Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 145DEFINE_MUTEX(tty_mutex);
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 
 244const char *tty_name(const struct tty_struct *tty)
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 249}
 
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 
 
 
 
 
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353	mutex_lock(&tty_mutex);
 354
 355	list_for_each_entry(p, &tty_drivers, tty_drivers)
 356		if (prefix_length == strlen(p->name) && strncmp(name,
 357					p->name, prefix_length) == 0) {
 358			if (index < p->num) {
 359				*number = MKDEV(p->major, p->minor_start + index);
 360				goto out;
 361			}
 362		}
 363
 364	/* if here then driver wasn't found */
 365	ret = -ENODEV;
 366out:
 367	mutex_unlock(&tty_mutex);
 368	return ret;
 369}
 370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 371
 372#ifdef CONFIG_CONSOLE_POLL
 373
 374/**
 375 * tty_find_polling_driver - find device of a polled tty
 376 * @name: name string to match
 377 * @line: pointer to resulting tty line nr
 378 *
 379 * This routine returns a tty driver structure, given a name and the condition
 380 * that the tty driver is capable of polled operation.
 
 381 */
 382struct tty_driver *tty_find_polling_driver(char *name, int *line)
 383{
 384	struct tty_driver *p, *res = NULL;
 385	int tty_line = 0;
 386	int len;
 387	char *str, *stp;
 388
 389	for (str = name; *str; str++)
 390		if ((*str >= '0' && *str <= '9') || *str == ',')
 391			break;
 392	if (!*str)
 393		return NULL;
 394
 395	len = str - name;
 396	tty_line = simple_strtoul(str, &str, 10);
 397
 398	mutex_lock(&tty_mutex);
 399	/* Search through the tty devices to look for a match */
 400	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 401		if (!len || strncmp(name, p->name, len) != 0)
 402			continue;
 403		stp = str;
 404		if (*stp == ',')
 405			stp++;
 406		if (*stp == '\0')
 407			stp = NULL;
 408
 409		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 410		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 411			res = tty_driver_kref_get(p);
 412			*line = tty_line;
 413			break;
 414		}
 415	}
 416	mutex_unlock(&tty_mutex);
 417
 418	return res;
 419}
 420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 421#endif
 422
 423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 429{
 430	return -EIO;
 431}
 432
 433/* No kernel lock held - none needed ;) */
 434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 435{
 436	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 437}
 438
 439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 440		unsigned long arg)
 441{
 442	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 443}
 444
 445static long hung_up_tty_compat_ioctl(struct file *file,
 446				     unsigned int cmd, unsigned long arg)
 447{
 448	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 449}
 450
 451static int hung_up_tty_fasync(int fd, struct file *file, int on)
 452{
 453	return -ENOTTY;
 454}
 455
 456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 457{
 458	struct tty_struct *tty = file_tty(file);
 459
 460	if (tty && tty->ops && tty->ops->show_fdinfo)
 461		tty->ops->show_fdinfo(tty, m);
 462}
 463
 464static const struct file_operations tty_fops = {
 465	.llseek		= no_llseek,
 466	.read_iter	= tty_read,
 467	.write_iter	= tty_write,
 468	.splice_read	= copy_splice_read,
 469	.splice_write	= iter_file_splice_write,
 470	.poll		= tty_poll,
 471	.unlocked_ioctl	= tty_ioctl,
 472	.compat_ioctl	= tty_compat_ioctl,
 473	.open		= tty_open,
 474	.release	= tty_release,
 475	.fasync		= tty_fasync,
 476	.show_fdinfo	= tty_show_fdinfo,
 477};
 478
 479static const struct file_operations console_fops = {
 480	.llseek		= no_llseek,
 481	.read_iter	= tty_read,
 482	.write_iter	= redirected_tty_write,
 483	.splice_read	= copy_splice_read,
 484	.splice_write	= iter_file_splice_write,
 485	.poll		= tty_poll,
 486	.unlocked_ioctl	= tty_ioctl,
 487	.compat_ioctl	= tty_compat_ioctl,
 488	.open		= tty_open,
 489	.release	= tty_release,
 490	.fasync		= tty_fasync,
 491};
 492
 493static const struct file_operations hung_up_tty_fops = {
 494	.llseek		= no_llseek,
 495	.read_iter	= hung_up_tty_read,
 496	.write_iter	= hung_up_tty_write,
 497	.poll		= hung_up_tty_poll,
 498	.unlocked_ioctl	= hung_up_tty_ioctl,
 499	.compat_ioctl	= hung_up_tty_compat_ioctl,
 500	.release	= tty_release,
 501	.fasync		= hung_up_tty_fasync,
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 
 
 
 
 
 
 
 
 
 
 
 
 507/**
 508 * tty_wakeup - request more data
 509 * @tty: terminal
 
 
 510 *
 511 * Internal and external helper for wakeups of tty. This function informs the
 512 * line discipline if present that the driver is ready to receive more output
 513 * data.
 514 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515void tty_wakeup(struct tty_struct *tty)
 516{
 517	struct tty_ldisc *ld;
 518
 519	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 520		ld = tty_ldisc_ref(tty);
 521		if (ld) {
 522			if (ld->ops->write_wakeup)
 523				ld->ops->write_wakeup(tty);
 524			tty_ldisc_deref(ld);
 525		}
 526	}
 527	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 528}
 
 529EXPORT_SYMBOL_GPL(tty_wakeup);
 530
 531/**
 532 * tty_release_redirect - Release a redirect on a pty if present
 533 * @tty: tty device
 534 *
 535 * This is available to the pty code so if the master closes, if the slave is a
 536 * redirect it can release the redirect.
 537 */
 538static struct file *tty_release_redirect(struct tty_struct *tty)
 539{
 540	struct file *f = NULL;
 
 
 
 
 
 
 
 541
 542	spin_lock(&redirect_lock);
 543	if (redirect && file_tty(redirect) == tty) {
 544		f = redirect;
 545		redirect = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546	}
 547	spin_unlock(&redirect_lock);
 548
 549	return f;
 550}
 551
 552/**
 553 * __tty_hangup - actual handler for hangup events
 554 * @tty: tty device
 555 * @exit_session: if non-zero, signal all foreground group processes
 556 *
 557 * This can be called by a "kworker" kernel thread. That is process synchronous
 558 * but doesn't hold any locks, so we need to make sure we have the appropriate
 559 * locks for what we're doing.
 560 *
 561 * The hangup event clears any pending redirections onto the hung up device. It
 562 * ensures future writes will error and it does the needed line discipline
 563 * hangup and signal delivery. The tty object itself remains intact.
 564 *
 565 * Locking:
 566 *  * BTM
 567 *
 568 *   * redirect lock for undoing redirection
 569 *   * file list lock for manipulating list of ttys
 570 *   * tty_ldiscs_lock from called functions
 571 *   * termios_rwsem resetting termios data
 572 *   * tasklist_lock to walk task list for hangup event
 573 *
 574 *    * ->siglock to protect ->signal/->sighand
 575 *
 
 
 
 
 
 
 
 
 576 */
 577static void __tty_hangup(struct tty_struct *tty, int exit_session)
 578{
 579	struct file *cons_filp = NULL;
 580	struct file *filp, *f;
 581	struct tty_file_private *priv;
 582	int    closecount = 0, n;
 583	int refs;
 584
 585	if (!tty)
 586		return;
 587
 588	f = tty_release_redirect(tty);
 
 
 
 
 
 
 589
 590	tty_lock(tty);
 591
 592	if (test_bit(TTY_HUPPED, &tty->flags)) {
 593		tty_unlock(tty);
 594		return;
 595	}
 596
 597	/*
 598	 * Some console devices aren't actually hung up for technical and
 599	 * historical reasons, which can lead to indefinite interruptible
 600	 * sleep in n_tty_read().  The following explicitly tells
 601	 * n_tty_read() to abort readers.
 602	 */
 603	set_bit(TTY_HUPPING, &tty->flags);
 604
 605	/* inuse_filps is protected by the single tty lock,
 606	 * this really needs to change if we want to flush the
 607	 * workqueue with the lock held.
 608	 */
 609	check_tty_count(tty, "tty_hangup");
 610
 611	spin_lock(&tty->files_lock);
 612	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 613	list_for_each_entry(priv, &tty->tty_files, list) {
 614		filp = priv->file;
 615		if (filp->f_op->write_iter == redirected_tty_write)
 616			cons_filp = filp;
 617		if (filp->f_op->write_iter != tty_write)
 618			continue;
 619		closecount++;
 620		__tty_fasync(-1, filp, 0);	/* can't block */
 621		filp->f_op = &hung_up_tty_fops;
 622	}
 623	spin_unlock(&tty->files_lock);
 624
 625	refs = tty_signal_session_leader(tty, exit_session);
 626	/* Account for the p->signal references we killed */
 627	while (refs--)
 628		tty_kref_put(tty);
 629
 630	tty_ldisc_hangup(tty, cons_filp != NULL);
 631
 632	spin_lock_irq(&tty->ctrl.lock);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 635	put_pid(tty->ctrl.session);
 636	put_pid(tty->ctrl.pgrp);
 637	tty->ctrl.session = NULL;
 638	tty->ctrl.pgrp = NULL;
 639	tty->ctrl.pktstatus = 0;
 640	spin_unlock_irq(&tty->ctrl.lock);
 641
 642	/*
 643	 * If one of the devices matches a console pointer, we
 644	 * cannot just call hangup() because that will cause
 645	 * tty->count and state->count to go out of sync.
 646	 * So we just call close() the right number of times.
 647	 */
 648	if (cons_filp) {
 649		if (tty->ops->close)
 650			for (n = 0; n < closecount; n++)
 651				tty->ops->close(tty, cons_filp);
 652	} else if (tty->ops->hangup)
 653		tty->ops->hangup(tty);
 654	/*
 655	 * We don't want to have driver/ldisc interactions beyond the ones
 656	 * we did here. The driver layer expects no calls after ->hangup()
 657	 * from the ldisc side, which is now guaranteed.
 658	 */
 659	set_bit(TTY_HUPPED, &tty->flags);
 660	clear_bit(TTY_HUPPING, &tty->flags);
 661	tty_unlock(tty);
 662
 663	if (f)
 664		fput(f);
 665}
 666
 667static void do_tty_hangup(struct work_struct *work)
 668{
 669	struct tty_struct *tty =
 670		container_of(work, struct tty_struct, hangup_work);
 671
 672	__tty_hangup(tty, 0);
 673}
 674
 675/**
 676 * tty_hangup - trigger a hangup event
 677 * @tty: tty to hangup
 678 *
 679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 680 * hangup sequence to run after this event.
 681 */
 
 682void tty_hangup(struct tty_struct *tty)
 683{
 684	tty_debug_hangup(tty, "hangup\n");
 685	schedule_work(&tty->hangup_work);
 686}
 
 687EXPORT_SYMBOL(tty_hangup);
 688
 689/**
 690 * tty_vhangup - process vhangup
 691 * @tty: tty to hangup
 692 *
 693 * The user has asked via system call for the terminal to be hung up. We do
 694 * this synchronously so that when the syscall returns the process is complete.
 695 * That guarantee is necessary for security reasons.
 696 */
 
 697void tty_vhangup(struct tty_struct *tty)
 698{
 699	tty_debug_hangup(tty, "vhangup\n");
 700	__tty_hangup(tty, 0);
 701}
 
 702EXPORT_SYMBOL(tty_vhangup);
 703
 704
 705/**
 706 * tty_vhangup_self - process vhangup for own ctty
 707 *
 708 * Perform a vhangup on the current controlling tty
 709 */
 
 710void tty_vhangup_self(void)
 711{
 712	struct tty_struct *tty;
 713
 714	tty = get_current_tty();
 715	if (tty) {
 716		tty_vhangup(tty);
 717		tty_kref_put(tty);
 718	}
 719}
 720
 721/**
 722 * tty_vhangup_session - hangup session leader exit
 723 * @tty: tty to hangup
 724 *
 725 * The session leader is exiting and hanging up its controlling terminal.
 726 * Every process in the foreground process group is signalled %SIGHUP.
 727 *
 728 * We do this synchronously so that when the syscall returns the process is
 729 * complete. That guarantee is necessary for security reasons.
 730 */
 731void tty_vhangup_session(struct tty_struct *tty)
 
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 734	__tty_hangup(tty, 1);
 735}
 736
 737/**
 738 * tty_hung_up_p - was tty hung up
 739 * @filp: file pointer of tty
 740 *
 741 * Return: true if the tty has been subject to a vhangup or a carrier loss
 
 742 */
 
 743int tty_hung_up_p(struct file *filp)
 744{
 745	return (filp && filp->f_op == &hung_up_tty_fops);
 746}
 
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 749void __stop_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750{
 751	if (tty->flow.stopped)
 
 
 752		return;
 753	tty->flow.stopped = true;
 754	if (tty->ops->stop)
 755		tty->ops->stop(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756}
 757
 758/**
 759 * stop_tty - propagate flow control
 760 * @tty: tty to stop
 761 *
 762 * Perform flow control to the driver. May be called on an already stopped
 763 * device and will not re-call the &tty_driver->stop() method.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764 *
 765 * This functionality is used by both the line disciplines for halting incoming
 766 * flow and by the driver. It may therefore be called from any context, may be
 767 * under the tty %atomic_write_lock but not always.
 
 768 *
 769 * Locking:
 770 *	flow.lock
 771 */
 
 
 
 
 
 
 
 
 
 
 772void stop_tty(struct tty_struct *tty)
 773{
 774	unsigned long flags;
 775
 776	spin_lock_irqsave(&tty->flow.lock, flags);
 777	__stop_tty(tty);
 778	spin_unlock_irqrestore(&tty->flow.lock, flags);
 779}
 780EXPORT_SYMBOL(stop_tty);
 781
 
 
 
 
 
 
 
 
 
 
 
 
 782void __start_tty(struct tty_struct *tty)
 783{
 784	if (!tty->flow.stopped || tty->flow.tco_stopped)
 785		return;
 786	tty->flow.stopped = false;
 787	if (tty->ops->start)
 788		tty->ops->start(tty);
 789	tty_wakeup(tty);
 790}
 791
 792/**
 793 * start_tty - propagate flow control
 794 * @tty: tty to start
 795 *
 796 * Start a tty that has been stopped if at all possible. If @tty was previously
 797 * stopped and is now being started, the &tty_driver->start() method is invoked
 798 * and the line discipline woken.
 799 *
 800 * Locking:
 801 *	flow.lock
 802 */
 803void start_tty(struct tty_struct *tty)
 804{
 805	unsigned long flags;
 806
 807	spin_lock_irqsave(&tty->flow.lock, flags);
 808	__start_tty(tty);
 809	spin_unlock_irqrestore(&tty->flow.lock, flags);
 810}
 811EXPORT_SYMBOL(start_tty);
 812
 813static void tty_update_time(struct tty_struct *tty, bool mtime)
 814{
 815	time64_t sec = ktime_get_real_seconds();
 816	struct tty_file_private *priv;
 817
 818	spin_lock(&tty->files_lock);
 819	list_for_each_entry(priv, &tty->tty_files, list) {
 820		struct inode *inode = file_inode(priv->file);
 821		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 822
 823		/*
 824		 * We only care if the two values differ in anything other than the
 825		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 826		 * the time of the tty device, otherwise it could be construded as a
 827		 * security leak to let userspace know the exact timing of the tty.
 828		 */
 829		if ((sec ^ time.tv_sec) & ~7) {
 830			if (mtime)
 831				inode_set_mtime(inode, sec, 0);
 832			else
 833				inode_set_atime(inode, sec, 0);
 834		}
 835	}
 836	spin_unlock(&tty->files_lock);
 837}
 838
 839/*
 840 * Iterate on the ldisc ->read() function until we've gotten all
 841 * the data the ldisc has for us.
 842 *
 843 * The "cookie" is something that the ldisc read function can fill
 844 * in to let us know that there is more data to be had.
 845 *
 846 * We promise to continue to call the ldisc until it stops returning
 847 * data or clears the cookie. The cookie may be something that the
 848 * ldisc maintains state for and needs to free.
 849 */
 850static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 851				struct file *file, struct iov_iter *to)
 852{
 853	void *cookie = NULL;
 854	unsigned long offset = 0;
 855	ssize_t retval = 0;
 856	size_t copied, count = iov_iter_count(to);
 857	u8 kernel_buf[64];
 858
 859	do {
 860		ssize_t size = min(count, sizeof(kernel_buf));
 861
 862		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 863		if (!size)
 864			break;
 865
 866		if (size < 0) {
 867			/* Did we have an earlier error (ie -EFAULT)? */
 868			if (retval)
 869				break;
 870			retval = size;
 871
 872			/*
 873			 * -EOVERFLOW means we didn't have enough space
 874			 * for a whole packet, and we shouldn't return
 875			 * a partial result.
 876			 */
 877			if (retval == -EOVERFLOW)
 878				offset = 0;
 879			break;
 880		}
 881
 882		copied = copy_to_iter(kernel_buf, size, to);
 883		offset += copied;
 884		count -= copied;
 885
 886		/*
 887		 * If the user copy failed, we still need to do another ->read()
 888		 * call if we had a cookie to let the ldisc clear up.
 889		 *
 890		 * But make sure size is zeroed.
 891		 */
 892		if (unlikely(copied != size)) {
 893			count = 0;
 894			retval = -EFAULT;
 895		}
 896	} while (cookie);
 897
 898	/* We always clear tty buffer in case they contained passwords */
 899	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 900	return offset ? offset : retval;
 
 
 
 
 
 901}
 902
 903
 904/**
 905 * tty_read - read method for tty device files
 906 * @iocb: kernel I/O control block
 907 * @to: destination for the data read
 
 
 908 *
 909 * Perform the read system call function on this terminal device. Checks
 910 * for hung up devices before calling the line discipline method.
 911 *
 912 * Locking:
 913 *	Locks the line discipline internally while needed. Multiple read calls
 914 *	may be outstanding in parallel.
 915 */
 916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 917{
 918	struct file *file = iocb->ki_filp;
 919	struct inode *inode = file_inode(file);
 920	struct tty_struct *tty = file_tty(file);
 921	struct tty_ldisc *ld;
 922	ssize_t ret;
 923
 924	if (tty_paranoia_check(tty, inode, "tty_read"))
 925		return -EIO;
 926	if (!tty || tty_io_error(tty))
 927		return -EIO;
 928
 929	/* We want to wait for the line discipline to sort out in this
 930	 * situation.
 931	 */
 932	ld = tty_ldisc_ref_wait(tty);
 933	if (!ld)
 934		return hung_up_tty_read(iocb, to);
 935	ret = -EIO;
 936	if (ld->ops->read)
 937		ret = iterate_tty_read(ld, tty, file, to);
 
 
 938	tty_ldisc_deref(ld);
 939
 940	if (ret > 0)
 941		tty_update_time(tty, false);
 942
 943	return ret;
 944}
 945
 946void tty_write_unlock(struct tty_struct *tty)
 947{
 948	mutex_unlock(&tty->atomic_write_lock);
 949	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 950}
 951
 952int tty_write_lock(struct tty_struct *tty, bool ndelay)
 953{
 954	if (!mutex_trylock(&tty->atomic_write_lock)) {
 955		if (ndelay)
 956			return -EAGAIN;
 957		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 958			return -ERESTARTSYS;
 959	}
 960	return 0;
 961}
 962
 963/*
 964 * Split writes up in sane blocksizes to avoid
 965 * denial-of-service type attacks
 966 */
 967static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 968				 struct file *file, struct iov_iter *from)
 
 
 
 
 969{
 970	size_t chunk, count = iov_iter_count(from);
 971	ssize_t ret, written = 0;
 
 972
 973	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 974	if (ret < 0)
 975		return ret;
 976
 977	/*
 978	 * We chunk up writes into a temporary buffer. This
 979	 * simplifies low-level drivers immensely, since they
 980	 * don't have locking issues and user mode accesses.
 981	 *
 982	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 983	 * big chunk-size..
 984	 *
 985	 * The default chunk-size is 2kB, because the NTTY
 986	 * layer has problems with bigger chunks. It will
 987	 * claim to be able to handle more characters than
 988	 * it actually does.
 
 
 
 989	 */
 990	chunk = 2048;
 991	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 992		chunk = 65536;
 993	if (count < chunk)
 994		chunk = count;
 995
 996	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 997	if (tty->write_cnt < chunk) {
 998		u8 *buf_chunk;
 999
1000		if (chunk < 1024)
1001			chunk = 1024;
1002
1003		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1004		if (!buf_chunk) {
1005			ret = -ENOMEM;
1006			goto out;
1007		}
1008		kvfree(tty->write_buf);
1009		tty->write_cnt = chunk;
1010		tty->write_buf = buf_chunk;
1011	}
1012
1013	/* Do the write .. */
1014	for (;;) {
1015		size_t size = min(chunk, count);
1016
 
1017		ret = -EFAULT;
1018		if (copy_from_iter(tty->write_buf, size, from) != size)
1019			break;
1020
1021		ret = ld->ops->write(tty, file, tty->write_buf, size);
1022		if (ret <= 0)
1023			break;
1024
1025		written += ret;
1026		if (ret > size)
1027			break;
1028
1029		/* FIXME! Have Al check this! */
1030		if (ret != size)
1031			iov_iter_revert(from, size-ret);
1032
1033		count -= ret;
1034		if (!count)
1035			break;
1036		ret = -ERESTARTSYS;
1037		if (signal_pending(current))
1038			break;
1039		cond_resched();
1040	}
1041	if (written) {
1042		tty_update_time(tty, true);
1043		ret = written;
1044	}
1045out:
1046	tty_write_unlock(tty);
1047	return ret;
1048}
1049
1050#ifdef CONFIG_PRINT_QUOTA_WARNING
1051/**
1052 * tty_write_message - write a message to a certain tty, not just the console.
1053 * @tty: the destination tty_struct
1054 * @msg: the message to write
1055 *
1056 * This is used for messages that need to be redirected to a specific tty. We
1057 * don't put it into the syslog queue right now maybe in the future if really
1058 * needed.
1059 *
1060 * We must still hold the BTM and test the CLOSING flag for the moment.
1061 *
1062 * This function is DEPRECATED, do not use in new code.
1063 */
 
1064void tty_write_message(struct tty_struct *tty, char *msg)
1065{
1066	if (tty) {
1067		mutex_lock(&tty->atomic_write_lock);
1068		tty_lock(tty);
1069		if (tty->ops->write && tty->count > 0)
1070			tty->ops->write(tty, msg, strlen(msg));
1071		tty_unlock(tty);
1072		tty_write_unlock(tty);
1073	}
 
1074}
1075#endif
1076
1077static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078{
1079	struct tty_struct *tty = file_tty(file);
1080	struct tty_ldisc *ld;
1081	ssize_t ret;
1082
1083	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1084		return -EIO;
1085	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1086		return -EIO;
1087	/* Short term debug to catch buggy drivers */
1088	if (tty->ops->write_room == NULL)
1089		tty_err(tty, "missing write_room method\n");
1090	ld = tty_ldisc_ref_wait(tty);
1091	if (!ld)
1092		return hung_up_tty_write(iocb, from);
1093	if (!ld->ops->write)
1094		ret = -EIO;
1095	else
1096		ret = iterate_tty_write(ld, tty, file, from);
1097	tty_ldisc_deref(ld);
1098	return ret;
1099}
1100
1101/**
1102 * tty_write - write method for tty device file
1103 * @iocb: kernel I/O control block
1104 * @from: iov_iter with data to write
1105 *
1106 * Write data to a tty device via the line discipline.
1107 *
1108 * Locking:
1109 *	Locks the line discipline as required
1110 *	Writes to the tty driver are serialized by the atomic_write_lock
1111 *	and are then processed in chunks to the device. The line
1112 *	discipline write method will not be invoked in parallel for
1113 *	each device.
1114 */
1115static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1116{
1117	return file_tty_write(iocb->ki_filp, iocb, from);
1118}
1119
1120ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1121{
1122	struct file *p = NULL;
1123
1124	spin_lock(&redirect_lock);
1125	if (redirect)
1126		p = get_file(redirect);
1127	spin_unlock(&redirect_lock);
1128
1129	/*
1130	 * We know the redirected tty is just another tty, we can
1131	 * call file_tty_write() directly with that file pointer.
1132	 */
1133	if (p) {
1134		ssize_t res;
1135
1136		res = file_tty_write(p, iocb, iter);
1137		fput(p);
1138		return res;
1139	}
1140	return tty_write(iocb, iter);
1141}
1142
1143/**
1144 * tty_send_xchar - send priority character
1145 * @tty: the tty to send to
1146 * @ch: xchar to send
1147 *
1148 * Send a high priority character to the tty even if stopped.
1149 *
1150 * Locking: none for xchar method, write ordering for write method.
1151 */
1152int tty_send_xchar(struct tty_struct *tty, u8 ch)
 
1153{
1154	bool was_stopped = tty->flow.stopped;
1155
1156	if (tty->ops->send_xchar) {
1157		down_read(&tty->termios_rwsem);
1158		tty->ops->send_xchar(tty, ch);
1159		up_read(&tty->termios_rwsem);
1160		return 0;
1161	}
1162
1163	if (tty_write_lock(tty, false) < 0)
1164		return -ERESTARTSYS;
1165
1166	down_read(&tty->termios_rwsem);
1167	if (was_stopped)
1168		start_tty(tty);
1169	tty->ops->write(tty, &ch, 1);
1170	if (was_stopped)
1171		stop_tty(tty);
1172	up_read(&tty->termios_rwsem);
1173	tty_write_unlock(tty);
1174	return 0;
1175}
1176
 
 
1177/**
1178 * pty_line_name - generate name for a pty
1179 * @driver: the tty driver in use
1180 * @index: the minor number
1181 * @p: output buffer of at least 6 bytes
1182 *
1183 * Generate a name from a @driver reference and write it to the output buffer
1184 * @p.
1185 *
1186 * Locking: None
1187 */
1188static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189{
1190	static const char ptychar[] = "pqrstuvwxyzabcde";
1191	int i = index + driver->name_base;
1192	/* ->name is initialized to "ttyp", but "tty" is expected */
1193	sprintf(p, "%s%c%x",
1194		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195		ptychar[i >> 4 & 0xf], i & 0xf);
1196}
1197
1198/**
1199 * tty_line_name - generate name for a tty
1200 * @driver: the tty driver in use
1201 * @index: the minor number
1202 * @p: output buffer of at least 7 bytes
1203 *
1204 * Generate a name from a @driver reference and write it to the output buffer
1205 * @p.
1206 *
1207 * Locking: None
1208 */
1209static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1210{
1211	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1212		return sprintf(p, "%s", driver->name);
1213	else
1214		return sprintf(p, "%s%d", driver->name,
1215			       index + driver->name_base);
1216}
1217
1218/**
1219 * tty_driver_lookup_tty() - find an existing tty, if any
1220 * @driver: the driver for the tty
1221 * @file: file object
1222 * @idx: the minor number
1223 *
1224 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1225 * driver lookup() method returns an error.
1226 *
1227 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1228 */
1229static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230		struct file *file, int idx)
1231{
1232	struct tty_struct *tty;
1233
1234	if (driver->ops->lookup) {
1235		if (!file)
1236			tty = ERR_PTR(-EIO);
1237		else
1238			tty = driver->ops->lookup(driver, file, idx);
1239	} else {
1240		if (idx >= driver->num)
1241			return ERR_PTR(-EINVAL);
1242		tty = driver->ttys[idx];
1243	}
1244	if (!IS_ERR(tty))
1245		tty_kref_get(tty);
1246	return tty;
1247}
1248
1249/**
1250 * tty_init_termios - helper for termios setup
1251 * @tty: the tty to set up
1252 *
1253 * Initialise the termios structure for this tty. This runs under the
1254 * %tty_mutex currently so we can be relaxed about ordering.
1255 */
 
1256void tty_init_termios(struct tty_struct *tty)
1257{
1258	struct ktermios *tp;
1259	int idx = tty->index;
1260
1261	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1262		tty->termios = tty->driver->init_termios;
1263	else {
1264		/* Check for lazy saved data */
1265		tp = tty->driver->termios[idx];
1266		if (tp != NULL) {
1267			tty->termios = *tp;
1268			tty->termios.c_line  = tty->driver->init_termios.c_line;
1269		} else
1270			tty->termios = tty->driver->init_termios;
1271	}
1272	/* Compatibility until drivers always set this */
1273	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1274	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1275}
1276EXPORT_SYMBOL_GPL(tty_init_termios);
1277
1278/**
1279 * tty_standard_install - usual tty->ops->install
1280 * @driver: the driver for the tty
1281 * @tty: the tty
1282 *
1283 * If the @driver overrides @tty->ops->install, it still can call this function
1284 * to perform the standard install operations.
1285 */
1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287{
1288	tty_init_termios(tty);
1289	tty_driver_kref_get(driver);
1290	tty->count++;
1291	driver->ttys[tty->index] = tty;
1292	return 0;
1293}
1294EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296/**
1297 * tty_driver_install_tty() - install a tty entry in the driver
1298 * @driver: the driver for the tty
1299 * @tty: the tty
1300 *
1301 * Install a tty object into the driver tables. The @tty->index field will be
1302 * set by the time this is called. This method is responsible for ensuring any
1303 * need additional structures are allocated and configured.
 
1304 *
1305 * Locking: tty_mutex for now
1306 */
1307static int tty_driver_install_tty(struct tty_driver *driver,
1308						struct tty_struct *tty)
1309{
1310	return driver->ops->install ? driver->ops->install(driver, tty) :
1311		tty_standard_install(driver, tty);
1312}
1313
1314/**
1315 * tty_driver_remove_tty() - remove a tty from the driver tables
1316 * @driver: the driver for the tty
1317 * @tty: tty to remove
1318 *
1319 * Remove a tty object from the driver tables. The tty->index field will be set
1320 * by the time this is called.
1321 *
1322 * Locking: tty_mutex for now
1323 */
1324static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1325{
1326	if (driver->ops->remove)
1327		driver->ops->remove(driver, tty);
1328	else
1329		driver->ttys[tty->index] = NULL;
1330}
1331
1332/**
1333 * tty_reopen() - fast re-open of an open tty
1334 * @tty: the tty to open
1335 *
1336 * Re-opens on master ptys are not allowed and return -%EIO.
 
1337 *
1338 * Locking: Caller must hold tty_lock
1339 * Return: 0 on success, -errno on error.
1340 */
1341static int tty_reopen(struct tty_struct *tty)
1342{
1343	struct tty_driver *driver = tty->driver;
1344	struct tty_ldisc *ld;
1345	int retval = 0;
1346
1347	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1348	    driver->subtype == PTY_TYPE_MASTER)
1349		return -EIO;
1350
1351	if (!tty->count)
1352		return -EAGAIN;
1353
1354	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1355		return -EBUSY;
1356
1357	ld = tty_ldisc_ref_wait(tty);
1358	if (ld) {
1359		tty_ldisc_deref(ld);
1360	} else {
1361		retval = tty_ldisc_lock(tty, 5 * HZ);
1362		if (retval)
1363			return retval;
1364
1365		if (!tty->ldisc)
1366			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1367		tty_ldisc_unlock(tty);
1368	}
1369
1370	if (retval == 0)
1371		tty->count++;
1372
1373	return retval;
1374}
1375
1376/**
1377 * tty_init_dev - initialise a tty device
1378 * @driver: tty driver we are opening a device on
1379 * @idx: device index
1380 *
1381 * Prepare a tty device. This may not be a "new" clean device but could also be
1382 * an active device. The pty drivers require special handling because of this.
1383 *
1384 * Locking:
1385 *	The function is called under the tty_mutex, which protects us from the
1386 *	tty struct or driver itself going away.
1387 *
1388 * On exit the tty device has the line discipline attached and a reference
1389 * count of 1. If a pair was created for pty/tty use and the other was a pty
1390 * master then it too has a reference count of 1.
1391 *
1392 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1393 * open. The new code protects the open with a mutex, so it's really quite
1394 * straightforward. The mutex locking can probably be relaxed for the (most
1395 * common) case of reopening a tty.
1396 *
1397 * Return: new tty structure
1398 */
 
1399struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1400{
1401	struct tty_struct *tty;
1402	int retval;
1403
1404	/*
1405	 * First time open is complex, especially for PTY devices.
1406	 * This code guarantees that either everything succeeds and the
1407	 * TTY is ready for operation, or else the table slots are vacated
1408	 * and the allocated memory released.  (Except that the termios
1409	 * may be retained.)
1410	 */
1411
1412	if (!try_module_get(driver->owner))
1413		return ERR_PTR(-ENODEV);
1414
1415	tty = alloc_tty_struct(driver, idx);
1416	if (!tty) {
1417		retval = -ENOMEM;
1418		goto err_module_put;
1419	}
1420
1421	tty_lock(tty);
1422	retval = tty_driver_install_tty(driver, tty);
1423	if (retval < 0)
1424		goto err_free_tty;
1425
1426	if (!tty->port)
1427		tty->port = driver->ports[idx];
1428
1429	if (WARN_RATELIMIT(!tty->port,
1430			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431			__func__, tty->driver->name)) {
1432		retval = -EINVAL;
1433		goto err_release_lock;
1434	}
1435
1436	retval = tty_ldisc_lock(tty, 5 * HZ);
1437	if (retval)
1438		goto err_release_lock;
1439	tty->port->itty = tty;
1440
1441	/*
1442	 * Structures all installed ... call the ldisc open routines.
1443	 * If we fail here just call release_tty to clean up.  No need
1444	 * to decrement the use counts, as release_tty doesn't care.
1445	 */
1446	retval = tty_ldisc_setup(tty, tty->link);
1447	if (retval)
1448		goto err_release_tty;
1449	tty_ldisc_unlock(tty);
1450	/* Return the tty locked so that it cannot vanish under the caller */
1451	return tty;
1452
1453err_free_tty:
1454	tty_unlock(tty);
1455	free_tty_struct(tty);
1456err_module_put:
1457	module_put(driver->owner);
1458	return ERR_PTR(retval);
1459
1460	/* call the tty release_tty routine to clean out this slot */
1461err_release_tty:
1462	tty_ldisc_unlock(tty);
1463	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464			     retval, idx);
1465err_release_lock:
1466	tty_unlock(tty);
1467	release_tty(tty, idx);
1468	return ERR_PTR(retval);
1469}
1470
1471/**
1472 * tty_save_termios() - save tty termios data in driver table
1473 * @tty: tty whose termios data to save
1474 *
1475 * Locking: Caller guarantees serialisation with tty_init_termios().
1476 */
1477void tty_save_termios(struct tty_struct *tty)
1478{
1479	struct ktermios *tp;
1480	int idx = tty->index;
1481
1482	/* If the port is going to reset then it has no termios to save */
1483	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484		return;
1485
1486	/* Stash the termios data */
1487	tp = tty->driver->termios[idx];
1488	if (tp == NULL) {
1489		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490		if (tp == NULL)
1491			return;
1492		tty->driver->termios[idx] = tp;
1493	}
1494	*tp = tty->termios;
1495}
1496EXPORT_SYMBOL_GPL(tty_save_termios);
1497
1498/**
1499 * tty_flush_works - flush all works of a tty/pty pair
1500 * @tty: tty device to flush works for (or either end of a pty pair)
1501 *
1502 * Sync flush all works belonging to @tty (and the 'other' tty).
1503 */
1504static void tty_flush_works(struct tty_struct *tty)
1505{
1506	flush_work(&tty->SAK_work);
1507	flush_work(&tty->hangup_work);
1508	if (tty->link) {
1509		flush_work(&tty->link->SAK_work);
1510		flush_work(&tty->link->hangup_work);
1511	}
1512}
1513
1514/**
1515 * release_one_tty - release tty structure memory
1516 * @work: work of tty we are obliterating
1517 *
1518 * Releases memory associated with a tty structure, and clears out the
1519 * driver table slots. This function is called when a device is no longer
1520 * in use. It also gets called when setup of a device fails.
1521 *
1522 * Locking:
1523 *	takes the file list lock internally when working on the list of ttys
1524 *	that the driver keeps.
1525 *
1526 * This method gets called from a work queue so that the driver private
1527 * cleanup ops can sleep (needed for USB at least)
1528 */
1529static void release_one_tty(struct work_struct *work)
1530{
1531	struct tty_struct *tty =
1532		container_of(work, struct tty_struct, hangup_work);
1533	struct tty_driver *driver = tty->driver;
1534	struct module *owner = driver->owner;
1535
1536	if (tty->ops->cleanup)
1537		tty->ops->cleanup(tty);
1538
 
1539	tty_driver_kref_put(driver);
1540	module_put(owner);
1541
1542	spin_lock(&tty->files_lock);
1543	list_del_init(&tty->tty_files);
1544	spin_unlock(&tty->files_lock);
1545
1546	put_pid(tty->ctrl.pgrp);
1547	put_pid(tty->ctrl.session);
1548	free_tty_struct(tty);
1549}
1550
1551static void queue_release_one_tty(struct kref *kref)
1552{
1553	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
1555	/* The hangup queue is now free so we can reuse it rather than
1556	 *  waste a chunk of memory for each port.
1557	 */
1558	INIT_WORK(&tty->hangup_work, release_one_tty);
1559	schedule_work(&tty->hangup_work);
1560}
1561
1562/**
1563 * tty_kref_put - release a tty kref
1564 * @tty: tty device
1565 *
1566 * Release a reference to the @tty device and if need be let the kref layer
1567 * destruct the object for us.
1568 */
 
1569void tty_kref_put(struct tty_struct *tty)
1570{
1571	if (tty)
1572		kref_put(&tty->kref, queue_release_one_tty);
1573}
1574EXPORT_SYMBOL(tty_kref_put);
1575
1576/**
1577 * release_tty - release tty structure memory
1578 * @tty: tty device release
1579 * @idx: index of the tty device release
1580 *
1581 * Release both @tty and a possible linked partner (think pty pair),
1582 * and decrement the refcount of the backing module.
 
 
 
 
 
1583 *
1584 * Locking:
1585 *	tty_mutex
1586 *	takes the file list lock internally when working on the list of ttys
1587 *	that the driver keeps.
1588 */
1589static void release_tty(struct tty_struct *tty, int idx)
1590{
1591	/* This should always be true but check for the moment */
1592	WARN_ON(tty->index != idx);
1593	WARN_ON(!mutex_is_locked(&tty_mutex));
1594	if (tty->ops->shutdown)
1595		tty->ops->shutdown(tty);
1596	tty_save_termios(tty);
1597	tty_driver_remove_tty(tty->driver, tty);
1598	if (tty->port)
1599		tty->port->itty = NULL;
1600	if (tty->link)
1601		tty->link->port->itty = NULL;
1602	if (tty->port)
1603		tty_buffer_cancel_work(tty->port);
1604	if (tty->link)
1605		tty_buffer_cancel_work(tty->link->port);
1606
1607	tty_kref_put(tty->link);
1608	tty_kref_put(tty);
1609}
1610
1611/**
1612 * tty_release_checks - check a tty before real release
1613 * @tty: tty to check
1614 * @idx: index of the tty
 
1615 *
1616 * Performs some paranoid checking before true release of the @tty. This is a
1617 * no-op unless %TTY_PARANOIA_CHECK is defined.
1618 */
1619static int tty_release_checks(struct tty_struct *tty, int idx)
1620{
1621#ifdef TTY_PARANOIA_CHECK
1622	if (idx < 0 || idx >= tty->driver->num) {
1623		tty_debug(tty, "bad idx %d\n", idx);
1624		return -1;
1625	}
1626
1627	/* not much to check for devpts */
1628	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629		return 0;
1630
1631	if (tty != tty->driver->ttys[idx]) {
1632		tty_debug(tty, "bad driver table[%d] = %p\n",
1633			  idx, tty->driver->ttys[idx]);
1634		return -1;
1635	}
1636	if (tty->driver->other) {
1637		struct tty_struct *o_tty = tty->link;
1638
1639		if (o_tty != tty->driver->other->ttys[idx]) {
1640			tty_debug(tty, "bad other table[%d] = %p\n",
1641				  idx, tty->driver->other->ttys[idx]);
1642			return -1;
1643		}
1644		if (o_tty->link != tty) {
1645			tty_debug(tty, "bad link = %p\n", o_tty->link);
1646			return -1;
1647		}
1648	}
1649#endif
1650	return 0;
1651}
1652
1653/**
1654 * tty_kclose - closes tty opened by tty_kopen
1655 * @tty: tty device
1656 *
1657 * Performs the final steps to release and free a tty device. It is the same as
1658 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1659 * @tty->port.
1660 */
1661void tty_kclose(struct tty_struct *tty)
1662{
1663	/*
1664	 * Ask the line discipline code to release its structures
1665	 */
1666	tty_ldisc_release(tty);
1667
1668	/* Wait for pending work before tty destruction commences */
1669	tty_flush_works(tty);
1670
1671	tty_debug_hangup(tty, "freeing structure\n");
1672	/*
1673	 * The release_tty function takes care of the details of clearing
1674	 * the slots and preserving the termios structure.
1675	 */
1676	mutex_lock(&tty_mutex);
1677	tty_port_set_kopened(tty->port, 0);
1678	release_tty(tty, tty->index);
1679	mutex_unlock(&tty_mutex);
1680}
1681EXPORT_SYMBOL_GPL(tty_kclose);
1682
1683/**
1684 * tty_release_struct - release a tty struct
1685 * @tty: tty device
1686 * @idx: index of the tty
1687 *
1688 * Performs the final steps to release and free a tty device. It is roughly the
1689 * reverse of tty_init_dev().
1690 */
1691void tty_release_struct(struct tty_struct *tty, int idx)
1692{
1693	/*
1694	 * Ask the line discipline code to release its structures
1695	 */
1696	tty_ldisc_release(tty);
1697
1698	/* Wait for pending work before tty destruction commmences */
1699	tty_flush_works(tty);
1700
1701	tty_debug_hangup(tty, "freeing structure\n");
1702	/*
1703	 * The release_tty function takes care of the details of clearing
1704	 * the slots and preserving the termios structure.
1705	 */
1706	mutex_lock(&tty_mutex);
1707	release_tty(tty, idx);
1708	mutex_unlock(&tty_mutex);
1709}
1710EXPORT_SYMBOL_GPL(tty_release_struct);
1711
1712/**
1713 * tty_release - vfs callback for close
1714 * @inode: inode of tty
1715 * @filp: file pointer for handle to tty
1716 *
1717 * Called the last time each file handle is closed that references this tty.
1718 * There may however be several such references.
1719 *
1720 * Locking:
1721 *	Takes BKL. See tty_release_dev().
1722 *
1723 * Even releasing the tty structures is a tricky business. We have to be very
1724 * careful that the structures are all released at the same time, as interrupts
1725 * might otherwise get the wrong pointers.
1726 *
1727 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728 * lead to double frees or releasing memory still in use.
1729 */
 
1730int tty_release(struct inode *inode, struct file *filp)
1731{
1732	struct tty_struct *tty = file_tty(filp);
1733	struct tty_struct *o_tty = NULL;
1734	int	do_sleep, final;
1735	int	idx;
1736	long	timeout = 0;
1737	int	once = 1;
1738
1739	if (tty_paranoia_check(tty, inode, __func__))
1740		return 0;
1741
1742	tty_lock(tty);
1743	check_tty_count(tty, __func__);
1744
1745	__tty_fasync(-1, filp, 0);
1746
1747	idx = tty->index;
1748	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1749	    tty->driver->subtype == PTY_TYPE_MASTER)
1750		o_tty = tty->link;
1751
1752	if (tty_release_checks(tty, idx)) {
1753		tty_unlock(tty);
1754		return 0;
1755	}
1756
1757	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1758
1759	if (tty->ops->close)
1760		tty->ops->close(tty, filp);
1761
1762	/* If tty is pty master, lock the slave pty (stable lock order) */
1763	tty_lock_slave(o_tty);
1764
1765	/*
1766	 * Sanity check: if tty->count is going to zero, there shouldn't be
1767	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1768	 * wait queues and kick everyone out _before_ actually starting to
1769	 * close.  This ensures that we won't block while releasing the tty
1770	 * structure.
1771	 *
1772	 * The test for the o_tty closing is necessary, since the master and
1773	 * slave sides may close in any order.  If the slave side closes out
1774	 * first, its count will be one, since the master side holds an open.
1775	 * Thus this test wouldn't be triggered at the time the slave closed,
1776	 * so we do it now.
1777	 */
1778	while (1) {
1779		do_sleep = 0;
1780
1781		if (tty->count <= 1) {
1782			if (waitqueue_active(&tty->read_wait)) {
1783				wake_up_poll(&tty->read_wait, EPOLLIN);
1784				do_sleep++;
1785			}
1786			if (waitqueue_active(&tty->write_wait)) {
1787				wake_up_poll(&tty->write_wait, EPOLLOUT);
1788				do_sleep++;
1789			}
1790		}
1791		if (o_tty && o_tty->count <= 1) {
1792			if (waitqueue_active(&o_tty->read_wait)) {
1793				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1794				do_sleep++;
1795			}
1796			if (waitqueue_active(&o_tty->write_wait)) {
1797				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1798				do_sleep++;
1799			}
1800		}
1801		if (!do_sleep)
1802			break;
1803
1804		if (once) {
1805			once = 0;
1806			tty_warn(tty, "read/write wait queue active!\n");
1807		}
1808		schedule_timeout_killable(timeout);
1809		if (timeout < 120 * HZ)
1810			timeout = 2 * timeout + 1;
1811		else
1812			timeout = MAX_SCHEDULE_TIMEOUT;
1813	}
1814
1815	if (o_tty) {
1816		if (--o_tty->count < 0) {
1817			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1818			o_tty->count = 0;
1819		}
1820	}
1821	if (--tty->count < 0) {
1822		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1823		tty->count = 0;
1824	}
1825
1826	/*
1827	 * We've decremented tty->count, so we need to remove this file
1828	 * descriptor off the tty->tty_files list; this serves two
1829	 * purposes:
1830	 *  - check_tty_count sees the correct number of file descriptors
1831	 *    associated with this tty.
1832	 *  - do_tty_hangup no longer sees this file descriptor as
1833	 *    something that needs to be handled for hangups.
1834	 */
1835	tty_del_file(filp);
1836
1837	/*
1838	 * Perform some housekeeping before deciding whether to return.
1839	 *
1840	 * If _either_ side is closing, make sure there aren't any
1841	 * processes that still think tty or o_tty is their controlling
1842	 * tty.
1843	 */
1844	if (!tty->count) {
1845		read_lock(&tasklist_lock);
1846		session_clear_tty(tty->ctrl.session);
1847		if (o_tty)
1848			session_clear_tty(o_tty->ctrl.session);
1849		read_unlock(&tasklist_lock);
1850	}
1851
1852	/* check whether both sides are closing ... */
1853	final = !tty->count && !(o_tty && o_tty->count);
1854
1855	tty_unlock_slave(o_tty);
1856	tty_unlock(tty);
1857
1858	/* At this point, the tty->count == 0 should ensure a dead tty
1859	 * cannot be re-opened by a racing opener.
1860	 */
1861
1862	if (!final)
1863		return 0;
1864
1865	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866
1867	tty_release_struct(tty, idx);
1868	return 0;
1869}
1870
1871/**
1872 * tty_open_current_tty - get locked tty of current task
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: locked tty of the current task iff @device is /dev/tty
1876 *
1877 * Performs a re-open of the current task's controlling tty.
1878 *
1879 * We cannot return driver and index like for the other nodes because devpts
1880 * will not work then. It expects inodes to be from devpts FS.
1881 */
1882static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1883{
1884	struct tty_struct *tty;
1885	int retval;
1886
1887	if (device != MKDEV(TTYAUX_MAJOR, 0))
1888		return NULL;
1889
1890	tty = get_current_tty();
1891	if (!tty)
1892		return ERR_PTR(-ENXIO);
1893
1894	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895	/* noctty = 1; */
1896	tty_lock(tty);
1897	tty_kref_put(tty);	/* safe to drop the kref now */
1898
1899	retval = tty_reopen(tty);
1900	if (retval < 0) {
1901		tty_unlock(tty);
1902		tty = ERR_PTR(retval);
1903	}
1904	return tty;
1905}
1906
1907/**
1908 * tty_lookup_driver - lookup a tty driver for a given device file
1909 * @device: device number
1910 * @filp: file pointer to tty
1911 * @index: index for the device in the @return driver
1912 *
1913 * If returned value is not erroneous, the caller is responsible to decrement
1914 * the refcount by tty_driver_kref_put().
1915 *
1916 * Locking: %tty_mutex protects get_tty_driver()
 
1917 *
1918 * Return: driver for this inode (with increased refcount)
1919 */
1920static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1921		int *index)
1922{
1923	struct tty_driver *driver = NULL;
1924
1925	switch (device) {
1926#ifdef CONFIG_VT
1927	case MKDEV(TTY_MAJOR, 0): {
1928		extern struct tty_driver *console_driver;
1929
1930		driver = tty_driver_kref_get(console_driver);
1931		*index = fg_console;
1932		break;
1933	}
1934#endif
1935	case MKDEV(TTYAUX_MAJOR, 1): {
1936		struct tty_driver *console_driver = console_device(index);
1937
1938		if (console_driver) {
1939			driver = tty_driver_kref_get(console_driver);
1940			if (driver && filp) {
1941				/* Don't let /dev/console block */
1942				filp->f_flags |= O_NONBLOCK;
1943				break;
1944			}
1945		}
1946		if (driver)
1947			tty_driver_kref_put(driver);
1948		return ERR_PTR(-ENODEV);
1949	}
1950	default:
1951		driver = get_tty_driver(device, index);
1952		if (!driver)
1953			return ERR_PTR(-ENODEV);
1954		break;
1955	}
1956	return driver;
1957}
1958
1959static struct tty_struct *tty_kopen(dev_t device, int shared)
1960{
1961	struct tty_struct *tty;
1962	struct tty_driver *driver;
1963	int index = -1;
1964
1965	mutex_lock(&tty_mutex);
1966	driver = tty_lookup_driver(device, NULL, &index);
1967	if (IS_ERR(driver)) {
1968		mutex_unlock(&tty_mutex);
1969		return ERR_CAST(driver);
1970	}
1971
1972	/* check whether we're reopening an existing tty */
1973	tty = tty_driver_lookup_tty(driver, NULL, index);
1974	if (IS_ERR(tty) || shared)
1975		goto out;
1976
1977	if (tty) {
1978		/* drop kref from tty_driver_lookup_tty() */
1979		tty_kref_put(tty);
1980		tty = ERR_PTR(-EBUSY);
1981	} else { /* tty_init_dev returns tty with the tty_lock held */
1982		tty = tty_init_dev(driver, index);
1983		if (IS_ERR(tty))
1984			goto out;
1985		tty_port_set_kopened(tty->port, 1);
1986	}
1987out:
1988	mutex_unlock(&tty_mutex);
1989	tty_driver_kref_put(driver);
1990	return tty;
1991}
1992
1993/**
1994 * tty_kopen_exclusive - open a tty device for kernel
1995 * @device: dev_t of device to open
1996 *
1997 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1998 * it's not already opened and performs the first-time tty initialization.
1999 *
2000 * Claims the global %tty_mutex to serialize:
2001 *  * concurrent first-time tty initialization
2002 *  * concurrent tty driver removal w/ lookup
2003 *  * concurrent tty removal from driver table
2004 *
2005 * Return: the locked initialized &tty_struct
2006 */
2007struct tty_struct *tty_kopen_exclusive(dev_t device)
2008{
2009	return tty_kopen(device, 0);
2010}
2011EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2012
2013/**
2014 * tty_kopen_shared - open a tty device for shared in-kernel use
2015 * @device: dev_t of device to open
2016 *
2017 * Opens an already existing tty for in-kernel use. Compared to
2018 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2019 *
2020 * Locking: identical to tty_kopen() above.
2021 */
2022struct tty_struct *tty_kopen_shared(dev_t device)
2023{
2024	return tty_kopen(device, 1);
2025}
2026EXPORT_SYMBOL_GPL(tty_kopen_shared);
2027
2028/**
2029 * tty_open_by_driver - open a tty device
2030 * @device: dev_t of device to open
2031 * @filp: file pointer to tty
2032 *
2033 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2034 * first-time tty initialization.
2035 *
2036 *
2037 * Claims the global tty_mutex to serialize:
2038 *  * concurrent first-time tty initialization
2039 *  * concurrent tty driver removal w/ lookup
2040 *  * concurrent tty removal from driver table
2041 *
2042 * Return: the locked initialized or re-opened &tty_struct
2043 */
2044static struct tty_struct *tty_open_by_driver(dev_t device,
2045					     struct file *filp)
2046{
2047	struct tty_struct *tty;
2048	struct tty_driver *driver = NULL;
2049	int index = -1;
2050	int retval;
2051
2052	mutex_lock(&tty_mutex);
2053	driver = tty_lookup_driver(device, filp, &index);
2054	if (IS_ERR(driver)) {
2055		mutex_unlock(&tty_mutex);
2056		return ERR_CAST(driver);
2057	}
2058
2059	/* check whether we're reopening an existing tty */
2060	tty = tty_driver_lookup_tty(driver, filp, index);
2061	if (IS_ERR(tty)) {
2062		mutex_unlock(&tty_mutex);
2063		goto out;
2064	}
2065
2066	if (tty) {
2067		if (tty_port_kopened(tty->port)) {
2068			tty_kref_put(tty);
2069			mutex_unlock(&tty_mutex);
2070			tty = ERR_PTR(-EBUSY);
2071			goto out;
2072		}
2073		mutex_unlock(&tty_mutex);
2074		retval = tty_lock_interruptible(tty);
2075		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2076		if (retval) {
2077			if (retval == -EINTR)
2078				retval = -ERESTARTSYS;
2079			tty = ERR_PTR(retval);
2080			goto out;
2081		}
2082		retval = tty_reopen(tty);
2083		if (retval < 0) {
2084			tty_unlock(tty);
2085			tty = ERR_PTR(retval);
2086		}
2087	} else { /* Returns with the tty_lock held for now */
2088		tty = tty_init_dev(driver, index);
2089		mutex_unlock(&tty_mutex);
2090	}
2091out:
2092	tty_driver_kref_put(driver);
2093	return tty;
2094}
2095
2096/**
2097 * tty_open - open a tty device
2098 * @inode: inode of device file
2099 * @filp: file pointer to tty
2100 *
2101 * tty_open() and tty_release() keep up the tty count that contains the number
2102 * of opens done on a tty. We cannot use the inode-count, as different inodes
2103 * might point to the same tty.
2104 *
2105 * Open-counting is needed for pty masters, as well as for keeping track of
2106 * serial lines: DTR is dropped when the last close happens.
2107 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2108 *
2109 * The termios state of a pty is reset on the first open so that settings don't
2110 * persist across reuse.
2111 *
2112 * Locking:
2113 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2114 *  * @tty->count should protect the rest.
2115 *  * ->siglock protects ->signal/->sighand
2116 *
2117 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
 
2118 */
 
2119static int tty_open(struct inode *inode, struct file *filp)
2120{
2121	struct tty_struct *tty;
2122	int noctty, retval;
2123	dev_t device = inode->i_rdev;
2124	unsigned saved_flags = filp->f_flags;
2125
2126	nonseekable_open(inode, filp);
2127
2128retry_open:
2129	retval = tty_alloc_file(filp);
2130	if (retval)
2131		return -ENOMEM;
2132
2133	tty = tty_open_current_tty(device, filp);
2134	if (!tty)
2135		tty = tty_open_by_driver(device, filp);
2136
2137	if (IS_ERR(tty)) {
2138		tty_free_file(filp);
2139		retval = PTR_ERR(tty);
2140		if (retval != -EAGAIN || signal_pending(current))
2141			return retval;
2142		schedule();
2143		goto retry_open;
2144	}
2145
2146	tty_add_file(tty, filp);
2147
2148	check_tty_count(tty, __func__);
2149	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2150
2151	if (tty->ops->open)
2152		retval = tty->ops->open(tty, filp);
2153	else
2154		retval = -ENODEV;
2155	filp->f_flags = saved_flags;
2156
2157	if (retval) {
2158		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2159
2160		tty_unlock(tty); /* need to call tty_release without BTM */
2161		tty_release(inode, filp);
2162		if (retval != -ERESTARTSYS)
2163			return retval;
2164
2165		if (signal_pending(current))
2166			return retval;
2167
2168		schedule();
2169		/*
2170		 * Need to reset f_op in case a hangup happened.
2171		 */
2172		if (tty_hung_up_p(filp))
2173			filp->f_op = &tty_fops;
2174		goto retry_open;
2175	}
2176	clear_bit(TTY_HUPPED, &tty->flags);
2177
 
 
 
2178	noctty = (filp->f_flags & O_NOCTTY) ||
2179		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2180		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2181		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2182		  tty->driver->subtype == PTY_TYPE_MASTER);
2183	if (!noctty)
2184		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185	tty_unlock(tty);
2186	return 0;
2187}
2188
2189
 
2190/**
2191 * tty_poll - check tty status
2192 * @filp: file being polled
2193 * @wait: poll wait structures to update
2194 *
2195 * Call the line discipline polling method to obtain the poll status of the
2196 * device.
2197 *
2198 * Locking: locks called line discipline but ldisc poll method may be
2199 * re-entered freely by other callers.
2200 */
2201static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	__poll_t ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
 
 
 
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
2274 *
2275 * FIXME: does not honour flow control ??
 
 
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426 *
2427 * Set the line discipline according to user request.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
 
2430 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
2440
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
2453 */
 
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
 
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
 
2478static int send_break(struct tty_struct *tty, unsigned int duration)
2479{
2480	int retval;
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
 
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
 
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
2504
2505	return retval;
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
 
 
 
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
 
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
 
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
 
 
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
 
 
 
3201 *
3202 * Locking: ??
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
 
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
3218}
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
 
 
 
 
 
 
 
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
 
 
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
 
 
 
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
 
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
 
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
3445	struct device *d;
3446
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
3495	return error;
3496}
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v4.10.11
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233/**
 234 *	tty_name	-	return tty naming
 235 *	@tty: tty structure
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 248}
 249
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268	if (tty->magic != TTY_MAGIC) {
 269		pr_warn("(%d:%d): %s: bad magic number\n",
 270			imajor(inode), iminor(inode), routine);
 271		return 1;
 272	}
 273#endif
 274	return 0;
 275}
 276
 277/* Caller must hold tty_lock */
 278static int check_tty_count(struct tty_struct *tty, const char *routine)
 279{
 280#ifdef CHECK_TTY_COUNT
 281	struct list_head *p;
 282	int count = 0;
 283
 284	spin_lock(&tty->files_lock);
 285	list_for_each(p, &tty->tty_files) {
 286		count++;
 287	}
 288	spin_unlock(&tty->files_lock);
 289	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 290	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 291	    tty->link && tty->link->count)
 292		count++;
 293	if (tty->count != count) {
 294		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 295			 routine, tty->count, count);
 296		return count;
 
 297	}
 298#endif
 299	return 0;
 300}
 301
 302/**
 303 *	get_tty_driver		-	find device of a tty
 304 *	@dev_t: device identifier
 305 *	@index: returns the index of the tty
 306 *
 307 *	This routine returns a tty driver structure, given a device number
 308 *	and also passes back the index number.
 309 *
 310 *	Locking: caller must hold tty_mutex
 311 */
 312
 313static struct tty_driver *get_tty_driver(dev_t device, int *index)
 314{
 315	struct tty_driver *p;
 316
 317	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 318		dev_t base = MKDEV(p->major, p->minor_start);
 
 319		if (device < base || device >= base + p->num)
 320			continue;
 321		*index = device - base;
 322		return tty_driver_kref_get(p);
 323	}
 324	return NULL;
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327#ifdef CONFIG_CONSOLE_POLL
 328
 329/**
 330 *	tty_find_polling_driver	-	find device of a polled tty
 331 *	@name: name string to match
 332 *	@line: pointer to resulting tty line nr
 333 *
 334 *	This routine returns a tty driver structure, given a name
 335 *	and the condition that the tty driver is capable of polled
 336 *	operation.
 337 */
 338struct tty_driver *tty_find_polling_driver(char *name, int *line)
 339{
 340	struct tty_driver *p, *res = NULL;
 341	int tty_line = 0;
 342	int len;
 343	char *str, *stp;
 344
 345	for (str = name; *str; str++)
 346		if ((*str >= '0' && *str <= '9') || *str == ',')
 347			break;
 348	if (!*str)
 349		return NULL;
 350
 351	len = str - name;
 352	tty_line = simple_strtoul(str, &str, 10);
 353
 354	mutex_lock(&tty_mutex);
 355	/* Search through the tty devices to look for a match */
 356	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 357		if (strncmp(name, p->name, len) != 0)
 358			continue;
 359		stp = str;
 360		if (*stp == ',')
 361			stp++;
 362		if (*stp == '\0')
 363			stp = NULL;
 364
 365		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 366		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 367			res = tty_driver_kref_get(p);
 368			*line = tty_line;
 369			break;
 370		}
 371	}
 372	mutex_unlock(&tty_mutex);
 373
 374	return res;
 375}
 376EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 377#endif
 378
 379static int is_ignored(int sig)
 380{
 381	return (sigismember(&current->blocked, sig) ||
 382		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 383}
 384
 385/**
 386 *	tty_check_change	-	check for POSIX terminal changes
 387 *	@tty: tty to check
 388 *
 389 *	If we try to write to, or set the state of, a terminal and we're
 390 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 391 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 392 *
 393 *	Locking: ctrl_lock
 394 */
 395
 396int __tty_check_change(struct tty_struct *tty, int sig)
 397{
 398	unsigned long flags;
 399	struct pid *pgrp, *tty_pgrp;
 400	int ret = 0;
 401
 402	if (current->signal->tty != tty)
 403		return 0;
 404
 405	rcu_read_lock();
 406	pgrp = task_pgrp(current);
 407
 408	spin_lock_irqsave(&tty->ctrl_lock, flags);
 409	tty_pgrp = tty->pgrp;
 410	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 411
 412	if (tty_pgrp && pgrp != tty->pgrp) {
 413		if (is_ignored(sig)) {
 414			if (sig == SIGTTIN)
 415				ret = -EIO;
 416		} else if (is_current_pgrp_orphaned())
 417			ret = -EIO;
 418		else {
 419			kill_pgrp(pgrp, sig, 1);
 420			set_thread_flag(TIF_SIGPENDING);
 421			ret = -ERESTARTSYS;
 422		}
 423	}
 424	rcu_read_unlock();
 425
 426	if (!tty_pgrp)
 427		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 428
 429	return ret;
 430}
 431
 432int tty_check_change(struct tty_struct *tty)
 433{
 434	return __tty_check_change(tty, SIGTTOU);
 435}
 436EXPORT_SYMBOL(tty_check_change);
 437
 438static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 439				size_t count, loff_t *ppos)
 440{
 441	return 0;
 442}
 443
 444static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 445				 size_t count, loff_t *ppos)
 446{
 447	return -EIO;
 448}
 449
 450/* No kernel lock held - none needed ;) */
 451static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 452{
 453	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 454}
 455
 456static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 457		unsigned long arg)
 458{
 459	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 460}
 461
 462static long hung_up_tty_compat_ioctl(struct file *file,
 463				     unsigned int cmd, unsigned long arg)
 464{
 465	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 466}
 467
 468static int hung_up_tty_fasync(int fd, struct file *file, int on)
 469{
 470	return -ENOTTY;
 471}
 472
 
 
 
 
 
 
 
 
 473static const struct file_operations tty_fops = {
 474	.llseek		= no_llseek,
 475	.read		= tty_read,
 476	.write		= tty_write,
 
 
 477	.poll		= tty_poll,
 478	.unlocked_ioctl	= tty_ioctl,
 479	.compat_ioctl	= tty_compat_ioctl,
 480	.open		= tty_open,
 481	.release	= tty_release,
 482	.fasync		= tty_fasync,
 
 483};
 484
 485static const struct file_operations console_fops = {
 486	.llseek		= no_llseek,
 487	.read		= tty_read,
 488	.write		= redirected_tty_write,
 
 
 489	.poll		= tty_poll,
 490	.unlocked_ioctl	= tty_ioctl,
 491	.compat_ioctl	= tty_compat_ioctl,
 492	.open		= tty_open,
 493	.release	= tty_release,
 494	.fasync		= tty_fasync,
 495};
 496
 497static const struct file_operations hung_up_tty_fops = {
 498	.llseek		= no_llseek,
 499	.read		= hung_up_tty_read,
 500	.write		= hung_up_tty_write,
 501	.poll		= hung_up_tty_poll,
 502	.unlocked_ioctl	= hung_up_tty_ioctl,
 503	.compat_ioctl	= hung_up_tty_compat_ioctl,
 504	.release	= tty_release,
 505	.fasync		= hung_up_tty_fasync,
 506};
 507
 508static DEFINE_SPINLOCK(redirect_lock);
 509static struct file *redirect;
 510
 511
 512void proc_clear_tty(struct task_struct *p)
 513{
 514	unsigned long flags;
 515	struct tty_struct *tty;
 516	spin_lock_irqsave(&p->sighand->siglock, flags);
 517	tty = p->signal->tty;
 518	p->signal->tty = NULL;
 519	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 520	tty_kref_put(tty);
 521}
 522
 523/**
 524 * proc_set_tty -  set the controlling terminal
 525 *
 526 * Only callable by the session leader and only if it does not already have
 527 * a controlling terminal.
 528 *
 529 * Caller must hold:  tty_lock()
 530 *		      a readlock on tasklist_lock
 531 *		      sighand lock
 532 */
 533static void __proc_set_tty(struct tty_struct *tty)
 534{
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&tty->ctrl_lock, flags);
 538	/*
 539	 * The session and fg pgrp references will be non-NULL if
 540	 * tiocsctty() is stealing the controlling tty
 541	 */
 542	put_pid(tty->session);
 543	put_pid(tty->pgrp);
 544	tty->pgrp = get_pid(task_pgrp(current));
 545	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 546	tty->session = get_pid(task_session(current));
 547	if (current->signal->tty) {
 548		tty_debug(tty, "current tty %s not NULL!!\n",
 549			  current->signal->tty->name);
 550		tty_kref_put(current->signal->tty);
 551	}
 552	put_pid(current->signal->tty_old_pgrp);
 553	current->signal->tty = tty_kref_get(tty);
 554	current->signal->tty_old_pgrp = NULL;
 555}
 556
 557static void proc_set_tty(struct tty_struct *tty)
 558{
 559	spin_lock_irq(&current->sighand->siglock);
 560	__proc_set_tty(tty);
 561	spin_unlock_irq(&current->sighand->siglock);
 562}
 563
 564struct tty_struct *get_current_tty(void)
 565{
 566	struct tty_struct *tty;
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(&current->sighand->siglock, flags);
 570	tty = tty_kref_get(current->signal->tty);
 571	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 572	return tty;
 573}
 574EXPORT_SYMBOL_GPL(get_current_tty);
 575
 576static void session_clear_tty(struct pid *session)
 577{
 578	struct task_struct *p;
 579	do_each_pid_task(session, PIDTYPE_SID, p) {
 580		proc_clear_tty(p);
 581	} while_each_pid_task(session, PIDTYPE_SID, p);
 582}
 583
 584/**
 585 *	tty_wakeup	-	request more data
 586 *	@tty: terminal
 587 *
 588 *	Internal and external helper for wakeups of tty. This function
 589 *	informs the line discipline if present that the driver is ready
 590 *	to receive more output data.
 591 */
 592
 593void tty_wakeup(struct tty_struct *tty)
 594{
 595	struct tty_ldisc *ld;
 596
 597	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 598		ld = tty_ldisc_ref(tty);
 599		if (ld) {
 600			if (ld->ops->write_wakeup)
 601				ld->ops->write_wakeup(tty);
 602			tty_ldisc_deref(ld);
 603		}
 604	}
 605	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 606}
 607
 608EXPORT_SYMBOL_GPL(tty_wakeup);
 609
 610/**
 611 *	tty_signal_session_leader	- sends SIGHUP to session leader
 612 *	@tty		controlling tty
 613 *	@exit_session	if non-zero, signal all foreground group processes
 614 *
 615 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 616 *	Optionally, signal all processes in the foreground process group.
 617 *
 618 *	Returns the number of processes in the session with this tty
 619 *	as their controlling terminal. This value is used to drop
 620 *	tty references for those processes.
 621 */
 622static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 623{
 624	struct task_struct *p;
 625	int refs = 0;
 626	struct pid *tty_pgrp = NULL;
 627
 628	read_lock(&tasklist_lock);
 629	if (tty->session) {
 630		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 631			spin_lock_irq(&p->sighand->siglock);
 632			if (p->signal->tty == tty) {
 633				p->signal->tty = NULL;
 634				/* We defer the dereferences outside fo
 635				   the tasklist lock */
 636				refs++;
 637			}
 638			if (!p->signal->leader) {
 639				spin_unlock_irq(&p->sighand->siglock);
 640				continue;
 641			}
 642			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 643			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 644			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 645			spin_lock(&tty->ctrl_lock);
 646			tty_pgrp = get_pid(tty->pgrp);
 647			if (tty->pgrp)
 648				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 649			spin_unlock(&tty->ctrl_lock);
 650			spin_unlock_irq(&p->sighand->siglock);
 651		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 652	}
 653	read_unlock(&tasklist_lock);
 654
 655	if (tty_pgrp) {
 656		if (exit_session)
 657			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 658		put_pid(tty_pgrp);
 659	}
 
 660
 661	return refs;
 662}
 663
 664/**
 665 *	__tty_hangup		-	actual handler for hangup events
 666 *	@work: tty device
 
 667 *
 668 *	This can be called by a "kworker" kernel thread.  That is process
 669 *	synchronous but doesn't hold any locks, so we need to make sure we
 670 *	have the appropriate locks for what we're doing.
 671 *
 672 *	The hangup event clears any pending redirections onto the hung up
 673 *	device. It ensures future writes will error and it does the needed
 674 *	line discipline hangup and signal delivery. The tty object itself
 675 *	remains intact.
 
 
 
 
 
 
 
 
 
 
 676 *
 677 *	Locking:
 678 *		BTM
 679 *		  redirect lock for undoing redirection
 680 *		  file list lock for manipulating list of ttys
 681 *		  tty_ldiscs_lock from called functions
 682 *		  termios_rwsem resetting termios data
 683 *		  tasklist_lock to walk task list for hangup event
 684 *		    ->siglock to protect ->signal/->sighand
 685 */
 686static void __tty_hangup(struct tty_struct *tty, int exit_session)
 687{
 688	struct file *cons_filp = NULL;
 689	struct file *filp, *f = NULL;
 690	struct tty_file_private *priv;
 691	int    closecount = 0, n;
 692	int refs;
 693
 694	if (!tty)
 695		return;
 696
 697
 698	spin_lock(&redirect_lock);
 699	if (redirect && file_tty(redirect) == tty) {
 700		f = redirect;
 701		redirect = NULL;
 702	}
 703	spin_unlock(&redirect_lock);
 704
 705	tty_lock(tty);
 706
 707	if (test_bit(TTY_HUPPED, &tty->flags)) {
 708		tty_unlock(tty);
 709		return;
 710	}
 711
 
 
 
 
 
 
 
 
 712	/* inuse_filps is protected by the single tty lock,
 713	   this really needs to change if we want to flush the
 714	   workqueue with the lock held */
 
 715	check_tty_count(tty, "tty_hangup");
 716
 717	spin_lock(&tty->files_lock);
 718	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 719	list_for_each_entry(priv, &tty->tty_files, list) {
 720		filp = priv->file;
 721		if (filp->f_op->write == redirected_tty_write)
 722			cons_filp = filp;
 723		if (filp->f_op->write != tty_write)
 724			continue;
 725		closecount++;
 726		__tty_fasync(-1, filp, 0);	/* can't block */
 727		filp->f_op = &hung_up_tty_fops;
 728	}
 729	spin_unlock(&tty->files_lock);
 730
 731	refs = tty_signal_session_leader(tty, exit_session);
 732	/* Account for the p->signal references we killed */
 733	while (refs--)
 734		tty_kref_put(tty);
 735
 736	tty_ldisc_hangup(tty, cons_filp != NULL);
 737
 738	spin_lock_irq(&tty->ctrl_lock);
 739	clear_bit(TTY_THROTTLED, &tty->flags);
 740	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 741	put_pid(tty->session);
 742	put_pid(tty->pgrp);
 743	tty->session = NULL;
 744	tty->pgrp = NULL;
 745	tty->ctrl_status = 0;
 746	spin_unlock_irq(&tty->ctrl_lock);
 747
 748	/*
 749	 * If one of the devices matches a console pointer, we
 750	 * cannot just call hangup() because that will cause
 751	 * tty->count and state->count to go out of sync.
 752	 * So we just call close() the right number of times.
 753	 */
 754	if (cons_filp) {
 755		if (tty->ops->close)
 756			for (n = 0; n < closecount; n++)
 757				tty->ops->close(tty, cons_filp);
 758	} else if (tty->ops->hangup)
 759		tty->ops->hangup(tty);
 760	/*
 761	 * We don't want to have driver/ldisc interactions beyond the ones
 762	 * we did here. The driver layer expects no calls after ->hangup()
 763	 * from the ldisc side, which is now guaranteed.
 764	 */
 765	set_bit(TTY_HUPPED, &tty->flags);
 
 766	tty_unlock(tty);
 767
 768	if (f)
 769		fput(f);
 770}
 771
 772static void do_tty_hangup(struct work_struct *work)
 773{
 774	struct tty_struct *tty =
 775		container_of(work, struct tty_struct, hangup_work);
 776
 777	__tty_hangup(tty, 0);
 778}
 779
 780/**
 781 *	tty_hangup		-	trigger a hangup event
 782 *	@tty: tty to hangup
 783 *
 784 *	A carrier loss (virtual or otherwise) has occurred on this like
 785 *	schedule a hangup sequence to run after this event.
 786 */
 787
 788void tty_hangup(struct tty_struct *tty)
 789{
 790	tty_debug_hangup(tty, "hangup\n");
 791	schedule_work(&tty->hangup_work);
 792}
 793
 794EXPORT_SYMBOL(tty_hangup);
 795
 796/**
 797 *	tty_vhangup		-	process vhangup
 798 *	@tty: tty to hangup
 799 *
 800 *	The user has asked via system call for the terminal to be hung up.
 801 *	We do this synchronously so that when the syscall returns the process
 802 *	is complete. That guarantee is necessary for security reasons.
 803 */
 804
 805void tty_vhangup(struct tty_struct *tty)
 806{
 807	tty_debug_hangup(tty, "vhangup\n");
 808	__tty_hangup(tty, 0);
 809}
 810
 811EXPORT_SYMBOL(tty_vhangup);
 812
 813
 814/**
 815 *	tty_vhangup_self	-	process vhangup for own ctty
 816 *
 817 *	Perform a vhangup on the current controlling tty
 818 */
 819
 820void tty_vhangup_self(void)
 821{
 822	struct tty_struct *tty;
 823
 824	tty = get_current_tty();
 825	if (tty) {
 826		tty_vhangup(tty);
 827		tty_kref_put(tty);
 828	}
 829}
 830
 831/**
 832 *	tty_vhangup_session		-	hangup session leader exit
 833 *	@tty: tty to hangup
 834 *
 835 *	The session leader is exiting and hanging up its controlling terminal.
 836 *	Every process in the foreground process group is signalled SIGHUP.
 837 *
 838 *	We do this synchronously so that when the syscall returns the process
 839 *	is complete. That guarantee is necessary for security reasons.
 840 */
 841
 842static void tty_vhangup_session(struct tty_struct *tty)
 843{
 844	tty_debug_hangup(tty, "session hangup\n");
 845	__tty_hangup(tty, 1);
 846}
 847
 848/**
 849 *	tty_hung_up_p		-	was tty hung up
 850 *	@filp: file pointer of tty
 851 *
 852 *	Return true if the tty has been subject to a vhangup or a carrier
 853 *	loss
 854 */
 855
 856int tty_hung_up_p(struct file *filp)
 857{
 858	return (filp->f_op == &hung_up_tty_fops);
 859}
 860
 861EXPORT_SYMBOL(tty_hung_up_p);
 862
 863/**
 864 *	disassociate_ctty	-	disconnect controlling tty
 865 *	@on_exit: true if exiting so need to "hang up" the session
 866 *
 867 *	This function is typically called only by the session leader, when
 868 *	it wants to disassociate itself from its controlling tty.
 869 *
 870 *	It performs the following functions:
 871 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 872 * 	(2)  Clears the tty from being controlling the session
 873 * 	(3)  Clears the controlling tty for all processes in the
 874 * 		session group.
 875 *
 876 *	The argument on_exit is set to 1 if called when a process is
 877 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 878 *
 879 *	Locking:
 880 *		BTM is taken for hysterical raisins, and held when
 881 *		  called from no_tty().
 882 *		  tty_mutex is taken to protect tty
 883 *		  ->siglock is taken to protect ->signal/->sighand
 884 *		  tasklist_lock is taken to walk process list for sessions
 885 *		    ->siglock is taken to protect ->signal/->sighand
 886 */
 887
 888void disassociate_ctty(int on_exit)
 889{
 890	struct tty_struct *tty;
 891
 892	if (!current->signal->leader)
 893		return;
 894
 895	tty = get_current_tty();
 896	if (tty) {
 897		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 898			tty_vhangup_session(tty);
 899		} else {
 900			struct pid *tty_pgrp = tty_get_pgrp(tty);
 901			if (tty_pgrp) {
 902				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 903				if (!on_exit)
 904					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 905				put_pid(tty_pgrp);
 906			}
 907		}
 908		tty_kref_put(tty);
 909
 910	} else if (on_exit) {
 911		struct pid *old_pgrp;
 912		spin_lock_irq(&current->sighand->siglock);
 913		old_pgrp = current->signal->tty_old_pgrp;
 914		current->signal->tty_old_pgrp = NULL;
 915		spin_unlock_irq(&current->sighand->siglock);
 916		if (old_pgrp) {
 917			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 918			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 919			put_pid(old_pgrp);
 920		}
 921		return;
 922	}
 923
 924	spin_lock_irq(&current->sighand->siglock);
 925	put_pid(current->signal->tty_old_pgrp);
 926	current->signal->tty_old_pgrp = NULL;
 927
 928	tty = tty_kref_get(current->signal->tty);
 929	if (tty) {
 930		unsigned long flags;
 931		spin_lock_irqsave(&tty->ctrl_lock, flags);
 932		put_pid(tty->session);
 933		put_pid(tty->pgrp);
 934		tty->session = NULL;
 935		tty->pgrp = NULL;
 936		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 937		tty_kref_put(tty);
 938	} else
 939		tty_debug_hangup(tty, "no current tty\n");
 940
 941	spin_unlock_irq(&current->sighand->siglock);
 942	/* Now clear signal->tty under the lock */
 943	read_lock(&tasklist_lock);
 944	session_clear_tty(task_session(current));
 945	read_unlock(&tasklist_lock);
 946}
 947
 948/**
 
 
 949 *
 950 *	no_tty	- Ensure the current process does not have a controlling tty
 951 */
 952void no_tty(void)
 953{
 954	/* FIXME: Review locking here. The tty_lock never covered any race
 955	   between a new association and proc_clear_tty but possible we need
 956	   to protect against this anyway */
 957	struct task_struct *tsk = current;
 958	disassociate_ctty(0);
 959	proc_clear_tty(tsk);
 960}
 961
 962
 963/**
 964 *	stop_tty	-	propagate flow control
 965 *	@tty: tty to stop
 966 *
 967 *	Perform flow control to the driver. May be called
 968 *	on an already stopped device and will not re-call the driver
 969 *	method.
 970 *
 971 *	This functionality is used by both the line disciplines for
 972 *	halting incoming flow and by the driver. It may therefore be
 973 *	called from any context, may be under the tty atomic_write_lock
 974 *	but not always.
 975 *
 976 *	Locking:
 977 *		flow_lock
 978 */
 979
 980void __stop_tty(struct tty_struct *tty)
 981{
 982	if (tty->stopped)
 983		return;
 984	tty->stopped = 1;
 985	if (tty->ops->stop)
 986		tty->ops->stop(tty);
 987}
 988
 989void stop_tty(struct tty_struct *tty)
 990{
 991	unsigned long flags;
 992
 993	spin_lock_irqsave(&tty->flow_lock, flags);
 994	__stop_tty(tty);
 995	spin_unlock_irqrestore(&tty->flow_lock, flags);
 996}
 997EXPORT_SYMBOL(stop_tty);
 998
 999/**
1000 *	start_tty	-	propagate flow control
1001 *	@tty: tty to start
1002 *
1003 *	Start a tty that has been stopped if at all possible. If this
1004 *	tty was previous stopped and is now being started, the driver
1005 *	start method is invoked and the line discipline woken.
1006 *
1007 *	Locking:
1008 *		flow_lock
1009 */
1010
1011void __start_tty(struct tty_struct *tty)
1012{
1013	if (!tty->stopped || tty->flow_stopped)
1014		return;
1015	tty->stopped = 0;
1016	if (tty->ops->start)
1017		tty->ops->start(tty);
1018	tty_wakeup(tty);
1019}
1020
 
 
 
 
 
 
 
 
 
 
 
1021void start_tty(struct tty_struct *tty)
1022{
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tty->flow_lock, flags);
1026	__start_tty(tty);
1027	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028}
1029EXPORT_SYMBOL(start_tty);
1030
1031static void tty_update_time(struct timespec *time)
1032{
1033	unsigned long sec = get_seconds();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034
1035	/*
1036	 * We only care if the two values differ in anything other than the
1037	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038	 * the time of the tty device, otherwise it could be construded as a
1039	 * security leak to let userspace know the exact timing of the tty.
1040	 */
1041	if ((sec ^ time->tv_sec) & ~7)
1042		time->tv_sec = sec;
1043}
1044
 
1045/**
1046 *	tty_read	-	read method for tty device files
1047 *	@file: pointer to tty file
1048 *	@buf: user buffer
1049 *	@count: size of user buffer
1050 *	@ppos: unused
1051 *
1052 *	Perform the read system call function on this terminal device. Checks
1053 *	for hung up devices before calling the line discipline method.
1054 *
1055 *	Locking:
1056 *		Locks the line discipline internally while needed. Multiple
1057 *	read calls may be outstanding in parallel.
1058 */
1059
1060static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061			loff_t *ppos)
1062{
1063	int i;
1064	struct inode *inode = file_inode(file);
1065	struct tty_struct *tty = file_tty(file);
1066	struct tty_ldisc *ld;
 
1067
1068	if (tty_paranoia_check(tty, inode, "tty_read"))
1069		return -EIO;
1070	if (!tty || tty_io_error(tty))
1071		return -EIO;
1072
1073	/* We want to wait for the line discipline to sort out in this
1074	   situation */
 
1075	ld = tty_ldisc_ref_wait(tty);
1076	if (!ld)
1077		return hung_up_tty_read(file, buf, count, ppos);
 
1078	if (ld->ops->read)
1079		i = ld->ops->read(tty, file, buf, count);
1080	else
1081		i = -EIO;
1082	tty_ldisc_deref(ld);
1083
1084	if (i > 0)
1085		tty_update_time(&inode->i_atime);
1086
1087	return i;
1088}
1089
1090static void tty_write_unlock(struct tty_struct *tty)
1091{
1092	mutex_unlock(&tty->atomic_write_lock);
1093	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094}
1095
1096static int tty_write_lock(struct tty_struct *tty, int ndelay)
1097{
1098	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099		if (ndelay)
1100			return -EAGAIN;
1101		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102			return -ERESTARTSYS;
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Split writes up in sane blocksizes to avoid
1109 * denial-of-service type attacks
1110 */
1111static inline ssize_t do_tty_write(
1112	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113	struct tty_struct *tty,
1114	struct file *file,
1115	const char __user *buf,
1116	size_t count)
1117{
 
1118	ssize_t ret, written = 0;
1119	unsigned int chunk;
1120
1121	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122	if (ret < 0)
1123		return ret;
1124
1125	/*
1126	 * We chunk up writes into a temporary buffer. This
1127	 * simplifies low-level drivers immensely, since they
1128	 * don't have locking issues and user mode accesses.
1129	 *
1130	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131	 * big chunk-size..
1132	 *
1133	 * The default chunk-size is 2kB, because the NTTY
1134	 * layer has problems with bigger chunks. It will
1135	 * claim to be able to handle more characters than
1136	 * it actually does.
1137	 *
1138	 * FIXME: This can probably go away now except that 64K chunks
1139	 * are too likely to fail unless switched to vmalloc...
1140	 */
1141	chunk = 2048;
1142	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143		chunk = 65536;
1144	if (count < chunk)
1145		chunk = count;
1146
1147	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148	if (tty->write_cnt < chunk) {
1149		unsigned char *buf_chunk;
1150
1151		if (chunk < 1024)
1152			chunk = 1024;
1153
1154		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155		if (!buf_chunk) {
1156			ret = -ENOMEM;
1157			goto out;
1158		}
1159		kfree(tty->write_buf);
1160		tty->write_cnt = chunk;
1161		tty->write_buf = buf_chunk;
1162	}
1163
1164	/* Do the write .. */
1165	for (;;) {
1166		size_t size = count;
1167		if (size > chunk)
1168			size = chunk;
1169		ret = -EFAULT;
1170		if (copy_from_user(tty->write_buf, buf, size))
1171			break;
1172		ret = write(tty, file, tty->write_buf, size);
 
1173		if (ret <= 0)
1174			break;
 
1175		written += ret;
1176		buf += ret;
 
 
 
 
 
 
1177		count -= ret;
1178		if (!count)
1179			break;
1180		ret = -ERESTARTSYS;
1181		if (signal_pending(current))
1182			break;
1183		cond_resched();
1184	}
1185	if (written) {
1186		tty_update_time(&file_inode(file)->i_mtime);
1187		ret = written;
1188	}
1189out:
1190	tty_write_unlock(tty);
1191	return ret;
1192}
1193
 
1194/**
1195 * tty_write_message - write a message to a certain tty, not just the console.
1196 * @tty: the destination tty_struct
1197 * @msg: the message to write
1198 *
1199 * This is used for messages that need to be redirected to a specific tty.
1200 * We don't put it into the syslog queue right now maybe in the future if
1201 * really needed.
1202 *
1203 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1204 */
1205
1206void tty_write_message(struct tty_struct *tty, char *msg)
1207{
1208	if (tty) {
1209		mutex_lock(&tty->atomic_write_lock);
1210		tty_lock(tty);
1211		if (tty->ops->write && tty->count > 0)
1212			tty->ops->write(tty, msg, strlen(msg));
1213		tty_unlock(tty);
1214		tty_write_unlock(tty);
1215	}
1216	return;
1217}
 
1218
1219
1220/**
1221 *	tty_write		-	write method for tty device file
1222 *	@file: tty file pointer
1223 *	@buf: user data to write
1224 *	@count: bytes to write
1225 *	@ppos: unused
1226 *
1227 *	Write data to a tty device via the line discipline.
1228 *
1229 *	Locking:
1230 *		Locks the line discipline as required
1231 *		Writes to the tty driver are serialized by the atomic_write_lock
1232 *	and are then processed in chunks to the device. The line discipline
1233 *	write method will not be invoked in parallel for each device.
1234 */
1235
1236static ssize_t tty_write(struct file *file, const char __user *buf,
1237						size_t count, loff_t *ppos)
1238{
1239	struct tty_struct *tty = file_tty(file);
1240 	struct tty_ldisc *ld;
1241	ssize_t ret;
1242
1243	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244		return -EIO;
1245	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1246			return -EIO;
1247	/* Short term debug to catch buggy drivers */
1248	if (tty->ops->write_room == NULL)
1249		tty_err(tty, "missing write_room method\n");
1250	ld = tty_ldisc_ref_wait(tty);
1251	if (!ld)
1252		return hung_up_tty_write(file, buf, count, ppos);
1253	if (!ld->ops->write)
1254		ret = -EIO;
1255	else
1256		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257	tty_ldisc_deref(ld);
1258	return ret;
1259}
1260
1261ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263{
1264	struct file *p = NULL;
1265
1266	spin_lock(&redirect_lock);
1267	if (redirect)
1268		p = get_file(redirect);
1269	spin_unlock(&redirect_lock);
1270
 
 
 
 
1271	if (p) {
1272		ssize_t res;
1273		res = vfs_write(p, buf, count, &p->f_pos);
 
1274		fput(p);
1275		return res;
1276	}
1277	return tty_write(file, buf, count, ppos);
1278}
1279
1280/**
1281 *	tty_send_xchar	-	send priority character
 
 
1282 *
1283 *	Send a high priority character to the tty even if stopped
1284 *
1285 *	Locking: none for xchar method, write ordering for write method.
1286 */
1287
1288int tty_send_xchar(struct tty_struct *tty, char ch)
1289{
1290	int	was_stopped = tty->stopped;
1291
1292	if (tty->ops->send_xchar) {
1293		down_read(&tty->termios_rwsem);
1294		tty->ops->send_xchar(tty, ch);
1295		up_read(&tty->termios_rwsem);
1296		return 0;
1297	}
1298
1299	if (tty_write_lock(tty, 0) < 0)
1300		return -ERESTARTSYS;
1301
1302	down_read(&tty->termios_rwsem);
1303	if (was_stopped)
1304		start_tty(tty);
1305	tty->ops->write(tty, &ch, 1);
1306	if (was_stopped)
1307		stop_tty(tty);
1308	up_read(&tty->termios_rwsem);
1309	tty_write_unlock(tty);
1310	return 0;
1311}
1312
1313static char ptychar[] = "pqrstuvwxyzabcde";
1314
1315/**
1316 *	pty_line_name	-	generate name for a pty
1317 *	@driver: the tty driver in use
1318 *	@index: the minor number
1319 *	@p: output buffer of at least 6 bytes
1320 *
1321 *	Generate a name from a driver reference and write it to the output
1322 *	buffer.
1323 *
1324 *	Locking: None
1325 */
1326static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327{
 
1328	int i = index + driver->name_base;
1329	/* ->name is initialized to "ttyp", but "tty" is expected */
1330	sprintf(p, "%s%c%x",
1331		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332		ptychar[i >> 4 & 0xf], i & 0xf);
1333}
1334
1335/**
1336 *	tty_line_name	-	generate name for a tty
1337 *	@driver: the tty driver in use
1338 *	@index: the minor number
1339 *	@p: output buffer of at least 7 bytes
1340 *
1341 *	Generate a name from a driver reference and write it to the output
1342 *	buffer.
1343 *
1344 *	Locking: None
1345 */
1346static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347{
1348	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349		return sprintf(p, "%s", driver->name);
1350	else
1351		return sprintf(p, "%s%d", driver->name,
1352			       index + driver->name_base);
1353}
1354
1355/**
1356 *	tty_driver_lookup_tty() - find an existing tty, if any
1357 *	@driver: the driver for the tty
1358 *	@idx:	 the minor number
 
1359 *
1360 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361 *	driver lookup() method returns an error.
1362 *
1363 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1364 */
1365static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366		struct file *file, int idx)
1367{
1368	struct tty_struct *tty;
1369
1370	if (driver->ops->lookup)
1371		tty = driver->ops->lookup(driver, file, idx);
1372	else
 
 
 
 
 
1373		tty = driver->ttys[idx];
1374
1375	if (!IS_ERR(tty))
1376		tty_kref_get(tty);
1377	return tty;
1378}
1379
1380/**
1381 *	tty_init_termios	-  helper for termios setup
1382 *	@tty: the tty to set up
1383 *
1384 *	Initialise the termios structures for this tty. Thus runs under
1385 *	the tty_mutex currently so we can be relaxed about ordering.
1386 */
1387
1388void tty_init_termios(struct tty_struct *tty)
1389{
1390	struct ktermios *tp;
1391	int idx = tty->index;
1392
1393	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394		tty->termios = tty->driver->init_termios;
1395	else {
1396		/* Check for lazy saved data */
1397		tp = tty->driver->termios[idx];
1398		if (tp != NULL) {
1399			tty->termios = *tp;
1400			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401		} else
1402			tty->termios = tty->driver->init_termios;
1403	}
1404	/* Compatibility until drivers always set this */
1405	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1407}
1408EXPORT_SYMBOL_GPL(tty_init_termios);
1409
 
 
 
 
 
 
 
 
1410int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411{
1412	tty_init_termios(tty);
1413	tty_driver_kref_get(driver);
1414	tty->count++;
1415	driver->ttys[tty->index] = tty;
1416	return 0;
1417}
1418EXPORT_SYMBOL_GPL(tty_standard_install);
1419
1420/**
1421 *	tty_driver_install_tty() - install a tty entry in the driver
1422 *	@driver: the driver for the tty
1423 *	@tty: the tty
1424 *
1425 *	Install a tty object into the driver tables. The tty->index field
1426 *	will be set by the time this is called. This method is responsible
1427 *	for ensuring any need additional structures are allocated and
1428 *	configured.
1429 *
1430 *	Locking: tty_mutex for now
1431 */
1432static int tty_driver_install_tty(struct tty_driver *driver,
1433						struct tty_struct *tty)
1434{
1435	return driver->ops->install ? driver->ops->install(driver, tty) :
1436		tty_standard_install(driver, tty);
1437}
1438
1439/**
1440 *	tty_driver_remove_tty() - remove a tty from the driver tables
1441 *	@driver: the driver for the tty
1442 *	@idx:	 the minor number
1443 *
1444 *	Remvoe a tty object from the driver tables. The tty->index field
1445 *	will be set by the time this is called.
1446 *
1447 *	Locking: tty_mutex for now
1448 */
1449static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450{
1451	if (driver->ops->remove)
1452		driver->ops->remove(driver, tty);
1453	else
1454		driver->ttys[tty->index] = NULL;
1455}
1456
1457/*
1458 * 	tty_reopen()	- fast re-open of an open tty
1459 * 	@tty	- the tty to open
1460 *
1461 *	Return 0 on success, -errno on error.
1462 *	Re-opens on master ptys are not allowed and return -EIO.
1463 *
1464 *	Locking: Caller must hold tty_lock
 
1465 */
1466static int tty_reopen(struct tty_struct *tty)
1467{
1468	struct tty_driver *driver = tty->driver;
 
 
1469
1470	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471	    driver->subtype == PTY_TYPE_MASTER)
1472		return -EIO;
1473
1474	if (!tty->count)
1475		return -EAGAIN;
1476
1477	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478		return -EBUSY;
1479
1480	tty->count++;
 
 
 
 
 
 
 
 
 
 
 
1481
1482	if (!tty->ldisc)
1483		return tty_ldisc_reinit(tty, tty->termios.c_line);
1484
1485	return 0;
1486}
1487
1488/**
1489 *	tty_init_dev		-	initialise a tty device
1490 *	@driver: tty driver we are opening a device on
1491 *	@idx: device index
1492 *	@ret_tty: returned tty structure
1493 *
1494 *	Prepare a tty device. This may not be a "new" clean device but
1495 *	could also be an active device. The pty drivers require special
1496 *	handling because of this.
1497 *
1498 *	Locking:
1499 *		The function is called under the tty_mutex, which
1500 *	protects us from the tty struct or driver itself going away.
1501 *
1502 *	On exit the tty device has the line discipline attached and
1503 *	a reference count of 1. If a pair was created for pty/tty use
1504 *	and the other was a pty master then it too has a reference count of 1.
1505 *
1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507 * failed open.  The new code protects the open with a mutex, so it's
1508 * really quite straightforward.  The mutex locking can probably be
1509 * relaxed for the (most common) case of reopening a tty.
1510 */
1511
1512struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513{
1514	struct tty_struct *tty;
1515	int retval;
1516
1517	/*
1518	 * First time open is complex, especially for PTY devices.
1519	 * This code guarantees that either everything succeeds and the
1520	 * TTY is ready for operation, or else the table slots are vacated
1521	 * and the allocated memory released.  (Except that the termios
1522	 * and locked termios may be retained.)
1523	 */
1524
1525	if (!try_module_get(driver->owner))
1526		return ERR_PTR(-ENODEV);
1527
1528	tty = alloc_tty_struct(driver, idx);
1529	if (!tty) {
1530		retval = -ENOMEM;
1531		goto err_module_put;
1532	}
1533
1534	tty_lock(tty);
1535	retval = tty_driver_install_tty(driver, tty);
1536	if (retval < 0)
1537		goto err_free_tty;
1538
1539	if (!tty->port)
1540		tty->port = driver->ports[idx];
1541
1542	WARN_RATELIMIT(!tty->port,
1543			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544			__func__, tty->driver->name);
 
 
 
1545
 
 
 
1546	tty->port->itty = tty;
1547
1548	/*
1549	 * Structures all installed ... call the ldisc open routines.
1550	 * If we fail here just call release_tty to clean up.  No need
1551	 * to decrement the use counts, as release_tty doesn't care.
1552	 */
1553	retval = tty_ldisc_setup(tty, tty->link);
1554	if (retval)
1555		goto err_release_tty;
 
1556	/* Return the tty locked so that it cannot vanish under the caller */
1557	return tty;
1558
1559err_free_tty:
1560	tty_unlock(tty);
1561	free_tty_struct(tty);
1562err_module_put:
1563	module_put(driver->owner);
1564	return ERR_PTR(retval);
1565
1566	/* call the tty release_tty routine to clean out this slot */
1567err_release_tty:
1568	tty_unlock(tty);
1569	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570			     retval, idx);
 
 
1571	release_tty(tty, idx);
1572	return ERR_PTR(retval);
1573}
1574
1575static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1576{
1577	struct ktermios *tp;
1578	int idx = tty->index;
1579
1580	/* If the port is going to reset then it has no termios to save */
1581	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582		return;
1583
1584	/* Stash the termios data */
1585	tp = tty->driver->termios[idx];
1586	if (tp == NULL) {
1587		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588		if (tp == NULL)
1589			return;
1590		tty->driver->termios[idx] = tp;
1591	}
1592	*tp = tty->termios;
1593}
 
1594
1595/**
1596 *	tty_flush_works		-	flush all works of a tty/pty pair
1597 *	@tty: tty device to flush works for (or either end of a pty pair)
1598 *
1599 *	Sync flush all works belonging to @tty (and the 'other' tty).
1600 */
1601static void tty_flush_works(struct tty_struct *tty)
1602{
1603	flush_work(&tty->SAK_work);
1604	flush_work(&tty->hangup_work);
1605	if (tty->link) {
1606		flush_work(&tty->link->SAK_work);
1607		flush_work(&tty->link->hangup_work);
1608	}
1609}
1610
1611/**
1612 *	release_one_tty		-	release tty structure memory
1613 *	@kref: kref of tty we are obliterating
1614 *
1615 *	Releases memory associated with a tty structure, and clears out the
1616 *	driver table slots. This function is called when a device is no longer
1617 *	in use. It also gets called when setup of a device fails.
1618 *
1619 *	Locking:
1620 *		takes the file list lock internally when working on the list
1621 *	of ttys that the driver keeps.
1622 *
1623 *	This method gets called from a work queue so that the driver private
1624 *	cleanup ops can sleep (needed for USB at least)
1625 */
1626static void release_one_tty(struct work_struct *work)
1627{
1628	struct tty_struct *tty =
1629		container_of(work, struct tty_struct, hangup_work);
1630	struct tty_driver *driver = tty->driver;
1631	struct module *owner = driver->owner;
1632
1633	if (tty->ops->cleanup)
1634		tty->ops->cleanup(tty);
1635
1636	tty->magic = 0;
1637	tty_driver_kref_put(driver);
1638	module_put(owner);
1639
1640	spin_lock(&tty->files_lock);
1641	list_del_init(&tty->tty_files);
1642	spin_unlock(&tty->files_lock);
1643
1644	put_pid(tty->pgrp);
1645	put_pid(tty->session);
1646	free_tty_struct(tty);
1647}
1648
1649static void queue_release_one_tty(struct kref *kref)
1650{
1651	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652
1653	/* The hangup queue is now free so we can reuse it rather than
1654	   waste a chunk of memory for each port */
 
1655	INIT_WORK(&tty->hangup_work, release_one_tty);
1656	schedule_work(&tty->hangup_work);
1657}
1658
1659/**
1660 *	tty_kref_put		-	release a tty kref
1661 *	@tty: tty device
1662 *
1663 *	Release a reference to a tty device and if need be let the kref
1664 *	layer destruct the object for us
1665 */
1666
1667void tty_kref_put(struct tty_struct *tty)
1668{
1669	if (tty)
1670		kref_put(&tty->kref, queue_release_one_tty);
1671}
1672EXPORT_SYMBOL(tty_kref_put);
1673
1674/**
1675 *	release_tty		-	release tty structure memory
 
 
1676 *
1677 *	Release both @tty and a possible linked partner (think pty pair),
1678 *	and decrement the refcount of the backing module.
1679 *
1680 *	Locking:
1681 *		tty_mutex
1682 *		takes the file list lock internally when working on the list
1683 *	of ttys that the driver keeps.
1684 *
 
 
 
 
1685 */
1686static void release_tty(struct tty_struct *tty, int idx)
1687{
1688	/* This should always be true but check for the moment */
1689	WARN_ON(tty->index != idx);
1690	WARN_ON(!mutex_is_locked(&tty_mutex));
1691	if (tty->ops->shutdown)
1692		tty->ops->shutdown(tty);
1693	tty_free_termios(tty);
1694	tty_driver_remove_tty(tty->driver, tty);
1695	tty->port->itty = NULL;
 
1696	if (tty->link)
1697		tty->link->port->itty = NULL;
1698	tty_buffer_cancel_work(tty->port);
 
 
 
1699
1700	tty_kref_put(tty->link);
1701	tty_kref_put(tty);
1702}
1703
1704/**
1705 *	tty_release_checks - check a tty before real release
1706 *	@tty: tty to check
1707 *	@o_tty: link of @tty (if any)
1708 *	@idx: index of the tty
1709 *
1710 *	Performs some paranoid checking before true release of the @tty.
1711 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712 */
1713static int tty_release_checks(struct tty_struct *tty, int idx)
1714{
1715#ifdef TTY_PARANOIA_CHECK
1716	if (idx < 0 || idx >= tty->driver->num) {
1717		tty_debug(tty, "bad idx %d\n", idx);
1718		return -1;
1719	}
1720
1721	/* not much to check for devpts */
1722	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723		return 0;
1724
1725	if (tty != tty->driver->ttys[idx]) {
1726		tty_debug(tty, "bad driver table[%d] = %p\n",
1727			  idx, tty->driver->ttys[idx]);
1728		return -1;
1729	}
1730	if (tty->driver->other) {
1731		struct tty_struct *o_tty = tty->link;
1732
1733		if (o_tty != tty->driver->other->ttys[idx]) {
1734			tty_debug(tty, "bad other table[%d] = %p\n",
1735				  idx, tty->driver->other->ttys[idx]);
1736			return -1;
1737		}
1738		if (o_tty->link != tty) {
1739			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740			return -1;
1741		}
1742	}
1743#endif
1744	return 0;
1745}
1746
1747/**
1748 *	tty_release		-	vfs callback for close
1749 *	@inode: inode of tty
1750 *	@filp: file pointer for handle to tty
1751 *
1752 *	Called the last time each file handle is closed that references
1753 *	this tty. There may however be several such references.
1754 *
1755 *	Locking:
1756 *		Takes bkl. See tty_release_dev
1757 *
1758 * Even releasing the tty structures is a tricky business.. We have
1759 * to be very careful that the structures are all released at the
1760 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761 *
1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763 * lead to double frees or releasing memory still in use.
1764 */
1765
1766int tty_release(struct inode *inode, struct file *filp)
1767{
1768	struct tty_struct *tty = file_tty(filp);
1769	struct tty_struct *o_tty = NULL;
1770	int	do_sleep, final;
1771	int	idx;
1772	long	timeout = 0;
1773	int	once = 1;
1774
1775	if (tty_paranoia_check(tty, inode, __func__))
1776		return 0;
1777
1778	tty_lock(tty);
1779	check_tty_count(tty, __func__);
1780
1781	__tty_fasync(-1, filp, 0);
1782
1783	idx = tty->index;
1784	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785	    tty->driver->subtype == PTY_TYPE_MASTER)
1786		o_tty = tty->link;
1787
1788	if (tty_release_checks(tty, idx)) {
1789		tty_unlock(tty);
1790		return 0;
1791	}
1792
1793	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1794
1795	if (tty->ops->close)
1796		tty->ops->close(tty, filp);
1797
1798	/* If tty is pty master, lock the slave pty (stable lock order) */
1799	tty_lock_slave(o_tty);
1800
1801	/*
1802	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804	 * wait queues and kick everyone out _before_ actually starting to
1805	 * close.  This ensures that we won't block while releasing the tty
1806	 * structure.
1807	 *
1808	 * The test for the o_tty closing is necessary, since the master and
1809	 * slave sides may close in any order.  If the slave side closes out
1810	 * first, its count will be one, since the master side holds an open.
1811	 * Thus this test wouldn't be triggered at the time the slave closed,
1812	 * so we do it now.
1813	 */
1814	while (1) {
1815		do_sleep = 0;
1816
1817		if (tty->count <= 1) {
1818			if (waitqueue_active(&tty->read_wait)) {
1819				wake_up_poll(&tty->read_wait, POLLIN);
1820				do_sleep++;
1821			}
1822			if (waitqueue_active(&tty->write_wait)) {
1823				wake_up_poll(&tty->write_wait, POLLOUT);
1824				do_sleep++;
1825			}
1826		}
1827		if (o_tty && o_tty->count <= 1) {
1828			if (waitqueue_active(&o_tty->read_wait)) {
1829				wake_up_poll(&o_tty->read_wait, POLLIN);
1830				do_sleep++;
1831			}
1832			if (waitqueue_active(&o_tty->write_wait)) {
1833				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834				do_sleep++;
1835			}
1836		}
1837		if (!do_sleep)
1838			break;
1839
1840		if (once) {
1841			once = 0;
1842			tty_warn(tty, "read/write wait queue active!\n");
1843		}
1844		schedule_timeout_killable(timeout);
1845		if (timeout < 120 * HZ)
1846			timeout = 2 * timeout + 1;
1847		else
1848			timeout = MAX_SCHEDULE_TIMEOUT;
1849	}
1850
1851	if (o_tty) {
1852		if (--o_tty->count < 0) {
1853			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1854			o_tty->count = 0;
1855		}
1856	}
1857	if (--tty->count < 0) {
1858		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1859		tty->count = 0;
1860	}
1861
1862	/*
1863	 * We've decremented tty->count, so we need to remove this file
1864	 * descriptor off the tty->tty_files list; this serves two
1865	 * purposes:
1866	 *  - check_tty_count sees the correct number of file descriptors
1867	 *    associated with this tty.
1868	 *  - do_tty_hangup no longer sees this file descriptor as
1869	 *    something that needs to be handled for hangups.
1870	 */
1871	tty_del_file(filp);
1872
1873	/*
1874	 * Perform some housekeeping before deciding whether to return.
1875	 *
1876	 * If _either_ side is closing, make sure there aren't any
1877	 * processes that still think tty or o_tty is their controlling
1878	 * tty.
1879	 */
1880	if (!tty->count) {
1881		read_lock(&tasklist_lock);
1882		session_clear_tty(tty->session);
1883		if (o_tty)
1884			session_clear_tty(o_tty->session);
1885		read_unlock(&tasklist_lock);
1886	}
1887
1888	/* check whether both sides are closing ... */
1889	final = !tty->count && !(o_tty && o_tty->count);
1890
1891	tty_unlock_slave(o_tty);
1892	tty_unlock(tty);
1893
1894	/* At this point, the tty->count == 0 should ensure a dead tty
1895	   cannot be re-opened by a racing opener */
 
1896
1897	if (!final)
1898		return 0;
1899
1900	tty_debug_hangup(tty, "final close\n");
1901	/*
1902	 * Ask the line discipline code to release its structures
1903	 */
1904	tty_ldisc_release(tty);
1905
1906	/* Wait for pending work before tty destruction commmences */
1907	tty_flush_works(tty);
1908
1909	tty_debug_hangup(tty, "freeing structure\n");
1910	/*
1911	 * The release_tty function takes care of the details of clearing
1912	 * the slots and preserving the termios structure. The tty_unlock_pair
1913	 * should be safe as we keep a kref while the tty is locked (so the
1914	 * unlock never unlocks a freed tty).
1915	 */
1916	mutex_lock(&tty_mutex);
1917	release_tty(tty, idx);
1918	mutex_unlock(&tty_mutex);
1919
 
1920	return 0;
1921}
1922
1923/**
1924 *	tty_open_current_tty - get locked tty of current task
1925 *	@device: device number
1926 *	@filp: file pointer to tty
1927 *	@return: locked tty of the current task iff @device is /dev/tty
1928 *
1929 *	Performs a re-open of the current task's controlling tty.
1930 *
1931 *	We cannot return driver and index like for the other nodes because
1932 *	devpts will not work then. It expects inodes to be from devpts FS.
1933 */
1934static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1935{
1936	struct tty_struct *tty;
1937	int retval;
1938
1939	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940		return NULL;
1941
1942	tty = get_current_tty();
1943	if (!tty)
1944		return ERR_PTR(-ENXIO);
1945
1946	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947	/* noctty = 1; */
1948	tty_lock(tty);
1949	tty_kref_put(tty);	/* safe to drop the kref now */
1950
1951	retval = tty_reopen(tty);
1952	if (retval < 0) {
1953		tty_unlock(tty);
1954		tty = ERR_PTR(retval);
1955	}
1956	return tty;
1957}
1958
1959/**
1960 *	tty_lookup_driver - lookup a tty driver for a given device file
1961 *	@device: device number
1962 *	@filp: file pointer to tty
1963 *	@index: index for the device in the @return driver
1964 *	@return: driver for this inode (with increased refcount)
 
 
1965 *
1966 * 	If @return is not erroneous, the caller is responsible to decrement the
1967 * 	refcount by tty_driver_kref_put.
1968 *
1969 *	Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972		int *index)
1973{
1974	struct tty_driver *driver;
1975
1976	switch (device) {
1977#ifdef CONFIG_VT
1978	case MKDEV(TTY_MAJOR, 0): {
1979		extern struct tty_driver *console_driver;
 
1980		driver = tty_driver_kref_get(console_driver);
1981		*index = fg_console;
1982		break;
1983	}
1984#endif
1985	case MKDEV(TTYAUX_MAJOR, 1): {
1986		struct tty_driver *console_driver = console_device(index);
 
1987		if (console_driver) {
1988			driver = tty_driver_kref_get(console_driver);
1989			if (driver) {
1990				/* Don't let /dev/console block */
1991				filp->f_flags |= O_NONBLOCK;
1992				break;
1993			}
1994		}
 
 
1995		return ERR_PTR(-ENODEV);
1996	}
1997	default:
1998		driver = get_tty_driver(device, index);
1999		if (!driver)
2000			return ERR_PTR(-ENODEV);
2001		break;
2002	}
2003	return driver;
2004}
2005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006/**
2007 *	tty_open_by_driver	-	open a tty device
2008 *	@device: dev_t of device to open
2009 *	@inode: inode of device file
2010 *	@filp: file pointer to tty
2011 *
2012 *	Performs the driver lookup, checks for a reopen, or otherwise
2013 *	performs the first-time tty initialization.
2014 *
2015 *	Returns the locked initialized or re-opened &tty_struct
2016 *
2017 *	Claims the global tty_mutex to serialize:
2018 *	  - concurrent first-time tty initialization
2019 *	  - concurrent tty driver removal w/ lookup
2020 *	  - concurrent tty removal from driver table
2021 */
2022static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023					     struct file *filp)
2024{
2025	struct tty_struct *tty;
2026	struct tty_driver *driver = NULL;
2027	int index = -1;
2028	int retval;
2029
2030	mutex_lock(&tty_mutex);
2031	driver = tty_lookup_driver(device, filp, &index);
2032	if (IS_ERR(driver)) {
2033		mutex_unlock(&tty_mutex);
2034		return ERR_CAST(driver);
2035	}
2036
2037	/* check whether we're reopening an existing tty */
2038	tty = tty_driver_lookup_tty(driver, filp, index);
2039	if (IS_ERR(tty)) {
2040		mutex_unlock(&tty_mutex);
2041		goto out;
2042	}
2043
2044	if (tty) {
 
 
 
 
 
 
2045		mutex_unlock(&tty_mutex);
2046		retval = tty_lock_interruptible(tty);
2047		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048		if (retval) {
2049			if (retval == -EINTR)
2050				retval = -ERESTARTSYS;
2051			tty = ERR_PTR(retval);
2052			goto out;
2053		}
2054		retval = tty_reopen(tty);
2055		if (retval < 0) {
2056			tty_unlock(tty);
2057			tty = ERR_PTR(retval);
2058		}
2059	} else { /* Returns with the tty_lock held for now */
2060		tty = tty_init_dev(driver, index);
2061		mutex_unlock(&tty_mutex);
2062	}
2063out:
2064	tty_driver_kref_put(driver);
2065	return tty;
2066}
2067
2068/**
2069 *	tty_open		-	open a tty device
2070 *	@inode: inode of device file
2071 *	@filp: file pointer to tty
2072 *
2073 *	tty_open and tty_release keep up the tty count that contains the
2074 *	number of opens done on a tty. We cannot use the inode-count, as
2075 *	different inodes might point to the same tty.
2076 *
2077 *	Open-counting is needed for pty masters, as well as for keeping
2078 *	track of serial lines: DTR is dropped when the last close happens.
2079 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080 *
2081 *	The termios state of a pty is reset on first open so that
2082 *	settings don't persist across reuse.
2083 *
2084 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085 *		 tty->count should protect the rest.
2086 *		 ->siglock protects ->signal/->sighand
 
2087 *
2088 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089 *	tty_mutex
2090 */
2091
2092static int tty_open(struct inode *inode, struct file *filp)
2093{
2094	struct tty_struct *tty;
2095	int noctty, retval;
2096	dev_t device = inode->i_rdev;
2097	unsigned saved_flags = filp->f_flags;
2098
2099	nonseekable_open(inode, filp);
2100
2101retry_open:
2102	retval = tty_alloc_file(filp);
2103	if (retval)
2104		return -ENOMEM;
2105
2106	tty = tty_open_current_tty(device, filp);
2107	if (!tty)
2108		tty = tty_open_by_driver(device, inode, filp);
2109
2110	if (IS_ERR(tty)) {
2111		tty_free_file(filp);
2112		retval = PTR_ERR(tty);
2113		if (retval != -EAGAIN || signal_pending(current))
2114			return retval;
2115		schedule();
2116		goto retry_open;
2117	}
2118
2119	tty_add_file(tty, filp);
2120
2121	check_tty_count(tty, __func__);
2122	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2123
2124	if (tty->ops->open)
2125		retval = tty->ops->open(tty, filp);
2126	else
2127		retval = -ENODEV;
2128	filp->f_flags = saved_flags;
2129
2130	if (retval) {
2131		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132
2133		tty_unlock(tty); /* need to call tty_release without BTM */
2134		tty_release(inode, filp);
2135		if (retval != -ERESTARTSYS)
2136			return retval;
2137
2138		if (signal_pending(current))
2139			return retval;
2140
2141		schedule();
2142		/*
2143		 * Need to reset f_op in case a hangup happened.
2144		 */
2145		if (tty_hung_up_p(filp))
2146			filp->f_op = &tty_fops;
2147		goto retry_open;
2148	}
2149	clear_bit(TTY_HUPPED, &tty->flags);
2150
2151
2152	read_lock(&tasklist_lock);
2153	spin_lock_irq(&current->sighand->siglock);
2154	noctty = (filp->f_flags & O_NOCTTY) ||
2155			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158			 tty->driver->subtype == PTY_TYPE_MASTER);
2159
2160	if (!noctty &&
2161	    current->signal->leader &&
2162	    !current->signal->tty &&
2163	    tty->session == NULL) {
2164		/*
2165		 * Don't let a process that only has write access to the tty
2166		 * obtain the privileges associated with having a tty as
2167		 * controlling terminal (being able to reopen it with full
2168		 * access through /dev/tty, being able to perform pushback).
2169		 * Many distributions set the group of all ttys to "tty" and
2170		 * grant write-only access to all terminals for setgid tty
2171		 * binaries, which should not imply full privileges on all ttys.
2172		 *
2173		 * This could theoretically break old code that performs open()
2174		 * on a write-only file descriptor. In that case, it might be
2175		 * necessary to also permit this if
2176		 * inode_permission(inode, MAY_READ) == 0.
2177		 */
2178		if (filp->f_mode & FMODE_READ)
2179			__proc_set_tty(tty);
2180	}
2181	spin_unlock_irq(&current->sighand->siglock);
2182	read_unlock(&tasklist_lock);
2183	tty_unlock(tty);
2184	return 0;
2185}
2186
2187
2188
2189/**
2190 *	tty_poll	-	check tty status
2191 *	@filp: file being polled
2192 *	@wait: poll wait structures to update
2193 *
2194 *	Call the line discipline polling method to obtain the poll
2195 *	status of the device.
2196 *
2197 *	Locking: locks called line discipline but ldisc poll method
2198 *	may be re-entered freely by other callers.
2199 */
2200
2201static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	int ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237		if (tty->pgrp) {
2238			pid = tty->pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_PID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
 
2267/**
2268 *	tiocsti			-	fake input character
2269 *	@tty: tty to fake input into
2270 *	@p: pointer to character
2271 *
2272 *	Fake input to a tty device. Does the necessary locking and
2273 *	input management.
2274 *
2275 *	FIXME: does not honour flow control ??
2276 *
2277 *	Locking:
2278 *		Called functions take tty_ldiscs_lock
2279 *		current->signal->tty check is safe without locks
2280 *
2281 *	FIXME: may race normal receive processing
 
 
2282 */
2283
2284static int tiocsti(struct tty_struct *tty, char __user *p)
2285{
2286	char ch, mbz = 0;
2287	struct tty_ldisc *ld;
 
 
 
 
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2298	tty_ldisc_deref(ld);
2299	return 0;
2300}
2301
2302/**
2303 *	tiocgwinsz		-	implement window query ioctl
2304 *	@tty; tty
2305 *	@arg: user buffer for result
2306 *
2307 *	Copies the kernel idea of the window size into the user buffer.
2308 *
2309 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310 *		is consistent.
2311 */
2312
2313static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314{
2315	int err;
2316
2317	mutex_lock(&tty->winsize_mutex);
2318	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319	mutex_unlock(&tty->winsize_mutex);
2320
2321	return err ? -EFAULT: 0;
2322}
2323
2324/**
2325 *	tty_do_resize		-	resize event
2326 *	@tty: tty being resized
2327 *	@rows: rows (character)
2328 *	@cols: cols (character)
2329 *
2330 *	Update the termios variables and send the necessary signals to
2331 *	peform a terminal resize correctly
2332 */
2333
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 *	tiocswinsz		-	implement window size set ioctl
2358 *	@tty; tty side of tty
2359 *	@arg: user buffer for result
2360 *
2361 *	Copies the user idea of the window size to the kernel. Traditionally
2362 *	this is just advisory information but for the Linux console it
2363 *	actually has driver level meaning and triggers a VC resize.
2364 *
2365 *	Locking:
2366 *		Driver dependent. The default do_resize method takes the
2367 *	tty termios mutex and ctrl_lock. The console takes its own lock
2368 *	then calls into the default method.
2369 */
2370
2371static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372{
2373	struct winsize tmp_ws;
 
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 *	tioccons	-	allow admin to move logical console
2385 *	@file: the file to become console
2386 *
2387 *	Allow the administrator to move the redirected console device
2388 *
2389 *	Locking: uses redirect_lock to guard the redirect information
2390 */
2391
2392static int tioccons(struct file *file)
2393{
2394	if (!capable(CAP_SYS_ADMIN))
2395		return -EPERM;
2396	if (file->f_op->write == redirected_tty_write) {
2397		struct file *f;
 
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
 
 
 
 
 
 
2406	spin_lock(&redirect_lock);
2407	if (redirect) {
2408		spin_unlock(&redirect_lock);
2409		return -EBUSY;
2410	}
2411	redirect = get_file(file);
2412	spin_unlock(&redirect_lock);
2413	return 0;
2414}
2415
2416/**
2417 *	fionbio		-	non blocking ioctl
2418 *	@file: file to set blocking value
2419 *	@p: user parameter
2420 *
2421 *	Historical tty interfaces had a blocking control ioctl before
2422 *	the generic functionality existed. This piece of history is preserved
2423 *	in the expected tty API of posix OS's.
2424 *
2425 *	Locking: none, the open file handle ensures it won't go away.
2426 */
2427
2428static int fionbio(struct file *file, int __user *p)
2429{
2430	int nonblock;
2431
2432	if (get_user(nonblock, p))
2433		return -EFAULT;
2434
2435	spin_lock(&file->f_lock);
2436	if (nonblock)
2437		file->f_flags |= O_NONBLOCK;
2438	else
2439		file->f_flags &= ~O_NONBLOCK;
2440	spin_unlock(&file->f_lock);
2441	return 0;
2442}
2443
2444/**
2445 *	tiocsctty	-	set controlling tty
2446 *	@tty: tty structure
2447 *	@arg: user argument
2448 *
2449 *	This ioctl is used to manage job control. It permits a session
2450 *	leader to set this tty as the controlling tty for the session.
2451 *
2452 *	Locking:
2453 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454 *		Takes tasklist_lock internally to walk sessions
2455 *		Takes ->siglock() when updating signal->tty
2456 */
2457
2458static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459{
2460	int ret = 0;
2461
2462	tty_lock(tty);
2463	read_lock(&tasklist_lock);
2464
2465	if (current->signal->leader && (task_session(current) == tty->session))
2466		goto unlock;
2467
2468	/*
2469	 * The process must be a session leader and
2470	 * not have a controlling tty already.
2471	 */
2472	if (!current->signal->leader || current->signal->tty) {
2473		ret = -EPERM;
2474		goto unlock;
2475	}
2476
2477	if (tty->session) {
2478		/*
2479		 * This tty is already the controlling
2480		 * tty for another session group!
2481		 */
2482		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483			/*
2484			 * Steal it away
2485			 */
2486			session_clear_tty(tty->session);
2487		} else {
2488			ret = -EPERM;
2489			goto unlock;
2490		}
2491	}
2492
2493	/* See the comment in tty_open(). */
2494	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495		ret = -EPERM;
2496		goto unlock;
2497	}
2498
2499	proc_set_tty(tty);
2500unlock:
2501	read_unlock(&tasklist_lock);
2502	tty_unlock(tty);
2503	return ret;
2504}
2505
2506/**
2507 *	tty_get_pgrp	-	return a ref counted pgrp pid
2508 *	@tty: tty to read
2509 *
2510 *	Returns a refcounted instance of the pid struct for the process
2511 *	group controlling the tty.
2512 */
2513
2514struct pid *tty_get_pgrp(struct tty_struct *tty)
2515{
2516	unsigned long flags;
2517	struct pid *pgrp;
2518
2519	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520	pgrp = get_pid(tty->pgrp);
2521	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522
2523	return pgrp;
2524}
2525EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526
2527/*
2528 * This checks not only the pgrp, but falls back on the pid if no
2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530 * without this...
2531 *
2532 * The caller must hold rcu lock or the tasklist lock.
2533 */
2534static struct pid *session_of_pgrp(struct pid *pgrp)
2535{
2536	struct task_struct *p;
2537	struct pid *sid = NULL;
2538
2539	p = pid_task(pgrp, PIDTYPE_PGID);
2540	if (p == NULL)
2541		p = pid_task(pgrp, PIDTYPE_PID);
2542	if (p != NULL)
2543		sid = task_session(p);
2544
2545	return sid;
2546}
2547
2548/**
2549 *	tiocgpgrp		-	get process group
2550 *	@tty: tty passed by user
2551 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552 *	@p: returned pid
2553 *
2554 *	Obtain the process group of the tty. If there is no process group
2555 *	return an error.
2556 *
2557 *	Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
2560static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561{
2562	struct pid *pid;
2563	int ret;
2564	/*
2565	 * (tty == real_tty) is a cheap way of
2566	 * testing if the tty is NOT a master pty.
2567	 */
2568	if (tty == real_tty && current->signal->tty != real_tty)
2569		return -ENOTTY;
2570	pid = tty_get_pgrp(real_tty);
2571	ret =  put_user(pid_vnr(pid), p);
2572	put_pid(pid);
2573	return ret;
2574}
2575
2576/**
2577 *	tiocspgrp		-	attempt to set process group
2578 *	@tty: tty passed by user
2579 *	@real_tty: tty side device matching tty passed by user
2580 *	@p: pid pointer
2581 *
2582 *	Set the process group of the tty to the session passed. Only
2583 *	permitted where the tty session is our session.
2584 *
2585 *	Locking: RCU, ctrl lock
2586 */
2587
2588static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589{
2590	struct pid *pgrp;
2591	pid_t pgrp_nr;
2592	int retval = tty_check_change(real_tty);
2593
2594	if (retval == -EIO)
2595		return -ENOTTY;
2596	if (retval)
2597		return retval;
2598	if (!current->signal->tty ||
2599	    (current->signal->tty != real_tty) ||
2600	    (real_tty->session != task_session(current)))
2601		return -ENOTTY;
2602	if (get_user(pgrp_nr, p))
2603		return -EFAULT;
2604	if (pgrp_nr < 0)
2605		return -EINVAL;
2606	rcu_read_lock();
2607	pgrp = find_vpid(pgrp_nr);
2608	retval = -ESRCH;
2609	if (!pgrp)
2610		goto out_unlock;
2611	retval = -EPERM;
2612	if (session_of_pgrp(pgrp) != task_session(current))
2613		goto out_unlock;
2614	retval = 0;
2615	spin_lock_irq(&tty->ctrl_lock);
2616	put_pid(real_tty->pgrp);
2617	real_tty->pgrp = get_pid(pgrp);
2618	spin_unlock_irq(&tty->ctrl_lock);
2619out_unlock:
2620	rcu_read_unlock();
2621	return retval;
2622}
2623
2624/**
2625 *	tiocgsid		-	get session id
2626 *	@tty: tty passed by user
2627 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628 *	@p: pointer to returned session id
2629 *
2630 *	Obtain the session id of the tty. If there is no session
2631 *	return an error.
2632 *
2633 *	Locking: none. Reference to current->signal->tty is safe.
2634 */
2635
2636static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637{
2638	/*
2639	 * (tty == real_tty) is a cheap way of
2640	 * testing if the tty is NOT a master pty.
2641	*/
2642	if (tty == real_tty && current->signal->tty != real_tty)
2643		return -ENOTTY;
2644	if (!real_tty->session)
2645		return -ENOTTY;
2646	return put_user(pid_vnr(real_tty->session), p);
2647}
2648
2649/**
2650 *	tiocsetd	-	set line discipline
2651 *	@tty: tty device
2652 *	@p: pointer to user data
2653 *
2654 *	Set the line discipline according to user request.
2655 *
2656 *	Locking: see tty_set_ldisc, this function is just a helper
2657 */
2658
2659static int tiocsetd(struct tty_struct *tty, int __user *p)
2660{
2661	int disc;
2662	int ret;
2663
2664	if (get_user(disc, p))
2665		return -EFAULT;
2666
2667	ret = tty_set_ldisc(tty, disc);
2668
2669	return ret;
2670}
2671
2672/**
2673 *	tiocgetd	-	get line discipline
2674 *	@tty: tty device
2675 *	@p: pointer to user data
2676 *
2677 *	Retrieves the line discipline id directly from the ldisc.
2678 *
2679 *	Locking: waits for ldisc reference (in case the line discipline
2680 *		is changing or the tty is being hungup)
2681 */
2682
2683static int tiocgetd(struct tty_struct *tty, int __user *p)
2684{
2685	struct tty_ldisc *ld;
2686	int ret;
2687
2688	ld = tty_ldisc_ref_wait(tty);
2689	if (!ld)
2690		return -EIO;
2691	ret = put_user(ld->ops->num, p);
2692	tty_ldisc_deref(ld);
2693	return ret;
2694}
2695
2696/**
2697 *	send_break	-	performed time break
2698 *	@tty: device to break on
2699 *	@duration: timeout in mS
2700 *
2701 *	Perform a timed break on hardware that lacks its own driver level
2702 *	timed break functionality.
2703 *
2704 *	Locking:
2705 *		atomic_write_lock serializes
2706 *
 
 
2707 */
2708
2709static int send_break(struct tty_struct *tty, unsigned int duration)
2710{
2711	int retval;
2712
2713	if (tty->ops->break_ctl == NULL)
2714		return 0;
2715
2716	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717		retval = tty->ops->break_ctl(tty, duration);
2718	else {
2719		/* Do the work ourselves */
2720		if (tty_write_lock(tty, 0) < 0)
2721			return -EINTR;
2722		retval = tty->ops->break_ctl(tty, -1);
2723		if (retval)
2724			goto out;
2725		if (!signal_pending(current))
2726			msleep_interruptible(duration);
2727		retval = tty->ops->break_ctl(tty, 0);
2728out:
2729		tty_write_unlock(tty);
2730		if (signal_pending(current))
2731			retval = -EINTR;
2732	}
 
 
 
 
 
2733	return retval;
2734}
2735
2736/**
2737 *	tty_tiocmget		-	get modem status
2738 *	@tty: tty device
2739 *	@file: user file pointer
2740 *	@p: pointer to result
2741 *
2742 *	Obtain the modem status bits from the tty driver if the feature
2743 *	is supported. Return -EINVAL if it is not available.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744 *
2745 *	Locking: none (up to the driver)
 
 
 
2746 */
2747
2748static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749{
2750	int retval = -EINVAL;
2751
2752	if (tty->ops->tiocmget) {
2753		retval = tty->ops->tiocmget(tty);
 
2754
2755		if (retval >= 0)
2756			retval = put_user(retval, p);
2757	}
2758	return retval;
2759}
2760
2761/**
2762 *	tty_tiocmset		-	set modem status
2763 *	@tty: tty device
2764 *	@cmd: command - clear bits, set bits or set all
2765 *	@p: pointer to desired bits
2766 *
2767 *	Set the modem status bits from the tty driver if the feature
2768 *	is supported. Return -EINVAL if it is not available.
2769 *
2770 *	Locking: none (up to the driver)
2771 */
2772
2773static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774	     unsigned __user *p)
2775{
2776	int retval;
2777	unsigned int set, clear, val;
2778
2779	if (tty->ops->tiocmset == NULL)
2780		return -EINVAL;
2781
2782	retval = get_user(val, p);
2783	if (retval)
2784		return retval;
2785	set = clear = 0;
2786	switch (cmd) {
2787	case TIOCMBIS:
2788		set = val;
2789		break;
2790	case TIOCMBIC:
2791		clear = val;
2792		break;
2793	case TIOCMSET:
2794		set = val;
2795		clear = ~val;
2796		break;
2797	}
2798	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800	return tty->ops->tiocmset(tty, set, clear);
2801}
2802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804{
2805	int retval = -EINVAL;
2806	struct serial_icounter_struct icount;
2807	memset(&icount, 0, sizeof(icount));
2808	if (tty->ops->get_icount)
2809		retval = tty->ops->get_icount(tty, &icount);
2810	if (retval != 0)
2811		return retval;
 
2812	if (copy_to_user(arg, &icount, sizeof(icount)))
2813		return -EFAULT;
2814	return 0;
2815}
2816
2817static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818{
2819	static DEFINE_RATELIMIT_STATE(depr_flags,
2820			DEFAULT_RATELIMIT_INTERVAL,
2821			DEFAULT_RATELIMIT_BURST);
2822	char comm[TASK_COMM_LEN];
2823	int flags;
2824
2825	if (get_user(flags, &ss->flags))
2826		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2827
2828	flags &= ASYNC_DEPRECATED;
 
 
 
2829
2830	if (flags && __ratelimit(&depr_flags))
2831		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832				__func__, get_task_comm(comm, current), flags);
 
 
 
 
2833}
2834
2835/*
2836 * if pty, return the slave side (real_tty)
2837 * otherwise, return self
2838 */
2839static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840{
2841	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842	    tty->driver->subtype == PTY_TYPE_MASTER)
2843		tty = tty->link;
2844	return tty;
2845}
2846
2847/*
2848 * Split this up, as gcc can choke on it otherwise..
2849 */
2850long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851{
2852	struct tty_struct *tty = file_tty(file);
2853	struct tty_struct *real_tty;
2854	void __user *p = (void __user *)arg;
2855	int retval;
2856	struct tty_ldisc *ld;
2857
2858	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859		return -EINVAL;
2860
2861	real_tty = tty_pair_get_tty(tty);
2862
2863	/*
2864	 * Factor out some common prep work
2865	 */
2866	switch (cmd) {
2867	case TIOCSETD:
2868	case TIOCSBRK:
2869	case TIOCCBRK:
2870	case TCSBRK:
2871	case TCSBRKP:
2872		retval = tty_check_change(tty);
2873		if (retval)
2874			return retval;
2875		if (cmd != TIOCCBRK) {
2876			tty_wait_until_sent(tty, 0);
2877			if (signal_pending(current))
2878				return -EINTR;
2879		}
2880		break;
2881	}
2882
2883	/*
2884	 *	Now do the stuff.
2885	 */
2886	switch (cmd) {
2887	case TIOCSTI:
2888		return tiocsti(tty, p);
2889	case TIOCGWINSZ:
2890		return tiocgwinsz(real_tty, p);
2891	case TIOCSWINSZ:
2892		return tiocswinsz(real_tty, p);
2893	case TIOCCONS:
2894		return real_tty != tty ? -EINVAL : tioccons(file);
2895	case FIONBIO:
2896		return fionbio(file, p);
2897	case TIOCEXCL:
2898		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899		return 0;
2900	case TIOCNXCL:
2901		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902		return 0;
2903	case TIOCGEXCL:
2904	{
2905		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
 
2906		return put_user(excl, (int __user *)p);
2907	}
2908	case TIOCNOTTY:
2909		if (current->signal->tty != tty)
2910			return -ENOTTY;
2911		no_tty();
2912		return 0;
2913	case TIOCSCTTY:
2914		return tiocsctty(real_tty, file, arg);
2915	case TIOCGPGRP:
2916		return tiocgpgrp(tty, real_tty, p);
2917	case TIOCSPGRP:
2918		return tiocspgrp(tty, real_tty, p);
2919	case TIOCGSID:
2920		return tiocgsid(tty, real_tty, p);
2921	case TIOCGETD:
2922		return tiocgetd(tty, p);
2923	case TIOCSETD:
2924		return tiocsetd(tty, p);
2925	case TIOCVHANGUP:
2926		if (!capable(CAP_SYS_ADMIN))
2927			return -EPERM;
2928		tty_vhangup(tty);
2929		return 0;
2930	case TIOCGDEV:
2931	{
2932		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2933		return put_user(ret, (unsigned int __user *)p);
2934	}
2935	/*
2936	 * Break handling
2937	 */
2938	case TIOCSBRK:	/* Turn break on, unconditionally */
2939		if (tty->ops->break_ctl)
2940			return tty->ops->break_ctl(tty, -1);
2941		return 0;
2942	case TIOCCBRK:	/* Turn break off, unconditionally */
2943		if (tty->ops->break_ctl)
2944			return tty->ops->break_ctl(tty, 0);
2945		return 0;
2946	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947		/* non-zero arg means wait for all output data
2948		 * to be sent (performed above) but don't send break.
2949		 * This is used by the tcdrain() termios function.
2950		 */
2951		if (!arg)
2952			return send_break(tty, 250);
2953		return 0;
2954	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955		return send_break(tty, arg ? arg*100 : 250);
2956
2957	case TIOCMGET:
2958		return tty_tiocmget(tty, p);
2959	case TIOCMSET:
2960	case TIOCMBIC:
2961	case TIOCMBIS:
2962		return tty_tiocmset(tty, cmd, p);
2963	case TIOCGICOUNT:
2964		retval = tty_tiocgicount(tty, p);
2965		/* For the moment allow fall through to the old method */
2966        	if (retval != -EINVAL)
2967			return retval;
2968		break;
2969	case TCFLSH:
2970		switch (arg) {
2971		case TCIFLUSH:
2972		case TCIOFLUSH:
2973		/* flush tty buffer and allow ldisc to process ioctl */
2974			tty_buffer_flush(tty, NULL);
2975			break;
2976		}
2977		break;
2978	case TIOCSSERIAL:
2979		tty_warn_deprecated_flags(p);
2980		break;
 
 
 
 
 
 
 
 
2981	}
2982	if (tty->ops->ioctl) {
2983		retval = tty->ops->ioctl(tty, cmd, arg);
2984		if (retval != -ENOIOCTLCMD)
2985			return retval;
2986	}
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_ioctl(file, cmd, arg);
2990	retval = -EINVAL;
2991	if (ld->ops->ioctl) {
2992		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993		if (retval == -ENOIOCTLCMD)
2994			retval = -ENOTTY;
2995	}
2996	tty_ldisc_deref(ld);
2997	return retval;
2998}
2999
3000#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002				unsigned long arg)
3003{
3004	struct tty_struct *tty = file_tty(file);
3005	struct tty_ldisc *ld;
3006	int retval = -ENOIOCTLCMD;
3007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009		return -EINVAL;
3010
 
 
 
 
 
 
3011	if (tty->ops->compat_ioctl) {
3012		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013		if (retval != -ENOIOCTLCMD)
3014			return retval;
3015	}
3016
3017	ld = tty_ldisc_ref_wait(tty);
3018	if (!ld)
3019		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020	if (ld->ops->compat_ioctl)
3021		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022	else
3023		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3024	tty_ldisc_deref(ld);
3025
3026	return retval;
3027}
3028#endif
3029
3030static int this_tty(const void *t, struct file *file, unsigned fd)
3031{
3032	if (likely(file->f_op->read != tty_read))
3033		return 0;
3034	return file_tty(file) != t ? 0 : fd + 1;
3035}
3036	
3037/*
3038 * This implements the "Secure Attention Key" ---  the idea is to
3039 * prevent trojan horses by killing all processes associated with this
3040 * tty when the user hits the "Secure Attention Key".  Required for
3041 * super-paranoid applications --- see the Orange Book for more details.
3042 *
3043 * This code could be nicer; ideally it should send a HUP, wait a few
3044 * seconds, then send a INT, and then a KILL signal.  But you then
3045 * have to coordinate with the init process, since all processes associated
3046 * with the current tty must be dead before the new getty is allowed
3047 * to spawn.
3048 *
3049 * Now, if it would be correct ;-/ The current code has a nasty hole -
3050 * it doesn't catch files in flight. We may send the descriptor to ourselves
3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052 *
3053 * Nasty bug: do_SAK is being called in interrupt context.  This can
3054 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055 */
3056void __do_SAK(struct tty_struct *tty)
3057{
3058#ifdef TTY_SOFT_SAK
3059	tty_hangup(tty);
3060#else
3061	struct task_struct *g, *p;
3062	struct pid *session;
3063	int		i;
 
3064
3065	if (!tty)
3066		return;
3067	session = tty->session;
3068
3069	tty_ldisc_flush(tty);
3070
3071	tty_driver_flush_buffer(tty);
3072
3073	read_lock(&tasklist_lock);
3074	/* Kill the entire session */
3075	do_each_pid_task(session, PIDTYPE_SID, p) {
3076		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077			   task_pid_nr(p), p->comm);
3078		send_sig(SIGKILL, p, 1);
3079	} while_each_pid_task(session, PIDTYPE_SID, p);
3080
3081	/* Now kill any processes that happen to have the tty open */
3082	do_each_thread(g, p) {
3083		if (p->signal->tty == tty) {
3084			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085				   task_pid_nr(p), p->comm);
3086			send_sig(SIGKILL, p, 1);
 
3087			continue;
3088		}
3089		task_lock(p);
3090		i = iterate_fd(p->files, 0, this_tty, tty);
3091		if (i != 0) {
3092			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093				   task_pid_nr(p), p->comm, i - 1);
3094			force_sig(SIGKILL, p);
 
3095		}
3096		task_unlock(p);
3097	} while_each_thread(g, p);
3098	read_unlock(&tasklist_lock);
3099#endif
3100}
3101
3102static void do_SAK_work(struct work_struct *work)
3103{
3104	struct tty_struct *tty =
3105		container_of(work, struct tty_struct, SAK_work);
3106	__do_SAK(tty);
3107}
3108
3109/*
3110 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112 * the values which we write to it will be identical to the values which it
3113 * already has. --akpm
3114 */
3115void do_SAK(struct tty_struct *tty)
3116{
3117	if (!tty)
3118		return;
3119	schedule_work(&tty->SAK_work);
3120}
3121
3122EXPORT_SYMBOL(do_SAK);
3123
3124static int dev_match_devt(struct device *dev, const void *data)
3125{
3126	const dev_t *devt = data;
3127	return dev->devt == *devt;
3128}
3129
3130/* Must put_device() after it's unused! */
3131static struct device *tty_get_device(struct tty_struct *tty)
3132{
3133	dev_t devt = tty_devnum(tty);
3134	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
3135}
3136
3137
3138/**
3139 *	alloc_tty_struct
 
 
3140 *
3141 *	This subroutine allocates and initializes a tty structure.
3142 *
3143 *	Locking: none - tty in question is not exposed at this point
3144 */
3145
3146struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3147{
3148	struct tty_struct *tty;
3149
3150	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151	if (!tty)
3152		return NULL;
3153
3154	kref_init(&tty->kref);
3155	tty->magic = TTY_MAGIC;
3156	tty_ldisc_init(tty);
3157	tty->session = NULL;
3158	tty->pgrp = NULL;
 
 
3159	mutex_init(&tty->legacy_mutex);
3160	mutex_init(&tty->throttle_mutex);
3161	init_rwsem(&tty->termios_rwsem);
3162	mutex_init(&tty->winsize_mutex);
3163	init_ldsem(&tty->ldisc_sem);
3164	init_waitqueue_head(&tty->write_wait);
3165	init_waitqueue_head(&tty->read_wait);
3166	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3167	mutex_init(&tty->atomic_write_lock);
3168	spin_lock_init(&tty->ctrl_lock);
3169	spin_lock_init(&tty->flow_lock);
3170	spin_lock_init(&tty->files_lock);
3171	INIT_LIST_HEAD(&tty->tty_files);
3172	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173
3174	tty->driver = driver;
3175	tty->ops = driver->ops;
3176	tty->index = idx;
3177	tty_line_name(driver, idx, tty->name);
3178	tty->dev = tty_get_device(tty);
3179
3180	return tty;
3181}
3182
3183/**
3184 *	tty_put_char	-	write one character to a tty
3185 *	@tty: tty
3186 *	@ch: character
3187 *
3188 *	Write one byte to the tty using the provided put_char method
3189 *	if present. Returns the number of characters successfully output.
3190 *
3191 *	Note: the specific put_char operation in the driver layer may go
3192 *	away soon. Don't call it directly, use this method
 
 
3193 */
3194
3195int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196{
3197	if (tty->ops->put_char)
3198		return tty->ops->put_char(tty, ch);
3199	return tty->ops->write(tty, &ch, 1);
3200}
3201EXPORT_SYMBOL_GPL(tty_put_char);
3202
3203struct class *tty_class;
3204
3205static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206		unsigned int index, unsigned int count)
3207{
3208	int err;
3209
3210	/* init here, since reused cdevs cause crashes */
3211	driver->cdevs[index] = cdev_alloc();
3212	if (!driver->cdevs[index])
3213		return -ENOMEM;
3214	driver->cdevs[index]->ops = &tty_fops;
3215	driver->cdevs[index]->owner = driver->owner;
3216	err = cdev_add(driver->cdevs[index], dev, count);
3217	if (err)
3218		kobject_put(&driver->cdevs[index]->kobj);
3219	return err;
3220}
3221
3222/**
3223 *	tty_register_device - register a tty device
3224 *	@driver: the tty driver that describes the tty device
3225 *	@index: the index in the tty driver for this tty device
3226 *	@device: a struct device that is associated with this tty device.
3227 *		This field is optional, if there is no known struct device
3228 *		for this tty device it can be set to NULL safely.
3229 *
3230 *	Returns a pointer to the struct device for this tty device
3231 *	(or ERR_PTR(-EFOO) on error).
3232 *
3233 *	This call is required to be made to register an individual tty device
3234 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235 *	that bit is not set, this function should not be called by a tty
3236 *	driver.
3237 *
3238 *	Locking: ??
 
 
 
3239 */
3240
3241struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242				   struct device *device)
3243{
3244	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245}
3246EXPORT_SYMBOL(tty_register_device);
3247
3248static void tty_device_create_release(struct device *dev)
3249{
3250	dev_dbg(dev, "releasing...\n");
3251	kfree(dev);
3252}
3253
3254/**
3255 *	tty_register_device_attr - register a tty device
3256 *	@driver: the tty driver that describes the tty device
3257 *	@index: the index in the tty driver for this tty device
3258 *	@device: a struct device that is associated with this tty device.
3259 *		This field is optional, if there is no known struct device
3260 *		for this tty device it can be set to NULL safely.
3261 *	@drvdata: Driver data to be set to device.
3262 *	@attr_grp: Attribute group to be set on device.
3263 *
3264 *	Returns a pointer to the struct device for this tty device
3265 *	(or ERR_PTR(-EFOO) on error).
3266 *
3267 *	This call is required to be made to register an individual tty device
3268 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269 *	that bit is not set, this function should not be called by a tty
3270 *	driver.
3271 *
3272 *	Locking: ??
 
3273 */
3274struct device *tty_register_device_attr(struct tty_driver *driver,
3275				   unsigned index, struct device *device,
3276				   void *drvdata,
3277				   const struct attribute_group **attr_grp)
3278{
3279	char name[64];
3280	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281	struct device *dev = NULL;
3282	int retval = -ENODEV;
3283	bool cdev = false;
3284
3285	if (index >= driver->num) {
3286		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287		       driver->name, index);
3288		return ERR_PTR(-EINVAL);
3289	}
3290
3291	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292		pty_line_name(driver, index, name);
3293	else
3294		tty_line_name(driver, index, name);
3295
3296	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297		retval = tty_cdev_add(driver, devt, index, 1);
3298		if (retval)
3299			goto error;
3300		cdev = true;
3301	}
3302
3303	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304	if (!dev) {
3305		retval = -ENOMEM;
3306		goto error;
3307	}
3308
3309	dev->devt = devt;
3310	dev->class = tty_class;
3311	dev->parent = device;
3312	dev->release = tty_device_create_release;
3313	dev_set_name(dev, "%s", name);
3314	dev->groups = attr_grp;
3315	dev_set_drvdata(dev, drvdata);
3316
 
 
3317	retval = device_register(dev);
3318	if (retval)
3319		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320
3321	return dev;
3322
3323error:
 
 
3324	put_device(dev);
3325	if (cdev) {
3326		cdev_del(driver->cdevs[index]);
3327		driver->cdevs[index] = NULL;
3328	}
3329	return ERR_PTR(retval);
3330}
3331EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332
3333/**
3334 * 	tty_unregister_device - unregister a tty device
3335 * 	@driver: the tty driver that describes the tty device
3336 * 	@index: the index in the tty driver for this tty device
3337 *
3338 * 	If a tty device is registered with a call to tty_register_device() then
3339 *	this function must be called when the tty device is gone.
3340 *
3341 *	Locking: ??
3342 */
3343
3344void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345{
3346	device_destroy(tty_class,
3347		MKDEV(driver->major, driver->minor_start) + index);
3348	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349		cdev_del(driver->cdevs[index]);
3350		driver->cdevs[index] = NULL;
3351	}
3352}
3353EXPORT_SYMBOL(tty_unregister_device);
3354
3355/**
3356 * __tty_alloc_driver -- allocate tty driver
3357 * @lines: count of lines this driver can handle at most
3358 * @owner: module which is repsonsible for this driver
3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360 *
3361 * This should not be called directly, some of the provided macros should be
3362 * used instead. Use IS_ERR and friends on @retval.
3363 */
3364struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365		unsigned long flags)
3366{
3367	struct tty_driver *driver;
3368	unsigned int cdevs = 1;
3369	int err;
3370
3371	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372		return ERR_PTR(-EINVAL);
3373
3374	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375	if (!driver)
3376		return ERR_PTR(-ENOMEM);
3377
3378	kref_init(&driver->kref);
3379	driver->magic = TTY_DRIVER_MAGIC;
3380	driver->num = lines;
3381	driver->owner = owner;
3382	driver->flags = flags;
3383
3384	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386				GFP_KERNEL);
3387		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388				GFP_KERNEL);
3389		if (!driver->ttys || !driver->termios) {
3390			err = -ENOMEM;
3391			goto err_free_all;
3392		}
3393	}
3394
3395	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397				GFP_KERNEL);
3398		if (!driver->ports) {
3399			err = -ENOMEM;
3400			goto err_free_all;
3401		}
3402		cdevs = lines;
3403	}
3404
3405	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406	if (!driver->cdevs) {
3407		err = -ENOMEM;
3408		goto err_free_all;
3409	}
3410
3411	return driver;
3412err_free_all:
3413	kfree(driver->ports);
3414	kfree(driver->ttys);
3415	kfree(driver->termios);
3416	kfree(driver->cdevs);
3417	kfree(driver);
3418	return ERR_PTR(err);
3419}
3420EXPORT_SYMBOL(__tty_alloc_driver);
3421
3422static void destruct_tty_driver(struct kref *kref)
3423{
3424	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425	int i;
3426	struct ktermios *tp;
3427
3428	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429		/*
3430		 * Free the termios and termios_locked structures because
3431		 * we don't want to get memory leaks when modular tty
3432		 * drivers are removed from the kernel.
3433		 */
3434		for (i = 0; i < driver->num; i++) {
3435			tp = driver->termios[i];
3436			if (tp) {
3437				driver->termios[i] = NULL;
3438				kfree(tp);
3439			}
3440			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441				tty_unregister_device(driver, i);
3442		}
3443		proc_tty_unregister_driver(driver);
3444		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445			cdev_del(driver->cdevs[0]);
3446	}
3447	kfree(driver->cdevs);
3448	kfree(driver->ports);
3449	kfree(driver->termios);
3450	kfree(driver->ttys);
3451	kfree(driver);
3452}
3453
 
 
 
 
 
 
3454void tty_driver_kref_put(struct tty_driver *driver)
3455{
3456	kref_put(&driver->kref, destruct_tty_driver);
3457}
3458EXPORT_SYMBOL(tty_driver_kref_put);
3459
3460void tty_set_operations(struct tty_driver *driver,
3461			const struct tty_operations *op)
3462{
3463	driver->ops = op;
3464};
3465EXPORT_SYMBOL(tty_set_operations);
3466
3467void put_tty_driver(struct tty_driver *d)
3468{
3469	tty_driver_kref_put(d);
3470}
3471EXPORT_SYMBOL(put_tty_driver);
3472
3473/*
3474 * Called by a tty driver to register itself.
3475 */
3476int tty_register_driver(struct tty_driver *driver)
3477{
3478	int error;
3479	int i;
3480	dev_t dev;
3481	struct device *d;
3482
3483	if (!driver->major) {
3484		error = alloc_chrdev_region(&dev, driver->minor_start,
3485						driver->num, driver->name);
3486		if (!error) {
3487			driver->major = MAJOR(dev);
3488			driver->minor_start = MINOR(dev);
3489		}
3490	} else {
3491		dev = MKDEV(driver->major, driver->minor_start);
3492		error = register_chrdev_region(dev, driver->num, driver->name);
3493	}
3494	if (error < 0)
3495		goto err;
3496
3497	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498		error = tty_cdev_add(driver, dev, 0, driver->num);
3499		if (error)
3500			goto err_unreg_char;
3501	}
3502
3503	mutex_lock(&tty_mutex);
3504	list_add(&driver->tty_drivers, &tty_drivers);
3505	mutex_unlock(&tty_mutex);
3506
3507	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508		for (i = 0; i < driver->num; i++) {
3509			d = tty_register_device(driver, i, NULL);
3510			if (IS_ERR(d)) {
3511				error = PTR_ERR(d);
3512				goto err_unreg_devs;
3513			}
3514		}
3515	}
3516	proc_tty_register_driver(driver);
3517	driver->flags |= TTY_DRIVER_INSTALLED;
3518	return 0;
3519
3520err_unreg_devs:
3521	for (i--; i >= 0; i--)
3522		tty_unregister_device(driver, i);
3523
3524	mutex_lock(&tty_mutex);
3525	list_del(&driver->tty_drivers);
3526	mutex_unlock(&tty_mutex);
3527
3528err_unreg_char:
3529	unregister_chrdev_region(dev, driver->num);
3530err:
3531	return error;
3532}
3533EXPORT_SYMBOL(tty_register_driver);
3534
3535/*
 
 
 
3536 * Called by a tty driver to unregister itself.
3537 */
3538int tty_unregister_driver(struct tty_driver *driver)
3539{
3540#if 0
3541	/* FIXME */
3542	if (driver->refcount)
3543		return -EBUSY;
3544#endif
3545	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546				driver->num);
3547	mutex_lock(&tty_mutex);
3548	list_del(&driver->tty_drivers);
3549	mutex_unlock(&tty_mutex);
3550	return 0;
3551}
3552
3553EXPORT_SYMBOL(tty_unregister_driver);
3554
3555dev_t tty_devnum(struct tty_struct *tty)
3556{
3557	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558}
3559EXPORT_SYMBOL(tty_devnum);
3560
3561void tty_default_fops(struct file_operations *fops)
3562{
3563	*fops = tty_fops;
3564}
3565
3566/*
3567 * Initialize the console device. This is called *early*, so
3568 * we can't necessarily depend on lots of kernel help here.
3569 * Just do some early initializations, and do the complex setup
3570 * later.
3571 */
3572void __init console_init(void)
3573{
3574	initcall_t *call;
3575
3576	/* Setup the default TTY line discipline. */
3577	n_tty_init();
3578
3579	/*
3580	 * set up the console device so that later boot sequences can
3581	 * inform about problems etc..
3582	 */
3583	call = __con_initcall_start;
3584	while (call < __con_initcall_end) {
3585		(*call)();
3586		call++;
3587	}
3588}
3589
3590static char *tty_devnode(struct device *dev, umode_t *mode)
3591{
3592	if (!mode)
3593		return NULL;
3594	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596		*mode = 0666;
3597	return NULL;
3598}
3599
 
 
 
 
 
3600static int __init tty_class_init(void)
3601{
3602	tty_class = class_create(THIS_MODULE, "tty");
3603	if (IS_ERR(tty_class))
3604		return PTR_ERR(tty_class);
3605	tty_class->devnode = tty_devnode;
3606	return 0;
3607}
3608
3609postcore_initcall(tty_class_init);
3610
3611/* 3/2004 jmc: why do these devices exist? */
3612static struct cdev tty_cdev, console_cdev;
3613
3614static ssize_t show_cons_active(struct device *dev,
3615				struct device_attribute *attr, char *buf)
3616{
3617	struct console *cs[16];
3618	int i = 0;
3619	struct console *c;
3620	ssize_t count = 0;
3621
3622	console_lock();
 
 
 
 
 
 
 
3623	for_each_console(c) {
3624		if (!c->device)
3625			continue;
3626		if (!c->write)
3627			continue;
3628		if ((c->flags & CON_ENABLED) == 0)
3629			continue;
3630		cs[i++] = c;
3631		if (i >= ARRAY_SIZE(cs))
3632			break;
3633	}
 
 
 
 
 
 
 
3634	while (i--) {
3635		int index = cs[i]->index;
3636		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637
3638		/* don't resolve tty0 as some programs depend on it */
3639		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640			count += tty_line_name(drv, index, buf + count);
3641		else
3642			count += sprintf(buf + count, "%s%d",
3643					 cs[i]->name, cs[i]->index);
3644
3645		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646	}
3647	console_unlock();
3648
 
 
3649	return count;
3650}
3651static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652
3653static struct attribute *cons_dev_attrs[] = {
3654	&dev_attr_active.attr,
3655	NULL
3656};
3657
3658ATTRIBUTE_GROUPS(cons_dev);
3659
3660static struct device *consdev;
3661
3662void console_sysfs_notify(void)
3663{
3664	if (consdev)
3665		sysfs_notify(&consdev->kobj, NULL, "active");
3666}
3667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668/*
3669 * Ok, now we can initialize the rest of the tty devices and can count
3670 * on memory allocations, interrupts etc..
3671 */
3672int __init tty_init(void)
3673{
 
3674	cdev_init(&tty_cdev, &tty_fops);
3675	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677		panic("Couldn't register /dev/tty driver\n");
3678	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679
3680	cdev_init(&console_cdev, &console_fops);
3681	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683		panic("Couldn't register /dev/console driver\n");
3684	consdev = device_create_with_groups(tty_class, NULL,
3685					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686					    cons_dev_groups, "console");
3687	if (IS_ERR(consdev))
3688		consdev = NULL;
3689
3690#ifdef CONFIG_VT
3691	vty_init(&console_fops);
3692#endif
3693	return 0;
3694}
3695