Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2005, Intec Automation Inc.
   4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/device.h>
   9#include <linux/errno.h>
  10#include <linux/mtd/spi-nor.h>
  11
  12#include "core.h"
  13
  14/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
  15#define USE_CLSR	BIT(0)
  16#define USE_CLPEF	BIT(1)
  17
  18#define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
  19#define SPINOR_OP_CLPEF		0x82	/* Clear program/erase failure flags */
  20#define SPINOR_OP_CYPRESS_DIE_ERASE		0x61	/* Chip (die) erase */
  21#define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
  22#define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
  23#define SPINOR_REG_CYPRESS_VREG			0x00800000
  24#define SPINOR_REG_CYPRESS_STR1			0x0
  25#define SPINOR_REG_CYPRESS_STR1V					\
  26	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
  27#define SPINOR_REG_CYPRESS_CFR1			0x2
  28#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN		BIT(1)	/* Quad Enable */
  29#define SPINOR_REG_CYPRESS_CFR2			0x3
  30#define SPINOR_REG_CYPRESS_CFR2V					\
  31	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
  32#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK	GENMASK(3, 0)
  33#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24	0xb
  34#define SPINOR_REG_CYPRESS_CFR2_ADRBYT		BIT(7)
  35#define SPINOR_REG_CYPRESS_CFR3			0x4
  36#define SPINOR_REG_CYPRESS_CFR3_PGSZ		BIT(4) /* Page size. */
  37#define SPINOR_REG_CYPRESS_CFR5			0x6
  38#define SPINOR_REG_CYPRESS_CFR5_BIT6		BIT(6)
  39#define SPINOR_REG_CYPRESS_CFR5_DDR		BIT(1)
  40#define SPINOR_REG_CYPRESS_CFR5_OPI		BIT(0)
  41#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN				\
  42	(SPINOR_REG_CYPRESS_CFR5_BIT6 |	SPINOR_REG_CYPRESS_CFR5_DDR |	\
  43	 SPINOR_REG_CYPRESS_CFR5_OPI)
  44#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS	SPINOR_REG_CYPRESS_CFR5_BIT6
  45#define SPINOR_OP_CYPRESS_RD_FAST		0xee
  46#define SPINOR_REG_CYPRESS_ARCFN		0x00000006
  47
  48/* Cypress SPI NOR flash operations. */
  49#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
  50	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
  51		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
  52		   SPI_MEM_OP_NO_DUMMY,					\
  53		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
  54
  55#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf)		\
  56	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
  57		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
  58		   SPI_MEM_OP_DUMMY(ndummy, 0),				\
  59		   SPI_MEM_OP_DATA_IN(1, buf, 0))
  60
  61#define SPANSION_OP(opcode)						\
  62	SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),				\
  63		   SPI_MEM_OP_NO_ADDR,					\
  64		   SPI_MEM_OP_NO_DUMMY,					\
  65		   SPI_MEM_OP_NO_DATA)
  66
  67/**
  68 * struct spansion_nor_params - Spansion private parameters.
  69 * @clsr:	Clear Status Register or Clear Program and Erase Failure Flag
  70 *		opcode.
  71 */
  72struct spansion_nor_params {
  73	u8 clsr;
  74};
  75
  76/**
  77 * spansion_nor_clear_sr() - Clear the Status Register.
  78 * @nor:	pointer to 'struct spi_nor'.
  79 */
  80static void spansion_nor_clear_sr(struct spi_nor *nor)
  81{
  82	const struct spansion_nor_params *priv_params = nor->params->priv;
  83	int ret;
  84
  85	if (nor->spimem) {
  86		struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
  87
  88		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
  89
  90		ret = spi_mem_exec_op(nor->spimem, &op);
  91	} else {
  92		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
  93						       NULL, 0);
  94	}
  95
  96	if (ret)
  97		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
  98}
  99
 100static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
 101{
 102	struct spi_nor_flash_parameter *params = nor->params;
 103	struct spi_mem_op op =
 104		CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
 105					  0, nor->bouncebuf);
 106	int ret;
 107
 108	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
 109		op.dummy.nbytes = params->rdsr_dummy;
 110		op.data.nbytes = 2;
 111	}
 112
 113	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 114	if (ret)
 115		return ret;
 116
 117	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
 118		if (nor->bouncebuf[0] & SR_E_ERR)
 119			dev_err(nor->dev, "Erase Error occurred\n");
 120		else
 121			dev_err(nor->dev, "Programming Error occurred\n");
 122
 123		spansion_nor_clear_sr(nor);
 124
 125		ret = spi_nor_write_disable(nor);
 126		if (ret)
 127			return ret;
 128
 129		return -EIO;
 130	}
 131
 132	return !(nor->bouncebuf[0] & SR_WIP);
 133}
 134/**
 135 * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
 136 * using Read Any Register command to see if the whole flash is ready for new
 137 * commands and clear it if there are any errors.
 138 * @nor:	pointer to 'struct spi_nor'.
 139 *
 140 * Return: 1 if ready, 0 if not ready, -errno on errors.
 141 */
 142static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
 143{
 144	struct spi_nor_flash_parameter *params = nor->params;
 145	u64 addr;
 146	int ret;
 147	u8 i;
 148
 149	for (i = 0; i < params->n_dice; i++) {
 150		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
 151		ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
 152		if (ret < 0)
 153			return ret;
 154		else if (ret == 0)
 155			return 0;
 156	}
 157
 158	return 1;
 159}
 160
 161static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
 162{
 163	struct spi_mem_op op;
 164	u8 *buf = nor->bouncebuf;
 165	int ret;
 166	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
 167
 168	op = (struct spi_mem_op)
 169		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
 170
 171	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 172	if (ret)
 173		return ret;
 174
 175	/* Use 24 dummy cycles for memory array reads. */
 176	*buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
 177	*buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
 178			   SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
 179	op = (struct spi_mem_op)
 180		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
 181
 182	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
 183	if (ret)
 184		return ret;
 185
 186	nor->read_dummy = 24;
 187
 188	return 0;
 189}
 190
 191static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
 192{
 193	struct spi_mem_op op;
 194	u8 *buf = nor->bouncebuf;
 195
 196	/* Set the octal and DTR enable bits. */
 197	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
 198	op = (struct spi_mem_op)
 199		CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
 200					  addr, 1, buf);
 201
 202	return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
 203}
 204
 205static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
 206{
 207	const struct spi_nor_flash_parameter *params = nor->params;
 208	u8 *buf = nor->bouncebuf;
 209	u64 addr;
 210	int i, ret;
 211
 212	for (i = 0; i < params->n_dice; i++) {
 213		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
 214		ret = cypress_nor_set_memlat(nor, addr);
 215		if (ret)
 216			return ret;
 217
 218		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
 219		ret = cypress_nor_set_octal_dtr_bits(nor, addr);
 220		if (ret)
 221			return ret;
 222	}
 223
 224	/* Read flash ID to make sure the switch was successful. */
 225	ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
 226			      SNOR_PROTO_8_8_8_DTR);
 227	if (ret) {
 228		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
 229		return ret;
 230	}
 231
 232	if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
 233		return -EINVAL;
 234
 235	return 0;
 236}
 237
 238static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
 239{
 240	struct spi_mem_op op;
 241	u8 *buf = nor->bouncebuf;
 242
 243	/*
 244	 * The register is 1-byte wide, but 1-byte transactions are not allowed
 245	 * in 8D-8D-8D mode. Since there is no register at the next location,
 246	 * just initialize the value to 0 and let the transaction go on.
 247	 */
 248	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
 249	buf[1] = 0;
 250	op = (struct spi_mem_op)
 251		CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
 252	return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
 253}
 254
 255static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
 256{
 257	const struct spi_nor_flash_parameter *params = nor->params;
 258	u8 *buf = nor->bouncebuf;
 259	u64 addr;
 260	int i, ret;
 261
 262	for (i = 0; i < params->n_dice; i++) {
 263		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
 264		ret = cypress_nor_set_single_spi_bits(nor, addr);
 265		if (ret)
 266			return ret;
 267	}
 268
 269	/* Read flash ID to make sure the switch was successful. */
 270	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
 271	if (ret) {
 272		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
 273		return ret;
 274	}
 275
 276	if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
 277		return -EINVAL;
 278
 279	return 0;
 280}
 281
 282static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
 283{
 284	struct spi_mem_op op;
 285	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
 286	u8 cfr1v_written;
 287	int ret;
 288
 289	op = (struct spi_mem_op)
 290		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
 291					  nor->bouncebuf);
 292
 293	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 294	if (ret)
 295		return ret;
 296
 297	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
 298		return 0;
 299
 300	/* Update the Quad Enable bit. */
 301	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
 302	op = (struct spi_mem_op)
 303		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
 304					  nor->bouncebuf);
 305	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
 306	if (ret)
 307		return ret;
 308
 309	cfr1v_written = nor->bouncebuf[0];
 310
 311	/* Read back and check it. */
 312	op = (struct spi_mem_op)
 313		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
 314					  nor->bouncebuf);
 315	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 316	if (ret)
 317		return ret;
 318
 319	if (nor->bouncebuf[0] != cfr1v_written) {
 320		dev_err(nor->dev, "CFR1: Read back test failed\n");
 321		return -EIO;
 322	}
 323
 324	return 0;
 325}
 326
 327/**
 328 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
 329 *                                      register.
 330 * @nor:	pointer to a 'struct spi_nor'
 331 *
 332 * It is recommended to update volatile registers in the field application due
 333 * to a risk of the non-volatile registers corruption by power interrupt. This
 334 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
 335 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
 336 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
 337 * also set during Flash power-up.
 338 *
 339 * Return: 0 on success, -errno otherwise.
 340 */
 341static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
 342{
 343	struct spi_nor_flash_parameter *params = nor->params;
 344	u64 addr;
 345	u8 i;
 346	int ret;
 347
 348	for (i = 0; i < params->n_dice; i++) {
 349		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
 350		ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
 351		if (ret)
 352			return ret;
 353	}
 354
 355	return 0;
 356}
 357
 358/**
 359 * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
 360 *                                            (3 or 4-byte) by querying status
 361 *                                            register 1 (SR1).
 362 * @nor:		pointer to a 'struct spi_nor'
 363 * @addr_mode:		ponter to a buffer where we return the determined
 364 *			address mode.
 365 *
 366 * This function tries to determine current address mode by comparing SR1 value
 367 * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
 368 *
 369 * Return: 0 on success, -errno otherwise.
 370 */
 371static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
 372						  u8 *addr_mode)
 373{
 374	struct spi_mem_op op =
 375		CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
 376					  nor->bouncebuf);
 377	bool is3byte, is4byte;
 378	int ret;
 379
 380	ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
 381	if (ret)
 382		return ret;
 383
 384	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 385	if (ret)
 386		return ret;
 387
 388	is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
 389
 390	op = (struct spi_mem_op)
 391		CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
 392					  nor->bouncebuf);
 393	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 394	if (ret)
 395		return ret;
 396
 397	is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
 398
 399	if (is3byte == is4byte)
 400		return -EIO;
 401	if (is3byte)
 402		*addr_mode = 3;
 403	else
 404		*addr_mode = 4;
 405
 406	return 0;
 407}
 408
 409/**
 410 * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
 411 *                                      current address mode.
 412 * @nor:		pointer to a 'struct spi_nor'
 413 *
 414 * Determine current address mode by reading SR1 with different methods, then
 415 * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
 416 * address mode.
 417 *
 418 * Return: 0 on success, -errno otherwise.
 419 */
 420static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
 421{
 422	struct spi_mem_op op;
 423	u8 addr_mode;
 424	int ret;
 425
 426	/*
 427	 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
 428	 * that sets bit-1 in SR1.
 429	 */
 430	ret = spi_nor_write_enable(nor);
 431	if (ret)
 432		return ret;
 433	ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
 434	if (ret) {
 435		ret = spi_nor_set_4byte_addr_mode(nor, true);
 436		if (ret)
 437			return ret;
 438		return spi_nor_write_disable(nor);
 439	}
 440	ret = spi_nor_write_disable(nor);
 441	if (ret)
 442		return ret;
 443
 444	/*
 445	 * Query CFR2V and make sure no contradiction between determined address
 446	 * mode and CFR2V[7].
 447	 */
 448	op = (struct spi_mem_op)
 449		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
 450					  0, nor->bouncebuf);
 451	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 452	if (ret)
 453		return ret;
 454
 455	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
 456		if (addr_mode != 4)
 457			return spi_nor_set_4byte_addr_mode(nor, true);
 458	} else {
 459		if (addr_mode != 3)
 460			return spi_nor_set_4byte_addr_mode(nor, true);
 461	}
 462
 463	nor->params->addr_nbytes = addr_mode;
 464	nor->params->addr_mode_nbytes = addr_mode;
 465
 466	return 0;
 467}
 468
 469/**
 470 * cypress_nor_get_page_size() - Get flash page size configuration.
 471 * @nor:	pointer to a 'struct spi_nor'
 472 *
 473 * The BFPT table advertises a 512B or 256B page size depending on part but the
 474 * page size is actually configurable (with the default being 256B). Read from
 475 * CFR3V[4] and set the correct size.
 476 *
 477 * Return: 0 on success, -errno otherwise.
 478 */
 479static int cypress_nor_get_page_size(struct spi_nor *nor)
 480{
 481	struct spi_mem_op op =
 482		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
 483					  0, 0, nor->bouncebuf);
 484	struct spi_nor_flash_parameter *params = nor->params;
 485	int ret;
 486	u8 i;
 487
 488	/*
 489	 * Use the minimum common page size configuration. Programming 256-byte
 490	 * under 512-byte page size configuration is safe.
 491	 */
 492	params->page_size = 256;
 493	for (i = 0; i < params->n_dice; i++) {
 494		op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
 495
 496		ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 497		if (ret)
 498			return ret;
 499
 500		if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
 501			return 0;
 502	}
 503
 504	params->page_size = 512;
 505
 506	return 0;
 507}
 508
 509static void cypress_nor_ecc_init(struct spi_nor *nor)
 510{
 511	/*
 512	 * Programming is supported only in 16-byte ECC data unit granularity.
 513	 * Byte-programming, bit-walking, or multiple program operations to the
 514	 * same ECC data unit without an erase are not allowed.
 515	 */
 516	nor->params->writesize = 16;
 517	nor->flags |= SNOR_F_ECC;
 518}
 519
 520static int
 521s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
 522			  const struct sfdp_parameter_header *bfpt_header,
 523			  const struct sfdp_bfpt *bfpt)
 524{
 525	struct spi_mem_op op;
 526	int ret;
 527
 528	ret = cypress_nor_set_addr_mode_nbytes(nor);
 529	if (ret)
 530		return ret;
 531
 532	/* Read Architecture Configuration Register (ARCFN) */
 533	op = (struct spi_mem_op)
 534		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
 535					  SPINOR_REG_CYPRESS_ARCFN, 1,
 536					  nor->bouncebuf);
 537	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
 538	if (ret)
 539		return ret;
 540
 541	/* ARCFN value must be 0 if uniform sector is selected  */
 542	if (nor->bouncebuf[0])
 543		return -ENODEV;
 544
 545	return 0;
 546}
 547
 548static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
 549{
 550	struct spi_nor_flash_parameter *params = nor->params;
 551
 552	/*
 553	 * S25FS256T does not define the SCCR map, but we would like to use the
 554	 * same code base for both single and multi chip package devices, thus
 555	 * set the vreg_offset and n_dice to be able to do so.
 556	 */
 557	params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL);
 558	if (!params->vreg_offset)
 559		return -ENOMEM;
 560
 561	params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
 562	params->n_dice = 1;
 563
 564	/* PP_1_1_4_4B is supported but missing in 4BAIT. */
 565	params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
 566	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
 567				SPINOR_OP_PP_1_1_4_4B,
 568				SNOR_PROTO_1_1_4);
 569
 570	return cypress_nor_get_page_size(nor);
 571}
 572
 573static int s25fs256t_late_init(struct spi_nor *nor)
 574{
 575	cypress_nor_ecc_init(nor);
 576
 577	return 0;
 578}
 579
 580static struct spi_nor_fixups s25fs256t_fixups = {
 581	.post_bfpt = s25fs256t_post_bfpt_fixup,
 582	.post_sfdp = s25fs256t_post_sfdp_fixup,
 583	.late_init = s25fs256t_late_init,
 584};
 585
 586static int
 587s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
 588			const struct sfdp_parameter_header *bfpt_header,
 589			const struct sfdp_bfpt *bfpt)
 590{
 591	int ret;
 592
 593	ret = cypress_nor_set_addr_mode_nbytes(nor);
 594	if (ret)
 595		return ret;
 596
 597	/* Replace Quad Enable with volatile version */
 598	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
 599
 600	return 0;
 601}
 602
 603static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
 604{
 605	struct spi_nor_flash_parameter *params = nor->params;
 606	struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
 607	unsigned int i;
 608
 609	if (!params->n_dice || !params->vreg_offset) {
 610		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
 611			__func__);
 612		return -EOPNOTSUPP;
 613	}
 614
 615	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
 616	if (params->size == SZ_256M)
 617		params->n_dice = 2;
 618
 619	/*
 620	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
 621	 * Convert them to 4byte erase opcodes.
 622	 */
 623	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
 624		switch (erase_type[i].opcode) {
 625		case SPINOR_OP_SE:
 626			erase_type[i].opcode = SPINOR_OP_SE_4B;
 627			break;
 628		case SPINOR_OP_BE_4K:
 629			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
 630			break;
 631		default:
 632			break;
 633		}
 634	}
 635
 636	return cypress_nor_get_page_size(nor);
 637}
 638
 639static int s25hx_t_late_init(struct spi_nor *nor)
 640{
 641	struct spi_nor_flash_parameter *params = nor->params;
 642
 643	/* Fast Read 4B requires mode cycles */
 644	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
 645	params->ready = cypress_nor_sr_ready_and_clear;
 646	cypress_nor_ecc_init(nor);
 647
 648	params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE;
 649	return 0;
 650}
 651
 652static struct spi_nor_fixups s25hx_t_fixups = {
 653	.post_bfpt = s25hx_t_post_bfpt_fixup,
 654	.post_sfdp = s25hx_t_post_sfdp_fixup,
 655	.late_init = s25hx_t_late_init,
 656};
 657
 658/**
 659 * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
 660 * @nor:		pointer to a 'struct spi_nor'
 661 * @enable:              whether to enable or disable Octal DTR
 662 *
 663 * This also sets the memory access latency cycles to 24 to allow the flash to
 664 * run at up to 200MHz.
 665 *
 666 * Return: 0 on success, -errno otherwise.
 667 */
 668static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
 669{
 670	return enable ? cypress_nor_octal_dtr_en(nor) :
 671			cypress_nor_octal_dtr_dis(nor);
 672}
 673
 674static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
 675{
 676	struct spi_nor_flash_parameter *params = nor->params;
 677
 678	if (!params->n_dice || !params->vreg_offset) {
 679		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
 680			__func__);
 681		return -EOPNOTSUPP;
 682	}
 683
 684	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
 685	if (params->size == SZ_256M)
 686		params->n_dice = 2;
 687
 688	/*
 689	 * On older versions of the flash the xSPI Profile 1.0 table has the
 690	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
 691	 */
 692	if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
 693		params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
 694			SPINOR_OP_CYPRESS_RD_FAST;
 695
 696	/* This flash is also missing the 4-byte Page Program opcode bit. */
 697	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
 698				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
 699	/*
 700	 * Since xSPI Page Program opcode is backward compatible with
 701	 * Legacy SPI, use Legacy SPI opcode there as well.
 702	 */
 703	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
 704				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
 705
 706	/*
 707	 * The xSPI Profile 1.0 table advertises the number of additional
 708	 * address bytes needed for Read Status Register command as 0 but the
 709	 * actual value for that is 4.
 710	 */
 711	params->rdsr_addr_nbytes = 4;
 712
 713	return cypress_nor_get_page_size(nor);
 714}
 715
 716static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
 717				   const struct sfdp_parameter_header *bfpt_header,
 718				   const struct sfdp_bfpt *bfpt)
 719{
 720	return cypress_nor_set_addr_mode_nbytes(nor);
 721}
 722
 723static int s28hx_t_late_init(struct spi_nor *nor)
 724{
 725	struct spi_nor_flash_parameter *params = nor->params;
 726
 727	params->set_octal_dtr = cypress_nor_set_octal_dtr;
 728	params->ready = cypress_nor_sr_ready_and_clear;
 729	cypress_nor_ecc_init(nor);
 730
 731	return 0;
 732}
 733
 734static const struct spi_nor_fixups s28hx_t_fixups = {
 735	.post_sfdp = s28hx_t_post_sfdp_fixup,
 736	.post_bfpt = s28hx_t_post_bfpt_fixup,
 737	.late_init = s28hx_t_late_init,
 738};
 739
 740static int
 741s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
 742			     const struct sfdp_parameter_header *bfpt_header,
 743			     const struct sfdp_bfpt *bfpt)
 744{
 745	/*
 746	 * The S25FS-S chip family reports 512-byte pages in BFPT but
 747	 * in reality the write buffer still wraps at the safe default
 748	 * of 256 bytes.  Overwrite the page size advertised by BFPT
 749	 * to get the writes working.
 750	 */
 751	nor->params->page_size = 256;
 752
 753	return 0;
 754}
 755
 756static const struct spi_nor_fixups s25fs_s_nor_fixups = {
 757	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
 758};
 759
 760static const struct flash_info spansion_nor_parts[] = {
 761	{
 762		.id = SNOR_ID(0x01, 0x02, 0x12),
 763		.name = "s25sl004a",
 764		.size = SZ_512K,
 765	}, {
 766		.id = SNOR_ID(0x01, 0x02, 0x13),
 767		.name = "s25sl008a",
 768		.size = SZ_1M,
 769	}, {
 770		.id = SNOR_ID(0x01, 0x02, 0x14),
 771		.name = "s25sl016a",
 772		.size = SZ_2M,
 773	}, {
 774		.id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00),
 775		.name = "s25sl032p",
 776		.size = SZ_4M,
 777		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 778	}, {
 779		.id = SNOR_ID(0x01, 0x02, 0x15),
 780		.name = "s25sl032a",
 781		.size = SZ_4M,
 782	}, {
 783		.id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00),
 784		.name = "s25sl064p",
 785		.size = SZ_8M,
 786		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 787	}, {
 788		.id = SNOR_ID(0x01, 0x02, 0x16),
 789		.name = "s25sl064a",
 790		.size = SZ_8M,
 791	}, {
 792		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80),
 793		.name = "s25fl256s0",
 794		.size = SZ_32M,
 795		.sector_size = SZ_256K,
 796		.no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 797		.mfr_flags = USE_CLSR,
 798	}, {
 799		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81),
 800		.name = "s25fs256s0",
 801		.size = SZ_32M,
 802		.sector_size = SZ_256K,
 803		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 804		.mfr_flags = USE_CLSR,
 805	}, {
 806		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80),
 807		.name = "s25fl256s1",
 808		.size = SZ_32M,
 809		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 810		.mfr_flags = USE_CLSR,
 811	}, {
 812		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81),
 813		.name = "s25fs256s1",
 814		.size = SZ_32M,
 815		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 816		.mfr_flags = USE_CLSR,
 817	}, {
 818		.id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80),
 819		.name = "s25fl512s",
 820		.size = SZ_64M,
 821		.sector_size = SZ_256K,
 822		.flags = SPI_NOR_HAS_LOCK,
 823		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 824		.mfr_flags = USE_CLSR,
 825	}, {
 826		.id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81),
 827		.name = "s25fs512s",
 828		.size = SZ_64M,
 829		.sector_size = SZ_256K,
 830		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 831		.mfr_flags = USE_CLSR,
 832		.fixups = &s25fs_s_nor_fixups,
 833	}, {
 834		.id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00),
 835		.name = "s25sl12800",
 836		.size = SZ_16M,
 837		.sector_size = SZ_256K,
 838	}, {
 839		.id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01),
 840		.name = "s25sl12801",
 841		.size = SZ_16M,
 842	}, {
 843		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80),
 844		.name = "s25fl128s0",
 845		.size = SZ_16M,
 846		.sector_size = SZ_256K,
 847		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 848		.mfr_flags = USE_CLSR,
 849	}, {
 850		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00),
 851		.name = "s25fl129p0",
 852		.size = SZ_16M,
 853		.sector_size = SZ_256K,
 854		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 855		.mfr_flags = USE_CLSR,
 856	}, {
 857		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80),
 858		.name = "s25fl128s1",
 859		.size = SZ_16M,
 860		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 861		.mfr_flags = USE_CLSR,
 862	}, {
 863		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81),
 864		.name = "s25fs128s1",
 865		.size = SZ_16M,
 866		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 867		.mfr_flags = USE_CLSR,
 868		.fixups = &s25fs_s_nor_fixups,
 869	}, {
 870		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01),
 871		.name = "s25fl129p1",
 872		.size = SZ_16M,
 873		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 874		.mfr_flags = USE_CLSR,
 875	}, {
 876		.id = SNOR_ID(0x01, 0x40, 0x13),
 877		.name = "s25fl204k",
 878		.size = SZ_512K,
 879		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
 880	}, {
 881		.id = SNOR_ID(0x01, 0x40, 0x14),
 882		.name = "s25fl208k",
 883		.size = SZ_1M,
 884		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
 885	}, {
 886		.id = SNOR_ID(0x01, 0x40, 0x15),
 887		.name = "s25fl116k",
 888		.size = SZ_2M,
 889		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 890	}, {
 891		.id = SNOR_ID(0x01, 0x40, 0x16),
 892		.name = "s25fl132k",
 893		.size = SZ_4M,
 894		.no_sfdp_flags = SECT_4K,
 895	}, {
 896		.id = SNOR_ID(0x01, 0x40, 0x17),
 897		.name = "s25fl164k",
 898		.size = SZ_8M,
 899		.no_sfdp_flags = SECT_4K,
 900	}, {
 901		.id = SNOR_ID(0x01, 0x60, 0x17),
 902		.name = "s25fl064l",
 903		.size = SZ_8M,
 904		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 905		.fixup_flags = SPI_NOR_4B_OPCODES,
 906	}, {
 907		.id = SNOR_ID(0x01, 0x60, 0x18),
 908		.name = "s25fl128l",
 909		.size = SZ_16M,
 910		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 911		.fixup_flags = SPI_NOR_4B_OPCODES,
 912	}, {
 913		.id = SNOR_ID(0x01, 0x60, 0x19),
 914		.name = "s25fl256l",
 915		.size = SZ_32M,
 916		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 917		.fixup_flags = SPI_NOR_4B_OPCODES,
 918	}, {
 919		.id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f),
 920		.name = "cy15x104q",
 921		.size = SZ_512K,
 922		.sector_size = SZ_512K,
 923		.flags = SPI_NOR_NO_ERASE,
 924	}, {
 925		.id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90),
 926		.name = "s25hl512t",
 927		.mfr_flags = USE_CLPEF,
 928		.fixups = &s25hx_t_fixups
 929	}, {
 930		.id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90),
 931		.name = "s25hl01gt",
 932		.mfr_flags = USE_CLPEF,
 933		.fixups = &s25hx_t_fixups
 934	}, {
 935		.id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90),
 936		.name = "s25hl02gt",
 937		.mfr_flags = USE_CLPEF,
 938		.fixups = &s25hx_t_fixups
 939	}, {
 940		.id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90),
 941		.name = "s25fs256t",
 942		.mfr_flags = USE_CLPEF,
 943		.fixups = &s25fs256t_fixups
 944	}, {
 945		.id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90),
 946		.name = "s25hs512t",
 947		.mfr_flags = USE_CLPEF,
 948		.fixups = &s25hx_t_fixups
 949	}, {
 950		.id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90),
 951		.name = "s25hs01gt",
 952		.mfr_flags = USE_CLPEF,
 953		.fixups = &s25hx_t_fixups
 954	}, {
 955		.id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90),
 956		.name = "s25hs02gt",
 957		.mfr_flags = USE_CLPEF,
 958		.fixups = &s25hx_t_fixups
 959	}, {
 960		.id = SNOR_ID(0x34, 0x5a, 0x1a),
 961		.name = "s28hl512t",
 962		.mfr_flags = USE_CLPEF,
 963		.fixups = &s28hx_t_fixups,
 964	}, {
 965		.id = SNOR_ID(0x34, 0x5a, 0x1b),
 966		.name = "s28hl01gt",
 967		.mfr_flags = USE_CLPEF,
 968		.fixups = &s28hx_t_fixups,
 969	}, {
 970		.id = SNOR_ID(0x34, 0x5b, 0x1a),
 971		.name = "s28hs512t",
 972		.mfr_flags = USE_CLPEF,
 973		.fixups = &s28hx_t_fixups,
 974	}, {
 975		.id = SNOR_ID(0x34, 0x5b, 0x1b),
 976		.name = "s28hs01gt",
 977		.mfr_flags = USE_CLPEF,
 978		.fixups = &s28hx_t_fixups,
 979	}, {
 980		.id = SNOR_ID(0x34, 0x5b, 0x1c),
 981		.name = "s28hs02gt",
 982		.mfr_flags = USE_CLPEF,
 983		.fixups = &s28hx_t_fixups,
 984	}, {
 985		.id = SNOR_ID(0xef, 0x40, 0x13),
 986		.name = "s25fl004k",
 987		.size = SZ_512K,
 988		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 989	}, {
 990		.id = SNOR_ID(0xef, 0x40, 0x14),
 991		.name = "s25fl008k",
 992		.size = SZ_1M,
 993		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 994	}, {
 995		.id = SNOR_ID(0xef, 0x40, 0x15),
 996		.name = "s25fl016k",
 997		.size = SZ_2M,
 998		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
 999	}, {
1000		.id = SNOR_ID(0xef, 0x40, 0x17),
1001		.name = "s25fl064k",
1002		.size = SZ_8M,
1003		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
1004	}
1005};
1006
1007/**
1008 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
1009 * flash is ready for new commands and clear it if there are any errors.
1010 * @nor:	pointer to 'struct spi_nor'.
1011 *
1012 * Return: 1 if ready, 0 if not ready, -errno on errors.
1013 */
1014static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
1015{
1016	int ret;
1017
1018	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1019	if (ret)
1020		return ret;
1021
1022	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
1023		if (nor->bouncebuf[0] & SR_E_ERR)
1024			dev_err(nor->dev, "Erase Error occurred\n");
1025		else
1026			dev_err(nor->dev, "Programming Error occurred\n");
1027
1028		spansion_nor_clear_sr(nor);
1029
1030		/*
1031		 * WEL bit remains set to one when an erase or page program
1032		 * error occurs. Issue a Write Disable command to protect
1033		 * against inadvertent writes that can possibly corrupt the
1034		 * contents of the memory.
1035		 */
1036		ret = spi_nor_write_disable(nor);
1037		if (ret)
1038			return ret;
1039
1040		return -EIO;
1041	}
1042
1043	return !(nor->bouncebuf[0] & SR_WIP);
1044}
1045
1046static int spansion_nor_late_init(struct spi_nor *nor)
1047{
1048	struct spi_nor_flash_parameter *params = nor->params;
1049	struct spansion_nor_params *priv_params;
1050	u8 mfr_flags = nor->info->mfr_flags;
1051
1052	if (params->size > SZ_16M) {
1053		nor->flags |= SNOR_F_4B_OPCODES;
1054		/* No small sector erase for 4-byte command set */
1055		nor->erase_opcode = SPINOR_OP_SE;
1056		nor->mtd.erasesize = nor->info->sector_size ?:
1057			SPI_NOR_DEFAULT_SECTOR_SIZE;
1058	}
1059
1060	if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
1061		priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params),
1062					   GFP_KERNEL);
1063		if (!priv_params)
1064			return -ENOMEM;
1065
1066		if (mfr_flags & USE_CLSR)
1067			priv_params->clsr = SPINOR_OP_CLSR;
1068		else if (mfr_flags & USE_CLPEF)
1069			priv_params->clsr = SPINOR_OP_CLPEF;
1070
1071		params->priv = priv_params;
1072		params->ready = spansion_nor_sr_ready_and_clear;
1073	}
1074
1075	return 0;
1076}
1077
1078static const struct spi_nor_fixups spansion_nor_fixups = {
1079	.late_init = spansion_nor_late_init,
1080};
1081
1082const struct spi_nor_manufacturer spi_nor_spansion = {
1083	.name = "spansion",
1084	.parts = spansion_nor_parts,
1085	.nparts = ARRAY_SIZE(spansion_nor_parts),
1086	.fixups = &spansion_nor_fixups,
1087};