Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *	http://www.simtec.co.uk/
   5 *	Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26#include <linux/regulator/consumer.h>
  27
  28#include <linux/spi/spi.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31
  32#include "ks8851.h"
  33
  34/**
  35 * struct ks8851_rxctrl - KS8851 driver rx control
  36 * @mchash: Multicast hash-table data.
  37 * @rxcr1: KS_RXCR1 register setting
  38 * @rxcr2: KS_RXCR2 register setting
  39 *
  40 * Representation of the settings needs to control the receive filtering
  41 * such as the multicast hash-filter and the receive register settings. This
  42 * is used to make the job of working out if the receive settings change and
  43 * then issuing the new settings to the worker that will send the necessary
  44 * commands.
  45 */
  46struct ks8851_rxctrl {
  47	u16	mchash[4];
  48	u16	rxcr1;
  49	u16	rxcr2;
  50};
  51
  52/**
  53 * union ks8851_tx_hdr - tx header data
  54 * @txb: The header as bytes
  55 * @txw: The header as 16bit, little-endian words
  56 *
  57 * A dual representation of the tx header data to allow
  58 * access to individual bytes, and to allow 16bit accesses
  59 * with 16bit alignment.
  60 */
  61union ks8851_tx_hdr {
  62	u8	txb[6];
  63	__le16	txw[3];
  64};
  65
  66/**
  67 * struct ks8851_net - KS8851 driver private data
  68 * @netdev: The network device we're bound to
  69 * @spidev: The spi device we're bound to.
  70 * @lock: Lock to ensure that the device is not accessed when busy.
  71 * @statelock: Lock on this structure for tx list.
  72 * @mii: The MII state information for the mii calls.
  73 * @rxctrl: RX settings for @rxctrl_work.
  74 * @tx_work: Work queue for tx packets
  75 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  76 * @txq: Queue of packets for transmission.
  77 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  78 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  79 * @txh: Space for generating packet TX header in DMA-able data
  80 * @rxd: Space for receiving SPI data, in DMA-able space.
  81 * @txd: Space for transmitting SPI data, in DMA-able space.
  82 * @msg_enable: The message flags controlling driver output (see ethtool).
  83 * @fid: Incrementing frame id tag.
  84 * @rc_ier: Cached copy of KS_IER.
  85 * @rc_ccr: Cached copy of KS_CCR.
  86 * @rc_rxqcr: Cached copy of KS_RXQCR.
  87 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  89 * @vdd_reg:	Optional regulator supplying the chip
  90 * @vdd_io: Optional digital power supply for IO
  91 * @gpio: Optional reset_n gpio
  92 *
  93 * The @lock ensures that the chip is protected when certain operations are
  94 * in progress. When the read or write packet transfer is in progress, most
  95 * of the chip registers are not ccessible until the transfer is finished and
  96 * the DMA has been de-asserted.
  97 *
  98 * The @statelock is used to protect information in the structure which may
  99 * need to be accessed via several sources, such as the network driver layer
 100 * or one of the work queues.
 101 *
 102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 103 * wants to DMA map them, it will not have any problems with data the driver
 104 * modifies.
 105 */
 106struct ks8851_net {
 107	struct net_device	*netdev;
 108	struct spi_device	*spidev;
 109	struct mutex		lock;
 110	spinlock_t		statelock;
 111
 112	union ks8851_tx_hdr	txh ____cacheline_aligned;
 113	u8			rxd[8];
 114	u8			txd[8];
 115
 116	u32			msg_enable ____cacheline_aligned;
 117	u16			tx_space;
 118	u8			fid;
 119
 120	u16			rc_ier;
 121	u16			rc_rxqcr;
 122	u16			rc_ccr;
 123	u16			eeprom_size;
 124
 125	struct mii_if_info	mii;
 126	struct ks8851_rxctrl	rxctrl;
 127
 128	struct work_struct	tx_work;
 129	struct work_struct	rxctrl_work;
 130
 131	struct sk_buff_head	txq;
 132
 133	struct spi_message	spi_msg1;
 134	struct spi_message	spi_msg2;
 135	struct spi_transfer	spi_xfer1;
 136	struct spi_transfer	spi_xfer2[2];
 137
 138	struct eeprom_93cx6	eeprom;
 139	struct regulator	*vdd_reg;
 140	struct regulator	*vdd_io;
 141	int			gpio;
 142};
 143
 144static int msg_enable;
 145
 146/* shift for byte-enable data */
 147#define BYTE_EN(_x)	((_x) << 2)
 148
 149/* turn register number and byte-enable mask into data for start of packet */
 150#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 151
 152/* SPI register read/write calls.
 153 *
 154 * All these calls issue SPI transactions to access the chip's registers. They
 155 * all require that the necessary lock is held to prevent accesses when the
 156 * chip is busy transferring packet data (RX/TX FIFO accesses).
 157 */
 158
 159/**
 160 * ks8851_wrreg16 - write 16bit register value to chip
 161 * @ks: The chip state
 162 * @reg: The register address
 163 * @val: The value to write
 164 *
 165 * Issue a write to put the value @val into the register specified in @reg.
 166 */
 167static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 168{
 169	struct spi_transfer *xfer = &ks->spi_xfer1;
 170	struct spi_message *msg = &ks->spi_msg1;
 171	__le16 txb[2];
 172	int ret;
 173
 174	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 175	txb[1] = cpu_to_le16(val);
 176
 177	xfer->tx_buf = txb;
 178	xfer->rx_buf = NULL;
 179	xfer->len = 4;
 180
 181	ret = spi_sync(ks->spidev, msg);
 182	if (ret < 0)
 183		netdev_err(ks->netdev, "spi_sync() failed\n");
 184}
 185
 186/**
 187 * ks8851_wrreg8 - write 8bit register value to chip
 188 * @ks: The chip state
 189 * @reg: The register address
 190 * @val: The value to write
 191 *
 192 * Issue a write to put the value @val into the register specified in @reg.
 193 */
 194static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 195{
 196	struct spi_transfer *xfer = &ks->spi_xfer1;
 197	struct spi_message *msg = &ks->spi_msg1;
 198	__le16 txb[2];
 199	int ret;
 200	int bit;
 201
 202	bit = 1 << (reg & 3);
 203
 204	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 205	txb[1] = val;
 206
 207	xfer->tx_buf = txb;
 208	xfer->rx_buf = NULL;
 209	xfer->len = 3;
 210
 211	ret = spi_sync(ks->spidev, msg);
 212	if (ret < 0)
 213		netdev_err(ks->netdev, "spi_sync() failed\n");
 214}
 215
 216/**
 217 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 218 * @ks: The device structure
 219 *
 220 * Return whether to generate a single message with a tx and rx buffer
 221 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 222 * as separate messages.
 223 *
 224 * Depending on the hardware in use, a single message may be more efficient
 225 * on interrupts or work done by the driver.
 226 *
 227 * This currently always returns true until we add some per-device data passed
 228 * from the platform code to specify which mode is better.
 229 */
 230static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 231{
 232	return true;
 233}
 234
 235/**
 236 * ks8851_rdreg - issue read register command and return the data
 237 * @ks: The device state
 238 * @op: The register address and byte enables in message format.
 239 * @rxb: The RX buffer to return the result into
 240 * @rxl: The length of data expected.
 241 *
 242 * This is the low level read call that issues the necessary spi message(s)
 243 * to read data from the register specified in @op.
 244 */
 245static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 246			 u8 *rxb, unsigned rxl)
 247{
 248	struct spi_transfer *xfer;
 249	struct spi_message *msg;
 250	__le16 *txb = (__le16 *)ks->txd;
 251	u8 *trx = ks->rxd;
 252	int ret;
 253
 254	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 255
 256	if (ks8851_rx_1msg(ks)) {
 257		msg = &ks->spi_msg1;
 258		xfer = &ks->spi_xfer1;
 259
 260		xfer->tx_buf = txb;
 261		xfer->rx_buf = trx;
 262		xfer->len = rxl + 2;
 263	} else {
 264		msg = &ks->spi_msg2;
 265		xfer = ks->spi_xfer2;
 266
 267		xfer->tx_buf = txb;
 268		xfer->rx_buf = NULL;
 269		xfer->len = 2;
 270
 271		xfer++;
 272		xfer->tx_buf = NULL;
 273		xfer->rx_buf = trx;
 274		xfer->len = rxl;
 275	}
 276
 277	ret = spi_sync(ks->spidev, msg);
 278	if (ret < 0)
 279		netdev_err(ks->netdev, "read: spi_sync() failed\n");
 280	else if (ks8851_rx_1msg(ks))
 281		memcpy(rxb, trx + 2, rxl);
 282	else
 283		memcpy(rxb, trx, rxl);
 284}
 285
 286/**
 287 * ks8851_rdreg8 - read 8 bit register from device
 288 * @ks: The chip information
 289 * @reg: The register address
 290 *
 291 * Read a 8bit register from the chip, returning the result
 292*/
 293static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 294{
 295	u8 rxb[1];
 296
 297	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 298	return rxb[0];
 299}
 300
 301/**
 302 * ks8851_rdreg16 - read 16 bit register from device
 303 * @ks: The chip information
 304 * @reg: The register address
 305 *
 306 * Read a 16bit register from the chip, returning the result
 307*/
 308static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 309{
 310	__le16 rx = 0;
 311
 312	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 313	return le16_to_cpu(rx);
 314}
 315
 316/**
 317 * ks8851_rdreg32 - read 32 bit register from device
 318 * @ks: The chip information
 319 * @reg: The register address
 320 *
 321 * Read a 32bit register from the chip.
 322 *
 323 * Note, this read requires the address be aligned to 4 bytes.
 324*/
 325static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 326{
 327	__le32 rx = 0;
 328
 329	WARN_ON(reg & 3);
 330
 331	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 332	return le32_to_cpu(rx);
 333}
 334
 335/**
 336 * ks8851_soft_reset - issue one of the soft reset to the device
 337 * @ks: The device state.
 338 * @op: The bit(s) to set in the GRR
 339 *
 340 * Issue the relevant soft-reset command to the device's GRR register
 341 * specified by @op.
 342 *
 343 * Note, the delays are in there as a caution to ensure that the reset
 344 * has time to take effect and then complete. Since the datasheet does
 345 * not currently specify the exact sequence, we have chosen something
 346 * that seems to work with our device.
 347 */
 348static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 349{
 350	ks8851_wrreg16(ks, KS_GRR, op);
 351	mdelay(1);	/* wait a short time to effect reset */
 352	ks8851_wrreg16(ks, KS_GRR, 0);
 353	mdelay(1);	/* wait for condition to clear */
 354}
 355
 356/**
 357 * ks8851_set_powermode - set power mode of the device
 358 * @ks: The device state
 359 * @pwrmode: The power mode value to write to KS_PMECR.
 360 *
 361 * Change the power mode of the chip.
 362 */
 363static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 364{
 365	unsigned pmecr;
 366
 367	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 368
 369	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 370	pmecr &= ~PMECR_PM_MASK;
 371	pmecr |= pwrmode;
 372
 373	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 374}
 375
 376/**
 377 * ks8851_write_mac_addr - write mac address to device registers
 378 * @dev: The network device
 379 *
 380 * Update the KS8851 MAC address registers from the address in @dev.
 381 *
 382 * This call assumes that the chip is not running, so there is no need to
 383 * shutdown the RXQ process whilst setting this.
 384*/
 385static int ks8851_write_mac_addr(struct net_device *dev)
 386{
 387	struct ks8851_net *ks = netdev_priv(dev);
 388	int i;
 389
 390	mutex_lock(&ks->lock);
 391
 392	/*
 393	 * Wake up chip in case it was powered off when stopped; otherwise,
 394	 * the first write to the MAC address does not take effect.
 395	 */
 396	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 397	for (i = 0; i < ETH_ALEN; i++)
 398		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 399	if (!netif_running(dev))
 400		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 401
 402	mutex_unlock(&ks->lock);
 403
 404	return 0;
 405}
 406
 407/**
 408 * ks8851_read_mac_addr - read mac address from device registers
 409 * @dev: The network device
 410 *
 411 * Update our copy of the KS8851 MAC address from the registers of @dev.
 412*/
 413static void ks8851_read_mac_addr(struct net_device *dev)
 414{
 415	struct ks8851_net *ks = netdev_priv(dev);
 416	int i;
 417
 418	mutex_lock(&ks->lock);
 419
 420	for (i = 0; i < ETH_ALEN; i++)
 421		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 422
 423	mutex_unlock(&ks->lock);
 424}
 425
 426/**
 427 * ks8851_init_mac - initialise the mac address
 428 * @ks: The device structure
 429 *
 430 * Get or create the initial mac address for the device and then set that
 431 * into the station address register. If there is an EEPROM present, then
 432 * we try that. If no valid mac address is found we use eth_random_addr()
 433 * to create a new one.
 434 */
 435static void ks8851_init_mac(struct ks8851_net *ks)
 436{
 437	struct net_device *dev = ks->netdev;
 438
 439	/* first, try reading what we've got already */
 440	if (ks->rc_ccr & CCR_EEPROM) {
 441		ks8851_read_mac_addr(dev);
 442		if (is_valid_ether_addr(dev->dev_addr))
 443			return;
 444
 445		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 446				dev->dev_addr);
 447	}
 448
 449	eth_hw_addr_random(dev);
 450	ks8851_write_mac_addr(dev);
 451}
 452
 453/**
 454 * ks8851_rdfifo - read data from the receive fifo
 455 * @ks: The device state.
 456 * @buff: The buffer address
 457 * @len: The length of the data to read
 458 *
 459 * Issue an RXQ FIFO read command and read the @len amount of data from
 460 * the FIFO into the buffer specified by @buff.
 461 */
 462static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 463{
 464	struct spi_transfer *xfer = ks->spi_xfer2;
 465	struct spi_message *msg = &ks->spi_msg2;
 466	u8 txb[1];
 467	int ret;
 468
 469	netif_dbg(ks, rx_status, ks->netdev,
 470		  "%s: %d@%p\n", __func__, len, buff);
 471
 472	/* set the operation we're issuing */
 473	txb[0] = KS_SPIOP_RXFIFO;
 474
 475	xfer->tx_buf = txb;
 476	xfer->rx_buf = NULL;
 477	xfer->len = 1;
 478
 479	xfer++;
 480	xfer->rx_buf = buff;
 481	xfer->tx_buf = NULL;
 482	xfer->len = len;
 483
 484	ret = spi_sync(ks->spidev, msg);
 485	if (ret < 0)
 486		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 487}
 488
 489/**
 490 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 491 * @ks: The device state
 492 * @rxpkt: The data for the received packet
 493 *
 494 * Dump the initial data from the packet to dev_dbg().
 495*/
 496static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 497{
 498	netdev_dbg(ks->netdev,
 499		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 500		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 501		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 502		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 503}
 504
 505/**
 506 * ks8851_rx_pkts - receive packets from the host
 507 * @ks: The device information.
 508 *
 509 * This is called from the IRQ work queue when the system detects that there
 510 * are packets in the receive queue. Find out how many packets there are and
 511 * read them from the FIFO.
 512 */
 513static void ks8851_rx_pkts(struct ks8851_net *ks)
 514{
 515	struct sk_buff *skb;
 516	unsigned rxfc;
 517	unsigned rxlen;
 518	unsigned rxstat;
 519	u32 rxh;
 520	u8 *rxpkt;
 521
 522	rxfc = ks8851_rdreg8(ks, KS_RXFC);
 523
 524	netif_dbg(ks, rx_status, ks->netdev,
 525		  "%s: %d packets\n", __func__, rxfc);
 526
 527	/* Currently we're issuing a read per packet, but we could possibly
 528	 * improve the code by issuing a single read, getting the receive
 529	 * header, allocating the packet and then reading the packet data
 530	 * out in one go.
 531	 *
 532	 * This form of operation would require us to hold the SPI bus'
 533	 * chipselect low during the entie transaction to avoid any
 534	 * reset to the data stream coming from the chip.
 535	 */
 536
 537	for (; rxfc != 0; rxfc--) {
 538		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 539		rxstat = rxh & 0xffff;
 540		rxlen = (rxh >> 16) & 0xfff;
 541
 542		netif_dbg(ks, rx_status, ks->netdev,
 543			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 544
 545		/* the length of the packet includes the 32bit CRC */
 546
 547		/* set dma read address */
 548		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 549
 550		/* start the packet dma process, and set auto-dequeue rx */
 551		ks8851_wrreg16(ks, KS_RXQCR,
 552			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 553
 554		if (rxlen > 4) {
 555			unsigned int rxalign;
 556
 557			rxlen -= 4;
 558			rxalign = ALIGN(rxlen, 4);
 559			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 560			if (skb) {
 561
 562				/* 4 bytes of status header + 4 bytes of
 563				 * garbage: we put them before ethernet
 564				 * header, so that they are copied,
 565				 * but ignored.
 566				 */
 567
 568				rxpkt = skb_put(skb, rxlen) - 8;
 569
 570				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 571
 572				if (netif_msg_pktdata(ks))
 573					ks8851_dbg_dumpkkt(ks, rxpkt);
 574
 575				skb->protocol = eth_type_trans(skb, ks->netdev);
 576				netif_rx_ni(skb);
 577
 578				ks->netdev->stats.rx_packets++;
 579				ks->netdev->stats.rx_bytes += rxlen;
 580			}
 581		}
 582
 583		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 584	}
 585}
 586
 587/**
 588 * ks8851_irq - IRQ handler for dealing with interrupt requests
 589 * @irq: IRQ number
 590 * @_ks: cookie
 591 *
 592 * This handler is invoked when the IRQ line asserts to find out what happened.
 593 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 594 * in thread context.
 595 *
 596 * Read the interrupt status, work out what needs to be done and then clear
 597 * any of the interrupts that are not needed.
 598 */
 599static irqreturn_t ks8851_irq(int irq, void *_ks)
 600{
 601	struct ks8851_net *ks = _ks;
 602	unsigned status;
 603	unsigned handled = 0;
 604
 605	mutex_lock(&ks->lock);
 606
 607	status = ks8851_rdreg16(ks, KS_ISR);
 608
 609	netif_dbg(ks, intr, ks->netdev,
 610		  "%s: status 0x%04x\n", __func__, status);
 611
 612	if (status & IRQ_LCI)
 613		handled |= IRQ_LCI;
 614
 615	if (status & IRQ_LDI) {
 616		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 617		pmecr &= ~PMECR_WKEVT_MASK;
 618		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 619
 620		handled |= IRQ_LDI;
 621	}
 622
 623	if (status & IRQ_RXPSI)
 624		handled |= IRQ_RXPSI;
 625
 626	if (status & IRQ_TXI) {
 627		handled |= IRQ_TXI;
 628
 629		/* no lock here, tx queue should have been stopped */
 630
 631		/* update our idea of how much tx space is available to the
 632		 * system */
 633		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 634
 635		netif_dbg(ks, intr, ks->netdev,
 636			  "%s: txspace %d\n", __func__, ks->tx_space);
 637	}
 638
 639	if (status & IRQ_RXI)
 640		handled |= IRQ_RXI;
 641
 642	if (status & IRQ_SPIBEI) {
 643		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 644		handled |= IRQ_SPIBEI;
 645	}
 646
 647	ks8851_wrreg16(ks, KS_ISR, handled);
 648
 649	if (status & IRQ_RXI) {
 650		/* the datasheet says to disable the rx interrupt during
 651		 * packet read-out, however we're masking the interrupt
 652		 * from the device so do not bother masking just the RX
 653		 * from the device. */
 654
 655		ks8851_rx_pkts(ks);
 656	}
 657
 658	/* if something stopped the rx process, probably due to wanting
 659	 * to change the rx settings, then do something about restarting
 660	 * it. */
 661	if (status & IRQ_RXPSI) {
 662		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 663
 664		/* update the multicast hash table */
 665		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 666		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 667		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 668		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 669
 670		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 671		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 672	}
 673
 674	mutex_unlock(&ks->lock);
 675
 676	if (status & IRQ_LCI)
 677		mii_check_link(&ks->mii);
 678
 679	if (status & IRQ_TXI)
 680		netif_wake_queue(ks->netdev);
 681
 682	return IRQ_HANDLED;
 683}
 684
 685/**
 686 * calc_txlen - calculate size of message to send packet
 687 * @len: Length of data
 688 *
 689 * Returns the size of the TXFIFO message needed to send
 690 * this packet.
 691 */
 692static inline unsigned calc_txlen(unsigned len)
 693{
 694	return ALIGN(len + 4, 4);
 695}
 696
 697/**
 698 * ks8851_wrpkt - write packet to TX FIFO
 699 * @ks: The device state.
 700 * @txp: The sk_buff to transmit.
 701 * @irq: IRQ on completion of the packet.
 702 *
 703 * Send the @txp to the chip. This means creating the relevant packet header
 704 * specifying the length of the packet and the other information the chip
 705 * needs, such as IRQ on completion. Send the header and the packet data to
 706 * the device.
 707 */
 708static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 709{
 710	struct spi_transfer *xfer = ks->spi_xfer2;
 711	struct spi_message *msg = &ks->spi_msg2;
 712	unsigned fid = 0;
 713	int ret;
 714
 715	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 716		  __func__, txp, txp->len, txp->data, irq);
 717
 718	fid = ks->fid++;
 719	fid &= TXFR_TXFID_MASK;
 720
 721	if (irq)
 722		fid |= TXFR_TXIC;	/* irq on completion */
 723
 724	/* start header at txb[1] to align txw entries */
 725	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 726	ks->txh.txw[1] = cpu_to_le16(fid);
 727	ks->txh.txw[2] = cpu_to_le16(txp->len);
 728
 729	xfer->tx_buf = &ks->txh.txb[1];
 730	xfer->rx_buf = NULL;
 731	xfer->len = 5;
 732
 733	xfer++;
 734	xfer->tx_buf = txp->data;
 735	xfer->rx_buf = NULL;
 736	xfer->len = ALIGN(txp->len, 4);
 737
 738	ret = spi_sync(ks->spidev, msg);
 739	if (ret < 0)
 740		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 741}
 742
 743/**
 744 * ks8851_done_tx - update and then free skbuff after transmitting
 745 * @ks: The device state
 746 * @txb: The buffer transmitted
 747 */
 748static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 749{
 750	struct net_device *dev = ks->netdev;
 751
 752	dev->stats.tx_bytes += txb->len;
 753	dev->stats.tx_packets++;
 754
 755	dev_kfree_skb(txb);
 756}
 757
 758/**
 759 * ks8851_tx_work - process tx packet(s)
 760 * @work: The work strucutre what was scheduled.
 761 *
 762 * This is called when a number of packets have been scheduled for
 763 * transmission and need to be sent to the device.
 764 */
 765static void ks8851_tx_work(struct work_struct *work)
 766{
 767	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 768	struct sk_buff *txb;
 769	bool last = skb_queue_empty(&ks->txq);
 770
 771	mutex_lock(&ks->lock);
 772
 773	while (!last) {
 774		txb = skb_dequeue(&ks->txq);
 775		last = skb_queue_empty(&ks->txq);
 776
 777		if (txb != NULL) {
 778			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 779			ks8851_wrpkt(ks, txb, last);
 780			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 781			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 782
 783			ks8851_done_tx(ks, txb);
 784		}
 785	}
 786
 787	mutex_unlock(&ks->lock);
 788}
 789
 790/**
 791 * ks8851_net_open - open network device
 792 * @dev: The network device being opened.
 793 *
 794 * Called when the network device is marked active, such as a user executing
 795 * 'ifconfig up' on the device.
 796 */
 797static int ks8851_net_open(struct net_device *dev)
 798{
 799	struct ks8851_net *ks = netdev_priv(dev);
 800
 801	/* lock the card, even if we may not actually be doing anything
 802	 * else at the moment */
 803	mutex_lock(&ks->lock);
 804
 805	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 806
 807	/* bring chip out of any power saving mode it was in */
 808	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 809
 810	/* issue a soft reset to the RX/TX QMU to put it into a known
 811	 * state. */
 812	ks8851_soft_reset(ks, GRR_QMU);
 813
 814	/* setup transmission parameters */
 815
 816	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 817				     TXCR_TXPE | /* pad to min length */
 818				     TXCR_TXCRC | /* add CRC */
 819				     TXCR_TXFCE)); /* enable flow control */
 820
 821	/* auto-increment tx data, reset tx pointer */
 822	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 823
 824	/* setup receiver control */
 825
 826	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 827				      RXCR1_RXFCE | /* enable flow control */
 828				      RXCR1_RXBE | /* broadcast enable */
 829				      RXCR1_RXUE | /* unicast enable */
 830				      RXCR1_RXE)); /* enable rx block */
 831
 832	/* transfer entire frames out in one go */
 833	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 834
 835	/* set receive counter timeouts */
 836	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 837	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 838	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 839
 840	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 841			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 842			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 843
 844	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 845
 846	/* clear then enable interrupts */
 847
 848#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
 849		 IRQ_TXI |	/* TX done */		\
 850		 IRQ_RXI |	/* RX done */		\
 851		 IRQ_SPIBEI |	/* SPI bus error */	\
 852		 IRQ_TXPSI |	/* TX process stop */	\
 853		 IRQ_RXPSI)	/* RX process stop */
 854
 855	ks->rc_ier = STD_IRQ;
 856	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 857	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 858
 859	netif_start_queue(ks->netdev);
 860
 861	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 862
 863	mutex_unlock(&ks->lock);
 864	return 0;
 865}
 866
 867/**
 868 * ks8851_net_stop - close network device
 869 * @dev: The device being closed.
 870 *
 871 * Called to close down a network device which has been active. Cancell any
 872 * work, shutdown the RX and TX process and then place the chip into a low
 873 * power state whilst it is not being used.
 874 */
 875static int ks8851_net_stop(struct net_device *dev)
 876{
 877	struct ks8851_net *ks = netdev_priv(dev);
 878
 879	netif_info(ks, ifdown, dev, "shutting down\n");
 880
 881	netif_stop_queue(dev);
 882
 883	mutex_lock(&ks->lock);
 884	/* turn off the IRQs and ack any outstanding */
 885	ks8851_wrreg16(ks, KS_IER, 0x0000);
 886	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 887	mutex_unlock(&ks->lock);
 888
 889	/* stop any outstanding work */
 890	flush_work(&ks->tx_work);
 891	flush_work(&ks->rxctrl_work);
 892
 893	mutex_lock(&ks->lock);
 894	/* shutdown RX process */
 895	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 896
 897	/* shutdown TX process */
 898	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 899
 900	/* set powermode to soft power down to save power */
 901	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 902	mutex_unlock(&ks->lock);
 903
 904	/* ensure any queued tx buffers are dumped */
 905	while (!skb_queue_empty(&ks->txq)) {
 906		struct sk_buff *txb = skb_dequeue(&ks->txq);
 907
 908		netif_dbg(ks, ifdown, ks->netdev,
 909			  "%s: freeing txb %p\n", __func__, txb);
 910
 911		dev_kfree_skb(txb);
 912	}
 913
 914	return 0;
 915}
 916
 917/**
 918 * ks8851_start_xmit - transmit packet
 919 * @skb: The buffer to transmit
 920 * @dev: The device used to transmit the packet.
 921 *
 922 * Called by the network layer to transmit the @skb. Queue the packet for
 923 * the device and schedule the necessary work to transmit the packet when
 924 * it is free.
 925 *
 926 * We do this to firstly avoid sleeping with the network device locked,
 927 * and secondly so we can round up more than one packet to transmit which
 928 * means we can try and avoid generating too many transmit done interrupts.
 929 */
 930static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 931				     struct net_device *dev)
 932{
 933	struct ks8851_net *ks = netdev_priv(dev);
 934	unsigned needed = calc_txlen(skb->len);
 935	netdev_tx_t ret = NETDEV_TX_OK;
 936
 937	netif_dbg(ks, tx_queued, ks->netdev,
 938		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 939
 940	spin_lock(&ks->statelock);
 941
 942	if (needed > ks->tx_space) {
 943		netif_stop_queue(dev);
 944		ret = NETDEV_TX_BUSY;
 945	} else {
 946		ks->tx_space -= needed;
 947		skb_queue_tail(&ks->txq, skb);
 948	}
 949
 950	spin_unlock(&ks->statelock);
 951	schedule_work(&ks->tx_work);
 952
 953	return ret;
 954}
 955
 956/**
 957 * ks8851_rxctrl_work - work handler to change rx mode
 958 * @work: The work structure this belongs to.
 959 *
 960 * Lock the device and issue the necessary changes to the receive mode from
 961 * the network device layer. This is done so that we can do this without
 962 * having to sleep whilst holding the network device lock.
 963 *
 964 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 965 * receive parameters are programmed, we issue a write to disable the RXQ and
 966 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 967 * complete. The interrupt handler then writes the new values into the chip.
 968 */
 969static void ks8851_rxctrl_work(struct work_struct *work)
 970{
 971	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 972
 973	mutex_lock(&ks->lock);
 974
 975	/* need to shutdown RXQ before modifying filter parameters */
 976	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 977
 978	mutex_unlock(&ks->lock);
 979}
 980
 981static void ks8851_set_rx_mode(struct net_device *dev)
 982{
 983	struct ks8851_net *ks = netdev_priv(dev);
 984	struct ks8851_rxctrl rxctrl;
 985
 986	memset(&rxctrl, 0, sizeof(rxctrl));
 987
 988	if (dev->flags & IFF_PROMISC) {
 989		/* interface to receive everything */
 990
 991		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 992	} else if (dev->flags & IFF_ALLMULTI) {
 993		/* accept all multicast packets */
 994
 995		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 996				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 997	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 998		struct netdev_hw_addr *ha;
 999		u32 crc;
1000
1001		/* accept some multicast */
1002
1003		netdev_for_each_mc_addr(ha, dev) {
1004			crc = ether_crc(ETH_ALEN, ha->addr);
1005			crc >>= (32 - 6);  /* get top six bits */
1006
1007			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1008		}
1009
1010		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1011	} else {
1012		/* just accept broadcast / unicast */
1013		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1014	}
1015
1016	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1017			 RXCR1_RXBE | /* broadcast enable */
1018			 RXCR1_RXE | /* RX process enable */
1019			 RXCR1_RXFCE); /* enable flow control */
1020
1021	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1022
1023	/* schedule work to do the actual set of the data if needed */
1024
1025	spin_lock(&ks->statelock);
1026
1027	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1028		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1029		schedule_work(&ks->rxctrl_work);
1030	}
1031
1032	spin_unlock(&ks->statelock);
1033}
1034
1035static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1036{
1037	struct sockaddr *sa = addr;
1038
1039	if (netif_running(dev))
1040		return -EBUSY;
1041
1042	if (!is_valid_ether_addr(sa->sa_data))
1043		return -EADDRNOTAVAIL;
1044
1045	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1046	return ks8851_write_mac_addr(dev);
1047}
1048
1049static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1050{
1051	struct ks8851_net *ks = netdev_priv(dev);
1052
1053	if (!netif_running(dev))
1054		return -EINVAL;
1055
1056	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1057}
1058
1059static const struct net_device_ops ks8851_netdev_ops = {
1060	.ndo_open		= ks8851_net_open,
1061	.ndo_stop		= ks8851_net_stop,
1062	.ndo_do_ioctl		= ks8851_net_ioctl,
1063	.ndo_start_xmit		= ks8851_start_xmit,
1064	.ndo_set_mac_address	= ks8851_set_mac_address,
1065	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1066	.ndo_validate_addr	= eth_validate_addr,
1067};
1068
1069/* ethtool support */
1070
1071static void ks8851_get_drvinfo(struct net_device *dev,
1072			       struct ethtool_drvinfo *di)
1073{
1074	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1075	strlcpy(di->version, "1.00", sizeof(di->version));
1076	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1077}
1078
1079static u32 ks8851_get_msglevel(struct net_device *dev)
1080{
1081	struct ks8851_net *ks = netdev_priv(dev);
1082	return ks->msg_enable;
1083}
1084
1085static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1086{
1087	struct ks8851_net *ks = netdev_priv(dev);
1088	ks->msg_enable = to;
1089}
1090
1091static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1092{
1093	struct ks8851_net *ks = netdev_priv(dev);
1094	return mii_ethtool_gset(&ks->mii, cmd);
1095}
1096
1097static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1098{
1099	struct ks8851_net *ks = netdev_priv(dev);
1100	return mii_ethtool_sset(&ks->mii, cmd);
1101}
1102
1103static u32 ks8851_get_link(struct net_device *dev)
1104{
1105	struct ks8851_net *ks = netdev_priv(dev);
1106	return mii_link_ok(&ks->mii);
1107}
1108
1109static int ks8851_nway_reset(struct net_device *dev)
1110{
1111	struct ks8851_net *ks = netdev_priv(dev);
1112	return mii_nway_restart(&ks->mii);
1113}
1114
1115/* EEPROM support */
1116
1117static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1118{
1119	struct ks8851_net *ks = ee->data;
1120	unsigned val;
1121
1122	val = ks8851_rdreg16(ks, KS_EEPCR);
1123
1124	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1125	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1126	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1127}
1128
1129static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1130{
1131	struct ks8851_net *ks = ee->data;
1132	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1133
1134	if (ee->drive_data)
1135		val |= EEPCR_EESRWA;
1136	if (ee->reg_data_in)
1137		val |= EEPCR_EEDO;
1138	if (ee->reg_data_clock)
1139		val |= EEPCR_EESCK;
1140	if (ee->reg_chip_select)
1141		val |= EEPCR_EECS;
1142
1143	ks8851_wrreg16(ks, KS_EEPCR, val);
1144}
1145
1146/**
1147 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1148 * @ks: The network device state.
1149 *
1150 * Check for the presence of an EEPROM, and then activate software access
1151 * to the device.
1152 */
1153static int ks8851_eeprom_claim(struct ks8851_net *ks)
1154{
1155	if (!(ks->rc_ccr & CCR_EEPROM))
1156		return -ENOENT;
1157
1158	mutex_lock(&ks->lock);
1159
1160	/* start with clock low, cs high */
1161	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1162	return 0;
1163}
1164
1165/**
1166 * ks8851_eeprom_release - release the EEPROM interface
1167 * @ks: The device state
1168 *
1169 * Release the software access to the device EEPROM
1170 */
1171static void ks8851_eeprom_release(struct ks8851_net *ks)
1172{
1173	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1174
1175	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1176	mutex_unlock(&ks->lock);
1177}
1178
1179#define KS_EEPROM_MAGIC (0x00008851)
1180
1181static int ks8851_set_eeprom(struct net_device *dev,
1182			     struct ethtool_eeprom *ee, u8 *data)
1183{
1184	struct ks8851_net *ks = netdev_priv(dev);
1185	int offset = ee->offset;
1186	int len = ee->len;
1187	u16 tmp;
1188
1189	/* currently only support byte writing */
1190	if (len != 1)
1191		return -EINVAL;
1192
1193	if (ee->magic != KS_EEPROM_MAGIC)
1194		return -EINVAL;
1195
1196	if (ks8851_eeprom_claim(ks))
1197		return -ENOENT;
1198
1199	eeprom_93cx6_wren(&ks->eeprom, true);
1200
1201	/* ethtool currently only supports writing bytes, which means
1202	 * we have to read/modify/write our 16bit EEPROMs */
1203
1204	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1205
1206	if (offset & 1) {
1207		tmp &= 0xff;
1208		tmp |= *data << 8;
1209	} else {
1210		tmp &= 0xff00;
1211		tmp |= *data;
1212	}
1213
1214	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1215	eeprom_93cx6_wren(&ks->eeprom, false);
1216
1217	ks8851_eeprom_release(ks);
1218
1219	return 0;
1220}
1221
1222static int ks8851_get_eeprom(struct net_device *dev,
1223			     struct ethtool_eeprom *ee, u8 *data)
1224{
1225	struct ks8851_net *ks = netdev_priv(dev);
1226	int offset = ee->offset;
1227	int len = ee->len;
1228
1229	/* must be 2 byte aligned */
1230	if (len & 1 || offset & 1)
1231		return -EINVAL;
1232
1233	if (ks8851_eeprom_claim(ks))
1234		return -ENOENT;
1235
1236	ee->magic = KS_EEPROM_MAGIC;
1237
1238	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1239	ks8851_eeprom_release(ks);
1240
1241	return 0;
1242}
1243
1244static int ks8851_get_eeprom_len(struct net_device *dev)
1245{
1246	struct ks8851_net *ks = netdev_priv(dev);
1247
1248	/* currently, we assume it is an 93C46 attached, so return 128 */
1249	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1250}
1251
1252static const struct ethtool_ops ks8851_ethtool_ops = {
1253	.get_drvinfo	= ks8851_get_drvinfo,
1254	.get_msglevel	= ks8851_get_msglevel,
1255	.set_msglevel	= ks8851_set_msglevel,
1256	.get_settings	= ks8851_get_settings,
1257	.set_settings	= ks8851_set_settings,
1258	.get_link	= ks8851_get_link,
1259	.nway_reset	= ks8851_nway_reset,
1260	.get_eeprom_len	= ks8851_get_eeprom_len,
1261	.get_eeprom	= ks8851_get_eeprom,
1262	.set_eeprom	= ks8851_set_eeprom,
1263};
1264
1265/* MII interface controls */
1266
1267/**
1268 * ks8851_phy_reg - convert MII register into a KS8851 register
1269 * @reg: MII register number.
1270 *
1271 * Return the KS8851 register number for the corresponding MII PHY register
1272 * if possible. Return zero if the MII register has no direct mapping to the
1273 * KS8851 register set.
1274 */
1275static int ks8851_phy_reg(int reg)
1276{
1277	switch (reg) {
1278	case MII_BMCR:
1279		return KS_P1MBCR;
1280	case MII_BMSR:
1281		return KS_P1MBSR;
1282	case MII_PHYSID1:
1283		return KS_PHY1ILR;
1284	case MII_PHYSID2:
1285		return KS_PHY1IHR;
1286	case MII_ADVERTISE:
1287		return KS_P1ANAR;
1288	case MII_LPA:
1289		return KS_P1ANLPR;
1290	}
1291
1292	return 0x0;
1293}
1294
1295/**
1296 * ks8851_phy_read - MII interface PHY register read.
1297 * @dev: The network device the PHY is on.
1298 * @phy_addr: Address of PHY (ignored as we only have one)
1299 * @reg: The register to read.
1300 *
1301 * This call reads data from the PHY register specified in @reg. Since the
1302 * device does not support all the MII registers, the non-existent values
1303 * are always returned as zero.
1304 *
1305 * We return zero for unsupported registers as the MII code does not check
1306 * the value returned for any error status, and simply returns it to the
1307 * caller. The mii-tool that the driver was tested with takes any -ve error
1308 * as real PHY capabilities, thus displaying incorrect data to the user.
1309 */
1310static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1311{
1312	struct ks8851_net *ks = netdev_priv(dev);
1313	int ksreg;
1314	int result;
1315
1316	ksreg = ks8851_phy_reg(reg);
1317	if (!ksreg)
1318		return 0x0;	/* no error return allowed, so use zero */
1319
1320	mutex_lock(&ks->lock);
1321	result = ks8851_rdreg16(ks, ksreg);
1322	mutex_unlock(&ks->lock);
1323
1324	return result;
1325}
1326
1327static void ks8851_phy_write(struct net_device *dev,
1328			     int phy, int reg, int value)
1329{
1330	struct ks8851_net *ks = netdev_priv(dev);
1331	int ksreg;
1332
1333	ksreg = ks8851_phy_reg(reg);
1334	if (ksreg) {
1335		mutex_lock(&ks->lock);
1336		ks8851_wrreg16(ks, ksreg, value);
1337		mutex_unlock(&ks->lock);
1338	}
1339}
1340
1341/**
1342 * ks8851_read_selftest - read the selftest memory info.
1343 * @ks: The device state
1344 *
1345 * Read and check the TX/RX memory selftest information.
1346 */
1347static int ks8851_read_selftest(struct ks8851_net *ks)
1348{
1349	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1350	int ret = 0;
1351	unsigned rd;
1352
1353	rd = ks8851_rdreg16(ks, KS_MBIR);
1354
1355	if ((rd & both_done) != both_done) {
1356		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1357		return 0;
1358	}
1359
1360	if (rd & MBIR_TXMBFA) {
1361		netdev_err(ks->netdev, "TX memory selftest fail\n");
1362		ret |= 1;
1363	}
1364
1365	if (rd & MBIR_RXMBFA) {
1366		netdev_err(ks->netdev, "RX memory selftest fail\n");
1367		ret |= 2;
1368	}
1369
1370	return 0;
1371}
1372
1373/* driver bus management functions */
1374
1375#ifdef CONFIG_PM_SLEEP
1376
1377static int ks8851_suspend(struct device *dev)
1378{
1379	struct ks8851_net *ks = dev_get_drvdata(dev);
1380	struct net_device *netdev = ks->netdev;
1381
1382	if (netif_running(netdev)) {
1383		netif_device_detach(netdev);
1384		ks8851_net_stop(netdev);
1385	}
1386
1387	return 0;
1388}
1389
1390static int ks8851_resume(struct device *dev)
1391{
1392	struct ks8851_net *ks = dev_get_drvdata(dev);
1393	struct net_device *netdev = ks->netdev;
1394
1395	if (netif_running(netdev)) {
1396		ks8851_net_open(netdev);
1397		netif_device_attach(netdev);
1398	}
1399
1400	return 0;
1401}
1402#endif
1403
1404static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1405
1406static int ks8851_probe(struct spi_device *spi)
1407{
1408	struct net_device *ndev;
1409	struct ks8851_net *ks;
1410	int ret;
1411	unsigned cider;
1412	int gpio;
1413
1414	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1415	if (!ndev)
1416		return -ENOMEM;
1417
1418	spi->bits_per_word = 8;
1419
1420	ks = netdev_priv(ndev);
1421
1422	ks->netdev = ndev;
1423	ks->spidev = spi;
1424	ks->tx_space = 6144;
1425
1426	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1427				       0, NULL);
1428	if (gpio == -EPROBE_DEFER) {
1429		ret = gpio;
1430		goto err_gpio;
1431	}
1432
1433	ks->gpio = gpio;
1434	if (gpio_is_valid(gpio)) {
1435		ret = devm_gpio_request_one(&spi->dev, gpio,
1436					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1437		if (ret) {
1438			dev_err(&spi->dev, "reset gpio request failed\n");
1439			goto err_gpio;
1440		}
1441	}
1442
1443	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1444	if (IS_ERR(ks->vdd_io)) {
1445		ret = PTR_ERR(ks->vdd_io);
1446		goto err_reg_io;
1447	}
1448
1449	ret = regulator_enable(ks->vdd_io);
1450	if (ret) {
1451		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1452			ret);
1453		goto err_reg_io;
1454	}
1455
1456	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1457	if (IS_ERR(ks->vdd_reg)) {
1458		ret = PTR_ERR(ks->vdd_reg);
1459		goto err_reg;
1460	}
1461
1462	ret = regulator_enable(ks->vdd_reg);
1463	if (ret) {
1464		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1465			ret);
1466		goto err_reg;
1467	}
1468
1469	if (gpio_is_valid(gpio)) {
1470		usleep_range(10000, 11000);
1471		gpio_set_value(gpio, 1);
1472	}
1473
1474	mutex_init(&ks->lock);
1475	spin_lock_init(&ks->statelock);
1476
1477	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1478	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1479
1480	/* initialise pre-made spi transfer messages */
1481
1482	spi_message_init(&ks->spi_msg1);
1483	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1484
1485	spi_message_init(&ks->spi_msg2);
1486	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1487	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1488
1489	/* setup EEPROM state */
1490
1491	ks->eeprom.data = ks;
1492	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1493	ks->eeprom.register_read = ks8851_eeprom_regread;
1494	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1495
1496	/* setup mii state */
1497	ks->mii.dev		= ndev;
1498	ks->mii.phy_id		= 1,
1499	ks->mii.phy_id_mask	= 1;
1500	ks->mii.reg_num_mask	= 0xf;
1501	ks->mii.mdio_read	= ks8851_phy_read;
1502	ks->mii.mdio_write	= ks8851_phy_write;
1503
1504	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1505
1506	/* set the default message enable */
1507	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1508						     NETIF_MSG_PROBE |
1509						     NETIF_MSG_LINK));
1510
1511	skb_queue_head_init(&ks->txq);
1512
1513	ndev->ethtool_ops = &ks8851_ethtool_ops;
1514	SET_NETDEV_DEV(ndev, &spi->dev);
1515
1516	spi_set_drvdata(spi, ks);
1517
1518	ndev->if_port = IF_PORT_100BASET;
1519	ndev->netdev_ops = &ks8851_netdev_ops;
1520	ndev->irq = spi->irq;
1521
1522	/* issue a global soft reset to reset the device. */
1523	ks8851_soft_reset(ks, GRR_GSR);
1524
1525	/* simple check for a valid chip being connected to the bus */
1526	cider = ks8851_rdreg16(ks, KS_CIDER);
1527	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1528		dev_err(&spi->dev, "failed to read device ID\n");
1529		ret = -ENODEV;
1530		goto err_id;
1531	}
1532
1533	/* cache the contents of the CCR register for EEPROM, etc. */
1534	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1535
1536	if (ks->rc_ccr & CCR_EEPROM)
1537		ks->eeprom_size = 128;
1538	else
1539		ks->eeprom_size = 0;
1540
1541	ks8851_read_selftest(ks);
1542	ks8851_init_mac(ks);
1543
1544	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1545				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1546				   ndev->name, ks);
1547	if (ret < 0) {
1548		dev_err(&spi->dev, "failed to get irq\n");
1549		goto err_irq;
1550	}
1551
1552	ret = register_netdev(ndev);
1553	if (ret) {
1554		dev_err(&spi->dev, "failed to register network device\n");
1555		goto err_netdev;
1556	}
1557
1558	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1559		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1560		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1561
1562	return 0;
1563
1564
1565err_netdev:
1566	free_irq(ndev->irq, ks);
1567
1568err_irq:
1569	if (gpio_is_valid(gpio))
1570		gpio_set_value(gpio, 0);
1571err_id:
1572	regulator_disable(ks->vdd_reg);
1573err_reg:
1574	regulator_disable(ks->vdd_io);
1575err_reg_io:
1576err_gpio:
1577	free_netdev(ndev);
1578	return ret;
1579}
1580
1581static int ks8851_remove(struct spi_device *spi)
1582{
1583	struct ks8851_net *priv = spi_get_drvdata(spi);
1584
1585	if (netif_msg_drv(priv))
1586		dev_info(&spi->dev, "remove\n");
1587
1588	unregister_netdev(priv->netdev);
1589	free_irq(spi->irq, priv);
1590	if (gpio_is_valid(priv->gpio))
1591		gpio_set_value(priv->gpio, 0);
1592	regulator_disable(priv->vdd_reg);
1593	regulator_disable(priv->vdd_io);
1594	free_netdev(priv->netdev);
1595
1596	return 0;
1597}
1598
1599static const struct of_device_id ks8851_match_table[] = {
1600	{ .compatible = "micrel,ks8851" },
1601	{ }
1602};
1603MODULE_DEVICE_TABLE(of, ks8851_match_table);
1604
1605static struct spi_driver ks8851_driver = {
1606	.driver = {
1607		.name = "ks8851",
1608		.of_match_table = ks8851_match_table,
1609		.pm = &ks8851_pm_ops,
1610	},
1611	.probe = ks8851_probe,
1612	.remove = ks8851_remove,
1613};
1614module_spi_driver(ks8851_driver);
1615
1616MODULE_DESCRIPTION("KS8851 Network driver");
1617MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1618MODULE_LICENSE("GPL");
1619
1620module_param_named(message, msg_enable, int, 0);
1621MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1622MODULE_ALIAS("spi:ks8851");