112	if (tmp & DEV_RST)
2113		uda_usb_reset(udc);
2114	else if (tmp & DEV_CON_CH)
2115		uda_power_event(udc, (tmp & DEV_CON));
2116	else if (tmp & DEV_SUS_CH) {
2117		if (tmp & DEV_SUS) {
2118			if (udc->vbus == 0)
2119				stop_activity(udc);
2120			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2121				 udc->driver) {
2122				/* Power down transceiver */
2123				udc->poweron = 0;
2124				schedule_work(&udc->pullup_job);
2125				uda_resm_susp_event(udc, 1);
2126			}
2127		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2128			   udc->driver && udc->vbus) {
2129			uda_resm_susp_event(udc, 0);
2130			/* Power up transceiver */
2131			udc->poweron = 1;
2132			schedule_work(&udc->pullup_job);
2133		}
2134	}
2135}
2136
2137static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2138{
2139	struct lpc32xx_ep *ep;
2140	u32 ep0buff = 0, tmp;
2141
2142	switch (reqtype & USB_RECIP_MASK) {
2143	case USB_RECIP_INTERFACE:
2144		break; /* Not supported */
2145
2146	case USB_RECIP_DEVICE:
2147		ep0buff = udc->gadget.is_selfpowered;
2148		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2149			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2150		break;
2151
2152	case USB_RECIP_ENDPOINT:
2153		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2154		ep = &udc->ep[tmp];
2155		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2156			return -EOPNOTSUPP;
2157
2158		if (wIndex & USB_DIR_IN) {
2159			if (!ep->is_in)
2160				return -EOPNOTSUPP; /* Something's wrong */
2161		} else if (ep->is_in)
2162			return -EOPNOTSUPP; /* Not an IN endpoint */
2163
2164		/* Get status of the endpoint */
2165		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2166		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2167
2168		if (tmp & EP_SEL_ST)
2169			ep0buff = (1 << USB_ENDPOINT_HALT);
2170		else
2171			ep0buff = 0;
2172		break;
2173
2174	default:
2175		break;
2176	}
2177
2178	/* Return data */
2179	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2180
2181	return 0;
2182}
2183
2184static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2185{
2186	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2187	struct usb_ctrlrequest ctrlpkt;
2188	int i, bytes;
2189	u16 wIndex, wValue, reqtype, req, tmp;
2190
2191	/* Nuke previous transfers */
2192	nuke(ep0, -EPROTO);
2193
2194	/* Get setup packet */
2195	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2196	if (bytes != 8) {
2197		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2198			bytes);
2199		return;
2200	}
2201
2202	/* Native endianness */
2203	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2204	wValue = le16_to_cpu(ctrlpkt.wValue);
 
2205	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2206
2207	/* Set direction of EP0 */
2208	if (likely(reqtype & USB_DIR_IN))
2209		ep0->is_in = 1;
2210	else
2211		ep0->is_in = 0;
2212
2213	/* Handle SETUP packet */
2214	req = le16_to_cpu(ctrlpkt.bRequest);
2215	switch (req) {
2216	case USB_REQ_CLEAR_FEATURE:
2217	case USB_REQ_SET_FEATURE:
2218		switch (reqtype) {
2219		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2220			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2221				goto stall; /* Nothing else handled */
2222
2223			/* Tell board about event */
2224			if (req == USB_REQ_CLEAR_FEATURE)
2225				udc->dev_status &=
2226					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2227			else
2228				udc->dev_status |=
2229					(1 << USB_DEVICE_REMOTE_WAKEUP);
2230			uda_remwkp_cgh(udc);
2231			goto zlp_send;
2232
2233		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2234			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2235			if ((wValue != USB_ENDPOINT_HALT) ||
2236			    (tmp >= NUM_ENDPOINTS))
2237				break;
2238
2239			/* Find hardware endpoint from logical endpoint */
2240			ep = &udc->ep[tmp];
2241			tmp = ep->hwep_num;
2242			if (tmp == 0)
2243				break;
2244
2245			if (req == USB_REQ_SET_FEATURE)
2246				udc_stall_hwep(udc, tmp);
2247			else if (!ep->wedge)
2248				udc_clrstall_hwep(udc, tmp);
2249
2250			goto zlp_send;
2251
2252		default:
2253			break;
2254		}
2255		break;
2256
2257	case USB_REQ_SET_ADDRESS:
2258		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2259			udc_set_address(udc, wValue);
2260			goto zlp_send;
2261		}
2262		break;
2263
2264	case USB_REQ_GET_STATUS:
2265		udc_get_status(udc, reqtype, wIndex);
2266		return;
2267
2268	default:
2269		break; /* Let GadgetFS handle the descriptor instead */
2270	}
2271
2272	if (likely(udc->driver)) {
2273		/* device-2-host (IN) or no data setup command, process
2274		 * immediately */
2275		spin_unlock(&udc->lock);
2276		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2277
2278		spin_lock(&udc->lock);
2279		if (req == USB_REQ_SET_CONFIGURATION) {
2280			/* Configuration is set after endpoints are realized */
2281			if (wValue) {
2282				/* Set configuration */
2283				udc_set_device_configured(udc);
2284
2285				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2286							DAT_WR_BYTE(AP_CLK |
2287							INAK_BI | INAK_II));
2288			} else {
2289				/* Clear configuration */
2290				udc_set_device_unconfigured(udc);
2291
2292				/* Disable NAK interrupts */
2293				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2294							DAT_WR_BYTE(AP_CLK));
2295			}
2296		}
2297
2298		if (i < 0) {
2299			/* setup processing failed, force stall */
2300			dev_dbg(udc->dev,
2301				"req %02x.%02x protocol STALL; stat %d\n",
2302				reqtype, req, i);
2303			udc->ep0state = WAIT_FOR_SETUP;
2304			goto stall;
2305		}
2306	}
2307
2308	if (!ep0->is_in)
2309		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2310
2311	return;
2312
2313stall:
2314	udc_stall_hwep(udc, EP_IN);
2315	return;
2316
2317zlp_send:
2318	udc_ep0_send_zlp(udc);
2319	return;
2320}
2321
2322/* IN endpoint 0 transfer */
2323static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2324{
2325	struct lpc32xx_ep *ep0 = &udc->ep[0];
2326	u32 epstatus;
2327
2328	/* Clear EP interrupt */
2329	epstatus = udc_clearep_getsts(udc, EP_IN);
2330
2331#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2332	ep0->totalints++;
2333#endif
2334
2335	/* Stalled? Clear stall and reset buffers */
2336	if (epstatus & EP_SEL_ST) {
2337		udc_clrstall_hwep(udc, EP_IN);
2338		nuke(ep0, -ECONNABORTED);
2339		udc->ep0state = WAIT_FOR_SETUP;
2340		return;
2341	}
2342
2343	/* Is a buffer available? */
2344	if (!(epstatus & EP_SEL_F)) {
2345		/* Handle based on current state */
2346		if (udc->ep0state == DATA_IN)
2347			udc_ep0_in_req(udc);
2348		else {
2349			/* Unknown state for EP0 oe end of DATA IN phase */
2350			nuke(ep0, -ECONNABORTED);
2351			udc->ep0state = WAIT_FOR_SETUP;
2352		}
2353	}
2354}
2355
2356/* OUT endpoint 0 transfer */
2357static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2358{
2359	struct lpc32xx_ep *ep0 = &udc->ep[0];
2360	u32 epstatus;
2361
2362	/* Clear EP interrupt */
2363	epstatus = udc_clearep_getsts(udc, EP_OUT);
2364
2365
2366#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2367	ep0->totalints++;
2368#endif
2369
2370	/* Stalled? */
2371	if (epstatus & EP_SEL_ST) {
2372		udc_clrstall_hwep(udc, EP_OUT);
2373		nuke(ep0, -ECONNABORTED);
2374		udc->ep0state = WAIT_FOR_SETUP;
2375		return;
2376	}
2377
2378	/* A NAK may occur if a packet couldn't be received yet */
2379	if (epstatus & EP_SEL_EPN)
2380		return;
2381	/* Setup packet incoming? */
2382	if (epstatus & EP_SEL_STP) {
2383		nuke(ep0, 0);
2384		udc->ep0state = WAIT_FOR_SETUP;
2385	}
2386
2387	/* Data available? */
2388	if (epstatus & EP_SEL_F)
2389		/* Handle based on current state */
2390		switch (udc->ep0state) {
2391		case WAIT_FOR_SETUP:
2392			udc_handle_ep0_setup(udc);
2393			break;
2394
2395		case DATA_OUT:
2396			udc_ep0_out_req(udc);
2397			break;
2398
2399		default:
2400			/* Unknown state for EP0 */
2401			nuke(ep0, -ECONNABORTED);
2402			udc->ep0state = WAIT_FOR_SETUP;
2403		}
2404}
2405
2406/* Must be called without lock */
2407static int lpc32xx_get_frame(struct usb_gadget *gadget)
2408{
2409	int frame;
2410	unsigned long flags;
2411	struct lpc32xx_udc *udc = to_udc(gadget);
2412
2413	if (!udc->clocked)
2414		return -EINVAL;
2415
2416	spin_lock_irqsave(&udc->lock, flags);
2417
2418	frame = (int) udc_get_current_frame(udc);
2419
2420	spin_unlock_irqrestore(&udc->lock, flags);
2421
2422	return frame;
2423}
2424
2425static int lpc32xx_wakeup(struct usb_gadget *gadget)
2426{
2427	return -ENOTSUPP;
2428}
2429
2430static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2431{
2432	gadget->is_selfpowered = (is_on != 0);
2433
2434	return 0;
2435}
2436
2437/*
2438 * vbus is here!  turn everything on that's ready
2439 * Must be called without lock
2440 */
2441static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2442{
2443	unsigned long flags;
2444	struct lpc32xx_udc *udc = to_udc(gadget);
2445
2446	spin_lock_irqsave(&udc->lock, flags);
2447
2448	/* Doesn't need lock */
2449	if (udc->driver) {
2450		udc_clk_set(udc, 1);
2451		udc_enable(udc);
2452		pullup(udc, is_active);
2453	} else {
2454		stop_activity(udc);
2455		pullup(udc, 0);
2456
2457		spin_unlock_irqrestore(&udc->lock, flags);
2458		/*
2459		 *  Wait for all the endpoints to disable,
2460		 *  before disabling clocks. Don't wait if
2461		 *  endpoints are not enabled.
2462		 */
2463		if (atomic_read(&udc->enabled_ep_cnt))
2464			wait_event_interruptible(udc->ep_disable_wait_queue,
2465				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2466
2467		spin_lock_irqsave(&udc->lock, flags);
2468
2469		udc_clk_set(udc, 0);
2470	}
2471
2472	spin_unlock_irqrestore(&udc->lock, flags);
2473
2474	return 0;
2475}
2476
2477/* Can be called with or without lock */
2478static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2479{
2480	struct lpc32xx_udc *udc = to_udc(gadget);
2481
2482	/* Doesn't need lock */
2483	pullup(udc, is_on);
2484
2485	return 0;
2486}
2487
2488static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2489static int lpc32xx_stop(struct usb_gadget *);
2490
2491static const struct usb_gadget_ops lpc32xx_udc_ops = {
2492	.get_frame		= lpc32xx_get_frame,
2493	.wakeup			= lpc32xx_wakeup,
2494	.set_selfpowered	= lpc32xx_set_selfpowered,
2495	.vbus_session		= lpc32xx_vbus_session,
2496	.pullup			= lpc32xx_pullup,
2497	.udc_start		= lpc32xx_start,
2498	.udc_stop		= lpc32xx_stop,
2499};
2500
2501static void nop_release(struct device *dev)
2502{
2503	/* nothing to free */
2504}
2505
2506static const struct lpc32xx_udc controller_template = {
2507	.gadget = {
2508		.ops	= &lpc32xx_udc_ops,
2509		.name	= driver_name,
2510		.dev	= {
2511			.init_name = "gadget",
2512			.release = nop_release,
2513		}
2514	},
2515	.ep[0] = {
2516		.ep = {
2517			.name	= "ep0",
2518			.ops	= &lpc32xx_ep_ops,
2519			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2520					USB_EP_CAPS_DIR_ALL),
2521		},
2522		.maxpacket	= 64,
2523		.hwep_num_base	= 0,
2524		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2525		.lep		= 0,
2526		.eptype		= EP_CTL_TYPE,
2527	},
2528	.ep[1] = {
2529		.ep = {
2530			.name	= "ep1-int",
2531			.ops	= &lpc32xx_ep_ops,
2532			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2533					USB_EP_CAPS_DIR_ALL),
2534		},
2535		.maxpacket	= 64,
2536		.hwep_num_base	= 2,
2537		.hwep_num	= 0, /* 2 or 3, will be set later */
2538		.lep		= 1,
2539		.eptype		= EP_INT_TYPE,
2540	},
2541	.ep[2] = {
2542		.ep = {
2543			.name	= "ep2-bulk",
2544			.ops	= &lpc32xx_ep_ops,
2545			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2546					USB_EP_CAPS_DIR_ALL),
2547		},
2548		.maxpacket	= 64,
2549		.hwep_num_base	= 4,
2550		.hwep_num	= 0, /* 4 or 5, will be set later */
2551		.lep		= 2,
2552		.eptype		= EP_BLK_TYPE,
2553	},
2554	.ep[3] = {
2555		.ep = {
2556			.name	= "ep3-iso",
2557			.ops	= &lpc32xx_ep_ops,
2558			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2559					USB_EP_CAPS_DIR_ALL),
2560		},
2561		.maxpacket	= 1023,
2562		.hwep_num_base	= 6,
2563		.hwep_num	= 0, /* 6 or 7, will be set later */
2564		.lep		= 3,
2565		.eptype		= EP_ISO_TYPE,
2566	},
2567	.ep[4] = {
2568		.ep = {
2569			.name	= "ep4-int",
2570			.ops	= &lpc32xx_ep_ops,
2571			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2572					USB_EP_CAPS_DIR_ALL),
2573		},
2574		.maxpacket	= 64,
2575		.hwep_num_base	= 8,
2576		.hwep_num	= 0, /* 8 or 9, will be set later */
2577		.lep		= 4,
2578		.eptype		= EP_INT_TYPE,
2579	},
2580	.ep[5] = {
2581		.ep = {
2582			.name	= "ep5-bulk",
2583			.ops	= &lpc32xx_ep_ops,
2584			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2585					USB_EP_CAPS_DIR_ALL),
2586		},
2587		.maxpacket	= 64,
2588		.hwep_num_base	= 10,
2589		.hwep_num	= 0, /* 10 or 11, will be set later */
2590		.lep		= 5,
2591		.eptype		= EP_BLK_TYPE,
2592	},
2593	.ep[6] = {
2594		.ep = {
2595			.name	= "ep6-iso",
2596			.ops	= &lpc32xx_ep_ops,
2597			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2598					USB_EP_CAPS_DIR_ALL),
2599		},
2600		.maxpacket	= 1023,
2601		.hwep_num_base	= 12,
2602		.hwep_num	= 0, /* 12 or 13, will be set later */
2603		.lep		= 6,
2604		.eptype		= EP_ISO_TYPE,
2605	},
2606	.ep[7] = {
2607		.ep = {
2608			.name	= "ep7-int",
2609			.ops	= &lpc32xx_ep_ops,
2610			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2611					USB_EP_CAPS_DIR_ALL),
2612		},
2613		.maxpacket	= 64,
2614		.hwep_num_base	= 14,
2615		.hwep_num	= 0,
2616		.lep		= 7,
2617		.eptype		= EP_INT_TYPE,
2618	},
2619	.ep[8] = {
2620		.ep = {
2621			.name	= "ep8-bulk",
2622			.ops	= &lpc32xx_ep_ops,
2623			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2624					USB_EP_CAPS_DIR_ALL),
2625		},
2626		.maxpacket	= 64,
2627		.hwep_num_base	= 16,
2628		.hwep_num	= 0,
2629		.lep		= 8,
2630		.eptype		= EP_BLK_TYPE,
2631	},
2632	.ep[9] = {
2633		.ep = {
2634			.name	= "ep9-iso",
2635			.ops	= &lpc32xx_ep_ops,
2636			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2637					USB_EP_CAPS_DIR_ALL),
2638		},
2639		.maxpacket	= 1023,
2640		.hwep_num_base	= 18,
2641		.hwep_num	= 0,
2642		.lep		= 9,
2643		.eptype		= EP_ISO_TYPE,
2644	},
2645	.ep[10] = {
2646		.ep = {
2647			.name	= "ep10-int",
2648			.ops	= &lpc32xx_ep_ops,
2649			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2650					USB_EP_CAPS_DIR_ALL),
2651		},
2652		.maxpacket	= 64,
2653		.hwep_num_base	= 20,
2654		.hwep_num	= 0,
2655		.lep		= 10,
2656		.eptype		= EP_INT_TYPE,
2657	},
2658	.ep[11] = {
2659		.ep = {
2660			.name	= "ep11-bulk",
2661			.ops	= &lpc32xx_ep_ops,
2662			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2663					USB_EP_CAPS_DIR_ALL),
2664		},
2665		.maxpacket	= 64,
2666		.hwep_num_base	= 22,
2667		.hwep_num	= 0,
2668		.lep		= 11,
2669		.eptype		= EP_BLK_TYPE,
2670	},
2671	.ep[12] = {
2672		.ep = {
2673			.name	= "ep12-iso",
2674			.ops	= &lpc32xx_ep_ops,
2675			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2676					USB_EP_CAPS_DIR_ALL),
2677		},
2678		.maxpacket	= 1023,
2679		.hwep_num_base	= 24,
2680		.hwep_num	= 0,
2681		.lep		= 12,
2682		.eptype		= EP_ISO_TYPE,
2683	},
2684	.ep[13] = {
2685		.ep = {
2686			.name	= "ep13-int",
2687			.ops	= &lpc32xx_ep_ops,
2688			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2689					USB_EP_CAPS_DIR_ALL),
2690		},
2691		.maxpacket	= 64,
2692		.hwep_num_base	= 26,
2693		.hwep_num	= 0,
2694		.lep		= 13,
2695		.eptype		= EP_INT_TYPE,
2696	},
2697	.ep[14] = {
2698		.ep = {
2699			.name	= "ep14-bulk",
2700			.ops	= &lpc32xx_ep_ops,
2701			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2702					USB_EP_CAPS_DIR_ALL),
2703		},
2704		.maxpacket	= 64,
2705		.hwep_num_base	= 28,
2706		.hwep_num	= 0,
2707		.lep		= 14,
2708		.eptype		= EP_BLK_TYPE,
2709	},
2710	.ep[15] = {
2711		.ep = {
2712			.name	= "ep15-bulk",
2713			.ops	= &lpc32xx_ep_ops,
2714			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2715					USB_EP_CAPS_DIR_ALL),
2716		},
2717		.maxpacket	= 1023,
2718		.hwep_num_base	= 30,
2719		.hwep_num	= 0,
2720		.lep		= 15,
2721		.eptype		= EP_BLK_TYPE,
2722	},
2723};
2724
2725/* ISO and status interrupts */
2726static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2727{
2728	u32 tmp, devstat;
2729	struct lpc32xx_udc *udc = _udc;
2730
2731	spin_lock(&udc->lock);
2732
2733	/* Read the device status register */
2734	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2735
2736	devstat &= ~USBD_EP_FAST;
2737	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2738	devstat = devstat & udc->enabled_devints;
2739
2740	/* Device specific handling needed? */
2741	if (devstat & USBD_DEV_STAT)
2742		udc_handle_dev(udc);
2743
2744	/* Start of frame? (devstat & FRAME_INT):
2745	 * The frame interrupt isn't really needed for ISO support,
2746	 * as the driver will queue the necessary packets */
2747
2748	/* Error? */
2749	if (devstat & ERR_INT) {
2750		/* All types of errors, from cable removal during transfer to
2751		 * misc protocol and bit errors. These are mostly for just info,
2752		 * as the USB hardware will work around these. If these errors
2753		 * happen alot, something is wrong. */
2754		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2755		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2756		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2757	}
2758
2759	spin_unlock(&udc->lock);
2760
2761	return IRQ_HANDLED;
2762}
2763
2764/* EP interrupts */
2765static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2766{
2767	u32 tmp;
2768	struct lpc32xx_udc *udc = _udc;
2769
2770	spin_lock(&udc->lock);
2771
2772	/* Read the device status register */
2773	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2774
2775	/* Endpoints */
2776	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2777
2778	/* Special handling for EP0 */
2779	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2780		/* Handle EP0 IN */
2781		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2782			udc_handle_ep0_in(udc);
2783
2784		/* Handle EP0 OUT */
2785		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2786			udc_handle_ep0_out(udc);
2787	}
2788
2789	/* All other EPs */
2790	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2791		int i;
2792
2793		/* Handle other EP interrupts */
2794		for (i = 1; i < NUM_ENDPOINTS; i++) {
2795			if (tmp & (1 << udc->ep[i].hwep_num))
2796				udc_handle_eps(udc, &udc->ep[i]);
2797		}
2798	}
2799
2800	spin_unlock(&udc->lock);
2801
2802	return IRQ_HANDLED;
2803}
2804
2805static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2806{
2807	struct lpc32xx_udc *udc = _udc;
2808
2809	int i;
2810	u32 tmp;
2811
2812	spin_lock(&udc->lock);
2813
2814	/* Handle EP DMA EOT interrupts */
2815	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2816		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2817		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2818		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2819	for (i = 1; i < NUM_ENDPOINTS; i++) {
2820		if (tmp & (1 << udc->ep[i].hwep_num))
2821			udc_handle_dma_ep(udc, &udc->ep[i]);
2822	}
2823
2824	spin_unlock(&udc->lock);
2825
2826	return IRQ_HANDLED;
2827}
2828
2829/*
2830 *
2831 * VBUS detection, pullup handler, and Gadget cable state notification
2832 *
2833 */
2834static void vbus_work(struct lpc32xx_udc *udc)
2835{
2836	u8 value;
 
 
2837
2838	if (udc->enabled != 0) {
2839		/* Discharge VBUS real quick */
2840		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2841			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2842
2843		/* Give VBUS some time (100mS) to discharge */
2844		msleep(100);
2845
2846		/* Disable VBUS discharge resistor */
2847		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2848			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2849			OTG1_VBUS_DISCHRG);
2850
2851		/* Clear interrupt */
2852		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2853			ISP1301_I2C_INTERRUPT_LATCH |
2854			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2855
2856		/* Get the VBUS status from the transceiver */
2857		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2858						 ISP1301_I2C_INTERRUPT_SOURCE);
2859
2860		/* VBUS on or off? */
2861		if (value & INT_SESS_VLD)
2862			udc->vbus = 1;
2863		else
2864			udc->vbus = 0;
2865
2866		/* VBUS changed? */
2867		if (udc->last_vbus != udc->vbus) {
2868			udc->last_vbus = udc->vbus;
2869			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2870		}
2871	}
 
 
 
2872}
2873
2874static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2875{
2876	struct lpc32xx_udc *udc = _udc;
2877
2878	vbus_work(udc);
 
 
2879
2880	return IRQ_HANDLED;
2881}
2882
2883static int lpc32xx_start(struct usb_gadget *gadget,
2884			 struct usb_gadget_driver *driver)
2885{
2886	struct lpc32xx_udc *udc = to_udc(gadget);
 
2887
2888	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2889		dev_err(udc->dev, "bad parameter.\n");
2890		return -EINVAL;
2891	}
2892
2893	if (udc->driver) {
2894		dev_err(udc->dev, "UDC already has a gadget driver\n");
2895		return -EBUSY;
2896	}
2897
2898	udc->driver = driver;
2899	udc->gadget.dev.of_node = udc->dev->of_node;
2900	udc->enabled = 1;
2901	udc->gadget.is_selfpowered = 1;
2902	udc->vbus = 0;
2903
2904	/* Force VBUS process once to check for cable insertion */
2905	udc->last_vbus = udc->vbus = 0;
2906	vbus_work(udc);
2907
2908	/* enable interrupts */
2909	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2910		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2911	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2912		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2913
2914	return 0;
2915}
2916
2917static int lpc32xx_stop(struct usb_gadget *gadget)
2918{
 
2919	struct lpc32xx_udc *udc = to_udc(gadget);
2920
2921	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2922		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2923	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2924		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2925
2926	if (udc->clocked) {
2927		spin_lock(&udc->lock);
2928		stop_activity(udc);
2929		spin_unlock(&udc->lock);
2930
2931		/*
2932		 *  Wait for all the endpoints to disable,
2933		 *  before disabling clocks. Don't wait if
2934		 *  endpoints are not enabled.
2935		 */
2936		if (atomic_read(&udc->enabled_ep_cnt))
2937			wait_event_interruptible(udc->ep_disable_wait_queue,
2938				(atomic_read(&udc->enabled_ep_cnt) == 0));
2939
2940		spin_lock(&udc->lock);
2941		udc_clk_set(udc, 0);
2942		spin_unlock(&udc->lock);
2943	}
2944
2945	udc->enabled = 0;
2946	udc->driver = NULL;
2947
2948	return 0;
2949}
2950
2951static void lpc32xx_udc_shutdown(struct platform_device *dev)
2952{
2953	/* Force disconnect on reboot */
2954	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2955
2956	pullup(udc, 0);
2957}
2958
2959/*
2960 * Callbacks to be overridden by options passed via OF (TODO)
2961 */
2962
2963static void lpc32xx_usbd_conn_chg(int conn)
2964{
2965	/* Do nothing, it might be nice to enable an LED
2966	 * based on conn state being !0 */
2967}
2968
2969static void lpc32xx_usbd_susp_chg(int susp)
2970{
2971	/* Device suspend if susp != 0 */
2972}
2973
2974static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2975{
2976	/* Enable or disable USB remote wakeup */
2977}
2978
2979static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2980	.vbus_drv_pol = 0,
2981	.conn_chgb = &lpc32xx_usbd_conn_chg,
2982	.susp_chgb = &lpc32xx_usbd_susp_chg,
2983	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2984};
2985
2986
2987static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2988
2989static int lpc32xx_udc_probe(struct platform_device *pdev)
2990{
2991	struct device *dev = &pdev->dev;
2992	struct lpc32xx_udc *udc;
2993	int retval, i;
 
2994	dma_addr_t dma_handle;
2995	struct device_node *isp1301_node;
2996
2997	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
2998	if (!udc)
2999		return -ENOMEM;
3000
3001	for (i = 0; i <= 15; i++)
3002		udc->ep[i].udc = udc;
3003	udc->gadget.ep0 = &udc->ep[0].ep;
3004
3005	/* init software state */
3006	udc->gadget.dev.parent = dev;
3007	udc->pdev = pdev;
3008	udc->dev = &pdev->dev;
3009	udc->enabled = 0;
3010
3011	if (pdev->dev.of_node) {
3012		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3013						"transceiver", 0);
3014	} else {
3015		isp1301_node = NULL;
3016	}
3017
3018	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3019	of_node_put(isp1301_node);
3020	if (!udc->isp1301_i2c_client) {
3021		return -EPROBE_DEFER;
 
3022	}
3023
3024	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3025		 udc->isp1301_i2c_client->addr);
3026
3027	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3028	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3029	if (retval)
3030		return retval;
3031
3032	udc->board = &lpc32xx_usbddata;
3033
3034	/*
3035	 * Resources are mapped as follows:
3036	 *  IORESOURCE_MEM, base address and size of USB space
3037	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3038	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3039	 *  IORESOURCE_IRQ, USB device interrupt number
3040	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3041	 */
 
 
 
 
 
3042
3043	spin_lock_init(&udc->lock);
3044
3045	/* Get IRQs */
3046	for (i = 0; i < 4; i++) {
3047		udc->udp_irq[i] = platform_get_irq(pdev, i);
3048		if (udc->udp_irq[i] < 0)
3049			return udc->udp_irq[i];
 
 
 
 
 
 
 
 
 
 
 
 
3050	}
3051
3052	udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, 0);
3053	if (IS_ERR(udc->udp_baseaddr)) {
 
3054		dev_err(udc->dev, "IO map failure\n");
3055		return PTR_ERR(udc->udp_baseaddr);
3056	}
3057
3058	/* Get USB device clock */
3059	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3060	if (IS_ERR(udc->usb_slv_clk)) {
3061		dev_err(udc->dev, "failed to acquire USB device clock\n");
3062		return PTR_ERR(udc->usb_slv_clk);
 
3063	}
3064
3065	/* Enable USB device clock */
3066	retval = clk_prepare_enable(udc->usb_slv_clk);
3067	if (retval < 0) {
3068		dev_err(udc->dev, "failed to start USB device clock\n");
3069		return retval;
3070	}
3071
3072	/* Setup deferred workqueue data */
3073	udc->poweron = udc->pullup = 0;
3074	INIT_WORK(&udc->pullup_job, pullup_work);
 
3075#ifdef CONFIG_PM
3076	INIT_WORK(&udc->power_job, power_work);
3077#endif
3078
3079	/* All clocks are now on */
3080	udc->clocked = 1;
3081
3082	isp1301_udc_configure(udc);
3083	/* Allocate memory for the UDCA */
3084	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3085					      &dma_handle,
3086					      (GFP_KERNEL | GFP_DMA));
3087	if (!udc->udca_v_base) {
3088		dev_err(udc->dev, "error getting UDCA region\n");
3089		retval = -ENOMEM;
3090		goto i2c_fail;
3091	}
3092	udc->udca_p_base = dma_handle;
3093	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3094		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3095
3096	/* Setup the DD DMA memory pool */
3097	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3098					sizeof(struct lpc32xx_usbd_dd_gad),
3099					sizeof(u32), 0);
3100	if (!udc->dd_cache) {
3101		dev_err(udc->dev, "error getting DD DMA region\n");
3102		retval = -ENOMEM;
3103		goto dma_alloc_fail;
3104	}
3105
3106	/* Clear USB peripheral and initialize gadget endpoints */
3107	udc_disable(udc);
3108	udc_reinit(udc);
3109
3110	/* Request IRQs - low and high priority USB device IRQs are routed to
3111	 * the same handler, while the DMA interrupt is routed elsewhere */
3112	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3113				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3114	if (retval < 0) {
3115		dev_err(udc->dev, "LP request irq %d failed\n",
3116			udc->udp_irq[IRQ_USB_LP]);
3117		goto irq_req_fail;
3118	}
3119	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3120				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3121	if (retval < 0) {
3122		dev_err(udc->dev, "HP request irq %d failed\n",
3123			udc->udp_irq[IRQ_USB_HP]);
3124		goto irq_req_fail;
3125	}
3126
3127	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3128				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3129	if (retval < 0) {
3130		dev_err(udc->dev, "DEV request irq %d failed\n",
3131			udc->udp_irq[IRQ_USB_DEVDMA]);
3132		goto irq_req_fail;
3133	}
3134
3135	/* The transceiver interrupt is used for VBUS detection and will
3136	   kick off the VBUS handler function */
3137	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3138					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3139					   "udc_otg", udc);
3140	if (retval < 0) {
3141		dev_err(udc->dev, "VBUS request irq %d failed\n",
3142			udc->udp_irq[IRQ_USB_ATX]);
3143		goto irq_req_fail;
3144	}
3145
3146	/* Initialize wait queue */
3147	init_waitqueue_head(&udc->ep_disable_wait_queue);
3148	atomic_set(&udc->enabled_ep_cnt, 0);
3149
 
 
 
 
3150	retval = usb_add_gadget_udc(dev, &udc->gadget);
3151	if (retval < 0)
3152		goto add_gadget_fail;
3153
3154	dev_set_drvdata(dev, udc);
3155	device_init_wakeup(dev, 1);
3156	create_debug_file(udc);
3157
3158	/* Disable clocks for now */
3159	udc_clk_set(udc, 0);
3160
3161	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3162	return 0;
3163
3164add_gadget_fail:
3165irq_req_fail:
 
 
 
 
 
 
 
3166	dma_pool_destroy(udc->dd_cache);
3167dma_alloc_fail:
3168	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3169			  udc->udca_v_base, udc->udca_p_base);
3170i2c_fail:
3171	clk_disable_unprepare(udc->usb_slv_clk);
 
 
 
 
 
 
3172	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3173
 
 
 
 
3174	return retval;
3175}
3176
3177static void lpc32xx_udc_remove(struct platform_device *pdev)
3178{
3179	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3180
3181	usb_del_gadget_udc(&udc->gadget);
3182	if (udc->driver) {
3183		dev_err(&pdev->dev,
3184			"Driver still in use but removing anyhow\n");
3185		return;
3186	}
3187
3188	udc_clk_set(udc, 1);
3189	udc_disable(udc);
3190	pullup(udc, 0);
3191
 
 
3192	device_init_wakeup(&pdev->dev, 0);
3193	remove_debug_file(udc);
3194
3195	dma_pool_destroy(udc->dd_cache);
3196	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3197			  udc->udca_v_base, udc->udca_p_base);
 
 
 
3198
3199	clk_disable_unprepare(udc->usb_slv_clk);
 
 
 
 
 
 
 
3200}
3201
3202#ifdef CONFIG_PM
3203static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3204{
3205	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3206
3207	if (udc->clocked) {
3208		/* Power down ISP */
3209		udc->poweron = 0;
3210		isp1301_set_powerstate(udc, 0);
3211
3212		/* Disable clocking */
3213		udc_clk_set(udc, 0);
3214
3215		/* Keep clock flag on, so we know to re-enable clocks
3216		   on resume */
3217		udc->clocked = 1;
3218
3219		/* Kill global USB clock */
3220		clk_disable_unprepare(udc->usb_slv_clk);
3221	}
3222
3223	return 0;
3224}
3225
3226static int lpc32xx_udc_resume(struct platform_device *pdev)
3227{
3228	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3229
3230	if (udc->clocked) {
3231		/* Enable global USB clock */
3232		clk_prepare_enable(udc->usb_slv_clk);
3233
3234		/* Enable clocking */
3235		udc_clk_set(udc, 1);
3236
3237		/* ISP back to normal power mode */
3238		udc->poweron = 1;
3239		isp1301_set_powerstate(udc, 1);
3240	}
3241
3242	return 0;
3243}
3244#else
3245#define	lpc32xx_udc_suspend	NULL
3246#define	lpc32xx_udc_resume	NULL
3247#endif
3248
3249#ifdef CONFIG_OF
3250static const struct of_device_id lpc32xx_udc_of_match[] = {
3251	{ .compatible = "nxp,lpc3220-udc", },
3252	{ },
3253};
3254MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3255#endif
3256
3257static struct platform_driver lpc32xx_udc_driver = {
3258	.probe		= lpc32xx_udc_probe,
3259	.remove_new	= lpc32xx_udc_remove,
3260	.shutdown	= lpc32xx_udc_shutdown,
3261	.suspend	= lpc32xx_udc_suspend,
3262	.resume		= lpc32xx_udc_resume,
3263	.driver		= {
3264		.name	= driver_name,
3265		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3266	},
3267};
3268
3269module_platform_driver(lpc32xx_udc_driver);
3270
3271MODULE_DESCRIPTION("LPC32XX udc driver");
3272MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3273MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3274MODULE_LICENSE("GPL");
3275MODULE_ALIAS("platform:lpc32xx_udc");
v4.10.11
 
   1/*
   2 * USB Gadget driver for LPC32xx
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Mike James
   7 *    Roland Stigge <stigge@antcom.de>
   8 *
   9 * Copyright (C) 2006 Philips Semiconductors
  10 * Copyright (C) 2009 NXP Semiconductors
  11 * Copyright (C) 2012 Roland Stigge
  12 *
  13 * Note: This driver is based on original work done by Mike James for
  14 *       the LPC3180.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License as published by
  18 * the Free Software Foundation; either version 2 of the License, or
  19 * (at your option) any later version.
  20 *
  21 * This program is distributed in the hope that it will be useful,
  22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  24 * GNU General Public License for more details.
  25 *
  26 * You should have received a copy of the GNU General Public License
  27 * along with this program; if not, write to the Free Software
  28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  29 */
  30
  31#include <linux/clk.h>
  32#include <linux/delay.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmapool.h>
  35#include <linux/i2c.h>
  36#include <linux/interrupt.h>
  37#include <linux/module.h>
  38#include <linux/of.h>
  39#include <linux/platform_device.h>
 
  40#include <linux/proc_fs.h>
  41#include <linux/slab.h>
  42#include <linux/usb/ch9.h>
  43#include <linux/usb/gadget.h>
  44#include <linux/usb/isp1301.h>
  45
  46#ifdef CONFIG_USB_GADGET_DEBUG_FILES
  47#include <linux/debugfs.h>
  48#include <linux/seq_file.h>
  49#endif
  50
  51#include <mach/hardware.h>
  52
  53/*
  54 * USB device configuration structure
  55 */
  56typedef void (*usc_chg_event)(int);
  57struct lpc32xx_usbd_cfg {
  58	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
  59	usc_chg_event conn_chgb; /* Connection change event (optional) */
  60	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
  61	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
  62};
  63
  64/*
  65 * controller driver data structures
  66 */
  67
  68/* 16 endpoints (not to be confused with 32 hardware endpoints) */
  69#define	NUM_ENDPOINTS	16
  70
  71/*
  72 * IRQ indices make reading the code a little easier
  73 */
  74#define IRQ_USB_LP	0
  75#define IRQ_USB_HP	1
  76#define IRQ_USB_DEVDMA	2
  77#define IRQ_USB_ATX	3
  78
  79#define EP_OUT 0 /* RX (from host) */
  80#define EP_IN 1 /* TX (to host) */
  81
  82/* Returns the interrupt mask for the selected hardware endpoint */
  83#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
  84
  85#define EP_INT_TYPE 0
  86#define EP_ISO_TYPE 1
  87#define EP_BLK_TYPE 2
  88#define EP_CTL_TYPE 3
  89
  90/* EP0 states */
  91#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
  92#define DATA_IN        1 /* Expect dev->host transfer */
  93#define DATA_OUT       2 /* Expect host->dev transfer */
  94
  95/* DD (DMA Descriptor) structure, requires word alignment, this is already
  96 * defined in the LPC32XX USB device header file, but this version is slightly
  97 * modified to tag some work data with each DMA descriptor. */
  98struct lpc32xx_usbd_dd_gad {
  99	u32 dd_next_phy;
 100	u32 dd_setup;
 101	u32 dd_buffer_addr;
 102	u32 dd_status;
 103	u32 dd_iso_ps_mem_addr;
 104	u32 this_dma;
 105	u32 iso_status[6]; /* 5 spare */
 106	u32 dd_next_v;
 107};
 108
 109/*
 110 * Logical endpoint structure
 111 */
 112struct lpc32xx_ep {
 113	struct usb_ep		ep;
 114	struct list_head	queue;
 115	struct lpc32xx_udc	*udc;
 116
 117	u32			hwep_num_base; /* Physical hardware EP */
 118	u32			hwep_num; /* Maps to hardware endpoint */
 119	u32			maxpacket;
 120	u32			lep;
 121
 122	bool			is_in;
 123	bool			req_pending;
 124	u32			eptype;
 125
 126	u32                     totalints;
 127
 128	bool			wedge;
 129};
 130
 
 
 
 
 
 131/*
 132 * Common UDC structure
 133 */
 134struct lpc32xx_udc {
 135	struct usb_gadget	gadget;
 136	struct usb_gadget_driver *driver;
 137	struct platform_device	*pdev;
 138	struct device		*dev;
 139	struct dentry		*pde;
 140	spinlock_t		lock;
 141	struct i2c_client	*isp1301_i2c_client;
 142
 143	/* Board and device specific */
 144	struct lpc32xx_usbd_cfg	*board;
 145	u32			io_p_start;
 146	u32			io_p_size;
 147	void __iomem		*udp_baseaddr;
 148	int			udp_irq[4];
 149	struct clk		*usb_slv_clk;
 150
 151	/* DMA support */
 152	u32			*udca_v_base;
 153	u32			udca_p_base;
 154	struct dma_pool		*dd_cache;
 155
 156	/* Common EP and control data */
 157	u32			enabled_devints;
 158	u32			enabled_hwepints;
 159	u32			dev_status;
 160	u32			realized_eps;
 161
 162	/* VBUS detection, pullup, and power flags */
 163	u8			vbus;
 164	u8			last_vbus;
 165	int			pullup;
 166	int			poweron;
 
 167
 168	/* Work queues related to I2C support */
 169	struct work_struct	pullup_job;
 170	struct work_struct	vbus_job;
 171	struct work_struct	power_job;
 172
 173	/* USB device peripheral - various */
 174	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
 175	bool			enabled;
 176	bool			clocked;
 177	bool			suspended;
 178	int                     ep0state;
 179	atomic_t                enabled_ep_cnt;
 180	wait_queue_head_t       ep_disable_wait_queue;
 181};
 182
 183/*
 184 * Endpoint request
 185 */
 186struct lpc32xx_request {
 187	struct usb_request	req;
 188	struct list_head	queue;
 189	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
 190	bool			mapped;
 191	bool			send_zlp;
 192};
 193
 194static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
 195{
 196	return container_of(g, struct lpc32xx_udc, gadget);
 197}
 198
 199#define ep_dbg(epp, fmt, arg...) \
 200	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 201#define ep_err(epp, fmt, arg...) \
 202	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 203#define ep_info(epp, fmt, arg...) \
 204	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 205#define ep_warn(epp, fmt, arg...) \
 206	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
 207
 208#define UDCA_BUFF_SIZE (128)
 209
 210/**********************************************************************
 211 * USB device controller register offsets
 212 **********************************************************************/
 213
 214#define USBD_DEVINTST(x)	((x) + 0x200)
 215#define USBD_DEVINTEN(x)	((x) + 0x204)
 216#define USBD_DEVINTCLR(x)	((x) + 0x208)
 217#define USBD_DEVINTSET(x)	((x) + 0x20C)
 218#define USBD_CMDCODE(x)		((x) + 0x210)
 219#define USBD_CMDDATA(x)		((x) + 0x214)
 220#define USBD_RXDATA(x)		((x) + 0x218)
 221#define USBD_TXDATA(x)		((x) + 0x21C)
 222#define USBD_RXPLEN(x)		((x) + 0x220)
 223#define USBD_TXPLEN(x)		((x) + 0x224)
 224#define USBD_CTRL(x)		((x) + 0x228)
 225#define USBD_DEVINTPRI(x)	((x) + 0x22C)
 226#define USBD_EPINTST(x)		((x) + 0x230)
 227#define USBD_EPINTEN(x)		((x) + 0x234)
 228#define USBD_EPINTCLR(x)	((x) + 0x238)
 229#define USBD_EPINTSET(x)	((x) + 0x23C)
 230#define USBD_EPINTPRI(x)	((x) + 0x240)
 231#define USBD_REEP(x)		((x) + 0x244)
 232#define USBD_EPIND(x)		((x) + 0x248)
 233#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
 234/* DMA support registers only below */
 235/* Set, clear, or get enabled state of the DMA request status. If
 236 * enabled, an IN or OUT token will start a DMA transfer for the EP */
 237#define USBD_DMARST(x)		((x) + 0x250)
 238#define USBD_DMARCLR(x)		((x) + 0x254)
 239#define USBD_DMARSET(x)		((x) + 0x258)
 240/* DMA UDCA head pointer */
 241#define USBD_UDCAH(x)		((x) + 0x280)
 242/* EP DMA status, enable, and disable. This is used to specifically
 243 * enabled or disable DMA for a specific EP */
 244#define USBD_EPDMAST(x)		((x) + 0x284)
 245#define USBD_EPDMAEN(x)		((x) + 0x288)
 246#define USBD_EPDMADIS(x)	((x) + 0x28C)
 247/* DMA master interrupts enable and pending interrupts */
 248#define USBD_DMAINTST(x)	((x) + 0x290)
 249#define USBD_DMAINTEN(x)	((x) + 0x294)
 250/* DMA end of transfer interrupt enable, disable, status */
 251#define USBD_EOTINTST(x)	((x) + 0x2A0)
 252#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
 253#define USBD_EOTINTSET(x)	((x) + 0x2A8)
 254/* New DD request interrupt enable, disable, status */
 255#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
 256#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
 257#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
 258/* DMA error interrupt enable, disable, status */
 259#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
 260#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
 261#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
 262
 263/**********************************************************************
 264 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
 265 * USBD_DEVINTPRI register definitions
 266 **********************************************************************/
 267#define USBD_ERR_INT		(1 << 9)
 268#define USBD_EP_RLZED		(1 << 8)
 269#define USBD_TXENDPKT		(1 << 7)
 270#define USBD_RXENDPKT		(1 << 6)
 271#define USBD_CDFULL		(1 << 5)
 272#define USBD_CCEMPTY		(1 << 4)
 273#define USBD_DEV_STAT		(1 << 3)
 274#define USBD_EP_SLOW		(1 << 2)
 275#define USBD_EP_FAST		(1 << 1)
 276#define USBD_FRAME		(1 << 0)
 277
 278/**********************************************************************
 279 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
 280 * USBD_EPINTPRI register definitions
 281 **********************************************************************/
 282/* End point selection macro (RX) */
 283#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
 284
 285/* End point selection macro (TX) */
 286#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
 287
 288/**********************************************************************
 289 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
 290 * USBD_EPDMAEN/USBD_EPDMADIS/
 291 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
 292 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
 293 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
 294 * register definitions
 295 **********************************************************************/
 296/* Endpoint selection macro */
 297#define USBD_EP_SEL(e)		(1 << (e))
 298
 299/**********************************************************************
 300 * SBD_DMAINTST/USBD_DMAINTEN
 301 **********************************************************************/
 302#define USBD_SYS_ERR_INT	(1 << 2)
 303#define USBD_NEW_DD_INT		(1 << 1)
 304#define USBD_EOT_INT		(1 << 0)
 305
 306/**********************************************************************
 307 * USBD_RXPLEN register definitions
 308 **********************************************************************/
 309#define USBD_PKT_RDY		(1 << 11)
 310#define USBD_DV			(1 << 10)
 311#define USBD_PK_LEN_MASK	0x3FF
 312
 313/**********************************************************************
 314 * USBD_CTRL register definitions
 315 **********************************************************************/
 316#define USBD_LOG_ENDPOINT(e)	((e) << 2)
 317#define USBD_WR_EN		(1 << 1)
 318#define USBD_RD_EN		(1 << 0)
 319
 320/**********************************************************************
 321 * USBD_CMDCODE register definitions
 322 **********************************************************************/
 323#define USBD_CMD_CODE(c)	((c) << 16)
 324#define USBD_CMD_PHASE(p)	((p) << 8)
 325
 326/**********************************************************************
 327 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
 328 **********************************************************************/
 329#define USBD_DMAEP(e)		(1 << (e))
 330
 331/* DD (DMA Descriptor) structure, requires word alignment */
 332struct lpc32xx_usbd_dd {
 333	u32 *dd_next;
 334	u32 dd_setup;
 335	u32 dd_buffer_addr;
 336	u32 dd_status;
 337	u32 dd_iso_ps_mem_addr;
 338};
 339
 340/* dd_setup bit defines */
 341#define DD_SETUP_ATLE_DMA_MODE	0x01
 342#define DD_SETUP_NEXT_DD_VALID	0x04
 343#define DD_SETUP_ISO_EP		0x10
 344#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
 345#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
 346
 347/* dd_status bit defines */
 348#define DD_STATUS_DD_RETIRED	0x01
 349#define DD_STATUS_STS_MASK	0x1E
 350#define DD_STATUS_STS_NS	0x00 /* Not serviced */
 351#define DD_STATUS_STS_BS	0x02 /* Being serviced */
 352#define DD_STATUS_STS_NC	0x04 /* Normal completion */
 353#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
 354#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
 355#define DD_STATUS_STS_SE	0x12 /* System error */
 356#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
 357#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
 358#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
 359#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
 360#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
 361
 362/*
 363 *
 364 * Protocol engine bits below
 365 *
 366 */
 367/* Device Interrupt Bit Definitions */
 368#define FRAME_INT		0x00000001
 369#define EP_FAST_INT		0x00000002
 370#define EP_SLOW_INT		0x00000004
 371#define DEV_STAT_INT		0x00000008
 372#define CCEMTY_INT		0x00000010
 373#define CDFULL_INT		0x00000020
 374#define RxENDPKT_INT		0x00000040
 375#define TxENDPKT_INT		0x00000080
 376#define EP_RLZED_INT		0x00000100
 377#define ERR_INT			0x00000200
 378
 379/* Rx & Tx Packet Length Definitions */
 380#define PKT_LNGTH_MASK		0x000003FF
 381#define PKT_DV			0x00000400
 382#define PKT_RDY			0x00000800
 383
 384/* USB Control Definitions */
 385#define CTRL_RD_EN		0x00000001
 386#define CTRL_WR_EN		0x00000002
 387
 388/* Command Codes */
 389#define CMD_SET_ADDR		0x00D00500
 390#define CMD_CFG_DEV		0x00D80500
 391#define CMD_SET_MODE		0x00F30500
 392#define CMD_RD_FRAME		0x00F50500
 393#define DAT_RD_FRAME		0x00F50200
 394#define CMD_RD_TEST		0x00FD0500
 395#define DAT_RD_TEST		0x00FD0200
 396#define CMD_SET_DEV_STAT	0x00FE0500
 397#define CMD_GET_DEV_STAT	0x00FE0500
 398#define DAT_GET_DEV_STAT	0x00FE0200
 399#define CMD_GET_ERR_CODE	0x00FF0500
 400#define DAT_GET_ERR_CODE	0x00FF0200
 401#define CMD_RD_ERR_STAT		0x00FB0500
 402#define DAT_RD_ERR_STAT		0x00FB0200
 403#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
 404#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
 405#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
 406#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
 407#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
 408#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
 409#define CMD_CLR_BUF		0x00F20500
 410#define DAT_CLR_BUF		0x00F20200
 411#define CMD_VALID_BUF		0x00FA0500
 412
 413/* Device Address Register Definitions */
 414#define DEV_ADDR_MASK		0x7F
 415#define DEV_EN			0x80
 416
 417/* Device Configure Register Definitions */
 418#define CONF_DVICE		0x01
 419
 420/* Device Mode Register Definitions */
 421#define AP_CLK			0x01
 422#define INAK_CI			0x02
 423#define INAK_CO			0x04
 424#define INAK_II			0x08
 425#define INAK_IO			0x10
 426#define INAK_BI			0x20
 427#define INAK_BO			0x40
 428
 429/* Device Status Register Definitions */
 430#define DEV_CON			0x01
 431#define DEV_CON_CH		0x02
 432#define DEV_SUS			0x04
 433#define DEV_SUS_CH		0x08
 434#define DEV_RST			0x10
 435
 436/* Error Code Register Definitions */
 437#define ERR_EC_MASK		0x0F
 438#define ERR_EA			0x10
 439
 440/* Error Status Register Definitions */
 441#define ERR_PID			0x01
 442#define ERR_UEPKT		0x02
 443#define ERR_DCRC		0x04
 444#define ERR_TIMOUT		0x08
 445#define ERR_EOP			0x10
 446#define ERR_B_OVRN		0x20
 447#define ERR_BTSTF		0x40
 448#define ERR_TGL			0x80
 449
 450/* Endpoint Select Register Definitions */
 451#define EP_SEL_F		0x01
 452#define EP_SEL_ST		0x02
 453#define EP_SEL_STP		0x04
 454#define EP_SEL_PO		0x08
 455#define EP_SEL_EPN		0x10
 456#define EP_SEL_B_1_FULL		0x20
 457#define EP_SEL_B_2_FULL		0x40
 458
 459/* Endpoint Status Register Definitions */
 460#define EP_STAT_ST		0x01
 461#define EP_STAT_DA		0x20
 462#define EP_STAT_RF_MO		0x40
 463#define EP_STAT_CND_ST		0x80
 464
 465/* Clear Buffer Register Definitions */
 466#define CLR_BUF_PO		0x01
 467
 468/* DMA Interrupt Bit Definitions */
 469#define EOT_INT			0x01
 470#define NDD_REQ_INT		0x02
 471#define SYS_ERR_INT		0x04
 472
 473#define	DRIVER_VERSION	"1.03"
 474static const char driver_name[] = "lpc32xx_udc";
 475
 476/*
 477 *
 478 * proc interface support
 479 *
 480 */
 481#ifdef CONFIG_USB_GADGET_DEBUG_FILES
 482static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
 483static const char debug_filename[] = "driver/udc";
 484
 485static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
 486{
 487	struct lpc32xx_request *req;
 488
 489	seq_printf(s, "\n");
 490	seq_printf(s, "%12s, maxpacket %4d %3s",
 491			ep->ep.name, ep->ep.maxpacket,
 492			ep->is_in ? "in" : "out");
 493	seq_printf(s, " type %4s", epnames[ep->eptype]);
 494	seq_printf(s, " ints: %12d", ep->totalints);
 495
 496	if (list_empty(&ep->queue))
 497		seq_printf(s, "\t(queue empty)\n");
 498	else {
 499		list_for_each_entry(req, &ep->queue, queue) {
 500			u32 length = req->req.actual;
 501
 502			seq_printf(s, "\treq %p len %d/%d buf %p\n",
 503				   &req->req, length,
 504				   req->req.length, req->req.buf);
 505		}
 506	}
 507}
 508
 509static int proc_udc_show(struct seq_file *s, void *unused)
 510{
 511	struct lpc32xx_udc *udc = s->private;
 512	struct lpc32xx_ep *ep;
 513	unsigned long flags;
 514
 515	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
 516
 517	spin_lock_irqsave(&udc->lock, flags);
 518
 519	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
 520		   udc->vbus ? "present" : "off",
 521		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
 522		   "disabled",
 523		   udc->gadget.is_selfpowered ? "self" : "VBUS",
 524		   udc->suspended ? ", suspended" : "",
 525		   udc->driver ? udc->driver->driver.name : "(none)");
 526
 527	if (udc->enabled && udc->vbus) {
 528		proc_ep_show(s, &udc->ep[0]);
 529		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
 530			proc_ep_show(s, ep);
 531	}
 532
 533	spin_unlock_irqrestore(&udc->lock, flags);
 534
 535	return 0;
 536}
 537
 538static int proc_udc_open(struct inode *inode, struct file *file)
 539{
 540	return single_open(file, proc_udc_show, PDE_DATA(inode));
 541}
 542
 543static const struct file_operations proc_ops = {
 544	.owner		= THIS_MODULE,
 545	.open		= proc_udc_open,
 546	.read		= seq_read,
 547	.llseek		= seq_lseek,
 548	.release	= single_release,
 549};
 550
 551static void create_debug_file(struct lpc32xx_udc *udc)
 552{
 553	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
 554}
 555
 556static void remove_debug_file(struct lpc32xx_udc *udc)
 557{
 558	debugfs_remove(udc->pde);
 559}
 560
 561#else
 562static inline void create_debug_file(struct lpc32xx_udc *udc) {}
 563static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
 564#endif
 565
 566/* Primary initialization sequence for the ISP1301 transceiver */
 567static void isp1301_udc_configure(struct lpc32xx_udc *udc)
 568{
 
 
 
 
 
 
 
 
 
 569	/* LPC32XX only supports DAT_SE0 USB mode */
 570	/* This sequence is important */
 571
 572	/* Disable transparent UART mode first */
 573	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 574		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 575		MC1_UART_EN);
 576
 577	/* Set full speed and SE0 mode */
 578	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 579		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 580	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 581		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
 582
 583	/*
 584	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
 585	 */
 586	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 587		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 
 
 
 
 588	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 589		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
 590
 591	/* Driver VBUS_DRV high or low depending on board setup */
 592	if (udc->board->vbus_drv_pol != 0)
 593		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 594			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
 595	else
 596		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 597			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 598			OTG1_VBUS_DRV);
 599
 600	/* Bi-directional mode with suspend control
 601	 * Enable both pulldowns for now - the pullup will be enable when VBUS
 602	 * is detected */
 603	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 604		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 605	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 606		ISP1301_I2C_OTG_CONTROL_1,
 607		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
 608
 609	/* Discharge VBUS (just in case) */
 610	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 611		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
 612	msleep(1);
 613	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 614		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 615		OTG1_VBUS_DISCHRG);
 616
 617	/* Clear and enable VBUS high edge interrupt */
 618	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 619		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 
 620	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 621		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 622	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 623		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
 624	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 625		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 626	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 627		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
 628
 629	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
 630		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
 631	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
 632		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
 633	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
 634		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
 
 635}
 636
 637/* Enables or disables the USB device pullup via the ISP1301 transceiver */
 638static void isp1301_pullup_set(struct lpc32xx_udc *udc)
 639{
 640	if (udc->pullup)
 641		/* Enable pullup for bus signalling */
 642		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 643			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
 644	else
 645		/* Enable pullup for bus signalling */
 646		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 647			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 648			OTG1_DP_PULLUP);
 649}
 650
 651static void pullup_work(struct work_struct *work)
 652{
 653	struct lpc32xx_udc *udc =
 654		container_of(work, struct lpc32xx_udc, pullup_job);
 655
 656	isp1301_pullup_set(udc);
 657}
 658
 659static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
 660				  int block)
 661{
 662	if (en_pullup == udc->pullup)
 663		return;
 664
 665	udc->pullup = en_pullup;
 666	if (block)
 667		isp1301_pullup_set(udc);
 668	else
 669		/* defer slow i2c pull up setting */
 670		schedule_work(&udc->pullup_job);
 671}
 672
 673#ifdef CONFIG_PM
 674/* Powers up or down the ISP1301 transceiver */
 675static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
 676{
 
 
 
 
 677	if (enable != 0)
 678		/* Power up ISP1301 - this ISP1301 will automatically wakeup
 679		   when VBUS is detected */
 680		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 681			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
 682			MC2_GLOBAL_PWR_DN);
 683	else
 684		/* Power down ISP1301 */
 685		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 686			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
 687}
 688
 689static void power_work(struct work_struct *work)
 690{
 691	struct lpc32xx_udc *udc =
 692		container_of(work, struct lpc32xx_udc, power_job);
 693
 694	isp1301_set_powerstate(udc, udc->poweron);
 695}
 696#endif
 697
 698/*
 699 *
 700 * USB protocol engine command/data read/write helper functions
 701 *
 702 */
 703/* Issues a single command to the USB device state machine */
 704static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
 705{
 706	u32 pass = 0;
 707	int to;
 708
 709	/* EP may lock on CLRI if this read isn't done */
 710	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
 711	(void) tmp;
 712
 713	while (pass == 0) {
 714		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
 715
 716		/* Write command code */
 717		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
 718		to = 10000;
 719		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 720			 USBD_CCEMPTY) == 0) && (to > 0)) {
 721			to--;
 722		}
 723
 724		if (to > 0)
 725			pass = 1;
 726
 727		cpu_relax();
 728	}
 729}
 730
 731/* Issues 2 commands (or command and data) to the USB device state machine */
 732static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
 733					   u32 data)
 734{
 735	udc_protocol_cmd_w(udc, cmd);
 736	udc_protocol_cmd_w(udc, data);
 737}
 738
 739/* Issues a single command to the USB device state machine and reads
 740 * response data */
 741static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
 742{
 743	u32 tmp;
 744	int to = 1000;
 745
 746	/* Write a command and read data from the protocol engine */
 747	writel((USBD_CDFULL | USBD_CCEMPTY),
 748		     USBD_DEVINTCLR(udc->udp_baseaddr));
 749
 750	/* Write command code */
 751	udc_protocol_cmd_w(udc, cmd);
 752
 753	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
 754	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
 755	       && (to > 0))
 756		to--;
 757	if (!to)
 758		dev_dbg(udc->dev,
 759			"Protocol engine didn't receive response (CDFULL)\n");
 760
 761	return readl(USBD_CMDDATA(udc->udp_baseaddr));
 762}
 763
 764/*
 765 *
 766 * USB device interrupt mask support functions
 767 *
 768 */
 769/* Enable one or more USB device interrupts */
 770static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
 771{
 772	udc->enabled_devints |= devmask;
 773	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 774}
 775
 776/* Disable one or more USB device interrupts */
 777static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
 778{
 779	udc->enabled_devints &= ~mask;
 780	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 781}
 782
 783/* Clear one or more USB device interrupts */
 784static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
 785{
 786	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
 787}
 788
 789/*
 790 *
 791 * Endpoint interrupt disable/enable functions
 792 *
 793 */
 794/* Enable one or more USB endpoint interrupts */
 795static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 796{
 797	udc->enabled_hwepints |= (1 << hwep);
 798	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 799}
 800
 801/* Disable one or more USB endpoint interrupts */
 802static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 803{
 804	udc->enabled_hwepints &= ~(1 << hwep);
 805	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 806}
 807
 808/* Clear one or more USB endpoint interrupts */
 809static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 810{
 811	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
 812}
 813
 814/* Enable DMA for the HW channel */
 815static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
 816{
 817	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
 818}
 819
 820/* Disable DMA for the HW channel */
 821static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
 822{
 823	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
 824}
 825
 826/*
 827 *
 828 * Endpoint realize/unrealize functions
 829 *
 830 */
 831/* Before an endpoint can be used, it needs to be realized
 832 * in the USB protocol engine - this realizes the endpoint.
 833 * The interrupt (FIFO or DMA) is not enabled with this function */
 834static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
 835			     u32 maxpacket)
 836{
 837	int to = 1000;
 838
 839	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 840	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
 841	udc->realized_eps |= (1 << hwep);
 842	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 843	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
 844
 845	/* Wait until endpoint is realized in hardware */
 846	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 847		  USBD_EP_RLZED)) && (to > 0))
 848		to--;
 849	if (!to)
 850		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
 851
 852	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 853}
 854
 855/* Unrealize an EP */
 856static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
 857{
 858	udc->realized_eps &= ~(1 << hwep);
 859	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 860}
 861
 862/*
 863 *
 864 * Endpoint support functions
 865 *
 866 */
 867/* Select and clear endpoint interrupt */
 868static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
 869{
 870	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
 871	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
 872}
 873
 874/* Disables the endpoint in the USB protocol engine */
 875static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
 876{
 877	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 878				DAT_WR_BYTE(EP_STAT_DA));
 879}
 880
 881/* Stalls the endpoint - endpoint will return STALL */
 882static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 883{
 884	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 885				DAT_WR_BYTE(EP_STAT_ST));
 886}
 887
 888/* Clear stall or reset endpoint */
 889static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 890{
 891	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 892				DAT_WR_BYTE(0));
 893}
 894
 895/* Select an endpoint for endpoint status, clear, validate */
 896static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
 897{
 898	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
 899}
 900
 901/*
 902 *
 903 * Endpoint buffer management functions
 904 *
 905 */
 906/* Clear the current endpoint's buffer */
 907static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 908{
 909	udc_select_hwep(udc, hwep);
 910	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
 911}
 912
 913/* Validate the current endpoint's buffer */
 914static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 915{
 916	udc_select_hwep(udc, hwep);
 917	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
 918}
 919
 920static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
 921{
 922	/* Clear EP interrupt */
 923	uda_clear_hwepint(udc, hwep);
 924	return udc_selep_clrint(udc, hwep);
 925}
 926
 927/*
 928 *
 929 * USB EP DMA support
 930 *
 931 */
 932/* Allocate a DMA Descriptor */
 933static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
 934{
 935	dma_addr_t			dma;
 936	struct lpc32xx_usbd_dd_gad	*dd;
 937
 938	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
 939			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
 940	if (dd)
 941		dd->this_dma = dma;
 942
 943	return dd;
 944}
 945
 946/* Free a DMA Descriptor */
 947static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
 948{
 949	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
 950}
 951
 952/*
 953 *
 954 * USB setup and shutdown functions
 955 *
 956 */
 957/* Enables or disables most of the USB system clocks when low power mode is
 958 * needed. Clocks are typically started on a connection event, and disabled
 959 * when a cable is disconnected */
 960static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
 961{
 962	if (enable != 0) {
 963		if (udc->clocked)
 964			return;
 965
 966		udc->clocked = 1;
 967		clk_prepare_enable(udc->usb_slv_clk);
 968	} else {
 969		if (!udc->clocked)
 970			return;
 971
 972		udc->clocked = 0;
 973		clk_disable_unprepare(udc->usb_slv_clk);
 974	}
 975}
 976
 977/* Set/reset USB device address */
 978static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
 979{
 980	/* Address will be latched at the end of the status phase, or
 981	   latched immediately if function is called twice */
 982	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
 983				DAT_WR_BYTE(DEV_EN | addr));
 984}
 985
 986/* Setup up a IN request for DMA transfer - this consists of determining the
 987 * list of DMA addresses for the transfer, allocating DMA Descriptors,
 988 * installing the DD into the UDCA, and then enabling the DMA for that EP */
 989static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
 990{
 991	struct lpc32xx_request *req;
 992	u32 hwep = ep->hwep_num;
 993
 994	ep->req_pending = 1;
 995
 996	/* There will always be a request waiting here */
 997	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
 998
 999	/* Place the DD Descriptor into the UDCA */
1000	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1001
1002	/* Enable DMA and interrupt for the HW EP */
1003	udc_ep_dma_enable(udc, hwep);
1004
1005	/* Clear ZLP if last packet is not of MAXP size */
1006	if (req->req.length % ep->ep.maxpacket)
1007		req->send_zlp = 0;
1008
1009	return 0;
1010}
1011
1012/* Setup up a OUT request for DMA transfer - this consists of determining the
1013 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1014 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1015static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1016{
1017	struct lpc32xx_request *req;
1018	u32 hwep = ep->hwep_num;
1019
1020	ep->req_pending = 1;
1021
1022	/* There will always be a request waiting here */
1023	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1024
1025	/* Place the DD Descriptor into the UDCA */
1026	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1027
1028	/* Enable DMA and interrupt for the HW EP */
1029	udc_ep_dma_enable(udc, hwep);
1030	return 0;
1031}
1032
1033static void udc_disable(struct lpc32xx_udc *udc)
1034{
1035	u32 i;
1036
1037	/* Disable device */
1038	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1039	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1040
1041	/* Disable all device interrupts (including EP0) */
1042	uda_disable_devint(udc, 0x3FF);
1043
1044	/* Disable and reset all endpoint interrupts */
1045	for (i = 0; i < 32; i++) {
1046		uda_disable_hwepint(udc, i);
1047		uda_clear_hwepint(udc, i);
1048		udc_disable_hwep(udc, i);
1049		udc_unrealize_hwep(udc, i);
1050		udc->udca_v_base[i] = 0;
1051
1052		/* Disable and clear all interrupts and DMA */
1053		udc_ep_dma_disable(udc, i);
1054		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1055		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1056		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1057		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1058	}
1059
1060	/* Disable DMA interrupts */
1061	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1062
1063	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1064}
1065
1066static void udc_enable(struct lpc32xx_udc *udc)
1067{
1068	u32 i;
1069	struct lpc32xx_ep *ep = &udc->ep[0];
1070
1071	/* Start with known state */
1072	udc_disable(udc);
1073
1074	/* Enable device */
1075	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1076
1077	/* EP interrupts on high priority, FRAME interrupt on low priority */
1078	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1079	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1080
1081	/* Clear any pending device interrupts */
1082	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1083
1084	/* Setup UDCA - not yet used (DMA) */
1085	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1086
1087	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1088	for (i = 0; i <= 1; i++) {
1089		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1090		uda_enable_hwepint(udc, i);
1091		udc_select_hwep(udc, i);
1092		udc_clrstall_hwep(udc, i);
1093		udc_clr_buffer_hwep(udc, i);
1094	}
1095
1096	/* Device interrupt setup */
1097	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1098			       USBD_EP_FAST));
1099	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1100				USBD_EP_FAST));
1101
1102	/* Set device address to 0 - called twice to force a latch in the USB
1103	   engine without the need of a setup packet status closure */
1104	udc_set_address(udc, 0);
1105	udc_set_address(udc, 0);
1106
1107	/* Enable master DMA interrupts */
1108	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1109		     USBD_DMAINTEN(udc->udp_baseaddr));
1110
1111	udc->dev_status = 0;
1112}
1113
1114/*
1115 *
1116 * USB device board specific events handled via callbacks
1117 *
1118 */
1119/* Connection change event - notify board function of change */
1120static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1121{
1122	/* Just notify of a connection change event (optional) */
1123	if (udc->board->conn_chgb != NULL)
1124		udc->board->conn_chgb(conn);
1125}
1126
1127/* Suspend/resume event - notify board function of change */
1128static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1129{
1130	/* Just notify of a Suspend/resume change event (optional) */
1131	if (udc->board->susp_chgb != NULL)
1132		udc->board->susp_chgb(conn);
1133
1134	if (conn)
1135		udc->suspended = 0;
1136	else
1137		udc->suspended = 1;
1138}
1139
1140/* Remote wakeup enable/disable - notify board function of change */
1141static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1142{
1143	if (udc->board->rmwk_chgb != NULL)
1144		udc->board->rmwk_chgb(udc->dev_status &
1145				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1146}
1147
1148/* Reads data from FIFO, adjusts for alignment and data size */
1149static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1150{
1151	int n, i, bl;
1152	u16 *p16;
1153	u32 *p32, tmp, cbytes;
1154
1155	/* Use optimal data transfer method based on source address and size */
1156	switch (((u32) data) & 0x3) {
1157	case 0: /* 32-bit aligned */
1158		p32 = (u32 *) data;
1159		cbytes = (bytes & ~0x3);
1160
1161		/* Copy 32-bit aligned data first */
1162		for (n = 0; n < cbytes; n += 4)
1163			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1164
1165		/* Handle any remaining bytes */
1166		bl = bytes - cbytes;
1167		if (bl) {
1168			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1169			for (n = 0; n < bl; n++)
1170				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1171
1172		}
1173		break;
1174
1175	case 1: /* 8-bit aligned */
1176	case 3:
1177		/* Each byte has to be handled independently */
1178		for (n = 0; n < bytes; n += 4) {
1179			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1180
1181			bl = bytes - n;
1182			if (bl > 3)
1183				bl = 3;
1184
1185			for (i = 0; i < bl; i++)
1186				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1187		}
1188		break;
1189
1190	case 2: /* 16-bit aligned */
1191		p16 = (u16 *) data;
1192		cbytes = (bytes & ~0x3);
1193
1194		/* Copy 32-bit sized objects first with 16-bit alignment */
1195		for (n = 0; n < cbytes; n += 4) {
1196			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1197			*p16++ = (u16)(tmp & 0xFFFF);
1198			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1199		}
1200
1201		/* Handle any remaining bytes */
1202		bl = bytes - cbytes;
1203		if (bl) {
1204			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1205			for (n = 0; n < bl; n++)
1206				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1207		}
1208		break;
1209	}
1210}
1211
1212/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1213 * as EP0) that don't use DMA. This function should only be called if a packet
1214 * is known to be ready to read for the endpoint. Note that the endpoint must
1215 * be selected in the protocol engine prior to this call. */
1216static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1217			 u32 bytes)
1218{
1219	u32 tmpv;
1220	int to = 1000;
1221	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1222
1223	/* Setup read of endpoint */
1224	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1225
1226	/* Wait until packet is ready */
1227	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1228		 PKT_RDY) == 0)	&& (to > 0))
1229		to--;
1230	if (!to)
1231		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1232
1233	/* Mask out count */
1234	tmp = tmpv & PKT_LNGTH_MASK;
1235	if (bytes < tmp)
1236		tmp = bytes;
1237
1238	if ((tmp > 0) && (data != NULL))
1239		udc_pop_fifo(udc, (u8 *) data, tmp);
1240
1241	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1242
1243	/* Clear the buffer */
1244	udc_clr_buffer_hwep(udc, hwep);
1245
1246	return tmp;
1247}
1248
1249/* Stuffs data into the FIFO, adjusts for alignment and data size */
1250static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1251{
1252	int n, i, bl;
1253	u16 *p16;
1254	u32 *p32, tmp, cbytes;
1255
1256	/* Use optimal data transfer method based on source address and size */
1257	switch (((u32) data) & 0x3) {
1258	case 0: /* 32-bit aligned */
1259		p32 = (u32 *) data;
1260		cbytes = (bytes & ~0x3);
1261
1262		/* Copy 32-bit aligned data first */
1263		for (n = 0; n < cbytes; n += 4)
1264			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1265
1266		/* Handle any remaining bytes */
1267		bl = bytes - cbytes;
1268		if (bl) {
1269			tmp = 0;
1270			for (n = 0; n < bl; n++)
1271				tmp |= data[cbytes + n] << (n * 8);
1272
1273			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1274		}
1275		break;
1276
1277	case 1: /* 8-bit aligned */
1278	case 3:
1279		/* Each byte has to be handled independently */
1280		for (n = 0; n < bytes; n += 4) {
1281			bl = bytes - n;
1282			if (bl > 4)
1283				bl = 4;
1284
1285			tmp = 0;
1286			for (i = 0; i < bl; i++)
1287				tmp |= data[n + i] << (i * 8);
1288
1289			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1290		}
1291		break;
1292
1293	case 2: /* 16-bit aligned */
1294		p16 = (u16 *) data;
1295		cbytes = (bytes & ~0x3);
1296
1297		/* Copy 32-bit aligned data first */
1298		for (n = 0; n < cbytes; n += 4) {
1299			tmp = *p16++ & 0xFFFF;
1300			tmp |= (*p16++ & 0xFFFF) << 16;
1301			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1302		}
1303
1304		/* Handle any remaining bytes */
1305		bl = bytes - cbytes;
1306		if (bl) {
1307			tmp = 0;
1308			for (n = 0; n < bl; n++)
1309				tmp |= data[cbytes + n] << (n * 8);
1310
1311			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1312		}
1313		break;
1314	}
1315}
1316
1317/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1318 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1319 * protocol engine prior to this call. */
1320static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1321			   u32 bytes)
1322{
1323	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1324
1325	if ((bytes > 0) && (data == NULL))
1326		return;
1327
1328	/* Setup write of endpoint */
1329	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1330
1331	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1332
1333	/* Need at least 1 byte to trigger TX */
1334	if (bytes == 0)
1335		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1336	else
1337		udc_stuff_fifo(udc, (u8 *) data, bytes);
1338
1339	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1340
1341	udc_val_buffer_hwep(udc, hwep);
1342}
1343
1344/* USB device reset - resets USB to a default state with just EP0
1345   enabled */
1346static void uda_usb_reset(struct lpc32xx_udc *udc)
1347{
1348	u32 i = 0;
1349	/* Re-init device controller and EP0 */
1350	udc_enable(udc);
1351	udc->gadget.speed = USB_SPEED_FULL;
1352
1353	for (i = 1; i < NUM_ENDPOINTS; i++) {
1354		struct lpc32xx_ep *ep = &udc->ep[i];
1355		ep->req_pending = 0;
1356	}
1357}
1358
1359/* Send a ZLP on EP0 */
1360static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1361{
1362	udc_write_hwep(udc, EP_IN, NULL, 0);
1363}
1364
1365/* Get current frame number */
1366static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1367{
1368	u16 flo, fhi;
1369
1370	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1371	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1372	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1373
1374	return (fhi << 8) | flo;
1375}
1376
1377/* Set the device as configured - enables all endpoints */
1378static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1379{
1380	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1381}
1382
1383/* Set the device as unconfigured - disables all endpoints */
1384static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1385{
1386	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1387}
1388
1389/* reinit == restore initial software state */
1390static void udc_reinit(struct lpc32xx_udc *udc)
1391{
1392	u32 i;
1393
1394	INIT_LIST_HEAD(&udc->gadget.ep_list);
1395	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1396
1397	for (i = 0; i < NUM_ENDPOINTS; i++) {
1398		struct lpc32xx_ep *ep = &udc->ep[i];
1399
1400		if (i != 0)
1401			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1402		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1403		INIT_LIST_HEAD(&ep->queue);
1404		ep->req_pending = 0;
1405	}
1406
1407	udc->ep0state = WAIT_FOR_SETUP;
1408}
1409
1410/* Must be called with lock */
1411static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1412{
1413	struct lpc32xx_udc *udc = ep->udc;
1414
1415	list_del_init(&req->queue);
1416	if (req->req.status == -EINPROGRESS)
1417		req->req.status = status;
1418	else
1419		status = req->req.status;
1420
1421	if (ep->lep) {
1422		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1423
1424		/* Free DDs */
1425		udc_dd_free(udc, req->dd_desc_ptr);
1426	}
1427
1428	if (status && status != -ESHUTDOWN)
1429		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1430
1431	ep->req_pending = 0;
1432	spin_unlock(&udc->lock);
1433	usb_gadget_giveback_request(&ep->ep, &req->req);
1434	spin_lock(&udc->lock);
1435}
1436
1437/* Must be called with lock */
1438static void nuke(struct lpc32xx_ep *ep, int status)
1439{
1440	struct lpc32xx_request *req;
1441
1442	while (!list_empty(&ep->queue)) {
1443		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1444		done(ep, req, status);
1445	}
1446
1447	if (status == -ESHUTDOWN) {
1448		uda_disable_hwepint(ep->udc, ep->hwep_num);
1449		udc_disable_hwep(ep->udc, ep->hwep_num);
1450	}
1451}
1452
1453/* IN endpoint 0 transfer */
1454static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1455{
1456	struct lpc32xx_request *req;
1457	struct lpc32xx_ep *ep0 = &udc->ep[0];
1458	u32 tsend, ts = 0;
1459
1460	if (list_empty(&ep0->queue))
1461		/* Nothing to send */
1462		return 0;
1463	else
1464		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1465				 queue);
1466
1467	tsend = ts = req->req.length - req->req.actual;
1468	if (ts == 0) {
1469		/* Send a ZLP */
1470		udc_ep0_send_zlp(udc);
1471		done(ep0, req, 0);
1472		return 1;
1473	} else if (ts > ep0->ep.maxpacket)
1474		ts = ep0->ep.maxpacket; /* Just send what we can */
1475
1476	/* Write data to the EP0 FIFO and start transfer */
1477	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1478
1479	/* Increment data pointer */
1480	req->req.actual += ts;
1481
1482	if (tsend >= ep0->ep.maxpacket)
1483		return 0; /* Stay in data transfer state */
1484
1485	/* Transfer request is complete */
1486	udc->ep0state = WAIT_FOR_SETUP;
1487	done(ep0, req, 0);
1488	return 1;
1489}
1490
1491/* OUT endpoint 0 transfer */
1492static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1493{
1494	struct lpc32xx_request *req;
1495	struct lpc32xx_ep *ep0 = &udc->ep[0];
1496	u32 tr, bufferspace;
1497
1498	if (list_empty(&ep0->queue))
1499		return 0;
1500	else
1501		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1502				 queue);
1503
1504	if (req) {
1505		if (req->req.length == 0) {
1506			/* Just dequeue request */
1507			done(ep0, req, 0);
1508			udc->ep0state = WAIT_FOR_SETUP;
1509			return 1;
1510		}
1511
1512		/* Get data from FIFO */
1513		bufferspace = req->req.length - req->req.actual;
1514		if (bufferspace > ep0->ep.maxpacket)
1515			bufferspace = ep0->ep.maxpacket;
1516
1517		/* Copy data to buffer */
1518		prefetchw(req->req.buf + req->req.actual);
1519		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1520				   bufferspace);
1521		req->req.actual += bufferspace;
1522
1523		if (tr < ep0->ep.maxpacket) {
1524			/* This is the last packet */
1525			done(ep0, req, 0);
1526			udc->ep0state = WAIT_FOR_SETUP;
1527			return 1;
1528		}
1529	}
1530
1531	return 0;
1532}
1533
1534/* Must be called with lock */
1535static void stop_activity(struct lpc32xx_udc *udc)
1536{
1537	struct usb_gadget_driver *driver = udc->driver;
1538	int i;
1539
1540	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1541		driver = NULL;
1542
1543	udc->gadget.speed = USB_SPEED_UNKNOWN;
1544	udc->suspended = 0;
1545
1546	for (i = 0; i < NUM_ENDPOINTS; i++) {
1547		struct lpc32xx_ep *ep = &udc->ep[i];
1548		nuke(ep, -ESHUTDOWN);
1549	}
1550	if (driver) {
1551		spin_unlock(&udc->lock);
1552		driver->disconnect(&udc->gadget);
1553		spin_lock(&udc->lock);
1554	}
1555
1556	isp1301_pullup_enable(udc, 0, 0);
1557	udc_disable(udc);
1558	udc_reinit(udc);
1559}
1560
1561/*
1562 * Activate or kill host pullup
1563 * Can be called with or without lock
1564 */
1565static void pullup(struct lpc32xx_udc *udc, int is_on)
1566{
1567	if (!udc->clocked)
1568		return;
1569
1570	if (!udc->enabled || !udc->vbus)
1571		is_on = 0;
1572
1573	if (is_on != udc->pullup)
1574		isp1301_pullup_enable(udc, is_on, 0);
1575}
1576
1577/* Must be called without lock */
1578static int lpc32xx_ep_disable(struct usb_ep *_ep)
1579{
1580	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1581	struct lpc32xx_udc *udc = ep->udc;
1582	unsigned long	flags;
1583
1584	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1585		return -EINVAL;
1586	spin_lock_irqsave(&udc->lock, flags);
1587
1588	nuke(ep, -ESHUTDOWN);
1589
1590	/* Clear all DMA statuses for this EP */
1591	udc_ep_dma_disable(udc, ep->hwep_num);
1592	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1593	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1594	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1595	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1596
1597	/* Remove the DD pointer in the UDCA */
1598	udc->udca_v_base[ep->hwep_num] = 0;
1599
1600	/* Disable and reset endpoint and interrupt */
1601	uda_clear_hwepint(udc, ep->hwep_num);
1602	udc_unrealize_hwep(udc, ep->hwep_num);
1603
1604	ep->hwep_num = 0;
1605
1606	spin_unlock_irqrestore(&udc->lock, flags);
1607
1608	atomic_dec(&udc->enabled_ep_cnt);
1609	wake_up(&udc->ep_disable_wait_queue);
1610
1611	return 0;
1612}
1613
1614/* Must be called without lock */
1615static int lpc32xx_ep_enable(struct usb_ep *_ep,
1616			     const struct usb_endpoint_descriptor *desc)
1617{
1618	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1619	struct lpc32xx_udc *udc = ep->udc;
1620	u16 maxpacket;
1621	u32 tmp;
1622	unsigned long flags;
1623
1624	/* Verify EP data */
1625	if ((!_ep) || (!ep) || (!desc) ||
1626	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1627		dev_dbg(udc->dev, "bad ep or descriptor\n");
1628		return -EINVAL;
1629	}
 
1630	maxpacket = usb_endpoint_maxp(desc);
1631	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1632		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1633		return -EINVAL;
1634	}
1635
1636	/* Don't touch EP0 */
1637	if (ep->hwep_num_base == 0) {
1638		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1639		return -EINVAL;
1640	}
1641
1642	/* Is driver ready? */
1643	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1644		dev_dbg(udc->dev, "bogus device state\n");
1645		return -ESHUTDOWN;
1646	}
1647
1648	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1649	switch (tmp) {
1650	case USB_ENDPOINT_XFER_CONTROL:
1651		return -EINVAL;
1652
1653	case USB_ENDPOINT_XFER_INT:
1654		if (maxpacket > ep->maxpacket) {
1655			dev_dbg(udc->dev,
1656				"Bad INT endpoint maxpacket %d\n", maxpacket);
1657			return -EINVAL;
1658		}
1659		break;
1660
1661	case USB_ENDPOINT_XFER_BULK:
1662		switch (maxpacket) {
1663		case 8:
1664		case 16:
1665		case 32:
1666		case 64:
1667			break;
1668
1669		default:
1670			dev_dbg(udc->dev,
1671				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1672			return -EINVAL;
1673		}
1674		break;
1675
1676	case USB_ENDPOINT_XFER_ISOC:
1677		break;
1678	}
1679	spin_lock_irqsave(&udc->lock, flags);
1680
1681	/* Initialize endpoint to match the selected descriptor */
1682	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1683	ep->ep.maxpacket = maxpacket;
1684
1685	/* Map hardware endpoint from base and direction */
1686	if (ep->is_in)
1687		/* IN endpoints are offset 1 from the OUT endpoint */
1688		ep->hwep_num = ep->hwep_num_base + EP_IN;
1689	else
1690		ep->hwep_num = ep->hwep_num_base;
1691
1692	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1693	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1694
1695	/* Realize the endpoint, interrupt is enabled later when
1696	 * buffers are queued, IN EPs will NAK until buffers are ready */
1697	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1698	udc_clr_buffer_hwep(udc, ep->hwep_num);
1699	uda_disable_hwepint(udc, ep->hwep_num);
1700	udc_clrstall_hwep(udc, ep->hwep_num);
1701
1702	/* Clear all DMA statuses for this EP */
1703	udc_ep_dma_disable(udc, ep->hwep_num);
1704	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1705	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1706	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1707	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1708
1709	spin_unlock_irqrestore(&udc->lock, flags);
1710
1711	atomic_inc(&udc->enabled_ep_cnt);
1712	return 0;
1713}
1714
1715/*
1716 * Allocate a USB request list
1717 * Can be called with or without lock
1718 */
1719static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1720						    gfp_t gfp_flags)
1721{
1722	struct lpc32xx_request *req;
1723
1724	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1725	if (!req)
1726		return NULL;
1727
1728	INIT_LIST_HEAD(&req->queue);
1729	return &req->req;
1730}
1731
1732/*
1733 * De-allocate a USB request list
1734 * Can be called with or without lock
1735 */
1736static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1737				    struct usb_request *_req)
1738{
1739	struct lpc32xx_request *req;
1740
1741	req = container_of(_req, struct lpc32xx_request, req);
1742	BUG_ON(!list_empty(&req->queue));
1743	kfree(req);
1744}
1745
1746/* Must be called without lock */
1747static int lpc32xx_ep_queue(struct usb_ep *_ep,
1748			    struct usb_request *_req, gfp_t gfp_flags)
1749{
1750	struct lpc32xx_request *req;
1751	struct lpc32xx_ep *ep;
1752	struct lpc32xx_udc *udc;
1753	unsigned long flags;
1754	int status = 0;
1755
1756	req = container_of(_req, struct lpc32xx_request, req);
1757	ep = container_of(_ep, struct lpc32xx_ep, ep);
1758
1759	if (!_ep || !_req || !_req->complete || !_req->buf ||
1760	    !list_empty(&req->queue))
1761		return -EINVAL;
1762
1763	udc = ep->udc;
1764
1765	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1766		return -EPIPE;
1767
1768	if (ep->lep) {
1769		struct lpc32xx_usbd_dd_gad *dd;
1770
1771		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1772		if (status)
1773			return status;
1774
1775		/* For the request, build a list of DDs */
1776		dd = udc_dd_alloc(udc);
1777		if (!dd) {
1778			/* Error allocating DD */
1779			return -ENOMEM;
1780		}
1781		req->dd_desc_ptr = dd;
1782
1783		/* Setup the DMA descriptor */
1784		dd->dd_next_phy = dd->dd_next_v = 0;
1785		dd->dd_buffer_addr = req->req.dma;
1786		dd->dd_status = 0;
1787
1788		/* Special handling for ISO EPs */
1789		if (ep->eptype == EP_ISO_TYPE) {
1790			dd->dd_setup = DD_SETUP_ISO_EP |
1791				DD_SETUP_PACKETLEN(0) |
1792				DD_SETUP_DMALENBYTES(1);
1793			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1794			if (ep->is_in)
1795				dd->iso_status[0] = req->req.length;
1796			else
1797				dd->iso_status[0] = 0;
1798		} else
1799			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1800				DD_SETUP_DMALENBYTES(req->req.length);
1801	}
1802
1803	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1804	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1805
1806	spin_lock_irqsave(&udc->lock, flags);
1807
1808	_req->status = -EINPROGRESS;
1809	_req->actual = 0;
1810	req->send_zlp = _req->zero;
1811
1812	/* Kickstart empty queues */
1813	if (list_empty(&ep->queue)) {
1814		list_add_tail(&req->queue, &ep->queue);
1815
1816		if (ep->hwep_num_base == 0) {
1817			/* Handle expected data direction */
1818			if (ep->is_in) {
1819				/* IN packet to host */
1820				udc->ep0state = DATA_IN;
1821				status = udc_ep0_in_req(udc);
1822			} else {
1823				/* OUT packet from host */
1824				udc->ep0state = DATA_OUT;
1825				status = udc_ep0_out_req(udc);
1826			}
1827		} else if (ep->is_in) {
1828			/* IN packet to host and kick off transfer */
1829			if (!ep->req_pending)
1830				udc_ep_in_req_dma(udc, ep);
1831		} else
1832			/* OUT packet from host and kick off list */
1833			if (!ep->req_pending)
1834				udc_ep_out_req_dma(udc, ep);
1835	} else
1836		list_add_tail(&req->queue, &ep->queue);
1837
1838	spin_unlock_irqrestore(&udc->lock, flags);
1839
1840	return (status < 0) ? status : 0;
1841}
1842
1843/* Must be called without lock */
1844static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1845{
1846	struct lpc32xx_ep *ep;
1847	struct lpc32xx_request *req;
1848	unsigned long flags;
1849
1850	ep = container_of(_ep, struct lpc32xx_ep, ep);
1851	if (!_ep || ep->hwep_num_base == 0)
1852		return -EINVAL;
1853
1854	spin_lock_irqsave(&ep->udc->lock, flags);
1855
1856	/* make sure it's actually queued on this endpoint */
1857	list_for_each_entry(req, &ep->queue, queue) {
1858		if (&req->req == _req)
1859			break;
 
 
1860	}
1861	if (&req->req != _req) {
1862		spin_unlock_irqrestore(&ep->udc->lock, flags);
1863		return -EINVAL;
1864	}
1865
1866	done(ep, req, -ECONNRESET);
1867
1868	spin_unlock_irqrestore(&ep->udc->lock, flags);
1869
1870	return 0;
1871}
1872
1873/* Must be called without lock */
1874static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1875{
1876	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1877	struct lpc32xx_udc *udc = ep->udc;
1878	unsigned long flags;
1879
1880	if ((!ep) || (ep->hwep_num <= 1))
1881		return -EINVAL;
1882
1883	/* Don't halt an IN EP */
1884	if (ep->is_in)
1885		return -EAGAIN;
1886
 
1887	spin_lock_irqsave(&udc->lock, flags);
1888
1889	if (value == 1) {
1890		/* stall */
1891		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1892					DAT_WR_BYTE(EP_STAT_ST));
1893	} else {
1894		/* End stall */
1895		ep->wedge = 0;
1896		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1897					DAT_WR_BYTE(0));
1898	}
1899
1900	spin_unlock_irqrestore(&udc->lock, flags);
1901
1902	return 0;
1903}
1904
1905/* set the halt feature and ignores clear requests */
1906static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1907{
1908	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1909
1910	if (!_ep || !ep->udc)
1911		return -EINVAL;
1912
1913	ep->wedge = 1;
1914
1915	return usb_ep_set_halt(_ep);
1916}
1917
1918static const struct usb_ep_ops lpc32xx_ep_ops = {
1919	.enable		= lpc32xx_ep_enable,
1920	.disable	= lpc32xx_ep_disable,
1921	.alloc_request	= lpc32xx_ep_alloc_request,
1922	.free_request	= lpc32xx_ep_free_request,
1923	.queue		= lpc32xx_ep_queue,
1924	.dequeue	= lpc32xx_ep_dequeue,
1925	.set_halt	= lpc32xx_ep_set_halt,
1926	.set_wedge	= lpc32xx_ep_set_wedge,
1927};
1928
1929/* Send a ZLP on a non-0 IN EP */
1930void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1931{
1932	/* Clear EP status */
1933	udc_clearep_getsts(udc, ep->hwep_num);
1934
1935	/* Send ZLP via FIFO mechanism */
1936	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1937}
1938
1939/*
1940 * Handle EP completion for ZLP
1941 * This function will only be called when a delayed ZLP needs to be sent out
1942 * after a DMA transfer has filled both buffers.
1943 */
1944void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1945{
1946	u32 epstatus;
1947	struct lpc32xx_request *req;
1948
1949	if (ep->hwep_num <= 0)
1950		return;
1951
1952	uda_clear_hwepint(udc, ep->hwep_num);
1953
1954	/* If this interrupt isn't enabled, return now */
1955	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1956		return;
1957
1958	/* Get endpoint status */
1959	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1960
1961	/*
1962	 * This should never happen, but protect against writing to the
1963	 * buffer when full.
1964	 */
1965	if (epstatus & EP_SEL_F)
1966		return;
1967
1968	if (ep->is_in) {
1969		udc_send_in_zlp(udc, ep);
1970		uda_disable_hwepint(udc, ep->hwep_num);
1971	} else
1972		return;
1973
1974	/* If there isn't a request waiting, something went wrong */
1975	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1976	if (req) {
1977		done(ep, req, 0);
1978
1979		/* Start another request if ready */
1980		if (!list_empty(&ep->queue)) {
1981			if (ep->is_in)
1982				udc_ep_in_req_dma(udc, ep);
1983			else
1984				udc_ep_out_req_dma(udc, ep);
1985		} else
1986			ep->req_pending = 0;
1987	}
1988}
1989
1990
1991/* DMA end of transfer completion */
1992static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1993{
1994	u32 status, epstatus;
1995	struct lpc32xx_request *req;
1996	struct lpc32xx_usbd_dd_gad *dd;
1997
1998#ifdef CONFIG_USB_GADGET_DEBUG_FILES
1999	ep->totalints++;
2000#endif
2001
2002	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2003	if (!req) {
2004		ep_err(ep, "DMA interrupt on no req!\n");
2005		return;
2006	}
2007	dd = req->dd_desc_ptr;
2008
2009	/* DMA descriptor should always be retired for this call */
2010	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2011		ep_warn(ep, "DMA descriptor did not retire\n");
2012
2013	/* Disable DMA */
2014	udc_ep_dma_disable(udc, ep->hwep_num);
2015	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2016	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2017
2018	/* System error? */
2019	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2020	    (1 << ep->hwep_num)) {
2021		writel((1 << ep->hwep_num),
2022			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2023		ep_err(ep, "AHB critical error!\n");
2024		ep->req_pending = 0;
2025
2026		/* The error could have occurred on a packet of a multipacket
2027		 * transfer, so recovering the transfer is not possible. Close
2028		 * the request with an error */
2029		done(ep, req, -ECONNABORTED);
2030		return;
2031	}
2032
2033	/* Handle the current DD's status */
2034	status = dd->dd_status;
2035	switch (status & DD_STATUS_STS_MASK) {
2036	case DD_STATUS_STS_NS:
2037		/* DD not serviced? This shouldn't happen! */
2038		ep->req_pending = 0;
2039		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2040		       status);
2041
2042		done(ep, req, -ECONNABORTED);
2043		return;
2044
2045	case DD_STATUS_STS_BS:
2046		/* Interrupt only fires on EOT - This shouldn't happen! */
2047		ep->req_pending = 0;
2048		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2049		       status);
2050		done(ep, req, -ECONNABORTED);
2051		return;
2052
2053	case DD_STATUS_STS_NC:
2054	case DD_STATUS_STS_DUR:
2055		/* Really just a short packet, not an underrun */
2056		/* This is a good status and what we expect */
2057		break;
2058
2059	default:
2060		/* Data overrun, system error, or unknown */
2061		ep->req_pending = 0;
2062		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2063		       status);
2064		done(ep, req, -ECONNABORTED);
2065		return;
2066	}
2067
2068	/* ISO endpoints are handled differently */
2069	if (ep->eptype == EP_ISO_TYPE) {
2070		if (ep->is_in)
2071			req->req.actual = req->req.length;
2072		else
2073			req->req.actual = dd->iso_status[0] & 0xFFFF;
2074	} else
2075		req->req.actual += DD_STATUS_CURDMACNT(status);
2076
2077	/* Send a ZLP if necessary. This will be done for non-int
2078	 * packets which have a size that is a divisor of MAXP */
2079	if (req->send_zlp) {
2080		/*
2081		 * If at least 1 buffer is available, send the ZLP now.
2082		 * Otherwise, the ZLP send needs to be deferred until a
2083		 * buffer is available.
2084		 */
2085		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2086			udc_clearep_getsts(udc, ep->hwep_num);
2087			uda_enable_hwepint(udc, ep->hwep_num);
2088			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2089
2090			/* Let the EP interrupt handle the ZLP */
2091			return;
2092		} else
2093			udc_send_in_zlp(udc, ep);
2094	}
2095
2096	/* Transfer request is complete */
2097	done(ep, req, 0);
2098
2099	/* Start another request if ready */
2100	udc_clearep_getsts(udc, ep->hwep_num);
2101	if (!list_empty((&ep->queue))) {
2102		if (ep->is_in)
2103			udc_ep_in_req_dma(udc, ep);
2104		else
2105			udc_ep_out_req_dma(udc, ep);
2106	} else
2107		ep->req_pending = 0;
2108
2109}
2110
2111/*
2112 *
2113 * Endpoint 0 functions
2114 *
2115 */
2116static void udc_handle_dev(struct lpc32xx_udc *udc)
2117{
2118	u32 tmp;
2119
2120	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2121	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2122
2123	if (tmp & DEV_RST)
2124		uda_usb_reset(udc);
2125	else if (tmp & DEV_CON_CH)
2126		uda_power_event(udc, (tmp & DEV_CON));
2127	else if (tmp & DEV_SUS_CH) {
2128		if (tmp & DEV_SUS) {
2129			if (udc->vbus == 0)
2130				stop_activity(udc);
2131			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2132				 udc->driver) {
2133				/* Power down transceiver */
2134				udc->poweron = 0;
2135				schedule_work(&udc->pullup_job);
2136				uda_resm_susp_event(udc, 1);
2137			}
2138		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2139			   udc->driver && udc->vbus) {
2140			uda_resm_susp_event(udc, 0);
2141			/* Power up transceiver */
2142			udc->poweron = 1;
2143			schedule_work(&udc->pullup_job);
2144		}
2145	}
2146}
2147
2148static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2149{
2150	struct lpc32xx_ep *ep;
2151	u32 ep0buff = 0, tmp;
2152
2153	switch (reqtype & USB_RECIP_MASK) {
2154	case USB_RECIP_INTERFACE:
2155		break; /* Not supported */
2156
2157	case USB_RECIP_DEVICE:
2158		ep0buff = udc->gadget.is_selfpowered;
2159		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2160			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2161		break;
2162
2163	case USB_RECIP_ENDPOINT:
2164		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2165		ep = &udc->ep[tmp];
2166		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2167			return -EOPNOTSUPP;
2168
2169		if (wIndex & USB_DIR_IN) {
2170			if (!ep->is_in)
2171				return -EOPNOTSUPP; /* Something's wrong */
2172		} else if (ep->is_in)
2173			return -EOPNOTSUPP; /* Not an IN endpoint */
2174
2175		/* Get status of the endpoint */
2176		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2177		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2178
2179		if (tmp & EP_SEL_ST)
2180			ep0buff = (1 << USB_ENDPOINT_HALT);
2181		else
2182			ep0buff = 0;
2183		break;
2184
2185	default:
2186		break;
2187	}
2188
2189	/* Return data */
2190	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2191
2192	return 0;
2193}
2194
2195static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2196{
2197	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2198	struct usb_ctrlrequest ctrlpkt;
2199	int i, bytes;
2200	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2201
2202	/* Nuke previous transfers */
2203	nuke(ep0, -EPROTO);
2204
2205	/* Get setup packet */
2206	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2207	if (bytes != 8) {
2208		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2209			bytes);
2210		return;
2211	}
2212
2213	/* Native endianness */
2214	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2215	wValue = le16_to_cpu(ctrlpkt.wValue);
2216	wLength = le16_to_cpu(ctrlpkt.wLength);
2217	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2218
2219	/* Set direction of EP0 */
2220	if (likely(reqtype & USB_DIR_IN))
2221		ep0->is_in = 1;
2222	else
2223		ep0->is_in = 0;
2224
2225	/* Handle SETUP packet */
2226	req = le16_to_cpu(ctrlpkt.bRequest);
2227	switch (req) {
2228	case USB_REQ_CLEAR_FEATURE:
2229	case USB_REQ_SET_FEATURE:
2230		switch (reqtype) {
2231		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2232			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2233				goto stall; /* Nothing else handled */
2234
2235			/* Tell board about event */
2236			if (req == USB_REQ_CLEAR_FEATURE)
2237				udc->dev_status &=
2238					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2239			else
2240				udc->dev_status |=
2241					(1 << USB_DEVICE_REMOTE_WAKEUP);
2242			uda_remwkp_cgh(udc);
2243			goto zlp_send;
2244
2245		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2246			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2247			if ((wValue != USB_ENDPOINT_HALT) ||
2248			    (tmp >= NUM_ENDPOINTS))
2249				break;
2250
2251			/* Find hardware endpoint from logical endpoint */
2252			ep = &udc->ep[tmp];
2253			tmp = ep->hwep_num;
2254			if (tmp == 0)
2255				break;
2256
2257			if (req == USB_REQ_SET_FEATURE)
2258				udc_stall_hwep(udc, tmp);
2259			else if (!ep->wedge)
2260				udc_clrstall_hwep(udc, tmp);
2261
2262			goto zlp_send;
2263
2264		default:
2265			break;
2266		}
2267
2268
2269	case USB_REQ_SET_ADDRESS:
2270		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2271			udc_set_address(udc, wValue);
2272			goto zlp_send;
2273		}
2274		break;
2275
2276	case USB_REQ_GET_STATUS:
2277		udc_get_status(udc, reqtype, wIndex);
2278		return;
2279
2280	default:
2281		break; /* Let GadgetFS handle the descriptor instead */
2282	}
2283
2284	if (likely(udc->driver)) {
2285		/* device-2-host (IN) or no data setup command, process
2286		 * immediately */
2287		spin_unlock(&udc->lock);
2288		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2289
2290		spin_lock(&udc->lock);
2291		if (req == USB_REQ_SET_CONFIGURATION) {
2292			/* Configuration is set after endpoints are realized */
2293			if (wValue) {
2294				/* Set configuration */
2295				udc_set_device_configured(udc);
2296
2297				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2298							DAT_WR_BYTE(AP_CLK |
2299							INAK_BI | INAK_II));
2300			} else {
2301				/* Clear configuration */
2302				udc_set_device_unconfigured(udc);
2303
2304				/* Disable NAK interrupts */
2305				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2306							DAT_WR_BYTE(AP_CLK));
2307			}
2308		}
2309
2310		if (i < 0) {
2311			/* setup processing failed, force stall */
2312			dev_dbg(udc->dev,
2313				"req %02x.%02x protocol STALL; stat %d\n",
2314				reqtype, req, i);
2315			udc->ep0state = WAIT_FOR_SETUP;
2316			goto stall;
2317		}
2318	}
2319
2320	if (!ep0->is_in)
2321		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2322
2323	return;
2324
2325stall:
2326	udc_stall_hwep(udc, EP_IN);
2327	return;
2328
2329zlp_send:
2330	udc_ep0_send_zlp(udc);
2331	return;
2332}
2333
2334/* IN endpoint 0 transfer */
2335static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2336{
2337	struct lpc32xx_ep *ep0 = &udc->ep[0];
2338	u32 epstatus;
2339
2340	/* Clear EP interrupt */
2341	epstatus = udc_clearep_getsts(udc, EP_IN);
2342
2343#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2344	ep0->totalints++;
2345#endif
2346
2347	/* Stalled? Clear stall and reset buffers */
2348	if (epstatus & EP_SEL_ST) {
2349		udc_clrstall_hwep(udc, EP_IN);
2350		nuke(ep0, -ECONNABORTED);
2351		udc->ep0state = WAIT_FOR_SETUP;
2352		return;
2353	}
2354
2355	/* Is a buffer available? */
2356	if (!(epstatus & EP_SEL_F)) {
2357		/* Handle based on current state */
2358		if (udc->ep0state == DATA_IN)
2359			udc_ep0_in_req(udc);
2360		else {
2361			/* Unknown state for EP0 oe end of DATA IN phase */
2362			nuke(ep0, -ECONNABORTED);
2363			udc->ep0state = WAIT_FOR_SETUP;
2364		}
2365	}
2366}
2367
2368/* OUT endpoint 0 transfer */
2369static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2370{
2371	struct lpc32xx_ep *ep0 = &udc->ep[0];
2372	u32 epstatus;
2373
2374	/* Clear EP interrupt */
2375	epstatus = udc_clearep_getsts(udc, EP_OUT);
2376
2377
2378#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2379	ep0->totalints++;
2380#endif
2381
2382	/* Stalled? */
2383	if (epstatus & EP_SEL_ST) {
2384		udc_clrstall_hwep(udc, EP_OUT);
2385		nuke(ep0, -ECONNABORTED);
2386		udc->ep0state = WAIT_FOR_SETUP;
2387		return;
2388	}
2389
2390	/* A NAK may occur if a packet couldn't be received yet */
2391	if (epstatus & EP_SEL_EPN)
2392		return;
2393	/* Setup packet incoming? */
2394	if (epstatus & EP_SEL_STP) {
2395		nuke(ep0, 0);
2396		udc->ep0state = WAIT_FOR_SETUP;
2397	}
2398
2399	/* Data available? */
2400	if (epstatus & EP_SEL_F)
2401		/* Handle based on current state */
2402		switch (udc->ep0state) {
2403		case WAIT_FOR_SETUP:
2404			udc_handle_ep0_setup(udc);
2405			break;
2406
2407		case DATA_OUT:
2408			udc_ep0_out_req(udc);
2409			break;
2410
2411		default:
2412			/* Unknown state for EP0 */
2413			nuke(ep0, -ECONNABORTED);
2414			udc->ep0state = WAIT_FOR_SETUP;
2415		}
2416}
2417
2418/* Must be called without lock */
2419static int lpc32xx_get_frame(struct usb_gadget *gadget)
2420{
2421	int frame;
2422	unsigned long flags;
2423	struct lpc32xx_udc *udc = to_udc(gadget);
2424
2425	if (!udc->clocked)
2426		return -EINVAL;
2427
2428	spin_lock_irqsave(&udc->lock, flags);
2429
2430	frame = (int) udc_get_current_frame(udc);
2431
2432	spin_unlock_irqrestore(&udc->lock, flags);
2433
2434	return frame;
2435}
2436
2437static int lpc32xx_wakeup(struct usb_gadget *gadget)
2438{
2439	return -ENOTSUPP;
2440}
2441
2442static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2443{
2444	gadget->is_selfpowered = (is_on != 0);
2445
2446	return 0;
2447}
2448
2449/*
2450 * vbus is here!  turn everything on that's ready
2451 * Must be called without lock
2452 */
2453static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2454{
2455	unsigned long flags;
2456	struct lpc32xx_udc *udc = to_udc(gadget);
2457
2458	spin_lock_irqsave(&udc->lock, flags);
2459
2460	/* Doesn't need lock */
2461	if (udc->driver) {
2462		udc_clk_set(udc, 1);
2463		udc_enable(udc);
2464		pullup(udc, is_active);
2465	} else {
2466		stop_activity(udc);
2467		pullup(udc, 0);
2468
2469		spin_unlock_irqrestore(&udc->lock, flags);
2470		/*
2471		 *  Wait for all the endpoints to disable,
2472		 *  before disabling clocks. Don't wait if
2473		 *  endpoints are not enabled.
2474		 */
2475		if (atomic_read(&udc->enabled_ep_cnt))
2476			wait_event_interruptible(udc->ep_disable_wait_queue,
2477				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2478
2479		spin_lock_irqsave(&udc->lock, flags);
2480
2481		udc_clk_set(udc, 0);
2482	}
2483
2484	spin_unlock_irqrestore(&udc->lock, flags);
2485
2486	return 0;
2487}
2488
2489/* Can be called with or without lock */
2490static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2491{
2492	struct lpc32xx_udc *udc = to_udc(gadget);
2493
2494	/* Doesn't need lock */
2495	pullup(udc, is_on);
2496
2497	return 0;
2498}
2499
2500static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2501static int lpc32xx_stop(struct usb_gadget *);
2502
2503static const struct usb_gadget_ops lpc32xx_udc_ops = {
2504	.get_frame		= lpc32xx_get_frame,
2505	.wakeup			= lpc32xx_wakeup,
2506	.set_selfpowered	= lpc32xx_set_selfpowered,
2507	.vbus_session		= lpc32xx_vbus_session,
2508	.pullup			= lpc32xx_pullup,
2509	.udc_start		= lpc32xx_start,
2510	.udc_stop		= lpc32xx_stop,
2511};
2512
2513static void nop_release(struct device *dev)
2514{
2515	/* nothing to free */
2516}
2517
2518static const struct lpc32xx_udc controller_template = {
2519	.gadget = {
2520		.ops	= &lpc32xx_udc_ops,
2521		.name	= driver_name,
2522		.dev	= {
2523			.init_name = "gadget",
2524			.release = nop_release,
2525		}
2526	},
2527	.ep[0] = {
2528		.ep = {
2529			.name	= "ep0",
2530			.ops	= &lpc32xx_ep_ops,
2531			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2532					USB_EP_CAPS_DIR_ALL),
2533		},
2534		.maxpacket	= 64,
2535		.hwep_num_base	= 0,
2536		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2537		.lep		= 0,
2538		.eptype		= EP_CTL_TYPE,
2539	},
2540	.ep[1] = {
2541		.ep = {
2542			.name	= "ep1-int",
2543			.ops	= &lpc32xx_ep_ops,
2544			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2545					USB_EP_CAPS_DIR_ALL),
2546		},
2547		.maxpacket	= 64,
2548		.hwep_num_base	= 2,
2549		.hwep_num	= 0, /* 2 or 3, will be set later */
2550		.lep		= 1,
2551		.eptype		= EP_INT_TYPE,
2552	},
2553	.ep[2] = {
2554		.ep = {
2555			.name	= "ep2-bulk",
2556			.ops	= &lpc32xx_ep_ops,
2557			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2558					USB_EP_CAPS_DIR_ALL),
2559		},
2560		.maxpacket	= 64,
2561		.hwep_num_base	= 4,
2562		.hwep_num	= 0, /* 4 or 5, will be set later */
2563		.lep		= 2,
2564		.eptype		= EP_BLK_TYPE,
2565	},
2566	.ep[3] = {
2567		.ep = {
2568			.name	= "ep3-iso",
2569			.ops	= &lpc32xx_ep_ops,
2570			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2571					USB_EP_CAPS_DIR_ALL),
2572		},
2573		.maxpacket	= 1023,
2574		.hwep_num_base	= 6,
2575		.hwep_num	= 0, /* 6 or 7, will be set later */
2576		.lep		= 3,
2577		.eptype		= EP_ISO_TYPE,
2578	},
2579	.ep[4] = {
2580		.ep = {
2581			.name	= "ep4-int",
2582			.ops	= &lpc32xx_ep_ops,
2583			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2584					USB_EP_CAPS_DIR_ALL),
2585		},
2586		.maxpacket	= 64,
2587		.hwep_num_base	= 8,
2588		.hwep_num	= 0, /* 8 or 9, will be set later */
2589		.lep		= 4,
2590		.eptype		= EP_INT_TYPE,
2591	},
2592	.ep[5] = {
2593		.ep = {
2594			.name	= "ep5-bulk",
2595			.ops	= &lpc32xx_ep_ops,
2596			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2597					USB_EP_CAPS_DIR_ALL),
2598		},
2599		.maxpacket	= 64,
2600		.hwep_num_base	= 10,
2601		.hwep_num	= 0, /* 10 or 11, will be set later */
2602		.lep		= 5,
2603		.eptype		= EP_BLK_TYPE,
2604	},
2605	.ep[6] = {
2606		.ep = {
2607			.name	= "ep6-iso",
2608			.ops	= &lpc32xx_ep_ops,
2609			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2610					USB_EP_CAPS_DIR_ALL),
2611		},
2612		.maxpacket	= 1023,
2613		.hwep_num_base	= 12,
2614		.hwep_num	= 0, /* 12 or 13, will be set later */
2615		.lep		= 6,
2616		.eptype		= EP_ISO_TYPE,
2617	},
2618	.ep[7] = {
2619		.ep = {
2620			.name	= "ep7-int",
2621			.ops	= &lpc32xx_ep_ops,
2622			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2623					USB_EP_CAPS_DIR_ALL),
2624		},
2625		.maxpacket	= 64,
2626		.hwep_num_base	= 14,
2627		.hwep_num	= 0,
2628		.lep		= 7,
2629		.eptype		= EP_INT_TYPE,
2630	},
2631	.ep[8] = {
2632		.ep = {
2633			.name	= "ep8-bulk",
2634			.ops	= &lpc32xx_ep_ops,
2635			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2636					USB_EP_CAPS_DIR_ALL),
2637		},
2638		.maxpacket	= 64,
2639		.hwep_num_base	= 16,
2640		.hwep_num	= 0,
2641		.lep		= 8,
2642		.eptype		= EP_BLK_TYPE,
2643	},
2644	.ep[9] = {
2645		.ep = {
2646			.name	= "ep9-iso",
2647			.ops	= &lpc32xx_ep_ops,
2648			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2649					USB_EP_CAPS_DIR_ALL),
2650		},
2651		.maxpacket	= 1023,
2652		.hwep_num_base	= 18,
2653		.hwep_num	= 0,
2654		.lep		= 9,
2655		.eptype		= EP_ISO_TYPE,
2656	},
2657	.ep[10] = {
2658		.ep = {
2659			.name	= "ep10-int",
2660			.ops	= &lpc32xx_ep_ops,
2661			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2662					USB_EP_CAPS_DIR_ALL),
2663		},
2664		.maxpacket	= 64,
2665		.hwep_num_base	= 20,
2666		.hwep_num	= 0,
2667		.lep		= 10,
2668		.eptype		= EP_INT_TYPE,
2669	},
2670	.ep[11] = {
2671		.ep = {
2672			.name	= "ep11-bulk",
2673			.ops	= &lpc32xx_ep_ops,
2674			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2675					USB_EP_CAPS_DIR_ALL),
2676		},
2677		.maxpacket	= 64,
2678		.hwep_num_base	= 22,
2679		.hwep_num	= 0,
2680		.lep		= 11,
2681		.eptype		= EP_BLK_TYPE,
2682	},
2683	.ep[12] = {
2684		.ep = {
2685			.name	= "ep12-iso",
2686			.ops	= &lpc32xx_ep_ops,
2687			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2688					USB_EP_CAPS_DIR_ALL),
2689		},
2690		.maxpacket	= 1023,
2691		.hwep_num_base	= 24,
2692		.hwep_num	= 0,
2693		.lep		= 12,
2694		.eptype		= EP_ISO_TYPE,
2695	},
2696	.ep[13] = {
2697		.ep = {
2698			.name	= "ep13-int",
2699			.ops	= &lpc32xx_ep_ops,
2700			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2701					USB_EP_CAPS_DIR_ALL),
2702		},
2703		.maxpacket	= 64,
2704		.hwep_num_base	= 26,
2705		.hwep_num	= 0,
2706		.lep		= 13,
2707		.eptype		= EP_INT_TYPE,
2708	},
2709	.ep[14] = {
2710		.ep = {
2711			.name	= "ep14-bulk",
2712			.ops	= &lpc32xx_ep_ops,
2713			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2714					USB_EP_CAPS_DIR_ALL),
2715		},
2716		.maxpacket	= 64,
2717		.hwep_num_base	= 28,
2718		.hwep_num	= 0,
2719		.lep		= 14,
2720		.eptype		= EP_BLK_TYPE,
2721	},
2722	.ep[15] = {
2723		.ep = {
2724			.name	= "ep15-bulk",
2725			.ops	= &lpc32xx_ep_ops,
2726			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2727					USB_EP_CAPS_DIR_ALL),
2728		},
2729		.maxpacket	= 1023,
2730		.hwep_num_base	= 30,
2731		.hwep_num	= 0,
2732		.lep		= 15,
2733		.eptype		= EP_BLK_TYPE,
2734	},
2735};
2736
2737/* ISO and status interrupts */
2738static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2739{
2740	u32 tmp, devstat;
2741	struct lpc32xx_udc *udc = _udc;
2742
2743	spin_lock(&udc->lock);
2744
2745	/* Read the device status register */
2746	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2747
2748	devstat &= ~USBD_EP_FAST;
2749	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2750	devstat = devstat & udc->enabled_devints;
2751
2752	/* Device specific handling needed? */
2753	if (devstat & USBD_DEV_STAT)
2754		udc_handle_dev(udc);
2755
2756	/* Start of frame? (devstat & FRAME_INT):
2757	 * The frame interrupt isn't really needed for ISO support,
2758	 * as the driver will queue the necessary packets */
2759
2760	/* Error? */
2761	if (devstat & ERR_INT) {
2762		/* All types of errors, from cable removal during transfer to
2763		 * misc protocol and bit errors. These are mostly for just info,
2764		 * as the USB hardware will work around these. If these errors
2765		 * happen alot, something is wrong. */
2766		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2767		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2768		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2769	}
2770
2771	spin_unlock(&udc->lock);
2772
2773	return IRQ_HANDLED;
2774}
2775
2776/* EP interrupts */
2777static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2778{
2779	u32 tmp;
2780	struct lpc32xx_udc *udc = _udc;
2781
2782	spin_lock(&udc->lock);
2783
2784	/* Read the device status register */
2785	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2786
2787	/* Endpoints */
2788	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2789
2790	/* Special handling for EP0 */
2791	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2792		/* Handle EP0 IN */
2793		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2794			udc_handle_ep0_in(udc);
2795
2796		/* Handle EP0 OUT */
2797		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2798			udc_handle_ep0_out(udc);
2799	}
2800
2801	/* All other EPs */
2802	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2803		int i;
2804
2805		/* Handle other EP interrupts */
2806		for (i = 1; i < NUM_ENDPOINTS; i++) {
2807			if (tmp & (1 << udc->ep[i].hwep_num))
2808				udc_handle_eps(udc, &udc->ep[i]);
2809		}
2810	}
2811
2812	spin_unlock(&udc->lock);
2813
2814	return IRQ_HANDLED;
2815}
2816
2817static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2818{
2819	struct lpc32xx_udc *udc = _udc;
2820
2821	int i;
2822	u32 tmp;
2823
2824	spin_lock(&udc->lock);
2825
2826	/* Handle EP DMA EOT interrupts */
2827	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2828		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2829		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2830		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2831	for (i = 1; i < NUM_ENDPOINTS; i++) {
2832		if (tmp & (1 << udc->ep[i].hwep_num))
2833			udc_handle_dma_ep(udc, &udc->ep[i]);
2834	}
2835
2836	spin_unlock(&udc->lock);
2837
2838	return IRQ_HANDLED;
2839}
2840
2841/*
2842 *
2843 * VBUS detection, pullup handler, and Gadget cable state notification
2844 *
2845 */
2846static void vbus_work(struct work_struct *work)
2847{
2848	u8 value;
2849	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2850					       vbus_job);
2851
2852	if (udc->enabled != 0) {
2853		/* Discharge VBUS real quick */
2854		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2855			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2856
2857		/* Give VBUS some time (100mS) to discharge */
2858		msleep(100);
2859
2860		/* Disable VBUS discharge resistor */
2861		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2862			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2863			OTG1_VBUS_DISCHRG);
2864
2865		/* Clear interrupt */
2866		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2867			ISP1301_I2C_INTERRUPT_LATCH |
2868			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2869
2870		/* Get the VBUS status from the transceiver */
2871		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2872						 ISP1301_I2C_INTERRUPT_SOURCE);
2873
2874		/* VBUS on or off? */
2875		if (value & INT_SESS_VLD)
2876			udc->vbus = 1;
2877		else
2878			udc->vbus = 0;
2879
2880		/* VBUS changed? */
2881		if (udc->last_vbus != udc->vbus) {
2882			udc->last_vbus = udc->vbus;
2883			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2884		}
2885	}
2886
2887	/* Re-enable after completion */
2888	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2889}
2890
2891static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2892{
2893	struct lpc32xx_udc *udc = _udc;
2894
2895	/* Defer handling of VBUS IRQ to work queue */
2896	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2897	schedule_work(&udc->vbus_job);
2898
2899	return IRQ_HANDLED;
2900}
2901
2902static int lpc32xx_start(struct usb_gadget *gadget,
2903			 struct usb_gadget_driver *driver)
2904{
2905	struct lpc32xx_udc *udc = to_udc(gadget);
2906	int i;
2907
2908	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2909		dev_err(udc->dev, "bad parameter.\n");
2910		return -EINVAL;
2911	}
2912
2913	if (udc->driver) {
2914		dev_err(udc->dev, "UDC already has a gadget driver\n");
2915		return -EBUSY;
2916	}
2917
2918	udc->driver = driver;
2919	udc->gadget.dev.of_node = udc->dev->of_node;
2920	udc->enabled = 1;
2921	udc->gadget.is_selfpowered = 1;
2922	udc->vbus = 0;
2923
2924	/* Force VBUS process once to check for cable insertion */
2925	udc->last_vbus = udc->vbus = 0;
2926	schedule_work(&udc->vbus_job);
2927
2928	/* Do not re-enable ATX IRQ (3) */
2929	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2930		enable_irq(udc->udp_irq[i]);
 
 
2931
2932	return 0;
2933}
2934
2935static int lpc32xx_stop(struct usb_gadget *gadget)
2936{
2937	int i;
2938	struct lpc32xx_udc *udc = to_udc(gadget);
2939
2940	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2941		disable_irq(udc->udp_irq[i]);
 
 
2942
2943	if (udc->clocked) {
2944		spin_lock(&udc->lock);
2945		stop_activity(udc);
2946		spin_unlock(&udc->lock);
2947
2948		/*
2949		 *  Wait for all the endpoints to disable,
2950		 *  before disabling clocks. Don't wait if
2951		 *  endpoints are not enabled.
2952		 */
2953		if (atomic_read(&udc->enabled_ep_cnt))
2954			wait_event_interruptible(udc->ep_disable_wait_queue,
2955				(atomic_read(&udc->enabled_ep_cnt) == 0));
2956
2957		spin_lock(&udc->lock);
2958		udc_clk_set(udc, 0);
2959		spin_unlock(&udc->lock);
2960	}
2961
2962	udc->enabled = 0;
2963	udc->driver = NULL;
2964
2965	return 0;
2966}
2967
2968static void lpc32xx_udc_shutdown(struct platform_device *dev)
2969{
2970	/* Force disconnect on reboot */
2971	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2972
2973	pullup(udc, 0);
2974}
2975
2976/*
2977 * Callbacks to be overridden by options passed via OF (TODO)
2978 */
2979
2980static void lpc32xx_usbd_conn_chg(int conn)
2981{
2982	/* Do nothing, it might be nice to enable an LED
2983	 * based on conn state being !0 */
2984}
2985
2986static void lpc32xx_usbd_susp_chg(int susp)
2987{
2988	/* Device suspend if susp != 0 */
2989}
2990
2991static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2992{
2993	/* Enable or disable USB remote wakeup */
2994}
2995
2996struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2997	.vbus_drv_pol = 0,
2998	.conn_chgb = &lpc32xx_usbd_conn_chg,
2999	.susp_chgb = &lpc32xx_usbd_susp_chg,
3000	.rmwk_chgb = &lpc32xx_rmwkup_chg,
3001};
3002
3003
3004static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3005
3006static int lpc32xx_udc_probe(struct platform_device *pdev)
3007{
3008	struct device *dev = &pdev->dev;
3009	struct lpc32xx_udc *udc;
3010	int retval, i;
3011	struct resource *res;
3012	dma_addr_t dma_handle;
3013	struct device_node *isp1301_node;
3014
3015	udc = kmemdup(&controller_template, sizeof(*udc), GFP_KERNEL);
3016	if (!udc)
3017		return -ENOMEM;
3018
3019	for (i = 0; i <= 15; i++)
3020		udc->ep[i].udc = udc;
3021	udc->gadget.ep0 = &udc->ep[0].ep;
3022
3023	/* init software state */
3024	udc->gadget.dev.parent = dev;
3025	udc->pdev = pdev;
3026	udc->dev = &pdev->dev;
3027	udc->enabled = 0;
3028
3029	if (pdev->dev.of_node) {
3030		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3031						"transceiver", 0);
3032	} else {
3033		isp1301_node = NULL;
3034	}
3035
3036	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
 
3037	if (!udc->isp1301_i2c_client) {
3038		retval = -EPROBE_DEFER;
3039		goto phy_fail;
3040	}
3041
3042	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3043		 udc->isp1301_i2c_client->addr);
3044
3045	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3046	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3047	if (retval)
3048		goto resource_fail;
3049
3050	udc->board = &lpc32xx_usbddata;
3051
3052	/*
3053	 * Resources are mapped as follows:
3054	 *  IORESOURCE_MEM, base address and size of USB space
3055	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3056	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3057	 *  IORESOURCE_IRQ, USB device interrupt number
3058	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3059	 */
3060	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3061	if (!res) {
3062		retval = -ENXIO;
3063		goto resource_fail;
3064	}
3065
3066	spin_lock_init(&udc->lock);
3067
3068	/* Get IRQs */
3069	for (i = 0; i < 4; i++) {
3070		udc->udp_irq[i] = platform_get_irq(pdev, i);
3071		if (udc->udp_irq[i] < 0) {
3072			dev_err(udc->dev,
3073				"irq resource %d not available!\n", i);
3074			retval = udc->udp_irq[i];
3075			goto irq_fail;
3076		}
3077	}
3078
3079	udc->io_p_start = res->start;
3080	udc->io_p_size = resource_size(res);
3081	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3082		dev_err(udc->dev, "someone's using UDC memory\n");
3083		retval = -EBUSY;
3084		goto request_mem_region_fail;
3085	}
3086
3087	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3088	if (!udc->udp_baseaddr) {
3089		retval = -ENOMEM;
3090		dev_err(udc->dev, "IO map failure\n");
3091		goto io_map_fail;
3092	}
3093
3094	/* Get USB device clock */
3095	udc->usb_slv_clk = clk_get(&pdev->dev, NULL);
3096	if (IS_ERR(udc->usb_slv_clk)) {
3097		dev_err(udc->dev, "failed to acquire USB device clock\n");
3098		retval = PTR_ERR(udc->usb_slv_clk);
3099		goto usb_clk_get_fail;
3100	}
3101
3102	/* Enable USB device clock */
3103	retval = clk_prepare_enable(udc->usb_slv_clk);
3104	if (retval < 0) {
3105		dev_err(udc->dev, "failed to start USB device clock\n");
3106		goto usb_clk_enable_fail;
3107	}
3108
3109	/* Setup deferred workqueue data */
3110	udc->poweron = udc->pullup = 0;
3111	INIT_WORK(&udc->pullup_job, pullup_work);
3112	INIT_WORK(&udc->vbus_job, vbus_work);
3113#ifdef CONFIG_PM
3114	INIT_WORK(&udc->power_job, power_work);
3115#endif
3116
3117	/* All clocks are now on */
3118	udc->clocked = 1;
3119
3120	isp1301_udc_configure(udc);
3121	/* Allocate memory for the UDCA */
3122	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3123					      &dma_handle,
3124					      (GFP_KERNEL | GFP_DMA));
3125	if (!udc->udca_v_base) {
3126		dev_err(udc->dev, "error getting UDCA region\n");
3127		retval = -ENOMEM;
3128		goto i2c_fail;
3129	}
3130	udc->udca_p_base = dma_handle;
3131	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3132		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3133
3134	/* Setup the DD DMA memory pool */
3135	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3136					sizeof(struct lpc32xx_usbd_dd_gad),
3137					sizeof(u32), 0);
3138	if (!udc->dd_cache) {
3139		dev_err(udc->dev, "error getting DD DMA region\n");
3140		retval = -ENOMEM;
3141		goto dma_alloc_fail;
3142	}
3143
3144	/* Clear USB peripheral and initialize gadget endpoints */
3145	udc_disable(udc);
3146	udc_reinit(udc);
3147
3148	/* Request IRQs - low and high priority USB device IRQs are routed to
3149	 * the same handler, while the DMA interrupt is routed elsewhere */
3150	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3151			     0, "udc_lp", udc);
3152	if (retval < 0) {
3153		dev_err(udc->dev, "LP request irq %d failed\n",
3154			udc->udp_irq[IRQ_USB_LP]);
3155		goto irq_lp_fail;
3156	}
3157	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3158			     0, "udc_hp", udc);
3159	if (retval < 0) {
3160		dev_err(udc->dev, "HP request irq %d failed\n",
3161			udc->udp_irq[IRQ_USB_HP]);
3162		goto irq_hp_fail;
3163	}
3164
3165	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3166			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3167	if (retval < 0) {
3168		dev_err(udc->dev, "DEV request irq %d failed\n",
3169			udc->udp_irq[IRQ_USB_DEVDMA]);
3170		goto irq_dev_fail;
3171	}
3172
3173	/* The transceiver interrupt is used for VBUS detection and will
3174	   kick off the VBUS handler function */
3175	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3176			     0, "udc_otg", udc);
 
3177	if (retval < 0) {
3178		dev_err(udc->dev, "VBUS request irq %d failed\n",
3179			udc->udp_irq[IRQ_USB_ATX]);
3180		goto irq_xcvr_fail;
3181	}
3182
3183	/* Initialize wait queue */
3184	init_waitqueue_head(&udc->ep_disable_wait_queue);
3185	atomic_set(&udc->enabled_ep_cnt, 0);
3186
3187	/* Keep all IRQs disabled until GadgetFS starts up */
3188	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3189		disable_irq(udc->udp_irq[i]);
3190
3191	retval = usb_add_gadget_udc(dev, &udc->gadget);
3192	if (retval < 0)
3193		goto add_gadget_fail;
3194
3195	dev_set_drvdata(dev, udc);
3196	device_init_wakeup(dev, 1);
3197	create_debug_file(udc);
3198
3199	/* Disable clocks for now */
3200	udc_clk_set(udc, 0);
3201
3202	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3203	return 0;
3204
3205add_gadget_fail:
3206	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3207irq_xcvr_fail:
3208	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3209irq_dev_fail:
3210	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3211irq_hp_fail:
3212	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3213irq_lp_fail:
3214	dma_pool_destroy(udc->dd_cache);
3215dma_alloc_fail:
3216	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3217			  udc->udca_v_base, udc->udca_p_base);
3218i2c_fail:
3219	clk_disable_unprepare(udc->usb_slv_clk);
3220usb_clk_enable_fail:
3221	clk_put(udc->usb_slv_clk);
3222usb_clk_get_fail:
3223	iounmap(udc->udp_baseaddr);
3224io_map_fail:
3225	release_mem_region(udc->io_p_start, udc->io_p_size);
3226	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3227request_mem_region_fail:
3228irq_fail:
3229resource_fail:
3230phy_fail:
3231	kfree(udc);
3232	return retval;
3233}
3234
3235static int lpc32xx_udc_remove(struct platform_device *pdev)
3236{
3237	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3238
3239	usb_del_gadget_udc(&udc->gadget);
3240	if (udc->driver)
3241		return -EBUSY;
 
 
 
3242
3243	udc_clk_set(udc, 1);
3244	udc_disable(udc);
3245	pullup(udc, 0);
3246
3247	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3248
3249	device_init_wakeup(&pdev->dev, 0);
3250	remove_debug_file(udc);
3251
3252	dma_pool_destroy(udc->dd_cache);
3253	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3254			  udc->udca_v_base, udc->udca_p_base);
3255	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3256	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3257	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3258
3259	clk_disable_unprepare(udc->usb_slv_clk);
3260	clk_put(udc->usb_slv_clk);
3261
3262	iounmap(udc->udp_baseaddr);
3263	release_mem_region(udc->io_p_start, udc->io_p_size);
3264	kfree(udc);
3265
3266	return 0;
3267}
3268
3269#ifdef CONFIG_PM
3270static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3271{
3272	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3273
3274	if (udc->clocked) {
3275		/* Power down ISP */
3276		udc->poweron = 0;
3277		isp1301_set_powerstate(udc, 0);
3278
3279		/* Disable clocking */
3280		udc_clk_set(udc, 0);
3281
3282		/* Keep clock flag on, so we know to re-enable clocks
3283		   on resume */
3284		udc->clocked = 1;
3285
3286		/* Kill global USB clock */
3287		clk_disable_unprepare(udc->usb_slv_clk);
3288	}
3289
3290	return 0;
3291}
3292
3293static int lpc32xx_udc_resume(struct platform_device *pdev)
3294{
3295	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3296
3297	if (udc->clocked) {
3298		/* Enable global USB clock */
3299		clk_prepare_enable(udc->usb_slv_clk);
3300
3301		/* Enable clocking */
3302		udc_clk_set(udc, 1);
3303
3304		/* ISP back to normal power mode */
3305		udc->poweron = 1;
3306		isp1301_set_powerstate(udc, 1);
3307	}
3308
3309	return 0;
3310}
3311#else
3312#define	lpc32xx_udc_suspend	NULL
3313#define	lpc32xx_udc_resume	NULL
3314#endif
3315
3316#ifdef CONFIG_OF
3317static const struct of_device_id lpc32xx_udc_of_match[] = {
3318	{ .compatible = "nxp,lpc3220-udc", },
3319	{ },
3320};
3321MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3322#endif
3323
3324static struct platform_driver lpc32xx_udc_driver = {
3325	.remove		= lpc32xx_udc_remove,
 
3326	.shutdown	= lpc32xx_udc_shutdown,
3327	.suspend	= lpc32xx_udc_suspend,
3328	.resume		= lpc32xx_udc_resume,
3329	.driver		= {
3330		.name	= (char *) driver_name,
3331		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3332	},
3333};
3334
3335module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3336
3337MODULE_DESCRIPTION("LPC32XX udc driver");
3338MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3339MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3340MODULE_LICENSE("GPL");
3341MODULE_ALIAS("platform:lpc32xx_udc");