Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 337	s32 status;
 338	u16 phy_id_high = 0;
 339	u16 phy_id_low = 0;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	s32 status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474		       u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 552	s32 status;
 553	u32 gssr = hw->phy.phy_semaphore_mask;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 575				u32 device_type, u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 650	s32 status;
 651	u32 gssr = hw->phy.phy_semaphore_mask;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static s32 ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	s32 data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static s32 ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	s32 data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static s32 ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	s32 err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static s32 ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	s32 err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static s32 ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static s32 ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static s32 ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static s32 ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static s32 ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static s32 ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static s32 ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static s32 ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	s32 (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	s32 (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	s32 (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	s32 (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
1100	s32 status = 0;
1101	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1102	bool autoneg = false;
1103	ixgbe_link_speed speed;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
 
 
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	s32 status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	s32 status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
1282	s32 status;
1283	u32 time_out;
1284	u32 max_time_out = 10;
1285	u16 phy_link = 0;
1286	u16 phy_speed = 0;
1287	u16 phy_data = 0;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	bool end_data = false;
1406	u16 list_offset, data_offset;
1407	u16 phy_data = 0;
1408	s32 ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	struct ixgbe_adapter *adapter = hw->back;
1533	s32 status;
1534	u32 vendor_oui = 0;
1535	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1536	u8 identifier = 0;
1537	u8 comp_codes_1g = 0;
1538	u8 comp_codes_10g = 0;
1539	u8 oui_bytes[3] = {0, 0, 0};
1540	u8 cable_tech = 0;
1541	u8 cable_spec = 0;
1542	u16 enforce_sfp = 0;
1543
1544	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1545		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1546		return -ENOENT;
1547	}
1548
1549	/* LAN ID is needed for sfp_type determination */
1550	hw->mac.ops.set_lan_id(hw);
1551
1552	status = hw->phy.ops.read_i2c_eeprom(hw,
1553					     IXGBE_SFF_IDENTIFIER,
1554					     &identifier);
1555
1556	if (status)
1557		goto err_read_i2c_eeprom;
1558
1559	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1560		hw->phy.type = ixgbe_phy_sfp_unsupported;
1561		return -EOPNOTSUPP;
1562	}
1563	status = hw->phy.ops.read_i2c_eeprom(hw,
1564					     IXGBE_SFF_1GBE_COMP_CODES,
1565					     &comp_codes_1g);
1566
1567	if (status)
1568		goto err_read_i2c_eeprom;
1569
1570	status = hw->phy.ops.read_i2c_eeprom(hw,
1571					     IXGBE_SFF_10GBE_COMP_CODES,
1572					     &comp_codes_10g);
1573
1574	if (status)
1575		goto err_read_i2c_eeprom;
1576	status = hw->phy.ops.read_i2c_eeprom(hw,
1577					     IXGBE_SFF_CABLE_TECHNOLOGY,
1578					     &cable_tech);
1579
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	 /* ID Module
1584	  * =========
1585	  * 0   SFP_DA_CU
1586	  * 1   SFP_SR
1587	  * 2   SFP_LR
1588	  * 3   SFP_DA_CORE0 - 82599-specific
1589	  * 4   SFP_DA_CORE1 - 82599-specific
1590	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1591	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1592	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1593	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1594	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1595	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1596	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1597	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1598	  */
1599	if (hw->mac.type == ixgbe_mac_82598EB) {
1600		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1601			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1602		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1603			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1604		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1605			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1606		else
1607			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1608	} else {
1609		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1610			if (hw->bus.lan_id == 0)
1611				hw->phy.sfp_type =
1612					     ixgbe_sfp_type_da_cu_core0;
1613			else
1614				hw->phy.sfp_type =
1615					     ixgbe_sfp_type_da_cu_core1;
1616		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1617			hw->phy.ops.read_i2c_eeprom(
1618					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1619					&cable_spec);
1620			if (cable_spec &
1621			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1622				if (hw->bus.lan_id == 0)
1623					hw->phy.sfp_type =
1624					ixgbe_sfp_type_da_act_lmt_core0;
1625				else
1626					hw->phy.sfp_type =
1627					ixgbe_sfp_type_da_act_lmt_core1;
1628			} else {
1629				hw->phy.sfp_type =
1630						ixgbe_sfp_type_unknown;
1631			}
1632		} else if (comp_codes_10g &
1633			   (IXGBE_SFF_10GBASESR_CAPABLE |
1634			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1635			if (hw->bus.lan_id == 0)
1636				hw->phy.sfp_type =
1637					      ixgbe_sfp_type_srlr_core0;
1638			else
1639				hw->phy.sfp_type =
1640					      ixgbe_sfp_type_srlr_core1;
1641		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1642			if (hw->bus.lan_id == 0)
1643				hw->phy.sfp_type =
1644					ixgbe_sfp_type_1g_cu_core0;
1645			else
1646				hw->phy.sfp_type =
1647					ixgbe_sfp_type_1g_cu_core1;
1648		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1649			if (hw->bus.lan_id == 0)
1650				hw->phy.sfp_type =
1651					ixgbe_sfp_type_1g_sx_core0;
1652			else
1653				hw->phy.sfp_type =
1654					ixgbe_sfp_type_1g_sx_core1;
1655		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1656			if (hw->bus.lan_id == 0)
1657				hw->phy.sfp_type =
1658					ixgbe_sfp_type_1g_lx_core0;
1659			else
1660				hw->phy.sfp_type =
1661					ixgbe_sfp_type_1g_lx_core1;
1662		} else {
1663			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1664		}
1665	}
1666
1667	if (hw->phy.sfp_type != stored_sfp_type)
1668		hw->phy.sfp_setup_needed = true;
1669
1670	/* Determine if the SFP+ PHY is dual speed or not. */
1671	hw->phy.multispeed_fiber = false;
1672	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1673	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1674	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1675	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1676		hw->phy.multispeed_fiber = true;
1677
1678	/* Determine PHY vendor */
1679	if (hw->phy.type != ixgbe_phy_nl) {
1680		hw->phy.id = identifier;
1681		status = hw->phy.ops.read_i2c_eeprom(hw,
1682					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1683					    &oui_bytes[0]);
1684
1685		if (status != 0)
1686			goto err_read_i2c_eeprom;
1687
1688		status = hw->phy.ops.read_i2c_eeprom(hw,
1689					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1690					    &oui_bytes[1]);
1691
1692		if (status != 0)
1693			goto err_read_i2c_eeprom;
1694
1695		status = hw->phy.ops.read_i2c_eeprom(hw,
1696					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1697					    &oui_bytes[2]);
1698
1699		if (status != 0)
1700			goto err_read_i2c_eeprom;
1701
1702		vendor_oui =
1703		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1704		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1705		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1706
1707		switch (vendor_oui) {
1708		case IXGBE_SFF_VENDOR_OUI_TYCO:
1709			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1710				hw->phy.type =
1711					    ixgbe_phy_sfp_passive_tyco;
1712			break;
1713		case IXGBE_SFF_VENDOR_OUI_FTL:
1714			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1715				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1716			else
1717				hw->phy.type = ixgbe_phy_sfp_ftl;
1718			break;
1719		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1720			hw->phy.type = ixgbe_phy_sfp_avago;
1721			break;
1722		case IXGBE_SFF_VENDOR_OUI_INTEL:
1723			hw->phy.type = ixgbe_phy_sfp_intel;
1724			break;
1725		default:
1726			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1727				hw->phy.type =
1728					 ixgbe_phy_sfp_passive_unknown;
1729			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1730				hw->phy.type =
1731					ixgbe_phy_sfp_active_unknown;
1732			else
1733				hw->phy.type = ixgbe_phy_sfp_unknown;
1734			break;
1735		}
1736	}
1737
1738	/* Allow any DA cable vendor */
1739	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1740	    IXGBE_SFF_DA_ACTIVE_CABLE))
1741		return 0;
1742
1743	/* Verify supported 1G SFP modules */
1744	if (comp_codes_10g == 0 &&
1745	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1746	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1747	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1748	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1749	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1750	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1751		hw->phy.type = ixgbe_phy_sfp_unsupported;
1752		return -EOPNOTSUPP;
1753	}
1754
1755	/* Anything else 82598-based is supported */
1756	if (hw->mac.type == ixgbe_mac_82598EB)
1757		return 0;
1758
1759	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1760	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1761	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1762	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1763	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1767		/* Make sure we're a supported PHY type */
1768		if (hw->phy.type == ixgbe_phy_sfp_intel)
1769			return 0;
1770		if (hw->allow_unsupported_sfp) {
1771			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1772			return 0;
1773		}
1774		hw_dbg(hw, "SFP+ module not supported\n");
1775		hw->phy.type = ixgbe_phy_sfp_unsupported;
1776		return -EOPNOTSUPP;
1777	}
1778	return 0;
1779
1780err_read_i2c_eeprom:
1781	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1782	if (hw->phy.type != ixgbe_phy_nl) {
1783		hw->phy.id = 0;
1784		hw->phy.type = ixgbe_phy_unknown;
1785	}
1786	return -ENOENT;
1787}
1788
1789/**
1790 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1791 * @hw: pointer to hardware structure
1792 *
1793 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1794 **/
1795static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1796{
1797	struct ixgbe_adapter *adapter = hw->back;
1798	s32 status;
1799	u32 vendor_oui = 0;
1800	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1801	u8 identifier = 0;
1802	u8 comp_codes_1g = 0;
1803	u8 comp_codes_10g = 0;
1804	u8 oui_bytes[3] = {0, 0, 0};
1805	u16 enforce_sfp = 0;
1806	u8 connector = 0;
1807	u8 cable_length = 0;
1808	u8 device_tech = 0;
1809	bool active_cable = false;
1810
1811	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1812		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1813		return -ENOENT;
1814	}
1815
1816	/* LAN ID is needed for sfp_type determination */
1817	hw->mac.ops.set_lan_id(hw);
1818
1819	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1820					     &identifier);
1821
1822	if (status != 0)
1823		goto err_read_i2c_eeprom;
1824
1825	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1826		hw->phy.type = ixgbe_phy_sfp_unsupported;
1827		return -EOPNOTSUPP;
1828	}
1829
1830	hw->phy.id = identifier;
1831
1832	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1833					     &comp_codes_10g);
1834
1835	if (status != 0)
1836		goto err_read_i2c_eeprom;
1837
1838	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1839					     &comp_codes_1g);
1840
1841	if (status != 0)
1842		goto err_read_i2c_eeprom;
1843
1844	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1845		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1846		if (hw->bus.lan_id == 0)
1847			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1848		else
1849			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1850	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1851				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1852		if (hw->bus.lan_id == 0)
1853			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1854		else
1855			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1856	} else {
1857		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1858			active_cable = true;
1859
1860		if (!active_cable) {
1861			/* check for active DA cables that pre-date
1862			 * SFF-8436 v3.6
1863			 */
1864			hw->phy.ops.read_i2c_eeprom(hw,
1865					IXGBE_SFF_QSFP_CONNECTOR,
1866					&connector);
1867
1868			hw->phy.ops.read_i2c_eeprom(hw,
1869					IXGBE_SFF_QSFP_CABLE_LENGTH,
1870					&cable_length);
1871
1872			hw->phy.ops.read_i2c_eeprom(hw,
1873					IXGBE_SFF_QSFP_DEVICE_TECH,
1874					&device_tech);
1875
1876			if ((connector ==
1877				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1878			    (cable_length > 0) &&
1879			    ((device_tech >> 4) ==
1880				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1881				active_cable = true;
1882		}
1883
1884		if (active_cable) {
1885			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1886			if (hw->bus.lan_id == 0)
1887				hw->phy.sfp_type =
1888						ixgbe_sfp_type_da_act_lmt_core0;
1889			else
1890				hw->phy.sfp_type =
1891						ixgbe_sfp_type_da_act_lmt_core1;
1892		} else {
1893			/* unsupported module type */
1894			hw->phy.type = ixgbe_phy_sfp_unsupported;
1895			return -EOPNOTSUPP;
1896		}
1897	}
1898
1899	if (hw->phy.sfp_type != stored_sfp_type)
1900		hw->phy.sfp_setup_needed = true;
1901
1902	/* Determine if the QSFP+ PHY is dual speed or not. */
1903	hw->phy.multispeed_fiber = false;
1904	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1905	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1906	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1907	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1908		hw->phy.multispeed_fiber = true;
1909
1910	/* Determine PHY vendor for optical modules */
1911	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1912			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1913		status = hw->phy.ops.read_i2c_eeprom(hw,
1914					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1915					&oui_bytes[0]);
1916
1917		if (status != 0)
1918			goto err_read_i2c_eeprom;
1919
1920		status = hw->phy.ops.read_i2c_eeprom(hw,
1921					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1922					&oui_bytes[1]);
1923
1924		if (status != 0)
1925			goto err_read_i2c_eeprom;
1926
1927		status = hw->phy.ops.read_i2c_eeprom(hw,
1928					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1929					&oui_bytes[2]);
1930
1931		if (status != 0)
1932			goto err_read_i2c_eeprom;
1933
1934		vendor_oui =
1935			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1936			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1937			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1938
1939		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1940			hw->phy.type = ixgbe_phy_qsfp_intel;
1941		else
1942			hw->phy.type = ixgbe_phy_qsfp_unknown;
1943
1944		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1945		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1946			/* Make sure we're a supported PHY type */
1947			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1948				return 0;
1949			if (hw->allow_unsupported_sfp) {
1950				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1951				return 0;
1952			}
1953			hw_dbg(hw, "QSFP module not supported\n");
1954			hw->phy.type = ixgbe_phy_sfp_unsupported;
1955			return -EOPNOTSUPP;
1956		}
1957		return 0;
1958	}
1959	return 0;
1960
1961err_read_i2c_eeprom:
1962	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1963	hw->phy.id = 0;
1964	hw->phy.type = ixgbe_phy_unknown;
1965
1966	return -ENOENT;
1967}
1968
1969/**
1970 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1971 *  @hw: pointer to hardware structure
1972 *  @list_offset: offset to the SFP ID list
1973 *  @data_offset: offset to the SFP data block
1974 *
1975 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1976 *  so it returns the offsets to the phy init sequence block.
1977 **/
1978s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1979					u16 *list_offset,
1980					u16 *data_offset)
1981{
1982	u16 sfp_id;
1983	u16 sfp_type = hw->phy.sfp_type;
1984
1985	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1986		return -EOPNOTSUPP;
1987
1988	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1989		return -ENOENT;
1990
1991	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1992	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1993		return -EOPNOTSUPP;
1994
1995	/*
1996	 * Limiting active cables and 1G Phys must be initialized as
1997	 * SR modules
1998	 */
1999	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2000	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2001	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2002	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
2003		sfp_type = ixgbe_sfp_type_srlr_core0;
2004	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2005		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2006		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2007		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
2008		sfp_type = ixgbe_sfp_type_srlr_core1;
2009
2010	/* Read offset to PHY init contents */
2011	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2012		hw_err(hw, "eeprom read at %d failed\n",
2013		       IXGBE_PHY_INIT_OFFSET_NL);
2014		return -EIO;
2015	}
2016
2017	if ((!*list_offset) || (*list_offset == 0xFFFF))
2018		return -EIO;
2019
2020	/* Shift offset to first ID word */
2021	(*list_offset)++;
2022
2023	/*
2024	 * Find the matching SFP ID in the EEPROM
2025	 * and program the init sequence
2026	 */
2027	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2028		goto err_phy;
2029
2030	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2031		if (sfp_id == sfp_type) {
2032			(*list_offset)++;
2033			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2034				goto err_phy;
2035			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2036				hw_dbg(hw, "SFP+ module not supported\n");
2037				return -EOPNOTSUPP;
2038			} else {
2039				break;
2040			}
2041		} else {
2042			(*list_offset) += 2;
2043			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2044				goto err_phy;
2045		}
2046	}
2047
2048	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2049		hw_dbg(hw, "No matching SFP+ module found\n");
2050		return -EOPNOTSUPP;
2051	}
2052
2053	return 0;
2054
2055err_phy:
2056	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2057	return -EIO;
2058}
2059
2060/**
2061 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2062 *  @hw: pointer to hardware structure
2063 *  @byte_offset: EEPROM byte offset to read
2064 *  @eeprom_data: value read
2065 *
2066 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2067 **/
2068s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2069				  u8 *eeprom_data)
2070{
2071	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2072					 IXGBE_I2C_EEPROM_DEV_ADDR,
2073					 eeprom_data);
2074}
2075
2076/**
2077 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2078 *  @hw: pointer to hardware structure
2079 *  @byte_offset: byte offset at address 0xA2
2080 *  @sff8472_data: value read
2081 *
2082 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2083 **/
2084s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2085				   u8 *sff8472_data)
2086{
2087	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2088					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2089					 sff8472_data);
2090}
2091
2092/**
2093 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2094 *  @hw: pointer to hardware structure
2095 *  @byte_offset: EEPROM byte offset to write
2096 *  @eeprom_data: value to write
2097 *
2098 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2099 **/
2100s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2101				   u8 eeprom_data)
2102{
2103	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2104					  IXGBE_I2C_EEPROM_DEV_ADDR,
2105					  eeprom_data);
2106}
2107
2108/**
2109 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2110 * @hw: pointer to hardware structure
2111 * @offset: eeprom offset to be read
2112 * @addr: I2C address to be read
2113 */
2114static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2115{
2116	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2117	    offset == IXGBE_SFF_IDENTIFIER &&
2118	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2119		return true;
2120	return false;
2121}
2122
2123/**
2124 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2125 *  @hw: pointer to hardware structure
2126 *  @byte_offset: byte offset to read
2127 *  @dev_addr: device address
2128 *  @data: value read
2129 *  @lock: true if to take and release semaphore
2130 *
2131 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2132 *  a specified device address.
2133 */
2134static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2135					   u8 dev_addr, u8 *data, bool lock)
2136{
2137	s32 status;
2138	u32 max_retry = 10;
2139	u32 retry = 0;
2140	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2141	bool nack = true;
2142
2143	if (hw->mac.type >= ixgbe_mac_X550)
2144		max_retry = 3;
2145	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2146		max_retry = IXGBE_SFP_DETECT_RETRIES;
2147
2148	*data = 0;
2149
2150	do {
2151		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2152			return -EBUSY;
2153
2154		ixgbe_i2c_start(hw);
2155
2156		/* Device Address and write indication */
2157		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2158		if (status != 0)
2159			goto fail;
2160
2161		status = ixgbe_get_i2c_ack(hw);
2162		if (status != 0)
2163			goto fail;
2164
2165		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2166		if (status != 0)
2167			goto fail;
2168
2169		status = ixgbe_get_i2c_ack(hw);
2170		if (status != 0)
2171			goto fail;
2172
2173		ixgbe_i2c_start(hw);
2174
2175		/* Device Address and read indication */
2176		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2177		if (status != 0)
2178			goto fail;
2179
2180		status = ixgbe_get_i2c_ack(hw);
2181		if (status != 0)
2182			goto fail;
2183
2184		status = ixgbe_clock_in_i2c_byte(hw, data);
2185		if (status != 0)
2186			goto fail;
2187
2188		status = ixgbe_clock_out_i2c_bit(hw, nack);
2189		if (status != 0)
2190			goto fail;
2191
2192		ixgbe_i2c_stop(hw);
2193		if (lock)
2194			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2195		return 0;
2196
2197fail:
2198		ixgbe_i2c_bus_clear(hw);
2199		if (lock) {
2200			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2201			msleep(100);
2202		}
2203		retry++;
2204		if (retry < max_retry)
2205			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2206		else
2207			hw_dbg(hw, "I2C byte read error.\n");
2208
2209	} while (retry < max_retry);
2210
2211	return status;
2212}
2213
2214/**
2215 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2216 *  @hw: pointer to hardware structure
2217 *  @byte_offset: byte offset to read
2218 *  @dev_addr: device address
2219 *  @data: value read
2220 *
2221 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2222 *  a specified device address.
2223 */
2224s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2225				u8 dev_addr, u8 *data)
2226{
2227	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2228					       data, true);
2229}
2230
2231/**
2232 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2233 *  @hw: pointer to hardware structure
2234 *  @byte_offset: byte offset to read
2235 *  @dev_addr: device address
2236 *  @data: value read
2237 *
2238 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2239 *  a specified device address.
2240 */
2241s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2242					 u8 dev_addr, u8 *data)
2243{
2244	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2245					       data, false);
2246}
2247
2248/**
2249 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2250 *  @hw: pointer to hardware structure
2251 *  @byte_offset: byte offset to write
2252 *  @dev_addr: device address
2253 *  @data: value to write
2254 *  @lock: true if to take and release semaphore
2255 *
2256 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2257 *  a specified device address.
2258 */
2259static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2260					    u8 dev_addr, u8 data, bool lock)
2261{
2262	s32 status;
2263	u32 max_retry = 1;
2264	u32 retry = 0;
2265	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2266
2267	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2268		return -EBUSY;
2269
2270	do {
2271		ixgbe_i2c_start(hw);
2272
2273		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2274		if (status != 0)
2275			goto fail;
2276
2277		status = ixgbe_get_i2c_ack(hw);
2278		if (status != 0)
2279			goto fail;
2280
2281		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2282		if (status != 0)
2283			goto fail;
2284
2285		status = ixgbe_get_i2c_ack(hw);
2286		if (status != 0)
2287			goto fail;
2288
2289		status = ixgbe_clock_out_i2c_byte(hw, data);
2290		if (status != 0)
2291			goto fail;
2292
2293		status = ixgbe_get_i2c_ack(hw);
2294		if (status != 0)
2295			goto fail;
2296
2297		ixgbe_i2c_stop(hw);
2298		if (lock)
2299			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2300		return 0;
2301
2302fail:
2303		ixgbe_i2c_bus_clear(hw);
2304		retry++;
2305		if (retry < max_retry)
2306			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2307		else
2308			hw_dbg(hw, "I2C byte write error.\n");
2309	} while (retry < max_retry);
2310
2311	if (lock)
2312		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2313
2314	return status;
2315}
2316
2317/**
2318 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2319 *  @hw: pointer to hardware structure
2320 *  @byte_offset: byte offset to write
2321 *  @dev_addr: device address
2322 *  @data: value to write
2323 *
2324 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2325 *  a specified device address.
2326 */
2327s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2328				 u8 dev_addr, u8 data)
2329{
2330	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2331						data, true);
2332}
2333
2334/**
2335 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2336 *  @hw: pointer to hardware structure
2337 *  @byte_offset: byte offset to write
2338 *  @dev_addr: device address
2339 *  @data: value to write
2340 *
2341 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2342 *  a specified device address.
2343 */
2344s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2345					  u8 dev_addr, u8 data)
2346{
2347	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2348						data, false);
2349}
2350
2351/**
2352 *  ixgbe_i2c_start - Sets I2C start condition
2353 *  @hw: pointer to hardware structure
2354 *
2355 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2356 *  Set bit-bang mode on X550 hardware.
2357 **/
2358static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2359{
2360	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2361
2362	i2cctl |= IXGBE_I2C_BB_EN(hw);
2363
2364	/* Start condition must begin with data and clock high */
2365	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2366	ixgbe_raise_i2c_clk(hw, &i2cctl);
2367
2368	/* Setup time for start condition (4.7us) */
2369	udelay(IXGBE_I2C_T_SU_STA);
2370
2371	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2372
2373	/* Hold time for start condition (4us) */
2374	udelay(IXGBE_I2C_T_HD_STA);
2375
2376	ixgbe_lower_i2c_clk(hw, &i2cctl);
2377
2378	/* Minimum low period of clock is 4.7 us */
2379	udelay(IXGBE_I2C_T_LOW);
2380
2381}
2382
2383/**
2384 *  ixgbe_i2c_stop - Sets I2C stop condition
2385 *  @hw: pointer to hardware structure
2386 *
2387 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2388 *  Disables bit-bang mode and negates data output enable on X550
2389 *  hardware.
2390 **/
2391static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2392{
2393	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2394	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2395	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2396	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2397
2398	/* Stop condition must begin with data low and clock high */
2399	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2400	ixgbe_raise_i2c_clk(hw, &i2cctl);
2401
2402	/* Setup time for stop condition (4us) */
2403	udelay(IXGBE_I2C_T_SU_STO);
2404
2405	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2406
2407	/* bus free time between stop and start (4.7us)*/
2408	udelay(IXGBE_I2C_T_BUF);
2409
2410	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2411		i2cctl &= ~bb_en_bit;
2412		i2cctl |= data_oe_bit | clk_oe_bit;
2413		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2414		IXGBE_WRITE_FLUSH(hw);
2415	}
2416}
2417
2418/**
2419 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2420 *  @hw: pointer to hardware structure
2421 *  @data: data byte to clock in
2422 *
2423 *  Clocks in one byte data via I2C data/clock
2424 **/
2425static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2426{
2427	s32 i;
2428	bool bit = false;
2429
2430	*data = 0;
2431	for (i = 7; i >= 0; i--) {
2432		ixgbe_clock_in_i2c_bit(hw, &bit);
2433		*data |= bit << i;
2434	}
2435
2436	return 0;
2437}
2438
2439/**
2440 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2441 *  @hw: pointer to hardware structure
2442 *  @data: data byte clocked out
2443 *
2444 *  Clocks out one byte data via I2C data/clock
2445 **/
2446static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2447{
2448	s32 status;
2449	s32 i;
2450	u32 i2cctl;
2451	bool bit = false;
2452
2453	for (i = 7; i >= 0; i--) {
2454		bit = (data >> i) & 0x1;
2455		status = ixgbe_clock_out_i2c_bit(hw, bit);
2456
2457		if (status != 0)
2458			break;
2459	}
2460
2461	/* Release SDA line (set high) */
2462	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2463	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2464	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2465	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2466	IXGBE_WRITE_FLUSH(hw);
2467
2468	return status;
2469}
2470
2471/**
2472 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2473 *  @hw: pointer to hardware structure
2474 *
2475 *  Clocks in/out one bit via I2C data/clock
2476 **/
2477static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2478{
2479	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2480	s32 status = 0;
2481	u32 i = 0;
2482	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2483	u32 timeout = 10;
2484	bool ack = true;
2485
2486	if (data_oe_bit) {
2487		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488		i2cctl |= data_oe_bit;
2489		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490		IXGBE_WRITE_FLUSH(hw);
2491	}
2492	ixgbe_raise_i2c_clk(hw, &i2cctl);
2493
2494	/* Minimum high period of clock is 4us */
2495	udelay(IXGBE_I2C_T_HIGH);
2496
2497	/* Poll for ACK.  Note that ACK in I2C spec is
2498	 * transition from 1 to 0 */
2499	for (i = 0; i < timeout; i++) {
2500		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2501		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2502
2503		udelay(1);
2504		if (ack == 0)
2505			break;
2506	}
2507
2508	if (ack == 1) {
2509		hw_dbg(hw, "I2C ack was not received.\n");
2510		status = -EIO;
2511	}
2512
2513	ixgbe_lower_i2c_clk(hw, &i2cctl);
2514
2515	/* Minimum low period of clock is 4.7 us */
2516	udelay(IXGBE_I2C_T_LOW);
2517
2518	return status;
2519}
2520
2521/**
2522 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2523 *  @hw: pointer to hardware structure
2524 *  @data: read data value
2525 *
2526 *  Clocks in one bit via I2C data/clock
2527 **/
2528static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2529{
2530	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2531	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2532
2533	if (data_oe_bit) {
2534		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2535		i2cctl |= data_oe_bit;
2536		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2537		IXGBE_WRITE_FLUSH(hw);
2538	}
2539	ixgbe_raise_i2c_clk(hw, &i2cctl);
2540
2541	/* Minimum high period of clock is 4us */
2542	udelay(IXGBE_I2C_T_HIGH);
2543
2544	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2545	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2546
2547	ixgbe_lower_i2c_clk(hw, &i2cctl);
2548
2549	/* Minimum low period of clock is 4.7 us */
2550	udelay(IXGBE_I2C_T_LOW);
2551
2552	return 0;
2553}
2554
2555/**
2556 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2557 *  @hw: pointer to hardware structure
2558 *  @data: data value to write
2559 *
2560 *  Clocks out one bit via I2C data/clock
2561 **/
2562static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2563{
2564	s32 status;
2565	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2566
2567	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2568	if (status == 0) {
2569		ixgbe_raise_i2c_clk(hw, &i2cctl);
2570
2571		/* Minimum high period of clock is 4us */
2572		udelay(IXGBE_I2C_T_HIGH);
2573
2574		ixgbe_lower_i2c_clk(hw, &i2cctl);
2575
2576		/* Minimum low period of clock is 4.7 us.
2577		 * This also takes care of the data hold time.
2578		 */
2579		udelay(IXGBE_I2C_T_LOW);
2580	} else {
2581		hw_dbg(hw, "I2C data was not set to %X\n", data);
2582		return -EIO;
2583	}
2584
2585	return 0;
2586}
2587/**
2588 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2589 *  @hw: pointer to hardware structure
2590 *  @i2cctl: Current value of I2CCTL register
2591 *
2592 *  Raises the I2C clock line '0'->'1'
2593 *  Negates the I2C clock output enable on X550 hardware.
2594 **/
2595static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2596{
2597	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2598	u32 i = 0;
2599	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2600	u32 i2cctl_r = 0;
2601
2602	if (clk_oe_bit) {
2603		*i2cctl |= clk_oe_bit;
2604		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2605	}
2606
2607	for (i = 0; i < timeout; i++) {
2608		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2609		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2610		IXGBE_WRITE_FLUSH(hw);
2611		/* SCL rise time (1000ns) */
2612		udelay(IXGBE_I2C_T_RISE);
2613
2614		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2615		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2616			break;
2617	}
2618}
2619
2620/**
2621 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2622 *  @hw: pointer to hardware structure
2623 *  @i2cctl: Current value of I2CCTL register
2624 *
2625 *  Lowers the I2C clock line '1'->'0'
2626 *  Asserts the I2C clock output enable on X550 hardware.
2627 **/
2628static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2629{
2630
2631	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2632	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2633
2634	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2635	IXGBE_WRITE_FLUSH(hw);
2636
2637	/* SCL fall time (300ns) */
2638	udelay(IXGBE_I2C_T_FALL);
2639}
2640
2641/**
2642 *  ixgbe_set_i2c_data - Sets the I2C data bit
2643 *  @hw: pointer to hardware structure
2644 *  @i2cctl: Current value of I2CCTL register
2645 *  @data: I2C data value (0 or 1) to set
2646 *
2647 *  Sets the I2C data bit
2648 *  Asserts the I2C data output enable on X550 hardware.
2649 **/
2650static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2651{
2652	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2653
2654	if (data)
2655		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2656	else
2657		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2658	*i2cctl &= ~data_oe_bit;
2659
2660	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2661	IXGBE_WRITE_FLUSH(hw);
2662
2663	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2664	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2665
2666	if (!data)	/* Can't verify data in this case */
2667		return 0;
2668	if (data_oe_bit) {
2669		*i2cctl |= data_oe_bit;
2670		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2671		IXGBE_WRITE_FLUSH(hw);
2672	}
2673
2674	/* Verify data was set correctly */
2675	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2676	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2677		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2678		return -EIO;
2679	}
2680
2681	return 0;
2682}
2683
2684/**
2685 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2686 *  @hw: pointer to hardware structure
2687 *  @i2cctl: Current value of I2CCTL register
2688 *
2689 *  Returns the I2C data bit value
2690 *  Negates the I2C data output enable on X550 hardware.
2691 **/
2692static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2693{
2694	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2695
2696	if (data_oe_bit) {
2697		*i2cctl |= data_oe_bit;
2698		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2699		IXGBE_WRITE_FLUSH(hw);
2700		udelay(IXGBE_I2C_T_FALL);
2701	}
2702
2703	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2704		return true;
2705	return false;
2706}
2707
2708/**
2709 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2710 *  @hw: pointer to hardware structure
2711 *
2712 *  Clears the I2C bus by sending nine clock pulses.
2713 *  Used when data line is stuck low.
2714 **/
2715static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2716{
2717	u32 i2cctl;
2718	u32 i;
2719
2720	ixgbe_i2c_start(hw);
2721	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2722
2723	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2724
2725	for (i = 0; i < 9; i++) {
2726		ixgbe_raise_i2c_clk(hw, &i2cctl);
2727
2728		/* Min high period of clock is 4us */
2729		udelay(IXGBE_I2C_T_HIGH);
2730
2731		ixgbe_lower_i2c_clk(hw, &i2cctl);
2732
2733		/* Min low period of clock is 4.7us*/
2734		udelay(IXGBE_I2C_T_LOW);
2735	}
2736
2737	ixgbe_i2c_start(hw);
2738
2739	/* Put the i2c bus back to default state */
2740	ixgbe_i2c_stop(hw);
2741}
2742
2743/**
2744 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2745 *  @hw: pointer to hardware structure
2746 *
2747 *  Checks if the LASI temp alarm status was triggered due to overtemp
2748 *
2749 *  Return true when an overtemp event detected, otherwise false.
2750 **/
2751bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2752{
2753	u16 phy_data = 0;
2754	u32 status;
2755
2756	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2757		return false;
2758
2759	/* Check that the LASI temp alarm status was triggered */
2760	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2761				      MDIO_MMD_PMAPMD, &phy_data);
2762	if (status)
2763		return false;
 
2764
2765	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2766}
2767
2768/** ixgbe_set_copper_phy_power - Control power for copper phy
2769 *  @hw: pointer to hardware structure
2770 *  @on: true for on, false for off
2771 **/
2772s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2773{
2774	u32 status;
2775	u16 reg;
2776
2777	/* Bail if we don't have copper phy */
2778	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2779		return 0;
2780
2781	if (!on && ixgbe_mng_present(hw))
2782		return 0;
2783
2784	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2785	if (status)
2786		return status;
2787
2788	if (on) {
2789		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2790	} else {
2791		if (ixgbe_check_reset_blocked(hw))
2792			return 0;
2793		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2794	}
2795
2796	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2797	return status;
2798}
v4.10.11
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
 
  31#include <linux/sched.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_phy.h"
  35
  36static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  37static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  38static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  39static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  40static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  41static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  42static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  43static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  44static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  45static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  46static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  47static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  48static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  49static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  50static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  51
  52/**
  53 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  54 *  @hw: pointer to the hardware structure
  55 *  @byte: byte to send
  56 *
  57 *  Returns an error code on error.
  58 **/
  59static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  60{
  61	s32 status;
  62
  63	status = ixgbe_clock_out_i2c_byte(hw, byte);
  64	if (status)
  65		return status;
  66	return ixgbe_get_i2c_ack(hw);
  67}
  68
  69/**
  70 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  71 *  @hw: pointer to the hardware structure
  72 *  @byte: pointer to a u8 to receive the byte
  73 *
  74 *  Returns an error code on error.
  75 **/
  76static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  77{
  78	s32 status;
  79
  80	status = ixgbe_clock_in_i2c_byte(hw, byte);
  81	if (status)
  82		return status;
  83	/* ACK */
  84	return ixgbe_clock_out_i2c_bit(hw, false);
  85}
  86
  87/**
  88 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  89 *  @add1: addend 1
  90 *  @add2: addend 2
  91 *
  92 *  Returns one's complement 8-bit sum.
  93 **/
  94static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  95{
  96	u16 sum = add1 + add2;
  97
  98	sum = (sum & 0xFF) + (sum >> 8);
  99	return sum & 0xFF;
 100}
 101
 102/**
 103 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
 104 *  @hw: pointer to the hardware structure
 105 *  @addr: I2C bus address to read from
 106 *  @reg: I2C device register to read from
 107 *  @val: pointer to location to receive read value
 108 *  @lock: true if to take and release semaphore
 109 *
 110 *  Returns an error code on error.
 111 */
 112s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 113					u16 reg, u16 *val, bool lock)
 114{
 115	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 116	int max_retry = 10;
 117	int retry = 0;
 118	u8 csum_byte;
 119	u8 high_bits;
 120	u8 low_bits;
 121	u8 reg_high;
 122	u8 csum;
 123
 124	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 125	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 126	csum = ~csum;
 127	do {
 128		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 129			return IXGBE_ERR_SWFW_SYNC;
 130		ixgbe_i2c_start(hw);
 131		/* Device Address and write indication */
 132		if (ixgbe_out_i2c_byte_ack(hw, addr))
 133			goto fail;
 134		/* Write bits 14:8 */
 135		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 136			goto fail;
 137		/* Write bits 7:0 */
 138		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 139			goto fail;
 140		/* Write csum */
 141		if (ixgbe_out_i2c_byte_ack(hw, csum))
 142			goto fail;
 143		/* Re-start condition */
 144		ixgbe_i2c_start(hw);
 145		/* Device Address and read indication */
 146		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 147			goto fail;
 148		/* Get upper bits */
 149		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 150			goto fail;
 151		/* Get low bits */
 152		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 153			goto fail;
 154		/* Get csum */
 155		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 156			goto fail;
 157		/* NACK */
 158		if (ixgbe_clock_out_i2c_bit(hw, false))
 159			goto fail;
 160		ixgbe_i2c_stop(hw);
 161		if (lock)
 162			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 163		*val = (high_bits << 8) | low_bits;
 164		return 0;
 165
 166fail:
 167		ixgbe_i2c_bus_clear(hw);
 168		if (lock)
 169			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 170		retry++;
 171		if (retry < max_retry)
 172			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 173		else
 174			hw_dbg(hw, "I2C byte read combined error.\n");
 175	} while (retry < max_retry);
 176
 177	return IXGBE_ERR_I2C;
 178}
 179
 180/**
 181 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 182 *  @hw: pointer to the hardware structure
 183 *  @addr: I2C bus address to write to
 184 *  @reg: I2C device register to write to
 185 *  @val: value to write
 186 *  @lock: true if to take and release semaphore
 187 *
 188 *  Returns an error code on error.
 189 */
 190s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 191					 u16 reg, u16 val, bool lock)
 192{
 193	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 194	int max_retry = 1;
 195	int retry = 0;
 196	u8 reg_high;
 197	u8 csum;
 198
 199	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 200	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 201	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 202	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 203	csum = ~csum;
 204	do {
 205		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 206			return IXGBE_ERR_SWFW_SYNC;
 207		ixgbe_i2c_start(hw);
 208		/* Device Address and write indication */
 209		if (ixgbe_out_i2c_byte_ack(hw, addr))
 210			goto fail;
 211		/* Write bits 14:8 */
 212		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 213			goto fail;
 214		/* Write bits 7:0 */
 215		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 216			goto fail;
 217		/* Write data 15:8 */
 218		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 219			goto fail;
 220		/* Write data 7:0 */
 221		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 222			goto fail;
 223		/* Write csum */
 224		if (ixgbe_out_i2c_byte_ack(hw, csum))
 225			goto fail;
 226		ixgbe_i2c_stop(hw);
 227		if (lock)
 228			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 229		return 0;
 230
 231fail:
 232		ixgbe_i2c_bus_clear(hw);
 233		if (lock)
 234			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 235		retry++;
 236		if (retry < max_retry)
 237			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 238		else
 239			hw_dbg(hw, "I2C byte write combined error.\n");
 240	} while (retry < max_retry);
 241
 242	return IXGBE_ERR_I2C;
 243}
 244
 245/**
 246 *  ixgbe_probe_phy - Probe a single address for a PHY
 247 *  @hw: pointer to hardware structure
 248 *  @phy_addr: PHY address to probe
 249 *
 250 *  Returns true if PHY found
 251 **/
 252static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 253{
 254	u16 ext_ability = 0;
 255
 256	hw->phy.mdio.prtad = phy_addr;
 257	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 258		return false;
 259
 260	if (ixgbe_get_phy_id(hw))
 261		return false;
 262
 263	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 264
 265	if (hw->phy.type == ixgbe_phy_unknown) {
 266		hw->phy.ops.read_reg(hw,
 267				     MDIO_PMA_EXTABLE,
 268				     MDIO_MMD_PMAPMD,
 269				     &ext_ability);
 270		if (ext_ability &
 271		    (MDIO_PMA_EXTABLE_10GBT |
 272		     MDIO_PMA_EXTABLE_1000BT))
 273			hw->phy.type = ixgbe_phy_cu_unknown;
 274		else
 275			hw->phy.type = ixgbe_phy_generic;
 276	}
 277
 278	return true;
 279}
 280
 281/**
 282 *  ixgbe_identify_phy_generic - Get physical layer module
 283 *  @hw: pointer to hardware structure
 284 *
 285 *  Determines the physical layer module found on the current adapter.
 286 **/
 287s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 288{
 
 289	u32 phy_addr;
 290	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 291
 292	if (!hw->phy.phy_semaphore_mask) {
 293		if (hw->bus.lan_id)
 294			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 295		else
 296			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 297	}
 298
 299	if (hw->phy.type != ixgbe_phy_unknown)
 300		return 0;
 301
 302	if (hw->phy.nw_mng_if_sel) {
 303		phy_addr = (hw->phy.nw_mng_if_sel &
 304			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 305			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 306		if (ixgbe_probe_phy(hw, phy_addr))
 307			return 0;
 308		else
 309			return IXGBE_ERR_PHY_ADDR_INVALID;
 310	}
 311
 312	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 313		if (ixgbe_probe_phy(hw, phy_addr)) {
 314			status = 0;
 315			break;
 316		}
 317	}
 318
 319	/* Certain media types do not have a phy so an address will not
 320	 * be found and the code will take this path.  Caller has to
 321	 * decide if it is an error or not.
 322	 */
 323	if (status)
 324		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 325
 326	return status;
 327}
 328
 329/**
 330 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 331 * @hw: pointer to the hardware structure
 332 *
 333 * This function checks the MMNGC.MNG_VETO bit to see if there are
 334 * any constraints on link from manageability.  For MAC's that don't
 335 * have this bit just return false since the link can not be blocked
 336 * via this method.
 337 **/
 338bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 339{
 340	u32 mmngc;
 341
 342	/* If we don't have this bit, it can't be blocking */
 343	if (hw->mac.type == ixgbe_mac_82598EB)
 344		return false;
 345
 346	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 347	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 348		hw_dbg(hw, "MNG_VETO bit detected.\n");
 349		return true;
 350	}
 351
 352	return false;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_id - Get the phy type
 357 *  @hw: pointer to hardware structure
 358 *
 359 **/
 360static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 361{
 362	s32 status;
 363	u16 phy_id_high = 0;
 364	u16 phy_id_low = 0;
 365
 366	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 367				      &phy_id_high);
 368
 369	if (!status) {
 370		hw->phy.id = (u32)(phy_id_high << 16);
 371		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 372					      &phy_id_low);
 373		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 374		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 375	}
 376	return status;
 377}
 378
 379/**
 380 *  ixgbe_get_phy_type_from_id - Get the phy type
 381 *  @hw: pointer to hardware structure
 382 *
 383 **/
 384static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 385{
 386	enum ixgbe_phy_type phy_type;
 387
 388	switch (phy_id) {
 389	case TN1010_PHY_ID:
 390		phy_type = ixgbe_phy_tn;
 391		break;
 392	case X550_PHY_ID2:
 393	case X550_PHY_ID3:
 394	case X540_PHY_ID:
 395		phy_type = ixgbe_phy_aq;
 396		break;
 397	case QT2022_PHY_ID:
 398		phy_type = ixgbe_phy_qt;
 399		break;
 400	case ATH_PHY_ID:
 401		phy_type = ixgbe_phy_nl;
 402		break;
 403	case X557_PHY_ID:
 404	case X557_PHY_ID2:
 405		phy_type = ixgbe_phy_x550em_ext_t;
 406		break;
 
 
 
 407	default:
 408		phy_type = ixgbe_phy_unknown;
 409		break;
 410	}
 411
 412	return phy_type;
 413}
 414
 415/**
 416 *  ixgbe_reset_phy_generic - Performs a PHY reset
 417 *  @hw: pointer to hardware structure
 418 **/
 419s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 420{
 421	u32 i;
 422	u16 ctrl = 0;
 423	s32 status = 0;
 424
 425	if (hw->phy.type == ixgbe_phy_unknown)
 426		status = ixgbe_identify_phy_generic(hw);
 427
 428	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 429		return status;
 430
 431	/* Don't reset PHY if it's shut down due to overtemp. */
 432	if (!hw->phy.reset_if_overtemp &&
 433	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 434		return 0;
 435
 436	/* Blocked by MNG FW so bail */
 437	if (ixgbe_check_reset_blocked(hw))
 438		return 0;
 439
 440	/*
 441	 * Perform soft PHY reset to the PHY_XS.
 442	 * This will cause a soft reset to the PHY
 443	 */
 444	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 445			      MDIO_MMD_PHYXS,
 446			      MDIO_CTRL1_RESET);
 447
 448	/*
 449	 * Poll for reset bit to self-clear indicating reset is complete.
 450	 * Some PHYs could take up to 3 seconds to complete and need about
 451	 * 1.7 usec delay after the reset is complete.
 452	 */
 453	for (i = 0; i < 30; i++) {
 454		msleep(100);
 455		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &ctrl);
 456		if (!(ctrl & MDIO_CTRL1_RESET)) {
 457			udelay(2);
 458			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459		}
 460	}
 461
 462	if (ctrl & MDIO_CTRL1_RESET) {
 463		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 464		return IXGBE_ERR_RESET_FAILED;
 465	}
 466
 467	return 0;
 468}
 469
 470/**
 471 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
 472 *  the SWFW lock
 473 *  @hw: pointer to hardware structure
 474 *  @reg_addr: 32 bit address of PHY register to read
 
 475 *  @phy_data: Pointer to read data from PHY register
 
 
 476 **/
 477s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 478		       u16 *phy_data)
 479{
 480	u32 i, data, command;
 481
 482	/* Setup and write the address cycle command */
 483	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 484		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 485		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 486		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 487
 488	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 489
 490	/* Check every 10 usec to see if the address cycle completed.
 491	 * The MDI Command bit will clear when the operation is
 492	 * complete
 493	 */
 494	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 495		udelay(10);
 496
 497		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 498		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 499				break;
 500	}
 501
 502
 503	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 504		hw_dbg(hw, "PHY address command did not complete.\n");
 505		return IXGBE_ERR_PHY;
 506	}
 507
 508	/* Address cycle complete, setup and write the read
 509	 * command
 510	 */
 511	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 512		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 513		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 514		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 515
 516	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 517
 518	/* Check every 10 usec to see if the address cycle
 519	 * completed. The MDI Command bit will clear when the
 520	 * operation is complete
 521	 */
 522	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 523		udelay(10);
 524
 525		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 526		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 527			break;
 528	}
 529
 530	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 531		hw_dbg(hw, "PHY read command didn't complete\n");
 532		return IXGBE_ERR_PHY;
 533	}
 534
 535	/* Read operation is complete.  Get the data
 536	 * from MSRWD
 537	 */
 538	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 539	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 540	*phy_data = (u16)(data);
 541
 542	return 0;
 543}
 544
 545/**
 546 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 547 *  using the SWFW lock - this function is needed in most cases
 548 *  @hw: pointer to hardware structure
 549 *  @reg_addr: 32 bit address of PHY register to read
 
 550 *  @phy_data: Pointer to read data from PHY register
 551 **/
 552s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 553			       u32 device_type, u16 *phy_data)
 554{
 555	s32 status;
 556	u32 gssr = hw->phy.phy_semaphore_mask;
 557
 558	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 559		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 560						phy_data);
 561		hw->mac.ops.release_swfw_sync(hw, gssr);
 562	} else {
 563		return IXGBE_ERR_SWFW_SYNC;
 564	}
 565
 566	return status;
 567}
 568
 569/**
 570 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 571 *  without SWFW lock
 572 *  @hw: pointer to hardware structure
 573 *  @reg_addr: 32 bit PHY register to write
 574 *  @device_type: 5 bit device type
 575 *  @phy_data: Data to write to the PHY register
 576 **/
 577s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 578				u32 device_type, u16 phy_data)
 579{
 580	u32 i, command;
 581
 582	/* Put the data in the MDI single read and write data register*/
 583	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 584
 585	/* Setup and write the address cycle command */
 586	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 587		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 588		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 589		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 590
 591	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 592
 593	/*
 594	 * Check every 10 usec to see if the address cycle completed.
 595	 * The MDI Command bit will clear when the operation is
 596	 * complete
 597	 */
 598	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 599		udelay(10);
 600
 601		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 602		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 603			break;
 604	}
 605
 606	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 607		hw_dbg(hw, "PHY address cmd didn't complete\n");
 608		return IXGBE_ERR_PHY;
 609	}
 610
 611	/*
 612	 * Address cycle complete, setup and write the write
 613	 * command
 614	 */
 615	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 616		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 617		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 618		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 619
 620	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 621
 622	/* Check every 10 usec to see if the address cycle
 623	 * completed. The MDI Command bit will clear when the
 624	 * operation is complete
 625	 */
 626	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 627		udelay(10);
 628
 629		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 630		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 631			break;
 632	}
 633
 634	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 635		hw_dbg(hw, "PHY write cmd didn't complete\n");
 636		return IXGBE_ERR_PHY;
 637	}
 638
 639	return 0;
 640}
 641
 642/**
 643 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 644 *  using SWFW lock- this function is needed in most cases
 645 *  @hw: pointer to hardware structure
 646 *  @reg_addr: 32 bit PHY register to write
 647 *  @device_type: 5 bit device type
 648 *  @phy_data: Data to write to the PHY register
 649 **/
 650s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 651				u32 device_type, u16 phy_data)
 652{
 653	s32 status;
 654	u32 gssr = hw->phy.phy_semaphore_mask;
 655
 656	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 657		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 658						 phy_data);
 659		hw->mac.ops.release_swfw_sync(hw, gssr);
 660	} else {
 661		return IXGBE_ERR_SWFW_SYNC;
 662	}
 663
 664	return status;
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667/**
 668 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 669 *  @hw: pointer to hardware structure
 670 *
 671 *  Restart autonegotiation and PHY and waits for completion.
 672 **/
 673s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 674{
 675	s32 status = 0;
 676	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 677	bool autoneg = false;
 678	ixgbe_link_speed speed;
 679
 680	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 681
 682	/* Set or unset auto-negotiation 10G advertisement */
 683	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 684
 685	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 686	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 687	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 688		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 689
 690	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 691
 692	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 693			     MDIO_MMD_AN, &autoneg_reg);
 694
 695	if (hw->mac.type == ixgbe_mac_X550) {
 696		/* Set or unset auto-negotiation 5G advertisement */
 697		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 698		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 699		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
 700			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
 701
 702		/* Set or unset auto-negotiation 2.5G advertisement */
 703		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
 704		if ((hw->phy.autoneg_advertised &
 705		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
 706		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
 707			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
 708	}
 709
 710	/* Set or unset auto-negotiation 1G advertisement */
 711	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
 712	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
 713	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
 714		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
 715
 716	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 717			      MDIO_MMD_AN, autoneg_reg);
 718
 719	/* Set or unset auto-negotiation 100M advertisement */
 720	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
 721
 722	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
 723	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
 724	    (speed & IXGBE_LINK_SPEED_100_FULL))
 725		autoneg_reg |= ADVERTISE_100FULL;
 726
 727	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
 728
 729	/* Blocked by MNG FW so don't reset PHY */
 730	if (ixgbe_check_reset_blocked(hw))
 731		return 0;
 732
 733	/* Restart PHY autonegotiation and wait for completion */
 734	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 735			     MDIO_MMD_AN, &autoneg_reg);
 736
 737	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 738
 739	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 740			      MDIO_MMD_AN, autoneg_reg);
 741
 742	return status;
 743}
 744
 745/**
 746 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
 747 *  @hw: pointer to hardware structure
 748 *  @speed: new link speed
 
 749 **/
 750s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
 751				       ixgbe_link_speed speed,
 752				       bool autoneg_wait_to_complete)
 753{
 754
 755	/*
 756	 * Clear autoneg_advertised and set new values based on input link
 757	 * speed.
 758	 */
 759	hw->phy.autoneg_advertised = 0;
 760
 761	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
 762		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
 763
 
 
 
 
 
 
 764	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
 765		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
 766
 767	if (speed & IXGBE_LINK_SPEED_100_FULL)
 768		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
 769
 
 
 
 770	/* Setup link based on the new speed settings */
 771	hw->phy.ops.setup_link(hw);
 
 772
 773	return 0;
 774}
 775
 776/**
 777 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
 778 * @hw: pointer to hardware structure
 779 *
 780 * Determines the supported link capabilities by reading the PHY auto
 781 * negotiation register.
 782 */
 783static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
 784{
 785	u16 speed_ability;
 786	s32 status;
 787
 788	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
 789				      &speed_ability);
 790	if (status)
 791		return status;
 792
 793	if (speed_ability & MDIO_SPEED_10G)
 794		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
 795	if (speed_ability & MDIO_PMA_SPEED_1000)
 796		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
 797	if (speed_ability & MDIO_PMA_SPEED_100)
 798		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
 799
 800	switch (hw->mac.type) {
 801	case ixgbe_mac_X550:
 802		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
 803		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
 804		break;
 805	case ixgbe_mac_X550EM_x:
 806	case ixgbe_mac_x550em_a:
 807		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
 808		break;
 809	default:
 810		break;
 811	}
 812
 813	return 0;
 814}
 815
 816/**
 817 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
 818 * @hw: pointer to hardware structure
 819 * @speed: pointer to link speed
 820 * @autoneg: boolean auto-negotiation value
 821 */
 822s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
 823					       ixgbe_link_speed *speed,
 824					       bool *autoneg)
 825{
 826	s32 status = 0;
 827
 828	*autoneg = true;
 829	if (!hw->phy.speeds_supported)
 830		status = ixgbe_get_copper_speeds_supported(hw);
 831
 832	*speed = hw->phy.speeds_supported;
 833	return status;
 834}
 835
 836/**
 837 *  ixgbe_check_phy_link_tnx - Determine link and speed status
 838 *  @hw: pointer to hardware structure
 
 
 839 *
 840 *  Reads the VS1 register to determine if link is up and the current speed for
 841 *  the PHY.
 842 **/
 843s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
 844			     bool *link_up)
 845{
 846	s32 status;
 847	u32 time_out;
 848	u32 max_time_out = 10;
 849	u16 phy_link = 0;
 850	u16 phy_speed = 0;
 851	u16 phy_data = 0;
 852
 853	/* Initialize speed and link to default case */
 854	*link_up = false;
 855	*speed = IXGBE_LINK_SPEED_10GB_FULL;
 856
 857	/*
 858	 * Check current speed and link status of the PHY register.
 859	 * This is a vendor specific register and may have to
 860	 * be changed for other copper PHYs.
 861	 */
 862	for (time_out = 0; time_out < max_time_out; time_out++) {
 863		udelay(10);
 864		status = hw->phy.ops.read_reg(hw,
 865					      MDIO_STAT1,
 866					      MDIO_MMD_VEND1,
 867					      &phy_data);
 868		phy_link = phy_data &
 869			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
 870		phy_speed = phy_data &
 871			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
 872		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
 873			*link_up = true;
 874			if (phy_speed ==
 875			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
 876				*speed = IXGBE_LINK_SPEED_1GB_FULL;
 877			break;
 878		}
 879	}
 880
 881	return status;
 882}
 883
 884/**
 885 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
 886 *	@hw: pointer to hardware structure
 887 *
 888 *	Restart autonegotiation and PHY and waits for completion.
 889 *      This function always returns success, this is nessary since
 890 *	it is called via a function pointer that could call other
 891 *	functions that could return an error.
 892 **/
 893s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
 894{
 895	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 896	bool autoneg = false;
 897	ixgbe_link_speed speed;
 898
 899	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 900
 901	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 902		/* Set or unset auto-negotiation 10G advertisement */
 903		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 904				     MDIO_MMD_AN,
 905				     &autoneg_reg);
 906
 907		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 908		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 909			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 910
 911		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 912				      MDIO_MMD_AN,
 913				      autoneg_reg);
 914	}
 915
 916	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 917		/* Set or unset auto-negotiation 1G advertisement */
 918		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 919				     MDIO_MMD_AN,
 920				     &autoneg_reg);
 921
 922		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 923		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 924			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 925
 926		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 927				      MDIO_MMD_AN,
 928				      autoneg_reg);
 929	}
 930
 931	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 932		/* Set or unset auto-negotiation 100M advertisement */
 933		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 934				     MDIO_MMD_AN,
 935				     &autoneg_reg);
 936
 937		autoneg_reg &= ~(ADVERTISE_100FULL |
 938				 ADVERTISE_100HALF);
 939		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 940			autoneg_reg |= ADVERTISE_100FULL;
 941
 942		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 943				      MDIO_MMD_AN,
 944				      autoneg_reg);
 945	}
 946
 947	/* Blocked by MNG FW so don't reset PHY */
 948	if (ixgbe_check_reset_blocked(hw))
 949		return 0;
 950
 951	/* Restart PHY autonegotiation and wait for completion */
 952	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 953			     MDIO_MMD_AN, &autoneg_reg);
 954
 955	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 956
 957	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 958			      MDIO_MMD_AN, autoneg_reg);
 959	return 0;
 960}
 961
 962/**
 963 *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
 964 *  @hw: pointer to hardware structure
 965 *  @firmware_version: pointer to the PHY Firmware Version
 966 **/
 967s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
 968				       u16 *firmware_version)
 969{
 970	s32 status;
 971
 972	status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
 973				      MDIO_MMD_VEND1,
 974				      firmware_version);
 975
 976	return status;
 977}
 978
 979/**
 980 *  ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
 981 *  @hw: pointer to hardware structure
 982 *  @firmware_version: pointer to the PHY Firmware Version
 983 **/
 984s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
 985					   u16 *firmware_version)
 986{
 987	s32 status;
 988
 989	status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
 990				      MDIO_MMD_VEND1,
 991				      firmware_version);
 992
 993	return status;
 994}
 995
 996/**
 997 *  ixgbe_reset_phy_nl - Performs a PHY reset
 998 *  @hw: pointer to hardware structure
 999 **/
1000s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1001{
1002	u16 phy_offset, control, eword, edata, block_crc;
1003	bool end_data = false;
1004	u16 list_offset, data_offset;
1005	u16 phy_data = 0;
1006	s32 ret_val;
1007	u32 i;
1008
1009	/* Blocked by MNG FW so bail */
1010	if (ixgbe_check_reset_blocked(hw))
1011		return 0;
1012
1013	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1014
1015	/* reset the PHY and poll for completion */
1016	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1017			      (phy_data | MDIO_CTRL1_RESET));
1018
1019	for (i = 0; i < 100; i++) {
1020		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1021				     &phy_data);
1022		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1023			break;
1024		usleep_range(10000, 20000);
1025	}
1026
1027	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1028		hw_dbg(hw, "PHY reset did not complete.\n");
1029		return IXGBE_ERR_PHY;
1030	}
1031
1032	/* Get init offsets */
1033	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1034						      &data_offset);
1035	if (ret_val)
1036		return ret_val;
1037
1038	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1039	data_offset++;
1040	while (!end_data) {
1041		/*
1042		 * Read control word from PHY init contents offset
1043		 */
1044		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1045		if (ret_val)
1046			goto err_eeprom;
1047		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1048			   IXGBE_CONTROL_SHIFT_NL;
1049		edata = eword & IXGBE_DATA_MASK_NL;
1050		switch (control) {
1051		case IXGBE_DELAY_NL:
1052			data_offset++;
1053			hw_dbg(hw, "DELAY: %d MS\n", edata);
1054			usleep_range(edata * 1000, edata * 2000);
1055			break;
1056		case IXGBE_DATA_NL:
1057			hw_dbg(hw, "DATA:\n");
1058			data_offset++;
1059			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1060						      &phy_offset);
1061			if (ret_val)
1062				goto err_eeprom;
1063			for (i = 0; i < edata; i++) {
1064				ret_val = hw->eeprom.ops.read(hw, data_offset,
1065							      &eword);
1066				if (ret_val)
1067					goto err_eeprom;
1068				hw->phy.ops.write_reg(hw, phy_offset,
1069						      MDIO_MMD_PMAPMD, eword);
1070				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1071				       phy_offset);
1072				data_offset++;
1073				phy_offset++;
1074			}
1075			break;
1076		case IXGBE_CONTROL_NL:
1077			data_offset++;
1078			hw_dbg(hw, "CONTROL:\n");
1079			if (edata == IXGBE_CONTROL_EOL_NL) {
1080				hw_dbg(hw, "EOL\n");
1081				end_data = true;
1082			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1083				hw_dbg(hw, "SOL\n");
1084			} else {
1085				hw_dbg(hw, "Bad control value\n");
1086				return IXGBE_ERR_PHY;
1087			}
1088			break;
1089		default:
1090			hw_dbg(hw, "Bad control type\n");
1091			return IXGBE_ERR_PHY;
1092		}
1093	}
1094
1095	return ret_val;
1096
1097err_eeprom:
1098	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1099	return IXGBE_ERR_PHY;
1100}
1101
1102/**
1103 *  ixgbe_identify_module_generic - Identifies module type
1104 *  @hw: pointer to hardware structure
1105 *
1106 *  Determines HW type and calls appropriate function.
1107 **/
1108s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1109{
1110	switch (hw->mac.ops.get_media_type(hw)) {
1111	case ixgbe_media_type_fiber:
1112		return ixgbe_identify_sfp_module_generic(hw);
1113	case ixgbe_media_type_fiber_qsfp:
1114		return ixgbe_identify_qsfp_module_generic(hw);
1115	default:
1116		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1117		return IXGBE_ERR_SFP_NOT_PRESENT;
1118	}
1119
1120	return IXGBE_ERR_SFP_NOT_PRESENT;
1121}
1122
1123/**
1124 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1125 *  @hw: pointer to hardware structure
1126 *
1127 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1128 **/
1129s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1130{
1131	struct ixgbe_adapter *adapter = hw->back;
1132	s32 status;
1133	u32 vendor_oui = 0;
1134	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1135	u8 identifier = 0;
1136	u8 comp_codes_1g = 0;
1137	u8 comp_codes_10g = 0;
1138	u8 oui_bytes[3] = {0, 0, 0};
1139	u8 cable_tech = 0;
1140	u8 cable_spec = 0;
1141	u16 enforce_sfp = 0;
1142
1143	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1144		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1145		return IXGBE_ERR_SFP_NOT_PRESENT;
1146	}
1147
1148	/* LAN ID is needed for sfp_type determination */
1149	hw->mac.ops.set_lan_id(hw);
1150
1151	status = hw->phy.ops.read_i2c_eeprom(hw,
1152					     IXGBE_SFF_IDENTIFIER,
1153					     &identifier);
1154
1155	if (status)
1156		goto err_read_i2c_eeprom;
1157
1158	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1159		hw->phy.type = ixgbe_phy_sfp_unsupported;
1160		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1161	}
1162	status = hw->phy.ops.read_i2c_eeprom(hw,
1163					     IXGBE_SFF_1GBE_COMP_CODES,
1164					     &comp_codes_1g);
1165
1166	if (status)
1167		goto err_read_i2c_eeprom;
1168
1169	status = hw->phy.ops.read_i2c_eeprom(hw,
1170					     IXGBE_SFF_10GBE_COMP_CODES,
1171					     &comp_codes_10g);
1172
1173	if (status)
1174		goto err_read_i2c_eeprom;
1175	status = hw->phy.ops.read_i2c_eeprom(hw,
1176					     IXGBE_SFF_CABLE_TECHNOLOGY,
1177					     &cable_tech);
1178
1179	if (status)
1180		goto err_read_i2c_eeprom;
1181
1182	 /* ID Module
1183	  * =========
1184	  * 0   SFP_DA_CU
1185	  * 1   SFP_SR
1186	  * 2   SFP_LR
1187	  * 3   SFP_DA_CORE0 - 82599-specific
1188	  * 4   SFP_DA_CORE1 - 82599-specific
1189	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1190	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1191	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1192	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1193	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1194	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1195	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1196	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1197	  */
1198	if (hw->mac.type == ixgbe_mac_82598EB) {
1199		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1200			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1201		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1202			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1203		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1204			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1205		else
1206			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1207	} else {
1208		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1209			if (hw->bus.lan_id == 0)
1210				hw->phy.sfp_type =
1211					     ixgbe_sfp_type_da_cu_core0;
1212			else
1213				hw->phy.sfp_type =
1214					     ixgbe_sfp_type_da_cu_core1;
1215		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1216			hw->phy.ops.read_i2c_eeprom(
1217					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1218					&cable_spec);
1219			if (cable_spec &
1220			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1221				if (hw->bus.lan_id == 0)
1222					hw->phy.sfp_type =
1223					ixgbe_sfp_type_da_act_lmt_core0;
1224				else
1225					hw->phy.sfp_type =
1226					ixgbe_sfp_type_da_act_lmt_core1;
1227			} else {
1228				hw->phy.sfp_type =
1229						ixgbe_sfp_type_unknown;
1230			}
1231		} else if (comp_codes_10g &
1232			   (IXGBE_SFF_10GBASESR_CAPABLE |
1233			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1234			if (hw->bus.lan_id == 0)
1235				hw->phy.sfp_type =
1236					      ixgbe_sfp_type_srlr_core0;
1237			else
1238				hw->phy.sfp_type =
1239					      ixgbe_sfp_type_srlr_core1;
1240		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1241			if (hw->bus.lan_id == 0)
1242				hw->phy.sfp_type =
1243					ixgbe_sfp_type_1g_cu_core0;
1244			else
1245				hw->phy.sfp_type =
1246					ixgbe_sfp_type_1g_cu_core1;
1247		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1248			if (hw->bus.lan_id == 0)
1249				hw->phy.sfp_type =
1250					ixgbe_sfp_type_1g_sx_core0;
1251			else
1252				hw->phy.sfp_type =
1253					ixgbe_sfp_type_1g_sx_core1;
1254		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1255			if (hw->bus.lan_id == 0)
1256				hw->phy.sfp_type =
1257					ixgbe_sfp_type_1g_lx_core0;
1258			else
1259				hw->phy.sfp_type =
1260					ixgbe_sfp_type_1g_lx_core1;
1261		} else {
1262			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1263		}
1264	}
1265
1266	if (hw->phy.sfp_type != stored_sfp_type)
1267		hw->phy.sfp_setup_needed = true;
1268
1269	/* Determine if the SFP+ PHY is dual speed or not. */
1270	hw->phy.multispeed_fiber = false;
1271	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1272	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1273	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1274	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1275		hw->phy.multispeed_fiber = true;
1276
1277	/* Determine PHY vendor */
1278	if (hw->phy.type != ixgbe_phy_nl) {
1279		hw->phy.id = identifier;
1280		status = hw->phy.ops.read_i2c_eeprom(hw,
1281					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1282					    &oui_bytes[0]);
1283
1284		if (status != 0)
1285			goto err_read_i2c_eeprom;
1286
1287		status = hw->phy.ops.read_i2c_eeprom(hw,
1288					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1289					    &oui_bytes[1]);
1290
1291		if (status != 0)
1292			goto err_read_i2c_eeprom;
1293
1294		status = hw->phy.ops.read_i2c_eeprom(hw,
1295					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1296					    &oui_bytes[2]);
1297
1298		if (status != 0)
1299			goto err_read_i2c_eeprom;
1300
1301		vendor_oui =
1302		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1303		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1304		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1305
1306		switch (vendor_oui) {
1307		case IXGBE_SFF_VENDOR_OUI_TYCO:
1308			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1309				hw->phy.type =
1310					    ixgbe_phy_sfp_passive_tyco;
1311			break;
1312		case IXGBE_SFF_VENDOR_OUI_FTL:
1313			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1314				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1315			else
1316				hw->phy.type = ixgbe_phy_sfp_ftl;
1317			break;
1318		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1319			hw->phy.type = ixgbe_phy_sfp_avago;
1320			break;
1321		case IXGBE_SFF_VENDOR_OUI_INTEL:
1322			hw->phy.type = ixgbe_phy_sfp_intel;
1323			break;
1324		default:
1325			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1326				hw->phy.type =
1327					 ixgbe_phy_sfp_passive_unknown;
1328			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1329				hw->phy.type =
1330					ixgbe_phy_sfp_active_unknown;
1331			else
1332				hw->phy.type = ixgbe_phy_sfp_unknown;
1333			break;
1334		}
1335	}
1336
1337	/* Allow any DA cable vendor */
1338	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1339	    IXGBE_SFF_DA_ACTIVE_CABLE))
1340		return 0;
1341
1342	/* Verify supported 1G SFP modules */
1343	if (comp_codes_10g == 0 &&
1344	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1345	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1346	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1347	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1348	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1349	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1350		hw->phy.type = ixgbe_phy_sfp_unsupported;
1351		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1352	}
1353
1354	/* Anything else 82598-based is supported */
1355	if (hw->mac.type == ixgbe_mac_82598EB)
1356		return 0;
1357
1358	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1359	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1360	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1361	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1362	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1363	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1364	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1365	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1366		/* Make sure we're a supported PHY type */
1367		if (hw->phy.type == ixgbe_phy_sfp_intel)
1368			return 0;
1369		if (hw->allow_unsupported_sfp) {
1370			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1371			return 0;
1372		}
1373		hw_dbg(hw, "SFP+ module not supported\n");
1374		hw->phy.type = ixgbe_phy_sfp_unsupported;
1375		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1376	}
1377	return 0;
1378
1379err_read_i2c_eeprom:
1380	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1381	if (hw->phy.type != ixgbe_phy_nl) {
1382		hw->phy.id = 0;
1383		hw->phy.type = ixgbe_phy_unknown;
1384	}
1385	return IXGBE_ERR_SFP_NOT_PRESENT;
1386}
1387
1388/**
1389 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1390 * @hw: pointer to hardware structure
1391 *
1392 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1393 **/
1394static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1395{
1396	struct ixgbe_adapter *adapter = hw->back;
1397	s32 status;
1398	u32 vendor_oui = 0;
1399	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1400	u8 identifier = 0;
1401	u8 comp_codes_1g = 0;
1402	u8 comp_codes_10g = 0;
1403	u8 oui_bytes[3] = {0, 0, 0};
1404	u16 enforce_sfp = 0;
1405	u8 connector = 0;
1406	u8 cable_length = 0;
1407	u8 device_tech = 0;
1408	bool active_cable = false;
1409
1410	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1411		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1412		return IXGBE_ERR_SFP_NOT_PRESENT;
1413	}
1414
1415	/* LAN ID is needed for sfp_type determination */
1416	hw->mac.ops.set_lan_id(hw);
1417
1418	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1419					     &identifier);
1420
1421	if (status != 0)
1422		goto err_read_i2c_eeprom;
1423
1424	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1425		hw->phy.type = ixgbe_phy_sfp_unsupported;
1426		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1427	}
1428
1429	hw->phy.id = identifier;
1430
1431	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1432					     &comp_codes_10g);
1433
1434	if (status != 0)
1435		goto err_read_i2c_eeprom;
1436
1437	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1438					     &comp_codes_1g);
1439
1440	if (status != 0)
1441		goto err_read_i2c_eeprom;
1442
1443	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1444		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1445		if (hw->bus.lan_id == 0)
1446			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1447		else
1448			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1449	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1450				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1451		if (hw->bus.lan_id == 0)
1452			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1453		else
1454			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1455	} else {
1456		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1457			active_cable = true;
1458
1459		if (!active_cable) {
1460			/* check for active DA cables that pre-date
1461			 * SFF-8436 v3.6
1462			 */
1463			hw->phy.ops.read_i2c_eeprom(hw,
1464					IXGBE_SFF_QSFP_CONNECTOR,
1465					&connector);
1466
1467			hw->phy.ops.read_i2c_eeprom(hw,
1468					IXGBE_SFF_QSFP_CABLE_LENGTH,
1469					&cable_length);
1470
1471			hw->phy.ops.read_i2c_eeprom(hw,
1472					IXGBE_SFF_QSFP_DEVICE_TECH,
1473					&device_tech);
1474
1475			if ((connector ==
1476				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1477			    (cable_length > 0) &&
1478			    ((device_tech >> 4) ==
1479				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1480				active_cable = true;
1481		}
1482
1483		if (active_cable) {
1484			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1485			if (hw->bus.lan_id == 0)
1486				hw->phy.sfp_type =
1487						ixgbe_sfp_type_da_act_lmt_core0;
1488			else
1489				hw->phy.sfp_type =
1490						ixgbe_sfp_type_da_act_lmt_core1;
1491		} else {
1492			/* unsupported module type */
1493			hw->phy.type = ixgbe_phy_sfp_unsupported;
1494			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1495		}
1496	}
1497
1498	if (hw->phy.sfp_type != stored_sfp_type)
1499		hw->phy.sfp_setup_needed = true;
1500
1501	/* Determine if the QSFP+ PHY is dual speed or not. */
1502	hw->phy.multispeed_fiber = false;
1503	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1504	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1505	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1506	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1507		hw->phy.multispeed_fiber = true;
1508
1509	/* Determine PHY vendor for optical modules */
1510	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1511			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1512		status = hw->phy.ops.read_i2c_eeprom(hw,
1513					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1514					&oui_bytes[0]);
1515
1516		if (status != 0)
1517			goto err_read_i2c_eeprom;
1518
1519		status = hw->phy.ops.read_i2c_eeprom(hw,
1520					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1521					&oui_bytes[1]);
1522
1523		if (status != 0)
1524			goto err_read_i2c_eeprom;
1525
1526		status = hw->phy.ops.read_i2c_eeprom(hw,
1527					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1528					&oui_bytes[2]);
1529
1530		if (status != 0)
1531			goto err_read_i2c_eeprom;
1532
1533		vendor_oui =
1534			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1535			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1536			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1537
1538		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1539			hw->phy.type = ixgbe_phy_qsfp_intel;
1540		else
1541			hw->phy.type = ixgbe_phy_qsfp_unknown;
1542
1543		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1544		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1545			/* Make sure we're a supported PHY type */
1546			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1547				return 0;
1548			if (hw->allow_unsupported_sfp) {
1549				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1550				return 0;
1551			}
1552			hw_dbg(hw, "QSFP module not supported\n");
1553			hw->phy.type = ixgbe_phy_sfp_unsupported;
1554			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1555		}
1556		return 0;
1557	}
1558	return 0;
1559
1560err_read_i2c_eeprom:
1561	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1562	hw->phy.id = 0;
1563	hw->phy.type = ixgbe_phy_unknown;
1564
1565	return IXGBE_ERR_SFP_NOT_PRESENT;
1566}
1567
1568/**
1569 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1570 *  @hw: pointer to hardware structure
1571 *  @list_offset: offset to the SFP ID list
1572 *  @data_offset: offset to the SFP data block
1573 *
1574 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1575 *  so it returns the offsets to the phy init sequence block.
1576 **/
1577s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1578					u16 *list_offset,
1579					u16 *data_offset)
1580{
1581	u16 sfp_id;
1582	u16 sfp_type = hw->phy.sfp_type;
1583
1584	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1585		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1586
1587	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1588		return IXGBE_ERR_SFP_NOT_PRESENT;
1589
1590	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1591	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1592		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1593
1594	/*
1595	 * Limiting active cables and 1G Phys must be initialized as
1596	 * SR modules
1597	 */
1598	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1599	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1600	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1601	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
1602		sfp_type = ixgbe_sfp_type_srlr_core0;
1603	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1604		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1605		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1606		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1607		sfp_type = ixgbe_sfp_type_srlr_core1;
1608
1609	/* Read offset to PHY init contents */
1610	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1611		hw_err(hw, "eeprom read at %d failed\n",
1612		       IXGBE_PHY_INIT_OFFSET_NL);
1613		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1614	}
1615
1616	if ((!*list_offset) || (*list_offset == 0xFFFF))
1617		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1618
1619	/* Shift offset to first ID word */
1620	(*list_offset)++;
1621
1622	/*
1623	 * Find the matching SFP ID in the EEPROM
1624	 * and program the init sequence
1625	 */
1626	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1627		goto err_phy;
1628
1629	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1630		if (sfp_id == sfp_type) {
1631			(*list_offset)++;
1632			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1633				goto err_phy;
1634			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1635				hw_dbg(hw, "SFP+ module not supported\n");
1636				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1637			} else {
1638				break;
1639			}
1640		} else {
1641			(*list_offset) += 2;
1642			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1643				goto err_phy;
1644		}
1645	}
1646
1647	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1648		hw_dbg(hw, "No matching SFP+ module found\n");
1649		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1650	}
1651
1652	return 0;
1653
1654err_phy:
1655	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1656	return IXGBE_ERR_PHY;
1657}
1658
1659/**
1660 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1661 *  @hw: pointer to hardware structure
1662 *  @byte_offset: EEPROM byte offset to read
1663 *  @eeprom_data: value read
1664 *
1665 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1666 **/
1667s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1668				  u8 *eeprom_data)
1669{
1670	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1671					 IXGBE_I2C_EEPROM_DEV_ADDR,
1672					 eeprom_data);
1673}
1674
1675/**
1676 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1677 *  @hw: pointer to hardware structure
1678 *  @byte_offset: byte offset at address 0xA2
1679 *  @eeprom_data: value read
1680 *
1681 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1682 **/
1683s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1684				   u8 *sff8472_data)
1685{
1686	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1687					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1688					 sff8472_data);
1689}
1690
1691/**
1692 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1693 *  @hw: pointer to hardware structure
1694 *  @byte_offset: EEPROM byte offset to write
1695 *  @eeprom_data: value to write
1696 *
1697 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1698 **/
1699s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1700				   u8 eeprom_data)
1701{
1702	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1703					  IXGBE_I2C_EEPROM_DEV_ADDR,
1704					  eeprom_data);
1705}
1706
1707/**
1708 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1709 * @hw: pointer to hardware structure
1710 * @offset: eeprom offset to be read
1711 * @addr: I2C address to be read
1712 */
1713static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1714{
1715	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1716	    offset == IXGBE_SFF_IDENTIFIER &&
1717	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1718		return true;
1719	return false;
1720}
1721
1722/**
1723 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1724 *  @hw: pointer to hardware structure
1725 *  @byte_offset: byte offset to read
 
1726 *  @data: value read
1727 *  @lock: true if to take and release semaphore
1728 *
1729 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1730 *  a specified device address.
1731 */
1732static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1733					   u8 dev_addr, u8 *data, bool lock)
1734{
1735	s32 status;
1736	u32 max_retry = 10;
1737	u32 retry = 0;
1738	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1739	bool nack = true;
1740
 
 
1741	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
1742		max_retry = IXGBE_SFP_DETECT_RETRIES;
1743
1744	*data = 0;
1745
1746	do {
1747		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1748			return IXGBE_ERR_SWFW_SYNC;
1749
1750		ixgbe_i2c_start(hw);
1751
1752		/* Device Address and write indication */
1753		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1754		if (status != 0)
1755			goto fail;
1756
1757		status = ixgbe_get_i2c_ack(hw);
1758		if (status != 0)
1759			goto fail;
1760
1761		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1762		if (status != 0)
1763			goto fail;
1764
1765		status = ixgbe_get_i2c_ack(hw);
1766		if (status != 0)
1767			goto fail;
1768
1769		ixgbe_i2c_start(hw);
1770
1771		/* Device Address and read indication */
1772		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1773		if (status != 0)
1774			goto fail;
1775
1776		status = ixgbe_get_i2c_ack(hw);
1777		if (status != 0)
1778			goto fail;
1779
1780		status = ixgbe_clock_in_i2c_byte(hw, data);
1781		if (status != 0)
1782			goto fail;
1783
1784		status = ixgbe_clock_out_i2c_bit(hw, nack);
1785		if (status != 0)
1786			goto fail;
1787
1788		ixgbe_i2c_stop(hw);
1789		if (lock)
1790			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1791		return 0;
1792
1793fail:
1794		ixgbe_i2c_bus_clear(hw);
1795		if (lock) {
1796			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1797			msleep(100);
1798		}
1799		retry++;
1800		if (retry < max_retry)
1801			hw_dbg(hw, "I2C byte read error - Retrying.\n");
1802		else
1803			hw_dbg(hw, "I2C byte read error.\n");
1804
1805	} while (retry < max_retry);
1806
1807	return status;
1808}
1809
1810/**
1811 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1812 *  @hw: pointer to hardware structure
1813 *  @byte_offset: byte offset to read
 
1814 *  @data: value read
1815 *
1816 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1817 *  a specified device address.
1818 */
1819s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1820				u8 dev_addr, u8 *data)
1821{
1822	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1823					       data, true);
1824}
1825
1826/**
1827 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
1828 *  @hw: pointer to hardware structure
1829 *  @byte_offset: byte offset to read
 
1830 *  @data: value read
1831 *
1832 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1833 *  a specified device address.
1834 */
1835s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1836					 u8 dev_addr, u8 *data)
1837{
1838	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1839					       data, false);
1840}
1841
1842/**
1843 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
1844 *  @hw: pointer to hardware structure
1845 *  @byte_offset: byte offset to write
 
1846 *  @data: value to write
1847 *  @lock: true if to take and release semaphore
1848 *
1849 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1850 *  a specified device address.
1851 */
1852static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1853					    u8 dev_addr, u8 data, bool lock)
1854{
1855	s32 status;
1856	u32 max_retry = 1;
1857	u32 retry = 0;
1858	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1859
1860	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1861		return IXGBE_ERR_SWFW_SYNC;
1862
1863	do {
1864		ixgbe_i2c_start(hw);
1865
1866		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1867		if (status != 0)
1868			goto fail;
1869
1870		status = ixgbe_get_i2c_ack(hw);
1871		if (status != 0)
1872			goto fail;
1873
1874		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1875		if (status != 0)
1876			goto fail;
1877
1878		status = ixgbe_get_i2c_ack(hw);
1879		if (status != 0)
1880			goto fail;
1881
1882		status = ixgbe_clock_out_i2c_byte(hw, data);
1883		if (status != 0)
1884			goto fail;
1885
1886		status = ixgbe_get_i2c_ack(hw);
1887		if (status != 0)
1888			goto fail;
1889
1890		ixgbe_i2c_stop(hw);
1891		if (lock)
1892			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1893		return 0;
1894
1895fail:
1896		ixgbe_i2c_bus_clear(hw);
1897		retry++;
1898		if (retry < max_retry)
1899			hw_dbg(hw, "I2C byte write error - Retrying.\n");
1900		else
1901			hw_dbg(hw, "I2C byte write error.\n");
1902	} while (retry < max_retry);
1903
1904	if (lock)
1905		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1906
1907	return status;
1908}
1909
1910/**
1911 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1912 *  @hw: pointer to hardware structure
1913 *  @byte_offset: byte offset to write
 
1914 *  @data: value to write
1915 *
1916 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1917 *  a specified device address.
1918 */
1919s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1920				 u8 dev_addr, u8 data)
1921{
1922	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1923						data, true);
1924}
1925
1926/**
1927 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
1928 *  @hw: pointer to hardware structure
1929 *  @byte_offset: byte offset to write
 
1930 *  @data: value to write
1931 *
1932 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1933 *  a specified device address.
1934 */
1935s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1936					  u8 dev_addr, u8 data)
1937{
1938	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1939						data, false);
1940}
1941
1942/**
1943 *  ixgbe_i2c_start - Sets I2C start condition
1944 *  @hw: pointer to hardware structure
1945 *
1946 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
1947 *  Set bit-bang mode on X550 hardware.
1948 **/
1949static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1950{
1951	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1952
1953	i2cctl |= IXGBE_I2C_BB_EN(hw);
1954
1955	/* Start condition must begin with data and clock high */
1956	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1957	ixgbe_raise_i2c_clk(hw, &i2cctl);
1958
1959	/* Setup time for start condition (4.7us) */
1960	udelay(IXGBE_I2C_T_SU_STA);
1961
1962	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1963
1964	/* Hold time for start condition (4us) */
1965	udelay(IXGBE_I2C_T_HD_STA);
1966
1967	ixgbe_lower_i2c_clk(hw, &i2cctl);
1968
1969	/* Minimum low period of clock is 4.7 us */
1970	udelay(IXGBE_I2C_T_LOW);
1971
1972}
1973
1974/**
1975 *  ixgbe_i2c_stop - Sets I2C stop condition
1976 *  @hw: pointer to hardware structure
1977 *
1978 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
1979 *  Disables bit-bang mode and negates data output enable on X550
1980 *  hardware.
1981 **/
1982static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1983{
1984	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1985	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
1986	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
1987	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
1988
1989	/* Stop condition must begin with data low and clock high */
1990	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1991	ixgbe_raise_i2c_clk(hw, &i2cctl);
1992
1993	/* Setup time for stop condition (4us) */
1994	udelay(IXGBE_I2C_T_SU_STO);
1995
1996	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1997
1998	/* bus free time between stop and start (4.7us)*/
1999	udelay(IXGBE_I2C_T_BUF);
2000
2001	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2002		i2cctl &= ~bb_en_bit;
2003		i2cctl |= data_oe_bit | clk_oe_bit;
2004		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2005		IXGBE_WRITE_FLUSH(hw);
2006	}
2007}
2008
2009/**
2010 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2011 *  @hw: pointer to hardware structure
2012 *  @data: data byte to clock in
2013 *
2014 *  Clocks in one byte data via I2C data/clock
2015 **/
2016static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2017{
2018	s32 i;
2019	bool bit = false;
2020
2021	*data = 0;
2022	for (i = 7; i >= 0; i--) {
2023		ixgbe_clock_in_i2c_bit(hw, &bit);
2024		*data |= bit << i;
2025	}
2026
2027	return 0;
2028}
2029
2030/**
2031 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2032 *  @hw: pointer to hardware structure
2033 *  @data: data byte clocked out
2034 *
2035 *  Clocks out one byte data via I2C data/clock
2036 **/
2037static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2038{
2039	s32 status;
2040	s32 i;
2041	u32 i2cctl;
2042	bool bit = false;
2043
2044	for (i = 7; i >= 0; i--) {
2045		bit = (data >> i) & 0x1;
2046		status = ixgbe_clock_out_i2c_bit(hw, bit);
2047
2048		if (status != 0)
2049			break;
2050	}
2051
2052	/* Release SDA line (set high) */
2053	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2054	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2055	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2056	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2057	IXGBE_WRITE_FLUSH(hw);
2058
2059	return status;
2060}
2061
2062/**
2063 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2064 *  @hw: pointer to hardware structure
2065 *
2066 *  Clocks in/out one bit via I2C data/clock
2067 **/
2068static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2069{
2070	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2071	s32 status = 0;
2072	u32 i = 0;
2073	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2074	u32 timeout = 10;
2075	bool ack = true;
2076
2077	if (data_oe_bit) {
2078		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2079		i2cctl |= data_oe_bit;
2080		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2081		IXGBE_WRITE_FLUSH(hw);
2082	}
2083	ixgbe_raise_i2c_clk(hw, &i2cctl);
2084
2085	/* Minimum high period of clock is 4us */
2086	udelay(IXGBE_I2C_T_HIGH);
2087
2088	/* Poll for ACK.  Note that ACK in I2C spec is
2089	 * transition from 1 to 0 */
2090	for (i = 0; i < timeout; i++) {
2091		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2092		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2093
2094		udelay(1);
2095		if (ack == 0)
2096			break;
2097	}
2098
2099	if (ack == 1) {
2100		hw_dbg(hw, "I2C ack was not received.\n");
2101		status = IXGBE_ERR_I2C;
2102	}
2103
2104	ixgbe_lower_i2c_clk(hw, &i2cctl);
2105
2106	/* Minimum low period of clock is 4.7 us */
2107	udelay(IXGBE_I2C_T_LOW);
2108
2109	return status;
2110}
2111
2112/**
2113 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2114 *  @hw: pointer to hardware structure
2115 *  @data: read data value
2116 *
2117 *  Clocks in one bit via I2C data/clock
2118 **/
2119static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2120{
2121	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2122	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2123
2124	if (data_oe_bit) {
2125		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2126		i2cctl |= data_oe_bit;
2127		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2128		IXGBE_WRITE_FLUSH(hw);
2129	}
2130	ixgbe_raise_i2c_clk(hw, &i2cctl);
2131
2132	/* Minimum high period of clock is 4us */
2133	udelay(IXGBE_I2C_T_HIGH);
2134
2135	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2136	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2137
2138	ixgbe_lower_i2c_clk(hw, &i2cctl);
2139
2140	/* Minimum low period of clock is 4.7 us */
2141	udelay(IXGBE_I2C_T_LOW);
2142
2143	return 0;
2144}
2145
2146/**
2147 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2148 *  @hw: pointer to hardware structure
2149 *  @data: data value to write
2150 *
2151 *  Clocks out one bit via I2C data/clock
2152 **/
2153static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2154{
2155	s32 status;
2156	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2157
2158	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2159	if (status == 0) {
2160		ixgbe_raise_i2c_clk(hw, &i2cctl);
2161
2162		/* Minimum high period of clock is 4us */
2163		udelay(IXGBE_I2C_T_HIGH);
2164
2165		ixgbe_lower_i2c_clk(hw, &i2cctl);
2166
2167		/* Minimum low period of clock is 4.7 us.
2168		 * This also takes care of the data hold time.
2169		 */
2170		udelay(IXGBE_I2C_T_LOW);
2171	} else {
2172		hw_dbg(hw, "I2C data was not set to %X\n", data);
2173		return IXGBE_ERR_I2C;
2174	}
2175
2176	return 0;
2177}
2178/**
2179 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2180 *  @hw: pointer to hardware structure
2181 *  @i2cctl: Current value of I2CCTL register
2182 *
2183 *  Raises the I2C clock line '0'->'1'
2184 *  Negates the I2C clock output enable on X550 hardware.
2185 **/
2186static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2187{
2188	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2189	u32 i = 0;
2190	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2191	u32 i2cctl_r = 0;
2192
2193	if (clk_oe_bit) {
2194		*i2cctl |= clk_oe_bit;
2195		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2196	}
2197
2198	for (i = 0; i < timeout; i++) {
2199		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2200		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2201		IXGBE_WRITE_FLUSH(hw);
2202		/* SCL rise time (1000ns) */
2203		udelay(IXGBE_I2C_T_RISE);
2204
2205		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2206		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2207			break;
2208	}
2209}
2210
2211/**
2212 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2213 *  @hw: pointer to hardware structure
2214 *  @i2cctl: Current value of I2CCTL register
2215 *
2216 *  Lowers the I2C clock line '1'->'0'
2217 *  Asserts the I2C clock output enable on X550 hardware.
2218 **/
2219static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2220{
2221
2222	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2223	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2224
2225	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2226	IXGBE_WRITE_FLUSH(hw);
2227
2228	/* SCL fall time (300ns) */
2229	udelay(IXGBE_I2C_T_FALL);
2230}
2231
2232/**
2233 *  ixgbe_set_i2c_data - Sets the I2C data bit
2234 *  @hw: pointer to hardware structure
2235 *  @i2cctl: Current value of I2CCTL register
2236 *  @data: I2C data value (0 or 1) to set
2237 *
2238 *  Sets the I2C data bit
2239 *  Asserts the I2C data output enable on X550 hardware.
2240 **/
2241static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2242{
2243	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2244
2245	if (data)
2246		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2247	else
2248		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2249	*i2cctl &= ~data_oe_bit;
2250
2251	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2252	IXGBE_WRITE_FLUSH(hw);
2253
2254	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2255	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2256
2257	if (!data)	/* Can't verify data in this case */
2258		return 0;
2259	if (data_oe_bit) {
2260		*i2cctl |= data_oe_bit;
2261		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2262		IXGBE_WRITE_FLUSH(hw);
2263	}
2264
2265	/* Verify data was set correctly */
2266	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2267	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2268		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2269		return IXGBE_ERR_I2C;
2270	}
2271
2272	return 0;
2273}
2274
2275/**
2276 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2277 *  @hw: pointer to hardware structure
2278 *  @i2cctl: Current value of I2CCTL register
2279 *
2280 *  Returns the I2C data bit value
2281 *  Negates the I2C data output enable on X550 hardware.
2282 **/
2283static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2284{
2285	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2286
2287	if (data_oe_bit) {
2288		*i2cctl |= data_oe_bit;
2289		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2290		IXGBE_WRITE_FLUSH(hw);
2291		udelay(IXGBE_I2C_T_FALL);
2292	}
2293
2294	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2295		return true;
2296	return false;
2297}
2298
2299/**
2300 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2301 *  @hw: pointer to hardware structure
2302 *
2303 *  Clears the I2C bus by sending nine clock pulses.
2304 *  Used when data line is stuck low.
2305 **/
2306static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2307{
2308	u32 i2cctl;
2309	u32 i;
2310
2311	ixgbe_i2c_start(hw);
2312	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2313
2314	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2315
2316	for (i = 0; i < 9; i++) {
2317		ixgbe_raise_i2c_clk(hw, &i2cctl);
2318
2319		/* Min high period of clock is 4us */
2320		udelay(IXGBE_I2C_T_HIGH);
2321
2322		ixgbe_lower_i2c_clk(hw, &i2cctl);
2323
2324		/* Min low period of clock is 4.7us*/
2325		udelay(IXGBE_I2C_T_LOW);
2326	}
2327
2328	ixgbe_i2c_start(hw);
2329
2330	/* Put the i2c bus back to default state */
2331	ixgbe_i2c_stop(hw);
2332}
2333
2334/**
2335 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2336 *  @hw: pointer to hardware structure
2337 *
2338 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2339 **/
2340s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2341{
2342	u16 phy_data = 0;
 
2343
2344	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2345		return 0;
2346
2347	/* Check that the LASI temp alarm status was triggered */
2348	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2349			     MDIO_MMD_PMAPMD, &phy_data);
2350
2351	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2352		return 0;
2353
2354	return IXGBE_ERR_OVERTEMP;
2355}
2356
2357/** ixgbe_set_copper_phy_power - Control power for copper phy
2358 *  @hw: pointer to hardware structure
2359 *  @on: true for on, false for off
2360 **/
2361s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2362{
2363	u32 status;
2364	u16 reg;
2365
2366	/* Bail if we don't have copper phy */
2367	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2368		return 0;
2369
2370	if (!on && ixgbe_mng_present(hw))
2371		return 0;
2372
2373	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2374	if (status)
2375		return status;
2376
2377	if (on) {
2378		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2379	} else {
2380		if (ixgbe_check_reset_blocked(hw))
2381			return 0;
2382		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2383	}
2384
2385	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2386	return status;
2387}