Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 
 145DEFINE_MUTEX(tty_mutex);
 
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 
 
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 169static void free_tty_struct(struct tty_struct *tty)
 
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 244const char *tty_name(const struct tty_struct *tty)
 
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 
 
 249}
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 
 
 
 
 
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353	mutex_lock(&tty_mutex);
 354
 355	list_for_each_entry(p, &tty_drivers, tty_drivers)
 356		if (prefix_length == strlen(p->name) && strncmp(name,
 357					p->name, prefix_length) == 0) {
 358			if (index < p->num) {
 359				*number = MKDEV(p->major, p->minor_start + index);
 360				goto out;
 361			}
 362		}
 363
 364	/* if here then driver wasn't found */
 365	ret = -ENODEV;
 366out:
 367	mutex_unlock(&tty_mutex);
 368	return ret;
 369}
 370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 371
 372#ifdef CONFIG_CONSOLE_POLL
 373
 374/**
 375 * tty_find_polling_driver - find device of a polled tty
 376 * @name: name string to match
 377 * @line: pointer to resulting tty line nr
 378 *
 379 * This routine returns a tty driver structure, given a name and the condition
 380 * that the tty driver is capable of polled operation.
 
 381 */
 382struct tty_driver *tty_find_polling_driver(char *name, int *line)
 383{
 384	struct tty_driver *p, *res = NULL;
 385	int tty_line = 0;
 386	int len;
 387	char *str, *stp;
 388
 389	for (str = name; *str; str++)
 390		if ((*str >= '0' && *str <= '9') || *str == ',')
 391			break;
 392	if (!*str)
 393		return NULL;
 394
 395	len = str - name;
 396	tty_line = simple_strtoul(str, &str, 10);
 397
 398	mutex_lock(&tty_mutex);
 399	/* Search through the tty devices to look for a match */
 400	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 401		if (!len || strncmp(name, p->name, len) != 0)
 402			continue;
 403		stp = str;
 404		if (*stp == ',')
 405			stp++;
 406		if (*stp == '\0')
 407			stp = NULL;
 408
 409		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 410		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 411			res = tty_driver_kref_get(p);
 412			*line = tty_line;
 413			break;
 414		}
 415	}
 416	mutex_unlock(&tty_mutex);
 417
 418	return res;
 419}
 420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 421#endif
 422
 423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 429{
 430	return -EIO;
 431}
 432
 433/* No kernel lock held - none needed ;) */
 434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 435{
 436	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 437}
 438
 439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 440		unsigned long arg)
 441{
 442	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 443}
 444
 445static long hung_up_tty_compat_ioctl(struct file *file,
 446				     unsigned int cmd, unsigned long arg)
 447{
 448	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 449}
 450
 451static int hung_up_tty_fasync(int fd, struct file *file, int on)
 452{
 453	return -ENOTTY;
 454}
 455
 456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 457{
 458	struct tty_struct *tty = file_tty(file);
 459
 460	if (tty && tty->ops && tty->ops->show_fdinfo)
 461		tty->ops->show_fdinfo(tty, m);
 462}
 463
 464static const struct file_operations tty_fops = {
 465	.llseek		= no_llseek,
 466	.read_iter	= tty_read,
 467	.write_iter	= tty_write,
 468	.splice_read	= copy_splice_read,
 469	.splice_write	= iter_file_splice_write,
 470	.poll		= tty_poll,
 471	.unlocked_ioctl	= tty_ioctl,
 472	.compat_ioctl	= tty_compat_ioctl,
 473	.open		= tty_open,
 474	.release	= tty_release,
 475	.fasync		= tty_fasync,
 476	.show_fdinfo	= tty_show_fdinfo,
 477};
 478
 479static const struct file_operations console_fops = {
 480	.llseek		= no_llseek,
 481	.read_iter	= tty_read,
 482	.write_iter	= redirected_tty_write,
 483	.splice_read	= copy_splice_read,
 484	.splice_write	= iter_file_splice_write,
 485	.poll		= tty_poll,
 486	.unlocked_ioctl	= tty_ioctl,
 487	.compat_ioctl	= tty_compat_ioctl,
 488	.open		= tty_open,
 489	.release	= tty_release,
 490	.fasync		= tty_fasync,
 491};
 492
 493static const struct file_operations hung_up_tty_fops = {
 494	.llseek		= no_llseek,
 495	.read_iter	= hung_up_tty_read,
 496	.write_iter	= hung_up_tty_write,
 497	.poll		= hung_up_tty_poll,
 498	.unlocked_ioctl	= hung_up_tty_ioctl,
 499	.compat_ioctl	= hung_up_tty_compat_ioctl,
 500	.release	= tty_release,
 501	.fasync		= hung_up_tty_fasync,
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 * tty_wakeup - request more data
 509 * @tty: terminal
 510 *
 511 * Internal and external helper for wakeups of tty. This function informs the
 512 * line discipline if present that the driver is ready to receive more output
 513 * data.
 514 */
 
 515void tty_wakeup(struct tty_struct *tty)
 516{
 517	struct tty_ldisc *ld;
 518
 519	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 520		ld = tty_ldisc_ref(tty);
 521		if (ld) {
 522			if (ld->ops->write_wakeup)
 523				ld->ops->write_wakeup(tty);
 524			tty_ldisc_deref(ld);
 525		}
 526	}
 527	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 528}
 
 529EXPORT_SYMBOL_GPL(tty_wakeup);
 530
 531/**
 532 * tty_release_redirect - Release a redirect on a pty if present
 533 * @tty: tty device
 534 *
 535 * This is available to the pty code so if the master closes, if the slave is a
 536 * redirect it can release the redirect.
 537 */
 538static struct file *tty_release_redirect(struct tty_struct *tty)
 539{
 540	struct file *f = NULL;
 
 
 
 
 
 
 
 541
 542	spin_lock(&redirect_lock);
 543	if (redirect && file_tty(redirect) == tty) {
 544		f = redirect;
 545		redirect = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546	}
 547	spin_unlock(&redirect_lock);
 548
 549	return f;
 
 
 
 
 
 
 550}
 551
 552/**
 553 * __tty_hangup - actual handler for hangup events
 554 * @tty: tty device
 555 * @exit_session: if non-zero, signal all foreground group processes
 556 *
 557 * This can be called by a "kworker" kernel thread. That is process synchronous
 558 * but doesn't hold any locks, so we need to make sure we have the appropriate
 559 * locks for what we're doing.
 560 *
 561 * The hangup event clears any pending redirections onto the hung up device. It
 562 * ensures future writes will error and it does the needed line discipline
 563 * hangup and signal delivery. The tty object itself remains intact.
 564 *
 565 * Locking:
 566 *  * BTM
 
 567 *
 568 *   * redirect lock for undoing redirection
 569 *   * file list lock for manipulating list of ttys
 570 *   * tty_ldiscs_lock from called functions
 571 *   * termios_rwsem resetting termios data
 572 *   * tasklist_lock to walk task list for hangup event
 573 *
 574 *    * ->siglock to protect ->signal/->sighand
 575 *
 
 
 
 
 
 
 
 
 576 */
 577static void __tty_hangup(struct tty_struct *tty, int exit_session)
 578{
 579	struct file *cons_filp = NULL;
 580	struct file *filp, *f;
 581	struct tty_file_private *priv;
 582	int    closecount = 0, n;
 583	int refs;
 584
 585	if (!tty)
 586		return;
 587
 588	f = tty_release_redirect(tty);
 
 
 
 
 
 
 589
 590	tty_lock(tty);
 591
 592	if (test_bit(TTY_HUPPED, &tty->flags)) {
 593		tty_unlock(tty);
 594		return;
 595	}
 596
 597	/*
 598	 * Some console devices aren't actually hung up for technical and
 599	 * historical reasons, which can lead to indefinite interruptible
 600	 * sleep in n_tty_read().  The following explicitly tells
 601	 * n_tty_read() to abort readers.
 602	 */
 603	set_bit(TTY_HUPPING, &tty->flags);
 604
 605	/* inuse_filps is protected by the single tty lock,
 606	 * this really needs to change if we want to flush the
 607	 * workqueue with the lock held.
 608	 */
 609	check_tty_count(tty, "tty_hangup");
 610
 611	spin_lock(&tty->files_lock);
 612	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 613	list_for_each_entry(priv, &tty->tty_files, list) {
 614		filp = priv->file;
 615		if (filp->f_op->write_iter == redirected_tty_write)
 616			cons_filp = filp;
 617		if (filp->f_op->write_iter != tty_write)
 618			continue;
 619		closecount++;
 620		__tty_fasync(-1, filp, 0);	/* can't block */
 621		filp->f_op = &hung_up_tty_fops;
 622	}
 623	spin_unlock(&tty->files_lock);
 624
 625	refs = tty_signal_session_leader(tty, exit_session);
 626	/* Account for the p->signal references we killed */
 627	while (refs--)
 628		tty_kref_put(tty);
 629
 630	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 631
 632	spin_lock_irq(&tty->ctrl.lock);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 635	put_pid(tty->ctrl.session);
 636	put_pid(tty->ctrl.pgrp);
 637	tty->ctrl.session = NULL;
 638	tty->ctrl.pgrp = NULL;
 639	tty->ctrl.pktstatus = 0;
 640	spin_unlock_irq(&tty->ctrl.lock);
 641
 642	/*
 643	 * If one of the devices matches a console pointer, we
 644	 * cannot just call hangup() because that will cause
 645	 * tty->count and state->count to go out of sync.
 646	 * So we just call close() the right number of times.
 647	 */
 648	if (cons_filp) {
 649		if (tty->ops->close)
 650			for (n = 0; n < closecount; n++)
 651				tty->ops->close(tty, cons_filp);
 652	} else if (tty->ops->hangup)
 653		tty->ops->hangup(tty);
 654	/*
 655	 * We don't want to have driver/ldisc interactions beyond the ones
 656	 * we did here. The driver layer expects no calls after ->hangup()
 657	 * from the ldisc side, which is now guaranteed.
 
 658	 */
 659	set_bit(TTY_HUPPED, &tty->flags);
 660	clear_bit(TTY_HUPPING, &tty->flags);
 
 661	tty_unlock(tty);
 662
 663	if (f)
 664		fput(f);
 665}
 666
 667static void do_tty_hangup(struct work_struct *work)
 668{
 669	struct tty_struct *tty =
 670		container_of(work, struct tty_struct, hangup_work);
 671
 672	__tty_hangup(tty, 0);
 673}
 674
 675/**
 676 * tty_hangup - trigger a hangup event
 677 * @tty: tty to hangup
 678 *
 679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 680 * hangup sequence to run after this event.
 681 */
 
 682void tty_hangup(struct tty_struct *tty)
 683{
 684	tty_debug_hangup(tty, "hangup\n");
 
 
 
 685	schedule_work(&tty->hangup_work);
 686}
 
 687EXPORT_SYMBOL(tty_hangup);
 688
 689/**
 690 * tty_vhangup - process vhangup
 691 * @tty: tty to hangup
 692 *
 693 * The user has asked via system call for the terminal to be hung up. We do
 694 * this synchronously so that when the syscall returns the process is complete.
 695 * That guarantee is necessary for security reasons.
 696 */
 
 697void tty_vhangup(struct tty_struct *tty)
 698{
 699	tty_debug_hangup(tty, "vhangup\n");
 
 
 
 
 700	__tty_hangup(tty, 0);
 701}
 
 702EXPORT_SYMBOL(tty_vhangup);
 703
 704
 705/**
 706 * tty_vhangup_self - process vhangup for own ctty
 707 *
 708 * Perform a vhangup on the current controlling tty
 709 */
 
 710void tty_vhangup_self(void)
 711{
 712	struct tty_struct *tty;
 713
 714	tty = get_current_tty();
 715	if (tty) {
 716		tty_vhangup(tty);
 717		tty_kref_put(tty);
 718	}
 719}
 720
 721/**
 722 * tty_vhangup_session - hangup session leader exit
 723 * @tty: tty to hangup
 724 *
 725 * The session leader is exiting and hanging up its controlling terminal.
 726 * Every process in the foreground process group is signalled %SIGHUP.
 727 *
 728 * We do this synchronously so that when the syscall returns the process is
 729 * complete. That guarantee is necessary for security reasons.
 730 */
 731void tty_vhangup_session(struct tty_struct *tty)
 
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 
 
 
 
 734	__tty_hangup(tty, 1);
 735}
 736
 737/**
 738 * tty_hung_up_p - was tty hung up
 739 * @filp: file pointer of tty
 740 *
 741 * Return: true if the tty has been subject to a vhangup or a carrier loss
 
 742 */
 
 743int tty_hung_up_p(struct file *filp)
 744{
 745	return (filp && filp->f_op == &hung_up_tty_fops);
 746}
 
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 749void __stop_tty(struct tty_struct *tty)
 750{
 751	if (tty->flow.stopped)
 752		return;
 753	tty->flow.stopped = true;
 754	if (tty->ops->stop)
 755		tty->ops->stop(tty);
 756}
 757
 758/**
 759 * stop_tty - propagate flow control
 760 * @tty: tty to stop
 761 *
 762 * Perform flow control to the driver. May be called on an already stopped
 763 * device and will not re-call the &tty_driver->stop() method.
 764 *
 765 * This functionality is used by both the line disciplines for halting incoming
 766 * flow and by the driver. It may therefore be called from any context, may be
 767 * under the tty %atomic_write_lock but not always.
 768 *
 769 * Locking:
 770 *	flow.lock
 
 
 
 
 
 
 
 
 
 
 771 */
 772void stop_tty(struct tty_struct *tty)
 
 773{
 774	unsigned long flags;
 775
 776	spin_lock_irqsave(&tty->flow.lock, flags);
 777	__stop_tty(tty);
 778	spin_unlock_irqrestore(&tty->flow.lock, flags);
 779}
 780EXPORT_SYMBOL(stop_tty);
 781
 782void __start_tty(struct tty_struct *tty)
 783{
 784	if (!tty->flow.stopped || tty->flow.tco_stopped)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785		return;
 786	tty->flow.stopped = false;
 787	if (tty->ops->start)
 788		tty->ops->start(tty);
 789	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790}
 791
 792/**
 793 * start_tty - propagate flow control
 794 * @tty: tty to start
 795 *
 796 * Start a tty that has been stopped if at all possible. If @tty was previously
 797 * stopped and is now being started, the &tty_driver->start() method is invoked
 798 * and the line discipline woken.
 799 *
 800 * Locking:
 801 *	flow.lock
 802 */
 803void start_tty(struct tty_struct *tty)
 804{
 805	unsigned long flags;
 806
 807	spin_lock_irqsave(&tty->flow.lock, flags);
 808	__start_tty(tty);
 809	spin_unlock_irqrestore(&tty->flow.lock, flags);
 
 810}
 811EXPORT_SYMBOL(start_tty);
 812
 813static void tty_update_time(struct tty_struct *tty, bool mtime)
 814{
 815	time64_t sec = ktime_get_real_seconds();
 816	struct tty_file_private *priv;
 817
 818	spin_lock(&tty->files_lock);
 819	list_for_each_entry(priv, &tty->tty_files, list) {
 820		struct inode *inode = file_inode(priv->file);
 821		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 822
 823		/*
 824		 * We only care if the two values differ in anything other than the
 825		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 826		 * the time of the tty device, otherwise it could be construded as a
 827		 * security leak to let userspace know the exact timing of the tty.
 828		 */
 829		if ((sec ^ time.tv_sec) & ~7) {
 830			if (mtime)
 831				inode_set_mtime(inode, sec, 0);
 832			else
 833				inode_set_atime(inode, sec, 0);
 834		}
 835	}
 836	spin_unlock(&tty->files_lock);
 
 
 
 
 
 
 
 
 837}
 838
 839/*
 840 * Iterate on the ldisc ->read() function until we've gotten all
 841 * the data the ldisc has for us.
 
 
 842 *
 843 * The "cookie" is something that the ldisc read function can fill
 844 * in to let us know that there is more data to be had.
 
 
 845 *
 846 * We promise to continue to call the ldisc until it stops returning
 847 * data or clears the cookie. The cookie may be something that the
 848 * ldisc maintains state for and needs to free.
 849 */
 850static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 851				struct file *file, struct iov_iter *to)
 852{
 853	void *cookie = NULL;
 854	unsigned long offset = 0;
 855	ssize_t retval = 0;
 856	size_t copied, count = iov_iter_count(to);
 857	u8 kernel_buf[64];
 858
 859	do {
 860		ssize_t size = min(count, sizeof(kernel_buf));
 861
 862		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 863		if (!size)
 864			break;
 865
 866		if (size < 0) {
 867			/* Did we have an earlier error (ie -EFAULT)? */
 868			if (retval)
 869				break;
 870			retval = size;
 871
 872			/*
 873			 * -EOVERFLOW means we didn't have enough space
 874			 * for a whole packet, and we shouldn't return
 875			 * a partial result.
 876			 */
 877			if (retval == -EOVERFLOW)
 878				offset = 0;
 879			break;
 880		}
 881
 882		copied = copy_to_iter(kernel_buf, size, to);
 883		offset += copied;
 884		count -= copied;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885
 886		/*
 887		 * If the user copy failed, we still need to do another ->read()
 888		 * call if we had a cookie to let the ldisc clear up.
 889		 *
 890		 * But make sure size is zeroed.
 891		 */
 892		if (unlikely(copied != size)) {
 893			count = 0;
 894			retval = -EFAULT;
 895		}
 896	} while (cookie);
 897
 898	/* We always clear tty buffer in case they contained passwords */
 899	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 900	return offset ? offset : retval;
 
 
 
 901}
 902
 903
 904/**
 905 * tty_read - read method for tty device files
 906 * @iocb: kernel I/O control block
 907 * @to: destination for the data read
 
 
 908 *
 909 * Perform the read system call function on this terminal device. Checks
 910 * for hung up devices before calling the line discipline method.
 911 *
 912 * Locking:
 913 *	Locks the line discipline internally while needed. Multiple read calls
 914 *	may be outstanding in parallel.
 915 */
 916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 917{
 918	struct file *file = iocb->ki_filp;
 919	struct inode *inode = file_inode(file);
 920	struct tty_struct *tty = file_tty(file);
 921	struct tty_ldisc *ld;
 922	ssize_t ret;
 923
 924	if (tty_paranoia_check(tty, inode, "tty_read"))
 925		return -EIO;
 926	if (!tty || tty_io_error(tty))
 927		return -EIO;
 928
 929	/* We want to wait for the line discipline to sort out in this
 930	 * situation.
 931	 */
 932	ld = tty_ldisc_ref_wait(tty);
 933	if (!ld)
 934		return hung_up_tty_read(iocb, to);
 935	ret = -EIO;
 936	if (ld->ops->read)
 937		ret = iterate_tty_read(ld, tty, file, to);
 
 
 938	tty_ldisc_deref(ld);
 939
 940	if (ret > 0)
 941		tty_update_time(tty, false);
 942
 943	return ret;
 944}
 945
 946void tty_write_unlock(struct tty_struct *tty)
 
 947{
 948	mutex_unlock(&tty->atomic_write_lock);
 949	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 950}
 951
 952int tty_write_lock(struct tty_struct *tty, bool ndelay)
 
 953{
 954	if (!mutex_trylock(&tty->atomic_write_lock)) {
 955		if (ndelay)
 956			return -EAGAIN;
 957		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 958			return -ERESTARTSYS;
 959	}
 960	return 0;
 961}
 962
 963/*
 964 * Split writes up in sane blocksizes to avoid
 965 * denial-of-service type attacks
 966 */
 967static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 968				 struct file *file, struct iov_iter *from)
 
 
 
 
 969{
 970	size_t chunk, count = iov_iter_count(from);
 971	ssize_t ret, written = 0;
 
 972
 973	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 974	if (ret < 0)
 975		return ret;
 976
 977	/*
 978	 * We chunk up writes into a temporary buffer. This
 979	 * simplifies low-level drivers immensely, since they
 980	 * don't have locking issues and user mode accesses.
 981	 *
 982	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 983	 * big chunk-size..
 984	 *
 985	 * The default chunk-size is 2kB, because the NTTY
 986	 * layer has problems with bigger chunks. It will
 987	 * claim to be able to handle more characters than
 988	 * it actually does.
 
 
 
 989	 */
 990	chunk = 2048;
 991	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 992		chunk = 65536;
 993	if (count < chunk)
 994		chunk = count;
 995
 996	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 997	if (tty->write_cnt < chunk) {
 998		u8 *buf_chunk;
 999
1000		if (chunk < 1024)
1001			chunk = 1024;
1002
1003		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1004		if (!buf_chunk) {
1005			ret = -ENOMEM;
1006			goto out;
1007		}
1008		kvfree(tty->write_buf);
1009		tty->write_cnt = chunk;
1010		tty->write_buf = buf_chunk;
1011	}
1012
1013	/* Do the write .. */
1014	for (;;) {
1015		size_t size = min(chunk, count);
1016
 
1017		ret = -EFAULT;
1018		if (copy_from_iter(tty->write_buf, size, from) != size)
1019			break;
1020
1021		ret = ld->ops->write(tty, file, tty->write_buf, size);
1022		if (ret <= 0)
1023			break;
1024
1025		written += ret;
1026		if (ret > size)
1027			break;
1028
1029		/* FIXME! Have Al check this! */
1030		if (ret != size)
1031			iov_iter_revert(from, size-ret);
1032
1033		count -= ret;
1034		if (!count)
1035			break;
1036		ret = -ERESTARTSYS;
1037		if (signal_pending(current))
1038			break;
1039		cond_resched();
1040	}
1041	if (written) {
1042		tty_update_time(tty, true);
1043		ret = written;
1044	}
1045out:
1046	tty_write_unlock(tty);
1047	return ret;
1048}
1049
1050#ifdef CONFIG_PRINT_QUOTA_WARNING
1051/**
1052 * tty_write_message - write a message to a certain tty, not just the console.
1053 * @tty: the destination tty_struct
1054 * @msg: the message to write
1055 *
1056 * This is used for messages that need to be redirected to a specific tty. We
1057 * don't put it into the syslog queue right now maybe in the future if really
1058 * needed.
1059 *
1060 * We must still hold the BTM and test the CLOSING flag for the moment.
1061 *
1062 * This function is DEPRECATED, do not use in new code.
1063 */
 
1064void tty_write_message(struct tty_struct *tty, char *msg)
1065{
1066	if (tty) {
1067		mutex_lock(&tty->atomic_write_lock);
1068		tty_lock(tty);
1069		if (tty->ops->write && tty->count > 0)
 
1070			tty->ops->write(tty, msg, strlen(msg));
1071		tty_unlock(tty);
 
1072		tty_write_unlock(tty);
1073	}
 
1074}
1075#endif
1076
1077static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078{
1079	struct tty_struct *tty = file_tty(file);
1080	struct tty_ldisc *ld;
1081	ssize_t ret;
1082
1083	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1084		return -EIO;
1085	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1086		return -EIO;
 
1087	/* Short term debug to catch buggy drivers */
1088	if (tty->ops->write_room == NULL)
1089		tty_err(tty, "missing write_room method\n");
 
1090	ld = tty_ldisc_ref_wait(tty);
1091	if (!ld)
1092		return hung_up_tty_write(iocb, from);
1093	if (!ld->ops->write)
1094		ret = -EIO;
1095	else
1096		ret = iterate_tty_write(ld, tty, file, from);
1097	tty_ldisc_deref(ld);
1098	return ret;
1099}
1100
1101/**
1102 * tty_write - write method for tty device file
1103 * @iocb: kernel I/O control block
1104 * @from: iov_iter with data to write
1105 *
1106 * Write data to a tty device via the line discipline.
1107 *
1108 * Locking:
1109 *	Locks the line discipline as required
1110 *	Writes to the tty driver are serialized by the atomic_write_lock
1111 *	and are then processed in chunks to the device. The line
1112 *	discipline write method will not be invoked in parallel for
1113 *	each device.
1114 */
1115static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1116{
1117	return file_tty_write(iocb->ki_filp, iocb, from);
1118}
1119
1120ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1121{
1122	struct file *p = NULL;
1123
1124	spin_lock(&redirect_lock);
1125	if (redirect)
1126		p = get_file(redirect);
1127	spin_unlock(&redirect_lock);
1128
1129	/*
1130	 * We know the redirected tty is just another tty, we can
1131	 * call file_tty_write() directly with that file pointer.
1132	 */
1133	if (p) {
1134		ssize_t res;
1135
1136		res = file_tty_write(p, iocb, iter);
1137		fput(p);
1138		return res;
1139	}
1140	return tty_write(iocb, iter);
1141}
1142
1143/**
1144 * tty_send_xchar - send priority character
1145 * @tty: the tty to send to
1146 * @ch: xchar to send
1147 *
1148 * Send a high priority character to the tty even if stopped.
1149 *
1150 * Locking: none for xchar method, write ordering for write method.
1151 */
1152int tty_send_xchar(struct tty_struct *tty, u8 ch)
1153{
1154	bool was_stopped = tty->flow.stopped;
1155
1156	if (tty->ops->send_xchar) {
1157		down_read(&tty->termios_rwsem);
1158		tty->ops->send_xchar(tty, ch);
1159		up_read(&tty->termios_rwsem);
1160		return 0;
1161	}
1162
1163	if (tty_write_lock(tty, false) < 0)
1164		return -ERESTARTSYS;
1165
1166	down_read(&tty->termios_rwsem);
1167	if (was_stopped)
1168		start_tty(tty);
1169	tty->ops->write(tty, &ch, 1);
1170	if (was_stopped)
1171		stop_tty(tty);
1172	up_read(&tty->termios_rwsem);
1173	tty_write_unlock(tty);
1174	return 0;
1175}
1176
1177/**
1178 * pty_line_name - generate name for a pty
1179 * @driver: the tty driver in use
1180 * @index: the minor number
1181 * @p: output buffer of at least 6 bytes
1182 *
1183 * Generate a name from a @driver reference and write it to the output buffer
1184 * @p.
1185 *
1186 * Locking: None
1187 */
1188static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189{
1190	static const char ptychar[] = "pqrstuvwxyzabcde";
1191	int i = index + driver->name_base;
1192	/* ->name is initialized to "ttyp", but "tty" is expected */
1193	sprintf(p, "%s%c%x",
1194		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195		ptychar[i >> 4 & 0xf], i & 0xf);
1196}
1197
1198/**
1199 * tty_line_name - generate name for a tty
1200 * @driver: the tty driver in use
1201 * @index: the minor number
1202 * @p: output buffer of at least 7 bytes
1203 *
1204 * Generate a name from a @driver reference and write it to the output buffer
1205 * @p.
1206 *
1207 * Locking: None
1208 */
1209static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1210{
1211	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1212		return sprintf(p, "%s", driver->name);
1213	else
1214		return sprintf(p, "%s%d", driver->name,
1215			       index + driver->name_base);
1216}
1217
1218/**
1219 * tty_driver_lookup_tty() - find an existing tty, if any
1220 * @driver: the driver for the tty
1221 * @file: file object
1222 * @idx: the minor number
1223 *
1224 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1225 * driver lookup() method returns an error.
1226 *
1227 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1228 */
1229static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230		struct file *file, int idx)
1231{
1232	struct tty_struct *tty;
 
1233
1234	if (driver->ops->lookup) {
1235		if (!file)
1236			tty = ERR_PTR(-EIO);
1237		else
1238			tty = driver->ops->lookup(driver, file, idx);
1239	} else {
1240		if (idx >= driver->num)
1241			return ERR_PTR(-EINVAL);
1242		tty = driver->ttys[idx];
1243	}
1244	if (!IS_ERR(tty))
1245		tty_kref_get(tty);
1246	return tty;
1247}
1248
1249/**
1250 * tty_init_termios - helper for termios setup
1251 * @tty: the tty to set up
1252 *
1253 * Initialise the termios structure for this tty. This runs under the
1254 * %tty_mutex currently so we can be relaxed about ordering.
1255 */
1256void tty_init_termios(struct tty_struct *tty)
 
1257{
1258	struct ktermios *tp;
1259	int idx = tty->index;
1260
1261	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1262		tty->termios = tty->driver->init_termios;
1263	else {
1264		/* Check for lazy saved data */
1265		tp = tty->driver->termios[idx];
1266		if (tp != NULL) {
1267			tty->termios = *tp;
1268			tty->termios.c_line  = tty->driver->init_termios.c_line;
1269		} else
1270			tty->termios = tty->driver->init_termios;
1271	}
1272	/* Compatibility until drivers always set this */
1273	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1274	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1275}
1276EXPORT_SYMBOL_GPL(tty_init_termios);
1277
1278/**
1279 * tty_standard_install - usual tty->ops->install
1280 * @driver: the driver for the tty
1281 * @tty: the tty
1282 *
1283 * If the @driver overrides @tty->ops->install, it still can call this function
1284 * to perform the standard install operations.
1285 */
1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287{
1288	tty_init_termios(tty);
 
 
 
1289	tty_driver_kref_get(driver);
1290	tty->count++;
1291	driver->ttys[tty->index] = tty;
1292	return 0;
1293}
1294EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296/**
1297 * tty_driver_install_tty() - install a tty entry in the driver
1298 * @driver: the driver for the tty
1299 * @tty: the tty
1300 *
1301 * Install a tty object into the driver tables. The @tty->index field will be
1302 * set by the time this is called. This method is responsible for ensuring any
1303 * need additional structures are allocated and configured.
 
1304 *
1305 * Locking: tty_mutex for now
1306 */
1307static int tty_driver_install_tty(struct tty_driver *driver,
1308						struct tty_struct *tty)
1309{
1310	return driver->ops->install ? driver->ops->install(driver, tty) :
1311		tty_standard_install(driver, tty);
1312}
1313
1314/**
1315 * tty_driver_remove_tty() - remove a tty from the driver tables
1316 * @driver: the driver for the tty
1317 * @tty: tty to remove
1318 *
1319 * Remove a tty object from the driver tables. The tty->index field will be set
1320 * by the time this is called.
1321 *
1322 * Locking: tty_mutex for now
1323 */
1324static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1325{
1326	if (driver->ops->remove)
1327		driver->ops->remove(driver, tty);
1328	else
1329		driver->ttys[tty->index] = NULL;
1330}
1331
1332/**
1333 * tty_reopen() - fast re-open of an open tty
1334 * @tty: the tty to open
1335 *
1336 * Re-opens on master ptys are not allowed and return -%EIO.
1337 *
1338 * Locking: Caller must hold tty_lock
1339 * Return: 0 on success, -errno on error.
1340 */
1341static int tty_reopen(struct tty_struct *tty)
1342{
1343	struct tty_driver *driver = tty->driver;
1344	struct tty_ldisc *ld;
1345	int retval = 0;
1346
1347	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1348	    driver->subtype == PTY_TYPE_MASTER)
1349		return -EIO;
1350
1351	if (!tty->count)
1352		return -EAGAIN;
1353
1354	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1355		return -EBUSY;
1356
1357	ld = tty_ldisc_ref_wait(tty);
1358	if (ld) {
1359		tty_ldisc_deref(ld);
1360	} else {
1361		retval = tty_ldisc_lock(tty, 5 * HZ);
1362		if (retval)
1363			return retval;
1364
1365		if (!tty->ldisc)
1366			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1367		tty_ldisc_unlock(tty);
1368	}
 
1369
1370	if (retval == 0)
1371		tty->count++;
1372
1373	return retval;
1374}
1375
1376/**
1377 * tty_init_dev - initialise a tty device
1378 * @driver: tty driver we are opening a device on
1379 * @idx: device index
1380 *
1381 * Prepare a tty device. This may not be a "new" clean device but could also be
1382 * an active device. The pty drivers require special handling because of this.
1383 *
1384 * Locking:
1385 *	The function is called under the tty_mutex, which protects us from the
1386 *	tty struct or driver itself going away.
1387 *
1388 * On exit the tty device has the line discipline attached and a reference
1389 * count of 1. If a pair was created for pty/tty use and the other was a pty
1390 * master then it too has a reference count of 1.
1391 *
1392 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1393 * open. The new code protects the open with a mutex, so it's really quite
1394 * straightforward. The mutex locking can probably be relaxed for the (most
1395 * common) case of reopening a tty.
1396 *
1397 * Return: new tty structure
1398 */
 
1399struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1400{
1401	struct tty_struct *tty;
1402	int retval;
1403
1404	/*
1405	 * First time open is complex, especially for PTY devices.
1406	 * This code guarantees that either everything succeeds and the
1407	 * TTY is ready for operation, or else the table slots are vacated
1408	 * and the allocated memory released.  (Except that the termios
1409	 * may be retained.)
1410	 */
1411
1412	if (!try_module_get(driver->owner))
1413		return ERR_PTR(-ENODEV);
1414
1415	tty = alloc_tty_struct(driver, idx);
1416	if (!tty) {
1417		retval = -ENOMEM;
1418		goto err_module_put;
1419	}
 
1420
1421	tty_lock(tty);
1422	retval = tty_driver_install_tty(driver, tty);
1423	if (retval < 0)
1424		goto err_free_tty;
1425
1426	if (!tty->port)
1427		tty->port = driver->ports[idx];
1428
1429	if (WARN_RATELIMIT(!tty->port,
1430			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431			__func__, tty->driver->name)) {
1432		retval = -EINVAL;
1433		goto err_release_lock;
1434	}
1435
1436	retval = tty_ldisc_lock(tty, 5 * HZ);
1437	if (retval)
1438		goto err_release_lock;
1439	tty->port->itty = tty;
1440
1441	/*
1442	 * Structures all installed ... call the ldisc open routines.
1443	 * If we fail here just call release_tty to clean up.  No need
1444	 * to decrement the use counts, as release_tty doesn't care.
1445	 */
1446	retval = tty_ldisc_setup(tty, tty->link);
1447	if (retval)
1448		goto err_release_tty;
1449	tty_ldisc_unlock(tty);
1450	/* Return the tty locked so that it cannot vanish under the caller */
1451	return tty;
1452
1453err_free_tty:
1454	tty_unlock(tty);
 
1455	free_tty_struct(tty);
1456err_module_put:
1457	module_put(driver->owner);
1458	return ERR_PTR(retval);
1459
1460	/* call the tty release_tty routine to clean out this slot */
1461err_release_tty:
1462	tty_ldisc_unlock(tty);
1463	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464			     retval, idx);
1465err_release_lock:
1466	tty_unlock(tty);
 
 
1467	release_tty(tty, idx);
1468	return ERR_PTR(retval);
1469}
1470
1471/**
1472 * tty_save_termios() - save tty termios data in driver table
1473 * @tty: tty whose termios data to save
1474 *
1475 * Locking: Caller guarantees serialisation with tty_init_termios().
1476 */
1477void tty_save_termios(struct tty_struct *tty)
1478{
1479	struct ktermios *tp;
1480	int idx = tty->index;
1481
1482	/* If the port is going to reset then it has no termios to save */
1483	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484		return;
1485
1486	/* Stash the termios data */
1487	tp = tty->driver->termios[idx];
1488	if (tp == NULL) {
1489		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490		if (tp == NULL)
 
1491			return;
 
1492		tty->driver->termios[idx] = tp;
1493	}
1494	*tp = tty->termios;
1495}
1496EXPORT_SYMBOL_GPL(tty_save_termios);
1497
1498/**
1499 * tty_flush_works - flush all works of a tty/pty pair
1500 * @tty: tty device to flush works for (or either end of a pty pair)
1501 *
1502 * Sync flush all works belonging to @tty (and the 'other' tty).
1503 */
1504static void tty_flush_works(struct tty_struct *tty)
1505{
1506	flush_work(&tty->SAK_work);
1507	flush_work(&tty->hangup_work);
1508	if (tty->link) {
1509		flush_work(&tty->link->SAK_work);
1510		flush_work(&tty->link->hangup_work);
1511	}
1512}
1513
1514/**
1515 * release_one_tty - release tty structure memory
1516 * @work: work of tty we are obliterating
1517 *
1518 * Releases memory associated with a tty structure, and clears out the
1519 * driver table slots. This function is called when a device is no longer
1520 * in use. It also gets called when setup of a device fails.
1521 *
1522 * Locking:
1523 *	takes the file list lock internally when working on the list of ttys
1524 *	that the driver keeps.
 
 
 
 
1525 *
1526 * This method gets called from a work queue so that the driver private
1527 * cleanup ops can sleep (needed for USB at least)
1528 */
1529static void release_one_tty(struct work_struct *work)
1530{
1531	struct tty_struct *tty =
1532		container_of(work, struct tty_struct, hangup_work);
1533	struct tty_driver *driver = tty->driver;
1534	struct module *owner = driver->owner;
1535
1536	if (tty->ops->cleanup)
1537		tty->ops->cleanup(tty);
1538
 
1539	tty_driver_kref_put(driver);
1540	module_put(owner);
1541
1542	spin_lock(&tty->files_lock);
1543	list_del_init(&tty->tty_files);
1544	spin_unlock(&tty->files_lock);
1545
1546	put_pid(tty->ctrl.pgrp);
1547	put_pid(tty->ctrl.session);
1548	free_tty_struct(tty);
1549}
1550
1551static void queue_release_one_tty(struct kref *kref)
1552{
1553	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
1555	/* The hangup queue is now free so we can reuse it rather than
1556	 *  waste a chunk of memory for each port.
1557	 */
1558	INIT_WORK(&tty->hangup_work, release_one_tty);
1559	schedule_work(&tty->hangup_work);
1560}
1561
1562/**
1563 * tty_kref_put - release a tty kref
1564 * @tty: tty device
1565 *
1566 * Release a reference to the @tty device and if need be let the kref layer
1567 * destruct the object for us.
1568 */
 
1569void tty_kref_put(struct tty_struct *tty)
1570{
1571	if (tty)
1572		kref_put(&tty->kref, queue_release_one_tty);
1573}
1574EXPORT_SYMBOL(tty_kref_put);
1575
1576/**
1577 * release_tty - release tty structure memory
1578 * @tty: tty device release
1579 * @idx: index of the tty device release
1580 *
1581 * Release both @tty and a possible linked partner (think pty pair),
1582 * and decrement the refcount of the backing module.
 
 
 
 
 
1583 *
1584 * Locking:
1585 *	tty_mutex
1586 *	takes the file list lock internally when working on the list of ttys
1587 *	that the driver keeps.
1588 */
1589static void release_tty(struct tty_struct *tty, int idx)
1590{
1591	/* This should always be true but check for the moment */
1592	WARN_ON(tty->index != idx);
1593	WARN_ON(!mutex_is_locked(&tty_mutex));
1594	if (tty->ops->shutdown)
1595		tty->ops->shutdown(tty);
1596	tty_save_termios(tty);
1597	tty_driver_remove_tty(tty->driver, tty);
1598	if (tty->port)
1599		tty->port->itty = NULL;
1600	if (tty->link)
1601		tty->link->port->itty = NULL;
1602	if (tty->port)
1603		tty_buffer_cancel_work(tty->port);
1604	if (tty->link)
1605		tty_buffer_cancel_work(tty->link->port);
1606
1607	tty_kref_put(tty->link);
 
1608	tty_kref_put(tty);
1609}
1610
1611/**
1612 * tty_release_checks - check a tty before real release
1613 * @tty: tty to check
1614 * @idx: index of the tty
 
1615 *
1616 * Performs some paranoid checking before true release of the @tty. This is a
1617 * no-op unless %TTY_PARANOIA_CHECK is defined.
1618 */
1619static int tty_release_checks(struct tty_struct *tty, int idx)
 
1620{
1621#ifdef TTY_PARANOIA_CHECK
1622	if (idx < 0 || idx >= tty->driver->num) {
1623		tty_debug(tty, "bad idx %d\n", idx);
 
1624		return -1;
1625	}
1626
1627	/* not much to check for devpts */
1628	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629		return 0;
1630
1631	if (tty != tty->driver->ttys[idx]) {
1632		tty_debug(tty, "bad driver table[%d] = %p\n",
1633			  idx, tty->driver->ttys[idx]);
1634		return -1;
1635	}
1636	if (tty->driver->other) {
1637		struct tty_struct *o_tty = tty->link;
1638
1639		if (o_tty != tty->driver->other->ttys[idx]) {
1640			tty_debug(tty, "bad other table[%d] = %p\n",
1641				  idx, tty->driver->other->ttys[idx]);
1642			return -1;
1643		}
1644		if (o_tty->link != tty) {
1645			tty_debug(tty, "bad link = %p\n", o_tty->link);
1646			return -1;
1647		}
1648	}
1649#endif
1650	return 0;
1651}
1652
1653/**
1654 * tty_kclose - closes tty opened by tty_kopen
1655 * @tty: tty device
1656 *
1657 * Performs the final steps to release and free a tty device. It is the same as
1658 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1659 * @tty->port.
1660 */
1661void tty_kclose(struct tty_struct *tty)
1662{
1663	/*
1664	 * Ask the line discipline code to release its structures
1665	 */
1666	tty_ldisc_release(tty);
1667
1668	/* Wait for pending work before tty destruction commences */
1669	tty_flush_works(tty);
1670
1671	tty_debug_hangup(tty, "freeing structure\n");
1672	/*
1673	 * The release_tty function takes care of the details of clearing
1674	 * the slots and preserving the termios structure.
1675	 */
1676	mutex_lock(&tty_mutex);
1677	tty_port_set_kopened(tty->port, 0);
1678	release_tty(tty, tty->index);
1679	mutex_unlock(&tty_mutex);
1680}
1681EXPORT_SYMBOL_GPL(tty_kclose);
1682
1683/**
1684 * tty_release_struct - release a tty struct
1685 * @tty: tty device
1686 * @idx: index of the tty
1687 *
1688 * Performs the final steps to release and free a tty device. It is roughly the
1689 * reverse of tty_init_dev().
1690 */
1691void tty_release_struct(struct tty_struct *tty, int idx)
1692{
1693	/*
1694	 * Ask the line discipline code to release its structures
1695	 */
1696	tty_ldisc_release(tty);
1697
1698	/* Wait for pending work before tty destruction commmences */
1699	tty_flush_works(tty);
1700
1701	tty_debug_hangup(tty, "freeing structure\n");
1702	/*
1703	 * The release_tty function takes care of the details of clearing
1704	 * the slots and preserving the termios structure.
1705	 */
1706	mutex_lock(&tty_mutex);
1707	release_tty(tty, idx);
1708	mutex_unlock(&tty_mutex);
1709}
1710EXPORT_SYMBOL_GPL(tty_release_struct);
1711
1712/**
1713 * tty_release - vfs callback for close
1714 * @inode: inode of tty
1715 * @filp: file pointer for handle to tty
1716 *
1717 * Called the last time each file handle is closed that references this tty.
1718 * There may however be several such references.
1719 *
1720 * Locking:
1721 *	Takes BKL. See tty_release_dev().
1722 *
1723 * Even releasing the tty structures is a tricky business. We have to be very
1724 * careful that the structures are all released at the same time, as interrupts
1725 * might otherwise get the wrong pointers.
1726 *
1727 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728 * lead to double frees or releasing memory still in use.
1729 */
 
1730int tty_release(struct inode *inode, struct file *filp)
1731{
1732	struct tty_struct *tty = file_tty(filp);
1733	struct tty_struct *o_tty = NULL;
1734	int	do_sleep, final;
1735	int	idx;
1736	long	timeout = 0;
1737	int	once = 1;
1738
1739	if (tty_paranoia_check(tty, inode, __func__))
1740		return 0;
1741
1742	tty_lock(tty);
1743	check_tty_count(tty, __func__);
1744
1745	__tty_fasync(-1, filp, 0);
1746
1747	idx = tty->index;
1748	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1749	    tty->driver->subtype == PTY_TYPE_MASTER)
1750		o_tty = tty->link;
 
1751
1752	if (tty_release_checks(tty, idx)) {
1753		tty_unlock(tty);
1754		return 0;
1755	}
1756
1757	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1758
1759	if (tty->ops->close)
1760		tty->ops->close(tty, filp);
1761
1762	/* If tty is pty master, lock the slave pty (stable lock order) */
1763	tty_lock_slave(o_tty);
1764
1765	/*
1766	 * Sanity check: if tty->count is going to zero, there shouldn't be
1767	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1768	 * wait queues and kick everyone out _before_ actually starting to
1769	 * close.  This ensures that we won't block while releasing the tty
1770	 * structure.
1771	 *
1772	 * The test for the o_tty closing is necessary, since the master and
1773	 * slave sides may close in any order.  If the slave side closes out
1774	 * first, its count will be one, since the master side holds an open.
1775	 * Thus this test wouldn't be triggered at the time the slave closed,
1776	 * so we do it now.
 
 
 
 
1777	 */
1778	while (1) {
 
 
 
 
 
 
 
 
1779		do_sleep = 0;
1780
1781		if (tty->count <= 1) {
1782			if (waitqueue_active(&tty->read_wait)) {
1783				wake_up_poll(&tty->read_wait, EPOLLIN);
1784				do_sleep++;
1785			}
1786			if (waitqueue_active(&tty->write_wait)) {
1787				wake_up_poll(&tty->write_wait, EPOLLOUT);
1788				do_sleep++;
1789			}
1790		}
1791		if (o_tty && o_tty->count <= 1) {
1792			if (waitqueue_active(&o_tty->read_wait)) {
1793				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1794				do_sleep++;
1795			}
1796			if (waitqueue_active(&o_tty->write_wait)) {
1797				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1798				do_sleep++;
1799			}
1800		}
1801		if (!do_sleep)
1802			break;
1803
1804		if (once) {
1805			once = 0;
1806			tty_warn(tty, "read/write wait queue active!\n");
1807		}
1808		schedule_timeout_killable(timeout);
1809		if (timeout < 120 * HZ)
1810			timeout = 2 * timeout + 1;
1811		else
1812			timeout = MAX_SCHEDULE_TIMEOUT;
1813	}
1814
1815	if (o_tty) {
 
 
 
 
 
 
 
 
1816		if (--o_tty->count < 0) {
1817			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1818			o_tty->count = 0;
1819		}
1820	}
1821	if (--tty->count < 0) {
1822		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1823		tty->count = 0;
1824	}
1825
1826	/*
1827	 * We've decremented tty->count, so we need to remove this file
1828	 * descriptor off the tty->tty_files list; this serves two
1829	 * purposes:
1830	 *  - check_tty_count sees the correct number of file descriptors
1831	 *    associated with this tty.
1832	 *  - do_tty_hangup no longer sees this file descriptor as
1833	 *    something that needs to be handled for hangups.
1834	 */
1835	tty_del_file(filp);
1836
1837	/*
1838	 * Perform some housekeeping before deciding whether to return.
1839	 *
 
 
 
 
 
 
 
 
 
 
1840	 * If _either_ side is closing, make sure there aren't any
1841	 * processes that still think tty or o_tty is their controlling
1842	 * tty.
1843	 */
1844	if (!tty->count) {
1845		read_lock(&tasklist_lock);
1846		session_clear_tty(tty->ctrl.session);
1847		if (o_tty)
1848			session_clear_tty(o_tty->ctrl.session);
1849		read_unlock(&tasklist_lock);
1850	}
1851
1852	/* check whether both sides are closing ... */
1853	final = !tty->count && !(o_tty && o_tty->count);
 
 
1854
1855	tty_unlock_slave(o_tty);
1856	tty_unlock(tty);
 
1857
1858	/* At this point, the tty->count == 0 should ensure a dead tty
1859	 * cannot be re-opened by a racing opener.
 
 
 
1860	 */
 
1861
1862	if (!final)
1863		return 0;
 
 
1864
1865	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1866
1867	tty_release_struct(tty, idx);
1868	return 0;
1869}
1870
1871/**
1872 * tty_open_current_tty - get locked tty of current task
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: locked tty of the current task iff @device is /dev/tty
1876 *
1877 * Performs a re-open of the current task's controlling tty.
 
1878 *
1879 * We cannot return driver and index like for the other nodes because devpts
1880 * will not work then. It expects inodes to be from devpts FS.
1881 */
1882static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1883{
1884	struct tty_struct *tty;
1885	int retval;
1886
1887	if (device != MKDEV(TTYAUX_MAJOR, 0))
1888		return NULL;
1889
1890	tty = get_current_tty();
1891	if (!tty)
1892		return ERR_PTR(-ENXIO);
1893
1894	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895	/* noctty = 1; */
1896	tty_lock(tty);
1897	tty_kref_put(tty);	/* safe to drop the kref now */
1898
1899	retval = tty_reopen(tty);
1900	if (retval < 0) {
1901		tty_unlock(tty);
1902		tty = ERR_PTR(retval);
1903	}
1904	return tty;
1905}
1906
1907/**
1908 * tty_lookup_driver - lookup a tty driver for a given device file
1909 * @device: device number
1910 * @filp: file pointer to tty
1911 * @index: index for the device in the @return driver
 
 
1912 *
1913 * If returned value is not erroneous, the caller is responsible to decrement
1914 * the refcount by tty_driver_kref_put().
1915 *
1916 * Locking: %tty_mutex protects get_tty_driver()
1917 *
1918 * Return: driver for this inode (with increased refcount)
1919 */
1920static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1921		int *index)
1922{
1923	struct tty_driver *driver = NULL;
1924
1925	switch (device) {
1926#ifdef CONFIG_VT
1927	case MKDEV(TTY_MAJOR, 0): {
1928		extern struct tty_driver *console_driver;
1929
1930		driver = tty_driver_kref_get(console_driver);
1931		*index = fg_console;
 
1932		break;
1933	}
1934#endif
1935	case MKDEV(TTYAUX_MAJOR, 1): {
1936		struct tty_driver *console_driver = console_device(index);
1937
1938		if (console_driver) {
1939			driver = tty_driver_kref_get(console_driver);
1940			if (driver && filp) {
1941				/* Don't let /dev/console block */
1942				filp->f_flags |= O_NONBLOCK;
 
1943				break;
1944			}
1945		}
1946		if (driver)
1947			tty_driver_kref_put(driver);
1948		return ERR_PTR(-ENODEV);
1949	}
1950	default:
1951		driver = get_tty_driver(device, index);
1952		if (!driver)
1953			return ERR_PTR(-ENODEV);
1954		break;
1955	}
1956	return driver;
1957}
1958
1959static struct tty_struct *tty_kopen(dev_t device, int shared)
1960{
1961	struct tty_struct *tty;
1962	struct tty_driver *driver;
1963	int index = -1;
1964
1965	mutex_lock(&tty_mutex);
1966	driver = tty_lookup_driver(device, NULL, &index);
1967	if (IS_ERR(driver)) {
1968		mutex_unlock(&tty_mutex);
1969		return ERR_CAST(driver);
1970	}
1971
1972	/* check whether we're reopening an existing tty */
1973	tty = tty_driver_lookup_tty(driver, NULL, index);
1974	if (IS_ERR(tty) || shared)
1975		goto out;
1976
1977	if (tty) {
1978		/* drop kref from tty_driver_lookup_tty() */
1979		tty_kref_put(tty);
1980		tty = ERR_PTR(-EBUSY);
1981	} else { /* tty_init_dev returns tty with the tty_lock held */
1982		tty = tty_init_dev(driver, index);
1983		if (IS_ERR(tty))
1984			goto out;
1985		tty_port_set_kopened(tty->port, 1);
1986	}
1987out:
1988	mutex_unlock(&tty_mutex);
1989	tty_driver_kref_put(driver);
1990	return tty;
1991}
1992
1993/**
1994 * tty_kopen_exclusive - open a tty device for kernel
1995 * @device: dev_t of device to open
1996 *
1997 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1998 * it's not already opened and performs the first-time tty initialization.
1999 *
2000 * Claims the global %tty_mutex to serialize:
2001 *  * concurrent first-time tty initialization
2002 *  * concurrent tty driver removal w/ lookup
2003 *  * concurrent tty removal from driver table
2004 *
2005 * Return: the locked initialized &tty_struct
2006 */
2007struct tty_struct *tty_kopen_exclusive(dev_t device)
2008{
2009	return tty_kopen(device, 0);
2010}
2011EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2012
2013/**
2014 * tty_kopen_shared - open a tty device for shared in-kernel use
2015 * @device: dev_t of device to open
2016 *
2017 * Opens an already existing tty for in-kernel use. Compared to
2018 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
 
 
 
 
 
 
 
 
 
 
 
 
 
2019 *
2020 * Locking: identical to tty_kopen() above.
 
2021 */
2022struct tty_struct *tty_kopen_shared(dev_t device)
2023{
2024	return tty_kopen(device, 1);
2025}
2026EXPORT_SYMBOL_GPL(tty_kopen_shared);
2027
2028/**
2029 * tty_open_by_driver - open a tty device
2030 * @device: dev_t of device to open
2031 * @filp: file pointer to tty
2032 *
2033 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2034 * first-time tty initialization.
2035 *
2036 *
2037 * Claims the global tty_mutex to serialize:
2038 *  * concurrent first-time tty initialization
2039 *  * concurrent tty driver removal w/ lookup
2040 *  * concurrent tty removal from driver table
2041 *
2042 * Return: the locked initialized or re-opened &tty_struct
2043 */
2044static struct tty_struct *tty_open_by_driver(dev_t device,
2045					     struct file *filp)
2046{
2047	struct tty_struct *tty;
2048	struct tty_driver *driver = NULL;
2049	int index = -1;
2050	int retval;
2051
2052	mutex_lock(&tty_mutex);
2053	driver = tty_lookup_driver(device, filp, &index);
2054	if (IS_ERR(driver)) {
2055		mutex_unlock(&tty_mutex);
2056		return ERR_CAST(driver);
2057	}
2058
2059	/* check whether we're reopening an existing tty */
2060	tty = tty_driver_lookup_tty(driver, filp, index);
2061	if (IS_ERR(tty)) {
2062		mutex_unlock(&tty_mutex);
2063		goto out;
2064	}
2065
2066	if (tty) {
2067		if (tty_port_kopened(tty->port)) {
2068			tty_kref_put(tty);
2069			mutex_unlock(&tty_mutex);
2070			tty = ERR_PTR(-EBUSY);
2071			goto out;
2072		}
2073		mutex_unlock(&tty_mutex);
2074		retval = tty_lock_interruptible(tty);
2075		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2076		if (retval) {
2077			if (retval == -EINTR)
2078				retval = -ERESTARTSYS;
2079			tty = ERR_PTR(retval);
2080			goto out;
2081		}
2082		retval = tty_reopen(tty);
2083		if (retval < 0) {
2084			tty_unlock(tty);
2085			tty = ERR_PTR(retval);
2086		}
2087	} else { /* Returns with the tty_lock held for now */
2088		tty = tty_init_dev(driver, index);
2089		mutex_unlock(&tty_mutex);
2090	}
2091out:
2092	tty_driver_kref_put(driver);
2093	return tty;
2094}
2095
2096/**
2097 * tty_open - open a tty device
2098 * @inode: inode of device file
2099 * @filp: file pointer to tty
2100 *
2101 * tty_open() and tty_release() keep up the tty count that contains the number
2102 * of opens done on a tty. We cannot use the inode-count, as different inodes
2103 * might point to the same tty.
2104 *
2105 * Open-counting is needed for pty masters, as well as for keeping track of
2106 * serial lines: DTR is dropped when the last close happens.
2107 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2108 *
2109 * The termios state of a pty is reset on the first open so that settings don't
2110 * persist across reuse.
2111 *
2112 * Locking:
2113 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2114 *  * @tty->count should protect the rest.
2115 *  * ->siglock protects ->signal/->sighand
2116 *
2117 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2118 */
2119static int tty_open(struct inode *inode, struct file *filp)
2120{
2121	struct tty_struct *tty;
2122	int noctty, retval;
 
 
2123	dev_t device = inode->i_rdev;
2124	unsigned saved_flags = filp->f_flags;
2125
2126	nonseekable_open(inode, filp);
2127
2128retry_open:
2129	retval = tty_alloc_file(filp);
2130	if (retval)
2131		return -ENOMEM;
2132
 
 
 
 
 
 
2133	tty = tty_open_current_tty(device, filp);
2134	if (!tty)
2135		tty = tty_open_by_driver(device, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136
 
 
 
2137	if (IS_ERR(tty)) {
2138		tty_free_file(filp);
2139		retval = PTR_ERR(tty);
2140		if (retval != -EAGAIN || signal_pending(current))
2141			return retval;
2142		schedule();
2143		goto retry_open;
2144	}
2145
2146	tty_add_file(tty, filp);
2147
2148	check_tty_count(tty, __func__);
2149	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2150
 
 
 
 
2151	if (tty->ops->open)
2152		retval = tty->ops->open(tty, filp);
2153	else
2154		retval = -ENODEV;
2155	filp->f_flags = saved_flags;
2156
2157	if (retval) {
2158		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
 
2159
 
 
 
 
 
2160		tty_unlock(tty); /* need to call tty_release without BTM */
2161		tty_release(inode, filp);
2162		if (retval != -ERESTARTSYS)
2163			return retval;
2164
2165		if (signal_pending(current))
2166			return retval;
2167
2168		schedule();
2169		/*
2170		 * Need to reset f_op in case a hangup happened.
2171		 */
2172		if (tty_hung_up_p(filp))
2173			filp->f_op = &tty_fops;
2174		goto retry_open;
2175	}
2176	clear_bit(TTY_HUPPED, &tty->flags);
 
2177
2178	noctty = (filp->f_flags & O_NOCTTY) ||
2179		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2180		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2181		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2182		  tty->driver->subtype == PTY_TYPE_MASTER);
2183	if (!noctty)
2184		tty_open_proc_set_tty(filp, tty);
 
 
 
2185	tty_unlock(tty);
 
2186	return 0;
 
 
 
 
 
 
 
 
2187}
2188
2189
 
2190/**
2191 * tty_poll - check tty status
2192 * @filp: file being polled
2193 * @wait: poll wait structures to update
2194 *
2195 * Call the line discipline polling method to obtain the poll status of the
2196 * device.
2197 *
2198 * Locking: locks called line discipline but ldisc poll method may be
2199 * re-entered freely by other callers.
2200 */
2201static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	__poll_t ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
 
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
 
 
 
 
 
 
 
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
 
 
 
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
2274 *
2275 * FIXME: does not honour flow control ??
 
 
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
 
 
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
 
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
 
 
2453 */
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
 
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
 
 
 
2464	return ret;
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
2478static int send_break(struct tty_struct *tty, unsigned int duration)
 
2479{
2480	int retval;
 
 
 
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
 
 
 
 
 
 
 
 
 
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
 
 
 
 
 
 
 
2504
2505	return retval;
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
 
 
 
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
 
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
 
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
 
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
 
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
 
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
 
 
 
 
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
 
 
 
 
 
 
 
 
 
 
 
 
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
 
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
 
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
 
 
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
 
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
 
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
3218}
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
 
 
 
 
 
 
 
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
 
 
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
 
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
 
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
3445	struct device *d;
3446
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
3495	return error;
3496}
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
 
 
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}
v3.15
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (!tty)
 185		return;
 186	if (tty->dev)
 187		put_device(tty->dev);
 188	kfree(tty->write_buf);
 189	tty->magic = 0xDEADDEAD;
 190	kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195	return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 206	file->private_data = priv;
 207
 208	return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214	struct tty_file_private *priv = file->private_data;
 215
 216	priv->tty = tty;
 217	priv->file = file;
 218
 219	spin_lock(&tty_files_lock);
 220	list_add(&priv->list, &tty->tty_files);
 221	spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232	struct tty_file_private *priv = file->private_data;
 233
 234	file->private_data = NULL;
 235	kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241	struct tty_file_private *priv = file->private_data;
 
 242
 243	spin_lock(&tty_files_lock);
 244	list_del(&priv->list);
 245	spin_unlock(&tty_files_lock);
 246	tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *	tty_name	-	return tty naming
 254 *	@tty: tty structure
 255 *	@buf: buffer for output
 256 *
 257 *	Convert a tty structure into a name. The name reflects the kernel
 258 *	naming policy and if udev is in use may not reflect user space
 259 *
 260 *	Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266		strcpy(buf, "NULL tty");
 267	else
 268		strcpy(buf, tty->name);
 269	return buf;
 270}
 
 271
 272EXPORT_SYMBOL(tty_name);
 
 
 
 
 
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 275			      const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278	if (!tty) {
 279		printk(KERN_WARNING
 280			"null TTY for (%d:%d) in %s\n",
 281			imajor(inode), iminor(inode), routine);
 282		return 1;
 283	}
 284	if (tty->magic != TTY_MAGIC) {
 285		printk(KERN_WARNING
 286			"bad magic number for tty struct (%d:%d) in %s\n",
 287			imajor(inode), iminor(inode), routine);
 288		return 1;
 289	}
 290#endif
 291	return 0;
 292}
 293
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 
 295{
 296#ifdef CHECK_TTY_COUNT
 297	struct list_head *p;
 298	int count = 0;
 299
 300	spin_lock(&tty_files_lock);
 301	list_for_each(p, &tty->tty_files) {
 302		count++;
 303	}
 304	spin_unlock(&tty_files_lock);
 305	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 307	    tty->link && tty->link->count)
 308		count++;
 309	if (tty->count != count) {
 310		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311				    "!= #fd's(%d) in %s\n",
 312		       tty->name, tty->count, count, routine);
 313		return count;
 314	}
 315#endif
 316	return 0;
 317}
 318
 319/**
 320 *	get_tty_driver		-	find device of a tty
 321 *	@dev_t: device identifier
 322 *	@index: returns the index of the tty
 323 *
 324 *	This routine returns a tty driver structure, given a device number
 325 *	and also passes back the index number.
 326 *
 327 *	Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332	struct tty_driver *p;
 333
 334	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335		dev_t base = MKDEV(p->major, p->minor_start);
 
 336		if (device < base || device >= base + p->num)
 337			continue;
 338		*index = device - base;
 339		return tty_driver_kref_get(p);
 340	}
 341	return NULL;
 342}
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *	tty_find_polling_driver	-	find device of a polled tty
 348 *	@name: name string to match
 349 *	@line: pointer to resulting tty line nr
 350 *
 351 *	This routine returns a tty driver structure, given a name
 352 *	and the condition that the tty driver is capable of polled
 353 *	operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357	struct tty_driver *p, *res = NULL;
 358	int tty_line = 0;
 359	int len;
 360	char *str, *stp;
 361
 362	for (str = name; *str; str++)
 363		if ((*str >= '0' && *str <= '9') || *str == ',')
 364			break;
 365	if (!*str)
 366		return NULL;
 367
 368	len = str - name;
 369	tty_line = simple_strtoul(str, &str, 10);
 370
 371	mutex_lock(&tty_mutex);
 372	/* Search through the tty devices to look for a match */
 373	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374		if (strncmp(name, p->name, len) != 0)
 375			continue;
 376		stp = str;
 377		if (*stp == ',')
 378			stp++;
 379		if (*stp == '\0')
 380			stp = NULL;
 381
 382		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384			res = tty_driver_kref_get(p);
 385			*line = tty_line;
 386			break;
 387		}
 388	}
 389	mutex_unlock(&tty_mutex);
 390
 391	return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 396/**
 397 *	tty_check_change	-	check for POSIX terminal changes
 398 *	@tty: tty to check
 399 *
 400 *	If we try to write to, or set the state of, a terminal and we're
 401 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *	Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409	unsigned long flags;
 410	int ret = 0;
 411
 412	if (current->signal->tty != tty)
 413		return 0;
 414
 415	spin_lock_irqsave(&tty->ctrl_lock, flags);
 416
 417	if (!tty->pgrp) {
 418		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419		goto out_unlock;
 420	}
 421	if (task_pgrp(current) == tty->pgrp)
 422		goto out_unlock;
 423	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424	if (is_ignored(SIGTTOU))
 425		goto out;
 426	if (is_current_pgrp_orphaned()) {
 427		ret = -EIO;
 428		goto out;
 429	}
 430	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431	set_thread_flag(TIF_SIGPENDING);
 432	ret = -ERESTARTSYS;
 433out:
 434	return ret;
 435out_unlock:
 436	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437	return ret;
 438}
 439
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443				size_t count, loff_t *ppos)
 444{
 445	return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449				 size_t count, loff_t *ppos)
 450{
 451	return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461		unsigned long arg)
 462{
 463	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467				     unsigned int cmd, unsigned long arg)
 468{
 469	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 
 
 
 
 
 
 
 
 
 
 
 
 
 472static const struct file_operations tty_fops = {
 473	.llseek		= no_llseek,
 474	.read		= tty_read,
 475	.write		= tty_write,
 
 
 476	.poll		= tty_poll,
 477	.unlocked_ioctl	= tty_ioctl,
 478	.compat_ioctl	= tty_compat_ioctl,
 479	.open		= tty_open,
 480	.release	= tty_release,
 481	.fasync		= tty_fasync,
 
 482};
 483
 484static const struct file_operations console_fops = {
 485	.llseek		= no_llseek,
 486	.read		= tty_read,
 487	.write		= redirected_tty_write,
 
 
 488	.poll		= tty_poll,
 489	.unlocked_ioctl	= tty_ioctl,
 490	.compat_ioctl	= tty_compat_ioctl,
 491	.open		= tty_open,
 492	.release	= tty_release,
 493	.fasync		= tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497	.llseek		= no_llseek,
 498	.read		= hung_up_tty_read,
 499	.write		= hung_up_tty_write,
 500	.poll		= hung_up_tty_poll,
 501	.unlocked_ioctl	= hung_up_tty_ioctl,
 502	.compat_ioctl	= hung_up_tty_compat_ioctl,
 503	.release	= tty_release,
 
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 509/**
 510 *	tty_wakeup	-	request more data
 511 *	@tty: terminal
 512 *
 513 *	Internal and external helper for wakeups of tty. This function
 514 *	informs the line discipline if present that the driver is ready
 515 *	to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520	struct tty_ldisc *ld;
 521
 522	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523		ld = tty_ldisc_ref(tty);
 524		if (ld) {
 525			if (ld->ops->write_wakeup)
 526				ld->ops->write_wakeup(tty);
 527			tty_ldisc_deref(ld);
 528		}
 529	}
 530	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *	tty_signal_session_leader	- sends SIGHUP to session leader
 537 *	@tty		controlling tty
 538 *	@exit_session	if non-zero, signal all foreground group processes
 539 *
 540 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *	Optionally, signal all processes in the foreground process group.
 542 *
 543 *	Returns the number of processes in the session with this tty
 544 *	as their controlling terminal. This value is used to drop
 545 *	tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549	struct task_struct *p;
 550	int refs = 0;
 551	struct pid *tty_pgrp = NULL;
 552
 553	read_lock(&tasklist_lock);
 554	if (tty->session) {
 555		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556			spin_lock_irq(&p->sighand->siglock);
 557			if (p->signal->tty == tty) {
 558				p->signal->tty = NULL;
 559				/* We defer the dereferences outside fo
 560				   the tasklist lock */
 561				refs++;
 562			}
 563			if (!p->signal->leader) {
 564				spin_unlock_irq(&p->sighand->siglock);
 565				continue;
 566			}
 567			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570			spin_lock(&tty->ctrl_lock);
 571			tty_pgrp = get_pid(tty->pgrp);
 572			if (tty->pgrp)
 573				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574			spin_unlock(&tty->ctrl_lock);
 575			spin_unlock_irq(&p->sighand->siglock);
 576		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577	}
 578	read_unlock(&tasklist_lock);
 579
 580	if (tty_pgrp) {
 581		if (exit_session)
 582			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583		put_pid(tty_pgrp);
 584	}
 585
 586	return refs;
 587}
 588
 589/**
 590 *	__tty_hangup		-	actual handler for hangup events
 591 *	@work: tty device
 
 
 
 
 
 
 
 
 
 592 *
 593 *	This can be called by a "kworker" kernel thread.  That is process
 594 *	synchronous but doesn't hold any locks, so we need to make sure we
 595 *	have the appropriate locks for what we're doing.
 596 *
 597 *	The hangup event clears any pending redirections onto the hung up
 598 *	device. It ensures future writes will error and it does the needed
 599 *	line discipline hangup and signal delivery. The tty object itself
 600 *	remains intact.
 
 
 
 601 *
 602 *	Locking:
 603 *		BTM
 604 *		  redirect lock for undoing redirection
 605 *		  file list lock for manipulating list of ttys
 606 *		  tty_ldiscs_lock from called functions
 607 *		  termios_rwsem resetting termios data
 608 *		  tasklist_lock to walk task list for hangup event
 609 *		    ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613	struct file *cons_filp = NULL;
 614	struct file *filp, *f = NULL;
 615	struct tty_file_private *priv;
 616	int    closecount = 0, n;
 617	int refs;
 618
 619	if (!tty)
 620		return;
 621
 622
 623	spin_lock(&redirect_lock);
 624	if (redirect && file_tty(redirect) == tty) {
 625		f = redirect;
 626		redirect = NULL;
 627	}
 628	spin_unlock(&redirect_lock);
 629
 630	tty_lock(tty);
 631
 632	if (test_bit(TTY_HUPPED, &tty->flags)) {
 633		tty_unlock(tty);
 634		return;
 635	}
 636
 637	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 638	set_bit(TTY_HUPPING, &tty->flags);
 639
 640	/* inuse_filps is protected by the single tty lock,
 641	   this really needs to change if we want to flush the
 642	   workqueue with the lock held */
 
 643	check_tty_count(tty, "tty_hangup");
 644
 645	spin_lock(&tty_files_lock);
 646	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 647	list_for_each_entry(priv, &tty->tty_files, list) {
 648		filp = priv->file;
 649		if (filp->f_op->write == redirected_tty_write)
 650			cons_filp = filp;
 651		if (filp->f_op->write != tty_write)
 652			continue;
 653		closecount++;
 654		__tty_fasync(-1, filp, 0);	/* can't block */
 655		filp->f_op = &hung_up_tty_fops;
 656	}
 657	spin_unlock(&tty_files_lock);
 658
 659	refs = tty_signal_session_leader(tty, exit_session);
 660	/* Account for the p->signal references we killed */
 661	while (refs--)
 662		tty_kref_put(tty);
 663
 664	/*
 665	 * it drops BTM and thus races with reopen
 666	 * we protect the race by TTY_HUPPING
 667	 */
 668	tty_ldisc_hangup(tty);
 669
 670	spin_lock_irq(&tty->ctrl_lock);
 671	clear_bit(TTY_THROTTLED, &tty->flags);
 672	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 673	put_pid(tty->session);
 674	put_pid(tty->pgrp);
 675	tty->session = NULL;
 676	tty->pgrp = NULL;
 677	tty->ctrl_status = 0;
 678	spin_unlock_irq(&tty->ctrl_lock);
 679
 680	/*
 681	 * If one of the devices matches a console pointer, we
 682	 * cannot just call hangup() because that will cause
 683	 * tty->count and state->count to go out of sync.
 684	 * So we just call close() the right number of times.
 685	 */
 686	if (cons_filp) {
 687		if (tty->ops->close)
 688			for (n = 0; n < closecount; n++)
 689				tty->ops->close(tty, cons_filp);
 690	} else if (tty->ops->hangup)
 691		(tty->ops->hangup)(tty);
 692	/*
 693	 * We don't want to have driver/ldisc interactions beyond
 694	 * the ones we did here. The driver layer expects no
 695	 * calls after ->hangup() from the ldisc side. However we
 696	 * can't yet guarantee all that.
 697	 */
 698	set_bit(TTY_HUPPED, &tty->flags);
 699	clear_bit(TTY_HUPPING, &tty->flags);
 700
 701	tty_unlock(tty);
 702
 703	if (f)
 704		fput(f);
 705}
 706
 707static void do_tty_hangup(struct work_struct *work)
 708{
 709	struct tty_struct *tty =
 710		container_of(work, struct tty_struct, hangup_work);
 711
 712	__tty_hangup(tty, 0);
 713}
 714
 715/**
 716 *	tty_hangup		-	trigger a hangup event
 717 *	@tty: tty to hangup
 718 *
 719 *	A carrier loss (virtual or otherwise) has occurred on this like
 720 *	schedule a hangup sequence to run after this event.
 721 */
 722
 723void tty_hangup(struct tty_struct *tty)
 724{
 725#ifdef TTY_DEBUG_HANGUP
 726	char	buf[64];
 727	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 728#endif
 729	schedule_work(&tty->hangup_work);
 730}
 731
 732EXPORT_SYMBOL(tty_hangup);
 733
 734/**
 735 *	tty_vhangup		-	process vhangup
 736 *	@tty: tty to hangup
 737 *
 738 *	The user has asked via system call for the terminal to be hung up.
 739 *	We do this synchronously so that when the syscall returns the process
 740 *	is complete. That guarantee is necessary for security reasons.
 741 */
 742
 743void tty_vhangup(struct tty_struct *tty)
 744{
 745#ifdef TTY_DEBUG_HANGUP
 746	char	buf[64];
 747
 748	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 749#endif
 750	__tty_hangup(tty, 0);
 751}
 752
 753EXPORT_SYMBOL(tty_vhangup);
 754
 755
 756/**
 757 *	tty_vhangup_self	-	process vhangup for own ctty
 758 *
 759 *	Perform a vhangup on the current controlling tty
 760 */
 761
 762void tty_vhangup_self(void)
 763{
 764	struct tty_struct *tty;
 765
 766	tty = get_current_tty();
 767	if (tty) {
 768		tty_vhangup(tty);
 769		tty_kref_put(tty);
 770	}
 771}
 772
 773/**
 774 *	tty_vhangup_session		-	hangup session leader exit
 775 *	@tty: tty to hangup
 776 *
 777 *	The session leader is exiting and hanging up its controlling terminal.
 778 *	Every process in the foreground process group is signalled SIGHUP.
 779 *
 780 *	We do this synchronously so that when the syscall returns the process
 781 *	is complete. That guarantee is necessary for security reasons.
 782 */
 783
 784static void tty_vhangup_session(struct tty_struct *tty)
 785{
 786#ifdef TTY_DEBUG_HANGUP
 787	char	buf[64];
 788
 789	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 790#endif
 791	__tty_hangup(tty, 1);
 792}
 793
 794/**
 795 *	tty_hung_up_p		-	was tty hung up
 796 *	@filp: file pointer of tty
 797 *
 798 *	Return true if the tty has been subject to a vhangup or a carrier
 799 *	loss
 800 */
 801
 802int tty_hung_up_p(struct file *filp)
 803{
 804	return (filp->f_op == &hung_up_tty_fops);
 805}
 806
 807EXPORT_SYMBOL(tty_hung_up_p);
 808
 809static void session_clear_tty(struct pid *session)
 810{
 811	struct task_struct *p;
 812	do_each_pid_task(session, PIDTYPE_SID, p) {
 813		proc_clear_tty(p);
 814	} while_each_pid_task(session, PIDTYPE_SID, p);
 
 815}
 816
 817/**
 818 *	disassociate_ctty	-	disconnect controlling tty
 819 *	@on_exit: true if exiting so need to "hang up" the session
 820 *
 821 *	This function is typically called only by the session leader, when
 822 *	it wants to disassociate itself from its controlling tty.
 823 *
 824 *	It performs the following functions:
 825 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 826 * 	(2)  Clears the tty from being controlling the session
 827 * 	(3)  Clears the controlling tty for all processes in the
 828 * 		session group.
 829 *
 830 *	The argument on_exit is set to 1 if called when a process is
 831 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 832 *
 833 *	Locking:
 834 *		BTM is taken for hysterical raisins, and held when
 835 *		  called from no_tty().
 836 *		  tty_mutex is taken to protect tty
 837 *		  ->siglock is taken to protect ->signal/->sighand
 838 *		  tasklist_lock is taken to walk process list for sessions
 839 *		    ->siglock is taken to protect ->signal/->sighand
 840 */
 841
 842void disassociate_ctty(int on_exit)
 843{
 844	struct tty_struct *tty;
 845
 846	if (!current->signal->leader)
 847		return;
 
 
 
 848
 849	tty = get_current_tty();
 850	if (tty) {
 851		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 852			tty_vhangup_session(tty);
 853		} else {
 854			struct pid *tty_pgrp = tty_get_pgrp(tty);
 855			if (tty_pgrp) {
 856				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 857				if (!on_exit)
 858					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 859				put_pid(tty_pgrp);
 860			}
 861		}
 862		tty_kref_put(tty);
 863
 864	} else if (on_exit) {
 865		struct pid *old_pgrp;
 866		spin_lock_irq(&current->sighand->siglock);
 867		old_pgrp = current->signal->tty_old_pgrp;
 868		current->signal->tty_old_pgrp = NULL;
 869		spin_unlock_irq(&current->sighand->siglock);
 870		if (old_pgrp) {
 871			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 872			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 873			put_pid(old_pgrp);
 874		}
 875		return;
 876	}
 877
 878	spin_lock_irq(&current->sighand->siglock);
 879	put_pid(current->signal->tty_old_pgrp);
 880	current->signal->tty_old_pgrp = NULL;
 881
 882	tty = tty_kref_get(current->signal->tty);
 883	if (tty) {
 884		unsigned long flags;
 885		spin_lock_irqsave(&tty->ctrl_lock, flags);
 886		put_pid(tty->session);
 887		put_pid(tty->pgrp);
 888		tty->session = NULL;
 889		tty->pgrp = NULL;
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		tty_kref_put(tty);
 892	} else {
 893#ifdef TTY_DEBUG_HANGUP
 894		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 895		       " = NULL", tty);
 896#endif
 897	}
 898
 899	spin_unlock_irq(&current->sighand->siglock);
 900	/* Now clear signal->tty under the lock */
 901	read_lock(&tasklist_lock);
 902	session_clear_tty(task_session(current));
 903	read_unlock(&tasklist_lock);
 904}
 905
 906/**
 
 
 
 
 
 
 907 *
 908 *	no_tty	- Ensure the current process does not have a controlling tty
 
 909 */
 910void no_tty(void)
 911{
 912	/* FIXME: Review locking here. The tty_lock never covered any race
 913	   between a new association and proc_clear_tty but possible we need
 914	   to protect against this anyway */
 915	struct task_struct *tsk = current;
 916	disassociate_ctty(0);
 917	proc_clear_tty(tsk);
 918}
 
 919
 
 
 
 
 920
 921/**
 922 *	stop_tty	-	propagate flow control
 923 *	@tty: tty to stop
 924 *
 925 *	Perform flow control to the driver. For PTY/TTY pairs we
 926 *	must also propagate the TIOCKPKT status. May be called
 927 *	on an already stopped device and will not re-call the driver
 928 *	method.
 929 *
 930 *	This functionality is used by both the line disciplines for
 931 *	halting incoming flow and by the driver. It may therefore be
 932 *	called from any context, may be under the tty atomic_write_lock
 933 *	but not always.
 934 *
 935 *	Locking:
 936 *		Uses the tty control lock internally
 937 */
 938
 939void stop_tty(struct tty_struct *tty)
 940{
 941	unsigned long flags;
 942	spin_lock_irqsave(&tty->ctrl_lock, flags);
 943	if (tty->stopped) {
 944		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 945		return;
 
 
 
 
 
 946	}
 947	tty->stopped = 1;
 948	if (tty->link && tty->link->packet) {
 949		tty->ctrl_status &= ~TIOCPKT_START;
 950		tty->ctrl_status |= TIOCPKT_STOP;
 951		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 952	}
 953	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 954	if (tty->ops->stop)
 955		(tty->ops->stop)(tty);
 956}
 957
 958EXPORT_SYMBOL(stop_tty);
 959
 960/**
 961 *	start_tty	-	propagate flow control
 962 *	@tty: tty to start
 963 *
 964 *	Start a tty that has been stopped if at all possible. Perform
 965 *	any necessary wakeups and propagate the TIOCPKT status. If this
 966 *	is the tty was previous stopped and is being started then the
 967 *	driver start method is invoked and the line discipline woken.
 968 *
 969 *	Locking:
 970 *		ctrl_lock
 971 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973void start_tty(struct tty_struct *tty)
 974{
 975	unsigned long flags;
 976	spin_lock_irqsave(&tty->ctrl_lock, flags);
 977	if (!tty->stopped || tty->flow_stopped) {
 978		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 979		return;
 980	}
 981	tty->stopped = 0;
 982	if (tty->link && tty->link->packet) {
 983		tty->ctrl_status &= ~TIOCPKT_STOP;
 984		tty->ctrl_status |= TIOCPKT_START;
 985		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 986	}
 987	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 988	if (tty->ops->start)
 989		(tty->ops->start)(tty);
 990	/* If we have a running line discipline it may need kicking */
 991	tty_wakeup(tty);
 992}
 993
 994EXPORT_SYMBOL(start_tty);
 
 
 
 
 
 
 
 
 
 
 995
 996/* We limit tty time update visibility to every 8 seconds or so. */
 997static void tty_update_time(struct timespec *time)
 998{
 999	unsigned long sec = get_seconds() & ~7;
1000	if ((long)(sec - time->tv_sec) > 0)
1001		time->tv_sec = sec;
1002}
1003
 
1004/**
1005 *	tty_read	-	read method for tty device files
1006 *	@file: pointer to tty file
1007 *	@buf: user buffer
1008 *	@count: size of user buffer
1009 *	@ppos: unused
1010 *
1011 *	Perform the read system call function on this terminal device. Checks
1012 *	for hung up devices before calling the line discipline method.
1013 *
1014 *	Locking:
1015 *		Locks the line discipline internally while needed. Multiple
1016 *	read calls may be outstanding in parallel.
1017 */
1018
1019static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020			loff_t *ppos)
1021{
1022	int i;
1023	struct inode *inode = file_inode(file);
1024	struct tty_struct *tty = file_tty(file);
1025	struct tty_ldisc *ld;
 
1026
1027	if (tty_paranoia_check(tty, inode, "tty_read"))
1028		return -EIO;
1029	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030		return -EIO;
1031
1032	/* We want to wait for the line discipline to sort out in this
1033	   situation */
 
1034	ld = tty_ldisc_ref_wait(tty);
 
 
 
1035	if (ld->ops->read)
1036		i = (ld->ops->read)(tty, file, buf, count);
1037	else
1038		i = -EIO;
1039	tty_ldisc_deref(ld);
1040
1041	if (i > 0)
1042		tty_update_time(&inode->i_atime);
1043
1044	return i;
1045}
1046
1047void tty_write_unlock(struct tty_struct *tty)
1048	__releases(&tty->atomic_write_lock)
1049{
1050	mutex_unlock(&tty->atomic_write_lock);
1051	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052}
1053
1054int tty_write_lock(struct tty_struct *tty, int ndelay)
1055	__acquires(&tty->atomic_write_lock)
1056{
1057	if (!mutex_trylock(&tty->atomic_write_lock)) {
1058		if (ndelay)
1059			return -EAGAIN;
1060		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061			return -ERESTARTSYS;
1062	}
1063	return 0;
1064}
1065
1066/*
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1069 */
1070static inline ssize_t do_tty_write(
1071	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072	struct tty_struct *tty,
1073	struct file *file,
1074	const char __user *buf,
1075	size_t count)
1076{
 
1077	ssize_t ret, written = 0;
1078	unsigned int chunk;
1079
1080	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081	if (ret < 0)
1082		return ret;
1083
1084	/*
1085	 * We chunk up writes into a temporary buffer. This
1086	 * simplifies low-level drivers immensely, since they
1087	 * don't have locking issues and user mode accesses.
1088	 *
1089	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090	 * big chunk-size..
1091	 *
1092	 * The default chunk-size is 2kB, because the NTTY
1093	 * layer has problems with bigger chunks. It will
1094	 * claim to be able to handle more characters than
1095	 * it actually does.
1096	 *
1097	 * FIXME: This can probably go away now except that 64K chunks
1098	 * are too likely to fail unless switched to vmalloc...
1099	 */
1100	chunk = 2048;
1101	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102		chunk = 65536;
1103	if (count < chunk)
1104		chunk = count;
1105
1106	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107	if (tty->write_cnt < chunk) {
1108		unsigned char *buf_chunk;
1109
1110		if (chunk < 1024)
1111			chunk = 1024;
1112
1113		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114		if (!buf_chunk) {
1115			ret = -ENOMEM;
1116			goto out;
1117		}
1118		kfree(tty->write_buf);
1119		tty->write_cnt = chunk;
1120		tty->write_buf = buf_chunk;
1121	}
1122
1123	/* Do the write .. */
1124	for (;;) {
1125		size_t size = count;
1126		if (size > chunk)
1127			size = chunk;
1128		ret = -EFAULT;
1129		if (copy_from_user(tty->write_buf, buf, size))
1130			break;
1131		ret = write(tty, file, tty->write_buf, size);
 
1132		if (ret <= 0)
1133			break;
 
1134		written += ret;
1135		buf += ret;
 
 
 
 
 
 
1136		count -= ret;
1137		if (!count)
1138			break;
1139		ret = -ERESTARTSYS;
1140		if (signal_pending(current))
1141			break;
1142		cond_resched();
1143	}
1144	if (written) {
1145		tty_update_time(&file_inode(file)->i_mtime);
1146		ret = written;
1147	}
1148out:
1149	tty_write_unlock(tty);
1150	return ret;
1151}
1152
 
1153/**
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1157 *
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1161 *
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1163 */
1164
1165void tty_write_message(struct tty_struct *tty, char *msg)
1166{
1167	if (tty) {
1168		mutex_lock(&tty->atomic_write_lock);
1169		tty_lock(tty);
1170		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171			tty_unlock(tty);
1172			tty->ops->write(tty, msg, strlen(msg));
1173		} else
1174			tty_unlock(tty);
1175		tty_write_unlock(tty);
1176	}
1177	return;
1178}
 
1179
1180
1181/**
1182 *	tty_write		-	write method for tty device file
1183 *	@file: tty file pointer
1184 *	@buf: user data to write
1185 *	@count: bytes to write
1186 *	@ppos: unused
1187 *
1188 *	Write data to a tty device via the line discipline.
1189 *
1190 *	Locking:
1191 *		Locks the line discipline as required
1192 *		Writes to the tty driver are serialized by the atomic_write_lock
1193 *	and are then processed in chunks to the device. The line discipline
1194 *	write method will not be invoked in parallel for each device.
1195 */
1196
1197static ssize_t tty_write(struct file *file, const char __user *buf,
1198						size_t count, loff_t *ppos)
1199{
1200	struct tty_struct *tty = file_tty(file);
1201 	struct tty_ldisc *ld;
1202	ssize_t ret;
1203
1204	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205		return -EIO;
1206	if (!tty || !tty->ops->write ||
1207		(test_bit(TTY_IO_ERROR, &tty->flags)))
1208			return -EIO;
1209	/* Short term debug to catch buggy drivers */
1210	if (tty->ops->write_room == NULL)
1211		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212			tty->driver->name);
1213	ld = tty_ldisc_ref_wait(tty);
 
 
1214	if (!ld->ops->write)
1215		ret = -EIO;
1216	else
1217		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218	tty_ldisc_deref(ld);
1219	return ret;
1220}
1221
1222ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224{
1225	struct file *p = NULL;
1226
1227	spin_lock(&redirect_lock);
1228	if (redirect)
1229		p = get_file(redirect);
1230	spin_unlock(&redirect_lock);
1231
 
 
 
 
1232	if (p) {
1233		ssize_t res;
1234		res = vfs_write(p, buf, count, &p->f_pos);
 
1235		fput(p);
1236		return res;
1237	}
1238	return tty_write(file, buf, count, ppos);
1239}
1240
1241static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243/**
1244 *	pty_line_name	-	generate name for a pty
1245 *	@driver: the tty driver in use
1246 *	@index: the minor number
1247 *	@p: output buffer of at least 6 bytes
1248 *
1249 *	Generate a name from a driver reference and write it to the output
1250 *	buffer.
1251 *
1252 *	Locking: None
1253 */
1254static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255{
 
1256	int i = index + driver->name_base;
1257	/* ->name is initialized to "ttyp", but "tty" is expected */
1258	sprintf(p, "%s%c%x",
1259		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260		ptychar[i >> 4 & 0xf], i & 0xf);
1261}
1262
1263/**
1264 *	tty_line_name	-	generate name for a tty
1265 *	@driver: the tty driver in use
1266 *	@index: the minor number
1267 *	@p: output buffer of at least 7 bytes
1268 *
1269 *	Generate a name from a driver reference and write it to the output
1270 *	buffer.
1271 *
1272 *	Locking: None
1273 */
1274static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275{
1276	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277		return sprintf(p, "%s", driver->name);
1278	else
1279		return sprintf(p, "%s%d", driver->name,
1280			       index + driver->name_base);
1281}
1282
1283/**
1284 *	tty_driver_lookup_tty() - find an existing tty, if any
1285 *	@driver: the driver for the tty
1286 *	@idx:	 the minor number
1287 *
1288 *	Return the tty, if found or ERR_PTR() otherwise.
1289 *
1290 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1291 *	be held until the 'fast-open' is also done. Will change once we
1292 *	have refcounting in the driver and per driver locking
1293 */
1294static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295		struct inode *inode, int idx)
1296{
1297	if (driver->ops->lookup)
1298		return driver->ops->lookup(driver, inode, idx);
1299
1300	return driver->ttys[idx];
 
 
 
 
 
 
 
 
 
 
 
 
1301}
1302
1303/**
1304 *	tty_init_termios	-  helper for termios setup
1305 *	@tty: the tty to set up
1306 *
1307 *	Initialise the termios structures for this tty. Thus runs under
1308 *	the tty_mutex currently so we can be relaxed about ordering.
1309 */
1310
1311int tty_init_termios(struct tty_struct *tty)
1312{
1313	struct ktermios *tp;
1314	int idx = tty->index;
1315
1316	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317		tty->termios = tty->driver->init_termios;
1318	else {
1319		/* Check for lazy saved data */
1320		tp = tty->driver->termios[idx];
1321		if (tp != NULL)
1322			tty->termios = *tp;
1323		else
 
1324			tty->termios = tty->driver->init_termios;
1325	}
1326	/* Compatibility until drivers always set this */
1327	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329	return 0;
1330}
1331EXPORT_SYMBOL_GPL(tty_init_termios);
1332
 
 
 
 
 
 
 
 
1333int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334{
1335	int ret = tty_init_termios(tty);
1336	if (ret)
1337		return ret;
1338
1339	tty_driver_kref_get(driver);
1340	tty->count++;
1341	driver->ttys[tty->index] = tty;
1342	return 0;
1343}
1344EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346/**
1347 *	tty_driver_install_tty() - install a tty entry in the driver
1348 *	@driver: the driver for the tty
1349 *	@tty: the tty
1350 *
1351 *	Install a tty object into the driver tables. The tty->index field
1352 *	will be set by the time this is called. This method is responsible
1353 *	for ensuring any need additional structures are allocated and
1354 *	configured.
1355 *
1356 *	Locking: tty_mutex for now
1357 */
1358static int tty_driver_install_tty(struct tty_driver *driver,
1359						struct tty_struct *tty)
1360{
1361	return driver->ops->install ? driver->ops->install(driver, tty) :
1362		tty_standard_install(driver, tty);
1363}
1364
1365/**
1366 *	tty_driver_remove_tty() - remove a tty from the driver tables
1367 *	@driver: the driver for the tty
1368 *	@idx:	 the minor number
1369 *
1370 *	Remvoe a tty object from the driver tables. The tty->index field
1371 *	will be set by the time this is called.
1372 *
1373 *	Locking: tty_mutex for now
1374 */
1375void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376{
1377	if (driver->ops->remove)
1378		driver->ops->remove(driver, tty);
1379	else
1380		driver->ttys[tty->index] = NULL;
1381}
1382
1383/*
1384 * 	tty_reopen()	- fast re-open of an open tty
1385 * 	@tty	- the tty to open
1386 *
1387 *	Return 0 on success, -errno on error.
1388 *
1389 *	Locking: tty_mutex must be held from the time the tty was found
1390 *		 till this open completes.
1391 */
1392static int tty_reopen(struct tty_struct *tty)
1393{
1394	struct tty_driver *driver = tty->driver;
 
 
1395
1396	if (test_bit(TTY_CLOSING, &tty->flags) ||
1397			test_bit(TTY_HUPPING, &tty->flags))
1398		return -EIO;
1399
1400	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401	    driver->subtype == PTY_TYPE_MASTER) {
1402		/*
1403		 * special case for PTY masters: only one open permitted,
1404		 * and the slave side open count is incremented as well.
1405		 */
1406		if (tty->count)
1407			return -EIO;
 
 
 
 
 
1408
1409		tty->link->count++;
 
 
1410	}
1411	tty->count++;
1412
1413	WARN_ON(!tty->ldisc);
 
1414
1415	return 0;
1416}
1417
1418/**
1419 *	tty_init_dev		-	initialise a tty device
1420 *	@driver: tty driver we are opening a device on
1421 *	@idx: device index
1422 *	@ret_tty: returned tty structure
1423 *
1424 *	Prepare a tty device. This may not be a "new" clean device but
1425 *	could also be an active device. The pty drivers require special
1426 *	handling because of this.
1427 *
1428 *	Locking:
1429 *		The function is called under the tty_mutex, which
1430 *	protects us from the tty struct or driver itself going away.
1431 *
1432 *	On exit the tty device has the line discipline attached and
1433 *	a reference count of 1. If a pair was created for pty/tty use
1434 *	and the other was a pty master then it too has a reference count of 1.
1435 *
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open.  The new code protects the open with a mutex, so it's
1438 * really quite straightforward.  The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1440 */
1441
1442struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443{
1444	struct tty_struct *tty;
1445	int retval;
1446
1447	/*
1448	 * First time open is complex, especially for PTY devices.
1449	 * This code guarantees that either everything succeeds and the
1450	 * TTY is ready for operation, or else the table slots are vacated
1451	 * and the allocated memory released.  (Except that the termios
1452	 * and locked termios may be retained.)
1453	 */
1454
1455	if (!try_module_get(driver->owner))
1456		return ERR_PTR(-ENODEV);
1457
1458	tty = alloc_tty_struct();
1459	if (!tty) {
1460		retval = -ENOMEM;
1461		goto err_module_put;
1462	}
1463	initialize_tty_struct(tty, driver, idx);
1464
1465	tty_lock(tty);
1466	retval = tty_driver_install_tty(driver, tty);
1467	if (retval < 0)
1468		goto err_deinit_tty;
1469
1470	if (!tty->port)
1471		tty->port = driver->ports[idx];
1472
1473	WARN_RATELIMIT(!tty->port,
1474			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475			__func__, tty->driver->name);
 
 
 
1476
 
 
 
1477	tty->port->itty = tty;
1478
1479	/*
1480	 * Structures all installed ... call the ldisc open routines.
1481	 * If we fail here just call release_tty to clean up.  No need
1482	 * to decrement the use counts, as release_tty doesn't care.
1483	 */
1484	retval = tty_ldisc_setup(tty, tty->link);
1485	if (retval)
1486		goto err_release_tty;
 
1487	/* Return the tty locked so that it cannot vanish under the caller */
1488	return tty;
1489
1490err_deinit_tty:
1491	tty_unlock(tty);
1492	deinitialize_tty_struct(tty);
1493	free_tty_struct(tty);
1494err_module_put:
1495	module_put(driver->owner);
1496	return ERR_PTR(retval);
1497
1498	/* call the tty release_tty routine to clean out this slot */
1499err_release_tty:
 
 
 
 
1500	tty_unlock(tty);
1501	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502				 "clearing slot %d\n", idx);
1503	release_tty(tty, idx);
1504	return ERR_PTR(retval);
1505}
1506
1507void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1508{
1509	struct ktermios *tp;
1510	int idx = tty->index;
1511
1512	/* If the port is going to reset then it has no termios to save */
1513	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514		return;
1515
1516	/* Stash the termios data */
1517	tp = tty->driver->termios[idx];
1518	if (tp == NULL) {
1519		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520		if (tp == NULL) {
1521			pr_warn("tty: no memory to save termios state.\n");
1522			return;
1523		}
1524		tty->driver->termios[idx] = tp;
1525	}
1526	*tp = tty->termios;
1527}
1528EXPORT_SYMBOL(tty_free_termios);
1529
1530/**
1531 *	tty_flush_works		-	flush all works of a tty
1532 *	@tty: tty device to flush works for
1533 *
1534 *	Sync flush all works belonging to @tty.
1535 */
1536static void tty_flush_works(struct tty_struct *tty)
1537{
1538	flush_work(&tty->SAK_work);
1539	flush_work(&tty->hangup_work);
 
 
 
 
1540}
1541
1542/**
1543 *	release_one_tty		-	release tty structure memory
1544 *	@kref: kref of tty we are obliterating
 
 
 
 
1545 *
1546 *	Releases memory associated with a tty structure, and clears out the
1547 *	driver table slots. This function is called when a device is no longer
1548 *	in use. It also gets called when setup of a device fails.
1549 *
1550 *	Locking:
1551 *		takes the file list lock internally when working on the list
1552 *	of ttys that the driver keeps.
1553 *
1554 *	This method gets called from a work queue so that the driver private
1555 *	cleanup ops can sleep (needed for USB at least)
1556 */
1557static void release_one_tty(struct work_struct *work)
1558{
1559	struct tty_struct *tty =
1560		container_of(work, struct tty_struct, hangup_work);
1561	struct tty_driver *driver = tty->driver;
 
1562
1563	if (tty->ops->cleanup)
1564		tty->ops->cleanup(tty);
1565
1566	tty->magic = 0;
1567	tty_driver_kref_put(driver);
1568	module_put(driver->owner);
1569
1570	spin_lock(&tty_files_lock);
1571	list_del_init(&tty->tty_files);
1572	spin_unlock(&tty_files_lock);
1573
1574	put_pid(tty->pgrp);
1575	put_pid(tty->session);
1576	free_tty_struct(tty);
1577}
1578
1579static void queue_release_one_tty(struct kref *kref)
1580{
1581	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583	/* The hangup queue is now free so we can reuse it rather than
1584	   waste a chunk of memory for each port */
 
1585	INIT_WORK(&tty->hangup_work, release_one_tty);
1586	schedule_work(&tty->hangup_work);
1587}
1588
1589/**
1590 *	tty_kref_put		-	release a tty kref
1591 *	@tty: tty device
1592 *
1593 *	Release a reference to a tty device and if need be let the kref
1594 *	layer destruct the object for us
1595 */
1596
1597void tty_kref_put(struct tty_struct *tty)
1598{
1599	if (tty)
1600		kref_put(&tty->kref, queue_release_one_tty);
1601}
1602EXPORT_SYMBOL(tty_kref_put);
1603
1604/**
1605 *	release_tty		-	release tty structure memory
 
 
1606 *
1607 *	Release both @tty and a possible linked partner (think pty pair),
1608 *	and decrement the refcount of the backing module.
1609 *
1610 *	Locking:
1611 *		tty_mutex
1612 *		takes the file list lock internally when working on the list
1613 *	of ttys that the driver keeps.
1614 *
 
 
 
 
1615 */
1616static void release_tty(struct tty_struct *tty, int idx)
1617{
1618	/* This should always be true but check for the moment */
1619	WARN_ON(tty->index != idx);
1620	WARN_ON(!mutex_is_locked(&tty_mutex));
1621	if (tty->ops->shutdown)
1622		tty->ops->shutdown(tty);
1623	tty_free_termios(tty);
1624	tty_driver_remove_tty(tty->driver, tty);
1625	tty->port->itty = NULL;
 
1626	if (tty->link)
1627		tty->link->port->itty = NULL;
1628	cancel_work_sync(&tty->port->buf.work);
 
 
 
1629
1630	if (tty->link)
1631		tty_kref_put(tty->link);
1632	tty_kref_put(tty);
1633}
1634
1635/**
1636 *	tty_release_checks - check a tty before real release
1637 *	@tty: tty to check
1638 *	@o_tty: link of @tty (if any)
1639 *	@idx: index of the tty
1640 *
1641 *	Performs some paranoid checking before true release of the @tty.
1642 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643 */
1644static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645		int idx)
1646{
1647#ifdef TTY_PARANOIA_CHECK
1648	if (idx < 0 || idx >= tty->driver->num) {
1649		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650				__func__, tty->name);
1651		return -1;
1652	}
1653
1654	/* not much to check for devpts */
1655	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656		return 0;
1657
1658	if (tty != tty->driver->ttys[idx]) {
1659		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660				__func__, idx, tty->name);
1661		return -1;
1662	}
1663	if (tty->driver->other) {
 
 
1664		if (o_tty != tty->driver->other->ttys[idx]) {
1665			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666					__func__, idx, tty->name);
1667			return -1;
1668		}
1669		if (o_tty->link != tty) {
1670			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671			return -1;
1672		}
1673	}
1674#endif
1675	return 0;
1676}
1677
1678/**
1679 *	tty_release		-	vfs callback for close
1680 *	@inode: inode of tty
1681 *	@filp: file pointer for handle to tty
1682 *
1683 *	Called the last time each file handle is closed that references
1684 *	this tty. There may however be several such references.
1685 *
1686 *	Locking:
1687 *		Takes bkl. See tty_release_dev
1688 *
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692 *
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1695 */
1696
1697int tty_release(struct inode *inode, struct file *filp)
1698{
1699	struct tty_struct *tty = file_tty(filp);
1700	struct tty_struct *o_tty;
1701	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1702	int	idx;
1703	char	buf[64];
 
1704
1705	if (tty_paranoia_check(tty, inode, __func__))
1706		return 0;
1707
1708	tty_lock(tty);
1709	check_tty_count(tty, __func__);
1710
1711	__tty_fasync(-1, filp, 0);
1712
1713	idx = tty->index;
1714	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715		      tty->driver->subtype == PTY_TYPE_MASTER);
1716	/* Review: parallel close */
1717	o_tty = tty->link;
1718
1719	if (tty_release_checks(tty, o_tty, idx)) {
1720		tty_unlock(tty);
1721		return 0;
1722	}
1723
1724#ifdef TTY_DEBUG_HANGUP
1725	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726			tty_name(tty, buf), tty->count);
1727#endif
1728
1729	if (tty->ops->close)
1730		tty->ops->close(tty, filp);
1731
1732	tty_unlock(tty);
 
 
1733	/*
1734	 * Sanity check: if tty->count is going to zero, there shouldn't be
1735	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1736	 * wait queues and kick everyone out _before_ actually starting to
1737	 * close.  This ensures that we won't block while releasing the tty
1738	 * structure.
1739	 *
1740	 * The test for the o_tty closing is necessary, since the master and
1741	 * slave sides may close in any order.  If the slave side closes out
1742	 * first, its count will be one, since the master side holds an open.
1743	 * Thus this test wouldn't be triggered at the time the slave closes,
1744	 * so we do it now.
1745	 *
1746	 * Note that it's possible for the tty to be opened again while we're
1747	 * flushing out waiters.  By recalculating the closing flags before
1748	 * each iteration we avoid any problems.
1749	 */
1750	while (1) {
1751		/* Guard against races with tty->count changes elsewhere and
1752		   opens on /dev/tty */
1753
1754		mutex_lock(&tty_mutex);
1755		tty_lock_pair(tty, o_tty);
1756		tty_closing = tty->count <= 1;
1757		o_tty_closing = o_tty &&
1758			(o_tty->count <= (pty_master ? 1 : 0));
1759		do_sleep = 0;
1760
1761		if (tty_closing) {
1762			if (waitqueue_active(&tty->read_wait)) {
1763				wake_up_poll(&tty->read_wait, POLLIN);
1764				do_sleep++;
1765			}
1766			if (waitqueue_active(&tty->write_wait)) {
1767				wake_up_poll(&tty->write_wait, POLLOUT);
1768				do_sleep++;
1769			}
1770		}
1771		if (o_tty_closing) {
1772			if (waitqueue_active(&o_tty->read_wait)) {
1773				wake_up_poll(&o_tty->read_wait, POLLIN);
1774				do_sleep++;
1775			}
1776			if (waitqueue_active(&o_tty->write_wait)) {
1777				wake_up_poll(&o_tty->write_wait, POLLOUT);
1778				do_sleep++;
1779			}
1780		}
1781		if (!do_sleep)
1782			break;
1783
1784		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785				__func__, tty_name(tty, buf));
1786		tty_unlock_pair(tty, o_tty);
1787		mutex_unlock(&tty_mutex);
1788		schedule();
 
 
 
 
1789	}
1790
1791	/*
1792	 * The closing flags are now consistent with the open counts on
1793	 * both sides, and we've completed the last operation that could
1794	 * block, so it's safe to proceed with closing.
1795	 *
1796	 * We must *not* drop the tty_mutex until we ensure that a further
1797	 * entry into tty_open can not pick up this tty.
1798	 */
1799	if (pty_master) {
1800		if (--o_tty->count < 0) {
1801			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802				__func__, o_tty->count, tty_name(o_tty, buf));
1803			o_tty->count = 0;
1804		}
1805	}
1806	if (--tty->count < 0) {
1807		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808				__func__, tty->count, tty_name(tty, buf));
1809		tty->count = 0;
1810	}
1811
1812	/*
1813	 * We've decremented tty->count, so we need to remove this file
1814	 * descriptor off the tty->tty_files list; this serves two
1815	 * purposes:
1816	 *  - check_tty_count sees the correct number of file descriptors
1817	 *    associated with this tty.
1818	 *  - do_tty_hangup no longer sees this file descriptor as
1819	 *    something that needs to be handled for hangups.
1820	 */
1821	tty_del_file(filp);
1822
1823	/*
1824	 * Perform some housekeeping before deciding whether to return.
1825	 *
1826	 * Set the TTY_CLOSING flag if this was the last open.  In the
1827	 * case of a pty we may have to wait around for the other side
1828	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1829	 */
1830	if (tty_closing)
1831		set_bit(TTY_CLOSING, &tty->flags);
1832	if (o_tty_closing)
1833		set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835	/*
1836	 * If _either_ side is closing, make sure there aren't any
1837	 * processes that still think tty or o_tty is their controlling
1838	 * tty.
1839	 */
1840	if (tty_closing || o_tty_closing) {
1841		read_lock(&tasklist_lock);
1842		session_clear_tty(tty->session);
1843		if (o_tty)
1844			session_clear_tty(o_tty->session);
1845		read_unlock(&tasklist_lock);
1846	}
1847
1848	mutex_unlock(&tty_mutex);
1849	tty_unlock_pair(tty, o_tty);
1850	/* At this point the TTY_CLOSING flag should ensure a dead tty
1851	   cannot be re-opened by a racing opener */
1852
1853	/* check whether both sides are closing ... */
1854	if (!tty_closing || (o_tty && !o_tty_closing))
1855		return 0;
1856
1857#ifdef TTY_DEBUG_HANGUP
1858	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859#endif
1860	/*
1861	 * Ask the line discipline code to release its structures
1862	 */
1863	tty_ldisc_release(tty, o_tty);
1864
1865	/* Wait for pending work before tty destruction commmences */
1866	tty_flush_works(tty);
1867	if (o_tty)
1868		tty_flush_works(o_tty);
1869
1870#ifdef TTY_DEBUG_HANGUP
1871	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872#endif
1873	/*
1874	 * The release_tty function takes care of the details of clearing
1875	 * the slots and preserving the termios structure. The tty_unlock_pair
1876	 * should be safe as we keep a kref while the tty is locked (so the
1877	 * unlock never unlocks a freed tty).
1878	 */
1879	mutex_lock(&tty_mutex);
1880	release_tty(tty, idx);
1881	mutex_unlock(&tty_mutex);
1882
 
1883	return 0;
1884}
1885
1886/**
1887 *	tty_open_current_tty - get tty of current task for open
1888 *	@device: device number
1889 *	@filp: file pointer to tty
1890 *	@return: tty of the current task iff @device is /dev/tty
1891 *
1892 *	We cannot return driver and index like for the other nodes because
1893 *	devpts will not work then. It expects inodes to be from devpts FS.
1894 *
1895 *	We need to move to returning a refcounted object from all the lookup
1896 *	paths including this one.
1897 */
1898static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899{
1900	struct tty_struct *tty;
 
1901
1902	if (device != MKDEV(TTYAUX_MAJOR, 0))
1903		return NULL;
1904
1905	tty = get_current_tty();
1906	if (!tty)
1907		return ERR_PTR(-ENXIO);
1908
1909	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910	/* noctty = 1; */
1911	tty_kref_put(tty);
1912	/* FIXME: we put a reference and return a TTY! */
1913	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1914	return tty;
1915}
1916
1917/**
1918 *	tty_lookup_driver - lookup a tty driver for a given device file
1919 *	@device: device number
1920 *	@filp: file pointer to tty
1921 *	@noctty: set if the device should not become a controlling tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 * 	If @return is not erroneous, the caller is responsible to decrement the
1926 * 	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
 
 
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *noctty, int *index)
1932{
1933	struct tty_driver *driver;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
 
1939		driver = tty_driver_kref_get(console_driver);
1940		*index = fg_console;
1941		*noctty = 1;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
 
1947		if (console_driver) {
1948			driver = tty_driver_kref_get(console_driver);
1949			if (driver) {
1950				/* Don't let /dev/console block */
1951				filp->f_flags |= O_NONBLOCK;
1952				*noctty = 1;
1953				break;
1954			}
1955		}
 
 
1956		return ERR_PTR(-ENODEV);
1957	}
1958	default:
1959		driver = get_tty_driver(device, index);
1960		if (!driver)
1961			return ERR_PTR(-ENODEV);
1962		break;
1963	}
1964	return driver;
1965}
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967/**
1968 *	tty_open		-	open a tty device
1969 *	@inode: inode of device file
1970 *	@filp: file pointer to tty
1971 *
1972 *	tty_open and tty_release keep up the tty count that contains the
1973 *	number of opens done on a tty. We cannot use the inode-count, as
1974 *	different inodes might point to the same tty.
1975 *
1976 *	Open-counting is needed for pty masters, as well as for keeping
1977 *	track of serial lines: DTR is dropped when the last close happens.
1978 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1979 *
1980 *	The termios state of a pty is reset on first open so that
1981 *	settings don't persist across reuse.
1982 *
1983 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 *		 tty->count should protect the rest.
1985 *		 ->siglock protects ->signal/->sighand
1986 *
1987 *	Note: the tty_unlock/lock cases without a ref are only safe due to
1988 *	tty_mutex
1989 */
 
 
 
 
 
1990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993	struct tty_struct *tty;
1994	int noctty, retval;
1995	struct tty_driver *driver = NULL;
1996	int index;
1997	dev_t device = inode->i_rdev;
1998	unsigned saved_flags = filp->f_flags;
1999
2000	nonseekable_open(inode, filp);
2001
2002retry_open:
2003	retval = tty_alloc_file(filp);
2004	if (retval)
2005		return -ENOMEM;
2006
2007	noctty = filp->f_flags & O_NOCTTY;
2008	index  = -1;
2009	retval = 0;
2010
2011	mutex_lock(&tty_mutex);
2012	/* This is protected by the tty_mutex */
2013	tty = tty_open_current_tty(device, filp);
2014	if (IS_ERR(tty)) {
2015		retval = PTR_ERR(tty);
2016		goto err_unlock;
2017	} else if (!tty) {
2018		driver = tty_lookup_driver(device, filp, &noctty, &index);
2019		if (IS_ERR(driver)) {
2020			retval = PTR_ERR(driver);
2021			goto err_unlock;
2022		}
2023
2024		/* check whether we're reopening an existing tty */
2025		tty = tty_driver_lookup_tty(driver, inode, index);
2026		if (IS_ERR(tty)) {
2027			retval = PTR_ERR(tty);
2028			goto err_unlock;
2029		}
2030	}
2031
2032	if (tty) {
2033		tty_lock(tty);
2034		retval = tty_reopen(tty);
2035		if (retval < 0) {
2036			tty_unlock(tty);
2037			tty = ERR_PTR(retval);
2038		}
2039	} else	/* Returns with the tty_lock held for now */
2040		tty = tty_init_dev(driver, index);
2041
2042	mutex_unlock(&tty_mutex);
2043	if (driver)
2044		tty_driver_kref_put(driver);
2045	if (IS_ERR(tty)) {
 
2046		retval = PTR_ERR(tty);
2047		goto err_file;
 
 
 
2048	}
2049
2050	tty_add_file(tty, filp);
2051
2052	check_tty_count(tty, __func__);
2053	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054	    tty->driver->subtype == PTY_TYPE_MASTER)
2055		noctty = 1;
2056#ifdef TTY_DEBUG_HANGUP
2057	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058#endif
2059	if (tty->ops->open)
2060		retval = tty->ops->open(tty, filp);
2061	else
2062		retval = -ENODEV;
2063	filp->f_flags = saved_flags;
2064
2065	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066						!capable(CAP_SYS_ADMIN))
2067		retval = -EBUSY;
2068
2069	if (retval) {
2070#ifdef TTY_DEBUG_HANGUP
2071		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072				retval, tty->name);
2073#endif
2074		tty_unlock(tty); /* need to call tty_release without BTM */
2075		tty_release(inode, filp);
2076		if (retval != -ERESTARTSYS)
2077			return retval;
2078
2079		if (signal_pending(current))
2080			return retval;
2081
2082		schedule();
2083		/*
2084		 * Need to reset f_op in case a hangup happened.
2085		 */
2086		if (filp->f_op == &hung_up_tty_fops)
2087			filp->f_op = &tty_fops;
2088		goto retry_open;
2089	}
2090	clear_bit(TTY_HUPPED, &tty->flags);
2091	tty_unlock(tty);
2092
2093
2094	mutex_lock(&tty_mutex);
2095	tty_lock(tty);
2096	spin_lock_irq(&current->sighand->siglock);
2097	if (!noctty &&
2098	    current->signal->leader &&
2099	    !current->signal->tty &&
2100	    tty->session == NULL)
2101		__proc_set_tty(current, tty);
2102	spin_unlock_irq(&current->sighand->siglock);
2103	tty_unlock(tty);
2104	mutex_unlock(&tty_mutex);
2105	return 0;
2106err_unlock:
2107	mutex_unlock(&tty_mutex);
2108	/* after locks to avoid deadlock */
2109	if (!IS_ERR_OR_NULL(driver))
2110		tty_driver_kref_put(driver);
2111err_file:
2112	tty_free_file(filp);
2113	return retval;
2114}
2115
2116
2117
2118/**
2119 *	tty_poll	-	check tty status
2120 *	@filp: file being polled
2121 *	@wait: poll wait structures to update
2122 *
2123 *	Call the line discipline polling method to obtain the poll
2124 *	status of the device.
2125 *
2126 *	Locking: locks called line discipline but ldisc poll method
2127 *	may be re-entered freely by other callers.
2128 */
2129
2130static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131{
2132	struct tty_struct *tty = file_tty(filp);
2133	struct tty_ldisc *ld;
2134	int ret = 0;
2135
2136	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137		return 0;
2138
2139	ld = tty_ldisc_ref_wait(tty);
 
 
2140	if (ld->ops->poll)
2141		ret = (ld->ops->poll)(tty, filp, wait);
2142	tty_ldisc_deref(ld);
2143	return ret;
2144}
2145
2146static int __tty_fasync(int fd, struct file *filp, int on)
2147{
2148	struct tty_struct *tty = file_tty(filp);
2149	struct tty_ldisc *ldisc;
2150	unsigned long flags;
2151	int retval = 0;
2152
2153	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154		goto out;
2155
2156	retval = fasync_helper(fd, filp, on, &tty->fasync);
2157	if (retval <= 0)
2158		goto out;
2159
2160	ldisc = tty_ldisc_ref(tty);
2161	if (ldisc) {
2162		if (ldisc->ops->fasync)
2163			ldisc->ops->fasync(tty, on);
2164		tty_ldisc_deref(ldisc);
2165	}
2166
2167	if (on) {
2168		enum pid_type type;
2169		struct pid *pid;
2170
2171		spin_lock_irqsave(&tty->ctrl_lock, flags);
2172		if (tty->pgrp) {
2173			pid = tty->pgrp;
2174			type = PIDTYPE_PGID;
2175		} else {
2176			pid = task_pid(current);
2177			type = PIDTYPE_PID;
2178		}
2179		get_pid(pid);
2180		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181		retval = __f_setown(filp, pid, type, 0);
2182		put_pid(pid);
 
2183	}
2184out:
2185	return retval;
2186}
2187
2188static int tty_fasync(int fd, struct file *filp, int on)
2189{
2190	struct tty_struct *tty = file_tty(filp);
2191	int retval;
2192
2193	tty_lock(tty);
2194	retval = __tty_fasync(fd, filp, on);
 
2195	tty_unlock(tty);
2196
2197	return retval;
2198}
2199
 
2200/**
2201 *	tiocsti			-	fake input character
2202 *	@tty: tty to fake input into
2203 *	@p: pointer to character
2204 *
2205 *	Fake input to a tty device. Does the necessary locking and
2206 *	input management.
2207 *
2208 *	FIXME: does not honour flow control ??
2209 *
2210 *	Locking:
2211 *		Called functions take tty_ldiscs_lock
2212 *		current->signal->tty check is safe without locks
2213 *
2214 *	FIXME: may race normal receive processing
 
 
2215 */
2216
2217static int tiocsti(struct tty_struct *tty, char __user *p)
2218{
2219	char ch, mbz = 0;
2220	struct tty_ldisc *ld;
 
 
 
 
2221
2222	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223		return -EPERM;
2224	if (get_user(ch, p))
2225		return -EFAULT;
2226	tty_audit_tiocsti(tty, ch);
2227	ld = tty_ldisc_ref_wait(tty);
2228	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2229	tty_ldisc_deref(ld);
2230	return 0;
2231}
2232
2233/**
2234 *	tiocgwinsz		-	implement window query ioctl
2235 *	@tty; tty
2236 *	@arg: user buffer for result
2237 *
2238 *	Copies the kernel idea of the window size into the user buffer.
2239 *
2240 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2241 *		is consistent.
2242 */
2243
2244static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245{
2246	int err;
2247
2248	mutex_lock(&tty->winsize_mutex);
2249	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250	mutex_unlock(&tty->winsize_mutex);
2251
2252	return err ? -EFAULT: 0;
2253}
2254
2255/**
2256 *	tty_do_resize		-	resize event
2257 *	@tty: tty being resized
2258 *	@rows: rows (character)
2259 *	@cols: cols (character)
2260 *
2261 *	Update the termios variables and send the necessary signals to
2262 *	peform a terminal resize correctly
2263 */
2264
2265int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266{
2267	struct pid *pgrp;
2268	unsigned long flags;
2269
2270	/* Lock the tty */
2271	mutex_lock(&tty->winsize_mutex);
2272	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273		goto done;
2274	/* Get the PID values and reference them so we can
2275	   avoid holding the tty ctrl lock while sending signals */
2276	spin_lock_irqsave(&tty->ctrl_lock, flags);
2277	pgrp = get_pid(tty->pgrp);
2278	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
 
 
2280	if (pgrp)
2281		kill_pgrp(pgrp, SIGWINCH, 1);
2282	put_pid(pgrp);
2283
2284	tty->winsize = *ws;
2285done:
2286	mutex_unlock(&tty->winsize_mutex);
2287	return 0;
2288}
2289EXPORT_SYMBOL(tty_do_resize);
2290
2291/**
2292 *	tiocswinsz		-	implement window size set ioctl
2293 *	@tty; tty side of tty
2294 *	@arg: user buffer for result
2295 *
2296 *	Copies the user idea of the window size to the kernel. Traditionally
2297 *	this is just advisory information but for the Linux console it
2298 *	actually has driver level meaning and triggers a VC resize.
2299 *
2300 *	Locking:
2301 *		Driver dependent. The default do_resize method takes the
2302 *	tty termios mutex and ctrl_lock. The console takes its own lock
2303 *	then calls into the default method.
2304 */
2305
2306static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	struct winsize tmp_ws;
 
2309	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310		return -EFAULT;
2311
2312	if (tty->ops->resize)
2313		return tty->ops->resize(tty, &tmp_ws);
2314	else
2315		return tty_do_resize(tty, &tmp_ws);
2316}
2317
2318/**
2319 *	tioccons	-	allow admin to move logical console
2320 *	@file: the file to become console
2321 *
2322 *	Allow the administrator to move the redirected console device
2323 *
2324 *	Locking: uses redirect_lock to guard the redirect information
2325 */
2326
2327static int tioccons(struct file *file)
2328{
2329	if (!capable(CAP_SYS_ADMIN))
2330		return -EPERM;
2331	if (file->f_op->write == redirected_tty_write) {
2332		struct file *f;
 
2333		spin_lock(&redirect_lock);
2334		f = redirect;
2335		redirect = NULL;
2336		spin_unlock(&redirect_lock);
2337		if (f)
2338			fput(f);
2339		return 0;
2340	}
 
 
 
 
 
 
2341	spin_lock(&redirect_lock);
2342	if (redirect) {
2343		spin_unlock(&redirect_lock);
2344		return -EBUSY;
2345	}
2346	redirect = get_file(file);
2347	spin_unlock(&redirect_lock);
2348	return 0;
2349}
2350
2351/**
2352 *	fionbio		-	non blocking ioctl
2353 *	@file: file to set blocking value
2354 *	@p: user parameter
2355 *
2356 *	Historical tty interfaces had a blocking control ioctl before
2357 *	the generic functionality existed. This piece of history is preserved
2358 *	in the expected tty API of posix OS's.
2359 *
2360 *	Locking: none, the open file handle ensures it won't go away.
2361 */
2362
2363static int fionbio(struct file *file, int __user *p)
2364{
2365	int nonblock;
 
2366
2367	if (get_user(nonblock, p))
2368		return -EFAULT;
2369
2370	spin_lock(&file->f_lock);
2371	if (nonblock)
2372		file->f_flags |= O_NONBLOCK;
2373	else
2374		file->f_flags &= ~O_NONBLOCK;
2375	spin_unlock(&file->f_lock);
2376	return 0;
2377}
2378
2379/**
2380 *	tiocsctty	-	set controlling tty
2381 *	@tty: tty structure
2382 *	@arg: user argument
2383 *
2384 *	This ioctl is used to manage job control. It permits a session
2385 *	leader to set this tty as the controlling tty for the session.
2386 *
2387 *	Locking:
2388 *		Takes tty_mutex() to protect tty instance
2389 *		Takes tasklist_lock internally to walk sessions
2390 *		Takes ->siglock() when updating signal->tty
2391 */
2392
2393static int tiocsctty(struct tty_struct *tty, int arg)
2394{
2395	int ret = 0;
2396	if (current->signal->leader && (task_session(current) == tty->session))
2397		return ret;
2398
2399	mutex_lock(&tty_mutex);
2400	/*
2401	 * The process must be a session leader and
2402	 * not have a controlling tty already.
2403	 */
2404	if (!current->signal->leader || current->signal->tty) {
2405		ret = -EPERM;
2406		goto unlock;
2407	}
2408
2409	if (tty->session) {
2410		/*
2411		 * This tty is already the controlling
2412		 * tty for another session group!
2413		 */
2414		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415			/*
2416			 * Steal it away
2417			 */
2418			read_lock(&tasklist_lock);
2419			session_clear_tty(tty->session);
2420			read_unlock(&tasklist_lock);
2421		} else {
2422			ret = -EPERM;
2423			goto unlock;
2424		}
2425	}
2426	proc_set_tty(current, tty);
2427unlock:
2428	mutex_unlock(&tty_mutex);
2429	return ret;
2430}
2431
2432/**
2433 *	tty_get_pgrp	-	return a ref counted pgrp pid
2434 *	@tty: tty to read
 
2435 *
2436 *	Returns a refcounted instance of the pid struct for the process
2437 *	group controlling the tty.
2438 */
2439
2440struct pid *tty_get_pgrp(struct tty_struct *tty)
2441{
2442	unsigned long flags;
2443	struct pid *pgrp;
2444
2445	spin_lock_irqsave(&tty->ctrl_lock, flags);
2446	pgrp = get_pid(tty->pgrp);
2447	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449	return pgrp;
2450}
2451EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
2453/**
2454 *	tiocgpgrp		-	get process group
2455 *	@tty: tty passed by user
2456 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2457 *	@p: returned pid
2458 *
2459 *	Obtain the process group of the tty. If there is no process group
2460 *	return an error.
2461 *
2462 *	Locking: none. Reference to current->signal->tty is safe.
2463 */
2464
2465static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466{
2467	struct pid *pid;
2468	int ret;
2469	/*
2470	 * (tty == real_tty) is a cheap way of
2471	 * testing if the tty is NOT a master pty.
2472	 */
2473	if (tty == real_tty && current->signal->tty != real_tty)
2474		return -ENOTTY;
2475	pid = tty_get_pgrp(real_tty);
2476	ret =  put_user(pid_vnr(pid), p);
2477	put_pid(pid);
2478	return ret;
2479}
2480
2481/**
2482 *	tiocspgrp		-	attempt to set process group
2483 *	@tty: tty passed by user
2484 *	@real_tty: tty side device matching tty passed by user
2485 *	@p: pid pointer
2486 *
2487 *	Set the process group of the tty to the session passed. Only
2488 *	permitted where the tty session is our session.
2489 *
2490 *	Locking: RCU, ctrl lock
 
2491 */
2492
2493static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494{
2495	struct pid *pgrp;
2496	pid_t pgrp_nr;
2497	int retval = tty_check_change(real_tty);
2498	unsigned long flags;
2499
2500	if (retval == -EIO)
2501		return -ENOTTY;
2502	if (retval)
2503		return retval;
2504	if (!current->signal->tty ||
2505	    (current->signal->tty != real_tty) ||
2506	    (real_tty->session != task_session(current)))
2507		return -ENOTTY;
2508	if (get_user(pgrp_nr, p))
2509		return -EFAULT;
2510	if (pgrp_nr < 0)
2511		return -EINVAL;
2512	rcu_read_lock();
2513	pgrp = find_vpid(pgrp_nr);
2514	retval = -ESRCH;
2515	if (!pgrp)
2516		goto out_unlock;
2517	retval = -EPERM;
2518	if (session_of_pgrp(pgrp) != task_session(current))
2519		goto out_unlock;
2520	retval = 0;
2521	spin_lock_irqsave(&tty->ctrl_lock, flags);
2522	put_pid(real_tty->pgrp);
2523	real_tty->pgrp = get_pid(pgrp);
2524	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525out_unlock:
2526	rcu_read_unlock();
2527	return retval;
2528}
2529
2530/**
2531 *	tiocgsid		-	get session id
2532 *	@tty: tty passed by user
2533 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2534 *	@p: pointer to returned session id
2535 *
2536 *	Obtain the session id of the tty. If there is no session
2537 *	return an error.
2538 *
2539 *	Locking: none. Reference to current->signal->tty is safe.
2540 */
2541
2542static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543{
2544	/*
2545	 * (tty == real_tty) is a cheap way of
2546	 * testing if the tty is NOT a master pty.
2547	*/
2548	if (tty == real_tty && current->signal->tty != real_tty)
2549		return -ENOTTY;
2550	if (!real_tty->session)
2551		return -ENOTTY;
2552	return put_user(pid_vnr(real_tty->session), p);
2553}
 
2554
2555/**
2556 *	tiocsetd	-	set line discipline
2557 *	@tty: tty device
2558 *	@p: pointer to user data
2559 *
2560 *	Set the line discipline according to user request.
2561 *
2562 *	Locking: see tty_set_ldisc, this function is just a helper
2563 */
2564
2565static int tiocsetd(struct tty_struct *tty, int __user *p)
2566{
2567	int ldisc;
2568	int ret;
2569
2570	if (get_user(ldisc, p))
2571		return -EFAULT;
2572
2573	ret = tty_set_ldisc(tty, ldisc);
2574
2575	return ret;
2576}
2577
2578/**
2579 *	send_break	-	performed time break
2580 *	@tty: device to break on
2581 *	@duration: timeout in mS
2582 *
2583 *	Perform a timed break on hardware that lacks its own driver level
2584 *	timed break functionality.
2585 *
2586 *	Locking:
2587 *		atomic_write_lock serializes
2588 *
 
 
2589 */
2590
2591static int send_break(struct tty_struct *tty, unsigned int duration)
2592{
2593	int retval;
2594
2595	if (tty->ops->break_ctl == NULL)
2596		return 0;
2597
2598	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599		retval = tty->ops->break_ctl(tty, duration);
2600	else {
2601		/* Do the work ourselves */
2602		if (tty_write_lock(tty, 0) < 0)
2603			return -EINTR;
2604		retval = tty->ops->break_ctl(tty, -1);
2605		if (retval)
2606			goto out;
2607		if (!signal_pending(current))
2608			msleep_interruptible(duration);
2609		retval = tty->ops->break_ctl(tty, 0);
2610out:
2611		tty_write_unlock(tty);
2612		if (signal_pending(current))
2613			retval = -EINTR;
2614	}
2615	return retval;
2616}
 
2617
2618/**
2619 *	tty_tiocmget		-	get modem status
2620 *	@tty: tty device
2621 *	@file: user file pointer
2622 *	@p: pointer to result
2623 *
2624 *	Obtain the modem status bits from the tty driver if the feature
2625 *	is supported. Return -EINVAL if it is not available.
2626 *
2627 *	Locking: none (up to the driver)
2628 */
2629
2630static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631{
2632	int retval = -EINVAL;
2633
2634	if (tty->ops->tiocmget) {
2635		retval = tty->ops->tiocmget(tty);
 
2636
2637		if (retval >= 0)
2638			retval = put_user(retval, p);
2639	}
2640	return retval;
2641}
2642
2643/**
2644 *	tty_tiocmset		-	set modem status
2645 *	@tty: tty device
2646 *	@cmd: command - clear bits, set bits or set all
2647 *	@p: pointer to desired bits
2648 *
2649 *	Set the modem status bits from the tty driver if the feature
2650 *	is supported. Return -EINVAL if it is not available.
2651 *
2652 *	Locking: none (up to the driver)
2653 */
2654
2655static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656	     unsigned __user *p)
2657{
2658	int retval;
2659	unsigned int set, clear, val;
2660
2661	if (tty->ops->tiocmset == NULL)
2662		return -EINVAL;
2663
2664	retval = get_user(val, p);
2665	if (retval)
2666		return retval;
2667	set = clear = 0;
2668	switch (cmd) {
2669	case TIOCMBIS:
2670		set = val;
2671		break;
2672	case TIOCMBIC:
2673		clear = val;
2674		break;
2675	case TIOCMSET:
2676		set = val;
2677		clear = ~val;
2678		break;
2679	}
2680	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682	return tty->ops->tiocmset(tty, set, clear);
2683}
2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686{
2687	int retval = -EINVAL;
2688	struct serial_icounter_struct icount;
2689	memset(&icount, 0, sizeof(icount));
2690	if (tty->ops->get_icount)
2691		retval = tty->ops->get_icount(tty, &icount);
2692	if (retval != 0)
2693		return retval;
 
2694	if (copy_to_user(arg, &icount, sizeof(icount)))
2695		return -EFAULT;
2696	return 0;
2697}
2698
2699struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700{
2701	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702	    tty->driver->subtype == PTY_TYPE_MASTER)
2703		tty = tty->link;
2704	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705}
2706EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2709{
2710	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711	    tty->driver->subtype == PTY_TYPE_MASTER)
2712	    return tty;
2713	return tty->link;
2714}
2715EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717/*
2718 * Split this up, as gcc can choke on it otherwise..
2719 */
2720long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721{
2722	struct tty_struct *tty = file_tty(file);
2723	struct tty_struct *real_tty;
2724	void __user *p = (void __user *)arg;
2725	int retval;
2726	struct tty_ldisc *ld;
2727
2728	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729		return -EINVAL;
2730
2731	real_tty = tty_pair_get_tty(tty);
2732
2733	/*
2734	 * Factor out some common prep work
2735	 */
2736	switch (cmd) {
2737	case TIOCSETD:
2738	case TIOCSBRK:
2739	case TIOCCBRK:
2740	case TCSBRK:
2741	case TCSBRKP:
2742		retval = tty_check_change(tty);
2743		if (retval)
2744			return retval;
2745		if (cmd != TIOCCBRK) {
2746			tty_wait_until_sent(tty, 0);
2747			if (signal_pending(current))
2748				return -EINTR;
2749		}
2750		break;
2751	}
2752
2753	/*
2754	 *	Now do the stuff.
2755	 */
2756	switch (cmd) {
2757	case TIOCSTI:
2758		return tiocsti(tty, p);
2759	case TIOCGWINSZ:
2760		return tiocgwinsz(real_tty, p);
2761	case TIOCSWINSZ:
2762		return tiocswinsz(real_tty, p);
2763	case TIOCCONS:
2764		return real_tty != tty ? -EINVAL : tioccons(file);
2765	case FIONBIO:
2766		return fionbio(file, p);
2767	case TIOCEXCL:
2768		set_bit(TTY_EXCLUSIVE, &tty->flags);
2769		return 0;
2770	case TIOCNXCL:
2771		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772		return 0;
2773	case TIOCGEXCL:
2774	{
2775		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
 
2776		return put_user(excl, (int __user *)p);
2777	}
2778	case TIOCNOTTY:
2779		if (current->signal->tty != tty)
2780			return -ENOTTY;
2781		no_tty();
2782		return 0;
2783	case TIOCSCTTY:
2784		return tiocsctty(tty, arg);
2785	case TIOCGPGRP:
2786		return tiocgpgrp(tty, real_tty, p);
2787	case TIOCSPGRP:
2788		return tiocspgrp(tty, real_tty, p);
2789	case TIOCGSID:
2790		return tiocgsid(tty, real_tty, p);
2791	case TIOCGETD:
2792		return put_user(tty->ldisc->ops->num, (int __user *)p);
2793	case TIOCSETD:
2794		return tiocsetd(tty, p);
2795	case TIOCVHANGUP:
2796		if (!capable(CAP_SYS_ADMIN))
2797			return -EPERM;
2798		tty_vhangup(tty);
2799		return 0;
2800	case TIOCGDEV:
2801	{
2802		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2803		return put_user(ret, (unsigned int __user *)p);
2804	}
2805	/*
2806	 * Break handling
2807	 */
2808	case TIOCSBRK:	/* Turn break on, unconditionally */
2809		if (tty->ops->break_ctl)
2810			return tty->ops->break_ctl(tty, -1);
2811		return 0;
2812	case TIOCCBRK:	/* Turn break off, unconditionally */
2813		if (tty->ops->break_ctl)
2814			return tty->ops->break_ctl(tty, 0);
2815		return 0;
2816	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817		/* non-zero arg means wait for all output data
2818		 * to be sent (performed above) but don't send break.
2819		 * This is used by the tcdrain() termios function.
2820		 */
2821		if (!arg)
2822			return send_break(tty, 250);
2823		return 0;
2824	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2825		return send_break(tty, arg ? arg*100 : 250);
2826
2827	case TIOCMGET:
2828		return tty_tiocmget(tty, p);
2829	case TIOCMSET:
2830	case TIOCMBIC:
2831	case TIOCMBIS:
2832		return tty_tiocmset(tty, cmd, p);
2833	case TIOCGICOUNT:
2834		retval = tty_tiocgicount(tty, p);
2835		/* For the moment allow fall through to the old method */
2836        	if (retval != -EINVAL)
2837			return retval;
2838		break;
2839	case TCFLSH:
2840		switch (arg) {
2841		case TCIFLUSH:
2842		case TCIOFLUSH:
2843		/* flush tty buffer and allow ldisc to process ioctl */
2844			tty_buffer_flush(tty);
2845			break;
2846		}
2847		break;
 
 
 
 
 
 
 
 
 
 
 
2848	}
2849	if (tty->ops->ioctl) {
2850		retval = (tty->ops->ioctl)(tty, cmd, arg);
2851		if (retval != -ENOIOCTLCMD)
2852			return retval;
2853	}
2854	ld = tty_ldisc_ref_wait(tty);
 
 
2855	retval = -EINVAL;
2856	if (ld->ops->ioctl) {
2857		retval = ld->ops->ioctl(tty, file, cmd, arg);
2858		if (retval == -ENOIOCTLCMD)
2859			retval = -ENOTTY;
2860	}
2861	tty_ldisc_deref(ld);
2862	return retval;
2863}
2864
2865#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867				unsigned long arg)
2868{
2869	struct tty_struct *tty = file_tty(file);
2870	struct tty_ldisc *ld;
2871	int retval = -ENOIOCTLCMD;
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874		return -EINVAL;
2875
 
 
 
 
 
 
2876	if (tty->ops->compat_ioctl) {
2877		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878		if (retval != -ENOIOCTLCMD)
2879			return retval;
2880	}
2881
2882	ld = tty_ldisc_ref_wait(tty);
 
 
2883	if (ld->ops->compat_ioctl)
2884		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885	else
2886		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
2887	tty_ldisc_deref(ld);
2888
2889	return retval;
2890}
2891#endif
2892
2893static int this_tty(const void *t, struct file *file, unsigned fd)
2894{
2895	if (likely(file->f_op->read != tty_read))
2896		return 0;
2897	return file_tty(file) != t ? 0 : fd + 1;
2898}
2899	
2900/*
2901 * This implements the "Secure Attention Key" ---  the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key".  Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2905 *
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal.  But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2911 *
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915 *
2916 * Nasty bug: do_SAK is being called in interrupt context.  This can
2917 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918 */
2919void __do_SAK(struct tty_struct *tty)
2920{
2921#ifdef TTY_SOFT_SAK
2922	tty_hangup(tty);
2923#else
2924	struct task_struct *g, *p;
2925	struct pid *session;
2926	int		i;
 
2927
2928	if (!tty)
2929		return;
2930	session = tty->session;
2931
2932	tty_ldisc_flush(tty);
2933
2934	tty_driver_flush_buffer(tty);
2935
2936	read_lock(&tasklist_lock);
2937	/* Kill the entire session */
2938	do_each_pid_task(session, PIDTYPE_SID, p) {
2939		printk(KERN_NOTICE "SAK: killed process %d"
2940			" (%s): task_session(p)==tty->session\n",
2941			task_pid_nr(p), p->comm);
2942		send_sig(SIGKILL, p, 1);
2943	} while_each_pid_task(session, PIDTYPE_SID, p);
2944	/* Now kill any processes that happen to have the
2945	 * tty open.
2946	 */
2947	do_each_thread(g, p) {
2948		if (p->signal->tty == tty) {
2949			printk(KERN_NOTICE "SAK: killed process %d"
2950			    " (%s): task_session(p)==tty->session\n",
2951			    task_pid_nr(p), p->comm);
2952			send_sig(SIGKILL, p, 1);
2953			continue;
2954		}
2955		task_lock(p);
2956		i = iterate_fd(p->files, 0, this_tty, tty);
2957		if (i != 0) {
2958			printk(KERN_NOTICE "SAK: killed process %d"
2959			    " (%s): fd#%d opened to the tty\n",
2960				    task_pid_nr(p), p->comm, i - 1);
2961			force_sig(SIGKILL, p);
2962		}
2963		task_unlock(p);
2964	} while_each_thread(g, p);
2965	read_unlock(&tasklist_lock);
2966#endif
2967}
2968
2969static void do_SAK_work(struct work_struct *work)
2970{
2971	struct tty_struct *tty =
2972		container_of(work, struct tty_struct, SAK_work);
2973	__do_SAK(tty);
2974}
2975
2976/*
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2981 */
2982void do_SAK(struct tty_struct *tty)
2983{
2984	if (!tty)
2985		return;
2986	schedule_work(&tty->SAK_work);
2987}
2988
2989EXPORT_SYMBOL(do_SAK);
2990
2991static int dev_match_devt(struct device *dev, const void *data)
2992{
2993	const dev_t *devt = data;
2994	return dev->devt == *devt;
2995}
2996
2997/* Must put_device() after it's unused! */
2998static struct device *tty_get_device(struct tty_struct *tty)
2999{
3000	dev_t devt = tty_devnum(tty);
3001	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
3002}
3003
3004
3005/**
3006 *	initialize_tty_struct
3007 *	@tty: tty to initialize
 
3008 *
3009 *	This subroutine initializes a tty structure that has been newly
3010 *	allocated.
3011 *
3012 *	Locking: none - tty in question must not be exposed at this point
3013 */
 
 
 
 
 
 
 
3014
3015void initialize_tty_struct(struct tty_struct *tty,
3016		struct tty_driver *driver, int idx)
3017{
3018	memset(tty, 0, sizeof(struct tty_struct));
3019	kref_init(&tty->kref);
3020	tty->magic = TTY_MAGIC;
3021	tty_ldisc_init(tty);
3022	tty->session = NULL;
3023	tty->pgrp = NULL;
 
 
3024	mutex_init(&tty->legacy_mutex);
3025	mutex_init(&tty->throttle_mutex);
3026	init_rwsem(&tty->termios_rwsem);
3027	mutex_init(&tty->winsize_mutex);
3028	init_ldsem(&tty->ldisc_sem);
3029	init_waitqueue_head(&tty->write_wait);
3030	init_waitqueue_head(&tty->read_wait);
3031	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032	mutex_init(&tty->atomic_write_lock);
3033	spin_lock_init(&tty->ctrl_lock);
 
 
3034	INIT_LIST_HEAD(&tty->tty_files);
3035	INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037	tty->driver = driver;
3038	tty->ops = driver->ops;
3039	tty->index = idx;
3040	tty_line_name(driver, idx, tty->name);
3041	tty->dev = tty_get_device(tty);
 
 
3042}
3043
3044/**
3045 *	deinitialize_tty_struct
3046 *	@tty: tty to deinitialize
 
3047 *
3048 *	This subroutine deinitializes a tty structure that has been newly
3049 *	allocated but tty_release cannot be called on that yet.
3050 *
3051 *	Locking: none - tty in question must not be exposed at this point
3052 */
3053void deinitialize_tty_struct(struct tty_struct *tty)
3054{
3055	tty_ldisc_deinit(tty);
3056}
3057
3058/**
3059 *	tty_put_char	-	write one character to a tty
3060 *	@tty: tty
3061 *	@ch: character
3062 *
3063 *	Write one byte to the tty using the provided put_char method
3064 *	if present. Returns the number of characters successfully output.
3065 *
3066 *	Note: the specific put_char operation in the driver layer may go
3067 *	away soon. Don't call it directly, use this method
3068 */
3069
3070int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071{
3072	if (tty->ops->put_char)
3073		return tty->ops->put_char(tty, ch);
3074	return tty->ops->write(tty, &ch, 1);
3075}
3076EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078struct class *tty_class;
3079
3080static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081		unsigned int index, unsigned int count)
3082{
 
 
3083	/* init here, since reused cdevs cause crashes */
3084	cdev_init(&driver->cdevs[index], &tty_fops);
3085	driver->cdevs[index].owner = driver->owner;
3086	return cdev_add(&driver->cdevs[index], dev, count);
 
 
 
 
 
 
3087}
3088
3089/**
3090 *	tty_register_device - register a tty device
3091 *	@driver: the tty driver that describes the tty device
3092 *	@index: the index in the tty driver for this tty device
3093 *	@device: a struct device that is associated with this tty device.
3094 *		This field is optional, if there is no known struct device
3095 *		for this tty device it can be set to NULL safely.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
 
 
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
 
3106 */
3107
3108struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109				   struct device *device)
3110{
3111	return tty_register_device_attr(driver, index, device, NULL, NULL);
3112}
3113EXPORT_SYMBOL(tty_register_device);
3114
3115static void tty_device_create_release(struct device *dev)
3116{
3117	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118	kfree(dev);
3119}
3120
3121/**
3122 *	tty_register_device_attr - register a tty device
3123 *	@driver: the tty driver that describes the tty device
3124 *	@index: the index in the tty driver for this tty device
3125 *	@device: a struct device that is associated with this tty device.
3126 *		This field is optional, if there is no known struct device
3127 *		for this tty device it can be set to NULL safely.
3128 *	@drvdata: Driver data to be set to device.
3129 *	@attr_grp: Attribute group to be set on device.
3130 *
3131 *	Returns a pointer to the struct device for this tty device
3132 *	(or ERR_PTR(-EFOO) on error).
3133 *
3134 *	This call is required to be made to register an individual tty device
3135 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136 *	that bit is not set, this function should not be called by a tty
3137 *	driver.
3138 *
3139 *	Locking: ??
 
3140 */
3141struct device *tty_register_device_attr(struct tty_driver *driver,
3142				   unsigned index, struct device *device,
3143				   void *drvdata,
3144				   const struct attribute_group **attr_grp)
3145{
3146	char name[64];
3147	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148	struct device *dev = NULL;
3149	int retval = -ENODEV;
3150	bool cdev = false;
3151
3152	if (index >= driver->num) {
3153		printk(KERN_ERR "Attempt to register invalid tty line number "
3154		       " (%d).\n", index);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	if (driver->type == TTY_DRIVER_TYPE_PTY)
3159		pty_line_name(driver, index, name);
3160	else
3161		tty_line_name(driver, index, name);
3162
3163	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164		retval = tty_cdev_add(driver, devt, index, 1);
3165		if (retval)
3166			goto error;
3167		cdev = true;
3168	}
3169
3170	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171	if (!dev) {
3172		retval = -ENOMEM;
3173		goto error;
3174	}
3175
3176	dev->devt = devt;
3177	dev->class = tty_class;
3178	dev->parent = device;
3179	dev->release = tty_device_create_release;
3180	dev_set_name(dev, "%s", name);
3181	dev->groups = attr_grp;
3182	dev_set_drvdata(dev, drvdata);
3183
 
 
3184	retval = device_register(dev);
3185	if (retval)
3186		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	return dev;
3189
3190error:
 
 
3191	put_device(dev);
3192	if (cdev)
3193		cdev_del(&driver->cdevs[index]);
3194	return ERR_PTR(retval);
3195}
3196EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198/**
3199 * 	tty_unregister_device - unregister a tty device
3200 * 	@driver: the tty driver that describes the tty device
3201 * 	@index: the index in the tty driver for this tty device
3202 *
3203 * 	If a tty device is registered with a call to tty_register_device() then
3204 *	this function must be called when the tty device is gone.
3205 *
3206 *	Locking: ??
3207 */
3208
3209void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210{
3211	device_destroy(tty_class,
3212		MKDEV(driver->major, driver->minor_start) + index);
3213	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214		cdev_del(&driver->cdevs[index]);
 
3215}
3216EXPORT_SYMBOL(tty_unregister_device);
3217
3218/**
3219 * __tty_alloc_driver -- allocate tty driver
3220 * @lines: count of lines this driver can handle at most
3221 * @owner: module which is repsonsible for this driver
3222 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223 *
3224 * This should not be called directly, some of the provided macros should be
3225 * used instead. Use IS_ERR and friends on @retval.
3226 */
3227struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228		unsigned long flags)
3229{
3230	struct tty_driver *driver;
3231	unsigned int cdevs = 1;
3232	int err;
3233
3234	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235		return ERR_PTR(-EINVAL);
3236
3237	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238	if (!driver)
3239		return ERR_PTR(-ENOMEM);
3240
3241	kref_init(&driver->kref);
3242	driver->magic = TTY_DRIVER_MAGIC;
3243	driver->num = lines;
3244	driver->owner = owner;
3245	driver->flags = flags;
3246
3247	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249				GFP_KERNEL);
3250		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251				GFP_KERNEL);
3252		if (!driver->ttys || !driver->termios) {
3253			err = -ENOMEM;
3254			goto err_free_all;
3255		}
3256	}
3257
3258	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260				GFP_KERNEL);
3261		if (!driver->ports) {
3262			err = -ENOMEM;
3263			goto err_free_all;
3264		}
3265		cdevs = lines;
3266	}
3267
3268	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269	if (!driver->cdevs) {
3270		err = -ENOMEM;
3271		goto err_free_all;
3272	}
3273
3274	return driver;
3275err_free_all:
3276	kfree(driver->ports);
3277	kfree(driver->ttys);
3278	kfree(driver->termios);
 
3279	kfree(driver);
3280	return ERR_PTR(err);
3281}
3282EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284static void destruct_tty_driver(struct kref *kref)
3285{
3286	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287	int i;
3288	struct ktermios *tp;
3289
3290	if (driver->flags & TTY_DRIVER_INSTALLED) {
3291		/*
3292		 * Free the termios and termios_locked structures because
3293		 * we don't want to get memory leaks when modular tty
3294		 * drivers are removed from the kernel.
3295		 */
3296		for (i = 0; i < driver->num; i++) {
3297			tp = driver->termios[i];
3298			if (tp) {
3299				driver->termios[i] = NULL;
3300				kfree(tp);
3301			}
3302			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303				tty_unregister_device(driver, i);
3304		}
3305		proc_tty_unregister_driver(driver);
3306		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307			cdev_del(&driver->cdevs[0]);
3308	}
3309	kfree(driver->cdevs);
3310	kfree(driver->ports);
3311	kfree(driver->termios);
3312	kfree(driver->ttys);
3313	kfree(driver);
3314}
3315
 
 
 
 
 
 
3316void tty_driver_kref_put(struct tty_driver *driver)
3317{
3318	kref_put(&driver->kref, destruct_tty_driver);
3319}
3320EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322void tty_set_operations(struct tty_driver *driver,
3323			const struct tty_operations *op)
3324{
3325	driver->ops = op;
3326};
3327EXPORT_SYMBOL(tty_set_operations);
3328
3329void put_tty_driver(struct tty_driver *d)
3330{
3331	tty_driver_kref_put(d);
3332}
3333EXPORT_SYMBOL(put_tty_driver);
3334
3335/*
3336 * Called by a tty driver to register itself.
3337 */
3338int tty_register_driver(struct tty_driver *driver)
3339{
3340	int error;
3341	int i;
3342	dev_t dev;
3343	struct device *d;
3344
3345	if (!driver->major) {
3346		error = alloc_chrdev_region(&dev, driver->minor_start,
3347						driver->num, driver->name);
3348		if (!error) {
3349			driver->major = MAJOR(dev);
3350			driver->minor_start = MINOR(dev);
3351		}
3352	} else {
3353		dev = MKDEV(driver->major, driver->minor_start);
3354		error = register_chrdev_region(dev, driver->num, driver->name);
3355	}
3356	if (error < 0)
3357		goto err;
3358
3359	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360		error = tty_cdev_add(driver, dev, 0, driver->num);
3361		if (error)
3362			goto err_unreg_char;
3363	}
3364
3365	mutex_lock(&tty_mutex);
3366	list_add(&driver->tty_drivers, &tty_drivers);
3367	mutex_unlock(&tty_mutex);
3368
3369	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370		for (i = 0; i < driver->num; i++) {
3371			d = tty_register_device(driver, i, NULL);
3372			if (IS_ERR(d)) {
3373				error = PTR_ERR(d);
3374				goto err_unreg_devs;
3375			}
3376		}
3377	}
3378	proc_tty_register_driver(driver);
3379	driver->flags |= TTY_DRIVER_INSTALLED;
3380	return 0;
3381
3382err_unreg_devs:
3383	for (i--; i >= 0; i--)
3384		tty_unregister_device(driver, i);
3385
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389
3390err_unreg_char:
3391	unregister_chrdev_region(dev, driver->num);
3392err:
3393	return error;
3394}
3395EXPORT_SYMBOL(tty_register_driver);
3396
3397/*
 
 
 
3398 * Called by a tty driver to unregister itself.
3399 */
3400int tty_unregister_driver(struct tty_driver *driver)
3401{
3402#if 0
3403	/* FIXME */
3404	if (driver->refcount)
3405		return -EBUSY;
3406#endif
3407	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408				driver->num);
3409	mutex_lock(&tty_mutex);
3410	list_del(&driver->tty_drivers);
3411	mutex_unlock(&tty_mutex);
3412	return 0;
3413}
3414
3415EXPORT_SYMBOL(tty_unregister_driver);
3416
3417dev_t tty_devnum(struct tty_struct *tty)
3418{
3419	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420}
3421EXPORT_SYMBOL(tty_devnum);
3422
3423void proc_clear_tty(struct task_struct *p)
3424{
3425	unsigned long flags;
3426	struct tty_struct *tty;
3427	spin_lock_irqsave(&p->sighand->siglock, flags);
3428	tty = p->signal->tty;
3429	p->signal->tty = NULL;
3430	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431	tty_kref_put(tty);
3432}
3433
3434/* Called under the sighand lock */
3435
3436static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437{
3438	if (tty) {
3439		unsigned long flags;
3440		/* We should not have a session or pgrp to put here but.... */
3441		spin_lock_irqsave(&tty->ctrl_lock, flags);
3442		put_pid(tty->session);
3443		put_pid(tty->pgrp);
3444		tty->pgrp = get_pid(task_pgrp(tsk));
3445		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446		tty->session = get_pid(task_session(tsk));
3447		if (tsk->signal->tty) {
3448			printk(KERN_DEBUG "tty not NULL!!\n");
3449			tty_kref_put(tsk->signal->tty);
3450		}
3451	}
3452	put_pid(tsk->signal->tty_old_pgrp);
3453	tsk->signal->tty = tty_kref_get(tty);
3454	tsk->signal->tty_old_pgrp = NULL;
3455}
3456
3457static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458{
3459	spin_lock_irq(&tsk->sighand->siglock);
3460	__proc_set_tty(tsk, tty);
3461	spin_unlock_irq(&tsk->sighand->siglock);
3462}
3463
3464struct tty_struct *get_current_tty(void)
3465{
3466	struct tty_struct *tty;
3467	unsigned long flags;
3468
3469	spin_lock_irqsave(&current->sighand->siglock, flags);
3470	tty = tty_kref_get(current->signal->tty);
3471	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472	return tty;
3473}
3474EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476void tty_default_fops(struct file_operations *fops)
3477{
3478	*fops = tty_fops;
3479}
3480
3481/*
3482 * Initialize the console device. This is called *early*, so
3483 * we can't necessarily depend on lots of kernel help here.
3484 * Just do some early initializations, and do the complex setup
3485 * later.
3486 */
3487void __init console_init(void)
3488{
3489	initcall_t *call;
3490
3491	/* Setup the default TTY line discipline. */
3492	tty_ldisc_begin();
3493
3494	/*
3495	 * set up the console device so that later boot sequences can
3496	 * inform about problems etc..
3497	 */
3498	call = __con_initcall_start;
3499	while (call < __con_initcall_end) {
3500		(*call)();
3501		call++;
3502	}
3503}
3504
3505static char *tty_devnode(struct device *dev, umode_t *mode)
3506{
3507	if (!mode)
3508		return NULL;
3509	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511		*mode = 0666;
3512	return NULL;
3513}
3514
 
 
 
 
 
3515static int __init tty_class_init(void)
3516{
3517	tty_class = class_create(THIS_MODULE, "tty");
3518	if (IS_ERR(tty_class))
3519		return PTR_ERR(tty_class);
3520	tty_class->devnode = tty_devnode;
3521	return 0;
3522}
3523
3524postcore_initcall(tty_class_init);
3525
3526/* 3/2004 jmc: why do these devices exist? */
3527static struct cdev tty_cdev, console_cdev;
3528
3529static ssize_t show_cons_active(struct device *dev,
3530				struct device_attribute *attr, char *buf)
3531{
3532	struct console *cs[16];
3533	int i = 0;
3534	struct console *c;
3535	ssize_t count = 0;
3536
3537	console_lock();
 
 
 
 
 
 
 
3538	for_each_console(c) {
3539		if (!c->device)
3540			continue;
3541		if (!c->write)
3542			continue;
3543		if ((c->flags & CON_ENABLED) == 0)
3544			continue;
3545		cs[i++] = c;
3546		if (i >= ARRAY_SIZE(cs))
3547			break;
3548	}
 
 
 
 
 
 
 
3549	while (i--) {
3550		int index = cs[i]->index;
3551		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553		/* don't resolve tty0 as some programs depend on it */
3554		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555			count += tty_line_name(drv, index, buf + count);
3556		else
3557			count += sprintf(buf + count, "%s%d",
3558					 cs[i]->name, cs[i]->index);
3559
3560		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561	}
3562	console_unlock();
3563
 
 
3564	return count;
3565}
3566static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
 
 
 
 
 
 
 
3568static struct device *consdev;
3569
3570void console_sysfs_notify(void)
3571{
3572	if (consdev)
3573		sysfs_notify(&consdev->kobj, NULL, "active");
3574}
3575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3576/*
3577 * Ok, now we can initialize the rest of the tty devices and can count
3578 * on memory allocations, interrupts etc..
3579 */
3580int __init tty_init(void)
3581{
 
3582	cdev_init(&tty_cdev, &tty_fops);
3583	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585		panic("Couldn't register /dev/tty driver\n");
3586	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588	cdev_init(&console_cdev, &console_fops);
3589	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591		panic("Couldn't register /dev/console driver\n");
3592	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593			      "console");
 
3594	if (IS_ERR(consdev))
3595		consdev = NULL;
3596	else
3597		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599#ifdef CONFIG_VT
3600	vty_init(&console_fops);
3601#endif
3602	return 0;
3603}
3604