Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 337	s32 status;
 338	u16 phy_id_high = 0;
 339	u16 phy_id_low = 0;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	s32 status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474		       u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 552	s32 status;
 553	u32 gssr = hw->phy.phy_semaphore_mask;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 575				u32 device_type, u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 650	s32 status;
 651	u32 gssr = hw->phy.phy_semaphore_mask;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static s32 ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	s32 data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 
 
 
 
 
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static s32 ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	s32 data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static s32 ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	s32 err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static s32 ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	s32 err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 
 
 
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static s32 ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static s32 ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static s32 ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static s32 ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static s32 ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static s32 ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static s32 ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static s32 ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
 
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	s32 (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	s32 (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	s32 (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	s32 (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
 
 
 
 
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
1100	s32 status = 0;
1101	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1102	bool autoneg = false;
1103	ixgbe_link_speed speed;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	s32 status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	s32 status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
1282	s32 status;
1283	u32 time_out;
1284	u32 max_time_out = 10;
1285	u16 phy_link = 0;
1286	u16 phy_speed = 0;
1287	u16 phy_data = 0;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	bool end_data = false;
1406	u16 list_offset, data_offset;
1407	u16 phy_data = 0;
1408	s32 ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	struct ixgbe_adapter *adapter = hw->back;
1533	s32 status;
1534	u32 vendor_oui = 0;
1535	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1536	u8 identifier = 0;
1537	u8 comp_codes_1g = 0;
1538	u8 comp_codes_10g = 0;
1539	u8 oui_bytes[3] = {0, 0, 0};
1540	u8 cable_tech = 0;
1541	u8 cable_spec = 0;
1542	u16 enforce_sfp = 0;
1543
1544	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1545		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1546		return -ENOENT;
1547	}
1548
1549	/* LAN ID is needed for sfp_type determination */
1550	hw->mac.ops.set_lan_id(hw);
1551
1552	status = hw->phy.ops.read_i2c_eeprom(hw,
1553					     IXGBE_SFF_IDENTIFIER,
1554					     &identifier);
1555
1556	if (status)
1557		goto err_read_i2c_eeprom;
1558
1559	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1560		hw->phy.type = ixgbe_phy_sfp_unsupported;
1561		return -EOPNOTSUPP;
1562	}
1563	status = hw->phy.ops.read_i2c_eeprom(hw,
1564					     IXGBE_SFF_1GBE_COMP_CODES,
1565					     &comp_codes_1g);
1566
1567	if (status)
1568		goto err_read_i2c_eeprom;
1569
1570	status = hw->phy.ops.read_i2c_eeprom(hw,
1571					     IXGBE_SFF_10GBE_COMP_CODES,
1572					     &comp_codes_10g);
1573
1574	if (status)
1575		goto err_read_i2c_eeprom;
1576	status = hw->phy.ops.read_i2c_eeprom(hw,
1577					     IXGBE_SFF_CABLE_TECHNOLOGY,
1578					     &cable_tech);
1579
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	 /* ID Module
1584	  * =========
1585	  * 0   SFP_DA_CU
1586	  * 1   SFP_SR
1587	  * 2   SFP_LR
1588	  * 3   SFP_DA_CORE0 - 82599-specific
1589	  * 4   SFP_DA_CORE1 - 82599-specific
1590	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1591	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1592	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1593	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1594	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1595	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1596	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1597	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1598	  */
1599	if (hw->mac.type == ixgbe_mac_82598EB) {
1600		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1601			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1602		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1603			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1604		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1605			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1606		else
1607			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1608	} else {
1609		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1610			if (hw->bus.lan_id == 0)
1611				hw->phy.sfp_type =
1612					     ixgbe_sfp_type_da_cu_core0;
1613			else
1614				hw->phy.sfp_type =
1615					     ixgbe_sfp_type_da_cu_core1;
1616		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1617			hw->phy.ops.read_i2c_eeprom(
1618					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1619					&cable_spec);
1620			if (cable_spec &
1621			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1622				if (hw->bus.lan_id == 0)
1623					hw->phy.sfp_type =
1624					ixgbe_sfp_type_da_act_lmt_core0;
1625				else
1626					hw->phy.sfp_type =
1627					ixgbe_sfp_type_da_act_lmt_core1;
1628			} else {
1629				hw->phy.sfp_type =
1630						ixgbe_sfp_type_unknown;
1631			}
1632		} else if (comp_codes_10g &
1633			   (IXGBE_SFF_10GBASESR_CAPABLE |
1634			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1635			if (hw->bus.lan_id == 0)
1636				hw->phy.sfp_type =
1637					      ixgbe_sfp_type_srlr_core0;
1638			else
1639				hw->phy.sfp_type =
1640					      ixgbe_sfp_type_srlr_core1;
1641		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1642			if (hw->bus.lan_id == 0)
1643				hw->phy.sfp_type =
1644					ixgbe_sfp_type_1g_cu_core0;
1645			else
1646				hw->phy.sfp_type =
1647					ixgbe_sfp_type_1g_cu_core1;
1648		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1649			if (hw->bus.lan_id == 0)
1650				hw->phy.sfp_type =
1651					ixgbe_sfp_type_1g_sx_core0;
1652			else
1653				hw->phy.sfp_type =
1654					ixgbe_sfp_type_1g_sx_core1;
1655		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1656			if (hw->bus.lan_id == 0)
1657				hw->phy.sfp_type =
1658					ixgbe_sfp_type_1g_lx_core0;
1659			else
1660				hw->phy.sfp_type =
1661					ixgbe_sfp_type_1g_lx_core1;
1662		} else {
1663			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1664		}
1665	}
1666
1667	if (hw->phy.sfp_type != stored_sfp_type)
1668		hw->phy.sfp_setup_needed = true;
1669
1670	/* Determine if the SFP+ PHY is dual speed or not. */
1671	hw->phy.multispeed_fiber = false;
1672	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1673	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1674	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1675	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1676		hw->phy.multispeed_fiber = true;
1677
1678	/* Determine PHY vendor */
1679	if (hw->phy.type != ixgbe_phy_nl) {
1680		hw->phy.id = identifier;
1681		status = hw->phy.ops.read_i2c_eeprom(hw,
1682					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1683					    &oui_bytes[0]);
1684
1685		if (status != 0)
1686			goto err_read_i2c_eeprom;
1687
1688		status = hw->phy.ops.read_i2c_eeprom(hw,
1689					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1690					    &oui_bytes[1]);
1691
1692		if (status != 0)
1693			goto err_read_i2c_eeprom;
1694
1695		status = hw->phy.ops.read_i2c_eeprom(hw,
1696					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1697					    &oui_bytes[2]);
1698
1699		if (status != 0)
1700			goto err_read_i2c_eeprom;
1701
1702		vendor_oui =
1703		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1704		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1705		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1706
1707		switch (vendor_oui) {
1708		case IXGBE_SFF_VENDOR_OUI_TYCO:
1709			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1710				hw->phy.type =
1711					    ixgbe_phy_sfp_passive_tyco;
1712			break;
1713		case IXGBE_SFF_VENDOR_OUI_FTL:
1714			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1715				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1716			else
1717				hw->phy.type = ixgbe_phy_sfp_ftl;
1718			break;
1719		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1720			hw->phy.type = ixgbe_phy_sfp_avago;
1721			break;
1722		case IXGBE_SFF_VENDOR_OUI_INTEL:
1723			hw->phy.type = ixgbe_phy_sfp_intel;
1724			break;
1725		default:
1726			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1727				hw->phy.type =
1728					 ixgbe_phy_sfp_passive_unknown;
1729			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1730				hw->phy.type =
1731					ixgbe_phy_sfp_active_unknown;
1732			else
1733				hw->phy.type = ixgbe_phy_sfp_unknown;
1734			break;
1735		}
1736	}
1737
1738	/* Allow any DA cable vendor */
1739	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1740	    IXGBE_SFF_DA_ACTIVE_CABLE))
1741		return 0;
1742
1743	/* Verify supported 1G SFP modules */
1744	if (comp_codes_10g == 0 &&
1745	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1746	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1747	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1748	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1749	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1750	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1751		hw->phy.type = ixgbe_phy_sfp_unsupported;
1752		return -EOPNOTSUPP;
1753	}
1754
1755	/* Anything else 82598-based is supported */
1756	if (hw->mac.type == ixgbe_mac_82598EB)
1757		return 0;
1758
1759	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1760	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1761	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1762	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1763	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1767		/* Make sure we're a supported PHY type */
1768		if (hw->phy.type == ixgbe_phy_sfp_intel)
1769			return 0;
1770		if (hw->allow_unsupported_sfp) {
1771			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1772			return 0;
1773		}
1774		hw_dbg(hw, "SFP+ module not supported\n");
1775		hw->phy.type = ixgbe_phy_sfp_unsupported;
1776		return -EOPNOTSUPP;
1777	}
1778	return 0;
1779
1780err_read_i2c_eeprom:
1781	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1782	if (hw->phy.type != ixgbe_phy_nl) {
1783		hw->phy.id = 0;
1784		hw->phy.type = ixgbe_phy_unknown;
1785	}
1786	return -ENOENT;
1787}
1788
1789/**
1790 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1791 * @hw: pointer to hardware structure
1792 *
1793 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1794 **/
1795static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1796{
1797	struct ixgbe_adapter *adapter = hw->back;
1798	s32 status;
1799	u32 vendor_oui = 0;
1800	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1801	u8 identifier = 0;
1802	u8 comp_codes_1g = 0;
1803	u8 comp_codes_10g = 0;
1804	u8 oui_bytes[3] = {0, 0, 0};
1805	u16 enforce_sfp = 0;
1806	u8 connector = 0;
1807	u8 cable_length = 0;
1808	u8 device_tech = 0;
1809	bool active_cable = false;
1810
1811	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1812		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1813		return -ENOENT;
1814	}
1815
1816	/* LAN ID is needed for sfp_type determination */
1817	hw->mac.ops.set_lan_id(hw);
1818
1819	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1820					     &identifier);
1821
1822	if (status != 0)
1823		goto err_read_i2c_eeprom;
1824
1825	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1826		hw->phy.type = ixgbe_phy_sfp_unsupported;
1827		return -EOPNOTSUPP;
1828	}
1829
1830	hw->phy.id = identifier;
1831
1832	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1833					     &comp_codes_10g);
1834
1835	if (status != 0)
1836		goto err_read_i2c_eeprom;
1837
1838	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1839					     &comp_codes_1g);
1840
1841	if (status != 0)
1842		goto err_read_i2c_eeprom;
1843
1844	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1845		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1846		if (hw->bus.lan_id == 0)
1847			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1848		else
1849			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1850	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1851				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1852		if (hw->bus.lan_id == 0)
1853			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1854		else
1855			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1856	} else {
1857		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1858			active_cable = true;
1859
1860		if (!active_cable) {
1861			/* check for active DA cables that pre-date
1862			 * SFF-8436 v3.6
1863			 */
1864			hw->phy.ops.read_i2c_eeprom(hw,
1865					IXGBE_SFF_QSFP_CONNECTOR,
1866					&connector);
1867
1868			hw->phy.ops.read_i2c_eeprom(hw,
1869					IXGBE_SFF_QSFP_CABLE_LENGTH,
1870					&cable_length);
1871
1872			hw->phy.ops.read_i2c_eeprom(hw,
1873					IXGBE_SFF_QSFP_DEVICE_TECH,
1874					&device_tech);
1875
1876			if ((connector ==
1877				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1878			    (cable_length > 0) &&
1879			    ((device_tech >> 4) ==
1880				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1881				active_cable = true;
1882		}
1883
1884		if (active_cable) {
1885			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1886			if (hw->bus.lan_id == 0)
1887				hw->phy.sfp_type =
1888						ixgbe_sfp_type_da_act_lmt_core0;
1889			else
1890				hw->phy.sfp_type =
1891						ixgbe_sfp_type_da_act_lmt_core1;
1892		} else {
1893			/* unsupported module type */
1894			hw->phy.type = ixgbe_phy_sfp_unsupported;
1895			return -EOPNOTSUPP;
1896		}
1897	}
1898
1899	if (hw->phy.sfp_type != stored_sfp_type)
1900		hw->phy.sfp_setup_needed = true;
1901
1902	/* Determine if the QSFP+ PHY is dual speed or not. */
1903	hw->phy.multispeed_fiber = false;
1904	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1905	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1906	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1907	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1908		hw->phy.multispeed_fiber = true;
1909
1910	/* Determine PHY vendor for optical modules */
1911	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1912			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1913		status = hw->phy.ops.read_i2c_eeprom(hw,
1914					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1915					&oui_bytes[0]);
1916
1917		if (status != 0)
1918			goto err_read_i2c_eeprom;
1919
1920		status = hw->phy.ops.read_i2c_eeprom(hw,
1921					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1922					&oui_bytes[1]);
1923
1924		if (status != 0)
1925			goto err_read_i2c_eeprom;
1926
1927		status = hw->phy.ops.read_i2c_eeprom(hw,
1928					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1929					&oui_bytes[2]);
1930
1931		if (status != 0)
1932			goto err_read_i2c_eeprom;
1933
1934		vendor_oui =
1935			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1936			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1937			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1938
1939		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1940			hw->phy.type = ixgbe_phy_qsfp_intel;
1941		else
1942			hw->phy.type = ixgbe_phy_qsfp_unknown;
1943
1944		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1945		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1946			/* Make sure we're a supported PHY type */
1947			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1948				return 0;
1949			if (hw->allow_unsupported_sfp) {
1950				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1951				return 0;
1952			}
1953			hw_dbg(hw, "QSFP module not supported\n");
1954			hw->phy.type = ixgbe_phy_sfp_unsupported;
1955			return -EOPNOTSUPP;
1956		}
1957		return 0;
1958	}
1959	return 0;
1960
1961err_read_i2c_eeprom:
1962	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1963	hw->phy.id = 0;
1964	hw->phy.type = ixgbe_phy_unknown;
1965
1966	return -ENOENT;
1967}
1968
1969/**
1970 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1971 *  @hw: pointer to hardware structure
1972 *  @list_offset: offset to the SFP ID list
1973 *  @data_offset: offset to the SFP data block
1974 *
1975 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1976 *  so it returns the offsets to the phy init sequence block.
1977 **/
1978s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1979					u16 *list_offset,
1980					u16 *data_offset)
1981{
1982	u16 sfp_id;
1983	u16 sfp_type = hw->phy.sfp_type;
1984
1985	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1986		return -EOPNOTSUPP;
1987
1988	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1989		return -ENOENT;
1990
1991	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1992	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1993		return -EOPNOTSUPP;
1994
1995	/*
1996	 * Limiting active cables and 1G Phys must be initialized as
1997	 * SR modules
1998	 */
1999	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2000	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2001	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2002	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
2003		sfp_type = ixgbe_sfp_type_srlr_core0;
2004	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2005		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2006		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2007		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
2008		sfp_type = ixgbe_sfp_type_srlr_core1;
2009
2010	/* Read offset to PHY init contents */
2011	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2012		hw_err(hw, "eeprom read at %d failed\n",
2013		       IXGBE_PHY_INIT_OFFSET_NL);
2014		return -EIO;
2015	}
2016
2017	if ((!*list_offset) || (*list_offset == 0xFFFF))
2018		return -EIO;
2019
2020	/* Shift offset to first ID word */
2021	(*list_offset)++;
2022
2023	/*
2024	 * Find the matching SFP ID in the EEPROM
2025	 * and program the init sequence
2026	 */
2027	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2028		goto err_phy;
2029
2030	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2031		if (sfp_id == sfp_type) {
2032			(*list_offset)++;
2033			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2034				goto err_phy;
2035			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2036				hw_dbg(hw, "SFP+ module not supported\n");
2037				return -EOPNOTSUPP;
2038			} else {
2039				break;
2040			}
2041		} else {
2042			(*list_offset) += 2;
2043			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2044				goto err_phy;
2045		}
2046	}
2047
2048	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2049		hw_dbg(hw, "No matching SFP+ module found\n");
2050		return -EOPNOTSUPP;
2051	}
2052
2053	return 0;
2054
2055err_phy:
2056	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2057	return -EIO;
2058}
2059
2060/**
2061 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2062 *  @hw: pointer to hardware structure
2063 *  @byte_offset: EEPROM byte offset to read
2064 *  @eeprom_data: value read
2065 *
2066 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2067 **/
2068s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2069				  u8 *eeprom_data)
2070{
2071	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2072					 IXGBE_I2C_EEPROM_DEV_ADDR,
2073					 eeprom_data);
2074}
2075
2076/**
2077 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2078 *  @hw: pointer to hardware structure
2079 *  @byte_offset: byte offset at address 0xA2
2080 *  @sff8472_data: value read
2081 *
2082 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2083 **/
2084s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2085				   u8 *sff8472_data)
2086{
2087	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2088					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2089					 sff8472_data);
2090}
2091
2092/**
2093 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2094 *  @hw: pointer to hardware structure
2095 *  @byte_offset: EEPROM byte offset to write
2096 *  @eeprom_data: value to write
2097 *
2098 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2099 **/
2100s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2101				   u8 eeprom_data)
2102{
2103	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2104					  IXGBE_I2C_EEPROM_DEV_ADDR,
2105					  eeprom_data);
2106}
2107
2108/**
2109 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2110 * @hw: pointer to hardware structure
2111 * @offset: eeprom offset to be read
2112 * @addr: I2C address to be read
2113 */
2114static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2115{
2116	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2117	    offset == IXGBE_SFF_IDENTIFIER &&
2118	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2119		return true;
2120	return false;
2121}
2122
2123/**
2124 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2125 *  @hw: pointer to hardware structure
2126 *  @byte_offset: byte offset to read
2127 *  @dev_addr: device address
2128 *  @data: value read
2129 *  @lock: true if to take and release semaphore
2130 *
2131 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2132 *  a specified device address.
2133 */
2134static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2135					   u8 dev_addr, u8 *data, bool lock)
2136{
2137	s32 status;
2138	u32 max_retry = 10;
2139	u32 retry = 0;
2140	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2141	bool nack = true;
2142
2143	if (hw->mac.type >= ixgbe_mac_X550)
2144		max_retry = 3;
2145	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2146		max_retry = IXGBE_SFP_DETECT_RETRIES;
2147
2148	*data = 0;
2149
2150	do {
2151		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2152			return -EBUSY;
2153
2154		ixgbe_i2c_start(hw);
2155
2156		/* Device Address and write indication */
2157		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2158		if (status != 0)
2159			goto fail;
2160
2161		status = ixgbe_get_i2c_ack(hw);
2162		if (status != 0)
2163			goto fail;
2164
2165		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2166		if (status != 0)
2167			goto fail;
2168
2169		status = ixgbe_get_i2c_ack(hw);
2170		if (status != 0)
2171			goto fail;
2172
2173		ixgbe_i2c_start(hw);
2174
2175		/* Device Address and read indication */
2176		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2177		if (status != 0)
2178			goto fail;
2179
2180		status = ixgbe_get_i2c_ack(hw);
2181		if (status != 0)
2182			goto fail;
2183
2184		status = ixgbe_clock_in_i2c_byte(hw, data);
2185		if (status != 0)
2186			goto fail;
2187
2188		status = ixgbe_clock_out_i2c_bit(hw, nack);
2189		if (status != 0)
2190			goto fail;
2191
2192		ixgbe_i2c_stop(hw);
2193		if (lock)
2194			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2195		return 0;
2196
2197fail:
2198		ixgbe_i2c_bus_clear(hw);
2199		if (lock) {
2200			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2201			msleep(100);
2202		}
2203		retry++;
2204		if (retry < max_retry)
2205			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2206		else
2207			hw_dbg(hw, "I2C byte read error.\n");
2208
2209	} while (retry < max_retry);
2210
2211	return status;
2212}
2213
2214/**
2215 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2216 *  @hw: pointer to hardware structure
2217 *  @byte_offset: byte offset to read
2218 *  @dev_addr: device address
2219 *  @data: value read
2220 *
2221 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2222 *  a specified device address.
2223 */
2224s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2225				u8 dev_addr, u8 *data)
2226{
2227	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2228					       data, true);
2229}
2230
2231/**
2232 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2233 *  @hw: pointer to hardware structure
2234 *  @byte_offset: byte offset to read
2235 *  @dev_addr: device address
2236 *  @data: value read
2237 *
2238 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2239 *  a specified device address.
2240 */
2241s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2242					 u8 dev_addr, u8 *data)
2243{
2244	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2245					       data, false);
2246}
2247
2248/**
2249 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2250 *  @hw: pointer to hardware structure
2251 *  @byte_offset: byte offset to write
2252 *  @dev_addr: device address
2253 *  @data: value to write
2254 *  @lock: true if to take and release semaphore
2255 *
2256 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2257 *  a specified device address.
2258 */
2259static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2260					    u8 dev_addr, u8 data, bool lock)
2261{
2262	s32 status;
2263	u32 max_retry = 1;
2264	u32 retry = 0;
2265	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2266
2267	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2268		return -EBUSY;
2269
2270	do {
2271		ixgbe_i2c_start(hw);
2272
2273		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2274		if (status != 0)
2275			goto fail;
2276
2277		status = ixgbe_get_i2c_ack(hw);
2278		if (status != 0)
2279			goto fail;
2280
2281		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2282		if (status != 0)
2283			goto fail;
2284
2285		status = ixgbe_get_i2c_ack(hw);
2286		if (status != 0)
2287			goto fail;
2288
2289		status = ixgbe_clock_out_i2c_byte(hw, data);
2290		if (status != 0)
2291			goto fail;
2292
2293		status = ixgbe_get_i2c_ack(hw);
2294		if (status != 0)
2295			goto fail;
2296
2297		ixgbe_i2c_stop(hw);
2298		if (lock)
2299			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2300		return 0;
2301
2302fail:
2303		ixgbe_i2c_bus_clear(hw);
2304		retry++;
2305		if (retry < max_retry)
2306			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2307		else
2308			hw_dbg(hw, "I2C byte write error.\n");
2309	} while (retry < max_retry);
2310
2311	if (lock)
2312		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2313
2314	return status;
2315}
2316
2317/**
2318 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2319 *  @hw: pointer to hardware structure
2320 *  @byte_offset: byte offset to write
2321 *  @dev_addr: device address
2322 *  @data: value to write
2323 *
2324 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2325 *  a specified device address.
2326 */
2327s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2328				 u8 dev_addr, u8 data)
2329{
2330	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2331						data, true);
2332}
2333
2334/**
2335 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2336 *  @hw: pointer to hardware structure
2337 *  @byte_offset: byte offset to write
2338 *  @dev_addr: device address
2339 *  @data: value to write
2340 *
2341 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2342 *  a specified device address.
2343 */
2344s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2345					  u8 dev_addr, u8 data)
2346{
2347	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2348						data, false);
2349}
2350
2351/**
2352 *  ixgbe_i2c_start - Sets I2C start condition
2353 *  @hw: pointer to hardware structure
2354 *
2355 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2356 *  Set bit-bang mode on X550 hardware.
2357 **/
2358static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2359{
2360	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2361
2362	i2cctl |= IXGBE_I2C_BB_EN(hw);
2363
2364	/* Start condition must begin with data and clock high */
2365	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2366	ixgbe_raise_i2c_clk(hw, &i2cctl);
2367
2368	/* Setup time for start condition (4.7us) */
2369	udelay(IXGBE_I2C_T_SU_STA);
2370
2371	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2372
2373	/* Hold time for start condition (4us) */
2374	udelay(IXGBE_I2C_T_HD_STA);
2375
2376	ixgbe_lower_i2c_clk(hw, &i2cctl);
2377
2378	/* Minimum low period of clock is 4.7 us */
2379	udelay(IXGBE_I2C_T_LOW);
2380
2381}
2382
2383/**
2384 *  ixgbe_i2c_stop - Sets I2C stop condition
2385 *  @hw: pointer to hardware structure
2386 *
2387 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2388 *  Disables bit-bang mode and negates data output enable on X550
2389 *  hardware.
2390 **/
2391static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2392{
2393	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2394	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2395	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2396	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2397
2398	/* Stop condition must begin with data low and clock high */
2399	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2400	ixgbe_raise_i2c_clk(hw, &i2cctl);
2401
2402	/* Setup time for stop condition (4us) */
2403	udelay(IXGBE_I2C_T_SU_STO);
2404
2405	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2406
2407	/* bus free time between stop and start (4.7us)*/
2408	udelay(IXGBE_I2C_T_BUF);
2409
2410	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2411		i2cctl &= ~bb_en_bit;
2412		i2cctl |= data_oe_bit | clk_oe_bit;
2413		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2414		IXGBE_WRITE_FLUSH(hw);
2415	}
2416}
2417
2418/**
2419 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2420 *  @hw: pointer to hardware structure
2421 *  @data: data byte to clock in
2422 *
2423 *  Clocks in one byte data via I2C data/clock
2424 **/
2425static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2426{
2427	s32 i;
2428	bool bit = false;
2429
2430	*data = 0;
2431	for (i = 7; i >= 0; i--) {
2432		ixgbe_clock_in_i2c_bit(hw, &bit);
2433		*data |= bit << i;
2434	}
2435
2436	return 0;
2437}
2438
2439/**
2440 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2441 *  @hw: pointer to hardware structure
2442 *  @data: data byte clocked out
2443 *
2444 *  Clocks out one byte data via I2C data/clock
2445 **/
2446static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2447{
2448	s32 status;
2449	s32 i;
2450	u32 i2cctl;
2451	bool bit = false;
2452
2453	for (i = 7; i >= 0; i--) {
2454		bit = (data >> i) & 0x1;
2455		status = ixgbe_clock_out_i2c_bit(hw, bit);
2456
2457		if (status != 0)
2458			break;
2459	}
2460
2461	/* Release SDA line (set high) */
2462	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2463	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2464	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2465	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2466	IXGBE_WRITE_FLUSH(hw);
2467
2468	return status;
2469}
2470
2471/**
2472 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2473 *  @hw: pointer to hardware structure
2474 *
2475 *  Clocks in/out one bit via I2C data/clock
2476 **/
2477static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2478{
2479	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2480	s32 status = 0;
2481	u32 i = 0;
2482	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2483	u32 timeout = 10;
2484	bool ack = true;
2485
2486	if (data_oe_bit) {
2487		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488		i2cctl |= data_oe_bit;
2489		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490		IXGBE_WRITE_FLUSH(hw);
2491	}
2492	ixgbe_raise_i2c_clk(hw, &i2cctl);
2493
2494	/* Minimum high period of clock is 4us */
2495	udelay(IXGBE_I2C_T_HIGH);
2496
2497	/* Poll for ACK.  Note that ACK in I2C spec is
2498	 * transition from 1 to 0 */
2499	for (i = 0; i < timeout; i++) {
2500		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2501		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2502
2503		udelay(1);
2504		if (ack == 0)
2505			break;
2506	}
2507
2508	if (ack == 1) {
2509		hw_dbg(hw, "I2C ack was not received.\n");
2510		status = -EIO;
2511	}
2512
2513	ixgbe_lower_i2c_clk(hw, &i2cctl);
2514
2515	/* Minimum low period of clock is 4.7 us */
2516	udelay(IXGBE_I2C_T_LOW);
2517
2518	return status;
2519}
2520
2521/**
2522 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2523 *  @hw: pointer to hardware structure
2524 *  @data: read data value
2525 *
2526 *  Clocks in one bit via I2C data/clock
2527 **/
2528static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2529{
2530	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2531	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2532
2533	if (data_oe_bit) {
2534		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2535		i2cctl |= data_oe_bit;
2536		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2537		IXGBE_WRITE_FLUSH(hw);
2538	}
2539	ixgbe_raise_i2c_clk(hw, &i2cctl);
2540
2541	/* Minimum high period of clock is 4us */
2542	udelay(IXGBE_I2C_T_HIGH);
2543
2544	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2545	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2546
2547	ixgbe_lower_i2c_clk(hw, &i2cctl);
2548
2549	/* Minimum low period of clock is 4.7 us */
2550	udelay(IXGBE_I2C_T_LOW);
2551
2552	return 0;
2553}
2554
2555/**
2556 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2557 *  @hw: pointer to hardware structure
2558 *  @data: data value to write
2559 *
2560 *  Clocks out one bit via I2C data/clock
2561 **/
2562static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2563{
2564	s32 status;
2565	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2566
2567	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2568	if (status == 0) {
2569		ixgbe_raise_i2c_clk(hw, &i2cctl);
2570
2571		/* Minimum high period of clock is 4us */
2572		udelay(IXGBE_I2C_T_HIGH);
2573
2574		ixgbe_lower_i2c_clk(hw, &i2cctl);
2575
2576		/* Minimum low period of clock is 4.7 us.
2577		 * This also takes care of the data hold time.
2578		 */
2579		udelay(IXGBE_I2C_T_LOW);
2580	} else {
2581		hw_dbg(hw, "I2C data was not set to %X\n", data);
2582		return -EIO;
2583	}
2584
2585	return 0;
2586}
2587/**
2588 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2589 *  @hw: pointer to hardware structure
2590 *  @i2cctl: Current value of I2CCTL register
2591 *
2592 *  Raises the I2C clock line '0'->'1'
2593 *  Negates the I2C clock output enable on X550 hardware.
2594 **/
2595static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2596{
2597	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2598	u32 i = 0;
2599	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2600	u32 i2cctl_r = 0;
2601
2602	if (clk_oe_bit) {
2603		*i2cctl |= clk_oe_bit;
2604		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2605	}
2606
2607	for (i = 0; i < timeout; i++) {
2608		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2609		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2610		IXGBE_WRITE_FLUSH(hw);
2611		/* SCL rise time (1000ns) */
2612		udelay(IXGBE_I2C_T_RISE);
2613
2614		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2615		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2616			break;
2617	}
2618}
2619
2620/**
2621 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2622 *  @hw: pointer to hardware structure
2623 *  @i2cctl: Current value of I2CCTL register
2624 *
2625 *  Lowers the I2C clock line '1'->'0'
2626 *  Asserts the I2C clock output enable on X550 hardware.
2627 **/
2628static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2629{
2630
2631	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2632	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2633
2634	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2635	IXGBE_WRITE_FLUSH(hw);
2636
2637	/* SCL fall time (300ns) */
2638	udelay(IXGBE_I2C_T_FALL);
2639}
2640
2641/**
2642 *  ixgbe_set_i2c_data - Sets the I2C data bit
2643 *  @hw: pointer to hardware structure
2644 *  @i2cctl: Current value of I2CCTL register
2645 *  @data: I2C data value (0 or 1) to set
2646 *
2647 *  Sets the I2C data bit
2648 *  Asserts the I2C data output enable on X550 hardware.
2649 **/
2650static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2651{
2652	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2653
2654	if (data)
2655		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2656	else
2657		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2658	*i2cctl &= ~data_oe_bit;
2659
2660	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2661	IXGBE_WRITE_FLUSH(hw);
2662
2663	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2664	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2665
2666	if (!data)	/* Can't verify data in this case */
2667		return 0;
2668	if (data_oe_bit) {
2669		*i2cctl |= data_oe_bit;
2670		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2671		IXGBE_WRITE_FLUSH(hw);
2672	}
2673
2674	/* Verify data was set correctly */
2675	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2676	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2677		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2678		return -EIO;
2679	}
2680
2681	return 0;
2682}
2683
2684/**
2685 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2686 *  @hw: pointer to hardware structure
2687 *  @i2cctl: Current value of I2CCTL register
2688 *
2689 *  Returns the I2C data bit value
2690 *  Negates the I2C data output enable on X550 hardware.
2691 **/
2692static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2693{
2694	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2695
2696	if (data_oe_bit) {
2697		*i2cctl |= data_oe_bit;
2698		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2699		IXGBE_WRITE_FLUSH(hw);
2700		udelay(IXGBE_I2C_T_FALL);
2701	}
2702
2703	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2704		return true;
2705	return false;
2706}
2707
2708/**
2709 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2710 *  @hw: pointer to hardware structure
2711 *
2712 *  Clears the I2C bus by sending nine clock pulses.
2713 *  Used when data line is stuck low.
2714 **/
2715static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2716{
2717	u32 i2cctl;
2718	u32 i;
2719
2720	ixgbe_i2c_start(hw);
2721	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2722
2723	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2724
2725	for (i = 0; i < 9; i++) {
2726		ixgbe_raise_i2c_clk(hw, &i2cctl);
2727
2728		/* Min high period of clock is 4us */
2729		udelay(IXGBE_I2C_T_HIGH);
2730
2731		ixgbe_lower_i2c_clk(hw, &i2cctl);
2732
2733		/* Min low period of clock is 4.7us*/
2734		udelay(IXGBE_I2C_T_LOW);
2735	}
2736
2737	ixgbe_i2c_start(hw);
2738
2739	/* Put the i2c bus back to default state */
2740	ixgbe_i2c_stop(hw);
2741}
2742
2743/**
2744 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2745 *  @hw: pointer to hardware structure
2746 *
2747 *  Checks if the LASI temp alarm status was triggered due to overtemp
2748 *
2749 *  Return true when an overtemp event detected, otherwise false.
2750 **/
2751bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2752{
2753	u16 phy_data = 0;
2754	u32 status;
2755
2756	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2757		return false;
2758
2759	/* Check that the LASI temp alarm status was triggered */
2760	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2761				      MDIO_MMD_PMAPMD, &phy_data);
2762	if (status)
2763		return false;
 
2764
2765	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2766}
2767
2768/** ixgbe_set_copper_phy_power - Control power for copper phy
2769 *  @hw: pointer to hardware structure
2770 *  @on: true for on, false for off
2771 **/
2772s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2773{
2774	u32 status;
2775	u16 reg;
2776
2777	/* Bail if we don't have copper phy */
2778	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2779		return 0;
2780
2781	if (!on && ixgbe_mng_present(hw))
2782		return 0;
2783
2784	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2785	if (status)
2786		return status;
2787
2788	if (on) {
2789		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2790	} else {
2791		if (ixgbe_check_reset_blocked(hw))
2792			return 0;
2793		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2794	}
2795
2796	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2797	return status;
2798}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return IXGBE_ERR_SWFW_SYNC;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return IXGBE_ERR_I2C;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return IXGBE_ERR_SWFW_SYNC;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return IXGBE_ERR_I2C;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 
 265	u32 phy_addr;
 266	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = (hw->phy.nw_mng_if_sel &
 280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 282		if (ixgbe_probe_phy(hw, phy_addr))
 283			return 0;
 284		else
 285			return IXGBE_ERR_PHY_ADDR_INVALID;
 286	}
 287
 288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 289		if (ixgbe_probe_phy(hw, phy_addr)) {
 290			status = 0;
 291			break;
 292		}
 293	}
 294
 295	/* Certain media types do not have a phy so an address will not
 296	 * be found and the code will take this path.  Caller has to
 297	 * decide if it is an error or not.
 298	 */
 299	if (status)
 300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 301
 302	return status;
 303}
 304
 305/**
 306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 307 * @hw: pointer to the hardware structure
 308 *
 309 * This function checks the MMNGC.MNG_VETO bit to see if there are
 310 * any constraints on link from manageability.  For MAC's that don't
 311 * have this bit just return false since the link can not be blocked
 312 * via this method.
 313 **/
 314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 315{
 316	u32 mmngc;
 317
 318	/* If we don't have this bit, it can't be blocking */
 319	if (hw->mac.type == ixgbe_mac_82598EB)
 320		return false;
 321
 322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 324		hw_dbg(hw, "MNG_VETO bit detected.\n");
 325		return true;
 326	}
 327
 328	return false;
 329}
 330
 331/**
 332 *  ixgbe_get_phy_id - Get the phy type
 333 *  @hw: pointer to hardware structure
 334 *
 335 **/
 336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 337{
 338	s32 status;
 339	u16 phy_id_high = 0;
 340	u16 phy_id_low = 0;
 341
 342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 343				      &phy_id_high);
 344
 345	if (!status) {
 346		hw->phy.id = (u32)(phy_id_high << 16);
 347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 348					      &phy_id_low);
 349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 351	}
 352	return status;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_type_from_id - Get the phy type
 357 *  @phy_id: hardware phy id
 358 *
 359 **/
 360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 361{
 362	enum ixgbe_phy_type phy_type;
 363
 364	switch (phy_id) {
 365	case TN1010_PHY_ID:
 366		phy_type = ixgbe_phy_tn;
 367		break;
 368	case X550_PHY_ID2:
 369	case X550_PHY_ID3:
 370	case X540_PHY_ID:
 371		phy_type = ixgbe_phy_aq;
 372		break;
 373	case QT2022_PHY_ID:
 374		phy_type = ixgbe_phy_qt;
 375		break;
 376	case ATH_PHY_ID:
 377		phy_type = ixgbe_phy_nl;
 378		break;
 379	case X557_PHY_ID:
 380	case X557_PHY_ID2:
 381		phy_type = ixgbe_phy_x550em_ext_t;
 382		break;
 
 
 
 383	default:
 384		phy_type = ixgbe_phy_unknown;
 385		break;
 386	}
 387
 388	return phy_type;
 389}
 390
 391/**
 392 *  ixgbe_reset_phy_generic - Performs a PHY reset
 393 *  @hw: pointer to hardware structure
 394 **/
 395s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 396{
 397	u32 i;
 398	u16 ctrl = 0;
 399	s32 status = 0;
 400
 401	if (hw->phy.type == ixgbe_phy_unknown)
 402		status = ixgbe_identify_phy_generic(hw);
 403
 404	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 405		return status;
 406
 407	/* Don't reset PHY if it's shut down due to overtemp. */
 408	if (!hw->phy.reset_if_overtemp &&
 409	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 410		return 0;
 411
 412	/* Blocked by MNG FW so bail */
 413	if (ixgbe_check_reset_blocked(hw))
 414		return 0;
 415
 416	/*
 417	 * Perform soft PHY reset to the PHY_XS.
 418	 * This will cause a soft reset to the PHY
 419	 */
 420	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 421			      MDIO_MMD_PHYXS,
 422			      MDIO_CTRL1_RESET);
 423
 424	/*
 425	 * Poll for reset bit to self-clear indicating reset is complete.
 426	 * Some PHYs could take up to 3 seconds to complete and need about
 427	 * 1.7 usec delay after the reset is complete.
 428	 */
 429	for (i = 0; i < 30; i++) {
 430		msleep(100);
 431		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 432			status = hw->phy.ops.read_reg(hw,
 433						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 434						  MDIO_MMD_PMAPMD, &ctrl);
 435			if (status)
 436				return status;
 437
 438			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 439				udelay(2);
 440				break;
 441			}
 442		} else {
 443			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 444						      MDIO_MMD_PHYXS, &ctrl);
 445			if (status)
 446				return status;
 447
 448			if (!(ctrl & MDIO_CTRL1_RESET)) {
 449				udelay(2);
 450				break;
 451			}
 452		}
 453	}
 454
 455	if (ctrl & MDIO_CTRL1_RESET) {
 456		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 457		return IXGBE_ERR_RESET_FAILED;
 458	}
 459
 460	return 0;
 461}
 462
 463/**
 464 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
 465 *  the SWFW lock
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 
 
 470 **/
 471s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 472		       u16 *phy_data)
 473{
 474	u32 i, data, command;
 475
 476	/* Setup and write the address cycle command */
 477	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 478		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 479		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 480		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 481
 482	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 483
 484	/* Check every 10 usec to see if the address cycle completed.
 485	 * The MDI Command bit will clear when the operation is
 486	 * complete
 487	 */
 488	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 489		udelay(10);
 490
 491		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 492		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 493				break;
 494	}
 495
 496
 497	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 498		hw_dbg(hw, "PHY address command did not complete.\n");
 499		return IXGBE_ERR_PHY;
 500	}
 501
 502	/* Address cycle complete, setup and write the read
 503	 * command
 504	 */
 505	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 506		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 507		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 508		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 509
 510	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 511
 512	/* Check every 10 usec to see if the address cycle
 513	 * completed. The MDI Command bit will clear when the
 514	 * operation is complete
 515	 */
 516	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 517		udelay(10);
 518
 519		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 520		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 521			break;
 522	}
 523
 524	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 525		hw_dbg(hw, "PHY read command didn't complete\n");
 526		return IXGBE_ERR_PHY;
 527	}
 528
 529	/* Read operation is complete.  Get the data
 530	 * from MSRWD
 531	 */
 532	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 533	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 534	*phy_data = (u16)(data);
 535
 536	return 0;
 537}
 538
 539/**
 540 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 541 *  using the SWFW lock - this function is needed in most cases
 542 *  @hw: pointer to hardware structure
 543 *  @reg_addr: 32 bit address of PHY register to read
 544 *  @device_type: 5 bit device type
 545 *  @phy_data: Pointer to read data from PHY register
 546 **/
 547s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 548			       u32 device_type, u16 *phy_data)
 549{
 550	s32 status;
 551	u32 gssr = hw->phy.phy_semaphore_mask;
 552
 553	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 554		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 555						phy_data);
 556		hw->mac.ops.release_swfw_sync(hw, gssr);
 557	} else {
 558		return IXGBE_ERR_SWFW_SYNC;
 559	}
 560
 561	return status;
 562}
 563
 564/**
 565 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 566 *  without SWFW lock
 567 *  @hw: pointer to hardware structure
 568 *  @reg_addr: 32 bit PHY register to write
 569 *  @device_type: 5 bit device type
 570 *  @phy_data: Data to write to the PHY register
 571 **/
 572s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 573				u32 device_type, u16 phy_data)
 574{
 575	u32 i, command;
 576
 577	/* Put the data in the MDI single read and write data register*/
 578	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 579
 580	/* Setup and write the address cycle command */
 581	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 582		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 583		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 584		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 585
 586	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 587
 588	/*
 589	 * Check every 10 usec to see if the address cycle completed.
 590	 * The MDI Command bit will clear when the operation is
 591	 * complete
 592	 */
 593	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 594		udelay(10);
 595
 596		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 597		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 598			break;
 599	}
 600
 601	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 602		hw_dbg(hw, "PHY address cmd didn't complete\n");
 603		return IXGBE_ERR_PHY;
 604	}
 605
 606	/*
 607	 * Address cycle complete, setup and write the write
 608	 * command
 609	 */
 610	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 611		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 612		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 613		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 614
 615	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 616
 617	/* Check every 10 usec to see if the address cycle
 618	 * completed. The MDI Command bit will clear when the
 619	 * operation is complete
 620	 */
 621	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 622		udelay(10);
 623
 624		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 625		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 626			break;
 627	}
 628
 629	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 630		hw_dbg(hw, "PHY write cmd didn't complete\n");
 631		return IXGBE_ERR_PHY;
 632	}
 633
 634	return 0;
 635}
 636
 637/**
 638 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 639 *  using SWFW lock- this function is needed in most cases
 640 *  @hw: pointer to hardware structure
 641 *  @reg_addr: 32 bit PHY register to write
 642 *  @device_type: 5 bit device type
 643 *  @phy_data: Data to write to the PHY register
 644 **/
 645s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 646				u32 device_type, u16 phy_data)
 647{
 648	s32 status;
 649	u32 gssr = hw->phy.phy_semaphore_mask;
 650
 651	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 652		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 653						 phy_data);
 654		hw->mac.ops.release_swfw_sync(hw, gssr);
 655	} else {
 656		return IXGBE_ERR_SWFW_SYNC;
 657	}
 658
 659	return status;
 660}
 661
 662#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 663
 664/**
 665 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 666 *  @hw: pointer to hardware structure
 667 *  @cmd: command register value to write
 668 **/
 669static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 670{
 671	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 672
 673	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 674				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 675				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 676}
 677
 678/**
 679 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
 680 *  @hw: pointer to hardware structure
 681 *  @addr: address
 682 *  @regnum: register number
 683 *  @gssr: semaphore flags to acquire
 684 **/
 685static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
 686				      int regnum, u32 gssr)
 687{
 688	u32 hwaddr, cmd;
 689	s32 data;
 690
 691	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 692		return -EBUSY;
 693
 694	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 695	if (regnum & MII_ADDR_C45) {
 696		hwaddr |= regnum & GENMASK(21, 0);
 697		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 698	} else {
 699		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 700		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 701			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 702	}
 703
 704	data = ixgbe_msca_cmd(hw, cmd);
 705	if (data < 0)
 706		goto mii_bus_read_done;
 707
 708	/* For a clause 45 access the address cycle just completed, we still
 709	 * need to do the read command, otherwise just get the data
 710	 */
 711	if (!(regnum & MII_ADDR_C45))
 712		goto do_mii_bus_read;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 715	data = ixgbe_msca_cmd(hw, cmd);
 716	if (data < 0)
 717		goto mii_bus_read_done;
 718
 719do_mii_bus_read:
 720	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 721	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 722
 723mii_bus_read_done:
 724	hw->mac.ops.release_swfw_sync(hw, gssr);
 725	return data;
 726}
 727
 728/**
 729 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
 730 *  @hw: pointer to hardware structure
 731 *  @addr: address
 732 *  @regnum: register number
 733 *  @val: value to write
 734 *  @gssr: semaphore flags to acquire
 735 **/
 736static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
 737				       int regnum, u16 val, u32 gssr)
 738{
 739	u32 hwaddr, cmd;
 740	s32 err;
 741
 742	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 743		return -EBUSY;
 744
 745	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 746
 747	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 748	if (regnum & MII_ADDR_C45) {
 749		hwaddr |= regnum & GENMASK(21, 0);
 750		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 751	} else {
 752		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 753		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 754			IXGBE_MSCA_MDI_COMMAND;
 755	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757	/* For clause 45 this is an address cycle, for clause 22 this is the
 758	 * entire transaction
 759	 */
 760	err = ixgbe_msca_cmd(hw, cmd);
 761	if (err < 0 || !(regnum & MII_ADDR_C45))
 762		goto mii_bus_write_done;
 763
 764	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 765	err = ixgbe_msca_cmd(hw, cmd);
 766
 767mii_bus_write_done:
 768	hw->mac.ops.release_swfw_sync(hw, gssr);
 769	return err;
 770}
 771
 772/**
 773 *  ixgbe_mii_bus_read - Read a clause 22/45 register
 774 *  @hw: pointer to hardware structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775 *  @addr: address
 776 *  @regnum: register number
 
 777 **/
 778static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
 
 779{
 780	struct ixgbe_adapter *adapter = bus->priv;
 781	struct ixgbe_hw *hw = &adapter->hw;
 782	u32 gssr = hw->phy.phy_semaphore_mask;
 783
 784	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 785}
 786
 787/**
 788 *  ixgbe_mii_bus_write - Write a clause 22/45 register
 789 *  @hw: pointer to hardware structure
 790 *  @addr: address
 
 791 *  @regnum: register number
 792 *  @val: value to write
 793 **/
 794static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
 795			       u16 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 797	struct ixgbe_adapter *adapter = bus->priv;
 798	struct ixgbe_hw *hw = &adapter->hw;
 799	u32 gssr = hw->phy.phy_semaphore_mask;
 800
 801	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 802}
 803
 804/**
 805 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
 806 *  @hw: pointer to hardware structure
 807 *  @addr: address
 808 *  @regnum: register number
 
 809 **/
 810static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
 811				       int regnum)
 812{
 813	struct ixgbe_adapter *adapter = bus->priv;
 814	struct ixgbe_hw *hw = &adapter->hw;
 815	u32 gssr = hw->phy.phy_semaphore_mask;
 816
 817	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 818	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 819}
 820
 821/**
 822 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
 823 *  @hw: pointer to hardware structure
 824 *  @addr: address
 
 825 *  @regnum: register number
 826 *  @val: value to write
 827 **/
 828static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
 829					int regnum, u16 val)
 830{
 831	struct ixgbe_adapter *adapter = bus->priv;
 832	struct ixgbe_hw *hw = &adapter->hw;
 833	u32 gssr = hw->phy.phy_semaphore_mask;
 834
 835	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 836	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 837}
 838
 839/**
 840 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 841 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 842 *
 843 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 844 * on domain 0, bus 0, devfn = 'devfn'
 845 **/
 846static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 847{
 848	struct pci_dev *rp_pdev;
 849	int bus;
 850
 851	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 852	if (rp_pdev && rp_pdev->subordinate) {
 853		bus = rp_pdev->subordinate->number;
 
 854		return pci_get_domain_bus_and_slot(0, bus, 0);
 855	}
 856
 
 857	return NULL;
 858}
 859
 860/**
 861 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 862 * @hw: pointer to hardware structure
 863 *
 864 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 865 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 866 * but we only want to register one MDIO bus.
 867 **/
 868static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 869{
 870	struct ixgbe_adapter *adapter = hw->back;
 871	struct pci_dev *pdev = adapter->pdev;
 872	struct pci_dev *func0_pdev;
 
 873
 874	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 875	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 876	 * It's not valid for function 0 to be disabled and function 1 is up,
 877	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
 878	 * of those two root ports
 879	 */
 880	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
 881	if (func0_pdev) {
 882		if (func0_pdev == pdev)
 883			return true;
 884		else
 885			return false;
 886	}
 887	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
 888	if (func0_pdev == pdev)
 889		return true;
 890
 891	return false;
 
 
 892}
 893
 894/**
 895 * ixgbe_mii_bus_init - mii_bus structure setup
 896 * @hw: pointer to hardware structure
 897 *
 898 * Returns 0 on success, negative on failure
 899 *
 900 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
 901 **/
 902s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
 903{
 
 
 
 
 
 904	struct ixgbe_adapter *adapter = hw->back;
 905	struct pci_dev *pdev = adapter->pdev;
 906	struct device *dev = &adapter->netdev->dev;
 907	struct mii_bus *bus;
 908
 909	bus = devm_mdiobus_alloc(dev);
 910	if (!bus)
 911		return -ENOMEM;
 912
 913	switch (hw->device_id) {
 914	/* C3000 SoCs */
 915	case IXGBE_DEV_ID_X550EM_A_KR:
 916	case IXGBE_DEV_ID_X550EM_A_KR_L:
 917	case IXGBE_DEV_ID_X550EM_A_SFP_N:
 918	case IXGBE_DEV_ID_X550EM_A_SGMII:
 919	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
 920	case IXGBE_DEV_ID_X550EM_A_10G_T:
 921	case IXGBE_DEV_ID_X550EM_A_SFP:
 922	case IXGBE_DEV_ID_X550EM_A_1G_T:
 923	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 924		if (!ixgbe_x550em_a_has_mii(hw))
 925			return -ENODEV;
 926		bus->read = &ixgbe_x550em_a_mii_bus_read;
 927		bus->write = &ixgbe_x550em_a_mii_bus_write;
 
 
 928		break;
 929	default:
 930		bus->read = &ixgbe_mii_bus_read;
 931		bus->write = &ixgbe_mii_bus_write;
 
 
 932		break;
 933	}
 934
 
 
 
 
 
 
 
 
 
 935	/* Use the position of the device in the PCI hierarchy as the id */
 936	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
 937		 pci_name(pdev));
 938
 939	bus->name = "ixgbe-mdio";
 940	bus->priv = adapter;
 941	bus->parent = dev;
 942	bus->phy_mask = GENMASK(31, 0);
 943
 944	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
 945	 * unfortunately that causes some clause 22 frames to be sent with
 946	 * clause 45 addressing.  We don't want that.
 947	 */
 948	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
 949
 950	adapter->mii_bus = bus;
 951	return mdiobus_register(bus);
 952}
 953
 954/**
 955 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 956 *  @hw: pointer to hardware structure
 957 *
 958 *  Restart autonegotiation and PHY and waits for completion.
 959 **/
 960s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 961{
 962	s32 status = 0;
 963	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 964	bool autoneg = false;
 965	ixgbe_link_speed speed;
 966
 967	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 968
 969	/* Set or unset auto-negotiation 10G advertisement */
 970	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 971
 972	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 973	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 974	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 975		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 976
 977	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 978
 979	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 980			     MDIO_MMD_AN, &autoneg_reg);
 981
 982	if (hw->mac.type == ixgbe_mac_X550) {
 983		/* Set or unset auto-negotiation 5G advertisement */
 984		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 985		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 986		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
 987			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
 988
 989		/* Set or unset auto-negotiation 2.5G advertisement */
 990		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
 991		if ((hw->phy.autoneg_advertised &
 992		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
 993		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
 994			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
 995	}
 996
 997	/* Set or unset auto-negotiation 1G advertisement */
 998	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
 999	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1000	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1001		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1002
1003	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1004			      MDIO_MMD_AN, autoneg_reg);
1005
1006	/* Set or unset auto-negotiation 100M advertisement */
1007	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1008
1009	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1010	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1011	    (speed & IXGBE_LINK_SPEED_100_FULL))
1012		autoneg_reg |= ADVERTISE_100FULL;
1013
1014	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1015
1016	/* Blocked by MNG FW so don't reset PHY */
1017	if (ixgbe_check_reset_blocked(hw))
1018		return 0;
1019
1020	/* Restart PHY autonegotiation and wait for completion */
1021	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1022			     MDIO_MMD_AN, &autoneg_reg);
1023
1024	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1025
1026	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1027			      MDIO_MMD_AN, autoneg_reg);
1028
1029	return status;
1030}
1031
1032/**
1033 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1034 *  @hw: pointer to hardware structure
1035 *  @speed: new link speed
1036 *  @autoneg_wait_to_complete: unused
1037 **/
1038s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1039				       ixgbe_link_speed speed,
1040				       bool autoneg_wait_to_complete)
1041{
1042	/* Clear autoneg_advertised and set new values based on input link
1043	 * speed.
1044	 */
1045	hw->phy.autoneg_advertised = 0;
1046
1047	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1048		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1049
1050	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1051		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1052
1053	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1054		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1055
1056	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1057		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1058
1059	if (speed & IXGBE_LINK_SPEED_100_FULL)
1060		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1061
1062	if (speed & IXGBE_LINK_SPEED_10_FULL)
1063		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1064
1065	/* Setup link based on the new speed settings */
1066	if (hw->phy.ops.setup_link)
1067		hw->phy.ops.setup_link(hw);
1068
1069	return 0;
1070}
1071
1072/**
1073 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1074 * @hw: pointer to hardware structure
1075 *
1076 * Determines the supported link capabilities by reading the PHY auto
1077 * negotiation register.
1078 */
1079static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1080{
1081	u16 speed_ability;
1082	s32 status;
1083
1084	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1085				      &speed_ability);
1086	if (status)
1087		return status;
1088
1089	if (speed_ability & MDIO_SPEED_10G)
1090		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1091	if (speed_ability & MDIO_PMA_SPEED_1000)
1092		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1093	if (speed_ability & MDIO_PMA_SPEED_100)
1094		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1095
1096	switch (hw->mac.type) {
1097	case ixgbe_mac_X550:
1098		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1099		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1100		break;
1101	case ixgbe_mac_X550EM_x:
1102	case ixgbe_mac_x550em_a:
1103		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1104		break;
1105	default:
1106		break;
1107	}
1108
1109	return 0;
1110}
1111
1112/**
1113 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1114 * @hw: pointer to hardware structure
1115 * @speed: pointer to link speed
1116 * @autoneg: boolean auto-negotiation value
1117 */
1118s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1119					       ixgbe_link_speed *speed,
1120					       bool *autoneg)
1121{
1122	s32 status = 0;
1123
1124	*autoneg = true;
1125	if (!hw->phy.speeds_supported)
1126		status = ixgbe_get_copper_speeds_supported(hw);
1127
1128	*speed = hw->phy.speeds_supported;
1129	return status;
1130}
1131
1132/**
1133 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1134 *  @hw: pointer to hardware structure
1135 *  @speed: link speed
1136 *  @link_up: status of link
1137 *
1138 *  Reads the VS1 register to determine if link is up and the current speed for
1139 *  the PHY.
1140 **/
1141s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1142			     bool *link_up)
1143{
1144	s32 status;
1145	u32 time_out;
1146	u32 max_time_out = 10;
1147	u16 phy_link = 0;
1148	u16 phy_speed = 0;
1149	u16 phy_data = 0;
1150
1151	/* Initialize speed and link to default case */
1152	*link_up = false;
1153	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1154
1155	/*
1156	 * Check current speed and link status of the PHY register.
1157	 * This is a vendor specific register and may have to
1158	 * be changed for other copper PHYs.
1159	 */
1160	for (time_out = 0; time_out < max_time_out; time_out++) {
1161		udelay(10);
1162		status = hw->phy.ops.read_reg(hw,
1163					      MDIO_STAT1,
1164					      MDIO_MMD_VEND1,
1165					      &phy_data);
1166		phy_link = phy_data &
1167			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1168		phy_speed = phy_data &
1169			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1170		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1171			*link_up = true;
1172			if (phy_speed ==
1173			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1174				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1175			break;
1176		}
1177	}
1178
1179	return status;
1180}
1181
1182/**
1183 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1184 *	@hw: pointer to hardware structure
1185 *
1186 *	Restart autonegotiation and PHY and waits for completion.
1187 *      This function always returns success, this is nessary since
1188 *	it is called via a function pointer that could call other
1189 *	functions that could return an error.
1190 **/
1191s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1192{
1193	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1194	bool autoneg = false;
1195	ixgbe_link_speed speed;
1196
1197	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1198
1199	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1200		/* Set or unset auto-negotiation 10G advertisement */
1201		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1202				     MDIO_MMD_AN,
1203				     &autoneg_reg);
1204
1205		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1206		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1207			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1208
1209		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1210				      MDIO_MMD_AN,
1211				      autoneg_reg);
1212	}
1213
1214	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1215		/* Set or unset auto-negotiation 1G advertisement */
1216		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1217				     MDIO_MMD_AN,
1218				     &autoneg_reg);
1219
1220		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1221		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1222			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1223
1224		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1225				      MDIO_MMD_AN,
1226				      autoneg_reg);
1227	}
1228
1229	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1230		/* Set or unset auto-negotiation 100M advertisement */
1231		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1232				     MDIO_MMD_AN,
1233				     &autoneg_reg);
1234
1235		autoneg_reg &= ~(ADVERTISE_100FULL |
1236				 ADVERTISE_100HALF);
1237		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1238			autoneg_reg |= ADVERTISE_100FULL;
1239
1240		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1241				      MDIO_MMD_AN,
1242				      autoneg_reg);
1243	}
1244
1245	/* Blocked by MNG FW so don't reset PHY */
1246	if (ixgbe_check_reset_blocked(hw))
1247		return 0;
1248
1249	/* Restart PHY autonegotiation and wait for completion */
1250	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1251			     MDIO_MMD_AN, &autoneg_reg);
1252
1253	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1254
1255	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1256			      MDIO_MMD_AN, autoneg_reg);
1257	return 0;
1258}
1259
1260/**
1261 *  ixgbe_reset_phy_nl - Performs a PHY reset
1262 *  @hw: pointer to hardware structure
1263 **/
1264s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1265{
1266	u16 phy_offset, control, eword, edata, block_crc;
1267	bool end_data = false;
1268	u16 list_offset, data_offset;
1269	u16 phy_data = 0;
1270	s32 ret_val;
1271	u32 i;
1272
1273	/* Blocked by MNG FW so bail */
1274	if (ixgbe_check_reset_blocked(hw))
1275		return 0;
1276
1277	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1278
1279	/* reset the PHY and poll for completion */
1280	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1281			      (phy_data | MDIO_CTRL1_RESET));
1282
1283	for (i = 0; i < 100; i++) {
1284		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1285				     &phy_data);
1286		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1287			break;
1288		usleep_range(10000, 20000);
1289	}
1290
1291	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1292		hw_dbg(hw, "PHY reset did not complete.\n");
1293		return IXGBE_ERR_PHY;
1294	}
1295
1296	/* Get init offsets */
1297	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1298						      &data_offset);
1299	if (ret_val)
1300		return ret_val;
1301
1302	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1303	data_offset++;
1304	while (!end_data) {
1305		/*
1306		 * Read control word from PHY init contents offset
1307		 */
1308		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1309		if (ret_val)
1310			goto err_eeprom;
1311		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1312			   IXGBE_CONTROL_SHIFT_NL;
1313		edata = eword & IXGBE_DATA_MASK_NL;
1314		switch (control) {
1315		case IXGBE_DELAY_NL:
1316			data_offset++;
1317			hw_dbg(hw, "DELAY: %d MS\n", edata);
1318			usleep_range(edata * 1000, edata * 2000);
1319			break;
1320		case IXGBE_DATA_NL:
1321			hw_dbg(hw, "DATA:\n");
1322			data_offset++;
1323			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1324						      &phy_offset);
1325			if (ret_val)
1326				goto err_eeprom;
1327			for (i = 0; i < edata; i++) {
1328				ret_val = hw->eeprom.ops.read(hw, data_offset,
1329							      &eword);
1330				if (ret_val)
1331					goto err_eeprom;
1332				hw->phy.ops.write_reg(hw, phy_offset,
1333						      MDIO_MMD_PMAPMD, eword);
1334				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1335				       phy_offset);
1336				data_offset++;
1337				phy_offset++;
1338			}
1339			break;
1340		case IXGBE_CONTROL_NL:
1341			data_offset++;
1342			hw_dbg(hw, "CONTROL:\n");
1343			if (edata == IXGBE_CONTROL_EOL_NL) {
1344				hw_dbg(hw, "EOL\n");
1345				end_data = true;
1346			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1347				hw_dbg(hw, "SOL\n");
1348			} else {
1349				hw_dbg(hw, "Bad control value\n");
1350				return IXGBE_ERR_PHY;
1351			}
1352			break;
1353		default:
1354			hw_dbg(hw, "Bad control type\n");
1355			return IXGBE_ERR_PHY;
1356		}
1357	}
1358
1359	return ret_val;
1360
1361err_eeprom:
1362	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1363	return IXGBE_ERR_PHY;
1364}
1365
1366/**
1367 *  ixgbe_identify_module_generic - Identifies module type
1368 *  @hw: pointer to hardware structure
1369 *
1370 *  Determines HW type and calls appropriate function.
1371 **/
1372s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1373{
1374	switch (hw->mac.ops.get_media_type(hw)) {
1375	case ixgbe_media_type_fiber:
1376		return ixgbe_identify_sfp_module_generic(hw);
1377	case ixgbe_media_type_fiber_qsfp:
1378		return ixgbe_identify_qsfp_module_generic(hw);
1379	default:
1380		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1381		return IXGBE_ERR_SFP_NOT_PRESENT;
1382	}
1383
1384	return IXGBE_ERR_SFP_NOT_PRESENT;
1385}
1386
1387/**
1388 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1389 *  @hw: pointer to hardware structure
1390 *
1391 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1392 **/
1393s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1394{
1395	struct ixgbe_adapter *adapter = hw->back;
1396	s32 status;
1397	u32 vendor_oui = 0;
1398	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1399	u8 identifier = 0;
1400	u8 comp_codes_1g = 0;
1401	u8 comp_codes_10g = 0;
1402	u8 oui_bytes[3] = {0, 0, 0};
1403	u8 cable_tech = 0;
1404	u8 cable_spec = 0;
1405	u16 enforce_sfp = 0;
1406
1407	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1408		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1409		return IXGBE_ERR_SFP_NOT_PRESENT;
1410	}
1411
1412	/* LAN ID is needed for sfp_type determination */
1413	hw->mac.ops.set_lan_id(hw);
1414
1415	status = hw->phy.ops.read_i2c_eeprom(hw,
1416					     IXGBE_SFF_IDENTIFIER,
1417					     &identifier);
1418
1419	if (status)
1420		goto err_read_i2c_eeprom;
1421
1422	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1423		hw->phy.type = ixgbe_phy_sfp_unsupported;
1424		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1425	}
1426	status = hw->phy.ops.read_i2c_eeprom(hw,
1427					     IXGBE_SFF_1GBE_COMP_CODES,
1428					     &comp_codes_1g);
1429
1430	if (status)
1431		goto err_read_i2c_eeprom;
1432
1433	status = hw->phy.ops.read_i2c_eeprom(hw,
1434					     IXGBE_SFF_10GBE_COMP_CODES,
1435					     &comp_codes_10g);
1436
1437	if (status)
1438		goto err_read_i2c_eeprom;
1439	status = hw->phy.ops.read_i2c_eeprom(hw,
1440					     IXGBE_SFF_CABLE_TECHNOLOGY,
1441					     &cable_tech);
1442
1443	if (status)
1444		goto err_read_i2c_eeprom;
1445
1446	 /* ID Module
1447	  * =========
1448	  * 0   SFP_DA_CU
1449	  * 1   SFP_SR
1450	  * 2   SFP_LR
1451	  * 3   SFP_DA_CORE0 - 82599-specific
1452	  * 4   SFP_DA_CORE1 - 82599-specific
1453	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1454	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1455	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1456	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1457	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1458	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1459	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1460	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1461	  */
1462	if (hw->mac.type == ixgbe_mac_82598EB) {
1463		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1464			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1465		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1466			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1467		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1468			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1469		else
1470			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1471	} else {
1472		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1473			if (hw->bus.lan_id == 0)
1474				hw->phy.sfp_type =
1475					     ixgbe_sfp_type_da_cu_core0;
1476			else
1477				hw->phy.sfp_type =
1478					     ixgbe_sfp_type_da_cu_core1;
1479		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1480			hw->phy.ops.read_i2c_eeprom(
1481					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1482					&cable_spec);
1483			if (cable_spec &
1484			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1485				if (hw->bus.lan_id == 0)
1486					hw->phy.sfp_type =
1487					ixgbe_sfp_type_da_act_lmt_core0;
1488				else
1489					hw->phy.sfp_type =
1490					ixgbe_sfp_type_da_act_lmt_core1;
1491			} else {
1492				hw->phy.sfp_type =
1493						ixgbe_sfp_type_unknown;
1494			}
1495		} else if (comp_codes_10g &
1496			   (IXGBE_SFF_10GBASESR_CAPABLE |
1497			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1498			if (hw->bus.lan_id == 0)
1499				hw->phy.sfp_type =
1500					      ixgbe_sfp_type_srlr_core0;
1501			else
1502				hw->phy.sfp_type =
1503					      ixgbe_sfp_type_srlr_core1;
1504		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1505			if (hw->bus.lan_id == 0)
1506				hw->phy.sfp_type =
1507					ixgbe_sfp_type_1g_cu_core0;
1508			else
1509				hw->phy.sfp_type =
1510					ixgbe_sfp_type_1g_cu_core1;
1511		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1512			if (hw->bus.lan_id == 0)
1513				hw->phy.sfp_type =
1514					ixgbe_sfp_type_1g_sx_core0;
1515			else
1516				hw->phy.sfp_type =
1517					ixgbe_sfp_type_1g_sx_core1;
1518		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1519			if (hw->bus.lan_id == 0)
1520				hw->phy.sfp_type =
1521					ixgbe_sfp_type_1g_lx_core0;
1522			else
1523				hw->phy.sfp_type =
1524					ixgbe_sfp_type_1g_lx_core1;
1525		} else {
1526			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1527		}
1528	}
1529
1530	if (hw->phy.sfp_type != stored_sfp_type)
1531		hw->phy.sfp_setup_needed = true;
1532
1533	/* Determine if the SFP+ PHY is dual speed or not. */
1534	hw->phy.multispeed_fiber = false;
1535	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1536	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1537	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1538	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1539		hw->phy.multispeed_fiber = true;
1540
1541	/* Determine PHY vendor */
1542	if (hw->phy.type != ixgbe_phy_nl) {
1543		hw->phy.id = identifier;
1544		status = hw->phy.ops.read_i2c_eeprom(hw,
1545					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1546					    &oui_bytes[0]);
1547
1548		if (status != 0)
1549			goto err_read_i2c_eeprom;
1550
1551		status = hw->phy.ops.read_i2c_eeprom(hw,
1552					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1553					    &oui_bytes[1]);
1554
1555		if (status != 0)
1556			goto err_read_i2c_eeprom;
1557
1558		status = hw->phy.ops.read_i2c_eeprom(hw,
1559					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1560					    &oui_bytes[2]);
1561
1562		if (status != 0)
1563			goto err_read_i2c_eeprom;
1564
1565		vendor_oui =
1566		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1567		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1568		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1569
1570		switch (vendor_oui) {
1571		case IXGBE_SFF_VENDOR_OUI_TYCO:
1572			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1573				hw->phy.type =
1574					    ixgbe_phy_sfp_passive_tyco;
1575			break;
1576		case IXGBE_SFF_VENDOR_OUI_FTL:
1577			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1578				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1579			else
1580				hw->phy.type = ixgbe_phy_sfp_ftl;
1581			break;
1582		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1583			hw->phy.type = ixgbe_phy_sfp_avago;
1584			break;
1585		case IXGBE_SFF_VENDOR_OUI_INTEL:
1586			hw->phy.type = ixgbe_phy_sfp_intel;
1587			break;
1588		default:
1589			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1590				hw->phy.type =
1591					 ixgbe_phy_sfp_passive_unknown;
1592			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1593				hw->phy.type =
1594					ixgbe_phy_sfp_active_unknown;
1595			else
1596				hw->phy.type = ixgbe_phy_sfp_unknown;
1597			break;
1598		}
1599	}
1600
1601	/* Allow any DA cable vendor */
1602	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1603	    IXGBE_SFF_DA_ACTIVE_CABLE))
1604		return 0;
1605
1606	/* Verify supported 1G SFP modules */
1607	if (comp_codes_10g == 0 &&
1608	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1609	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1610	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1611	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1612	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1613	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1614		hw->phy.type = ixgbe_phy_sfp_unsupported;
1615		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1616	}
1617
1618	/* Anything else 82598-based is supported */
1619	if (hw->mac.type == ixgbe_mac_82598EB)
1620		return 0;
1621
1622	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1623	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1624	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1625	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1626	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1627	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1628	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1629	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1630		/* Make sure we're a supported PHY type */
1631		if (hw->phy.type == ixgbe_phy_sfp_intel)
1632			return 0;
1633		if (hw->allow_unsupported_sfp) {
1634			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1635			return 0;
1636		}
1637		hw_dbg(hw, "SFP+ module not supported\n");
1638		hw->phy.type = ixgbe_phy_sfp_unsupported;
1639		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1640	}
1641	return 0;
1642
1643err_read_i2c_eeprom:
1644	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1645	if (hw->phy.type != ixgbe_phy_nl) {
1646		hw->phy.id = 0;
1647		hw->phy.type = ixgbe_phy_unknown;
1648	}
1649	return IXGBE_ERR_SFP_NOT_PRESENT;
1650}
1651
1652/**
1653 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1654 * @hw: pointer to hardware structure
1655 *
1656 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1657 **/
1658static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1659{
1660	struct ixgbe_adapter *adapter = hw->back;
1661	s32 status;
1662	u32 vendor_oui = 0;
1663	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1664	u8 identifier = 0;
1665	u8 comp_codes_1g = 0;
1666	u8 comp_codes_10g = 0;
1667	u8 oui_bytes[3] = {0, 0, 0};
1668	u16 enforce_sfp = 0;
1669	u8 connector = 0;
1670	u8 cable_length = 0;
1671	u8 device_tech = 0;
1672	bool active_cable = false;
1673
1674	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1675		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1676		return IXGBE_ERR_SFP_NOT_PRESENT;
1677	}
1678
1679	/* LAN ID is needed for sfp_type determination */
1680	hw->mac.ops.set_lan_id(hw);
1681
1682	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1683					     &identifier);
1684
1685	if (status != 0)
1686		goto err_read_i2c_eeprom;
1687
1688	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1689		hw->phy.type = ixgbe_phy_sfp_unsupported;
1690		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1691	}
1692
1693	hw->phy.id = identifier;
1694
1695	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1696					     &comp_codes_10g);
1697
1698	if (status != 0)
1699		goto err_read_i2c_eeprom;
1700
1701	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1702					     &comp_codes_1g);
1703
1704	if (status != 0)
1705		goto err_read_i2c_eeprom;
1706
1707	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1708		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1709		if (hw->bus.lan_id == 0)
1710			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1711		else
1712			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1713	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1714				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1715		if (hw->bus.lan_id == 0)
1716			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1717		else
1718			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1719	} else {
1720		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1721			active_cable = true;
1722
1723		if (!active_cable) {
1724			/* check for active DA cables that pre-date
1725			 * SFF-8436 v3.6
1726			 */
1727			hw->phy.ops.read_i2c_eeprom(hw,
1728					IXGBE_SFF_QSFP_CONNECTOR,
1729					&connector);
1730
1731			hw->phy.ops.read_i2c_eeprom(hw,
1732					IXGBE_SFF_QSFP_CABLE_LENGTH,
1733					&cable_length);
1734
1735			hw->phy.ops.read_i2c_eeprom(hw,
1736					IXGBE_SFF_QSFP_DEVICE_TECH,
1737					&device_tech);
1738
1739			if ((connector ==
1740				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1741			    (cable_length > 0) &&
1742			    ((device_tech >> 4) ==
1743				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1744				active_cable = true;
1745		}
1746
1747		if (active_cable) {
1748			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1749			if (hw->bus.lan_id == 0)
1750				hw->phy.sfp_type =
1751						ixgbe_sfp_type_da_act_lmt_core0;
1752			else
1753				hw->phy.sfp_type =
1754						ixgbe_sfp_type_da_act_lmt_core1;
1755		} else {
1756			/* unsupported module type */
1757			hw->phy.type = ixgbe_phy_sfp_unsupported;
1758			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1759		}
1760	}
1761
1762	if (hw->phy.sfp_type != stored_sfp_type)
1763		hw->phy.sfp_setup_needed = true;
1764
1765	/* Determine if the QSFP+ PHY is dual speed or not. */
1766	hw->phy.multispeed_fiber = false;
1767	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1768	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1769	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1770	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1771		hw->phy.multispeed_fiber = true;
1772
1773	/* Determine PHY vendor for optical modules */
1774	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1775			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1776		status = hw->phy.ops.read_i2c_eeprom(hw,
1777					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1778					&oui_bytes[0]);
1779
1780		if (status != 0)
1781			goto err_read_i2c_eeprom;
1782
1783		status = hw->phy.ops.read_i2c_eeprom(hw,
1784					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1785					&oui_bytes[1]);
1786
1787		if (status != 0)
1788			goto err_read_i2c_eeprom;
1789
1790		status = hw->phy.ops.read_i2c_eeprom(hw,
1791					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1792					&oui_bytes[2]);
1793
1794		if (status != 0)
1795			goto err_read_i2c_eeprom;
1796
1797		vendor_oui =
1798			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1799			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1800			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1801
1802		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1803			hw->phy.type = ixgbe_phy_qsfp_intel;
1804		else
1805			hw->phy.type = ixgbe_phy_qsfp_unknown;
1806
1807		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1808		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1809			/* Make sure we're a supported PHY type */
1810			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1811				return 0;
1812			if (hw->allow_unsupported_sfp) {
1813				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1814				return 0;
1815			}
1816			hw_dbg(hw, "QSFP module not supported\n");
1817			hw->phy.type = ixgbe_phy_sfp_unsupported;
1818			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1819		}
1820		return 0;
1821	}
1822	return 0;
1823
1824err_read_i2c_eeprom:
1825	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1826	hw->phy.id = 0;
1827	hw->phy.type = ixgbe_phy_unknown;
1828
1829	return IXGBE_ERR_SFP_NOT_PRESENT;
1830}
1831
1832/**
1833 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1834 *  @hw: pointer to hardware structure
1835 *  @list_offset: offset to the SFP ID list
1836 *  @data_offset: offset to the SFP data block
1837 *
1838 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1839 *  so it returns the offsets to the phy init sequence block.
1840 **/
1841s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1842					u16 *list_offset,
1843					u16 *data_offset)
1844{
1845	u16 sfp_id;
1846	u16 sfp_type = hw->phy.sfp_type;
1847
1848	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1849		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1850
1851	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1852		return IXGBE_ERR_SFP_NOT_PRESENT;
1853
1854	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1855	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1856		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1857
1858	/*
1859	 * Limiting active cables and 1G Phys must be initialized as
1860	 * SR modules
1861	 */
1862	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1863	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1864	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1865	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
1866		sfp_type = ixgbe_sfp_type_srlr_core0;
1867	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1868		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1869		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1870		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1871		sfp_type = ixgbe_sfp_type_srlr_core1;
1872
1873	/* Read offset to PHY init contents */
1874	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1875		hw_err(hw, "eeprom read at %d failed\n",
1876		       IXGBE_PHY_INIT_OFFSET_NL);
1877		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1878	}
1879
1880	if ((!*list_offset) || (*list_offset == 0xFFFF))
1881		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1882
1883	/* Shift offset to first ID word */
1884	(*list_offset)++;
1885
1886	/*
1887	 * Find the matching SFP ID in the EEPROM
1888	 * and program the init sequence
1889	 */
1890	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1891		goto err_phy;
1892
1893	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1894		if (sfp_id == sfp_type) {
1895			(*list_offset)++;
1896			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1897				goto err_phy;
1898			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1899				hw_dbg(hw, "SFP+ module not supported\n");
1900				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1901			} else {
1902				break;
1903			}
1904		} else {
1905			(*list_offset) += 2;
1906			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1907				goto err_phy;
1908		}
1909	}
1910
1911	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1912		hw_dbg(hw, "No matching SFP+ module found\n");
1913		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1914	}
1915
1916	return 0;
1917
1918err_phy:
1919	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1920	return IXGBE_ERR_PHY;
1921}
1922
1923/**
1924 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1925 *  @hw: pointer to hardware structure
1926 *  @byte_offset: EEPROM byte offset to read
1927 *  @eeprom_data: value read
1928 *
1929 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1930 **/
1931s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1932				  u8 *eeprom_data)
1933{
1934	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1935					 IXGBE_I2C_EEPROM_DEV_ADDR,
1936					 eeprom_data);
1937}
1938
1939/**
1940 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1941 *  @hw: pointer to hardware structure
1942 *  @byte_offset: byte offset at address 0xA2
1943 *  @sff8472_data: value read
1944 *
1945 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1946 **/
1947s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1948				   u8 *sff8472_data)
1949{
1950	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1951					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1952					 sff8472_data);
1953}
1954
1955/**
1956 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1957 *  @hw: pointer to hardware structure
1958 *  @byte_offset: EEPROM byte offset to write
1959 *  @eeprom_data: value to write
1960 *
1961 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1962 **/
1963s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1964				   u8 eeprom_data)
1965{
1966	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1967					  IXGBE_I2C_EEPROM_DEV_ADDR,
1968					  eeprom_data);
1969}
1970
1971/**
1972 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1973 * @hw: pointer to hardware structure
1974 * @offset: eeprom offset to be read
1975 * @addr: I2C address to be read
1976 */
1977static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1978{
1979	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1980	    offset == IXGBE_SFF_IDENTIFIER &&
1981	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1982		return true;
1983	return false;
1984}
1985
1986/**
1987 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1988 *  @hw: pointer to hardware structure
1989 *  @byte_offset: byte offset to read
1990 *  @dev_addr: device address
1991 *  @data: value read
1992 *  @lock: true if to take and release semaphore
1993 *
1994 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1995 *  a specified device address.
1996 */
1997static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1998					   u8 dev_addr, u8 *data, bool lock)
1999{
2000	s32 status;
2001	u32 max_retry = 10;
2002	u32 retry = 0;
2003	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2004	bool nack = true;
2005
2006	if (hw->mac.type >= ixgbe_mac_X550)
2007		max_retry = 3;
2008	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2009		max_retry = IXGBE_SFP_DETECT_RETRIES;
2010
2011	*data = 0;
2012
2013	do {
2014		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2015			return IXGBE_ERR_SWFW_SYNC;
2016
2017		ixgbe_i2c_start(hw);
2018
2019		/* Device Address and write indication */
2020		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2021		if (status != 0)
2022			goto fail;
2023
2024		status = ixgbe_get_i2c_ack(hw);
2025		if (status != 0)
2026			goto fail;
2027
2028		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2029		if (status != 0)
2030			goto fail;
2031
2032		status = ixgbe_get_i2c_ack(hw);
2033		if (status != 0)
2034			goto fail;
2035
2036		ixgbe_i2c_start(hw);
2037
2038		/* Device Address and read indication */
2039		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2040		if (status != 0)
2041			goto fail;
2042
2043		status = ixgbe_get_i2c_ack(hw);
2044		if (status != 0)
2045			goto fail;
2046
2047		status = ixgbe_clock_in_i2c_byte(hw, data);
2048		if (status != 0)
2049			goto fail;
2050
2051		status = ixgbe_clock_out_i2c_bit(hw, nack);
2052		if (status != 0)
2053			goto fail;
2054
2055		ixgbe_i2c_stop(hw);
2056		if (lock)
2057			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2058		return 0;
2059
2060fail:
2061		ixgbe_i2c_bus_clear(hw);
2062		if (lock) {
2063			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2064			msleep(100);
2065		}
2066		retry++;
2067		if (retry < max_retry)
2068			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2069		else
2070			hw_dbg(hw, "I2C byte read error.\n");
2071
2072	} while (retry < max_retry);
2073
2074	return status;
2075}
2076
2077/**
2078 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2079 *  @hw: pointer to hardware structure
2080 *  @byte_offset: byte offset to read
2081 *  @dev_addr: device address
2082 *  @data: value read
2083 *
2084 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2085 *  a specified device address.
2086 */
2087s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2088				u8 dev_addr, u8 *data)
2089{
2090	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2091					       data, true);
2092}
2093
2094/**
2095 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2096 *  @hw: pointer to hardware structure
2097 *  @byte_offset: byte offset to read
2098 *  @dev_addr: device address
2099 *  @data: value read
2100 *
2101 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2102 *  a specified device address.
2103 */
2104s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2105					 u8 dev_addr, u8 *data)
2106{
2107	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2108					       data, false);
2109}
2110
2111/**
2112 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2113 *  @hw: pointer to hardware structure
2114 *  @byte_offset: byte offset to write
2115 *  @dev_addr: device address
2116 *  @data: value to write
2117 *  @lock: true if to take and release semaphore
2118 *
2119 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2120 *  a specified device address.
2121 */
2122static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2123					    u8 dev_addr, u8 data, bool lock)
2124{
2125	s32 status;
2126	u32 max_retry = 1;
2127	u32 retry = 0;
2128	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2129
2130	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2131		return IXGBE_ERR_SWFW_SYNC;
2132
2133	do {
2134		ixgbe_i2c_start(hw);
2135
2136		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2137		if (status != 0)
2138			goto fail;
2139
2140		status = ixgbe_get_i2c_ack(hw);
2141		if (status != 0)
2142			goto fail;
2143
2144		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2145		if (status != 0)
2146			goto fail;
2147
2148		status = ixgbe_get_i2c_ack(hw);
2149		if (status != 0)
2150			goto fail;
2151
2152		status = ixgbe_clock_out_i2c_byte(hw, data);
2153		if (status != 0)
2154			goto fail;
2155
2156		status = ixgbe_get_i2c_ack(hw);
2157		if (status != 0)
2158			goto fail;
2159
2160		ixgbe_i2c_stop(hw);
2161		if (lock)
2162			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2163		return 0;
2164
2165fail:
2166		ixgbe_i2c_bus_clear(hw);
2167		retry++;
2168		if (retry < max_retry)
2169			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2170		else
2171			hw_dbg(hw, "I2C byte write error.\n");
2172	} while (retry < max_retry);
2173
2174	if (lock)
2175		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2176
2177	return status;
2178}
2179
2180/**
2181 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2182 *  @hw: pointer to hardware structure
2183 *  @byte_offset: byte offset to write
2184 *  @dev_addr: device address
2185 *  @data: value to write
2186 *
2187 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2188 *  a specified device address.
2189 */
2190s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2191				 u8 dev_addr, u8 data)
2192{
2193	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2194						data, true);
2195}
2196
2197/**
2198 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2199 *  @hw: pointer to hardware structure
2200 *  @byte_offset: byte offset to write
2201 *  @dev_addr: device address
2202 *  @data: value to write
2203 *
2204 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2205 *  a specified device address.
2206 */
2207s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2208					  u8 dev_addr, u8 data)
2209{
2210	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2211						data, false);
2212}
2213
2214/**
2215 *  ixgbe_i2c_start - Sets I2C start condition
2216 *  @hw: pointer to hardware structure
2217 *
2218 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2219 *  Set bit-bang mode on X550 hardware.
2220 **/
2221static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2222{
2223	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2224
2225	i2cctl |= IXGBE_I2C_BB_EN(hw);
2226
2227	/* Start condition must begin with data and clock high */
2228	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2229	ixgbe_raise_i2c_clk(hw, &i2cctl);
2230
2231	/* Setup time for start condition (4.7us) */
2232	udelay(IXGBE_I2C_T_SU_STA);
2233
2234	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2235
2236	/* Hold time for start condition (4us) */
2237	udelay(IXGBE_I2C_T_HD_STA);
2238
2239	ixgbe_lower_i2c_clk(hw, &i2cctl);
2240
2241	/* Minimum low period of clock is 4.7 us */
2242	udelay(IXGBE_I2C_T_LOW);
2243
2244}
2245
2246/**
2247 *  ixgbe_i2c_stop - Sets I2C stop condition
2248 *  @hw: pointer to hardware structure
2249 *
2250 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2251 *  Disables bit-bang mode and negates data output enable on X550
2252 *  hardware.
2253 **/
2254static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2255{
2256	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2257	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2258	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2259	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2260
2261	/* Stop condition must begin with data low and clock high */
2262	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2263	ixgbe_raise_i2c_clk(hw, &i2cctl);
2264
2265	/* Setup time for stop condition (4us) */
2266	udelay(IXGBE_I2C_T_SU_STO);
2267
2268	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2269
2270	/* bus free time between stop and start (4.7us)*/
2271	udelay(IXGBE_I2C_T_BUF);
2272
2273	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2274		i2cctl &= ~bb_en_bit;
2275		i2cctl |= data_oe_bit | clk_oe_bit;
2276		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2277		IXGBE_WRITE_FLUSH(hw);
2278	}
2279}
2280
2281/**
2282 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2283 *  @hw: pointer to hardware structure
2284 *  @data: data byte to clock in
2285 *
2286 *  Clocks in one byte data via I2C data/clock
2287 **/
2288static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2289{
2290	s32 i;
2291	bool bit = false;
2292
2293	*data = 0;
2294	for (i = 7; i >= 0; i--) {
2295		ixgbe_clock_in_i2c_bit(hw, &bit);
2296		*data |= bit << i;
2297	}
2298
2299	return 0;
2300}
2301
2302/**
2303 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2304 *  @hw: pointer to hardware structure
2305 *  @data: data byte clocked out
2306 *
2307 *  Clocks out one byte data via I2C data/clock
2308 **/
2309static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2310{
2311	s32 status;
2312	s32 i;
2313	u32 i2cctl;
2314	bool bit = false;
2315
2316	for (i = 7; i >= 0; i--) {
2317		bit = (data >> i) & 0x1;
2318		status = ixgbe_clock_out_i2c_bit(hw, bit);
2319
2320		if (status != 0)
2321			break;
2322	}
2323
2324	/* Release SDA line (set high) */
2325	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2326	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2327	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2328	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2329	IXGBE_WRITE_FLUSH(hw);
2330
2331	return status;
2332}
2333
2334/**
2335 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2336 *  @hw: pointer to hardware structure
2337 *
2338 *  Clocks in/out one bit via I2C data/clock
2339 **/
2340static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2341{
2342	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2343	s32 status = 0;
2344	u32 i = 0;
2345	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2346	u32 timeout = 10;
2347	bool ack = true;
2348
2349	if (data_oe_bit) {
2350		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2351		i2cctl |= data_oe_bit;
2352		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2353		IXGBE_WRITE_FLUSH(hw);
2354	}
2355	ixgbe_raise_i2c_clk(hw, &i2cctl);
2356
2357	/* Minimum high period of clock is 4us */
2358	udelay(IXGBE_I2C_T_HIGH);
2359
2360	/* Poll for ACK.  Note that ACK in I2C spec is
2361	 * transition from 1 to 0 */
2362	for (i = 0; i < timeout; i++) {
2363		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2364		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2365
2366		udelay(1);
2367		if (ack == 0)
2368			break;
2369	}
2370
2371	if (ack == 1) {
2372		hw_dbg(hw, "I2C ack was not received.\n");
2373		status = IXGBE_ERR_I2C;
2374	}
2375
2376	ixgbe_lower_i2c_clk(hw, &i2cctl);
2377
2378	/* Minimum low period of clock is 4.7 us */
2379	udelay(IXGBE_I2C_T_LOW);
2380
2381	return status;
2382}
2383
2384/**
2385 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2386 *  @hw: pointer to hardware structure
2387 *  @data: read data value
2388 *
2389 *  Clocks in one bit via I2C data/clock
2390 **/
2391static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2392{
2393	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2394	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2395
2396	if (data_oe_bit) {
2397		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2398		i2cctl |= data_oe_bit;
2399		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2400		IXGBE_WRITE_FLUSH(hw);
2401	}
2402	ixgbe_raise_i2c_clk(hw, &i2cctl);
2403
2404	/* Minimum high period of clock is 4us */
2405	udelay(IXGBE_I2C_T_HIGH);
2406
2407	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2408	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2409
2410	ixgbe_lower_i2c_clk(hw, &i2cctl);
2411
2412	/* Minimum low period of clock is 4.7 us */
2413	udelay(IXGBE_I2C_T_LOW);
2414
2415	return 0;
2416}
2417
2418/**
2419 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2420 *  @hw: pointer to hardware structure
2421 *  @data: data value to write
2422 *
2423 *  Clocks out one bit via I2C data/clock
2424 **/
2425static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2426{
2427	s32 status;
2428	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2429
2430	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2431	if (status == 0) {
2432		ixgbe_raise_i2c_clk(hw, &i2cctl);
2433
2434		/* Minimum high period of clock is 4us */
2435		udelay(IXGBE_I2C_T_HIGH);
2436
2437		ixgbe_lower_i2c_clk(hw, &i2cctl);
2438
2439		/* Minimum low period of clock is 4.7 us.
2440		 * This also takes care of the data hold time.
2441		 */
2442		udelay(IXGBE_I2C_T_LOW);
2443	} else {
2444		hw_dbg(hw, "I2C data was not set to %X\n", data);
2445		return IXGBE_ERR_I2C;
2446	}
2447
2448	return 0;
2449}
2450/**
2451 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2452 *  @hw: pointer to hardware structure
2453 *  @i2cctl: Current value of I2CCTL register
2454 *
2455 *  Raises the I2C clock line '0'->'1'
2456 *  Negates the I2C clock output enable on X550 hardware.
2457 **/
2458static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2459{
2460	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2461	u32 i = 0;
2462	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2463	u32 i2cctl_r = 0;
2464
2465	if (clk_oe_bit) {
2466		*i2cctl |= clk_oe_bit;
2467		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2468	}
2469
2470	for (i = 0; i < timeout; i++) {
2471		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2472		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2473		IXGBE_WRITE_FLUSH(hw);
2474		/* SCL rise time (1000ns) */
2475		udelay(IXGBE_I2C_T_RISE);
2476
2477		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2478		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2479			break;
2480	}
2481}
2482
2483/**
2484 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2485 *  @hw: pointer to hardware structure
2486 *  @i2cctl: Current value of I2CCTL register
2487 *
2488 *  Lowers the I2C clock line '1'->'0'
2489 *  Asserts the I2C clock output enable on X550 hardware.
2490 **/
2491static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2492{
2493
2494	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2495	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2496
2497	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2498	IXGBE_WRITE_FLUSH(hw);
2499
2500	/* SCL fall time (300ns) */
2501	udelay(IXGBE_I2C_T_FALL);
2502}
2503
2504/**
2505 *  ixgbe_set_i2c_data - Sets the I2C data bit
2506 *  @hw: pointer to hardware structure
2507 *  @i2cctl: Current value of I2CCTL register
2508 *  @data: I2C data value (0 or 1) to set
2509 *
2510 *  Sets the I2C data bit
2511 *  Asserts the I2C data output enable on X550 hardware.
2512 **/
2513static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2514{
2515	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2516
2517	if (data)
2518		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2519	else
2520		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2521	*i2cctl &= ~data_oe_bit;
2522
2523	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2524	IXGBE_WRITE_FLUSH(hw);
2525
2526	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2527	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2528
2529	if (!data)	/* Can't verify data in this case */
2530		return 0;
2531	if (data_oe_bit) {
2532		*i2cctl |= data_oe_bit;
2533		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2534		IXGBE_WRITE_FLUSH(hw);
2535	}
2536
2537	/* Verify data was set correctly */
2538	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2539	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2540		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2541		return IXGBE_ERR_I2C;
2542	}
2543
2544	return 0;
2545}
2546
2547/**
2548 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2549 *  @hw: pointer to hardware structure
2550 *  @i2cctl: Current value of I2CCTL register
2551 *
2552 *  Returns the I2C data bit value
2553 *  Negates the I2C data output enable on X550 hardware.
2554 **/
2555static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2556{
2557	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2558
2559	if (data_oe_bit) {
2560		*i2cctl |= data_oe_bit;
2561		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2562		IXGBE_WRITE_FLUSH(hw);
2563		udelay(IXGBE_I2C_T_FALL);
2564	}
2565
2566	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2567		return true;
2568	return false;
2569}
2570
2571/**
2572 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2573 *  @hw: pointer to hardware structure
2574 *
2575 *  Clears the I2C bus by sending nine clock pulses.
2576 *  Used when data line is stuck low.
2577 **/
2578static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2579{
2580	u32 i2cctl;
2581	u32 i;
2582
2583	ixgbe_i2c_start(hw);
2584	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2585
2586	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2587
2588	for (i = 0; i < 9; i++) {
2589		ixgbe_raise_i2c_clk(hw, &i2cctl);
2590
2591		/* Min high period of clock is 4us */
2592		udelay(IXGBE_I2C_T_HIGH);
2593
2594		ixgbe_lower_i2c_clk(hw, &i2cctl);
2595
2596		/* Min low period of clock is 4.7us*/
2597		udelay(IXGBE_I2C_T_LOW);
2598	}
2599
2600	ixgbe_i2c_start(hw);
2601
2602	/* Put the i2c bus back to default state */
2603	ixgbe_i2c_stop(hw);
2604}
2605
2606/**
2607 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2608 *  @hw: pointer to hardware structure
2609 *
2610 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2611 **/
2612s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2613{
2614	u16 phy_data = 0;
 
2615
2616	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2617		return 0;
2618
2619	/* Check that the LASI temp alarm status was triggered */
2620	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2621			     MDIO_MMD_PMAPMD, &phy_data);
2622
2623	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2624		return 0;
2625
2626	return IXGBE_ERR_OVERTEMP;
2627}
2628
2629/** ixgbe_set_copper_phy_power - Control power for copper phy
2630 *  @hw: pointer to hardware structure
2631 *  @on: true for on, false for off
2632 **/
2633s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2634{
2635	u32 status;
2636	u16 reg;
2637
2638	/* Bail if we don't have copper phy */
2639	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2640		return 0;
2641
2642	if (!on && ixgbe_mng_present(hw))
2643		return 0;
2644
2645	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2646	if (status)
2647		return status;
2648
2649	if (on) {
2650		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2651	} else {
2652		if (ixgbe_check_reset_blocked(hw))
2653			return 0;
2654		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2655	}
2656
2657	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2658	return status;
2659}