Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/irq.h>
  26#include <linux/netdevice.h>   /* struct device, and other headers */
  27#include <linux/etherdevice.h> /* eth_type_trans */
  28#include <linux/skbuff.h>
  29#include <linux/ioctl.h>
  30#include <linux/cdev.h>
  31#include <linux/hugetlb.h>
  32#include <linux/in6.h>
  33#include <linux/timer.h>
  34#include <linux/hrtimer.h>
  35#include <linux/ktime.h>
  36#include <linux/io.h>
  37#include <linux/ctype.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/tcp.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/ptp_clock_kernel.h>
  43#include <linux/tick.h>
  44
  45#include <asm/checksum.h>
  46#include <asm/homecache.h>
  47#include <gxio/mpipe.h>
  48#include <arch/sim.h>
  49
  50/* Default transmit lockup timeout period, in jiffies. */
  51#define TILE_NET_TIMEOUT (5 * HZ)
  52
  53/* The maximum number of distinct channels (idesc.channel is 5 bits). */
  54#define TILE_NET_CHANNELS 32
  55
  56/* Maximum number of idescs to handle per "poll". */
  57#define TILE_NET_BATCH 128
  58
  59/* Maximum number of packets to handle per "poll". */
  60#define TILE_NET_WEIGHT 64
  61
  62/* Maximum Jumbo Packet MTU */
  63#define TILE_JUMBO_MAX_MTU 9000
  64
  65/* Number of entries in each iqueue. */
  66#define IQUEUE_ENTRIES 512
  67
  68/* Number of entries in each equeue. */
  69#define EQUEUE_ENTRIES 2048
  70
  71/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
  72 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
  73 * 60 bytes of actual TCP header.  We round up to align to cache lines.
  74 */
  75#define HEADER_BYTES 128
  76
  77/* Maximum completions per cpu per device (must be a power of two).
  78 * ISSUE: What is the right number here?  If this is too small, then
  79 * egress might block waiting for free space in a completions array.
  80 * ISSUE: At the least, allocate these only for initialized echannels.
  81 */
  82#define TILE_NET_MAX_COMPS 64
  83
  84#define MAX_FRAGS (MAX_SKB_FRAGS + 1)
  85
  86/* The "kinds" of buffer stacks (small/large/jumbo). */
  87#define MAX_KINDS 3
  88
  89/* Size of completions data to allocate.
  90 * ISSUE: Probably more than needed since we don't use all the channels.
  91 */
  92#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
  93
  94/* Size of NotifRing data to allocate. */
  95#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
  96
  97/* Timeout to wake the per-device TX timer after we stop the queue.
  98 * We don't want the timeout too short (adds overhead, and might end
  99 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
 100 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
 101 */
 102#define TX_TIMER_DELAY_USEC 30
 103
 104/* Timeout to wake the per-cpu egress timer to free completions. */
 105#define EGRESS_TIMER_DELAY_USEC 1000
 106
 107MODULE_AUTHOR("Tilera Corporation");
 108MODULE_LICENSE("GPL");
 109
 110/* A "packet fragment" (a chunk of memory). */
 111struct frag {
 112	void *buf;
 113	size_t length;
 114};
 115
 116/* A single completion. */
 117struct tile_net_comp {
 118	/* The "complete_count" when the completion will be complete. */
 119	s64 when;
 120	/* The buffer to be freed when the completion is complete. */
 121	struct sk_buff *skb;
 122};
 123
 124/* The completions for a given cpu and echannel. */
 125struct tile_net_comps {
 126	/* The completions. */
 127	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
 128	/* The number of completions used. */
 129	unsigned long comp_next;
 130	/* The number of completions freed. */
 131	unsigned long comp_last;
 132};
 133
 134/* The transmit wake timer for a given cpu and echannel. */
 135struct tile_net_tx_wake {
 136	int tx_queue_idx;
 137	struct hrtimer timer;
 138	struct net_device *dev;
 139};
 140
 141/* Info for a specific cpu. */
 142struct tile_net_info {
 143	/* Our cpu. */
 144	int my_cpu;
 145	/* A timer for handling egress completions. */
 146	struct hrtimer egress_timer;
 147	/* True if "egress_timer" is scheduled. */
 148	bool egress_timer_scheduled;
 149	struct info_mpipe {
 150		/* Packet queue. */
 151		gxio_mpipe_iqueue_t iqueue;
 152		/* The NAPI struct. */
 153		struct napi_struct napi;
 154		/* Number of buffers (by kind) which must still be provided. */
 155		unsigned int num_needed_buffers[MAX_KINDS];
 156		/* instance id. */
 157		int instance;
 158		/* True if iqueue is valid. */
 159		bool has_iqueue;
 160		/* NAPI flags. */
 161		bool napi_added;
 162		bool napi_enabled;
 163		/* Comps for each egress channel. */
 164		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
 165		/* Transmit wake timer for each egress channel. */
 166		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
 167	} mpipe[NR_MPIPE_MAX];
 168};
 169
 170/* Info for egress on a particular egress channel. */
 171struct tile_net_egress {
 172	/* The "equeue". */
 173	gxio_mpipe_equeue_t *equeue;
 174	/* The headers for TSO. */
 175	unsigned char *headers;
 176};
 177
 178/* Info for a specific device. */
 179struct tile_net_priv {
 180	/* Our network device. */
 181	struct net_device *dev;
 182	/* The primary link. */
 183	gxio_mpipe_link_t link;
 184	/* The primary channel, if open, else -1. */
 185	int channel;
 186	/* The "loopify" egress link, if needed. */
 187	gxio_mpipe_link_t loopify_link;
 188	/* The "loopify" egress channel, if open, else -1. */
 189	int loopify_channel;
 190	/* The egress channel (channel or loopify_channel). */
 191	int echannel;
 192	/* mPIPE instance, 0 or 1. */
 193	int instance;
 194	/* The timestamp config. */
 195	struct hwtstamp_config stamp_cfg;
 196};
 197
 198static struct mpipe_data {
 199	/* The ingress irq. */
 200	int ingress_irq;
 201
 202	/* The "context" for all devices. */
 203	gxio_mpipe_context_t context;
 204
 205	/* Egress info, indexed by "priv->echannel"
 206	 * (lazily created as needed).
 207	 */
 208	struct tile_net_egress
 209	egress_for_echannel[TILE_NET_CHANNELS];
 210
 211	/* Devices currently associated with each channel.
 212	 * NOTE: The array entry can become NULL after ifconfig down, but
 213	 * we do not free the underlying net_device structures, so it is
 214	 * safe to use a pointer after reading it from this array.
 215	 */
 216	struct net_device
 217	*tile_net_devs_for_channel[TILE_NET_CHANNELS];
 218
 219	/* The actual memory allocated for the buffer stacks. */
 220	void *buffer_stack_vas[MAX_KINDS];
 221
 222	/* The amount of memory allocated for each buffer stack. */
 223	size_t buffer_stack_bytes[MAX_KINDS];
 224
 225	/* The first buffer stack index
 226	 * (small = +0, large = +1, jumbo = +2).
 227	 */
 228	int first_buffer_stack;
 229
 230	/* The buckets. */
 231	int first_bucket;
 232	int num_buckets;
 233
 234	/* PTP-specific data. */
 235	struct ptp_clock *ptp_clock;
 236	struct ptp_clock_info caps;
 237
 238	/* Lock for ptp accessors. */
 239	struct mutex ptp_lock;
 240
 241} mpipe_data[NR_MPIPE_MAX] = {
 242	[0 ... (NR_MPIPE_MAX - 1)] {
 243		.ingress_irq = -1,
 244		.first_buffer_stack = -1,
 245		.first_bucket = -1,
 246		.num_buckets = 1
 247	}
 248};
 249
 250/* A mutex for "tile_net_devs_for_channel". */
 251static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
 252
 253/* The per-cpu info. */
 254static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
 255
 256
 257/* The buffer size enums for each buffer stack.
 258 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
 259 * We avoid the "10384" size because it can induce "false chaining"
 260 * on "cut-through" jumbo packets.
 261 */
 262static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
 263	GXIO_MPIPE_BUFFER_SIZE_128,
 264	GXIO_MPIPE_BUFFER_SIZE_1664,
 265	GXIO_MPIPE_BUFFER_SIZE_16384
 266};
 267
 268/* Text value of tile_net.cpus if passed as a module parameter. */
 269static char *network_cpus_string;
 270
 271/* The actual cpus in "network_cpus". */
 272static struct cpumask network_cpus_map;
 273
 274/* If "tile_net.loopify=LINK" was specified, this is "LINK". */
 275static char *loopify_link_name;
 276
 277/* If "tile_net.custom" was specified, this is true. */
 278static bool custom_flag;
 279
 280/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
 281static uint jumbo_num;
 282
 283/* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
 284static inline int mpipe_instance(struct net_device *dev)
 285{
 286	struct tile_net_priv *priv = netdev_priv(dev);
 287	return priv->instance;
 288}
 289
 290/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 291 * to handle ingress packets.
 292 *
 293 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 294 * m, n, x, y are integer numbers that represent the cpus that can be
 295 * neither a dedicated cpu nor a dataplane cpu.
 296 */
 297static bool network_cpus_init(void)
 298{
 299	int rc;
 300
 301	if (network_cpus_string == NULL)
 302		return false;
 303
 304	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
 305	if (rc != 0) {
 306		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
 307			network_cpus_string);
 308		return false;
 309	}
 310
 311	/* Remove dedicated cpus. */
 312	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
 313
 314	if (cpumask_empty(&network_cpus_map)) {
 315		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
 316			network_cpus_string);
 317		return false;
 318	}
 319
 320	pr_info("Linux network CPUs: %*pbl\n",
 321		cpumask_pr_args(&network_cpus_map));
 322	return true;
 323}
 324
 325module_param_named(cpus, network_cpus_string, charp, 0444);
 326MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
 327
 328/* The "tile_net.loopify=LINK" argument causes the named device to
 329 * actually use "loop0" for ingress, and "loop1" for egress.  This
 330 * allows an app to sit between the actual link and linux, passing
 331 * (some) packets along to linux, and forwarding (some) packets sent
 332 * out by linux.
 333 */
 334module_param_named(loopify, loopify_link_name, charp, 0444);
 335MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
 336
 337/* The "tile_net.custom" argument causes us to ignore the "conventional"
 338 * classifier metadata, in particular, the "l2_offset".
 339 */
 340module_param_named(custom, custom_flag, bool, 0444);
 341MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
 342
 343/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
 344 * and to allocate the given number of "jumbo" buffers.
 345 */
 346module_param_named(jumbo, jumbo_num, uint, 0444);
 347MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
 348
 349/* Atomically update a statistics field.
 350 * Note that on TILE-Gx, this operation is fire-and-forget on the
 351 * issuing core (single-cycle dispatch) and takes only a few cycles
 352 * longer than a regular store when the request reaches the home cache.
 353 * No expensive bus management overhead is required.
 354 */
 355static void tile_net_stats_add(unsigned long value, unsigned long *field)
 356{
 357	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
 358	atomic_long_add(value, (atomic_long_t *)field);
 359}
 360
 361/* Allocate and push a buffer. */
 362static bool tile_net_provide_buffer(int instance, int kind)
 363{
 364	struct mpipe_data *md = &mpipe_data[instance];
 365	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
 366	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
 367	const unsigned long buffer_alignment = 128;
 368	struct sk_buff *skb;
 369	int len;
 370
 371	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
 372	skb = dev_alloc_skb(len);
 373	if (skb == NULL)
 374		return false;
 375
 376	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
 377	skb_reserve(skb, sizeof(struct sk_buff **));
 378	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
 379
 380	/* Save a back-pointer to 'skb'. */
 381	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
 382
 383	/* Make sure "skb" and the back-pointer have been flushed. */
 384	wmb();
 385
 386	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
 387			       (void *)va_to_tile_io_addr(skb->data));
 388
 389	return true;
 390}
 391
 392/* Convert a raw mpipe buffer to its matching skb pointer. */
 393static struct sk_buff *mpipe_buf_to_skb(void *va)
 394{
 395	/* Acquire the associated "skb". */
 396	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 397	struct sk_buff *skb = *skb_ptr;
 398
 399	/* Paranoia. */
 400	if (skb->data != va) {
 401		/* Panic here since there's a reasonable chance
 402		 * that corrupt buffers means generic memory
 403		 * corruption, with unpredictable system effects.
 404		 */
 405		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
 406		      va, skb, skb->data);
 407	}
 408
 409	return skb;
 410}
 411
 412static void tile_net_pop_all_buffers(int instance, int stack)
 413{
 414	struct mpipe_data *md = &mpipe_data[instance];
 415
 416	for (;;) {
 417		tile_io_addr_t addr =
 418			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
 419							      stack);
 420		if (addr == 0)
 421			break;
 422		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
 423	}
 424}
 425
 426/* Provide linux buffers to mPIPE. */
 427static void tile_net_provide_needed_buffers(void)
 428{
 429	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 430	int instance, kind;
 431	for (instance = 0; instance < NR_MPIPE_MAX &&
 432		     info->mpipe[instance].has_iqueue; instance++)	{
 433		for (kind = 0; kind < MAX_KINDS; kind++) {
 434			while (info->mpipe[instance].num_needed_buffers[kind]
 435			       != 0) {
 436				if (!tile_net_provide_buffer(instance, kind)) {
 437					pr_notice("Tile %d still needs"
 438						  " some buffers\n",
 439						  info->my_cpu);
 440					return;
 441				}
 442				info->mpipe[instance].
 443					num_needed_buffers[kind]--;
 444			}
 445		}
 446	}
 447}
 448
 449/* Get RX timestamp, and store it in the skb. */
 450static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
 451			      gxio_mpipe_idesc_t *idesc)
 452{
 453	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
 454		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 455		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 456		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
 457						  idesc->time_stamp_ns);
 458	}
 459}
 460
 461/* Get TX timestamp, and store it in the skb. */
 462static void tile_tx_timestamp(struct sk_buff *skb, int instance)
 463{
 464	struct skb_shared_info *shtx = skb_shinfo(skb);
 465	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
 466		struct mpipe_data *md = &mpipe_data[instance];
 467		struct skb_shared_hwtstamps shhwtstamps;
 468		struct timespec64 ts;
 469
 470		shtx->tx_flags |= SKBTX_IN_PROGRESS;
 471		gxio_mpipe_get_timestamp(&md->context, &ts);
 472		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 473		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
 474		skb_tstamp_tx(skb, &shhwtstamps);
 475	}
 476}
 477
 478/* Use ioctl() to enable or disable TX or RX timestamping. */
 479static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
 480{
 481	struct hwtstamp_config config;
 482	struct tile_net_priv *priv = netdev_priv(dev);
 483
 484	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
 485		return -EFAULT;
 486
 487	if (config.flags)  /* reserved for future extensions */
 488		return -EINVAL;
 489
 490	switch (config.tx_type) {
 491	case HWTSTAMP_TX_OFF:
 492	case HWTSTAMP_TX_ON:
 493		break;
 494	default:
 495		return -ERANGE;
 496	}
 497
 498	switch (config.rx_filter) {
 499	case HWTSTAMP_FILTER_NONE:
 500		break;
 501	case HWTSTAMP_FILTER_ALL:
 502	case HWTSTAMP_FILTER_SOME:
 503	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 504	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 505	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 506	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 507	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 508	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 509	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 510	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 511	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 512	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 513	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 514	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 515		config.rx_filter = HWTSTAMP_FILTER_ALL;
 516		break;
 517	default:
 518		return -ERANGE;
 519	}
 520
 521	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
 522		return -EFAULT;
 523
 524	priv->stamp_cfg = config;
 525	return 0;
 526}
 527
 528static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
 529{
 530	struct tile_net_priv *priv = netdev_priv(dev);
 531
 532	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
 533			 sizeof(priv->stamp_cfg)))
 534		return -EFAULT;
 535
 536	return 0;
 537}
 538
 539static inline bool filter_packet(struct net_device *dev, void *buf)
 540{
 541	/* Filter packets received before we're up. */
 542	if (dev == NULL || !(dev->flags & IFF_UP))
 543		return true;
 544
 545	/* Filter out packets that aren't for us. */
 546	if (!(dev->flags & IFF_PROMISC) &&
 547	    !is_multicast_ether_addr(buf) &&
 548	    !ether_addr_equal(dev->dev_addr, buf))
 549		return true;
 550
 551	return false;
 552}
 553
 554static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
 555				 gxio_mpipe_idesc_t *idesc, unsigned long len)
 556{
 557	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 558	struct tile_net_priv *priv = netdev_priv(dev);
 559	int instance = priv->instance;
 560
 561	/* Encode the actual packet length. */
 562	skb_put(skb, len);
 563
 564	skb->protocol = eth_type_trans(skb, dev);
 565
 566	/* Acknowledge "good" hardware checksums. */
 567	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
 568		skb->ip_summed = CHECKSUM_UNNECESSARY;
 569
 570	/* Get RX timestamp from idesc. */
 571	tile_rx_timestamp(priv, skb, idesc);
 572
 573	napi_gro_receive(&info->mpipe[instance].napi, skb);
 574
 575	/* Update stats. */
 576	tile_net_stats_add(1, &dev->stats.rx_packets);
 577	tile_net_stats_add(len, &dev->stats.rx_bytes);
 578
 579	/* Need a new buffer. */
 580	if (idesc->size == buffer_size_enums[0])
 581		info->mpipe[instance].num_needed_buffers[0]++;
 582	else if (idesc->size == buffer_size_enums[1])
 583		info->mpipe[instance].num_needed_buffers[1]++;
 584	else
 585		info->mpipe[instance].num_needed_buffers[2]++;
 586}
 587
 588/* Handle a packet.  Return true if "processed", false if "filtered". */
 589static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
 590{
 591	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 592	struct mpipe_data *md = &mpipe_data[instance];
 593	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
 594	uint8_t l2_offset;
 595	void *va;
 596	void *buf;
 597	unsigned long len;
 598	bool filter;
 599
 600	/* Drop packets for which no buffer was available (which can
 601	 * happen under heavy load), or for which the me/tr/ce flags
 602	 * are set (which can happen for jumbo cut-through packets,
 603	 * or with a customized classifier).
 604	 */
 605	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
 606		if (dev)
 607			tile_net_stats_add(1, &dev->stats.rx_errors);
 608		goto drop;
 609	}
 610
 611	/* Get the "l2_offset", if allowed. */
 612	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
 613
 614	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
 615	va = tile_io_addr_to_va((unsigned long)idesc->va);
 616
 617	/* Get the actual packet start/length. */
 618	buf = va + l2_offset;
 619	len = idesc->l2_size - l2_offset;
 620
 621	/* Point "va" at the raw buffer. */
 622	va -= NET_IP_ALIGN;
 623
 624	filter = filter_packet(dev, buf);
 625	if (filter) {
 626		if (dev)
 627			tile_net_stats_add(1, &dev->stats.rx_dropped);
 628drop:
 629		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
 630	} else {
 631		struct sk_buff *skb = mpipe_buf_to_skb(va);
 632
 633		/* Skip headroom, and any custom header. */
 634		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
 635
 636		tile_net_receive_skb(dev, skb, idesc, len);
 637	}
 638
 639	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
 640	return !filter;
 641}
 642
 643/* Handle some packets for the current CPU.
 644 *
 645 * This function handles up to TILE_NET_BATCH idescs per call.
 646 *
 647 * ISSUE: Since we do not provide new buffers until this function is
 648 * complete, we must initially provide enough buffers for each network
 649 * cpu to fill its iqueue and also its batched idescs.
 650 *
 651 * ISSUE: The "rotting packet" race condition occurs if a packet
 652 * arrives after the queue appears to be empty, and before the
 653 * hypervisor interrupt is re-enabled.
 654 */
 655static int tile_net_poll(struct napi_struct *napi, int budget)
 656{
 657	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 658	unsigned int work = 0;
 659	gxio_mpipe_idesc_t *idesc;
 660	int instance, i, n;
 661	struct mpipe_data *md;
 662	struct info_mpipe *info_mpipe =
 663		container_of(napi, struct info_mpipe, napi);
 664
 665	if (budget <= 0)
 666		goto done;
 667
 668	instance = info_mpipe->instance;
 669	while ((n = gxio_mpipe_iqueue_try_peek(
 670			&info_mpipe->iqueue,
 671			&idesc)) > 0) {
 672		for (i = 0; i < n; i++) {
 673			if (i == TILE_NET_BATCH)
 674				goto done;
 675			if (tile_net_handle_packet(instance,
 676						   idesc + i)) {
 677				if (++work >= budget)
 678					goto done;
 679			}
 680		}
 681	}
 682
 683	/* There are no packets left. */
 684	napi_complete(&info_mpipe->napi);
 685
 686	md = &mpipe_data[instance];
 687	/* Re-enable hypervisor interrupts. */
 688	gxio_mpipe_enable_notif_ring_interrupt(
 689		&md->context, info->mpipe[instance].iqueue.ring);
 690
 691	/* HACK: Avoid the "rotting packet" problem. */
 692	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
 693		napi_schedule(&info_mpipe->napi);
 694
 695	/* ISSUE: Handle completions? */
 696
 697done:
 698	tile_net_provide_needed_buffers();
 699
 700	return work;
 701}
 702
 703/* Handle an ingress interrupt from an instance on the current cpu. */
 704static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
 705{
 706	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 707	napi_schedule(&info->mpipe[(uint64_t)id].napi);
 708	return IRQ_HANDLED;
 709}
 710
 711/* Free some completions.  This must be called with interrupts blocked. */
 712static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
 713				struct tile_net_comps *comps,
 714				int limit, bool force_update)
 715{
 716	int n = 0;
 717	while (comps->comp_last < comps->comp_next) {
 718		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
 719		struct tile_net_comp *comp = &comps->comp_queue[cid];
 720		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
 721						   force_update || n == 0))
 722			break;
 723		dev_kfree_skb_irq(comp->skb);
 724		comps->comp_last++;
 725		if (++n == limit)
 726			break;
 727	}
 728	return n;
 729}
 730
 731/* Add a completion.  This must be called with interrupts blocked.
 732 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 733 */
 734static void add_comp(gxio_mpipe_equeue_t *equeue,
 735		     struct tile_net_comps *comps,
 736		     uint64_t when, struct sk_buff *skb)
 737{
 738	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
 739	comps->comp_queue[cid].when = when;
 740	comps->comp_queue[cid].skb = skb;
 741	comps->comp_next++;
 742}
 743
 744static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
 745                                            int tx_queue_idx)
 746{
 747	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
 748	struct tile_net_priv *priv = netdev_priv(dev);
 749	int instance = priv->instance;
 750	struct tile_net_tx_wake *tx_wake =
 751		&info->mpipe[instance].tx_wake[priv->echannel];
 752
 753	hrtimer_start(&tx_wake->timer,
 754		      TX_TIMER_DELAY_USEC * 1000UL,
 755		      HRTIMER_MODE_REL_PINNED);
 756}
 757
 758static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
 759{
 760	struct tile_net_tx_wake *tx_wake =
 761		container_of(t, struct tile_net_tx_wake, timer);
 762	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
 763	return HRTIMER_NORESTART;
 764}
 765
 766/* Make sure the egress timer is scheduled. */
 767static void tile_net_schedule_egress_timer(void)
 768{
 769	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 770
 771	if (!info->egress_timer_scheduled) {
 772		hrtimer_start(&info->egress_timer,
 773			      EGRESS_TIMER_DELAY_USEC * 1000UL,
 774			      HRTIMER_MODE_REL_PINNED);
 775		info->egress_timer_scheduled = true;
 776	}
 777}
 778
 779/* The "function" for "info->egress_timer".
 780 *
 781 * This timer will reschedule itself as long as there are any pending
 782 * completions expected for this tile.
 783 */
 784static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
 785{
 786	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 787	unsigned long irqflags;
 788	bool pending = false;
 789	int i, instance;
 790
 791	local_irq_save(irqflags);
 792
 793	/* The timer is no longer scheduled. */
 794	info->egress_timer_scheduled = false;
 795
 796	/* Free all possible comps for this tile. */
 797	for (instance = 0; instance < NR_MPIPE_MAX &&
 798		     info->mpipe[instance].has_iqueue; instance++) {
 799		for (i = 0; i < TILE_NET_CHANNELS; i++) {
 800			struct tile_net_egress *egress =
 801				&mpipe_data[instance].egress_for_echannel[i];
 802			struct tile_net_comps *comps =
 803				info->mpipe[instance].comps_for_echannel[i];
 804			if (!egress || comps->comp_last >= comps->comp_next)
 805				continue;
 806			tile_net_free_comps(egress->equeue, comps, -1, true);
 807			pending = pending ||
 808				(comps->comp_last < comps->comp_next);
 809		}
 810	}
 811
 812	/* Reschedule timer if needed. */
 813	if (pending)
 814		tile_net_schedule_egress_timer();
 815
 816	local_irq_restore(irqflags);
 817
 818	return HRTIMER_NORESTART;
 819}
 820
 821/* PTP clock operations. */
 822
 823static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 824{
 825	int ret = 0;
 826	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 827	mutex_lock(&md->ptp_lock);
 828	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
 829		ret = -EINVAL;
 830	mutex_unlock(&md->ptp_lock);
 831	return ret;
 832}
 833
 834static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
 835{
 836	int ret = 0;
 837	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 838	mutex_lock(&md->ptp_lock);
 839	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
 840		ret = -EBUSY;
 841	mutex_unlock(&md->ptp_lock);
 842	return ret;
 843}
 844
 845static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
 846			     struct timespec64 *ts)
 847{
 848	int ret = 0;
 849	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 850	mutex_lock(&md->ptp_lock);
 851	if (gxio_mpipe_get_timestamp(&md->context, ts))
 852		ret = -EBUSY;
 853	mutex_unlock(&md->ptp_lock);
 854	return ret;
 855}
 856
 857static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
 858			     const struct timespec64 *ts)
 859{
 860	int ret = 0;
 861	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 862	mutex_lock(&md->ptp_lock);
 863	if (gxio_mpipe_set_timestamp(&md->context, ts))
 864		ret = -EBUSY;
 865	mutex_unlock(&md->ptp_lock);
 866	return ret;
 867}
 868
 869static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
 870			    struct ptp_clock_request *request, int on)
 871{
 872	return -EOPNOTSUPP;
 873}
 874
 875static struct ptp_clock_info ptp_mpipe_caps = {
 876	.owner		= THIS_MODULE,
 877	.name		= "mPIPE clock",
 878	.max_adj	= 999999999,
 879	.n_ext_ts	= 0,
 880	.n_pins		= 0,
 881	.pps		= 0,
 882	.adjfreq	= ptp_mpipe_adjfreq,
 883	.adjtime	= ptp_mpipe_adjtime,
 884	.gettime64	= ptp_mpipe_gettime,
 885	.settime64	= ptp_mpipe_settime,
 886	.enable		= ptp_mpipe_enable,
 887};
 888
 889/* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
 890static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
 891{
 892	struct timespec64 ts;
 893
 894	ktime_get_ts64(&ts);
 895	gxio_mpipe_set_timestamp(&md->context, &ts);
 896
 897	mutex_init(&md->ptp_lock);
 898	md->caps = ptp_mpipe_caps;
 899	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
 900	if (IS_ERR(md->ptp_clock))
 901		netdev_err(dev, "ptp_clock_register failed %ld\n",
 902			   PTR_ERR(md->ptp_clock));
 903}
 904
 905/* Initialize PTP fields in a new device. */
 906static void init_ptp_dev(struct tile_net_priv *priv)
 907{
 908	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
 909	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
 910}
 911
 912/* Helper functions for "tile_net_update()". */
 913static void enable_ingress_irq(void *irq)
 914{
 915	enable_percpu_irq((long)irq, 0);
 916}
 917
 918static void disable_ingress_irq(void *irq)
 919{
 920	disable_percpu_irq((long)irq);
 921}
 922
 923/* Helper function for tile_net_open() and tile_net_stop().
 924 * Always called under tile_net_devs_for_channel_mutex.
 925 */
 926static int tile_net_update(struct net_device *dev)
 927{
 928	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
 929	bool saw_channel = false;
 930	int instance = mpipe_instance(dev);
 931	struct mpipe_data *md = &mpipe_data[instance];
 932	int channel;
 933	int rc;
 934	int cpu;
 935
 936	saw_channel = false;
 937	gxio_mpipe_rules_init(&rules, &md->context);
 938
 939	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
 940		if (md->tile_net_devs_for_channel[channel] == NULL)
 941			continue;
 942		if (!saw_channel) {
 943			saw_channel = true;
 944			gxio_mpipe_rules_begin(&rules, md->first_bucket,
 945					       md->num_buckets, NULL);
 946			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
 947		}
 948		gxio_mpipe_rules_add_channel(&rules, channel);
 949	}
 950
 951	/* NOTE: This can fail if there is no classifier.
 952	 * ISSUE: Can anything else cause it to fail?
 953	 */
 954	rc = gxio_mpipe_rules_commit(&rules);
 955	if (rc != 0) {
 956		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
 957			    instance, rc);
 958		return -EIO;
 959	}
 960
 961	/* Update all cpus, sequentially (to protect "netif_napi_add()").
 962	 * We use on_each_cpu to handle the IPI mask or unmask.
 963	 */
 964	if (!saw_channel)
 965		on_each_cpu(disable_ingress_irq,
 966			    (void *)(long)(md->ingress_irq), 1);
 967	for_each_online_cpu(cpu) {
 968		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 969
 970		if (!info->mpipe[instance].has_iqueue)
 971			continue;
 972		if (saw_channel) {
 973			if (!info->mpipe[instance].napi_added) {
 974				netif_napi_add(dev, &info->mpipe[instance].napi,
 975					       tile_net_poll, TILE_NET_WEIGHT);
 976				info->mpipe[instance].napi_added = true;
 977			}
 978			if (!info->mpipe[instance].napi_enabled) {
 979				napi_enable(&info->mpipe[instance].napi);
 980				info->mpipe[instance].napi_enabled = true;
 981			}
 982		} else {
 983			if (info->mpipe[instance].napi_enabled) {
 984				napi_disable(&info->mpipe[instance].napi);
 985				info->mpipe[instance].napi_enabled = false;
 986			}
 987			/* FIXME: Drain the iqueue. */
 988		}
 989	}
 990	if (saw_channel)
 991		on_each_cpu(enable_ingress_irq,
 992			    (void *)(long)(md->ingress_irq), 1);
 993
 994	/* HACK: Allow packets to flow in the simulator. */
 995	if (saw_channel)
 996		sim_enable_mpipe_links(instance, -1);
 997
 998	return 0;
 999}
1000
1001/* Initialize a buffer stack. */
1002static int create_buffer_stack(struct net_device *dev,
1003			       int kind, size_t num_buffers)
1004{
1005	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1006	int instance = mpipe_instance(dev);
1007	struct mpipe_data *md = &mpipe_data[instance];
1008	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1009	int stack_idx = md->first_buffer_stack + kind;
1010	void *va;
1011	int i, rc;
1012
1013	/* Round up to 64KB and then use alloc_pages() so we get the
1014	 * required 64KB alignment.
1015	 */
1016	md->buffer_stack_bytes[kind] =
1017		ALIGN(needed, 64 * 1024);
1018
1019	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1020	if (va == NULL) {
1021		netdev_err(dev,
1022			   "Could not alloc %zd bytes for buffer stack %d\n",
1023			   md->buffer_stack_bytes[kind], kind);
1024		return -ENOMEM;
1025	}
1026
1027	/* Initialize the buffer stack. */
1028	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1029					  buffer_size_enums[kind],  va,
1030					  md->buffer_stack_bytes[kind], 0);
1031	if (rc != 0) {
1032		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1033			   instance, rc);
1034		free_pages_exact(va, md->buffer_stack_bytes[kind]);
1035		return rc;
1036	}
1037
1038	md->buffer_stack_vas[kind] = va;
1039
1040	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1041					       hash_pte, 0);
1042	if (rc != 0) {
1043		netdev_err(dev,
1044			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1045			   instance, rc);
1046		return rc;
1047	}
1048
1049	/* Provide initial buffers. */
1050	for (i = 0; i < num_buffers; i++) {
1051		if (!tile_net_provide_buffer(instance, kind)) {
1052			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1053			return -ENOMEM;
1054		}
1055	}
1056
1057	return 0;
1058}
1059
1060/* Allocate and initialize mpipe buffer stacks, and register them in
1061 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1062 * This routine supports tile_net_init_mpipe(), below.
1063 */
1064static int init_buffer_stacks(struct net_device *dev,
1065			      int network_cpus_count)
1066{
1067	int num_kinds = MAX_KINDS - (jumbo_num == 0);
1068	size_t num_buffers;
1069	int rc;
1070	int instance = mpipe_instance(dev);
1071	struct mpipe_data *md = &mpipe_data[instance];
1072
1073	/* Allocate the buffer stacks. */
1074	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1075	if (rc < 0) {
1076		netdev_err(dev,
1077			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1078			   instance, rc);
1079		return rc;
1080	}
1081	md->first_buffer_stack = rc;
1082
1083	/* Enough small/large buffers to (normally) avoid buffer errors. */
1084	num_buffers =
1085		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1086
1087	/* Allocate the small memory stack. */
1088	if (rc >= 0)
1089		rc = create_buffer_stack(dev, 0, num_buffers);
1090
1091	/* Allocate the large buffer stack. */
1092	if (rc >= 0)
1093		rc = create_buffer_stack(dev, 1, num_buffers);
1094
1095	/* Allocate the jumbo buffer stack if needed. */
1096	if (rc >= 0 && jumbo_num != 0)
1097		rc = create_buffer_stack(dev, 2, jumbo_num);
1098
1099	return rc;
1100}
1101
1102/* Allocate per-cpu resources (memory for completions and idescs).
1103 * This routine supports tile_net_init_mpipe(), below.
1104 */
1105static int alloc_percpu_mpipe_resources(struct net_device *dev,
1106					int cpu, int ring)
1107{
1108	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1109	int order, i, rc;
1110	int instance = mpipe_instance(dev);
1111	struct mpipe_data *md = &mpipe_data[instance];
1112	struct page *page;
1113	void *addr;
1114
1115	/* Allocate the "comps". */
1116	order = get_order(COMPS_SIZE);
1117	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1118	if (page == NULL) {
1119		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1120			   COMPS_SIZE);
1121		return -ENOMEM;
1122	}
1123	addr = pfn_to_kaddr(page_to_pfn(page));
1124	memset(addr, 0, COMPS_SIZE);
1125	for (i = 0; i < TILE_NET_CHANNELS; i++)
1126		info->mpipe[instance].comps_for_echannel[i] =
1127			addr + i * sizeof(struct tile_net_comps);
1128
1129	/* If this is a network cpu, create an iqueue. */
1130	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1131		order = get_order(NOTIF_RING_SIZE);
1132		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1133		if (page == NULL) {
1134			netdev_err(dev,
1135				   "Failed to alloc %zd bytes iqueue memory\n",
1136				   NOTIF_RING_SIZE);
1137			return -ENOMEM;
1138		}
1139		addr = pfn_to_kaddr(page_to_pfn(page));
1140		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1141					    &md->context, ring++, addr,
1142					    NOTIF_RING_SIZE, 0);
1143		if (rc < 0) {
1144			netdev_err(dev,
1145				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1146			return rc;
1147		}
1148		info->mpipe[instance].has_iqueue = true;
1149	}
1150
1151	return ring;
1152}
1153
1154/* Initialize NotifGroup and buckets.
1155 * This routine supports tile_net_init_mpipe(), below.
1156 */
1157static int init_notif_group_and_buckets(struct net_device *dev,
1158					int ring, int network_cpus_count)
1159{
1160	int group, rc;
1161	int instance = mpipe_instance(dev);
1162	struct mpipe_data *md = &mpipe_data[instance];
1163
1164	/* Allocate one NotifGroup. */
1165	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1166	if (rc < 0) {
1167		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1168			   instance, rc);
1169		return rc;
1170	}
1171	group = rc;
1172
1173	/* Initialize global num_buckets value. */
1174	if (network_cpus_count > 4)
1175		md->num_buckets = 256;
1176	else if (network_cpus_count > 1)
1177		md->num_buckets = 16;
1178
1179	/* Allocate some buckets, and set global first_bucket value. */
1180	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1181	if (rc < 0) {
1182		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1183			   instance, rc);
1184		return rc;
1185	}
1186	md->first_bucket = rc;
1187
1188	/* Init group and buckets. */
1189	rc = gxio_mpipe_init_notif_group_and_buckets(
1190		&md->context, group, ring, network_cpus_count,
1191		md->first_bucket, md->num_buckets,
1192		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1193	if (rc != 0) {
1194		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
1195			   "mpipe[%d] %d\n", instance, rc);
1196		return rc;
1197	}
1198
1199	return 0;
1200}
1201
1202/* Create an irq and register it, then activate the irq and request
1203 * interrupts on all cores.  Note that "ingress_irq" being initialized
1204 * is how we know not to call tile_net_init_mpipe() again.
1205 * This routine supports tile_net_init_mpipe(), below.
1206 */
1207static int tile_net_setup_interrupts(struct net_device *dev)
1208{
1209	int cpu, rc, irq;
1210	int instance = mpipe_instance(dev);
1211	struct mpipe_data *md = &mpipe_data[instance];
1212
1213	irq = md->ingress_irq;
1214	if (irq < 0) {
1215		irq = irq_alloc_hwirq(-1);
1216		if (!irq) {
1217			netdev_err(dev,
1218				   "create_irq failed: mpipe[%d] %d\n",
1219				   instance, irq);
1220			return irq;
1221		}
1222		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1223
1224		rc = request_irq(irq, tile_net_handle_ingress_irq,
1225				 0, "tile_net", (void *)((uint64_t)instance));
1226
1227		if (rc != 0) {
1228			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1229				   instance, rc);
1230			irq_free_hwirq(irq);
1231			return rc;
1232		}
1233		md->ingress_irq = irq;
1234	}
1235
1236	for_each_online_cpu(cpu) {
1237		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1238		if (info->mpipe[instance].has_iqueue) {
1239			gxio_mpipe_request_notif_ring_interrupt(&md->context,
1240				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1241				info->mpipe[instance].iqueue.ring);
1242		}
1243	}
1244
1245	return 0;
1246}
1247
1248/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1249static void tile_net_init_mpipe_fail(int instance)
1250{
1251	int kind, cpu;
1252	struct mpipe_data *md = &mpipe_data[instance];
1253
1254	/* Do cleanups that require the mpipe context first. */
1255	for (kind = 0; kind < MAX_KINDS; kind++) {
1256		if (md->buffer_stack_vas[kind] != NULL) {
1257			tile_net_pop_all_buffers(instance,
1258						 md->first_buffer_stack +
1259						 kind);
1260		}
1261	}
1262
1263	/* Destroy mpipe context so the hardware no longer owns any memory. */
1264	gxio_mpipe_destroy(&md->context);
1265
1266	for_each_online_cpu(cpu) {
1267		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1268		free_pages(
1269			(unsigned long)(
1270				info->mpipe[instance].comps_for_echannel[0]),
1271			get_order(COMPS_SIZE));
1272		info->mpipe[instance].comps_for_echannel[0] = NULL;
1273		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1274			   get_order(NOTIF_RING_SIZE));
1275		info->mpipe[instance].iqueue.idescs = NULL;
1276	}
1277
1278	for (kind = 0; kind < MAX_KINDS; kind++) {
1279		if (md->buffer_stack_vas[kind] != NULL) {
1280			free_pages_exact(md->buffer_stack_vas[kind],
1281					 md->buffer_stack_bytes[kind]);
1282			md->buffer_stack_vas[kind] = NULL;
1283		}
1284	}
1285
1286	md->first_buffer_stack = -1;
1287	md->first_bucket = -1;
1288}
1289
1290/* The first time any tilegx network device is opened, we initialize
1291 * the global mpipe state.  If this step fails, we fail to open the
1292 * device, but if it succeeds, we never need to do it again, and since
1293 * tile_net can't be unloaded, we never undo it.
1294 *
1295 * Note that some resources in this path (buffer stack indices,
1296 * bindings from init_buffer_stack, etc.) are hypervisor resources
1297 * that are freed implicitly by gxio_mpipe_destroy().
1298 */
1299static int tile_net_init_mpipe(struct net_device *dev)
1300{
1301	int rc;
1302	int cpu;
1303	int first_ring, ring;
1304	int instance = mpipe_instance(dev);
1305	struct mpipe_data *md = &mpipe_data[instance];
1306	int network_cpus_count = cpumask_weight(&network_cpus_map);
1307
1308	if (!hash_default) {
1309		netdev_err(dev, "Networking requires hash_default!\n");
1310		return -EIO;
1311	}
1312
1313	rc = gxio_mpipe_init(&md->context, instance);
1314	if (rc != 0) {
1315		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1316			   instance, rc);
1317		return -EIO;
1318	}
1319
1320	/* Set up the buffer stacks. */
1321	rc = init_buffer_stacks(dev, network_cpus_count);
1322	if (rc != 0)
1323		goto fail;
1324
1325	/* Allocate one NotifRing for each network cpu. */
1326	rc = gxio_mpipe_alloc_notif_rings(&md->context,
1327					  network_cpus_count, 0, 0);
1328	if (rc < 0) {
1329		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1330			   rc);
1331		goto fail;
1332	}
1333
1334	/* Init NotifRings per-cpu. */
1335	first_ring = rc;
1336	ring = first_ring;
1337	for_each_online_cpu(cpu) {
1338		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1339		if (rc < 0)
1340			goto fail;
1341		ring = rc;
1342	}
1343
1344	/* Initialize NotifGroup and buckets. */
1345	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1346	if (rc != 0)
1347		goto fail;
1348
1349	/* Create and enable interrupts. */
1350	rc = tile_net_setup_interrupts(dev);
1351	if (rc != 0)
1352		goto fail;
1353
1354	/* Register PTP clock and set mPIPE timestamp, if configured. */
1355	register_ptp_clock(dev, md);
1356
1357	return 0;
1358
1359fail:
1360	tile_net_init_mpipe_fail(instance);
1361	return rc;
1362}
1363
1364/* Create persistent egress info for a given egress channel.
1365 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1366 * ISSUE: Defer header allocation until TSO is actually needed?
1367 */
1368static int tile_net_init_egress(struct net_device *dev, int echannel)
1369{
1370	static int ering = -1;
1371	struct page *headers_page, *edescs_page, *equeue_page;
1372	gxio_mpipe_edesc_t *edescs;
1373	gxio_mpipe_equeue_t *equeue;
1374	unsigned char *headers;
1375	int headers_order, edescs_order, equeue_order;
1376	size_t edescs_size;
1377	int rc = -ENOMEM;
1378	int instance = mpipe_instance(dev);
1379	struct mpipe_data *md = &mpipe_data[instance];
1380
1381	/* Only initialize once. */
1382	if (md->egress_for_echannel[echannel].equeue != NULL)
1383		return 0;
1384
1385	/* Allocate memory for the "headers". */
1386	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1387	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1388	if (headers_page == NULL) {
1389		netdev_warn(dev,
1390			    "Could not alloc %zd bytes for TSO headers.\n",
1391			    PAGE_SIZE << headers_order);
1392		goto fail;
1393	}
1394	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1395
1396	/* Allocate memory for the "edescs". */
1397	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1398	edescs_order = get_order(edescs_size);
1399	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1400	if (edescs_page == NULL) {
1401		netdev_warn(dev,
1402			    "Could not alloc %zd bytes for eDMA ring.\n",
1403			    edescs_size);
1404		goto fail_headers;
1405	}
1406	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1407
1408	/* Allocate memory for the "equeue". */
1409	equeue_order = get_order(sizeof(*equeue));
1410	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1411	if (equeue_page == NULL) {
1412		netdev_warn(dev,
1413			    "Could not alloc %zd bytes for equeue info.\n",
1414			    PAGE_SIZE << equeue_order);
1415		goto fail_edescs;
1416	}
1417	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1418
1419	/* Allocate an edma ring (using a one entry "free list"). */
1420	if (ering < 0) {
1421		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1422		if (rc < 0) {
1423			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1424				    "mpipe[%d] %d\n", instance, rc);
1425			goto fail_equeue;
1426		}
1427		ering = rc;
1428	}
1429
1430	/* Initialize the equeue. */
1431	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1432				    edescs, edescs_size, 0);
1433	if (rc != 0) {
1434		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1435			   instance, rc);
1436		goto fail_equeue;
1437	}
1438
1439	/* Don't reuse the ering later. */
1440	ering = -1;
1441
1442	if (jumbo_num != 0) {
1443		/* Make sure "jumbo" packets can be egressed safely. */
1444		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1445			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1446			netdev_warn(dev, "Jumbo packets may not be egressed"
1447				    " properly on channel %d\n", echannel);
1448		}
1449	}
1450
1451	/* Done. */
1452	md->egress_for_echannel[echannel].equeue = equeue;
1453	md->egress_for_echannel[echannel].headers = headers;
1454	return 0;
1455
1456fail_equeue:
1457	__free_pages(equeue_page, equeue_order);
1458
1459fail_edescs:
1460	__free_pages(edescs_page, edescs_order);
1461
1462fail_headers:
1463	__free_pages(headers_page, headers_order);
1464
1465fail:
1466	return rc;
1467}
1468
1469/* Return channel number for a newly-opened link. */
1470static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1471			      const char *link_name)
1472{
1473	int instance = mpipe_instance(dev);
1474	struct mpipe_data *md = &mpipe_data[instance];
1475	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1476	if (rc < 0) {
1477		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1478			   link_name, instance, rc);
1479		return rc;
1480	}
1481	if (jumbo_num != 0) {
1482		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1483		rc = gxio_mpipe_link_set_attr(link, attr, 1);
1484		if (rc != 0) {
1485			netdev_err(dev,
1486				   "Cannot receive jumbo packets on '%s'\n",
1487				   link_name);
1488			gxio_mpipe_link_close(link);
1489			return rc;
1490		}
1491	}
1492	rc = gxio_mpipe_link_channel(link);
1493	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1494		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1495		gxio_mpipe_link_close(link);
1496		return -EINVAL;
1497	}
1498	return rc;
1499}
1500
1501/* Help the kernel activate the given network interface. */
1502static int tile_net_open(struct net_device *dev)
1503{
1504	struct tile_net_priv *priv = netdev_priv(dev);
1505	int cpu, rc, instance;
1506
1507	mutex_lock(&tile_net_devs_for_channel_mutex);
1508
1509	/* Get the instance info. */
1510	rc = gxio_mpipe_link_instance(dev->name);
1511	if (rc < 0 || rc >= NR_MPIPE_MAX) {
1512		mutex_unlock(&tile_net_devs_for_channel_mutex);
1513		return -EIO;
1514	}
1515
1516	priv->instance = rc;
1517	instance = rc;
1518	if (!mpipe_data[rc].context.mmio_fast_base) {
1519		/* Do one-time initialization per instance the first time
1520		 * any device is opened.
1521		 */
1522		rc = tile_net_init_mpipe(dev);
1523		if (rc != 0)
1524			goto fail;
1525	}
1526
1527	/* Determine if this is the "loopify" device. */
1528	if (unlikely((loopify_link_name != NULL) &&
1529		     !strcmp(dev->name, loopify_link_name))) {
1530		rc = tile_net_link_open(dev, &priv->link, "loop0");
1531		if (rc < 0)
1532			goto fail;
1533		priv->channel = rc;
1534		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1535		if (rc < 0)
1536			goto fail;
1537		priv->loopify_channel = rc;
1538		priv->echannel = rc;
1539	} else {
1540		rc = tile_net_link_open(dev, &priv->link, dev->name);
1541		if (rc < 0)
1542			goto fail;
1543		priv->channel = rc;
1544		priv->echannel = rc;
1545	}
1546
1547	/* Initialize egress info (if needed).  Once ever, per echannel. */
1548	rc = tile_net_init_egress(dev, priv->echannel);
1549	if (rc != 0)
1550		goto fail;
1551
1552	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1553
1554	rc = tile_net_update(dev);
1555	if (rc != 0)
1556		goto fail;
1557
1558	mutex_unlock(&tile_net_devs_for_channel_mutex);
1559
1560	/* Initialize the transmit wake timer for this device for each cpu. */
1561	for_each_online_cpu(cpu) {
1562		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1563		struct tile_net_tx_wake *tx_wake =
1564			&info->mpipe[instance].tx_wake[priv->echannel];
1565
1566		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1567			     HRTIMER_MODE_REL);
1568		tx_wake->tx_queue_idx = cpu;
1569		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1570		tx_wake->dev = dev;
1571	}
1572
1573	for_each_online_cpu(cpu)
1574		netif_start_subqueue(dev, cpu);
1575	netif_carrier_on(dev);
1576	return 0;
1577
1578fail:
1579	if (priv->loopify_channel >= 0) {
1580		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1581			netdev_warn(dev, "Failed to close loopify link!\n");
1582		priv->loopify_channel = -1;
1583	}
1584	if (priv->channel >= 0) {
1585		if (gxio_mpipe_link_close(&priv->link) != 0)
1586			netdev_warn(dev, "Failed to close link!\n");
1587		priv->channel = -1;
1588	}
1589	priv->echannel = -1;
1590	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
1591	mutex_unlock(&tile_net_devs_for_channel_mutex);
1592
1593	/* Don't return raw gxio error codes to generic Linux. */
1594	return (rc > -512) ? rc : -EIO;
1595}
1596
1597/* Help the kernel deactivate the given network interface. */
1598static int tile_net_stop(struct net_device *dev)
1599{
1600	struct tile_net_priv *priv = netdev_priv(dev);
1601	int cpu;
1602	int instance = priv->instance;
1603	struct mpipe_data *md = &mpipe_data[instance];
1604
1605	for_each_online_cpu(cpu) {
1606		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1607		struct tile_net_tx_wake *tx_wake =
1608			&info->mpipe[instance].tx_wake[priv->echannel];
1609
1610		hrtimer_cancel(&tx_wake->timer);
1611		netif_stop_subqueue(dev, cpu);
1612	}
1613
1614	mutex_lock(&tile_net_devs_for_channel_mutex);
1615	md->tile_net_devs_for_channel[priv->channel] = NULL;
1616	(void)tile_net_update(dev);
1617	if (priv->loopify_channel >= 0) {
1618		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1619			netdev_warn(dev, "Failed to close loopify link!\n");
1620		priv->loopify_channel = -1;
1621	}
1622	if (priv->channel >= 0) {
1623		if (gxio_mpipe_link_close(&priv->link) != 0)
1624			netdev_warn(dev, "Failed to close link!\n");
1625		priv->channel = -1;
1626	}
1627	priv->echannel = -1;
1628	mutex_unlock(&tile_net_devs_for_channel_mutex);
1629
1630	return 0;
1631}
1632
1633/* Determine the VA for a fragment. */
1634static inline void *tile_net_frag_buf(skb_frag_t *f)
1635{
1636	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1637	return pfn_to_kaddr(pfn) + f->page_offset;
1638}
1639
1640/* Acquire a completion entry and an egress slot, or if we can't,
1641 * stop the queue and schedule the tx_wake timer.
1642 */
1643static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1644				       int tx_queue_idx,
1645				       struct tile_net_comps *comps,
1646				       gxio_mpipe_equeue_t *equeue,
1647				       int num_edescs)
1648{
1649	/* Try to acquire a completion entry. */
1650	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1651	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1652
1653		/* Try to acquire an egress slot. */
1654		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1655		if (slot >= 0)
1656			return slot;
1657
1658		/* Freeing some completions gives the equeue time to drain. */
1659		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1660
1661		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1662		if (slot >= 0)
1663			return slot;
1664	}
1665
1666	/* Still nothing; give up and stop the queue for a short while. */
1667	netif_stop_subqueue(dev, tx_queue_idx);
1668	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1669	return -1;
1670}
1671
1672/* Determine how many edesc's are needed for TSO.
1673 *
1674 * Sometimes, if "sendfile()" requires copying, we will be called with
1675 * "data" containing the header and payload, with "frags" being empty.
1676 * Sometimes, for example when using NFS over TCP, a single segment can
1677 * span 3 fragments.  This requires special care.
1678 */
1679static int tso_count_edescs(struct sk_buff *skb)
1680{
1681	struct skb_shared_info *sh = skb_shinfo(skb);
1682	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1683	unsigned int data_len = skb->len - sh_len;
1684	unsigned int p_len = sh->gso_size;
1685	long f_id = -1;    /* id of the current fragment */
1686	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1687	long f_used = 0;  /* bytes used from the current fragment */
1688	long n;            /* size of the current piece of payload */
1689	int num_edescs = 0;
1690	int segment;
1691
1692	for (segment = 0; segment < sh->gso_segs; segment++) {
1693
1694		unsigned int p_used = 0;
1695
1696		/* One edesc for header and for each piece of the payload. */
1697		for (num_edescs++; p_used < p_len; num_edescs++) {
1698
1699			/* Advance as needed. */
1700			while (f_used >= f_size) {
1701				f_id++;
1702				f_size = skb_frag_size(&sh->frags[f_id]);
1703				f_used = 0;
1704			}
1705
1706			/* Use bytes from the current fragment. */
1707			n = p_len - p_used;
1708			if (n > f_size - f_used)
1709				n = f_size - f_used;
1710			f_used += n;
1711			p_used += n;
1712		}
1713
1714		/* The last segment may be less than gso_size. */
1715		data_len -= p_len;
1716		if (data_len < p_len)
1717			p_len = data_len;
1718	}
1719
1720	return num_edescs;
1721}
1722
1723/* Prepare modified copies of the skbuff headers. */
1724static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1725				s64 slot)
1726{
1727	struct skb_shared_info *sh = skb_shinfo(skb);
1728	struct iphdr *ih;
1729	struct ipv6hdr *ih6;
1730	struct tcphdr *th;
1731	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1732	unsigned int data_len = skb->len - sh_len;
1733	unsigned char *data = skb->data;
1734	unsigned int ih_off, th_off, p_len;
1735	unsigned int isum_seed, tsum_seed, seq;
1736	unsigned int uninitialized_var(id);
1737	int is_ipv6;
1738	long f_id = -1;    /* id of the current fragment */
1739	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1740	long f_used = 0;  /* bytes used from the current fragment */
1741	long n;            /* size of the current piece of payload */
1742	int segment;
1743
1744	/* Locate original headers and compute various lengths. */
1745	is_ipv6 = skb_is_gso_v6(skb);
1746	if (is_ipv6) {
1747		ih6 = ipv6_hdr(skb);
1748		ih_off = skb_network_offset(skb);
1749	} else {
1750		ih = ip_hdr(skb);
1751		ih_off = skb_network_offset(skb);
1752		isum_seed = ((0xFFFF - ih->check) +
1753			     (0xFFFF - ih->tot_len) +
1754			     (0xFFFF - ih->id));
1755		id = ntohs(ih->id);
1756	}
1757
1758	th = tcp_hdr(skb);
1759	th_off = skb_transport_offset(skb);
1760	p_len = sh->gso_size;
1761
1762	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1763	seq = ntohl(th->seq);
1764
1765	/* Prepare all the headers. */
1766	for (segment = 0; segment < sh->gso_segs; segment++) {
1767		unsigned char *buf;
1768		unsigned int p_used = 0;
1769
1770		/* Copy to the header memory for this segment. */
1771		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1772			NET_IP_ALIGN;
1773		memcpy(buf, data, sh_len);
1774
1775		/* Update copied ip header. */
1776		if (is_ipv6) {
1777			ih6 = (struct ipv6hdr *)(buf + ih_off);
1778			ih6->payload_len = htons(sh_len + p_len - ih_off -
1779						 sizeof(*ih6));
1780		} else {
1781			ih = (struct iphdr *)(buf + ih_off);
1782			ih->tot_len = htons(sh_len + p_len - ih_off);
1783			ih->id = htons(id++);
1784			ih->check = csum_long(isum_seed + ih->tot_len +
1785					      ih->id) ^ 0xffff;
1786		}
1787
1788		/* Update copied tcp header. */
1789		th = (struct tcphdr *)(buf + th_off);
1790		th->seq = htonl(seq);
1791		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1792		if (segment != sh->gso_segs - 1) {
1793			th->fin = 0;
1794			th->psh = 0;
1795		}
1796
1797		/* Skip past the header. */
1798		slot++;
1799
1800		/* Skip past the payload. */
1801		while (p_used < p_len) {
1802
1803			/* Advance as needed. */
1804			while (f_used >= f_size) {
1805				f_id++;
1806				f_size = skb_frag_size(&sh->frags[f_id]);
1807				f_used = 0;
1808			}
1809
1810			/* Use bytes from the current fragment. */
1811			n = p_len - p_used;
1812			if (n > f_size - f_used)
1813				n = f_size - f_used;
1814			f_used += n;
1815			p_used += n;
1816
1817			slot++;
1818		}
1819
1820		seq += p_len;
1821
1822		/* The last segment may be less than gso_size. */
1823		data_len -= p_len;
1824		if (data_len < p_len)
1825			p_len = data_len;
1826	}
1827
1828	/* Flush the headers so they are ready for hardware DMA. */
1829	wmb();
1830}
1831
1832/* Pass all the data to mpipe for egress. */
1833static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1834		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1835{
1836	struct skb_shared_info *sh = skb_shinfo(skb);
1837	int instance = mpipe_instance(dev);
1838	struct mpipe_data *md = &mpipe_data[instance];
1839	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1840	unsigned int data_len = skb->len - sh_len;
1841	unsigned int p_len = sh->gso_size;
1842	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1843	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1844	long f_id = -1;    /* id of the current fragment */
1845	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1846	long f_used = 0;  /* bytes used from the current fragment */
1847	void *f_data = skb->data + sh_len;
1848	long n;            /* size of the current piece of payload */
1849	unsigned long tx_packets = 0, tx_bytes = 0;
1850	unsigned int csum_start;
1851	int segment;
1852
1853	/* Prepare to egress the headers: set up header edesc. */
1854	csum_start = skb_checksum_start_offset(skb);
1855	edesc_head.csum = 1;
1856	edesc_head.csum_start = csum_start;
1857	edesc_head.csum_dest = csum_start + skb->csum_offset;
1858	edesc_head.xfer_size = sh_len;
1859
1860	/* This is only used to specify the TLB. */
1861	edesc_head.stack_idx = md->first_buffer_stack;
1862	edesc_body.stack_idx = md->first_buffer_stack;
1863
1864	/* Egress all the edescs. */
1865	for (segment = 0; segment < sh->gso_segs; segment++) {
1866		unsigned char *buf;
1867		unsigned int p_used = 0;
1868
1869		/* Egress the header. */
1870		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1871			NET_IP_ALIGN;
1872		edesc_head.va = va_to_tile_io_addr(buf);
1873		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1874		slot++;
1875
1876		/* Egress the payload. */
1877		while (p_used < p_len) {
1878			void *va;
1879
1880			/* Advance as needed. */
1881			while (f_used >= f_size) {
1882				f_id++;
1883				f_size = skb_frag_size(&sh->frags[f_id]);
1884				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1885				f_used = 0;
1886			}
1887
1888			va = f_data + f_used;
1889
1890			/* Use bytes from the current fragment. */
1891			n = p_len - p_used;
1892			if (n > f_size - f_used)
1893				n = f_size - f_used;
1894			f_used += n;
1895			p_used += n;
1896
1897			/* Egress a piece of the payload. */
1898			edesc_body.va = va_to_tile_io_addr(va);
1899			edesc_body.xfer_size = n;
1900			edesc_body.bound = !(p_used < p_len);
1901			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1902			slot++;
1903		}
1904
1905		tx_packets++;
1906		tx_bytes += sh_len + p_len;
1907
1908		/* The last segment may be less than gso_size. */
1909		data_len -= p_len;
1910		if (data_len < p_len)
1911			p_len = data_len;
1912	}
1913
1914	/* Update stats. */
1915	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1916	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1917}
1918
1919/* Do "TSO" handling for egress.
1920 *
1921 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1922 * otherwise the stack uses scatter-gather to implement GSO in software.
1923 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1924 * performance down to around 7.5 Gbps on the 10G interfaces, although
1925 * also dropping cpu utilization way down, to under 8%.  But
1926 * implementing "TSO" in the driver brings performance back up to line
1927 * rate, while dropping cpu usage even further, to less than 4%.  In
1928 * practice, profiling of GSO shows that skb_segment() is what causes
1929 * the performance overheads; we benefit in the driver from using
1930 * preallocated memory to duplicate the TCP/IP headers.
1931 */
1932static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1933{
1934	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1935	struct tile_net_priv *priv = netdev_priv(dev);
1936	int channel = priv->echannel;
1937	int instance = priv->instance;
1938	struct mpipe_data *md = &mpipe_data[instance];
1939	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1940	struct tile_net_comps *comps =
1941		info->mpipe[instance].comps_for_echannel[channel];
1942	gxio_mpipe_equeue_t *equeue = egress->equeue;
1943	unsigned long irqflags;
1944	int num_edescs;
1945	s64 slot;
1946
1947	/* Determine how many mpipe edesc's are needed. */
1948	num_edescs = tso_count_edescs(skb);
1949
1950	local_irq_save(irqflags);
1951
1952	/* Try to acquire a completion entry and an egress slot. */
1953	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1954					   equeue, num_edescs);
1955	if (slot < 0) {
1956		local_irq_restore(irqflags);
1957		return NETDEV_TX_BUSY;
1958	}
1959
1960	/* Set up copies of header data properly. */
1961	tso_headers_prepare(skb, egress->headers, slot);
1962
1963	/* Actually pass the data to the network hardware. */
1964	tso_egress(dev, equeue, skb, egress->headers, slot);
1965
1966	/* Add a completion record. */
1967	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1968
1969	local_irq_restore(irqflags);
1970
1971	/* Make sure the egress timer is scheduled. */
1972	tile_net_schedule_egress_timer();
1973
1974	return NETDEV_TX_OK;
1975}
1976
1977/* Analyze the body and frags for a transmit request. */
1978static unsigned int tile_net_tx_frags(struct frag *frags,
1979				       struct sk_buff *skb,
1980				       void *b_data, unsigned int b_len)
1981{
1982	unsigned int i, n = 0;
1983
1984	struct skb_shared_info *sh = skb_shinfo(skb);
1985
1986	if (b_len != 0) {
1987		frags[n].buf = b_data;
1988		frags[n++].length = b_len;
1989	}
1990
1991	for (i = 0; i < sh->nr_frags; i++) {
1992		skb_frag_t *f = &sh->frags[i];
1993		frags[n].buf = tile_net_frag_buf(f);
1994		frags[n++].length = skb_frag_size(f);
1995	}
1996
1997	return n;
1998}
1999
2000/* Help the kernel transmit a packet. */
2001static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
2002{
2003	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2004	struct tile_net_priv *priv = netdev_priv(dev);
2005	int instance = priv->instance;
2006	struct mpipe_data *md = &mpipe_data[instance];
2007	struct tile_net_egress *egress =
2008		&md->egress_for_echannel[priv->echannel];
2009	gxio_mpipe_equeue_t *equeue = egress->equeue;
2010	struct tile_net_comps *comps =
2011		info->mpipe[instance].comps_for_echannel[priv->echannel];
2012	unsigned int len = skb->len;
2013	unsigned char *data = skb->data;
2014	unsigned int num_edescs;
2015	struct frag frags[MAX_FRAGS];
2016	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2017	unsigned long irqflags;
2018	gxio_mpipe_edesc_t edesc = { { 0 } };
2019	unsigned int i;
2020	s64 slot;
2021
2022	if (skb_is_gso(skb))
2023		return tile_net_tx_tso(skb, dev);
2024
2025	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2026
2027	/* This is only used to specify the TLB. */
2028	edesc.stack_idx = md->first_buffer_stack;
2029
2030	/* Prepare the edescs. */
2031	for (i = 0; i < num_edescs; i++) {
2032		edesc.xfer_size = frags[i].length;
2033		edesc.va = va_to_tile_io_addr(frags[i].buf);
2034		edescs[i] = edesc;
2035	}
2036
2037	/* Mark the final edesc. */
2038	edescs[num_edescs - 1].bound = 1;
2039
2040	/* Add checksum info to the initial edesc, if needed. */
2041	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2042		unsigned int csum_start = skb_checksum_start_offset(skb);
2043		edescs[0].csum = 1;
2044		edescs[0].csum_start = csum_start;
2045		edescs[0].csum_dest = csum_start + skb->csum_offset;
2046	}
2047
2048	local_irq_save(irqflags);
2049
2050	/* Try to acquire a completion entry and an egress slot. */
2051	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2052					   equeue, num_edescs);
2053	if (slot < 0) {
2054		local_irq_restore(irqflags);
2055		return NETDEV_TX_BUSY;
2056	}
2057
2058	for (i = 0; i < num_edescs; i++)
2059		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2060
2061	/* Store TX timestamp if needed. */
2062	tile_tx_timestamp(skb, instance);
2063
2064	/* Add a completion record. */
2065	add_comp(equeue, comps, slot - 1, skb);
2066
2067	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2068	tile_net_stats_add(1, &dev->stats.tx_packets);
2069	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2070			   &dev->stats.tx_bytes);
2071
2072	local_irq_restore(irqflags);
2073
2074	/* Make sure the egress timer is scheduled. */
2075	tile_net_schedule_egress_timer();
2076
2077	return NETDEV_TX_OK;
2078}
2079
2080/* Return subqueue id on this core (one per core). */
2081static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2082				 void *accel_priv, select_queue_fallback_t fallback)
2083{
2084	return smp_processor_id();
2085}
2086
2087/* Deal with a transmit timeout. */
2088static void tile_net_tx_timeout(struct net_device *dev)
2089{
2090	int cpu;
2091
2092	for_each_online_cpu(cpu)
2093		netif_wake_subqueue(dev, cpu);
2094}
2095
2096/* Ioctl commands. */
2097static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2098{
2099	if (cmd == SIOCSHWTSTAMP)
2100		return tile_hwtstamp_set(dev, rq);
2101	if (cmd == SIOCGHWTSTAMP)
2102		return tile_hwtstamp_get(dev, rq);
2103
2104	return -EOPNOTSUPP;
2105}
2106
2107/* Change the Ethernet address of the NIC.
2108 *
2109 * The hypervisor driver does not support changing MAC address.  However,
2110 * the hardware does not do anything with the MAC address, so the address
2111 * which gets used on outgoing packets, and which is accepted on incoming
2112 * packets, is completely up to us.
2113 *
2114 * Returns 0 on success, negative on failure.
2115 */
2116static int tile_net_set_mac_address(struct net_device *dev, void *p)
2117{
2118	struct sockaddr *addr = p;
2119
2120	if (!is_valid_ether_addr(addr->sa_data))
2121		return -EINVAL;
2122	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2123	return 0;
2124}
2125
2126#ifdef CONFIG_NET_POLL_CONTROLLER
2127/* Polling 'interrupt' - used by things like netconsole to send skbs
2128 * without having to re-enable interrupts. It's not called while
2129 * the interrupt routine is executing.
2130 */
2131static void tile_net_netpoll(struct net_device *dev)
2132{
2133	int instance = mpipe_instance(dev);
2134	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2135	struct mpipe_data *md = &mpipe_data[instance];
2136
2137	disable_percpu_irq(md->ingress_irq);
2138	napi_schedule(&info->mpipe[instance].napi);
2139	enable_percpu_irq(md->ingress_irq, 0);
2140}
2141#endif
2142
2143static const struct net_device_ops tile_net_ops = {
2144	.ndo_open = tile_net_open,
2145	.ndo_stop = tile_net_stop,
2146	.ndo_start_xmit = tile_net_tx,
2147	.ndo_select_queue = tile_net_select_queue,
2148	.ndo_do_ioctl = tile_net_ioctl,
2149	.ndo_tx_timeout = tile_net_tx_timeout,
2150	.ndo_set_mac_address = tile_net_set_mac_address,
2151#ifdef CONFIG_NET_POLL_CONTROLLER
2152	.ndo_poll_controller = tile_net_netpoll,
2153#endif
2154};
2155
2156/* The setup function.
2157 *
2158 * This uses ether_setup() to assign various fields in dev, including
2159 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2160 */
2161static void tile_net_setup(struct net_device *dev)
2162{
2163	netdev_features_t features = 0;
2164
2165	ether_setup(dev);
2166	dev->netdev_ops = &tile_net_ops;
2167	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2168
2169	/* MTU range: 68 - 1500 or 9000 */
2170	dev->mtu = ETH_DATA_LEN;
2171	dev->min_mtu = ETH_MIN_MTU;
2172	dev->max_mtu = jumbo_num ? TILE_JUMBO_MAX_MTU : ETH_DATA_LEN;
2173
2174	features |= NETIF_F_HW_CSUM;
2175	features |= NETIF_F_SG;
2176	features |= NETIF_F_TSO;
2177	features |= NETIF_F_TSO6;
2178
2179	dev->hw_features   |= features;
2180	dev->vlan_features |= features;
2181	dev->features      |= features;
2182}
2183
2184/* Allocate the device structure, register the device, and obtain the
2185 * MAC address from the hypervisor.
2186 */
2187static void tile_net_dev_init(const char *name, const uint8_t *mac)
2188{
2189	int ret;
2190	struct net_device *dev;
2191	struct tile_net_priv *priv;
2192
2193	/* HACK: Ignore "loop" links. */
2194	if (strncmp(name, "loop", 4) == 0)
2195		return;
2196
2197	/* Allocate the device structure.  Normally, "name" is a
2198	 * template, instantiated by register_netdev(), but not for us.
2199	 */
2200	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2201			       tile_net_setup, NR_CPUS, 1);
2202	if (!dev) {
2203		pr_err("alloc_netdev_mqs(%s) failed\n", name);
2204		return;
2205	}
2206
2207	/* Initialize "priv". */
2208	priv = netdev_priv(dev);
2209	priv->dev = dev;
2210	priv->channel = -1;
2211	priv->loopify_channel = -1;
2212	priv->echannel = -1;
2213	init_ptp_dev(priv);
2214
2215	/* Get the MAC address and set it in the device struct; this must
2216	 * be done before the device is opened.  If the MAC is all zeroes,
2217	 * we use a random address, since we're probably on the simulator.
2218	 */
2219	if (!is_zero_ether_addr(mac))
2220		ether_addr_copy(dev->dev_addr, mac);
2221	else
2222		eth_hw_addr_random(dev);
2223
2224	/* Register the network device. */
2225	ret = register_netdev(dev);
2226	if (ret) {
2227		netdev_err(dev, "register_netdev failed %d\n", ret);
2228		free_netdev(dev);
2229		return;
2230	}
2231}
2232
2233/* Per-cpu module initialization. */
2234static void tile_net_init_module_percpu(void *unused)
2235{
2236	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2237	int my_cpu = smp_processor_id();
2238	int instance;
2239
2240	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2241		info->mpipe[instance].has_iqueue = false;
2242		info->mpipe[instance].instance = instance;
2243	}
2244	info->my_cpu = my_cpu;
2245
2246	/* Initialize the egress timer. */
2247	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2248	info->egress_timer.function = tile_net_handle_egress_timer;
2249}
2250
2251/* Module initialization. */
2252static int __init tile_net_init_module(void)
2253{
2254	int i;
2255	char name[GXIO_MPIPE_LINK_NAME_LEN];
2256	uint8_t mac[6];
2257
2258	pr_info("Tilera Network Driver\n");
2259
2260	BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2261
2262	mutex_init(&tile_net_devs_for_channel_mutex);
2263
2264	/* Initialize each CPU. */
2265	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2266
2267	/* Find out what devices we have, and initialize them. */
2268	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2269		tile_net_dev_init(name, mac);
2270
2271	if (!network_cpus_init())
2272		cpumask_and(&network_cpus_map, housekeeping_cpumask(),
2273			    cpu_online_mask);
2274
2275	return 0;
2276}
2277
2278module_init(tile_net_init_module);