Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/irq.h>
  26#include <linux/netdevice.h>   /* struct device, and other headers */
  27#include <linux/etherdevice.h> /* eth_type_trans */
  28#include <linux/skbuff.h>
  29#include <linux/ioctl.h>
  30#include <linux/cdev.h>
  31#include <linux/hugetlb.h>
  32#include <linux/in6.h>
  33#include <linux/timer.h>
  34#include <linux/hrtimer.h>
  35#include <linux/ktime.h>
  36#include <linux/io.h>
  37#include <linux/ctype.h>
  38#include <linux/ip.h>
  39#include <linux/tcp.h>
  40
  41#include <asm/checksum.h>
  42#include <asm/homecache.h>
  43#include <gxio/mpipe.h>
  44#include <arch/sim.h>
  45
  46/* Default transmit lockup timeout period, in jiffies. */
  47#define TILE_NET_TIMEOUT (5 * HZ)
  48
  49/* The maximum number of distinct channels (idesc.channel is 5 bits). */
  50#define TILE_NET_CHANNELS 32
  51
  52/* Maximum number of idescs to handle per "poll". */
  53#define TILE_NET_BATCH 128
  54
  55/* Maximum number of packets to handle per "poll". */
  56#define TILE_NET_WEIGHT 64
  57
  58/* Number of entries in each iqueue. */
  59#define IQUEUE_ENTRIES 512
  60
  61/* Number of entries in each equeue. */
  62#define EQUEUE_ENTRIES 2048
  63
  64/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
  65 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
  66 * 60 bytes of actual TCP header.  We round up to align to cache lines.
  67 */
  68#define HEADER_BYTES 128
  69
  70/* Maximum completions per cpu per device (must be a power of two).
  71 * ISSUE: What is the right number here?  If this is too small, then
  72 * egress might block waiting for free space in a completions array.
  73 * ISSUE: At the least, allocate these only for initialized echannels.
  74 */
  75#define TILE_NET_MAX_COMPS 64
  76
  77#define MAX_FRAGS (MAX_SKB_FRAGS + 1)
  78
  79/* Size of completions data to allocate.
  80 * ISSUE: Probably more than needed since we don't use all the channels.
  81 */
  82#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
  83
  84/* Size of NotifRing data to allocate. */
  85#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
  86
  87/* Timeout to wake the per-device TX timer after we stop the queue.
  88 * We don't want the timeout too short (adds overhead, and might end
  89 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
  90 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
  91 */
  92#define TX_TIMER_DELAY_USEC 30
  93
  94/* Timeout to wake the per-cpu egress timer to free completions. */
  95#define EGRESS_TIMER_DELAY_USEC 1000
  96
  97MODULE_AUTHOR("Tilera Corporation");
  98MODULE_LICENSE("GPL");
  99
 100/* A "packet fragment" (a chunk of memory). */
 101struct frag {
 102	void *buf;
 103	size_t length;
 104};
 105
 106/* A single completion. */
 107struct tile_net_comp {
 108	/* The "complete_count" when the completion will be complete. */
 109	s64 when;
 110	/* The buffer to be freed when the completion is complete. */
 111	struct sk_buff *skb;
 112};
 113
 114/* The completions for a given cpu and echannel. */
 115struct tile_net_comps {
 116	/* The completions. */
 117	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
 118	/* The number of completions used. */
 119	unsigned long comp_next;
 120	/* The number of completions freed. */
 121	unsigned long comp_last;
 122};
 123
 124/* The transmit wake timer for a given cpu and echannel. */
 125struct tile_net_tx_wake {
 126	struct hrtimer timer;
 127	struct net_device *dev;
 128};
 129
 130/* Info for a specific cpu. */
 131struct tile_net_info {
 132	/* The NAPI struct. */
 133	struct napi_struct napi;
 134	/* Packet queue. */
 135	gxio_mpipe_iqueue_t iqueue;
 136	/* Our cpu. */
 137	int my_cpu;
 138	/* True if iqueue is valid. */
 139	bool has_iqueue;
 140	/* NAPI flags. */
 141	bool napi_added;
 142	bool napi_enabled;
 143	/* Number of small sk_buffs which must still be provided. */
 144	unsigned int num_needed_small_buffers;
 145	/* Number of large sk_buffs which must still be provided. */
 146	unsigned int num_needed_large_buffers;
 147	/* A timer for handling egress completions. */
 148	struct hrtimer egress_timer;
 149	/* True if "egress_timer" is scheduled. */
 150	bool egress_timer_scheduled;
 151	/* Comps for each egress channel. */
 152	struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
 153	/* Transmit wake timer for each egress channel. */
 154	struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
 155};
 156
 157/* Info for egress on a particular egress channel. */
 158struct tile_net_egress {
 159	/* The "equeue". */
 160	gxio_mpipe_equeue_t *equeue;
 161	/* The headers for TSO. */
 162	unsigned char *headers;
 163};
 164
 165/* Info for a specific device. */
 166struct tile_net_priv {
 167	/* Our network device. */
 168	struct net_device *dev;
 169	/* The primary link. */
 170	gxio_mpipe_link_t link;
 171	/* The primary channel, if open, else -1. */
 172	int channel;
 173	/* The "loopify" egress link, if needed. */
 174	gxio_mpipe_link_t loopify_link;
 175	/* The "loopify" egress channel, if open, else -1. */
 176	int loopify_channel;
 177	/* The egress channel (channel or loopify_channel). */
 178	int echannel;
 179	/* Total stats. */
 180	struct net_device_stats stats;
 181};
 182
 183/* Egress info, indexed by "priv->echannel" (lazily created as needed). */
 184static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS];
 185
 186/* Devices currently associated with each channel.
 187 * NOTE: The array entry can become NULL after ifconfig down, but
 188 * we do not free the underlying net_device structures, so it is
 189 * safe to use a pointer after reading it from this array.
 190 */
 191static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS];
 192
 193/* A mutex for "tile_net_devs_for_channel". */
 194static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
 195
 196/* The per-cpu info. */
 197static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
 198
 199/* The "context" for all devices. */
 200static gxio_mpipe_context_t context;
 201
 202/* Buffer sizes and mpipe enum codes for buffer stacks.
 203 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
 204 */
 205#define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128
 206#define BUFFER_SIZE_SMALL 128
 207#define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664
 208#define BUFFER_SIZE_LARGE 1664
 209
 210/* The small/large "buffer stacks". */
 211static int small_buffer_stack = -1;
 212static int large_buffer_stack = -1;
 213
 214/* Amount of memory allocated for each buffer stack. */
 215static size_t buffer_stack_size;
 216
 217/* The actual memory allocated for the buffer stacks. */
 218static void *small_buffer_stack_va;
 219static void *large_buffer_stack_va;
 220
 221/* The buckets. */
 222static int first_bucket = -1;
 223static int num_buckets = 1;
 224
 225/* The ingress irq. */
 226static int ingress_irq = -1;
 227
 228/* Text value of tile_net.cpus if passed as a module parameter. */
 229static char *network_cpus_string;
 230
 231/* The actual cpus in "network_cpus". */
 232static struct cpumask network_cpus_map;
 233
 234/* If "loopify=LINK" was specified, this is "LINK". */
 235static char *loopify_link_name;
 236
 237/* If "tile_net.custom" was specified, this is non-NULL. */
 238static char *custom_str;
 239
 240/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 241 * to handle ingress packets.
 242 *
 243 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 244 * m, n, x, y are integer numbers that represent the cpus that can be
 245 * neither a dedicated cpu nor a dataplane cpu.
 246 */
 247static bool network_cpus_init(void)
 248{
 249	char buf[1024];
 250	int rc;
 251
 252	if (network_cpus_string == NULL)
 253		return false;
 254
 255	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
 256	if (rc != 0) {
 257		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
 258			network_cpus_string);
 259		return false;
 260	}
 261
 262	/* Remove dedicated cpus. */
 263	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
 264
 265	if (cpumask_empty(&network_cpus_map)) {
 266		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
 267			network_cpus_string);
 268		return false;
 269	}
 270
 271	cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
 272	pr_info("Linux network CPUs: %s\n", buf);
 273	return true;
 274}
 275
 276module_param_named(cpus, network_cpus_string, charp, 0444);
 277MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
 278
 279/* The "tile_net.loopify=LINK" argument causes the named device to
 280 * actually use "loop0" for ingress, and "loop1" for egress.  This
 281 * allows an app to sit between the actual link and linux, passing
 282 * (some) packets along to linux, and forwarding (some) packets sent
 283 * out by linux.
 284 */
 285module_param_named(loopify, loopify_link_name, charp, 0444);
 286MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
 287
 288/* The "tile_net.custom" argument causes us to ignore the "conventional"
 289 * classifier metadata, in particular, the "l2_offset".
 290 */
 291module_param_named(custom, custom_str, charp, 0444);
 292MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
 293
 294/* Atomically update a statistics field.
 295 * Note that on TILE-Gx, this operation is fire-and-forget on the
 296 * issuing core (single-cycle dispatch) and takes only a few cycles
 297 * longer than a regular store when the request reaches the home cache.
 298 * No expensive bus management overhead is required.
 299 */
 300static void tile_net_stats_add(unsigned long value, unsigned long *field)
 301{
 302	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
 303	atomic_long_add(value, (atomic_long_t *)field);
 304}
 305
 306/* Allocate and push a buffer. */
 307static bool tile_net_provide_buffer(bool small)
 308{
 309	int stack = small ? small_buffer_stack : large_buffer_stack;
 310	const unsigned long buffer_alignment = 128;
 311	struct sk_buff *skb;
 312	int len;
 313
 314	len = sizeof(struct sk_buff **) + buffer_alignment;
 315	len += (small ? BUFFER_SIZE_SMALL : BUFFER_SIZE_LARGE);
 316	skb = dev_alloc_skb(len);
 317	if (skb == NULL)
 318		return false;
 319
 320	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
 321	skb_reserve(skb, sizeof(struct sk_buff **));
 322	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
 323
 324	/* Save a back-pointer to 'skb'. */
 325	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
 326
 327	/* Make sure "skb" and the back-pointer have been flushed. */
 328	wmb();
 329
 330	gxio_mpipe_push_buffer(&context, stack,
 331			       (void *)va_to_tile_io_addr(skb->data));
 332
 333	return true;
 334}
 335
 336/* Convert a raw mpipe buffer to its matching skb pointer. */
 337static struct sk_buff *mpipe_buf_to_skb(void *va)
 338{
 339	/* Acquire the associated "skb". */
 340	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 341	struct sk_buff *skb = *skb_ptr;
 342
 343	/* Paranoia. */
 344	if (skb->data != va) {
 345		/* Panic here since there's a reasonable chance
 346		 * that corrupt buffers means generic memory
 347		 * corruption, with unpredictable system effects.
 348		 */
 349		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
 350		      va, skb, skb->data);
 351	}
 352
 353	return skb;
 354}
 355
 356static void tile_net_pop_all_buffers(int stack)
 357{
 358	for (;;) {
 359		tile_io_addr_t addr =
 360			(tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack);
 361		if (addr == 0)
 362			break;
 363		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
 364	}
 365}
 366
 367/* Provide linux buffers to mPIPE. */
 368static void tile_net_provide_needed_buffers(void)
 369{
 370	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 371
 372	while (info->num_needed_small_buffers != 0) {
 373		if (!tile_net_provide_buffer(true))
 374			goto oops;
 375		info->num_needed_small_buffers--;
 376	}
 377
 378	while (info->num_needed_large_buffers != 0) {
 379		if (!tile_net_provide_buffer(false))
 380			goto oops;
 381		info->num_needed_large_buffers--;
 382	}
 383
 384	return;
 385
 386oops:
 387	/* Add a description to the page allocation failure dump. */
 388	pr_notice("Tile %d still needs some buffers\n", info->my_cpu);
 389}
 390
 391static inline bool filter_packet(struct net_device *dev, void *buf)
 392{
 393	/* Filter packets received before we're up. */
 394	if (dev == NULL || !(dev->flags & IFF_UP))
 395		return true;
 396
 397	/* Filter out packets that aren't for us. */
 398	if (!(dev->flags & IFF_PROMISC) &&
 399	    !is_multicast_ether_addr(buf) &&
 400	    compare_ether_addr(dev->dev_addr, buf) != 0)
 401		return true;
 402
 403	return false;
 404}
 405
 406static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
 407				 gxio_mpipe_idesc_t *idesc, unsigned long len)
 408{
 409	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 410	struct tile_net_priv *priv = netdev_priv(dev);
 411
 412	/* Encode the actual packet length. */
 413	skb_put(skb, len);
 414
 415	skb->protocol = eth_type_trans(skb, dev);
 416
 417	/* Acknowledge "good" hardware checksums. */
 418	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
 419		skb->ip_summed = CHECKSUM_UNNECESSARY;
 420
 421	netif_receive_skb(skb);
 422
 423	/* Update stats. */
 424	tile_net_stats_add(1, &priv->stats.rx_packets);
 425	tile_net_stats_add(len, &priv->stats.rx_bytes);
 426
 427	/* Need a new buffer. */
 428	if (idesc->size == BUFFER_SIZE_SMALL_ENUM)
 429		info->num_needed_small_buffers++;
 430	else
 431		info->num_needed_large_buffers++;
 432}
 433
 434/* Handle a packet.  Return true if "processed", false if "filtered". */
 435static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc)
 436{
 437	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 438	struct net_device *dev = tile_net_devs_for_channel[idesc->channel];
 439	uint8_t l2_offset;
 440	void *va;
 441	void *buf;
 442	unsigned long len;
 443	bool filter;
 444
 445	/* Drop packets for which no buffer was available.
 446	 * NOTE: This happens under heavy load.
 447	 */
 448	if (idesc->be) {
 449		struct tile_net_priv *priv = netdev_priv(dev);
 450		tile_net_stats_add(1, &priv->stats.rx_dropped);
 451		gxio_mpipe_iqueue_consume(&info->iqueue, idesc);
 452		if (net_ratelimit())
 453			pr_info("Dropping packet (insufficient buffers).\n");
 454		return false;
 455	}
 456
 457	/* Get the "l2_offset", if allowed. */
 458	l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
 459
 460	/* Get the raw buffer VA (includes "headroom"). */
 461	va = tile_io_addr_to_va((unsigned long)(long)idesc->va);
 462
 463	/* Get the actual packet start/length. */
 464	buf = va + l2_offset;
 465	len = idesc->l2_size - l2_offset;
 466
 467	/* Point "va" at the raw buffer. */
 468	va -= NET_IP_ALIGN;
 469
 470	filter = filter_packet(dev, buf);
 471	if (filter) {
 472		gxio_mpipe_iqueue_drop(&info->iqueue, idesc);
 473	} else {
 474		struct sk_buff *skb = mpipe_buf_to_skb(va);
 475
 476		/* Skip headroom, and any custom header. */
 477		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
 478
 479		tile_net_receive_skb(dev, skb, idesc, len);
 480	}
 481
 482	gxio_mpipe_iqueue_consume(&info->iqueue, idesc);
 483	return !filter;
 484}
 485
 486/* Handle some packets for the current CPU.
 487 *
 488 * This function handles up to TILE_NET_BATCH idescs per call.
 489 *
 490 * ISSUE: Since we do not provide new buffers until this function is
 491 * complete, we must initially provide enough buffers for each network
 492 * cpu to fill its iqueue and also its batched idescs.
 493 *
 494 * ISSUE: The "rotting packet" race condition occurs if a packet
 495 * arrives after the queue appears to be empty, and before the
 496 * hypervisor interrupt is re-enabled.
 497 */
 498static int tile_net_poll(struct napi_struct *napi, int budget)
 499{
 500	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 501	unsigned int work = 0;
 502	gxio_mpipe_idesc_t *idesc;
 503	int i, n;
 504
 505	/* Process packets. */
 506	while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) {
 507		for (i = 0; i < n; i++) {
 508			if (i == TILE_NET_BATCH)
 509				goto done;
 510			if (tile_net_handle_packet(idesc + i)) {
 511				if (++work >= budget)
 512					goto done;
 513			}
 514		}
 515	}
 516
 517	/* There are no packets left. */
 518	napi_complete(&info->napi);
 519
 520	/* Re-enable hypervisor interrupts. */
 521	gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring);
 522
 523	/* HACK: Avoid the "rotting packet" problem. */
 524	if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0)
 525		napi_schedule(&info->napi);
 526
 527	/* ISSUE: Handle completions? */
 528
 529done:
 530	tile_net_provide_needed_buffers();
 531
 532	return work;
 533}
 534
 535/* Handle an ingress interrupt on the current cpu. */
 536static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused)
 537{
 538	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 539	napi_schedule(&info->napi);
 540	return IRQ_HANDLED;
 541}
 542
 543/* Free some completions.  This must be called with interrupts blocked. */
 544static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
 545				struct tile_net_comps *comps,
 546				int limit, bool force_update)
 547{
 548	int n = 0;
 549	while (comps->comp_last < comps->comp_next) {
 550		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
 551		struct tile_net_comp *comp = &comps->comp_queue[cid];
 552		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
 553						   force_update || n == 0))
 554			break;
 555		dev_kfree_skb_irq(comp->skb);
 556		comps->comp_last++;
 557		if (++n == limit)
 558			break;
 559	}
 560	return n;
 561}
 562
 563/* Add a completion.  This must be called with interrupts blocked.
 564 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 565 */
 566static void add_comp(gxio_mpipe_equeue_t *equeue,
 567		     struct tile_net_comps *comps,
 568		     uint64_t when, struct sk_buff *skb)
 569{
 570	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
 571	comps->comp_queue[cid].when = when;
 572	comps->comp_queue[cid].skb = skb;
 573	comps->comp_next++;
 574}
 575
 576static void tile_net_schedule_tx_wake_timer(struct net_device *dev)
 577{
 578	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 579	struct tile_net_priv *priv = netdev_priv(dev);
 580
 581	hrtimer_start(&info->tx_wake[priv->echannel].timer,
 582		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
 583		      HRTIMER_MODE_REL_PINNED);
 584}
 585
 586static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
 587{
 588	struct tile_net_tx_wake *tx_wake =
 589		container_of(t, struct tile_net_tx_wake, timer);
 590	netif_wake_subqueue(tx_wake->dev, smp_processor_id());
 591	return HRTIMER_NORESTART;
 592}
 593
 594/* Make sure the egress timer is scheduled. */
 595static void tile_net_schedule_egress_timer(void)
 596{
 597	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 598
 599	if (!info->egress_timer_scheduled) {
 600		hrtimer_start(&info->egress_timer,
 601			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
 602			      HRTIMER_MODE_REL_PINNED);
 603		info->egress_timer_scheduled = true;
 604	}
 605}
 606
 607/* The "function" for "info->egress_timer".
 608 *
 609 * This timer will reschedule itself as long as there are any pending
 610 * completions expected for this tile.
 611 */
 612static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
 613{
 614	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 615	unsigned long irqflags;
 616	bool pending = false;
 617	int i;
 618
 619	local_irq_save(irqflags);
 620
 621	/* The timer is no longer scheduled. */
 622	info->egress_timer_scheduled = false;
 623
 624	/* Free all possible comps for this tile. */
 625	for (i = 0; i < TILE_NET_CHANNELS; i++) {
 626		struct tile_net_egress *egress = &egress_for_echannel[i];
 627		struct tile_net_comps *comps = info->comps_for_echannel[i];
 628		if (comps->comp_last >= comps->comp_next)
 629			continue;
 630		tile_net_free_comps(egress->equeue, comps, -1, true);
 631		pending = pending || (comps->comp_last < comps->comp_next);
 632	}
 633
 634	/* Reschedule timer if needed. */
 635	if (pending)
 636		tile_net_schedule_egress_timer();
 637
 638	local_irq_restore(irqflags);
 639
 640	return HRTIMER_NORESTART;
 641}
 642
 643/* Helper function for "tile_net_update()".
 644 * "dev" (i.e. arg) is the device being brought up or down,
 645 * or NULL if all devices are now down.
 646 */
 647static void tile_net_update_cpu(void *arg)
 648{
 649	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
 650	struct net_device *dev = arg;
 651
 652	if (!info->has_iqueue)
 653		return;
 654
 655	if (dev != NULL) {
 656		if (!info->napi_added) {
 657			netif_napi_add(dev, &info->napi,
 658				       tile_net_poll, TILE_NET_WEIGHT);
 659			info->napi_added = true;
 660		}
 661		if (!info->napi_enabled) {
 662			napi_enable(&info->napi);
 663			info->napi_enabled = true;
 664		}
 665		enable_percpu_irq(ingress_irq, 0);
 666	} else {
 667		disable_percpu_irq(ingress_irq);
 668		if (info->napi_enabled) {
 669			napi_disable(&info->napi);
 670			info->napi_enabled = false;
 671		}
 672		/* FIXME: Drain the iqueue. */
 673	}
 674}
 675
 676/* Helper function for tile_net_open() and tile_net_stop().
 677 * Always called under tile_net_devs_for_channel_mutex.
 678 */
 679static int tile_net_update(struct net_device *dev)
 680{
 681	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
 682	bool saw_channel = false;
 683	int channel;
 684	int rc;
 685	int cpu;
 686
 687	gxio_mpipe_rules_init(&rules, &context);
 688
 689	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
 690		if (tile_net_devs_for_channel[channel] == NULL)
 691			continue;
 692		if (!saw_channel) {
 693			saw_channel = true;
 694			gxio_mpipe_rules_begin(&rules, first_bucket,
 695					       num_buckets, NULL);
 696			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
 697		}
 698		gxio_mpipe_rules_add_channel(&rules, channel);
 699	}
 700
 701	/* NOTE: This can fail if there is no classifier.
 702	 * ISSUE: Can anything else cause it to fail?
 703	 */
 704	rc = gxio_mpipe_rules_commit(&rules);
 705	if (rc != 0) {
 706		netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc);
 707		return -EIO;
 708	}
 709
 710	/* Update all cpus, sequentially (to protect "netif_napi_add()"). */
 711	for_each_online_cpu(cpu)
 712		smp_call_function_single(cpu, tile_net_update_cpu,
 713					 (saw_channel ? dev : NULL), 1);
 714
 715	/* HACK: Allow packets to flow in the simulator. */
 716	if (saw_channel)
 717		sim_enable_mpipe_links(0, -1);
 718
 719	return 0;
 720}
 721
 722/* Allocate and initialize mpipe buffer stacks, and register them in
 723 * the mPIPE TLBs, for both small and large packet sizes.
 724 * This routine supports tile_net_init_mpipe(), below.
 725 */
 726static int init_buffer_stacks(struct net_device *dev, int num_buffers)
 727{
 728	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
 729	int rc;
 730
 731	/* Compute stack bytes; we round up to 64KB and then use
 732	 * alloc_pages() so we get the required 64KB alignment as well.
 733	 */
 734	buffer_stack_size =
 735		ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers),
 736		      64 * 1024);
 737
 738	/* Allocate two buffer stack indices. */
 739	rc = gxio_mpipe_alloc_buffer_stacks(&context, 2, 0, 0);
 740	if (rc < 0) {
 741		netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks failed: %d\n",
 742			   rc);
 743		return rc;
 744	}
 745	small_buffer_stack = rc;
 746	large_buffer_stack = rc + 1;
 747
 748	/* Allocate the small memory stack. */
 749	small_buffer_stack_va =
 750		alloc_pages_exact(buffer_stack_size, GFP_KERNEL);
 751	if (small_buffer_stack_va == NULL) {
 752		netdev_err(dev,
 753			   "Could not alloc %zd bytes for buffer stacks\n",
 754			   buffer_stack_size);
 755		return -ENOMEM;
 756	}
 757	rc = gxio_mpipe_init_buffer_stack(&context, small_buffer_stack,
 758					  BUFFER_SIZE_SMALL_ENUM,
 759					  small_buffer_stack_va,
 760					  buffer_stack_size, 0);
 761	if (rc != 0) {
 762		netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc);
 763		return rc;
 764	}
 765	rc = gxio_mpipe_register_client_memory(&context, small_buffer_stack,
 766					       hash_pte, 0);
 767	if (rc != 0) {
 768		netdev_err(dev,
 769			   "gxio_mpipe_register_buffer_memory failed: %d\n",
 770			   rc);
 771		return rc;
 772	}
 773
 774	/* Allocate the large buffer stack. */
 775	large_buffer_stack_va =
 776		alloc_pages_exact(buffer_stack_size, GFP_KERNEL);
 777	if (large_buffer_stack_va == NULL) {
 778		netdev_err(dev,
 779			   "Could not alloc %zd bytes for buffer stacks\n",
 780			   buffer_stack_size);
 781		return -ENOMEM;
 782	}
 783	rc = gxio_mpipe_init_buffer_stack(&context, large_buffer_stack,
 784					  BUFFER_SIZE_LARGE_ENUM,
 785					  large_buffer_stack_va,
 786					  buffer_stack_size, 0);
 787	if (rc != 0) {
 788		netdev_err(dev, "gxio_mpipe_init_buffer_stack failed: %d\n",
 789			   rc);
 790		return rc;
 791	}
 792	rc = gxio_mpipe_register_client_memory(&context, large_buffer_stack,
 793					       hash_pte, 0);
 794	if (rc != 0) {
 795		netdev_err(dev,
 796			   "gxio_mpipe_register_buffer_memory failed: %d\n",
 797			   rc);
 798		return rc;
 799	}
 800
 801	return 0;
 802}
 803
 804/* Allocate per-cpu resources (memory for completions and idescs).
 805 * This routine supports tile_net_init_mpipe(), below.
 806 */
 807static int alloc_percpu_mpipe_resources(struct net_device *dev,
 808					int cpu, int ring)
 809{
 810	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 811	int order, i, rc;
 812	struct page *page;
 813	void *addr;
 814
 815	/* Allocate the "comps". */
 816	order = get_order(COMPS_SIZE);
 817	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
 818	if (page == NULL) {
 819		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
 820			   COMPS_SIZE);
 821		return -ENOMEM;
 822	}
 823	addr = pfn_to_kaddr(page_to_pfn(page));
 824	memset(addr, 0, COMPS_SIZE);
 825	for (i = 0; i < TILE_NET_CHANNELS; i++)
 826		info->comps_for_echannel[i] =
 827			addr + i * sizeof(struct tile_net_comps);
 828
 829	/* If this is a network cpu, create an iqueue. */
 830	if (cpu_isset(cpu, network_cpus_map)) {
 831		order = get_order(NOTIF_RING_SIZE);
 832		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
 833		if (page == NULL) {
 834			netdev_err(dev,
 835				   "Failed to alloc %zd bytes iqueue memory\n",
 836				   NOTIF_RING_SIZE);
 837			return -ENOMEM;
 838		}
 839		addr = pfn_to_kaddr(page_to_pfn(page));
 840		rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++,
 841					    addr, NOTIF_RING_SIZE, 0);
 842		if (rc < 0) {
 843			netdev_err(dev,
 844				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
 845			return rc;
 846		}
 847		info->has_iqueue = true;
 848	}
 849
 850	return ring;
 851}
 852
 853/* Initialize NotifGroup and buckets.
 854 * This routine supports tile_net_init_mpipe(), below.
 855 */
 856static int init_notif_group_and_buckets(struct net_device *dev,
 857					int ring, int network_cpus_count)
 858{
 859	int group, rc;
 860
 861	/* Allocate one NotifGroup. */
 862	rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0);
 863	if (rc < 0) {
 864		netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n",
 865			   rc);
 866		return rc;
 867	}
 868	group = rc;
 869
 870	/* Initialize global num_buckets value. */
 871	if (network_cpus_count > 4)
 872		num_buckets = 256;
 873	else if (network_cpus_count > 1)
 874		num_buckets = 16;
 875
 876	/* Allocate some buckets, and set global first_bucket value. */
 877	rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0);
 878	if (rc < 0) {
 879		netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc);
 880		return rc;
 881	}
 882	first_bucket = rc;
 883
 884	/* Init group and buckets. */
 885	rc = gxio_mpipe_init_notif_group_and_buckets(
 886		&context, group, ring, network_cpus_count,
 887		first_bucket, num_buckets,
 888		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
 889	if (rc != 0) {
 890		netdev_err(
 891			dev,
 892			"gxio_mpipe_init_notif_group_and_buckets failed: %d\n",
 893			rc);
 894		return rc;
 895	}
 896
 897	return 0;
 898}
 899
 900/* Create an irq and register it, then activate the irq and request
 901 * interrupts on all cores.  Note that "ingress_irq" being initialized
 902 * is how we know not to call tile_net_init_mpipe() again.
 903 * This routine supports tile_net_init_mpipe(), below.
 904 */
 905static int tile_net_setup_interrupts(struct net_device *dev)
 906{
 907	int cpu, rc;
 908
 909	rc = create_irq();
 910	if (rc < 0) {
 911		netdev_err(dev, "create_irq failed: %d\n", rc);
 912		return rc;
 913	}
 914	ingress_irq = rc;
 915	tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU);
 916	rc = request_irq(ingress_irq, tile_net_handle_ingress_irq,
 917			 0, NULL, NULL);
 918	if (rc != 0) {
 919		netdev_err(dev, "request_irq failed: %d\n", rc);
 920		destroy_irq(ingress_irq);
 921		ingress_irq = -1;
 922		return rc;
 923	}
 924
 925	for_each_online_cpu(cpu) {
 926		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 927		if (info->has_iqueue) {
 928			gxio_mpipe_request_notif_ring_interrupt(
 929				&context, cpu_x(cpu), cpu_y(cpu),
 930				1, ingress_irq, info->iqueue.ring);
 931		}
 932	}
 933
 934	return 0;
 935}
 936
 937/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
 938static void tile_net_init_mpipe_fail(void)
 939{
 940	int cpu;
 941
 942	/* Do cleanups that require the mpipe context first. */
 943	if (small_buffer_stack >= 0)
 944		tile_net_pop_all_buffers(small_buffer_stack);
 945	if (large_buffer_stack >= 0)
 946		tile_net_pop_all_buffers(large_buffer_stack);
 947
 948	/* Destroy mpipe context so the hardware no longer owns any memory. */
 949	gxio_mpipe_destroy(&context);
 950
 951	for_each_online_cpu(cpu) {
 952		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 953		free_pages((unsigned long)(info->comps_for_echannel[0]),
 954			   get_order(COMPS_SIZE));
 955		info->comps_for_echannel[0] = NULL;
 956		free_pages((unsigned long)(info->iqueue.idescs),
 957			   get_order(NOTIF_RING_SIZE));
 958		info->iqueue.idescs = NULL;
 959	}
 960
 961	if (small_buffer_stack_va)
 962		free_pages_exact(small_buffer_stack_va, buffer_stack_size);
 963	if (large_buffer_stack_va)
 964		free_pages_exact(large_buffer_stack_va, buffer_stack_size);
 965
 966	small_buffer_stack_va = NULL;
 967	large_buffer_stack_va = NULL;
 968	large_buffer_stack = -1;
 969	small_buffer_stack = -1;
 970	first_bucket = -1;
 971}
 972
 973/* The first time any tilegx network device is opened, we initialize
 974 * the global mpipe state.  If this step fails, we fail to open the
 975 * device, but if it succeeds, we never need to do it again, and since
 976 * tile_net can't be unloaded, we never undo it.
 977 *
 978 * Note that some resources in this path (buffer stack indices,
 979 * bindings from init_buffer_stack, etc.) are hypervisor resources
 980 * that are freed implicitly by gxio_mpipe_destroy().
 981 */
 982static int tile_net_init_mpipe(struct net_device *dev)
 983{
 984	int i, num_buffers, rc;
 985	int cpu;
 986	int first_ring, ring;
 987	int network_cpus_count = cpus_weight(network_cpus_map);
 988
 989	if (!hash_default) {
 990		netdev_err(dev, "Networking requires hash_default!\n");
 991		return -EIO;
 992	}
 993
 994	rc = gxio_mpipe_init(&context, 0);
 995	if (rc != 0) {
 996		netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc);
 997		return -EIO;
 998	}
 999
1000	/* Set up the buffer stacks. */
1001	num_buffers =
1002		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1003	rc = init_buffer_stacks(dev, num_buffers);
1004	if (rc != 0)
1005		goto fail;
1006
1007	/* Provide initial buffers. */
1008	rc = -ENOMEM;
1009	for (i = 0; i < num_buffers; i++) {
1010		if (!tile_net_provide_buffer(true)) {
1011			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1012			goto fail;
1013		}
1014	}
1015	for (i = 0; i < num_buffers; i++) {
1016		if (!tile_net_provide_buffer(false)) {
1017			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1018			goto fail;
1019		}
1020	}
1021
1022	/* Allocate one NotifRing for each network cpu. */
1023	rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0);
1024	if (rc < 0) {
1025		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1026			   rc);
1027		goto fail;
1028	}
1029
1030	/* Init NotifRings per-cpu. */
1031	first_ring = rc;
1032	ring = first_ring;
1033	for_each_online_cpu(cpu) {
1034		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1035		if (rc < 0)
1036			goto fail;
1037		ring = rc;
1038	}
1039
1040	/* Initialize NotifGroup and buckets. */
1041	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1042	if (rc != 0)
1043		goto fail;
1044
1045	/* Create and enable interrupts. */
1046	rc = tile_net_setup_interrupts(dev);
1047	if (rc != 0)
1048		goto fail;
1049
1050	return 0;
1051
1052fail:
1053	tile_net_init_mpipe_fail();
1054	return rc;
1055}
1056
1057/* Create persistent egress info for a given egress channel.
1058 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1059 * ISSUE: Defer header allocation until TSO is actually needed?
1060 */
1061static int tile_net_init_egress(struct net_device *dev, int echannel)
1062{
1063	struct page *headers_page, *edescs_page, *equeue_page;
1064	gxio_mpipe_edesc_t *edescs;
1065	gxio_mpipe_equeue_t *equeue;
1066	unsigned char *headers;
1067	int headers_order, edescs_order, equeue_order;
1068	size_t edescs_size;
1069	int edma;
1070	int rc = -ENOMEM;
1071
1072	/* Only initialize once. */
1073	if (egress_for_echannel[echannel].equeue != NULL)
1074		return 0;
1075
1076	/* Allocate memory for the "headers". */
1077	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1078	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1079	if (headers_page == NULL) {
1080		netdev_warn(dev,
1081			    "Could not alloc %zd bytes for TSO headers.\n",
1082			    PAGE_SIZE << headers_order);
1083		goto fail;
1084	}
1085	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1086
1087	/* Allocate memory for the "edescs". */
1088	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1089	edescs_order = get_order(edescs_size);
1090	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1091	if (edescs_page == NULL) {
1092		netdev_warn(dev,
1093			    "Could not alloc %zd bytes for eDMA ring.\n",
1094			    edescs_size);
1095		goto fail_headers;
1096	}
1097	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1098
1099	/* Allocate memory for the "equeue". */
1100	equeue_order = get_order(sizeof(*equeue));
1101	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1102	if (equeue_page == NULL) {
1103		netdev_warn(dev,
1104			    "Could not alloc %zd bytes for equeue info.\n",
1105			    PAGE_SIZE << equeue_order);
1106		goto fail_edescs;
1107	}
1108	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1109
1110	/* Allocate an edma ring.  Note that in practice this can't
1111	 * fail, which is good, because we will leak an edma ring if so.
1112	 */
1113	rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0);
1114	if (rc < 0) {
1115		netdev_warn(dev, "gxio_mpipe_alloc_edma_rings failed: %d\n",
1116			    rc);
1117		goto fail_equeue;
1118	}
1119	edma = rc;
1120
1121	/* Initialize the equeue. */
1122	rc = gxio_mpipe_equeue_init(equeue, &context, edma, echannel,
1123				    edescs, edescs_size, 0);
1124	if (rc != 0) {
1125		netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc);
1126		goto fail_equeue;
1127	}
1128
1129	/* Done. */
1130	egress_for_echannel[echannel].equeue = equeue;
1131	egress_for_echannel[echannel].headers = headers;
1132	return 0;
1133
1134fail_equeue:
1135	__free_pages(equeue_page, equeue_order);
1136
1137fail_edescs:
1138	__free_pages(edescs_page, edescs_order);
1139
1140fail_headers:
1141	__free_pages(headers_page, headers_order);
1142
1143fail:
1144	return rc;
1145}
1146
1147/* Return channel number for a newly-opened link. */
1148static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1149			      const char *link_name)
1150{
1151	int rc = gxio_mpipe_link_open(link, &context, link_name, 0);
1152	if (rc < 0) {
1153		netdev_err(dev, "Failed to open '%s'\n", link_name);
1154		return rc;
1155	}
1156	rc = gxio_mpipe_link_channel(link);
1157	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1158		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1159		gxio_mpipe_link_close(link);
1160		return -EINVAL;
1161	}
1162	return rc;
1163}
1164
1165/* Help the kernel activate the given network interface. */
1166static int tile_net_open(struct net_device *dev)
1167{
1168	struct tile_net_priv *priv = netdev_priv(dev);
1169	int cpu, rc;
1170
1171	mutex_lock(&tile_net_devs_for_channel_mutex);
1172
1173	/* Do one-time initialization the first time any device is opened. */
1174	if (ingress_irq < 0) {
1175		rc = tile_net_init_mpipe(dev);
1176		if (rc != 0)
1177			goto fail;
1178	}
1179
1180	/* Determine if this is the "loopify" device. */
1181	if (unlikely((loopify_link_name != NULL) &&
1182		     !strcmp(dev->name, loopify_link_name))) {
1183		rc = tile_net_link_open(dev, &priv->link, "loop0");
1184		if (rc < 0)
1185			goto fail;
1186		priv->channel = rc;
1187		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1188		if (rc < 0)
1189			goto fail;
1190		priv->loopify_channel = rc;
1191		priv->echannel = rc;
1192	} else {
1193		rc = tile_net_link_open(dev, &priv->link, dev->name);
1194		if (rc < 0)
1195			goto fail;
1196		priv->channel = rc;
1197		priv->echannel = rc;
1198	}
1199
1200	/* Initialize egress info (if needed).  Once ever, per echannel. */
1201	rc = tile_net_init_egress(dev, priv->echannel);
1202	if (rc != 0)
1203		goto fail;
1204
1205	tile_net_devs_for_channel[priv->channel] = dev;
1206
1207	rc = tile_net_update(dev);
1208	if (rc != 0)
1209		goto fail;
1210
1211	mutex_unlock(&tile_net_devs_for_channel_mutex);
1212
1213	/* Initialize the transmit wake timer for this device for each cpu. */
1214	for_each_online_cpu(cpu) {
1215		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1216		struct tile_net_tx_wake *tx_wake =
1217			&info->tx_wake[priv->echannel];
1218
1219		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1220			     HRTIMER_MODE_REL);
1221		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1222		tx_wake->dev = dev;
1223	}
1224
1225	for_each_online_cpu(cpu)
1226		netif_start_subqueue(dev, cpu);
1227	netif_carrier_on(dev);
1228	return 0;
1229
1230fail:
1231	if (priv->loopify_channel >= 0) {
1232		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1233			netdev_warn(dev, "Failed to close loopify link!\n");
1234		priv->loopify_channel = -1;
1235	}
1236	if (priv->channel >= 0) {
1237		if (gxio_mpipe_link_close(&priv->link) != 0)
1238			netdev_warn(dev, "Failed to close link!\n");
1239		priv->channel = -1;
1240	}
1241	priv->echannel = -1;
1242	tile_net_devs_for_channel[priv->channel] = NULL;
1243	mutex_unlock(&tile_net_devs_for_channel_mutex);
1244
1245	/* Don't return raw gxio error codes to generic Linux. */
1246	return (rc > -512) ? rc : -EIO;
1247}
1248
1249/* Help the kernel deactivate the given network interface. */
1250static int tile_net_stop(struct net_device *dev)
1251{
1252	struct tile_net_priv *priv = netdev_priv(dev);
1253	int cpu;
1254
1255	for_each_online_cpu(cpu) {
1256		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1257		struct tile_net_tx_wake *tx_wake =
1258			&info->tx_wake[priv->echannel];
1259
1260		hrtimer_cancel(&tx_wake->timer);
1261		netif_stop_subqueue(dev, cpu);
1262	}
1263
1264	mutex_lock(&tile_net_devs_for_channel_mutex);
1265	tile_net_devs_for_channel[priv->channel] = NULL;
1266	(void)tile_net_update(dev);
1267	if (priv->loopify_channel >= 0) {
1268		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1269			netdev_warn(dev, "Failed to close loopify link!\n");
1270		priv->loopify_channel = -1;
1271	}
1272	if (priv->channel >= 0) {
1273		if (gxio_mpipe_link_close(&priv->link) != 0)
1274			netdev_warn(dev, "Failed to close link!\n");
1275		priv->channel = -1;
1276	}
1277	priv->echannel = -1;
1278	mutex_unlock(&tile_net_devs_for_channel_mutex);
1279
1280	return 0;
1281}
1282
1283/* Determine the VA for a fragment. */
1284static inline void *tile_net_frag_buf(skb_frag_t *f)
1285{
1286	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1287	return pfn_to_kaddr(pfn) + f->page_offset;
1288}
1289
1290/* Acquire a completion entry and an egress slot, or if we can't,
1291 * stop the queue and schedule the tx_wake timer.
1292 */
1293static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1294				       struct tile_net_comps *comps,
1295				       gxio_mpipe_equeue_t *equeue,
1296				       int num_edescs)
1297{
1298	/* Try to acquire a completion entry. */
1299	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1300	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1301
1302		/* Try to acquire an egress slot. */
1303		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1304		if (slot >= 0)
1305			return slot;
1306
1307		/* Freeing some completions gives the equeue time to drain. */
1308		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1309
1310		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1311		if (slot >= 0)
1312			return slot;
1313	}
1314
1315	/* Still nothing; give up and stop the queue for a short while. */
1316	netif_stop_subqueue(dev, smp_processor_id());
1317	tile_net_schedule_tx_wake_timer(dev);
1318	return -1;
1319}
1320
1321/* Determine how many edesc's are needed for TSO.
1322 *
1323 * Sometimes, if "sendfile()" requires copying, we will be called with
1324 * "data" containing the header and payload, with "frags" being empty.
1325 * Sometimes, for example when using NFS over TCP, a single segment can
1326 * span 3 fragments.  This requires special care.
1327 */
1328static int tso_count_edescs(struct sk_buff *skb)
1329{
1330	struct skb_shared_info *sh = skb_shinfo(skb);
1331	unsigned int data_len = skb->data_len;
1332	unsigned int p_len = sh->gso_size;
1333	long f_id = -1;    /* id of the current fragment */
1334	long f_size = -1;  /* size of the current fragment */
1335	long f_used = -1;  /* bytes used from the current fragment */
1336	long n;            /* size of the current piece of payload */
1337	int num_edescs = 0;
1338	int segment;
1339
1340	for (segment = 0; segment < sh->gso_segs; segment++) {
1341
1342		unsigned int p_used = 0;
1343
1344		/* One edesc for header and for each piece of the payload. */
1345		for (num_edescs++; p_used < p_len; num_edescs++) {
1346
1347			/* Advance as needed. */
1348			while (f_used >= f_size) {
1349				f_id++;
1350				f_size = sh->frags[f_id].size;
1351				f_used = 0;
1352			}
1353
1354			/* Use bytes from the current fragment. */
1355			n = p_len - p_used;
1356			if (n > f_size - f_used)
1357				n = f_size - f_used;
1358			f_used += n;
1359			p_used += n;
1360		}
1361
1362		/* The last segment may be less than gso_size. */
1363		data_len -= p_len;
1364		if (data_len < p_len)
1365			p_len = data_len;
1366	}
1367
1368	return num_edescs;
1369}
1370
1371/* Prepare modified copies of the skbuff headers.
1372 * FIXME: add support for IPv6.
1373 */
1374static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1375				s64 slot)
1376{
1377	struct skb_shared_info *sh = skb_shinfo(skb);
1378	struct iphdr *ih;
1379	struct tcphdr *th;
1380	unsigned int data_len = skb->data_len;
1381	unsigned char *data = skb->data;
1382	unsigned int ih_off, th_off, sh_len, p_len;
1383	unsigned int isum_seed, tsum_seed, id, seq;
1384	long f_id = -1;    /* id of the current fragment */
1385	long f_size = -1;  /* size of the current fragment */
1386	long f_used = -1;  /* bytes used from the current fragment */
1387	long n;            /* size of the current piece of payload */
1388	int segment;
1389
1390	/* Locate original headers and compute various lengths. */
1391	ih = ip_hdr(skb);
1392	th = tcp_hdr(skb);
1393	ih_off = skb_network_offset(skb);
1394	th_off = skb_transport_offset(skb);
1395	sh_len = th_off + tcp_hdrlen(skb);
1396	p_len = sh->gso_size;
1397
1398	/* Set up seed values for IP and TCP csum and initialize id and seq. */
1399	isum_seed = ((0xFFFF - ih->check) +
1400		     (0xFFFF - ih->tot_len) +
1401		     (0xFFFF - ih->id));
1402	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1403	id = ntohs(ih->id);
1404	seq = ntohl(th->seq);
1405
1406	/* Prepare all the headers. */
1407	for (segment = 0; segment < sh->gso_segs; segment++) {
1408		unsigned char *buf;
1409		unsigned int p_used = 0;
1410
1411		/* Copy to the header memory for this segment. */
1412		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1413			NET_IP_ALIGN;
1414		memcpy(buf, data, sh_len);
1415
1416		/* Update copied ip header. */
1417		ih = (struct iphdr *)(buf + ih_off);
1418		ih->tot_len = htons(sh_len + p_len - ih_off);
1419		ih->id = htons(id);
1420		ih->check = csum_long(isum_seed + ih->tot_len +
1421				      ih->id) ^ 0xffff;
1422
1423		/* Update copied tcp header. */
1424		th = (struct tcphdr *)(buf + th_off);
1425		th->seq = htonl(seq);
1426		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1427		if (segment != sh->gso_segs - 1) {
1428			th->fin = 0;
1429			th->psh = 0;
1430		}
1431
1432		/* Skip past the header. */
1433		slot++;
1434
1435		/* Skip past the payload. */
1436		while (p_used < p_len) {
1437
1438			/* Advance as needed. */
1439			while (f_used >= f_size) {
1440				f_id++;
1441				f_size = sh->frags[f_id].size;
1442				f_used = 0;
1443			}
1444
1445			/* Use bytes from the current fragment. */
1446			n = p_len - p_used;
1447			if (n > f_size - f_used)
1448				n = f_size - f_used;
1449			f_used += n;
1450			p_used += n;
1451
1452			slot++;
1453		}
1454
1455		id++;
1456		seq += p_len;
1457
1458		/* The last segment may be less than gso_size. */
1459		data_len -= p_len;
1460		if (data_len < p_len)
1461			p_len = data_len;
1462	}
1463
1464	/* Flush the headers so they are ready for hardware DMA. */
1465	wmb();
1466}
1467
1468/* Pass all the data to mpipe for egress. */
1469static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1470		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1471{
1472	struct tile_net_priv *priv = netdev_priv(dev);
1473	struct skb_shared_info *sh = skb_shinfo(skb);
1474	unsigned int data_len = skb->data_len;
1475	unsigned int p_len = sh->gso_size;
1476	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1477	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1478	long f_id = -1;    /* id of the current fragment */
1479	long f_size = -1;  /* size of the current fragment */
1480	long f_used = -1;  /* bytes used from the current fragment */
1481	long n;            /* size of the current piece of payload */
1482	unsigned long tx_packets = 0, tx_bytes = 0;
1483	unsigned int csum_start, sh_len;
1484	int segment;
1485
1486	/* Prepare to egress the headers: set up header edesc. */
1487	csum_start = skb_checksum_start_offset(skb);
1488	sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1489	edesc_head.csum = 1;
1490	edesc_head.csum_start = csum_start;
1491	edesc_head.csum_dest = csum_start + skb->csum_offset;
1492	edesc_head.xfer_size = sh_len;
1493
1494	/* This is only used to specify the TLB. */
1495	edesc_head.stack_idx = large_buffer_stack;
1496	edesc_body.stack_idx = large_buffer_stack;
1497
1498	/* Egress all the edescs. */
1499	for (segment = 0; segment < sh->gso_segs; segment++) {
1500		void *va;
1501		unsigned char *buf;
1502		unsigned int p_used = 0;
1503
1504		/* Egress the header. */
1505		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1506			NET_IP_ALIGN;
1507		edesc_head.va = va_to_tile_io_addr(buf);
1508		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1509		slot++;
1510
1511		/* Egress the payload. */
1512		while (p_used < p_len) {
1513
1514			/* Advance as needed. */
1515			while (f_used >= f_size) {
1516				f_id++;
1517				f_size = sh->frags[f_id].size;
1518				f_used = 0;
1519			}
1520
1521			va = tile_net_frag_buf(&sh->frags[f_id]) + f_used;
1522
1523			/* Use bytes from the current fragment. */
1524			n = p_len - p_used;
1525			if (n > f_size - f_used)
1526				n = f_size - f_used;
1527			f_used += n;
1528			p_used += n;
1529
1530			/* Egress a piece of the payload. */
1531			edesc_body.va = va_to_tile_io_addr(va);
1532			edesc_body.xfer_size = n;
1533			edesc_body.bound = !(p_used < p_len);
1534			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1535			slot++;
1536		}
1537
1538		tx_packets++;
1539		tx_bytes += sh_len + p_len;
1540
1541		/* The last segment may be less than gso_size. */
1542		data_len -= p_len;
1543		if (data_len < p_len)
1544			p_len = data_len;
1545	}
1546
1547	/* Update stats. */
1548	tile_net_stats_add(tx_packets, &priv->stats.tx_packets);
1549	tile_net_stats_add(tx_bytes, &priv->stats.tx_bytes);
1550}
1551
1552/* Do "TSO" handling for egress.
1553 *
1554 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1555 * otherwise the stack uses scatter-gather to implement GSO in software.
1556 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1557 * performance down to around 7.5 Gbps on the 10G interfaces, although
1558 * also dropping cpu utilization way down, to under 8%.  But
1559 * implementing "TSO" in the driver brings performance back up to line
1560 * rate, while dropping cpu usage even further, to less than 4%.  In
1561 * practice, profiling of GSO shows that skb_segment() is what causes
1562 * the performance overheads; we benefit in the driver from using
1563 * preallocated memory to duplicate the TCP/IP headers.
1564 */
1565static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1566{
1567	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1568	struct tile_net_priv *priv = netdev_priv(dev);
1569	int channel = priv->echannel;
1570	struct tile_net_egress *egress = &egress_for_echannel[channel];
1571	struct tile_net_comps *comps = info->comps_for_echannel[channel];
1572	gxio_mpipe_equeue_t *equeue = egress->equeue;
1573	unsigned long irqflags;
1574	int num_edescs;
1575	s64 slot;
1576
1577	/* Determine how many mpipe edesc's are needed. */
1578	num_edescs = tso_count_edescs(skb);
1579
1580	local_irq_save(irqflags);
1581
1582	/* Try to acquire a completion entry and an egress slot. */
1583	slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs);
1584	if (slot < 0) {
1585		local_irq_restore(irqflags);
1586		return NETDEV_TX_BUSY;
1587	}
1588
1589	/* Set up copies of header data properly. */
1590	tso_headers_prepare(skb, egress->headers, slot);
1591
1592	/* Actually pass the data to the network hardware. */
1593	tso_egress(dev, equeue, skb, egress->headers, slot);
1594
1595	/* Add a completion record. */
1596	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1597
1598	local_irq_restore(irqflags);
1599
1600	/* Make sure the egress timer is scheduled. */
1601	tile_net_schedule_egress_timer();
1602
1603	return NETDEV_TX_OK;
1604}
1605
1606/* Analyze the body and frags for a transmit request. */
1607static unsigned int tile_net_tx_frags(struct frag *frags,
1608				       struct sk_buff *skb,
1609				       void *b_data, unsigned int b_len)
1610{
1611	unsigned int i, n = 0;
1612
1613	struct skb_shared_info *sh = skb_shinfo(skb);
1614
1615	if (b_len != 0) {
1616		frags[n].buf = b_data;
1617		frags[n++].length = b_len;
1618	}
1619
1620	for (i = 0; i < sh->nr_frags; i++) {
1621		skb_frag_t *f = &sh->frags[i];
1622		frags[n].buf = tile_net_frag_buf(f);
1623		frags[n++].length = skb_frag_size(f);
1624	}
1625
1626	return n;
1627}
1628
1629/* Help the kernel transmit a packet. */
1630static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1631{
1632	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1633	struct tile_net_priv *priv = netdev_priv(dev);
1634	struct tile_net_egress *egress = &egress_for_echannel[priv->echannel];
1635	gxio_mpipe_equeue_t *equeue = egress->equeue;
1636	struct tile_net_comps *comps =
1637		info->comps_for_echannel[priv->echannel];
1638	unsigned int len = skb->len;
1639	unsigned char *data = skb->data;
1640	unsigned int num_edescs;
1641	struct frag frags[MAX_FRAGS];
1642	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
1643	unsigned long irqflags;
1644	gxio_mpipe_edesc_t edesc = { { 0 } };
1645	unsigned int i;
1646	s64 slot;
1647
1648	if (skb_is_gso(skb))
1649		return tile_net_tx_tso(skb, dev);
1650
1651	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1652
1653	/* This is only used to specify the TLB. */
1654	edesc.stack_idx = large_buffer_stack;
1655
1656	/* Prepare the edescs. */
1657	for (i = 0; i < num_edescs; i++) {
1658		edesc.xfer_size = frags[i].length;
1659		edesc.va = va_to_tile_io_addr(frags[i].buf);
1660		edescs[i] = edesc;
1661	}
1662
1663	/* Mark the final edesc. */
1664	edescs[num_edescs - 1].bound = 1;
1665
1666	/* Add checksum info to the initial edesc, if needed. */
1667	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1668		unsigned int csum_start = skb_checksum_start_offset(skb);
1669		edescs[0].csum = 1;
1670		edescs[0].csum_start = csum_start;
1671		edescs[0].csum_dest = csum_start + skb->csum_offset;
1672	}
1673
1674	local_irq_save(irqflags);
1675
1676	/* Try to acquire a completion entry and an egress slot. */
1677	slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs);
1678	if (slot < 0) {
1679		local_irq_restore(irqflags);
1680		return NETDEV_TX_BUSY;
1681	}
1682
1683	for (i = 0; i < num_edescs; i++)
1684		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
1685
1686	/* Add a completion record. */
1687	add_comp(equeue, comps, slot - 1, skb);
1688
1689	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
1690	tile_net_stats_add(1, &priv->stats.tx_packets);
1691	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
1692			   &priv->stats.tx_bytes);
1693
1694	local_irq_restore(irqflags);
1695
1696	/* Make sure the egress timer is scheduled. */
1697	tile_net_schedule_egress_timer();
1698
1699	return NETDEV_TX_OK;
1700}
1701
1702/* Return subqueue id on this core (one per core). */
1703static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb)
1704{
1705	return smp_processor_id();
1706}
1707
1708/* Deal with a transmit timeout. */
1709static void tile_net_tx_timeout(struct net_device *dev)
1710{
1711	int cpu;
1712
1713	for_each_online_cpu(cpu)
1714		netif_wake_subqueue(dev, cpu);
1715}
1716
1717/* Ioctl commands. */
1718static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1719{
1720	return -EOPNOTSUPP;
1721}
1722
1723/* Get system network statistics for device. */
1724static struct net_device_stats *tile_net_get_stats(struct net_device *dev)
1725{
1726	struct tile_net_priv *priv = netdev_priv(dev);
1727	return &priv->stats;
1728}
1729
1730/* Change the MTU. */
1731static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
1732{
1733	if ((new_mtu < 68) || (new_mtu > 1500))
1734		return -EINVAL;
1735	dev->mtu = new_mtu;
1736	return 0;
1737}
1738
1739/* Change the Ethernet address of the NIC.
1740 *
1741 * The hypervisor driver does not support changing MAC address.  However,
1742 * the hardware does not do anything with the MAC address, so the address
1743 * which gets used on outgoing packets, and which is accepted on incoming
1744 * packets, is completely up to us.
1745 *
1746 * Returns 0 on success, negative on failure.
1747 */
1748static int tile_net_set_mac_address(struct net_device *dev, void *p)
1749{
1750	struct sockaddr *addr = p;
1751
1752	if (!is_valid_ether_addr(addr->sa_data))
1753		return -EINVAL;
1754	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1755	return 0;
1756}
1757
1758#ifdef CONFIG_NET_POLL_CONTROLLER
1759/* Polling 'interrupt' - used by things like netconsole to send skbs
1760 * without having to re-enable interrupts. It's not called while
1761 * the interrupt routine is executing.
1762 */
1763static void tile_net_netpoll(struct net_device *dev)
1764{
1765	disable_percpu_irq(ingress_irq);
1766	tile_net_handle_ingress_irq(ingress_irq, NULL);
1767	enable_percpu_irq(ingress_irq, 0);
1768}
1769#endif
1770
1771static const struct net_device_ops tile_net_ops = {
1772	.ndo_open = tile_net_open,
1773	.ndo_stop = tile_net_stop,
1774	.ndo_start_xmit = tile_net_tx,
1775	.ndo_select_queue = tile_net_select_queue,
1776	.ndo_do_ioctl = tile_net_ioctl,
1777	.ndo_get_stats = tile_net_get_stats,
1778	.ndo_change_mtu = tile_net_change_mtu,
1779	.ndo_tx_timeout = tile_net_tx_timeout,
1780	.ndo_set_mac_address = tile_net_set_mac_address,
1781#ifdef CONFIG_NET_POLL_CONTROLLER
1782	.ndo_poll_controller = tile_net_netpoll,
1783#endif
1784};
1785
1786/* The setup function.
1787 *
1788 * This uses ether_setup() to assign various fields in dev, including
1789 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
1790 */
1791static void tile_net_setup(struct net_device *dev)
1792{
1793	ether_setup(dev);
1794	dev->netdev_ops = &tile_net_ops;
1795	dev->watchdog_timeo = TILE_NET_TIMEOUT;
1796	dev->features |= NETIF_F_LLTX;
1797	dev->features |= NETIF_F_HW_CSUM;
1798	dev->features |= NETIF_F_SG;
1799	dev->features |= NETIF_F_TSO;
1800	dev->mtu = 1500;
1801}
1802
1803/* Allocate the device structure, register the device, and obtain the
1804 * MAC address from the hypervisor.
1805 */
1806static void tile_net_dev_init(const char *name, const uint8_t *mac)
1807{
1808	int ret;
1809	int i;
1810	int nz_addr = 0;
1811	struct net_device *dev;
1812	struct tile_net_priv *priv;
1813
1814	/* HACK: Ignore "loop" links. */
1815	if (strncmp(name, "loop", 4) == 0)
1816		return;
1817
1818	/* Allocate the device structure.  Normally, "name" is a
1819	 * template, instantiated by register_netdev(), but not for us.
1820	 */
1821	dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup,
1822			       NR_CPUS, 1);
1823	if (!dev) {
1824		pr_err("alloc_netdev_mqs(%s) failed\n", name);
1825		return;
1826	}
1827
1828	/* Initialize "priv". */
1829	priv = netdev_priv(dev);
1830	memset(priv, 0, sizeof(*priv));
1831	priv->dev = dev;
1832	priv->channel = -1;
1833	priv->loopify_channel = -1;
1834	priv->echannel = -1;
1835
1836	/* Get the MAC address and set it in the device struct; this must
1837	 * be done before the device is opened.  If the MAC is all zeroes,
1838	 * we use a random address, since we're probably on the simulator.
1839	 */
1840	for (i = 0; i < 6; i++)
1841		nz_addr |= mac[i];
1842
1843	if (nz_addr) {
1844		memcpy(dev->dev_addr, mac, 6);
1845		dev->addr_len = 6;
1846	} else {
1847		random_ether_addr(dev->dev_addr);
1848	}
1849
1850	/* Register the network device. */
1851	ret = register_netdev(dev);
1852	if (ret) {
1853		netdev_err(dev, "register_netdev failed %d\n", ret);
1854		free_netdev(dev);
1855		return;
1856	}
1857}
1858
1859/* Per-cpu module initialization. */
1860static void tile_net_init_module_percpu(void *unused)
1861{
1862	struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1863	int my_cpu = smp_processor_id();
1864
1865	info->has_iqueue = false;
1866
1867	info->my_cpu = my_cpu;
1868
1869	/* Initialize the egress timer. */
1870	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1871	info->egress_timer.function = tile_net_handle_egress_timer;
1872}
1873
1874/* Module initialization. */
1875static int __init tile_net_init_module(void)
1876{
1877	int i;
1878	char name[GXIO_MPIPE_LINK_NAME_LEN];
1879	uint8_t mac[6];
1880
1881	pr_info("Tilera Network Driver\n");
1882
1883	mutex_init(&tile_net_devs_for_channel_mutex);
1884
1885	/* Initialize each CPU. */
1886	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
1887
1888	/* Find out what devices we have, and initialize them. */
1889	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
1890		tile_net_dev_init(name, mac);
1891
1892	if (!network_cpus_init())
1893		network_cpus_map = *cpu_online_mask;
1894
1895	return 0;
1896}
1897
1898module_init(tile_net_init_module);