Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/mtd/spi-nor.h> #include "core.h" /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ #define USE_CLSR BIT(0) #define USE_CLPEF BIT(1) #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ #define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */ #define SPINOR_OP_CYPRESS_DIE_ERASE 0x61 /* Chip (die) erase */ #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ #define SPINOR_REG_CYPRESS_VREG 0x00800000 #define SPINOR_REG_CYPRESS_STR1 0x0 #define SPINOR_REG_CYPRESS_STR1V \ (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1) #define SPINOR_REG_CYPRESS_CFR1 0x2 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ #define SPINOR_REG_CYPRESS_CFR2 0x3 #define SPINOR_REG_CYPRESS_CFR2V \ (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2) #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0) #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb #define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7) #define SPINOR_REG_CYPRESS_CFR3 0x4 #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ #define SPINOR_REG_CYPRESS_CFR5 0x6 #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ SPINOR_REG_CYPRESS_CFR5_OPI) #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 #define SPINOR_OP_CYPRESS_RD_FAST 0xee #define SPINOR_REG_CYPRESS_ARCFN 0x00000006 /* Cypress SPI NOR flash operations. */ #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_DUMMY(ndummy, 0), \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define SPANSION_OP(opcode) \ SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) /** * struct spansion_nor_params - Spansion private parameters. * @clsr: Clear Status Register or Clear Program and Erase Failure Flag * opcode. */ struct spansion_nor_params { u8 clsr; }; /** * spansion_nor_clear_sr() - Clear the Status Register. * @nor: pointer to 'struct spi_nor'. */ static void spansion_nor_clear_sr(struct spi_nor *nor) { const struct spansion_nor_params *priv_params = nor->params->priv; int ret; if (nor->spimem) { struct spi_mem_op op = SPANSION_OP(priv_params->clsr); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d clearing SR\n", ret); } static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr) { struct spi_nor_flash_parameter *params = nor->params; struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr, 0, nor->bouncebuf); int ret; if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { op.dummy.nbytes = params->rdsr_dummy; op.data.nbytes = 2; } ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { if (nor->bouncebuf[0] & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); spansion_nor_clear_sr(nor); ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return !(nor->bouncebuf[0] & SR_WIP); } /** * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by * using Read Any Register command to see if the whole flash is ready for new * commands and clear it if there are any errors. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; u64 addr; int ret; u8 i; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1; ret = cypress_nor_sr_ready_and_clear_reg(nor, addr); if (ret < 0) return ret; else if (ret == 0) return 0; } return 1; } static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* Use 24 dummy cycles for memory array reads. */ *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK; *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK, SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24); op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; nor->read_dummy = 24; return 0; } static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; /* Set the octal and DTR enable bits. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes, addr, 1, buf); return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); } static int cypress_nor_octal_dtr_en(struct spi_nor *nor) { const struct spi_nor_flash_parameter *params = nor->params; u8 *buf = nor->bouncebuf; u64 addr; int i, ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2; ret = cypress_nor_set_memlat(nor, addr); if (ret) return ret; addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; ret = cypress_nor_set_octal_dtr_bits(nor, addr); if (ret) return ret; } /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, SNOR_PROTO_8_8_8_DTR); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; /* * The register is 1-byte wide, but 1-byte transactions are not allowed * in 8D-8D-8D mode. Since there is no register at the next location, * just initialize the value to 0 and let the transaction go on. */ buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; buf[1] = 0; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf); return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); } static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) { const struct spi_nor_flash_parameter *params = nor->params; u8 *buf = nor->bouncebuf; u64 addr; int i, ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; ret = cypress_nor_set_single_spi_bits(nor, addr); if (ret) return ret; } /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr) { struct spi_mem_op op; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; u8 cfr1v_written; int ret; op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) return 0; /* Update the Quad Enable bit. */ nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; op = (struct spi_mem_op) CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, nor->bouncebuf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; cfr1v_written = nor->bouncebuf[0]; /* Read back and check it. */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] != cfr1v_written) { dev_err(nor->dev, "CFR1: Read back test failed\n"); return -EIO; } return 0; } /** * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile * register. * @nor: pointer to a 'struct spi_nor' * * It is recommended to update volatile registers in the field application due * to a risk of the non-volatile registers corruption by power interrupt. This * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable * bit in the CFR1 non-volatile in advance (typically by a Flash programmer * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is * also set during Flash power-up. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; u64 addr; u8 i; int ret; for (i = 0; i < params->n_dice; i++) { addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1; ret = cypress_nor_quad_enable_volatile_reg(nor, addr); if (ret) return ret; } return 0; } /** * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode * (3 or 4-byte) by querying status * register 1 (SR1). * @nor: pointer to a 'struct spi_nor' * @addr_mode: ponter to a buffer where we return the determined * address mode. * * This function tries to determine current address mode by comparing SR1 value * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address). * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor, u8 *addr_mode) { struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0, nor->bouncebuf); bool is3byte, is4byte; int ret; ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]); if (ret) return ret; ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); if (is3byte == is4byte) return -EIO; if (is3byte) *addr_mode = 3; else *addr_mode = 4; return 0; } /** * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of * current address mode. * @nor: pointer to a 'struct spi_nor' * * Determine current address mode by reading SR1 with different methods, then * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte * address mode. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor) { struct spi_mem_op op; u8 addr_mode; int ret; /* * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable * that sets bit-1 in SR1. */ ret = spi_nor_write_enable(nor); if (ret) return ret; ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode); if (ret) { ret = spi_nor_set_4byte_addr_mode(nor, true); if (ret) return ret; return spi_nor_write_disable(nor); } ret = spi_nor_write_disable(nor); if (ret) return ret; /* * Query CFR2V and make sure no contradiction between determined address * mode and CFR2V[7]. */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V, 0, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) { if (addr_mode != 4) return spi_nor_set_4byte_addr_mode(nor, true); } else { if (addr_mode != 3) return spi_nor_set_4byte_addr_mode(nor, true); } nor->params->addr_nbytes = addr_mode; nor->params->addr_mode_nbytes = addr_mode; return 0; } /** * cypress_nor_get_page_size() - Get flash page size configuration. * @nor: pointer to a 'struct spi_nor' * * The BFPT table advertises a 512B or 256B page size depending on part but the * page size is actually configurable (with the default being 256B). Read from * CFR3V[4] and set the correct size. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_get_page_size(struct spi_nor *nor) { struct spi_mem_op op = CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, 0, 0, nor->bouncebuf); struct spi_nor_flash_parameter *params = nor->params; int ret; u8 i; /* * Use the minimum common page size configuration. Programming 256-byte * under 512-byte page size configuration is safe. */ params->page_size = 256; for (i = 0; i < params->n_dice; i++) { op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3; ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)) return 0; } params->page_size = 512; return 0; } static void cypress_nor_ecc_init(struct spi_nor *nor) { /* * Programming is supported only in 16-byte ECC data unit granularity. * Byte-programming, bit-walking, or multiple program operations to the * same ECC data unit without an erase are not allowed. */ nor->params->writesize = 16; nor->flags |= SNOR_F_ECC; } static int s25fs256t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { struct spi_mem_op op; int ret; ret = cypress_nor_set_addr_mode_nbytes(nor); if (ret) return ret; /* Read Architecture Configuration Register (ARCFN) */ op = (struct spi_mem_op) CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, SPINOR_REG_CYPRESS_ARCFN, 1, nor->bouncebuf); ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* ARCFN value must be 0 if uniform sector is selected */ if (nor->bouncebuf[0]) return -ENODEV; return 0; } static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; /* * S25FS256T does not define the SCCR map, but we would like to use the * same code base for both single and multi chip package devices, thus * set the vreg_offset and n_dice to be able to do so. */ params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL); if (!params->vreg_offset) return -ENOMEM; params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG; params->n_dice = 1; /* PP_1_1_4_4B is supported but missing in 4BAIT. */ params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4_4B, SNOR_PROTO_1_1_4); return cypress_nor_get_page_size(nor); } static int s25fs256t_late_init(struct spi_nor *nor) { cypress_nor_ecc_init(nor); return 0; } static struct spi_nor_fixups s25fs256t_fixups = { .post_bfpt = s25fs256t_post_bfpt_fixup, .post_sfdp = s25fs256t_post_sfdp_fixup, .late_init = s25fs256t_late_init, }; static int s25hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { int ret; ret = cypress_nor_set_addr_mode_nbytes(nor); if (ret) return ret; /* Replace Quad Enable with volatile version */ nor->params->quad_enable = cypress_nor_quad_enable_volatile; return 0; } static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; struct spi_nor_erase_type *erase_type = params->erase_map.erase_type; unsigned int i; if (!params->n_dice || !params->vreg_offset) { dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", __func__); return -EOPNOTSUPP; } /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ if (params->size == SZ_256M) params->n_dice = 2; /* * In some parts, 3byte erase opcodes are advertised by 4BAIT. * Convert them to 4byte erase opcodes. */ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { switch (erase_type[i].opcode) { case SPINOR_OP_SE: erase_type[i].opcode = SPINOR_OP_SE_4B; break; case SPINOR_OP_BE_4K: erase_type[i].opcode = SPINOR_OP_BE_4K_4B; break; default: break; } } return cypress_nor_get_page_size(nor); } static int s25hx_t_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; /* Fast Read 4B requires mode cycles */ params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; params->ready = cypress_nor_sr_ready_and_clear; cypress_nor_ecc_init(nor); params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE; return 0; } static struct spi_nor_fixups s25hx_t_fixups = { .post_bfpt = s25hx_t_post_bfpt_fixup, .post_sfdp = s25hx_t_post_sfdp_fixup, .late_init = s25hx_t_late_init, }; /** * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes. * @nor: pointer to a 'struct spi_nor' * @enable: whether to enable or disable Octal DTR * * This also sets the memory access latency cycles to 24 to allow the flash to * run at up to 200MHz. * * Return: 0 on success, -errno otherwise. */ static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable) { return enable ? cypress_nor_octal_dtr_en(nor) : cypress_nor_octal_dtr_dis(nor); } static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; if (!params->n_dice || !params->vreg_offset) { dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", __func__); return -EOPNOTSUPP; } /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ if (params->size == SZ_256M) params->n_dice = 2; /* * On older versions of the flash the xSPI Profile 1.0 table has the * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. */ if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = SPINOR_OP_CYPRESS_RD_FAST; /* This flash is also missing the 4-byte Page Program opcode bit. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); /* * The xSPI Profile 1.0 table advertises the number of additional * address bytes needed for Read Status Register command as 0 but the * actual value for that is 4. */ params->rdsr_addr_nbytes = 4; return cypress_nor_get_page_size(nor); } static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { return cypress_nor_set_addr_mode_nbytes(nor); } static int s28hx_t_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; params->set_octal_dtr = cypress_nor_set_octal_dtr; params->ready = cypress_nor_sr_ready_and_clear; cypress_nor_ecc_init(nor); return 0; } static const struct spi_nor_fixups s28hx_t_fixups = { .post_sfdp = s28hx_t_post_sfdp_fixup, .post_bfpt = s28hx_t_post_bfpt_fixup, .late_init = s28hx_t_late_init, }; static int s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { /* * The S25FS-S chip family reports 512-byte pages in BFPT but * in reality the write buffer still wraps at the safe default * of 256 bytes. Overwrite the page size advertised by BFPT * to get the writes working. */ nor->params->page_size = 256; return 0; } static const struct spi_nor_fixups s25fs_s_nor_fixups = { .post_bfpt = s25fs_s_nor_post_bfpt_fixups, }; static const struct flash_info spansion_nor_parts[] = { { .id = SNOR_ID(0x01, 0x02, 0x12), .name = "s25sl004a", .size = SZ_512K, }, { .id = SNOR_ID(0x01, 0x02, 0x13), .name = "s25sl008a", .size = SZ_1M, }, { .id = SNOR_ID(0x01, 0x02, 0x14), .name = "s25sl016a", .size = SZ_2M, }, { .id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00), .name = "s25sl032p", .size = SZ_4M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x02, 0x15), .name = "s25sl032a", .size = SZ_4M, }, { .id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00), .name = "s25sl064p", .size = SZ_8M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x02, 0x16), .name = "s25sl064a", .size = SZ_8M, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80), .name = "s25fl256s0", .size = SZ_32M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81), .name = "s25fs256s0", .size = SZ_32M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80), .name = "s25fl256s1", .size = SZ_32M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81), .name = "s25fs256s1", .size = SZ_32M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80), .name = "s25fl512s", .size = SZ_64M, .sector_size = SZ_256K, .flags = SPI_NOR_HAS_LOCK, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81), .name = "s25fs512s", .size = SZ_64M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, .fixups = &s25fs_s_nor_fixups, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00), .name = "s25sl12800", .size = SZ_16M, .sector_size = SZ_256K, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01), .name = "s25sl12801", .size = SZ_16M, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80), .name = "s25fl128s0", .size = SZ_16M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00), .name = "s25fl129p0", .size = SZ_16M, .sector_size = SZ_256K, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80), .name = "s25fl128s1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81), .name = "s25fs128s1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, .fixups = &s25fs_s_nor_fixups, }, { .id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01), .name = "s25fl129p1", .size = SZ_16M, .no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_CLSR, }, { .id = SNOR_ID(0x01, 0x40, 0x13), .name = "s25fl204k", .size = SZ_512K, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x14), .name = "s25fl208k", .size = SZ_1M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x15), .name = "s25fl116k", .size = SZ_2M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x01, 0x40, 0x16), .name = "s25fl132k", .size = SZ_4M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x01, 0x40, 0x17), .name = "s25fl164k", .size = SZ_8M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x01, 0x60, 0x17), .name = "s25fl064l", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x01, 0x60, 0x18), .name = "s25fl128l", .size = SZ_16M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x01, 0x60, 0x19), .name = "s25fl256l", .size = SZ_32M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, }, { .id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f), .name = "cy15x104q", .size = SZ_512K, .sector_size = SZ_512K, .flags = SPI_NOR_NO_ERASE, }, { .id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90), .name = "s25hl512t", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90), .name = "s25hl01gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90), .name = "s25hl02gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90), .name = "s25fs256t", .mfr_flags = USE_CLPEF, .fixups = &s25fs256t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90), .name = "s25hs512t", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90), .name = "s25hs01gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90), .name = "s25hs02gt", .mfr_flags = USE_CLPEF, .fixups = &s25hx_t_fixups }, { .id = SNOR_ID(0x34, 0x5a, 0x1a), .name = "s28hl512t", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5a, 0x1b), .name = "s28hl01gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1a), .name = "s28hs512t", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1b), .name = "s28hs01gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0x34, 0x5b, 0x1c), .name = "s28hs02gt", .mfr_flags = USE_CLPEF, .fixups = &s28hx_t_fixups, }, { .id = SNOR_ID(0xef, 0x40, 0x13), .name = "s25fl004k", .size = SZ_512K, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x14), .name = "s25fl008k", .size = SZ_1M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x15), .name = "s25fl016k", .size = SZ_2M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0xef, 0x40, 0x17), .name = "s25fl064k", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, } }; /** * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the * flash is ready for new commands and clear it if there are any errors. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) { int ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { if (nor->bouncebuf[0] & SR_E_ERR) dev_err(nor->dev, "Erase Error occurred\n"); else dev_err(nor->dev, "Programming Error occurred\n"); spansion_nor_clear_sr(nor); /* * WEL bit remains set to one when an erase or page program * error occurs. Issue a Write Disable command to protect * against inadvertent writes that can possibly corrupt the * contents of the memory. */ ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return !(nor->bouncebuf[0] & SR_WIP); } static int spansion_nor_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; struct spansion_nor_params *priv_params; u8 mfr_flags = nor->info->mfr_flags; if (params->size > SZ_16M) { nor->flags |= SNOR_F_4B_OPCODES; /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = nor->info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE; } if (mfr_flags & (USE_CLSR | USE_CLPEF)) { priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params), GFP_KERNEL); if (!priv_params) return -ENOMEM; if (mfr_flags & USE_CLSR) priv_params->clsr = SPINOR_OP_CLSR; else if (mfr_flags & USE_CLPEF) priv_params->clsr = SPINOR_OP_CLPEF; params->priv = priv_params; params->ready = spansion_nor_sr_ready_and_clear; } return 0; } static const struct spi_nor_fixups spansion_nor_fixups = { .late_init = spansion_nor_late_init, }; const struct spi_nor_manufacturer spi_nor_spansion = { .name = "spansion", .parts = spansion_nor_parts, .nparts = ARRAY_SIZE(spansion_nor_parts), .fixups = &spansion_nor_fixups, }; |