Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
   4 *
   5 * Copyright (C) 2010 Lantiq Deutschland
   6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
   7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
   8 *
   9 * The VLAN and bridge model the GSWIP hardware uses does not directly
  10 * matches the model DSA uses.
  11 *
  12 * The hardware has 64 possible table entries for bridges with one VLAN
  13 * ID, one flow id and a list of ports for each bridge. All entries which
  14 * match the same flow ID are combined in the mac learning table, they
  15 * act as one global bridge.
  16 * The hardware does not support VLAN filter on the port, but on the
  17 * bridge, this driver converts the DSA model to the hardware.
  18 *
  19 * The CPU gets all the exception frames which do not match any forwarding
  20 * rule and the CPU port is also added to all bridges. This makes it possible
  21 * to handle all the special cases easily in software.
  22 * At the initialization the driver allocates one bridge table entry for
  23 * each switch port which is used when the port is used without an
  24 * explicit bridge. This prevents the frames from being forwarded
  25 * between all LAN ports by default.
  26 */
  27
  28#include <linux/clk.h>
  29#include <linux/delay.h>
  30#include <linux/etherdevice.h>
  31#include <linux/firmware.h>
  32#include <linux/if_bridge.h>
  33#include <linux/if_vlan.h>
  34#include <linux/iopoll.h>
  35#include <linux/mfd/syscon.h>
  36#include <linux/module.h>
  37#include <linux/of_mdio.h>
  38#include <linux/of_net.h>
  39#include <linux/of_platform.h>
  40#include <linux/phy.h>
  41#include <linux/phylink.h>
  42#include <linux/platform_device.h>
  43#include <linux/regmap.h>
  44#include <linux/reset.h>
  45#include <net/dsa.h>
  46#include <dt-bindings/mips/lantiq_rcu_gphy.h>
  47
  48#include "lantiq_pce.h"
  49
  50/* GSWIP MDIO Registers */
  51#define GSWIP_MDIO_GLOB			0x00
  52#define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
  53#define GSWIP_MDIO_CTRL			0x08
  54#define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
  55#define  GSWIP_MDIO_CTRL_RD		BIT(11)
  56#define  GSWIP_MDIO_CTRL_WR		BIT(10)
  57#define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
  58#define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
  59#define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
  60#define GSWIP_MDIO_READ			0x09
  61#define GSWIP_MDIO_WRITE		0x0A
  62#define GSWIP_MDIO_MDC_CFG0		0x0B
  63#define GSWIP_MDIO_MDC_CFG1		0x0C
  64#define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
  65#define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
  66#define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
  67#define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
  68#define  GSWIP_MDIO_PHY_LINK_UP		0x2000
  69#define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
  70#define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
  71#define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
  72#define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
  73#define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
  74#define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
  75#define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
  76#define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
  77#define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
  78#define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
  79#define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
  80#define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
  81#define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
  82#define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
  83#define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
  84#define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
  85#define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
  86#define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
  87#define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
  88					 GSWIP_MDIO_PHY_FCONRX_MASK | \
  89					 GSWIP_MDIO_PHY_FCONTX_MASK | \
  90					 GSWIP_MDIO_PHY_LINK_MASK | \
  91					 GSWIP_MDIO_PHY_SPEED_MASK | \
  92					 GSWIP_MDIO_PHY_FDUP_MASK)
  93
  94/* GSWIP MII Registers */
  95#define GSWIP_MII_CFGp(p)		(0x2 * (p))
  96#define  GSWIP_MII_CFG_RESET		BIT(15)
  97#define  GSWIP_MII_CFG_EN		BIT(14)
  98#define  GSWIP_MII_CFG_ISOLATE		BIT(13)
  99#define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
 100#define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
 101#define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
 102#define  GSWIP_MII_CFG_MODE_MIIP	0x0
 103#define  GSWIP_MII_CFG_MODE_MIIM	0x1
 104#define  GSWIP_MII_CFG_MODE_RMIIP	0x2
 105#define  GSWIP_MII_CFG_MODE_RMIIM	0x3
 106#define  GSWIP_MII_CFG_MODE_RGMII	0x4
 107#define  GSWIP_MII_CFG_MODE_GMII	0x9
 108#define  GSWIP_MII_CFG_MODE_MASK	0xf
 109#define  GSWIP_MII_CFG_RATE_M2P5	0x00
 110#define  GSWIP_MII_CFG_RATE_M25	0x10
 111#define  GSWIP_MII_CFG_RATE_M125	0x20
 112#define  GSWIP_MII_CFG_RATE_M50	0x30
 113#define  GSWIP_MII_CFG_RATE_AUTO	0x40
 114#define  GSWIP_MII_CFG_RATE_MASK	0x70
 115#define GSWIP_MII_PCDU0			0x01
 116#define GSWIP_MII_PCDU1			0x03
 117#define GSWIP_MII_PCDU5			0x05
 118#define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
 119#define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
 120
 121/* GSWIP Core Registers */
 122#define GSWIP_SWRES			0x000
 123#define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
 124#define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
 125#define GSWIP_VERSION			0x013
 126#define  GSWIP_VERSION_REV_SHIFT	0
 127#define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
 128#define  GSWIP_VERSION_MOD_SHIFT	8
 129#define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
 130#define   GSWIP_VERSION_2_0		0x100
 131#define   GSWIP_VERSION_2_1		0x021
 132#define   GSWIP_VERSION_2_2		0x122
 133#define   GSWIP_VERSION_2_2_ETC		0x022
 134
 135#define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
 136#define GSWIP_BM_RAM_ADDR		0x044
 137#define GSWIP_BM_RAM_CTRL		0x045
 138#define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
 139#define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
 140#define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
 141#define GSWIP_BM_QUEUE_GCTRL		0x04A
 142#define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
 143/* buffer management Port Configuration Register */
 144#define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
 145#define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
 146#define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
 147/* buffer management Port Control Register */
 148#define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
 149#define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
 150#define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
 151
 152/* PCE */
 153#define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
 154#define GSWIP_PCE_TBL_MASK		0x448
 155#define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
 156#define GSWIP_PCE_TBL_ADDR		0x44E
 157#define GSWIP_PCE_TBL_CTRL		0x44F
 158#define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
 159#define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
 160#define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
 161#define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
 162#define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
 163#define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
 164#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
 165#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
 166#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
 167#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
 168#define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
 169#define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
 170#define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
 171#define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
 172#define GSWIP_PCE_GCTRL_0		0x456
 173#define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
 174#define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
 175#define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
 176#define GSWIP_PCE_GCTRL_1		0x457
 177#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
 178#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
 179#define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
 180#define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
 181#define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
 182#define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
 183#define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
 184#define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
 185#define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
 186#define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
 187#define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
 188#define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
 189#define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
 190#define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
 191#define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
 192#define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
 193#define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
 194#define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
 195#define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
 196
 197#define GSWIP_MAC_FLEN			0x8C5
 198#define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
 199#define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
 200#define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
 201#define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
 202#define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
 203#define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
 204#define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
 205#define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
 206#define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
 207#define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
 208#define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
 209#define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
 210#define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
 211#define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
 212#define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
 213#define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
 214#define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
 215#define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
 216#define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
 217#define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
 218
 219/* Ethernet Switch Fetch DMA Port Control Register */
 220#define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
 221#define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
 222#define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
 223#define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
 224#define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
 225#define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 226#define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 227#define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 228#define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 229
 230/* Ethernet Switch Store DMA Port Control Register */
 231#define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
 232#define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
 233#define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
 234#define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
 235
 236#define GSWIP_TABLE_ACTIVE_VLAN		0x01
 237#define GSWIP_TABLE_VLAN_MAPPING	0x02
 238#define GSWIP_TABLE_MAC_BRIDGE		0x0b
 239#define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
 240
 241#define XRX200_GPHY_FW_ALIGN	(16 * 1024)
 242
 243/* Maximum packet size supported by the switch. In theory this should be 10240,
 244 * but long packets currently cause lock-ups with an MTU of over 2526. Medium
 245 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
 246 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
 247 * packet reception. This is probably caused by the PPA engine, which is on the
 248 * RX part of the device. Packet transmission works properly up to 10240.
 249 */
 250#define GSWIP_MAX_PACKET_LENGTH	2400
 251
 252struct gswip_hw_info {
 253	int max_ports;
 254	int cpu_port;
 255	const struct dsa_switch_ops *ops;
 256};
 257
 258struct xway_gphy_match_data {
 259	char *fe_firmware_name;
 260	char *ge_firmware_name;
 261};
 262
 263struct gswip_gphy_fw {
 264	struct clk *clk_gate;
 265	struct reset_control *reset;
 266	u32 fw_addr_offset;
 267	char *fw_name;
 268};
 269
 270struct gswip_vlan {
 271	struct net_device *bridge;
 272	u16 vid;
 273	u8 fid;
 274};
 275
 276struct gswip_priv {
 277	__iomem void *gswip;
 278	__iomem void *mdio;
 279	__iomem void *mii;
 280	const struct gswip_hw_info *hw_info;
 281	const struct xway_gphy_match_data *gphy_fw_name_cfg;
 282	struct dsa_switch *ds;
 283	struct device *dev;
 284	struct regmap *rcu_regmap;
 285	struct gswip_vlan vlans[64];
 286	int num_gphy_fw;
 287	struct gswip_gphy_fw *gphy_fw;
 288	u32 port_vlan_filter;
 289	struct mutex pce_table_lock;
 290};
 291
 292struct gswip_pce_table_entry {
 293	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
 294	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
 295	u16 key[8];
 296	u16 val[5];
 297	u16 mask;
 298	u8 gmap;
 299	bool type;
 300	bool valid;
 301	bool key_mode;
 302};
 303
 304struct gswip_rmon_cnt_desc {
 305	unsigned int size;
 306	unsigned int offset;
 307	const char *name;
 308};
 309
 310#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
 311
 312static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
 313	/** Receive Packet Count (only packets that are accepted and not discarded). */
 314	MIB_DESC(1, 0x1F, "RxGoodPkts"),
 315	MIB_DESC(1, 0x23, "RxUnicastPkts"),
 316	MIB_DESC(1, 0x22, "RxMulticastPkts"),
 317	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
 318	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
 319	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
 320	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
 321	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
 322	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
 323	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
 324	MIB_DESC(1, 0x12, "Rx64BytePkts"),
 325	MIB_DESC(1, 0x13, "Rx127BytePkts"),
 326	MIB_DESC(1, 0x14, "Rx255BytePkts"),
 327	MIB_DESC(1, 0x15, "Rx511BytePkts"),
 328	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
 329	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
 330	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
 331	MIB_DESC(1, 0x18, "RxDroppedPkts"),
 332	MIB_DESC(1, 0x19, "RxFilteredPkts"),
 333	MIB_DESC(2, 0x24, "RxGoodBytes"),
 334	MIB_DESC(2, 0x26, "RxBadBytes"),
 335	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
 336	MIB_DESC(1, 0x0C, "TxGoodPkts"),
 337	MIB_DESC(1, 0x06, "TxUnicastPkts"),
 338	MIB_DESC(1, 0x07, "TxMulticastPkts"),
 339	MIB_DESC(1, 0x00, "Tx64BytePkts"),
 340	MIB_DESC(1, 0x01, "Tx127BytePkts"),
 341	MIB_DESC(1, 0x02, "Tx255BytePkts"),
 342	MIB_DESC(1, 0x03, "Tx511BytePkts"),
 343	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
 344	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
 345	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
 346	MIB_DESC(1, 0x08, "TxSingleCollCount"),
 347	MIB_DESC(1, 0x09, "TxMultCollCount"),
 348	MIB_DESC(1, 0x0A, "TxLateCollCount"),
 349	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
 350	MIB_DESC(1, 0x0D, "TxPauseCount"),
 351	MIB_DESC(1, 0x10, "TxDroppedPkts"),
 352	MIB_DESC(2, 0x0E, "TxGoodBytes"),
 353};
 354
 355static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
 356{
 357	return __raw_readl(priv->gswip + (offset * 4));
 358}
 359
 360static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
 361{
 362	__raw_writel(val, priv->gswip + (offset * 4));
 363}
 364
 365static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
 366			      u32 offset)
 367{
 368	u32 val = gswip_switch_r(priv, offset);
 369
 370	val &= ~(clear);
 371	val |= set;
 372	gswip_switch_w(priv, val, offset);
 373}
 374
 375static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
 376				  u32 cleared)
 377{
 378	u32 val;
 379
 380	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
 381				  (val & cleared) == 0, 20, 50000);
 382}
 383
 384static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
 385{
 386	return __raw_readl(priv->mdio + (offset * 4));
 387}
 388
 389static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
 390{
 391	__raw_writel(val, priv->mdio + (offset * 4));
 392}
 393
 394static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
 395			    u32 offset)
 396{
 397	u32 val = gswip_mdio_r(priv, offset);
 398
 399	val &= ~(clear);
 400	val |= set;
 401	gswip_mdio_w(priv, val, offset);
 402}
 403
 404static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
 405{
 406	return __raw_readl(priv->mii + (offset * 4));
 407}
 408
 409static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
 410{
 411	__raw_writel(val, priv->mii + (offset * 4));
 412}
 413
 414static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
 415			   u32 offset)
 416{
 417	u32 val = gswip_mii_r(priv, offset);
 418
 419	val &= ~(clear);
 420	val |= set;
 421	gswip_mii_w(priv, val, offset);
 422}
 423
 424static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
 425			       int port)
 426{
 427	/* There's no MII_CFG register for the CPU port */
 428	if (!dsa_is_cpu_port(priv->ds, port))
 429		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
 430}
 431
 432static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
 433				int port)
 434{
 435	switch (port) {
 436	case 0:
 437		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
 438		break;
 439	case 1:
 440		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
 441		break;
 442	case 5:
 443		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
 444		break;
 445	}
 446}
 447
 448static int gswip_mdio_poll(struct gswip_priv *priv)
 449{
 450	int cnt = 100;
 451
 452	while (likely(cnt--)) {
 453		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
 454
 455		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
 456			return 0;
 457		usleep_range(20, 40);
 458	}
 459
 460	return -ETIMEDOUT;
 461}
 462
 463static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
 464{
 465	struct gswip_priv *priv = bus->priv;
 466	int err;
 467
 468	err = gswip_mdio_poll(priv);
 469	if (err) {
 470		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 471		return err;
 472	}
 473
 474	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
 475	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
 476		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 477		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 478		GSWIP_MDIO_CTRL);
 479
 480	return 0;
 481}
 482
 483static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
 484{
 485	struct gswip_priv *priv = bus->priv;
 486	int err;
 487
 488	err = gswip_mdio_poll(priv);
 489	if (err) {
 490		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 491		return err;
 492	}
 493
 494	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
 495		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 496		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 497		GSWIP_MDIO_CTRL);
 498
 499	err = gswip_mdio_poll(priv);
 500	if (err) {
 501		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 502		return err;
 503	}
 504
 505	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
 506}
 507
 508static int gswip_mdio(struct gswip_priv *priv)
 509{
 510	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
 511	struct device *dev = priv->dev;
 512	struct mii_bus *bus;
 513	int err = 0;
 514
 515	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
 516	if (!of_device_is_available(mdio_np))
 517		goto out_put_node;
 518
 519	bus = devm_mdiobus_alloc(dev);
 520	if (!bus) {
 521		err = -ENOMEM;
 522		goto out_put_node;
 523	}
 524
 525	bus->priv = priv;
 526	bus->read = gswip_mdio_rd;
 527	bus->write = gswip_mdio_wr;
 528	bus->name = "lantiq,xrx200-mdio";
 529	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
 530	bus->parent = priv->dev;
 531
 532	err = devm_of_mdiobus_register(dev, bus, mdio_np);
 533
 534out_put_node:
 535	of_node_put(mdio_np);
 536
 537	return err;
 538}
 539
 540static int gswip_pce_table_entry_read(struct gswip_priv *priv,
 541				      struct gswip_pce_table_entry *tbl)
 542{
 543	int i;
 544	int err;
 545	u16 crtl;
 546	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
 547					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
 548
 549	mutex_lock(&priv->pce_table_lock);
 550
 551	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 552				     GSWIP_PCE_TBL_CTRL_BAS);
 553	if (err) {
 554		mutex_unlock(&priv->pce_table_lock);
 555		return err;
 556	}
 557
 558	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 559	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 560				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 561			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
 562			  GSWIP_PCE_TBL_CTRL);
 563
 564	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 565				     GSWIP_PCE_TBL_CTRL_BAS);
 566	if (err) {
 567		mutex_unlock(&priv->pce_table_lock);
 568		return err;
 569	}
 570
 571	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 572		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
 573
 574	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 575		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
 576
 577	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
 578
 579	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 580
 581	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
 582	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
 583	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
 584
 585	mutex_unlock(&priv->pce_table_lock);
 586
 587	return 0;
 588}
 589
 590static int gswip_pce_table_entry_write(struct gswip_priv *priv,
 591				       struct gswip_pce_table_entry *tbl)
 592{
 593	int i;
 594	int err;
 595	u16 crtl;
 596	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
 597					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
 598
 599	mutex_lock(&priv->pce_table_lock);
 600
 601	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 602				     GSWIP_PCE_TBL_CTRL_BAS);
 603	if (err) {
 604		mutex_unlock(&priv->pce_table_lock);
 605		return err;
 606	}
 607
 608	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 609	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 610				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 611			  tbl->table | addr_mode,
 612			  GSWIP_PCE_TBL_CTRL);
 613
 614	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 615		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
 616
 617	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 618		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
 619
 620	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 621				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 622			  tbl->table | addr_mode,
 623			  GSWIP_PCE_TBL_CTRL);
 624
 625	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
 626
 627	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 628	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
 629		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
 630	if (tbl->type)
 631		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
 632	if (tbl->valid)
 633		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
 634	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
 635	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
 636	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
 637
 638	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 639				     GSWIP_PCE_TBL_CTRL_BAS);
 640
 641	mutex_unlock(&priv->pce_table_lock);
 642
 643	return err;
 644}
 645
 646/* Add the LAN port into a bridge with the CPU port by
 647 * default. This prevents automatic forwarding of
 648 * packages between the LAN ports when no explicit
 649 * bridge is configured.
 650 */
 651static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
 652{
 653	struct gswip_pce_table_entry vlan_active = {0,};
 654	struct gswip_pce_table_entry vlan_mapping = {0,};
 655	unsigned int cpu_port = priv->hw_info->cpu_port;
 656	unsigned int max_ports = priv->hw_info->max_ports;
 657	int err;
 658
 659	if (port >= max_ports) {
 660		dev_err(priv->dev, "single port for %i supported\n", port);
 661		return -EIO;
 662	}
 663
 664	vlan_active.index = port + 1;
 665	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 666	vlan_active.key[0] = 0; /* vid */
 667	vlan_active.val[0] = port + 1 /* fid */;
 668	vlan_active.valid = add;
 669	err = gswip_pce_table_entry_write(priv, &vlan_active);
 670	if (err) {
 671		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
 672		return err;
 673	}
 674
 675	if (!add)
 676		return 0;
 677
 678	vlan_mapping.index = port + 1;
 679	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 680	vlan_mapping.val[0] = 0 /* vid */;
 681	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
 682	vlan_mapping.val[2] = 0;
 683	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 684	if (err) {
 685		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 686		return err;
 687	}
 688
 689	return 0;
 690}
 691
 692static int gswip_port_enable(struct dsa_switch *ds, int port,
 693			     struct phy_device *phydev)
 694{
 695	struct gswip_priv *priv = ds->priv;
 696	int err;
 697
 698	if (!dsa_is_user_port(ds, port))
 699		return 0;
 700
 701	if (!dsa_is_cpu_port(ds, port)) {
 702		err = gswip_add_single_port_br(priv, port, true);
 703		if (err)
 704			return err;
 705	}
 706
 707	/* RMON Counter Enable for port */
 708	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
 709
 710	/* enable port fetch/store dma & VLAN Modification */
 711	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
 712				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
 713			 GSWIP_FDMA_PCTRLp(port));
 714	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
 715			  GSWIP_SDMA_PCTRLp(port));
 716
 717	if (!dsa_is_cpu_port(ds, port)) {
 718		u32 mdio_phy = 0;
 719
 720		if (phydev)
 721			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
 722
 723		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
 724				GSWIP_MDIO_PHYp(port));
 725	}
 726
 727	return 0;
 728}
 729
 730static void gswip_port_disable(struct dsa_switch *ds, int port)
 731{
 732	struct gswip_priv *priv = ds->priv;
 733
 734	if (!dsa_is_user_port(ds, port))
 735		return;
 736
 737	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
 738			  GSWIP_FDMA_PCTRLp(port));
 739	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
 740			  GSWIP_SDMA_PCTRLp(port));
 741}
 742
 743static int gswip_pce_load_microcode(struct gswip_priv *priv)
 744{
 745	int i;
 746	int err;
 747
 748	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 749				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 750			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
 751	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
 752
 753	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
 754		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
 755		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
 756			       GSWIP_PCE_TBL_VAL(0));
 757		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
 758			       GSWIP_PCE_TBL_VAL(1));
 759		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
 760			       GSWIP_PCE_TBL_VAL(2));
 761		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
 762			       GSWIP_PCE_TBL_VAL(3));
 763
 764		/* start the table access: */
 765		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
 766				  GSWIP_PCE_TBL_CTRL);
 767		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 768					     GSWIP_PCE_TBL_CTRL_BAS);
 769		if (err)
 770			return err;
 771	}
 772
 773	/* tell the switch that the microcode is loaded */
 774	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
 775			  GSWIP_PCE_GCTRL_0);
 776
 777	return 0;
 778}
 779
 780static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
 781				     bool vlan_filtering,
 782				     struct netlink_ext_ack *extack)
 783{
 784	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
 785	struct gswip_priv *priv = ds->priv;
 786
 787	/* Do not allow changing the VLAN filtering options while in bridge */
 788	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
 789		NL_SET_ERR_MSG_MOD(extack,
 790				   "Dynamic toggling of vlan_filtering not supported");
 791		return -EIO;
 792	}
 793
 794	if (vlan_filtering) {
 795		/* Use port based VLAN tag */
 796		gswip_switch_mask(priv,
 797				  GSWIP_PCE_VCTRL_VSR,
 798				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 799				  GSWIP_PCE_VCTRL_VEMR,
 800				  GSWIP_PCE_VCTRL(port));
 801		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
 802				  GSWIP_PCE_PCTRL_0p(port));
 803	} else {
 804		/* Use port based VLAN tag */
 805		gswip_switch_mask(priv,
 806				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 807				  GSWIP_PCE_VCTRL_VEMR,
 808				  GSWIP_PCE_VCTRL_VSR,
 809				  GSWIP_PCE_VCTRL(port));
 810		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
 811				  GSWIP_PCE_PCTRL_0p(port));
 812	}
 813
 814	return 0;
 815}
 816
 817static int gswip_setup(struct dsa_switch *ds)
 818{
 819	struct gswip_priv *priv = ds->priv;
 820	unsigned int cpu_port = priv->hw_info->cpu_port;
 821	int i;
 822	int err;
 823
 824	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
 825	usleep_range(5000, 10000);
 826	gswip_switch_w(priv, 0, GSWIP_SWRES);
 827
 828	/* disable port fetch/store dma on all ports */
 829	for (i = 0; i < priv->hw_info->max_ports; i++) {
 830		gswip_port_disable(ds, i);
 831		gswip_port_vlan_filtering(ds, i, false, NULL);
 832	}
 833
 834	/* enable Switch */
 835	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
 836
 837	err = gswip_pce_load_microcode(priv);
 838	if (err) {
 839		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
 840		return err;
 841	}
 842
 843	/* Default unknown Broadcast/Multicast/Unicast port maps */
 844	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
 845	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
 846	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
 847
 848	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
 849	 * interoperability problem with this auto polling mechanism because
 850	 * their status registers think that the link is in a different state
 851	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
 852	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
 853	 * auto polling state machine consider the link being negotiated with
 854	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
 855	 * to the switch port being completely dead (RX and TX are both not
 856	 * working).
 857	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
 858	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
 859	 * it would work fine for a few minutes to hours and then stop, on
 860	 * other device it would no traffic could be sent or received at all.
 861	 * Testing shows that when PHY auto polling is disabled these problems
 862	 * go away.
 863	 */
 864	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
 865
 866	/* Configure the MDIO Clock 2.5 MHz */
 867	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
 868
 869	/* Disable the xMII interface and clear it's isolation bit */
 870	for (i = 0; i < priv->hw_info->max_ports; i++)
 871		gswip_mii_mask_cfg(priv,
 872				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
 873				   0, i);
 874
 875	/* enable special tag insertion on cpu port */
 876	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
 877			  GSWIP_FDMA_PCTRLp(cpu_port));
 878
 879	/* accept special tag in ingress direction */
 880	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
 881			  GSWIP_PCE_PCTRL_0p(cpu_port));
 882
 883	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
 884			  GSWIP_BM_QUEUE_GCTRL);
 885
 886	/* VLAN aware Switching */
 887	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
 888
 889	/* Flush MAC Table */
 890	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
 891
 892	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
 893				     GSWIP_PCE_GCTRL_0_MTFL);
 894	if (err) {
 895		dev_err(priv->dev, "MAC flushing didn't finish\n");
 896		return err;
 897	}
 898
 899	ds->mtu_enforcement_ingress = true;
 900
 901	gswip_port_enable(ds, cpu_port, NULL);
 902
 903	ds->configure_vlan_while_not_filtering = false;
 904
 905	return 0;
 906}
 907
 908static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
 909						    int port,
 910						    enum dsa_tag_protocol mp)
 911{
 912	return DSA_TAG_PROTO_GSWIP;
 913}
 914
 915static int gswip_vlan_active_create(struct gswip_priv *priv,
 916				    struct net_device *bridge,
 917				    int fid, u16 vid)
 918{
 919	struct gswip_pce_table_entry vlan_active = {0,};
 920	unsigned int max_ports = priv->hw_info->max_ports;
 921	int idx = -1;
 922	int err;
 923	int i;
 924
 925	/* Look for a free slot */
 926	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 927		if (!priv->vlans[i].bridge) {
 928			idx = i;
 929			break;
 930		}
 931	}
 932
 933	if (idx == -1)
 934		return -ENOSPC;
 935
 936	if (fid == -1)
 937		fid = idx;
 938
 939	vlan_active.index = idx;
 940	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 941	vlan_active.key[0] = vid;
 942	vlan_active.val[0] = fid;
 943	vlan_active.valid = true;
 944
 945	err = gswip_pce_table_entry_write(priv, &vlan_active);
 946	if (err) {
 947		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
 948		return err;
 949	}
 950
 951	priv->vlans[idx].bridge = bridge;
 952	priv->vlans[idx].vid = vid;
 953	priv->vlans[idx].fid = fid;
 954
 955	return idx;
 956}
 957
 958static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
 959{
 960	struct gswip_pce_table_entry vlan_active = {0,};
 961	int err;
 962
 963	vlan_active.index = idx;
 964	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 965	vlan_active.valid = false;
 966	err = gswip_pce_table_entry_write(priv, &vlan_active);
 967	if (err)
 968		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
 969	priv->vlans[idx].bridge = NULL;
 970
 971	return err;
 972}
 973
 974static int gswip_vlan_add_unaware(struct gswip_priv *priv,
 975				  struct net_device *bridge, int port)
 976{
 977	struct gswip_pce_table_entry vlan_mapping = {0,};
 978	unsigned int max_ports = priv->hw_info->max_ports;
 979	unsigned int cpu_port = priv->hw_info->cpu_port;
 980	bool active_vlan_created = false;
 981	int idx = -1;
 982	int i;
 983	int err;
 984
 985	/* Check if there is already a page for this bridge */
 986	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 987		if (priv->vlans[i].bridge == bridge) {
 988			idx = i;
 989			break;
 990		}
 991	}
 992
 993	/* If this bridge is not programmed yet, add a Active VLAN table
 994	 * entry in a free slot and prepare the VLAN mapping table entry.
 995	 */
 996	if (idx == -1) {
 997		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
 998		if (idx < 0)
 999			return idx;
1000		active_vlan_created = true;
1001
1002		vlan_mapping.index = idx;
1003		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1004		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1005		vlan_mapping.val[0] = 0;
1006	} else {
1007		/* Read the existing VLAN mapping entry from the switch */
1008		vlan_mapping.index = idx;
1009		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1010		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1011		if (err) {
1012			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1013				err);
1014			return err;
1015		}
1016	}
1017
1018	/* Update the VLAN mapping entry and write it to the switch */
1019	vlan_mapping.val[1] |= BIT(cpu_port);
1020	vlan_mapping.val[1] |= BIT(port);
1021	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1022	if (err) {
1023		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1024		/* In case an Active VLAN was creaetd delete it again */
1025		if (active_vlan_created)
1026			gswip_vlan_active_remove(priv, idx);
1027		return err;
1028	}
1029
1030	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1031	return 0;
1032}
1033
1034static int gswip_vlan_add_aware(struct gswip_priv *priv,
1035				struct net_device *bridge, int port,
1036				u16 vid, bool untagged,
1037				bool pvid)
1038{
1039	struct gswip_pce_table_entry vlan_mapping = {0,};
1040	unsigned int max_ports = priv->hw_info->max_ports;
1041	unsigned int cpu_port = priv->hw_info->cpu_port;
1042	bool active_vlan_created = false;
1043	int idx = -1;
1044	int fid = -1;
1045	int i;
1046	int err;
1047
1048	/* Check if there is already a page for this bridge */
1049	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1050		if (priv->vlans[i].bridge == bridge) {
1051			if (fid != -1 && fid != priv->vlans[i].fid)
1052				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1053			fid = priv->vlans[i].fid;
1054			if (priv->vlans[i].vid == vid) {
1055				idx = i;
1056				break;
1057			}
1058		}
1059	}
1060
1061	/* If this bridge is not programmed yet, add a Active VLAN table
1062	 * entry in a free slot and prepare the VLAN mapping table entry.
1063	 */
1064	if (idx == -1) {
1065		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1066		if (idx < 0)
1067			return idx;
1068		active_vlan_created = true;
1069
1070		vlan_mapping.index = idx;
1071		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1073		vlan_mapping.val[0] = vid;
1074	} else {
1075		/* Read the existing VLAN mapping entry from the switch */
1076		vlan_mapping.index = idx;
1077		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1078		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1079		if (err) {
1080			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1081				err);
1082			return err;
1083		}
1084	}
1085
1086	vlan_mapping.val[0] = vid;
1087	/* Update the VLAN mapping entry and write it to the switch */
1088	vlan_mapping.val[1] |= BIT(cpu_port);
1089	vlan_mapping.val[2] |= BIT(cpu_port);
1090	vlan_mapping.val[1] |= BIT(port);
1091	if (untagged)
1092		vlan_mapping.val[2] &= ~BIT(port);
1093	else
1094		vlan_mapping.val[2] |= BIT(port);
1095	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1096	if (err) {
1097		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1098		/* In case an Active VLAN was creaetd delete it again */
1099		if (active_vlan_created)
1100			gswip_vlan_active_remove(priv, idx);
1101		return err;
1102	}
1103
1104	if (pvid)
1105		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1106
1107	return 0;
1108}
1109
1110static int gswip_vlan_remove(struct gswip_priv *priv,
1111			     struct net_device *bridge, int port,
1112			     u16 vid, bool pvid, bool vlan_aware)
1113{
1114	struct gswip_pce_table_entry vlan_mapping = {0,};
1115	unsigned int max_ports = priv->hw_info->max_ports;
1116	unsigned int cpu_port = priv->hw_info->cpu_port;
1117	int idx = -1;
1118	int i;
1119	int err;
1120
1121	/* Check if there is already a page for this bridge */
1122	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1123		if (priv->vlans[i].bridge == bridge &&
1124		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1125			idx = i;
1126			break;
1127		}
1128	}
1129
1130	if (idx == -1) {
1131		dev_err(priv->dev, "bridge to leave does not exists\n");
1132		return -ENOENT;
1133	}
1134
1135	vlan_mapping.index = idx;
1136	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1137	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1138	if (err) {
1139		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1140		return err;
1141	}
1142
1143	vlan_mapping.val[1] &= ~BIT(port);
1144	vlan_mapping.val[2] &= ~BIT(port);
1145	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1146	if (err) {
1147		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1148		return err;
1149	}
1150
1151	/* In case all ports are removed from the bridge, remove the VLAN */
1152	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1153		err = gswip_vlan_active_remove(priv, idx);
1154		if (err) {
1155			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1156				err);
1157			return err;
1158		}
1159	}
1160
1161	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1162	if (pvid)
1163		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1164
1165	return 0;
1166}
1167
1168static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1169				  struct dsa_bridge bridge,
1170				  bool *tx_fwd_offload,
1171				  struct netlink_ext_ack *extack)
1172{
1173	struct net_device *br = bridge.dev;
1174	struct gswip_priv *priv = ds->priv;
1175	int err;
1176
1177	/* When the bridge uses VLAN filtering we have to configure VLAN
1178	 * specific bridges. No bridge is configured here.
1179	 */
1180	if (!br_vlan_enabled(br)) {
1181		err = gswip_vlan_add_unaware(priv, br, port);
1182		if (err)
1183			return err;
1184		priv->port_vlan_filter &= ~BIT(port);
1185	} else {
1186		priv->port_vlan_filter |= BIT(port);
1187	}
1188	return gswip_add_single_port_br(priv, port, false);
1189}
1190
1191static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1192				    struct dsa_bridge bridge)
1193{
1194	struct net_device *br = bridge.dev;
1195	struct gswip_priv *priv = ds->priv;
1196
1197	gswip_add_single_port_br(priv, port, true);
1198
1199	/* When the bridge uses VLAN filtering we have to configure VLAN
1200	 * specific bridges. No bridge is configured here.
1201	 */
1202	if (!br_vlan_enabled(br))
1203		gswip_vlan_remove(priv, br, port, 0, true, false);
1204}
1205
1206static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1207				   const struct switchdev_obj_port_vlan *vlan,
1208				   struct netlink_ext_ack *extack)
1209{
1210	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1211	struct gswip_priv *priv = ds->priv;
1212	unsigned int max_ports = priv->hw_info->max_ports;
1213	int pos = max_ports;
1214	int i, idx = -1;
1215
1216	/* We only support VLAN filtering on bridges */
1217	if (!dsa_is_cpu_port(ds, port) && !bridge)
1218		return -EOPNOTSUPP;
1219
1220	/* Check if there is already a page for this VLAN */
1221	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1222		if (priv->vlans[i].bridge == bridge &&
1223		    priv->vlans[i].vid == vlan->vid) {
1224			idx = i;
1225			break;
1226		}
1227	}
1228
1229	/* If this VLAN is not programmed yet, we have to reserve
1230	 * one entry in the VLAN table. Make sure we start at the
1231	 * next position round.
1232	 */
1233	if (idx == -1) {
1234		/* Look for a free slot */
1235		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1236			if (!priv->vlans[pos].bridge) {
1237				idx = pos;
1238				pos++;
1239				break;
1240			}
1241		}
1242
1243		if (idx == -1) {
1244			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1245			return -ENOSPC;
1246		}
1247	}
1248
1249	return 0;
1250}
1251
1252static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1253			       const struct switchdev_obj_port_vlan *vlan,
1254			       struct netlink_ext_ack *extack)
1255{
1256	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1257	struct gswip_priv *priv = ds->priv;
1258	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1259	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1260	int err;
1261
1262	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1263	if (err)
1264		return err;
1265
1266	/* We have to receive all packets on the CPU port and should not
1267	 * do any VLAN filtering here. This is also called with bridge
1268	 * NULL and then we do not know for which bridge to configure
1269	 * this.
1270	 */
1271	if (dsa_is_cpu_port(ds, port))
1272		return 0;
1273
1274	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1275				    untagged, pvid);
1276}
1277
1278static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1279			       const struct switchdev_obj_port_vlan *vlan)
1280{
1281	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1282	struct gswip_priv *priv = ds->priv;
1283	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1284
1285	/* We have to receive all packets on the CPU port and should not
1286	 * do any VLAN filtering here. This is also called with bridge
1287	 * NULL and then we do not know for which bridge to configure
1288	 * this.
1289	 */
1290	if (dsa_is_cpu_port(ds, port))
1291		return 0;
1292
1293	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1294}
1295
1296static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1297{
1298	struct gswip_priv *priv = ds->priv;
1299	struct gswip_pce_table_entry mac_bridge = {0,};
1300	int i;
1301	int err;
1302
1303	for (i = 0; i < 2048; i++) {
1304		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1305		mac_bridge.index = i;
1306
1307		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1308		if (err) {
1309			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1310				err);
1311			return;
1312		}
1313
1314		if (!mac_bridge.valid)
1315			continue;
1316
1317		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1318			continue;
1319
1320		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1321			continue;
1322
1323		mac_bridge.valid = false;
1324		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1325		if (err) {
1326			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1327				err);
1328			return;
1329		}
1330	}
1331}
1332
1333static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1334{
1335	struct gswip_priv *priv = ds->priv;
1336	u32 stp_state;
1337
1338	switch (state) {
1339	case BR_STATE_DISABLED:
1340		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1341				  GSWIP_SDMA_PCTRLp(port));
1342		return;
1343	case BR_STATE_BLOCKING:
1344	case BR_STATE_LISTENING:
1345		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1346		break;
1347	case BR_STATE_LEARNING:
1348		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1349		break;
1350	case BR_STATE_FORWARDING:
1351		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1352		break;
1353	default:
1354		dev_err(priv->dev, "invalid STP state: %d\n", state);
1355		return;
1356	}
1357
1358	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1359			  GSWIP_SDMA_PCTRLp(port));
1360	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1361			  GSWIP_PCE_PCTRL_0p(port));
1362}
1363
1364static int gswip_port_fdb(struct dsa_switch *ds, int port,
1365			  const unsigned char *addr, u16 vid, bool add)
1366{
1367	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1368	struct gswip_priv *priv = ds->priv;
1369	struct gswip_pce_table_entry mac_bridge = {0,};
1370	unsigned int max_ports = priv->hw_info->max_ports;
1371	int fid = -1;
1372	int i;
1373	int err;
1374
1375	if (!bridge)
1376		return -EINVAL;
1377
1378	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1379		if (priv->vlans[i].bridge == bridge) {
1380			fid = priv->vlans[i].fid;
1381			break;
1382		}
1383	}
1384
1385	if (fid == -1) {
1386		dev_err(priv->dev, "Port not part of a bridge\n");
1387		return -EINVAL;
1388	}
1389
1390	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1391	mac_bridge.key_mode = true;
1392	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1393	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1394	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1395	mac_bridge.key[3] = fid;
1396	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1397	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1398	mac_bridge.valid = add;
1399
1400	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1401	if (err)
1402		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1403
1404	return err;
1405}
1406
1407static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1408			      const unsigned char *addr, u16 vid,
1409			      struct dsa_db db)
1410{
1411	return gswip_port_fdb(ds, port, addr, vid, true);
1412}
1413
1414static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1415			      const unsigned char *addr, u16 vid,
1416			      struct dsa_db db)
1417{
1418	return gswip_port_fdb(ds, port, addr, vid, false);
1419}
1420
1421static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1422			       dsa_fdb_dump_cb_t *cb, void *data)
1423{
1424	struct gswip_priv *priv = ds->priv;
1425	struct gswip_pce_table_entry mac_bridge = {0,};
1426	unsigned char addr[6];
1427	int i;
1428	int err;
1429
1430	for (i = 0; i < 2048; i++) {
1431		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1432		mac_bridge.index = i;
1433
1434		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1435		if (err) {
1436			dev_err(priv->dev,
1437				"failed to read mac bridge entry %d: %d\n",
1438				i, err);
1439			return err;
1440		}
1441
1442		if (!mac_bridge.valid)
1443			continue;
1444
1445		addr[5] = mac_bridge.key[0] & 0xff;
1446		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1447		addr[3] = mac_bridge.key[1] & 0xff;
1448		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1449		addr[1] = mac_bridge.key[2] & 0xff;
1450		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1451		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1452			if (mac_bridge.val[0] & BIT(port)) {
1453				err = cb(addr, 0, true, data);
1454				if (err)
1455					return err;
1456			}
1457		} else {
1458			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1459				err = cb(addr, 0, false, data);
1460				if (err)
1461					return err;
1462			}
1463		}
1464	}
1465	return 0;
1466}
1467
1468static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1469{
1470	/* Includes 8 bytes for special header. */
1471	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1472}
1473
1474static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1475{
1476	struct gswip_priv *priv = ds->priv;
1477	int cpu_port = priv->hw_info->cpu_port;
1478
1479	/* CPU port always has maximum mtu of user ports, so use it to set
1480	 * switch frame size, including 8 byte special header.
1481	 */
1482	if (port == cpu_port) {
1483		new_mtu += 8;
1484		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1485			       GSWIP_MAC_FLEN);
1486	}
1487
1488	/* Enable MLEN for ports with non-standard MTUs, including the special
1489	 * header on the CPU port added above.
1490	 */
1491	if (new_mtu != ETH_DATA_LEN)
1492		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1493				  GSWIP_MAC_CTRL_2p(port));
1494	else
1495		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1496				  GSWIP_MAC_CTRL_2p(port));
1497
1498	return 0;
1499}
1500
1501static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1502					  struct phylink_config *config)
1503{
1504	switch (port) {
1505	case 0:
1506	case 1:
1507		phy_interface_set_rgmii(config->supported_interfaces);
1508		__set_bit(PHY_INTERFACE_MODE_MII,
1509			  config->supported_interfaces);
1510		__set_bit(PHY_INTERFACE_MODE_REVMII,
1511			  config->supported_interfaces);
1512		__set_bit(PHY_INTERFACE_MODE_RMII,
1513			  config->supported_interfaces);
1514		break;
1515
1516	case 2:
1517	case 3:
1518	case 4:
1519		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1520			  config->supported_interfaces);
1521		break;
1522
1523	case 5:
1524		phy_interface_set_rgmii(config->supported_interfaces);
1525		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1526			  config->supported_interfaces);
1527		break;
1528	}
1529
1530	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1531		MAC_10 | MAC_100 | MAC_1000;
1532}
1533
1534static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1535					  struct phylink_config *config)
1536{
1537	switch (port) {
1538	case 0:
1539		phy_interface_set_rgmii(config->supported_interfaces);
1540		__set_bit(PHY_INTERFACE_MODE_GMII,
1541			  config->supported_interfaces);
1542		__set_bit(PHY_INTERFACE_MODE_RMII,
1543			  config->supported_interfaces);
1544		break;
1545
1546	case 1:
1547	case 2:
1548	case 3:
1549	case 4:
1550		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1551			  config->supported_interfaces);
1552		break;
1553
1554	case 5:
1555		phy_interface_set_rgmii(config->supported_interfaces);
1556		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1557			  config->supported_interfaces);
1558		__set_bit(PHY_INTERFACE_MODE_RMII,
1559			  config->supported_interfaces);
1560		break;
1561	}
1562
1563	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1564		MAC_10 | MAC_100 | MAC_1000;
1565}
1566
1567static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1568{
1569	u32 mdio_phy;
1570
1571	if (link)
1572		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1573	else
1574		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1575
1576	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1577			GSWIP_MDIO_PHYp(port));
1578}
1579
1580static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1581				 phy_interface_t interface)
1582{
1583	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1584
1585	switch (speed) {
1586	case SPEED_10:
1587		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1588
1589		if (interface == PHY_INTERFACE_MODE_RMII)
1590			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1591		else
1592			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1593
1594		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1595		break;
1596
1597	case SPEED_100:
1598		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1599
1600		if (interface == PHY_INTERFACE_MODE_RMII)
1601			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1602		else
1603			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1604
1605		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1606		break;
1607
1608	case SPEED_1000:
1609		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1610
1611		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1612
1613		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1614		break;
1615	}
1616
1617	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1618			GSWIP_MDIO_PHYp(port));
1619	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1620	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1621			  GSWIP_MAC_CTRL_0p(port));
1622}
1623
1624static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1625{
1626	u32 mac_ctrl_0, mdio_phy;
1627
1628	if (duplex == DUPLEX_FULL) {
1629		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1630		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1631	} else {
1632		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1633		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1634	}
1635
1636	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1637			  GSWIP_MAC_CTRL_0p(port));
1638	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1639			GSWIP_MDIO_PHYp(port));
1640}
1641
1642static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1643				 bool tx_pause, bool rx_pause)
1644{
1645	u32 mac_ctrl_0, mdio_phy;
1646
1647	if (tx_pause && rx_pause) {
1648		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1649		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1650			   GSWIP_MDIO_PHY_FCONRX_EN;
1651	} else if (tx_pause) {
1652		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1653		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1654			   GSWIP_MDIO_PHY_FCONRX_DIS;
1655	} else if (rx_pause) {
1656		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1657		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1658			   GSWIP_MDIO_PHY_FCONRX_EN;
1659	} else {
1660		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1661		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1662			   GSWIP_MDIO_PHY_FCONRX_DIS;
1663	}
1664
1665	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1666			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1667	gswip_mdio_mask(priv,
1668			GSWIP_MDIO_PHY_FCONTX_MASK |
1669			GSWIP_MDIO_PHY_FCONRX_MASK,
1670			mdio_phy, GSWIP_MDIO_PHYp(port));
1671}
1672
1673static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1674				     unsigned int mode,
1675				     const struct phylink_link_state *state)
1676{
1677	struct gswip_priv *priv = ds->priv;
1678	u32 miicfg = 0;
1679
1680	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1681
1682	switch (state->interface) {
1683	case PHY_INTERFACE_MODE_MII:
1684	case PHY_INTERFACE_MODE_INTERNAL:
1685		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1686		break;
1687	case PHY_INTERFACE_MODE_REVMII:
1688		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1689		break;
1690	case PHY_INTERFACE_MODE_RMII:
1691		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1692		break;
1693	case PHY_INTERFACE_MODE_RGMII:
1694	case PHY_INTERFACE_MODE_RGMII_ID:
1695	case PHY_INTERFACE_MODE_RGMII_RXID:
1696	case PHY_INTERFACE_MODE_RGMII_TXID:
1697		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1698		break;
1699	case PHY_INTERFACE_MODE_GMII:
1700		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1701		break;
1702	default:
1703		dev_err(ds->dev,
1704			"Unsupported interface: %d\n", state->interface);
1705		return;
1706	}
1707
1708	gswip_mii_mask_cfg(priv,
1709			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1710			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1711			   miicfg, port);
1712
1713	switch (state->interface) {
1714	case PHY_INTERFACE_MODE_RGMII_ID:
1715		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1716					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1717		break;
1718	case PHY_INTERFACE_MODE_RGMII_RXID:
1719		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1720		break;
1721	case PHY_INTERFACE_MODE_RGMII_TXID:
1722		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1723		break;
1724	default:
1725		break;
1726	}
1727}
1728
1729static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1730					unsigned int mode,
1731					phy_interface_t interface)
1732{
1733	struct gswip_priv *priv = ds->priv;
1734
1735	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1736
1737	if (!dsa_is_cpu_port(ds, port))
1738		gswip_port_set_link(priv, port, false);
1739}
1740
1741static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1742				      unsigned int mode,
1743				      phy_interface_t interface,
1744				      struct phy_device *phydev,
1745				      int speed, int duplex,
1746				      bool tx_pause, bool rx_pause)
1747{
1748	struct gswip_priv *priv = ds->priv;
1749
1750	if (!dsa_is_cpu_port(ds, port)) {
1751		gswip_port_set_link(priv, port, true);
1752		gswip_port_set_speed(priv, port, speed, interface);
1753		gswip_port_set_duplex(priv, port, duplex);
1754		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1755	}
1756
1757	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1758}
1759
1760static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1761			      uint8_t *data)
1762{
1763	int i;
1764
1765	if (stringset != ETH_SS_STATS)
1766		return;
1767
1768	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1769		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1770}
1771
1772static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1773				    u32 index)
1774{
1775	u32 result;
1776	int err;
1777
1778	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1779	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1780				GSWIP_BM_RAM_CTRL_OPMOD,
1781			      table | GSWIP_BM_RAM_CTRL_BAS,
1782			      GSWIP_BM_RAM_CTRL);
1783
1784	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1785				     GSWIP_BM_RAM_CTRL_BAS);
1786	if (err) {
1787		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1788			table, index);
1789		return 0;
1790	}
1791
1792	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1793	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1794
1795	return result;
1796}
1797
1798static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1799				    uint64_t *data)
1800{
1801	struct gswip_priv *priv = ds->priv;
1802	const struct gswip_rmon_cnt_desc *rmon_cnt;
1803	int i;
1804	u64 high;
1805
1806	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1807		rmon_cnt = &gswip_rmon_cnt[i];
1808
1809		data[i] = gswip_bcm_ram_entry_read(priv, port,
1810						   rmon_cnt->offset);
1811		if (rmon_cnt->size == 2) {
1812			high = gswip_bcm_ram_entry_read(priv, port,
1813							rmon_cnt->offset + 1);
1814			data[i] |= high << 32;
1815		}
1816	}
1817}
1818
1819static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1820{
1821	if (sset != ETH_SS_STATS)
1822		return 0;
1823
1824	return ARRAY_SIZE(gswip_rmon_cnt);
1825}
1826
1827static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1828	.get_tag_protocol	= gswip_get_tag_protocol,
1829	.setup			= gswip_setup,
1830	.port_enable		= gswip_port_enable,
1831	.port_disable		= gswip_port_disable,
1832	.port_bridge_join	= gswip_port_bridge_join,
1833	.port_bridge_leave	= gswip_port_bridge_leave,
1834	.port_fast_age		= gswip_port_fast_age,
1835	.port_vlan_filtering	= gswip_port_vlan_filtering,
1836	.port_vlan_add		= gswip_port_vlan_add,
1837	.port_vlan_del		= gswip_port_vlan_del,
1838	.port_stp_state_set	= gswip_port_stp_state_set,
1839	.port_fdb_add		= gswip_port_fdb_add,
1840	.port_fdb_del		= gswip_port_fdb_del,
1841	.port_fdb_dump		= gswip_port_fdb_dump,
1842	.port_change_mtu	= gswip_port_change_mtu,
1843	.port_max_mtu		= gswip_port_max_mtu,
1844	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1845	.phylink_mac_config	= gswip_phylink_mac_config,
1846	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1847	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1848	.get_strings		= gswip_get_strings,
1849	.get_ethtool_stats	= gswip_get_ethtool_stats,
1850	.get_sset_count		= gswip_get_sset_count,
1851};
1852
1853static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1854	.get_tag_protocol	= gswip_get_tag_protocol,
1855	.setup			= gswip_setup,
1856	.port_enable		= gswip_port_enable,
1857	.port_disable		= gswip_port_disable,
1858	.port_bridge_join	= gswip_port_bridge_join,
1859	.port_bridge_leave	= gswip_port_bridge_leave,
1860	.port_fast_age		= gswip_port_fast_age,
1861	.port_vlan_filtering	= gswip_port_vlan_filtering,
1862	.port_vlan_add		= gswip_port_vlan_add,
1863	.port_vlan_del		= gswip_port_vlan_del,
1864	.port_stp_state_set	= gswip_port_stp_state_set,
1865	.port_fdb_add		= gswip_port_fdb_add,
1866	.port_fdb_del		= gswip_port_fdb_del,
1867	.port_fdb_dump		= gswip_port_fdb_dump,
1868	.port_change_mtu	= gswip_port_change_mtu,
1869	.port_max_mtu		= gswip_port_max_mtu,
1870	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1871	.phylink_mac_config	= gswip_phylink_mac_config,
1872	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1873	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1874	.get_strings		= gswip_get_strings,
1875	.get_ethtool_stats	= gswip_get_ethtool_stats,
1876	.get_sset_count		= gswip_get_sset_count,
1877};
1878
1879static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1880	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1881	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1882};
1883
1884static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1885	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1886	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1887};
1888
1889static const struct xway_gphy_match_data xrx300_gphy_data = {
1890	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1891	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1892};
1893
1894static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1895	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1896	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1897	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1898	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1899	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1900	{},
1901};
1902
1903static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1904{
1905	struct device *dev = priv->dev;
1906	const struct firmware *fw;
1907	void *fw_addr;
1908	dma_addr_t dma_addr;
1909	dma_addr_t dev_addr;
1910	size_t size;
1911	int ret;
1912
1913	ret = clk_prepare_enable(gphy_fw->clk_gate);
1914	if (ret)
1915		return ret;
1916
1917	reset_control_assert(gphy_fw->reset);
1918
1919	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1920	 * Without this some users are observing that the PHY is not coming up
1921	 * on the MDIO bus.
1922	 */
1923	msleep(200);
1924
1925	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1926	if (ret) {
1927		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1928			gphy_fw->fw_name, ret);
1929		return ret;
1930	}
1931
1932	/* GPHY cores need the firmware code in a persistent and contiguous
1933	 * memory area with a 16 kB boundary aligned start address.
1934	 */
1935	size = fw->size + XRX200_GPHY_FW_ALIGN;
1936
1937	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1938	if (fw_addr) {
1939		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1940		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1941		memcpy(fw_addr, fw->data, fw->size);
1942	} else {
1943		dev_err(dev, "failed to alloc firmware memory\n");
1944		release_firmware(fw);
1945		return -ENOMEM;
1946	}
1947
1948	release_firmware(fw);
1949
1950	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1951	if (ret)
1952		return ret;
1953
1954	reset_control_deassert(gphy_fw->reset);
1955
1956	return ret;
1957}
1958
1959static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1960			       struct gswip_gphy_fw *gphy_fw,
1961			       struct device_node *gphy_fw_np, int i)
1962{
1963	struct device *dev = priv->dev;
1964	u32 gphy_mode;
1965	int ret;
1966	char gphyname[10];
1967
1968	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1969
1970	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1971	if (IS_ERR(gphy_fw->clk_gate)) {
1972		dev_err(dev, "Failed to lookup gate clock\n");
1973		return PTR_ERR(gphy_fw->clk_gate);
1974	}
1975
1976	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1977	if (ret)
1978		return ret;
1979
1980	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1981	/* Default to GE mode */
1982	if (ret)
1983		gphy_mode = GPHY_MODE_GE;
1984
1985	switch (gphy_mode) {
1986	case GPHY_MODE_FE:
1987		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1988		break;
1989	case GPHY_MODE_GE:
1990		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1991		break;
1992	default:
1993		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1994		return -EINVAL;
1995	}
1996
1997	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1998	if (IS_ERR(gphy_fw->reset))
1999		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
2000				     "Failed to lookup gphy reset\n");
2001
2002	return gswip_gphy_fw_load(priv, gphy_fw);
2003}
2004
2005static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2006				 struct gswip_gphy_fw *gphy_fw)
2007{
2008	int ret;
2009
2010	/* check if the device was fully probed */
2011	if (!gphy_fw->fw_name)
2012		return;
2013
2014	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2015	if (ret)
2016		dev_err(priv->dev, "can not reset GPHY FW pointer");
2017
2018	clk_disable_unprepare(gphy_fw->clk_gate);
2019
2020	reset_control_put(gphy_fw->reset);
2021}
2022
2023static int gswip_gphy_fw_list(struct gswip_priv *priv,
2024			      struct device_node *gphy_fw_list_np, u32 version)
2025{
2026	struct device *dev = priv->dev;
2027	struct device_node *gphy_fw_np;
2028	const struct of_device_id *match;
2029	int err;
2030	int i = 0;
2031
2032	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2033	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2034	 * needs a different GPHY firmware.
2035	 */
2036	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2037		switch (version) {
2038		case GSWIP_VERSION_2_0:
2039			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2040			break;
2041		case GSWIP_VERSION_2_1:
2042			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2043			break;
2044		default:
2045			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2046			return -ENOENT;
2047		}
2048	}
2049
2050	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2051	if (match && match->data)
2052		priv->gphy_fw_name_cfg = match->data;
2053
2054	if (!priv->gphy_fw_name_cfg) {
2055		dev_err(dev, "GPHY compatible type not supported");
2056		return -ENOENT;
2057	}
2058
2059	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2060	if (!priv->num_gphy_fw)
2061		return -ENOENT;
2062
2063	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2064							   "lantiq,rcu");
2065	if (IS_ERR(priv->rcu_regmap))
2066		return PTR_ERR(priv->rcu_regmap);
2067
2068	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2069					   sizeof(*priv->gphy_fw),
2070					   GFP_KERNEL | __GFP_ZERO);
2071	if (!priv->gphy_fw)
2072		return -ENOMEM;
2073
2074	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2075		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2076					  gphy_fw_np, i);
2077		if (err) {
2078			of_node_put(gphy_fw_np);
2079			goto remove_gphy;
2080		}
2081		i++;
2082	}
2083
2084	/* The standalone PHY11G requires 300ms to be fully
2085	 * initialized and ready for any MDIO communication after being
2086	 * taken out of reset. For the SoC-internal GPHY variant there
2087	 * is no (known) documentation for the minimum time after a
2088	 * reset. Use the same value as for the standalone variant as
2089	 * some users have reported internal PHYs not being detected
2090	 * without any delay.
2091	 */
2092	msleep(300);
2093
2094	return 0;
2095
2096remove_gphy:
2097	for (i = 0; i < priv->num_gphy_fw; i++)
2098		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2099	return err;
2100}
2101
2102static int gswip_probe(struct platform_device *pdev)
2103{
2104	struct device_node *np, *gphy_fw_np;
2105	struct device *dev = &pdev->dev;
2106	struct gswip_priv *priv;
2107	int err;
2108	int i;
2109	u32 version;
2110
2111	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2112	if (!priv)
2113		return -ENOMEM;
2114
2115	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2116	if (IS_ERR(priv->gswip))
2117		return PTR_ERR(priv->gswip);
2118
2119	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2120	if (IS_ERR(priv->mdio))
2121		return PTR_ERR(priv->mdio);
2122
2123	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2124	if (IS_ERR(priv->mii))
2125		return PTR_ERR(priv->mii);
2126
2127	priv->hw_info = of_device_get_match_data(dev);
2128	if (!priv->hw_info)
2129		return -EINVAL;
2130
2131	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2132	if (!priv->ds)
2133		return -ENOMEM;
2134
2135	priv->ds->dev = dev;
2136	priv->ds->num_ports = priv->hw_info->max_ports;
2137	priv->ds->priv = priv;
2138	priv->ds->ops = priv->hw_info->ops;
2139	priv->dev = dev;
2140	mutex_init(&priv->pce_table_lock);
2141	version = gswip_switch_r(priv, GSWIP_VERSION);
2142
2143	np = dev->of_node;
2144	switch (version) {
2145	case GSWIP_VERSION_2_0:
2146	case GSWIP_VERSION_2_1:
2147		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2148			return -EINVAL;
2149		break;
2150	case GSWIP_VERSION_2_2:
2151	case GSWIP_VERSION_2_2_ETC:
2152		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2153		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2154			return -EINVAL;
2155		break;
2156	default:
2157		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2158		return -ENOENT;
2159	}
2160
2161	/* bring up the mdio bus */
2162	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2163	if (gphy_fw_np) {
2164		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2165		of_node_put(gphy_fw_np);
2166		if (err) {
2167			dev_err(dev, "gphy fw probe failed\n");
2168			return err;
2169		}
2170	}
2171
2172	/* bring up the mdio bus */
2173	err = gswip_mdio(priv);
2174	if (err) {
2175		dev_err(dev, "mdio probe failed\n");
2176		goto gphy_fw_remove;
2177	}
2178
2179	err = dsa_register_switch(priv->ds);
2180	if (err) {
2181		dev_err(dev, "dsa switch register failed: %i\n", err);
2182		goto gphy_fw_remove;
2183	}
2184	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2185		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2186			priv->hw_info->cpu_port);
2187		err = -EINVAL;
2188		goto disable_switch;
2189	}
2190
2191	platform_set_drvdata(pdev, priv);
2192
2193	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2194		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2195		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2196	return 0;
2197
2198disable_switch:
2199	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2200	dsa_unregister_switch(priv->ds);
2201gphy_fw_remove:
2202	for (i = 0; i < priv->num_gphy_fw; i++)
2203		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2204	return err;
2205}
2206
2207static void gswip_remove(struct platform_device *pdev)
2208{
2209	struct gswip_priv *priv = platform_get_drvdata(pdev);
2210	int i;
2211
2212	if (!priv)
2213		return;
2214
2215	/* disable the switch */
2216	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2217
2218	dsa_unregister_switch(priv->ds);
2219
2220	for (i = 0; i < priv->num_gphy_fw; i++)
2221		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2222}
2223
2224static void gswip_shutdown(struct platform_device *pdev)
2225{
2226	struct gswip_priv *priv = platform_get_drvdata(pdev);
2227
2228	if (!priv)
2229		return;
2230
2231	dsa_switch_shutdown(priv->ds);
2232
2233	platform_set_drvdata(pdev, NULL);
2234}
2235
2236static const struct gswip_hw_info gswip_xrx200 = {
2237	.max_ports = 7,
2238	.cpu_port = 6,
2239	.ops = &gswip_xrx200_switch_ops,
2240};
2241
2242static const struct gswip_hw_info gswip_xrx300 = {
2243	.max_ports = 7,
2244	.cpu_port = 6,
2245	.ops = &gswip_xrx300_switch_ops,
2246};
2247
2248static const struct of_device_id gswip_of_match[] = {
2249	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2250	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2251	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2252	{},
2253};
2254MODULE_DEVICE_TABLE(of, gswip_of_match);
2255
2256static struct platform_driver gswip_driver = {
2257	.probe = gswip_probe,
2258	.remove_new = gswip_remove,
2259	.shutdown = gswip_shutdown,
2260	.driver = {
2261		.name = "gswip",
2262		.of_match_table = gswip_of_match,
2263	},
2264};
2265
2266module_platform_driver(gswip_driver);
2267
2268MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2269MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2270MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2271MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2272MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2273MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2274MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2275MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2276MODULE_LICENSE("GPL v2");