Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/delay.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/module.h>
  17#include <linux/interrupt.h>
  18#include <linux/jiffies.h>
  19#include <linux/sched.h>
  20#include <linux/mtd/mtd.h>
  21#include <linux/mtd/nand.h>
  22#include <linux/mtd/partitions.h>
  23#include <linux/omap-dma.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include <linux/mtd/nand_bch.h>
  30#include <linux/platform_data/elm.h>
  31
  32#include <linux/omap-gpmc.h>
  33#include <linux/platform_data/mtd-nand-omap2.h>
  34
  35#define	DRIVER_NAME	"omap2-nand"
  36#define	OMAP_NAND_TIMEOUT_MS	5000
  37
  38#define NAND_Ecc_P1e		(1 << 0)
  39#define NAND_Ecc_P2e		(1 << 1)
  40#define NAND_Ecc_P4e		(1 << 2)
  41#define NAND_Ecc_P8e		(1 << 3)
  42#define NAND_Ecc_P16e		(1 << 4)
  43#define NAND_Ecc_P32e		(1 << 5)
  44#define NAND_Ecc_P64e		(1 << 6)
  45#define NAND_Ecc_P128e		(1 << 7)
  46#define NAND_Ecc_P256e		(1 << 8)
  47#define NAND_Ecc_P512e		(1 << 9)
  48#define NAND_Ecc_P1024e		(1 << 10)
  49#define NAND_Ecc_P2048e		(1 << 11)
  50
  51#define NAND_Ecc_P1o		(1 << 16)
  52#define NAND_Ecc_P2o		(1 << 17)
  53#define NAND_Ecc_P4o		(1 << 18)
  54#define NAND_Ecc_P8o		(1 << 19)
  55#define NAND_Ecc_P16o		(1 << 20)
  56#define NAND_Ecc_P32o		(1 << 21)
  57#define NAND_Ecc_P64o		(1 << 22)
  58#define NAND_Ecc_P128o		(1 << 23)
  59#define NAND_Ecc_P256o		(1 << 24)
  60#define NAND_Ecc_P512o		(1 << 25)
  61#define NAND_Ecc_P1024o		(1 << 26)
  62#define NAND_Ecc_P2048o		(1 << 27)
  63
  64#define TF(value)	(value ? 1 : 0)
  65
  66#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  67#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  68#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  69#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  70#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  71#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  72#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  73#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  74
  75#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  76#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  77#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  78#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  79#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  80#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  81#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  82#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  83
  84#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  85#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  86#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  87#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  88#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  89#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  90#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  91#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  92
  93#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  94#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  95#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  96#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  97#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  98#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  99#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
 100#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
 101
 102#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 103#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 104
 105#define	PREFETCH_CONFIG1_CS_SHIFT	24
 106#define	ECC_CONFIG_CS_SHIFT		1
 107#define	CS_MASK				0x7
 108#define	ENABLE_PREFETCH			(0x1 << 7)
 109#define	DMA_MPU_MODE_SHIFT		2
 110#define	ECCSIZE0_SHIFT			12
 111#define	ECCSIZE1_SHIFT			22
 112#define	ECC1RESULTSIZE			0x1
 113#define	ECCCLEAR			0x100
 114#define	ECC1				0x1
 115#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
 116#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 117#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 118#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 119#define	STATUS_BUFF_EMPTY		0x00000001
 120
 121#define SECTOR_BYTES		512
 122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 123#define BCH4_BIT_PAD		4
 124
 125/* GPMC ecc engine settings for read */
 126#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
 127#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
 128#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
 129#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
 130#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
 131
 132/* GPMC ecc engine settings for write */
 133#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
 134#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
 135#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
 136
 137#define BADBLOCK_MARKER_LENGTH		2
 138
 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 140				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 141				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 142				0x07, 0x0e};
 143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 144	0xac, 0x6b, 0xff, 0x99, 0x7b};
 145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 146
 147/* Shared among all NAND instances to synchronize access to the ECC Engine */
 148static struct nand_hw_control omap_gpmc_controller = {
 149	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
 150	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
 151};
 152
 153struct omap_nand_info {
 154	struct nand_chip		nand;
 155	struct platform_device		*pdev;
 156
 157	int				gpmc_cs;
 158	bool				dev_ready;
 159	enum nand_io			xfer_type;
 160	int				devsize;
 161	enum omap_ecc			ecc_opt;
 162	struct device_node		*elm_of_node;
 163
 164	unsigned long			phys_base;
 165	struct completion		comp;
 166	struct dma_chan			*dma;
 167	int				gpmc_irq_fifo;
 168	int				gpmc_irq_count;
 169	enum {
 170		OMAP_NAND_IO_READ = 0,	/* read */
 171		OMAP_NAND_IO_WRITE,	/* write */
 172	} iomode;
 173	u_char				*buf;
 174	int					buf_len;
 175	/* Interface to GPMC */
 176	struct gpmc_nand_regs		reg;
 177	struct gpmc_nand_ops		*ops;
 178	bool				flash_bbt;
 179	/* fields specific for BCHx_HW ECC scheme */
 180	struct device			*elm_dev;
 181	/* NAND ready gpio */
 182	struct gpio_desc		*ready_gpiod;
 183};
 184
 185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 186{
 187	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 188}
 189
 190/**
 191 * omap_prefetch_enable - configures and starts prefetch transfer
 192 * @cs: cs (chip select) number
 193 * @fifo_th: fifo threshold to be used for read/ write
 194 * @dma_mode: dma mode enable (1) or disable (0)
 195 * @u32_count: number of bytes to be transferred
 196 * @is_write: prefetch read(0) or write post(1) mode
 197 */
 198static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 199	unsigned int u32_count, int is_write, struct omap_nand_info *info)
 200{
 201	u32 val;
 202
 203	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 204		return -1;
 205
 206	if (readl(info->reg.gpmc_prefetch_control))
 207		return -EBUSY;
 208
 209	/* Set the amount of bytes to be prefetched */
 210	writel(u32_count, info->reg.gpmc_prefetch_config2);
 211
 212	/* Set dma/mpu mode, the prefetch read / post write and
 213	 * enable the engine. Set which cs is has requested for.
 214	 */
 215	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 216		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 217		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 218	writel(val, info->reg.gpmc_prefetch_config1);
 219
 220	/*  Start the prefetch engine */
 221	writel(0x1, info->reg.gpmc_prefetch_control);
 222
 223	return 0;
 224}
 225
 226/**
 227 * omap_prefetch_reset - disables and stops the prefetch engine
 228 */
 229static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 230{
 231	u32 config1;
 232
 233	/* check if the same module/cs is trying to reset */
 234	config1 = readl(info->reg.gpmc_prefetch_config1);
 235	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 236		return -EINVAL;
 237
 238	/* Stop the PFPW engine */
 239	writel(0x0, info->reg.gpmc_prefetch_control);
 240
 241	/* Reset/disable the PFPW engine */
 242	writel(0x0, info->reg.gpmc_prefetch_config1);
 243
 244	return 0;
 245}
 246
 247/**
 248 * omap_hwcontrol - hardware specific access to control-lines
 249 * @mtd: MTD device structure
 250 * @cmd: command to device
 251 * @ctrl:
 252 * NAND_NCE: bit 0 -> don't care
 253 * NAND_CLE: bit 1 -> Command Latch
 254 * NAND_ALE: bit 2 -> Address Latch
 255 *
 256 * NOTE: boards may use different bits for these!!
 257 */
 258static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 259{
 260	struct omap_nand_info *info = mtd_to_omap(mtd);
 261
 262	if (cmd != NAND_CMD_NONE) {
 263		if (ctrl & NAND_CLE)
 264			writeb(cmd, info->reg.gpmc_nand_command);
 265
 266		else if (ctrl & NAND_ALE)
 267			writeb(cmd, info->reg.gpmc_nand_address);
 268
 269		else /* NAND_NCE */
 270			writeb(cmd, info->reg.gpmc_nand_data);
 271	}
 272}
 273
 274/**
 275 * omap_read_buf8 - read data from NAND controller into buffer
 276 * @mtd: MTD device structure
 277 * @buf: buffer to store date
 278 * @len: number of bytes to read
 279 */
 280static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 281{
 282	struct nand_chip *nand = mtd_to_nand(mtd);
 283
 284	ioread8_rep(nand->IO_ADDR_R, buf, len);
 285}
 286
 287/**
 288 * omap_write_buf8 - write buffer to NAND controller
 289 * @mtd: MTD device structure
 290 * @buf: data buffer
 291 * @len: number of bytes to write
 292 */
 293static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 294{
 295	struct omap_nand_info *info = mtd_to_omap(mtd);
 296	u_char *p = (u_char *)buf;
 297	bool status;
 298
 299	while (len--) {
 300		iowrite8(*p++, info->nand.IO_ADDR_W);
 301		/* wait until buffer is available for write */
 302		do {
 303			status = info->ops->nand_writebuffer_empty();
 304		} while (!status);
 305	}
 306}
 307
 308/**
 309 * omap_read_buf16 - read data from NAND controller into buffer
 310 * @mtd: MTD device structure
 311 * @buf: buffer to store date
 312 * @len: number of bytes to read
 313 */
 314static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 315{
 316	struct nand_chip *nand = mtd_to_nand(mtd);
 317
 318	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 319}
 320
 321/**
 322 * omap_write_buf16 - write buffer to NAND controller
 323 * @mtd: MTD device structure
 324 * @buf: data buffer
 325 * @len: number of bytes to write
 326 */
 327static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 328{
 329	struct omap_nand_info *info = mtd_to_omap(mtd);
 330	u16 *p = (u16 *) buf;
 331	bool status;
 332	/* FIXME try bursts of writesw() or DMA ... */
 333	len >>= 1;
 334
 335	while (len--) {
 336		iowrite16(*p++, info->nand.IO_ADDR_W);
 337		/* wait until buffer is available for write */
 338		do {
 339			status = info->ops->nand_writebuffer_empty();
 340		} while (!status);
 341	}
 342}
 343
 344/**
 345 * omap_read_buf_pref - read data from NAND controller into buffer
 346 * @mtd: MTD device structure
 347 * @buf: buffer to store date
 348 * @len: number of bytes to read
 349 */
 350static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 351{
 352	struct omap_nand_info *info = mtd_to_omap(mtd);
 353	uint32_t r_count = 0;
 354	int ret = 0;
 355	u32 *p = (u32 *)buf;
 356
 357	/* take care of subpage reads */
 358	if (len % 4) {
 359		if (info->nand.options & NAND_BUSWIDTH_16)
 360			omap_read_buf16(mtd, buf, len % 4);
 361		else
 362			omap_read_buf8(mtd, buf, len % 4);
 363		p = (u32 *) (buf + len % 4);
 364		len -= len % 4;
 365	}
 366
 367	/* configure and start prefetch transfer */
 368	ret = omap_prefetch_enable(info->gpmc_cs,
 369			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 370	if (ret) {
 371		/* PFPW engine is busy, use cpu copy method */
 372		if (info->nand.options & NAND_BUSWIDTH_16)
 373			omap_read_buf16(mtd, (u_char *)p, len);
 374		else
 375			omap_read_buf8(mtd, (u_char *)p, len);
 376	} else {
 377		do {
 378			r_count = readl(info->reg.gpmc_prefetch_status);
 379			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 380			r_count = r_count >> 2;
 381			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 382			p += r_count;
 383			len -= r_count << 2;
 384		} while (len);
 385		/* disable and stop the PFPW engine */
 386		omap_prefetch_reset(info->gpmc_cs, info);
 387	}
 388}
 389
 390/**
 391 * omap_write_buf_pref - write buffer to NAND controller
 392 * @mtd: MTD device structure
 393 * @buf: data buffer
 394 * @len: number of bytes to write
 395 */
 396static void omap_write_buf_pref(struct mtd_info *mtd,
 397					const u_char *buf, int len)
 398{
 399	struct omap_nand_info *info = mtd_to_omap(mtd);
 400	uint32_t w_count = 0;
 401	int i = 0, ret = 0;
 402	u16 *p = (u16 *)buf;
 403	unsigned long tim, limit;
 404	u32 val;
 405
 406	/* take care of subpage writes */
 407	if (len % 2 != 0) {
 408		writeb(*buf, info->nand.IO_ADDR_W);
 409		p = (u16 *)(buf + 1);
 410		len--;
 411	}
 412
 413	/*  configure and start prefetch transfer */
 414	ret = omap_prefetch_enable(info->gpmc_cs,
 415			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 416	if (ret) {
 417		/* PFPW engine is busy, use cpu copy method */
 418		if (info->nand.options & NAND_BUSWIDTH_16)
 419			omap_write_buf16(mtd, (u_char *)p, len);
 420		else
 421			omap_write_buf8(mtd, (u_char *)p, len);
 422	} else {
 423		while (len) {
 424			w_count = readl(info->reg.gpmc_prefetch_status);
 425			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 426			w_count = w_count >> 1;
 427			for (i = 0; (i < w_count) && len; i++, len -= 2)
 428				iowrite16(*p++, info->nand.IO_ADDR_W);
 429		}
 430		/* wait for data to flushed-out before reset the prefetch */
 431		tim = 0;
 432		limit = (loops_per_jiffy *
 433					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 434		do {
 435			cpu_relax();
 436			val = readl(info->reg.gpmc_prefetch_status);
 437			val = PREFETCH_STATUS_COUNT(val);
 438		} while (val && (tim++ < limit));
 439
 440		/* disable and stop the PFPW engine */
 441		omap_prefetch_reset(info->gpmc_cs, info);
 442	}
 443}
 444
 445/*
 446 * omap_nand_dma_callback: callback on the completion of dma transfer
 447 * @data: pointer to completion data structure
 448 */
 449static void omap_nand_dma_callback(void *data)
 450{
 451	complete((struct completion *) data);
 452}
 453
 454/*
 455 * omap_nand_dma_transfer: configure and start dma transfer
 456 * @mtd: MTD device structure
 457 * @addr: virtual address in RAM of source/destination
 458 * @len: number of data bytes to be transferred
 459 * @is_write: flag for read/write operation
 460 */
 461static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 462					unsigned int len, int is_write)
 463{
 464	struct omap_nand_info *info = mtd_to_omap(mtd);
 465	struct dma_async_tx_descriptor *tx;
 466	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 467							DMA_FROM_DEVICE;
 468	struct scatterlist sg;
 469	unsigned long tim, limit;
 470	unsigned n;
 471	int ret;
 472	u32 val;
 473
 474	if (!virt_addr_valid(addr))
 475		goto out_copy;
 476
 477	sg_init_one(&sg, addr, len);
 478	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 479	if (n == 0) {
 480		dev_err(&info->pdev->dev,
 481			"Couldn't DMA map a %d byte buffer\n", len);
 482		goto out_copy;
 483	}
 484
 485	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 486		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 487		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 488	if (!tx)
 489		goto out_copy_unmap;
 490
 491	tx->callback = omap_nand_dma_callback;
 492	tx->callback_param = &info->comp;
 493	dmaengine_submit(tx);
 494
 495	init_completion(&info->comp);
 496
 497	/* setup and start DMA using dma_addr */
 498	dma_async_issue_pending(info->dma);
 499
 500	/*  configure and start prefetch transfer */
 501	ret = omap_prefetch_enable(info->gpmc_cs,
 502		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 503	if (ret)
 504		/* PFPW engine is busy, use cpu copy method */
 505		goto out_copy_unmap;
 506
 507	wait_for_completion(&info->comp);
 508	tim = 0;
 509	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 510
 511	do {
 512		cpu_relax();
 513		val = readl(info->reg.gpmc_prefetch_status);
 514		val = PREFETCH_STATUS_COUNT(val);
 515	} while (val && (tim++ < limit));
 516
 517	/* disable and stop the PFPW engine */
 518	omap_prefetch_reset(info->gpmc_cs, info);
 519
 520	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 521	return 0;
 522
 523out_copy_unmap:
 524	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 525out_copy:
 526	if (info->nand.options & NAND_BUSWIDTH_16)
 527		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 528			: omap_write_buf16(mtd, (u_char *) addr, len);
 529	else
 530		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 531			: omap_write_buf8(mtd, (u_char *) addr, len);
 532	return 0;
 533}
 534
 535/**
 536 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 537 * @mtd: MTD device structure
 538 * @buf: buffer to store date
 539 * @len: number of bytes to read
 540 */
 541static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 542{
 543	if (len <= mtd->oobsize)
 544		omap_read_buf_pref(mtd, buf, len);
 545	else
 546		/* start transfer in DMA mode */
 547		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 548}
 549
 550/**
 551 * omap_write_buf_dma_pref - write buffer to NAND controller
 552 * @mtd: MTD device structure
 553 * @buf: data buffer
 554 * @len: number of bytes to write
 555 */
 556static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 557					const u_char *buf, int len)
 558{
 559	if (len <= mtd->oobsize)
 560		omap_write_buf_pref(mtd, buf, len);
 561	else
 562		/* start transfer in DMA mode */
 563		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 564}
 565
 566/*
 567 * omap_nand_irq - GPMC irq handler
 568 * @this_irq: gpmc irq number
 569 * @dev: omap_nand_info structure pointer is passed here
 570 */
 571static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 572{
 573	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 574	u32 bytes;
 575
 576	bytes = readl(info->reg.gpmc_prefetch_status);
 577	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 578	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 579	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 580		if (this_irq == info->gpmc_irq_count)
 581			goto done;
 582
 583		if (info->buf_len && (info->buf_len < bytes))
 584			bytes = info->buf_len;
 585		else if (!info->buf_len)
 586			bytes = 0;
 587		iowrite32_rep(info->nand.IO_ADDR_W,
 588						(u32 *)info->buf, bytes >> 2);
 589		info->buf = info->buf + bytes;
 590		info->buf_len -= bytes;
 591
 592	} else {
 593		ioread32_rep(info->nand.IO_ADDR_R,
 594						(u32 *)info->buf, bytes >> 2);
 595		info->buf = info->buf + bytes;
 596
 597		if (this_irq == info->gpmc_irq_count)
 598			goto done;
 599	}
 600
 601	return IRQ_HANDLED;
 602
 603done:
 604	complete(&info->comp);
 605
 606	disable_irq_nosync(info->gpmc_irq_fifo);
 607	disable_irq_nosync(info->gpmc_irq_count);
 608
 609	return IRQ_HANDLED;
 610}
 611
 612/*
 613 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 614 * @mtd: MTD device structure
 615 * @buf: buffer to store date
 616 * @len: number of bytes to read
 617 */
 618static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 619{
 620	struct omap_nand_info *info = mtd_to_omap(mtd);
 621	int ret = 0;
 622
 623	if (len <= mtd->oobsize) {
 624		omap_read_buf_pref(mtd, buf, len);
 625		return;
 626	}
 627
 628	info->iomode = OMAP_NAND_IO_READ;
 629	info->buf = buf;
 630	init_completion(&info->comp);
 631
 632	/*  configure and start prefetch transfer */
 633	ret = omap_prefetch_enable(info->gpmc_cs,
 634			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 635	if (ret)
 636		/* PFPW engine is busy, use cpu copy method */
 637		goto out_copy;
 638
 639	info->buf_len = len;
 640
 641	enable_irq(info->gpmc_irq_count);
 642	enable_irq(info->gpmc_irq_fifo);
 643
 644	/* waiting for read to complete */
 645	wait_for_completion(&info->comp);
 646
 647	/* disable and stop the PFPW engine */
 648	omap_prefetch_reset(info->gpmc_cs, info);
 649	return;
 650
 651out_copy:
 652	if (info->nand.options & NAND_BUSWIDTH_16)
 653		omap_read_buf16(mtd, buf, len);
 654	else
 655		omap_read_buf8(mtd, buf, len);
 656}
 657
 658/*
 659 * omap_write_buf_irq_pref - write buffer to NAND controller
 660 * @mtd: MTD device structure
 661 * @buf: data buffer
 662 * @len: number of bytes to write
 663 */
 664static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 665					const u_char *buf, int len)
 666{
 667	struct omap_nand_info *info = mtd_to_omap(mtd);
 668	int ret = 0;
 669	unsigned long tim, limit;
 670	u32 val;
 671
 672	if (len <= mtd->oobsize) {
 673		omap_write_buf_pref(mtd, buf, len);
 674		return;
 675	}
 676
 677	info->iomode = OMAP_NAND_IO_WRITE;
 678	info->buf = (u_char *) buf;
 679	init_completion(&info->comp);
 680
 681	/* configure and start prefetch transfer : size=24 */
 682	ret = omap_prefetch_enable(info->gpmc_cs,
 683		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 684	if (ret)
 685		/* PFPW engine is busy, use cpu copy method */
 686		goto out_copy;
 687
 688	info->buf_len = len;
 689
 690	enable_irq(info->gpmc_irq_count);
 691	enable_irq(info->gpmc_irq_fifo);
 692
 693	/* waiting for write to complete */
 694	wait_for_completion(&info->comp);
 695
 696	/* wait for data to flushed-out before reset the prefetch */
 697	tim = 0;
 698	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 699	do {
 700		val = readl(info->reg.gpmc_prefetch_status);
 701		val = PREFETCH_STATUS_COUNT(val);
 702		cpu_relax();
 703	} while (val && (tim++ < limit));
 704
 705	/* disable and stop the PFPW engine */
 706	omap_prefetch_reset(info->gpmc_cs, info);
 707	return;
 708
 709out_copy:
 710	if (info->nand.options & NAND_BUSWIDTH_16)
 711		omap_write_buf16(mtd, buf, len);
 712	else
 713		omap_write_buf8(mtd, buf, len);
 714}
 715
 716/**
 717 * gen_true_ecc - This function will generate true ECC value
 718 * @ecc_buf: buffer to store ecc code
 719 *
 720 * This generated true ECC value can be used when correcting
 721 * data read from NAND flash memory core
 722 */
 723static void gen_true_ecc(u8 *ecc_buf)
 724{
 725	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 726		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 727
 728	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 729			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 730	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 731			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 732	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 733			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 734}
 735
 736/**
 737 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 738 * @ecc_data1:  ecc code from nand spare area
 739 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 740 * @page_data:  page data
 741 *
 742 * This function compares two ECC's and indicates if there is an error.
 743 * If the error can be corrected it will be corrected to the buffer.
 744 * If there is no error, %0 is returned. If there is an error but it
 745 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 746 */
 747static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 748			    u8 *ecc_data2,	/* read from register */
 749			    u8 *page_data)
 750{
 751	uint	i;
 752	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 753	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 754	u8	ecc_bit[24];
 755	u8	ecc_sum = 0;
 756	u8	find_bit = 0;
 757	uint	find_byte = 0;
 758	int	isEccFF;
 759
 760	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 761
 762	gen_true_ecc(ecc_data1);
 763	gen_true_ecc(ecc_data2);
 764
 765	for (i = 0; i <= 2; i++) {
 766		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 767		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 768	}
 769
 770	for (i = 0; i < 8; i++) {
 771		tmp0_bit[i]     = *ecc_data1 % 2;
 772		*ecc_data1	= *ecc_data1 / 2;
 773	}
 774
 775	for (i = 0; i < 8; i++) {
 776		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 777		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 778	}
 779
 780	for (i = 0; i < 8; i++) {
 781		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 782		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 783	}
 784
 785	for (i = 0; i < 8; i++) {
 786		comp0_bit[i]     = *ecc_data2 % 2;
 787		*ecc_data2       = *ecc_data2 / 2;
 788	}
 789
 790	for (i = 0; i < 8; i++) {
 791		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 792		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 793	}
 794
 795	for (i = 0; i < 8; i++) {
 796		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 797		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 798	}
 799
 800	for (i = 0; i < 6; i++)
 801		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 802
 803	for (i = 0; i < 8; i++)
 804		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 805
 806	for (i = 0; i < 8; i++)
 807		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 808
 809	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 810	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 811
 812	for (i = 0; i < 24; i++)
 813		ecc_sum += ecc_bit[i];
 814
 815	switch (ecc_sum) {
 816	case 0:
 817		/* Not reached because this function is not called if
 818		 *  ECC values are equal
 819		 */
 820		return 0;
 821
 822	case 1:
 823		/* Uncorrectable error */
 824		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 825		return -EBADMSG;
 826
 827	case 11:
 828		/* UN-Correctable error */
 829		pr_debug("ECC UNCORRECTED_ERROR B\n");
 830		return -EBADMSG;
 831
 832	case 12:
 833		/* Correctable error */
 834		find_byte = (ecc_bit[23] << 8) +
 835			    (ecc_bit[21] << 7) +
 836			    (ecc_bit[19] << 6) +
 837			    (ecc_bit[17] << 5) +
 838			    (ecc_bit[15] << 4) +
 839			    (ecc_bit[13] << 3) +
 840			    (ecc_bit[11] << 2) +
 841			    (ecc_bit[9]  << 1) +
 842			    ecc_bit[7];
 843
 844		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 845
 846		pr_debug("Correcting single bit ECC error at offset: "
 847				"%d, bit: %d\n", find_byte, find_bit);
 848
 849		page_data[find_byte] ^= (1 << find_bit);
 850
 851		return 1;
 852	default:
 853		if (isEccFF) {
 854			if (ecc_data2[0] == 0 &&
 855			    ecc_data2[1] == 0 &&
 856			    ecc_data2[2] == 0)
 857				return 0;
 858		}
 859		pr_debug("UNCORRECTED_ERROR default\n");
 860		return -EBADMSG;
 861	}
 862}
 863
 864/**
 865 * omap_correct_data - Compares the ECC read with HW generated ECC
 866 * @mtd: MTD device structure
 867 * @dat: page data
 868 * @read_ecc: ecc read from nand flash
 869 * @calc_ecc: ecc read from HW ECC registers
 870 *
 871 * Compares the ecc read from nand spare area with ECC registers values
 872 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 873 * detection and correction. If there are no errors, %0 is returned. If
 874 * there were errors and all of the errors were corrected, the number of
 875 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 876 * returned.
 877 */
 878static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 879				u_char *read_ecc, u_char *calc_ecc)
 880{
 881	struct omap_nand_info *info = mtd_to_omap(mtd);
 882	int blockCnt = 0, i = 0, ret = 0;
 883	int stat = 0;
 884
 885	/* Ex NAND_ECC_HW12_2048 */
 886	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 887			(info->nand.ecc.size  == 2048))
 888		blockCnt = 4;
 889	else
 890		blockCnt = 1;
 891
 892	for (i = 0; i < blockCnt; i++) {
 893		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 894			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 895			if (ret < 0)
 896				return ret;
 897			/* keep track of the number of corrected errors */
 898			stat += ret;
 899		}
 900		read_ecc += 3;
 901		calc_ecc += 3;
 902		dat      += 512;
 903	}
 904	return stat;
 905}
 906
 907/**
 908 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 909 * @mtd: MTD device structure
 910 * @dat: The pointer to data on which ecc is computed
 911 * @ecc_code: The ecc_code buffer
 912 *
 913 * Using noninverted ECC can be considered ugly since writing a blank
 914 * page ie. padding will clear the ECC bytes. This is no problem as long
 915 * nobody is trying to write data on the seemingly unused page. Reading
 916 * an erased page will produce an ECC mismatch between generated and read
 917 * ECC bytes that has to be dealt with separately.
 918 */
 919static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 920				u_char *ecc_code)
 921{
 922	struct omap_nand_info *info = mtd_to_omap(mtd);
 923	u32 val;
 924
 925	val = readl(info->reg.gpmc_ecc_config);
 926	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 927		return -EINVAL;
 928
 929	/* read ecc result */
 930	val = readl(info->reg.gpmc_ecc1_result);
 931	*ecc_code++ = val;          /* P128e, ..., P1e */
 932	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 933	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 934	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 935
 936	return 0;
 937}
 938
 939/**
 940 * omap_enable_hwecc - This function enables the hardware ecc functionality
 941 * @mtd: MTD device structure
 942 * @mode: Read/Write mode
 943 */
 944static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 945{
 946	struct omap_nand_info *info = mtd_to_omap(mtd);
 947	struct nand_chip *chip = mtd_to_nand(mtd);
 948	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 949	u32 val;
 950
 951	/* clear ecc and enable bits */
 952	val = ECCCLEAR | ECC1;
 953	writel(val, info->reg.gpmc_ecc_control);
 954
 955	/* program ecc and result sizes */
 956	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 957			 ECC1RESULTSIZE);
 958	writel(val, info->reg.gpmc_ecc_size_config);
 959
 960	switch (mode) {
 961	case NAND_ECC_READ:
 962	case NAND_ECC_WRITE:
 963		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 964		break;
 965	case NAND_ECC_READSYN:
 966		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 967		break;
 968	default:
 969		dev_info(&info->pdev->dev,
 970			"error: unrecognized Mode[%d]!\n", mode);
 971		break;
 972	}
 973
 974	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 975	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 976	writel(val, info->reg.gpmc_ecc_config);
 977}
 978
 979/**
 980 * omap_wait - wait until the command is done
 981 * @mtd: MTD device structure
 982 * @chip: NAND Chip structure
 983 *
 984 * Wait function is called during Program and erase operations and
 985 * the way it is called from MTD layer, we should wait till the NAND
 986 * chip is ready after the programming/erase operation has completed.
 987 *
 988 * Erase can take up to 400ms and program up to 20ms according to
 989 * general NAND and SmartMedia specs
 990 */
 991static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 992{
 993	struct nand_chip *this = mtd_to_nand(mtd);
 994	struct omap_nand_info *info = mtd_to_omap(mtd);
 995	unsigned long timeo = jiffies;
 996	int status, state = this->state;
 997
 998	if (state == FL_ERASING)
 999		timeo += msecs_to_jiffies(400);
1000	else
1001		timeo += msecs_to_jiffies(20);
1002
1003	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1004	while (time_before(jiffies, timeo)) {
1005		status = readb(info->reg.gpmc_nand_data);
1006		if (status & NAND_STATUS_READY)
1007			break;
1008		cond_resched();
1009	}
1010
1011	status = readb(info->reg.gpmc_nand_data);
1012	return status;
1013}
1014
1015/**
1016 * omap_dev_ready - checks the NAND Ready GPIO line
1017 * @mtd: MTD device structure
1018 *
1019 * Returns true if ready and false if busy.
1020 */
1021static int omap_dev_ready(struct mtd_info *mtd)
1022{
1023	struct omap_nand_info *info = mtd_to_omap(mtd);
1024
1025	return gpiod_get_value(info->ready_gpiod);
1026}
1027
1028/**
1029 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1030 * @mtd: MTD device structure
1031 * @mode: Read/Write mode
1032 *
1033 * When using BCH with SW correction (i.e. no ELM), sector size is set
1034 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1035 * for both reading and writing with:
1036 * eccsize0 = 0  (no additional protected byte in spare area)
1037 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1038 */
1039static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1040{
1041	unsigned int bch_type;
1042	unsigned int dev_width, nsectors;
1043	struct omap_nand_info *info = mtd_to_omap(mtd);
1044	enum omap_ecc ecc_opt = info->ecc_opt;
1045	struct nand_chip *chip = mtd_to_nand(mtd);
1046	u32 val, wr_mode;
1047	unsigned int ecc_size1, ecc_size0;
1048
1049	/* GPMC configurations for calculating ECC */
1050	switch (ecc_opt) {
1051	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1052		bch_type = 0;
1053		nsectors = 1;
1054		wr_mode	  = BCH_WRAPMODE_6;
1055		ecc_size0 = BCH_ECC_SIZE0;
1056		ecc_size1 = BCH_ECC_SIZE1;
1057		break;
1058	case OMAP_ECC_BCH4_CODE_HW:
1059		bch_type = 0;
1060		nsectors = chip->ecc.steps;
1061		if (mode == NAND_ECC_READ) {
1062			wr_mode	  = BCH_WRAPMODE_1;
1063			ecc_size0 = BCH4R_ECC_SIZE0;
1064			ecc_size1 = BCH4R_ECC_SIZE1;
1065		} else {
1066			wr_mode   = BCH_WRAPMODE_6;
1067			ecc_size0 = BCH_ECC_SIZE0;
1068			ecc_size1 = BCH_ECC_SIZE1;
1069		}
1070		break;
1071	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1072		bch_type = 1;
1073		nsectors = 1;
1074		wr_mode	  = BCH_WRAPMODE_6;
1075		ecc_size0 = BCH_ECC_SIZE0;
1076		ecc_size1 = BCH_ECC_SIZE1;
1077		break;
1078	case OMAP_ECC_BCH8_CODE_HW:
1079		bch_type = 1;
1080		nsectors = chip->ecc.steps;
1081		if (mode == NAND_ECC_READ) {
1082			wr_mode	  = BCH_WRAPMODE_1;
1083			ecc_size0 = BCH8R_ECC_SIZE0;
1084			ecc_size1 = BCH8R_ECC_SIZE1;
1085		} else {
1086			wr_mode   = BCH_WRAPMODE_6;
1087			ecc_size0 = BCH_ECC_SIZE0;
1088			ecc_size1 = BCH_ECC_SIZE1;
1089		}
1090		break;
1091	case OMAP_ECC_BCH16_CODE_HW:
1092		bch_type = 0x2;
1093		nsectors = chip->ecc.steps;
1094		if (mode == NAND_ECC_READ) {
1095			wr_mode	  = 0x01;
1096			ecc_size0 = 52; /* ECC bits in nibbles per sector */
1097			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1098		} else {
1099			wr_mode	  = 0x01;
1100			ecc_size0 = 0;  /* extra bits in nibbles per sector */
1101			ecc_size1 = 52; /* OOB bits in nibbles per sector */
1102		}
1103		break;
1104	default:
1105		return;
1106	}
1107
1108	writel(ECC1, info->reg.gpmc_ecc_control);
1109
1110	/* Configure ecc size for BCH */
1111	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1112	writel(val, info->reg.gpmc_ecc_size_config);
1113
1114	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1115
1116	/* BCH configuration */
1117	val = ((1                        << 16) | /* enable BCH */
1118	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1119	       (wr_mode                  <<  8) | /* wrap mode */
1120	       (dev_width                <<  7) | /* bus width */
1121	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1122	       (info->gpmc_cs            <<  1) | /* ECC CS */
1123	       (0x1));                            /* enable ECC */
1124
1125	writel(val, info->reg.gpmc_ecc_config);
1126
1127	/* Clear ecc and enable bits */
1128	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1129}
1130
1131static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1132static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1133				0x97, 0x79, 0xe5, 0x24, 0xb5};
1134
1135/**
1136 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1137 * @mtd:	MTD device structure
1138 * @dat:	The pointer to data on which ecc is computed
1139 * @ecc_code:	The ecc_code buffer
1140 *
1141 * Support calculating of BCH4/8 ecc vectors for the page
1142 */
1143static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1144					const u_char *dat, u_char *ecc_calc)
1145{
1146	struct omap_nand_info *info = mtd_to_omap(mtd);
1147	int eccbytes	= info->nand.ecc.bytes;
1148	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1149	u8 *ecc_code;
1150	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1151	u32 val;
1152	int i, j;
1153
1154	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1155	for (i = 0; i < nsectors; i++) {
1156		ecc_code = ecc_calc;
1157		switch (info->ecc_opt) {
1158		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1159		case OMAP_ECC_BCH8_CODE_HW:
1160			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1161			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1162			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1163			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1164			*ecc_code++ = (bch_val4 & 0xFF);
1165			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1166			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1167			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1168			*ecc_code++ = (bch_val3 & 0xFF);
1169			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1170			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1171			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1172			*ecc_code++ = (bch_val2 & 0xFF);
1173			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1174			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1175			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1176			*ecc_code++ = (bch_val1 & 0xFF);
1177			break;
1178		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1179		case OMAP_ECC_BCH4_CODE_HW:
1180			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1181			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1182			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1183			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1184			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1185				((bch_val1 >> 28) & 0xF);
1186			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1187			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1188			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1189			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1190			break;
1191		case OMAP_ECC_BCH16_CODE_HW:
1192			val = readl(gpmc_regs->gpmc_bch_result6[i]);
1193			ecc_code[0]  = ((val >>  8) & 0xFF);
1194			ecc_code[1]  = ((val >>  0) & 0xFF);
1195			val = readl(gpmc_regs->gpmc_bch_result5[i]);
1196			ecc_code[2]  = ((val >> 24) & 0xFF);
1197			ecc_code[3]  = ((val >> 16) & 0xFF);
1198			ecc_code[4]  = ((val >>  8) & 0xFF);
1199			ecc_code[5]  = ((val >>  0) & 0xFF);
1200			val = readl(gpmc_regs->gpmc_bch_result4[i]);
1201			ecc_code[6]  = ((val >> 24) & 0xFF);
1202			ecc_code[7]  = ((val >> 16) & 0xFF);
1203			ecc_code[8]  = ((val >>  8) & 0xFF);
1204			ecc_code[9]  = ((val >>  0) & 0xFF);
1205			val = readl(gpmc_regs->gpmc_bch_result3[i]);
1206			ecc_code[10] = ((val >> 24) & 0xFF);
1207			ecc_code[11] = ((val >> 16) & 0xFF);
1208			ecc_code[12] = ((val >>  8) & 0xFF);
1209			ecc_code[13] = ((val >>  0) & 0xFF);
1210			val = readl(gpmc_regs->gpmc_bch_result2[i]);
1211			ecc_code[14] = ((val >> 24) & 0xFF);
1212			ecc_code[15] = ((val >> 16) & 0xFF);
1213			ecc_code[16] = ((val >>  8) & 0xFF);
1214			ecc_code[17] = ((val >>  0) & 0xFF);
1215			val = readl(gpmc_regs->gpmc_bch_result1[i]);
1216			ecc_code[18] = ((val >> 24) & 0xFF);
1217			ecc_code[19] = ((val >> 16) & 0xFF);
1218			ecc_code[20] = ((val >>  8) & 0xFF);
1219			ecc_code[21] = ((val >>  0) & 0xFF);
1220			val = readl(gpmc_regs->gpmc_bch_result0[i]);
1221			ecc_code[22] = ((val >> 24) & 0xFF);
1222			ecc_code[23] = ((val >> 16) & 0xFF);
1223			ecc_code[24] = ((val >>  8) & 0xFF);
1224			ecc_code[25] = ((val >>  0) & 0xFF);
1225			break;
1226		default:
1227			return -EINVAL;
1228		}
1229
1230		/* ECC scheme specific syndrome customizations */
1231		switch (info->ecc_opt) {
1232		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1233			/* Add constant polynomial to remainder, so that
1234			 * ECC of blank pages results in 0x0 on reading back */
1235			for (j = 0; j < eccbytes; j++)
1236				ecc_calc[j] ^= bch4_polynomial[j];
1237			break;
1238		case OMAP_ECC_BCH4_CODE_HW:
1239			/* Set  8th ECC byte as 0x0 for ROM compatibility */
1240			ecc_calc[eccbytes - 1] = 0x0;
1241			break;
1242		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1243			/* Add constant polynomial to remainder, so that
1244			 * ECC of blank pages results in 0x0 on reading back */
1245			for (j = 0; j < eccbytes; j++)
1246				ecc_calc[j] ^= bch8_polynomial[j];
1247			break;
1248		case OMAP_ECC_BCH8_CODE_HW:
1249			/* Set 14th ECC byte as 0x0 for ROM compatibility */
1250			ecc_calc[eccbytes - 1] = 0x0;
1251			break;
1252		case OMAP_ECC_BCH16_CODE_HW:
1253			break;
1254		default:
1255			return -EINVAL;
1256		}
1257
1258	ecc_calc += eccbytes;
1259	}
1260
1261	return 0;
1262}
1263
1264/**
1265 * erased_sector_bitflips - count bit flips
1266 * @data:	data sector buffer
1267 * @oob:	oob buffer
1268 * @info:	omap_nand_info
1269 *
1270 * Check the bit flips in erased page falls below correctable level.
1271 * If falls below, report the page as erased with correctable bit
1272 * flip, else report as uncorrectable page.
1273 */
1274static int erased_sector_bitflips(u_char *data, u_char *oob,
1275		struct omap_nand_info *info)
1276{
1277	int flip_bits = 0, i;
1278
1279	for (i = 0; i < info->nand.ecc.size; i++) {
1280		flip_bits += hweight8(~data[i]);
1281		if (flip_bits > info->nand.ecc.strength)
1282			return 0;
1283	}
1284
1285	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1286		flip_bits += hweight8(~oob[i]);
1287		if (flip_bits > info->nand.ecc.strength)
1288			return 0;
1289	}
1290
1291	/*
1292	 * Bit flips falls in correctable level.
1293	 * Fill data area with 0xFF
1294	 */
1295	if (flip_bits) {
1296		memset(data, 0xFF, info->nand.ecc.size);
1297		memset(oob, 0xFF, info->nand.ecc.bytes);
1298	}
1299
1300	return flip_bits;
1301}
1302
1303/**
1304 * omap_elm_correct_data - corrects page data area in case error reported
1305 * @mtd:	MTD device structure
1306 * @data:	page data
1307 * @read_ecc:	ecc read from nand flash
1308 * @calc_ecc:	ecc read from HW ECC registers
1309 *
1310 * Calculated ecc vector reported as zero in case of non-error pages.
1311 * In case of non-zero ecc vector, first filter out erased-pages, and
1312 * then process data via ELM to detect bit-flips.
1313 */
1314static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1315				u_char *read_ecc, u_char *calc_ecc)
1316{
1317	struct omap_nand_info *info = mtd_to_omap(mtd);
1318	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1319	int eccsteps = info->nand.ecc.steps;
1320	int i , j, stat = 0;
1321	int eccflag, actual_eccbytes;
1322	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1323	u_char *ecc_vec = calc_ecc;
1324	u_char *spare_ecc = read_ecc;
1325	u_char *erased_ecc_vec;
1326	u_char *buf;
1327	int bitflip_count;
1328	bool is_error_reported = false;
1329	u32 bit_pos, byte_pos, error_max, pos;
1330	int err;
1331
1332	switch (info->ecc_opt) {
1333	case OMAP_ECC_BCH4_CODE_HW:
1334		/* omit  7th ECC byte reserved for ROM code compatibility */
1335		actual_eccbytes = ecc->bytes - 1;
1336		erased_ecc_vec = bch4_vector;
1337		break;
1338	case OMAP_ECC_BCH8_CODE_HW:
1339		/* omit 14th ECC byte reserved for ROM code compatibility */
1340		actual_eccbytes = ecc->bytes - 1;
1341		erased_ecc_vec = bch8_vector;
1342		break;
1343	case OMAP_ECC_BCH16_CODE_HW:
1344		actual_eccbytes = ecc->bytes;
1345		erased_ecc_vec = bch16_vector;
1346		break;
1347	default:
1348		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1349		return -EINVAL;
1350	}
1351
1352	/* Initialize elm error vector to zero */
1353	memset(err_vec, 0, sizeof(err_vec));
1354
1355	for (i = 0; i < eccsteps ; i++) {
1356		eccflag = 0;	/* initialize eccflag */
1357
1358		/*
1359		 * Check any error reported,
1360		 * In case of error, non zero ecc reported.
1361		 */
1362		for (j = 0; j < actual_eccbytes; j++) {
1363			if (calc_ecc[j] != 0) {
1364				eccflag = 1; /* non zero ecc, error present */
1365				break;
1366			}
1367		}
1368
1369		if (eccflag == 1) {
1370			if (memcmp(calc_ecc, erased_ecc_vec,
1371						actual_eccbytes) == 0) {
1372				/*
1373				 * calc_ecc[] matches pattern for ECC(all 0xff)
1374				 * so this is definitely an erased-page
1375				 */
1376			} else {
1377				buf = &data[info->nand.ecc.size * i];
1378				/*
1379				 * count number of 0-bits in read_buf.
1380				 * This check can be removed once a similar
1381				 * check is introduced in generic NAND driver
1382				 */
1383				bitflip_count = erased_sector_bitflips(
1384						buf, read_ecc, info);
1385				if (bitflip_count) {
1386					/*
1387					 * number of 0-bits within ECC limits
1388					 * So this may be an erased-page
1389					 */
1390					stat += bitflip_count;
1391				} else {
1392					/*
1393					 * Too many 0-bits. It may be a
1394					 * - programmed-page, OR
1395					 * - erased-page with many bit-flips
1396					 * So this page requires check by ELM
1397					 */
1398					err_vec[i].error_reported = true;
1399					is_error_reported = true;
1400				}
1401			}
1402		}
1403
1404		/* Update the ecc vector */
1405		calc_ecc += ecc->bytes;
1406		read_ecc += ecc->bytes;
1407	}
1408
1409	/* Check if any error reported */
1410	if (!is_error_reported)
1411		return stat;
1412
1413	/* Decode BCH error using ELM module */
1414	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1415
1416	err = 0;
1417	for (i = 0; i < eccsteps; i++) {
1418		if (err_vec[i].error_uncorrectable) {
1419			dev_err(&info->pdev->dev,
1420				"uncorrectable bit-flips found\n");
1421			err = -EBADMSG;
1422		} else if (err_vec[i].error_reported) {
1423			for (j = 0; j < err_vec[i].error_count; j++) {
1424				switch (info->ecc_opt) {
1425				case OMAP_ECC_BCH4_CODE_HW:
1426					/* Add 4 bits to take care of padding */
1427					pos = err_vec[i].error_loc[j] +
1428						BCH4_BIT_PAD;
1429					break;
1430				case OMAP_ECC_BCH8_CODE_HW:
1431				case OMAP_ECC_BCH16_CODE_HW:
1432					pos = err_vec[i].error_loc[j];
1433					break;
1434				default:
1435					return -EINVAL;
1436				}
1437				error_max = (ecc->size + actual_eccbytes) * 8;
1438				/* Calculate bit position of error */
1439				bit_pos = pos % 8;
1440
1441				/* Calculate byte position of error */
1442				byte_pos = (error_max - pos - 1) / 8;
1443
1444				if (pos < error_max) {
1445					if (byte_pos < 512) {
1446						pr_debug("bitflip@dat[%d]=%x\n",
1447						     byte_pos, data[byte_pos]);
1448						data[byte_pos] ^= 1 << bit_pos;
1449					} else {
1450						pr_debug("bitflip@oob[%d]=%x\n",
1451							(byte_pos - 512),
1452						     spare_ecc[byte_pos - 512]);
1453						spare_ecc[byte_pos - 512] ^=
1454							1 << bit_pos;
1455					}
1456				} else {
1457					dev_err(&info->pdev->dev,
1458						"invalid bit-flip @ %d:%d\n",
1459						byte_pos, bit_pos);
1460					err = -EBADMSG;
1461				}
1462			}
1463		}
1464
1465		/* Update number of correctable errors */
1466		stat += err_vec[i].error_count;
1467
1468		/* Update page data with sector size */
1469		data += ecc->size;
1470		spare_ecc += ecc->bytes;
1471	}
1472
1473	return (err) ? err : stat;
1474}
1475
1476/**
1477 * omap_write_page_bch - BCH ecc based write page function for entire page
1478 * @mtd:		mtd info structure
1479 * @chip:		nand chip info structure
1480 * @buf:		data buffer
1481 * @oob_required:	must write chip->oob_poi to OOB
1482 * @page:		page
1483 *
1484 * Custom write page method evolved to support multi sector writing in one shot
1485 */
1486static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1487			       const uint8_t *buf, int oob_required, int page)
1488{
1489	int ret;
1490	uint8_t *ecc_calc = chip->buffers->ecccalc;
1491
1492	/* Enable GPMC ecc engine */
1493	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1494
1495	/* Write data */
1496	chip->write_buf(mtd, buf, mtd->writesize);
1497
1498	/* Update ecc vector from GPMC result registers */
1499	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1500
1501	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1502					 chip->ecc.total);
1503	if (ret)
1504		return ret;
1505
1506	/* Write ecc vector to OOB area */
1507	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1508	return 0;
1509}
1510
1511/**
1512 * omap_read_page_bch - BCH ecc based page read function for entire page
1513 * @mtd:		mtd info structure
1514 * @chip:		nand chip info structure
1515 * @buf:		buffer to store read data
1516 * @oob_required:	caller requires OOB data read to chip->oob_poi
1517 * @page:		page number to read
1518 *
1519 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1520 * used for error correction.
1521 * Custom method evolved to support ELM error correction & multi sector
1522 * reading. On reading page data area is read along with OOB data with
1523 * ecc engine enabled. ecc vector updated after read of OOB data.
1524 * For non error pages ecc vector reported as zero.
1525 */
1526static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1527				uint8_t *buf, int oob_required, int page)
1528{
1529	uint8_t *ecc_calc = chip->buffers->ecccalc;
1530	uint8_t *ecc_code = chip->buffers->ecccode;
1531	int stat, ret;
1532	unsigned int max_bitflips = 0;
1533
1534	/* Enable GPMC ecc engine */
1535	chip->ecc.hwctl(mtd, NAND_ECC_READ);
1536
1537	/* Read data */
1538	chip->read_buf(mtd, buf, mtd->writesize);
1539
1540	/* Read oob bytes */
1541	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1542		      mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1543	chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1544		       chip->ecc.total);
1545
1546	/* Calculate ecc bytes */
1547	chip->ecc.calculate(mtd, buf, ecc_calc);
1548
1549	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1550					 chip->ecc.total);
1551	if (ret)
1552		return ret;
1553
1554	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1555
1556	if (stat < 0) {
1557		mtd->ecc_stats.failed++;
1558	} else {
1559		mtd->ecc_stats.corrected += stat;
1560		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1561	}
1562
1563	return max_bitflips;
1564}
1565
1566/**
1567 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1568 * @omap_nand_info: NAND device structure containing platform data
1569 */
1570static bool is_elm_present(struct omap_nand_info *info,
1571			   struct device_node *elm_node)
1572{
1573	struct platform_device *pdev;
1574
1575	/* check whether elm-id is passed via DT */
1576	if (!elm_node) {
1577		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1578		return false;
1579	}
1580	pdev = of_find_device_by_node(elm_node);
1581	/* check whether ELM device is registered */
1582	if (!pdev) {
1583		dev_err(&info->pdev->dev, "ELM device not found\n");
1584		return false;
1585	}
1586	/* ELM module available, now configure it */
1587	info->elm_dev = &pdev->dev;
1588	return true;
1589}
1590
1591static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1592				 struct omap_nand_platform_data	*pdata)
1593{
1594	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1595
1596	switch (info->ecc_opt) {
1597	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1598	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1599		ecc_needs_omap_bch = false;
1600		ecc_needs_bch = true;
1601		ecc_needs_elm = false;
1602		break;
1603	case OMAP_ECC_BCH4_CODE_HW:
1604	case OMAP_ECC_BCH8_CODE_HW:
1605	case OMAP_ECC_BCH16_CODE_HW:
1606		ecc_needs_omap_bch = true;
1607		ecc_needs_bch = false;
1608		ecc_needs_elm = true;
1609		break;
1610	default:
1611		ecc_needs_omap_bch = false;
1612		ecc_needs_bch = false;
1613		ecc_needs_elm = false;
1614		break;
1615	}
1616
1617	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1618		dev_err(&info->pdev->dev,
1619			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1620		return false;
1621	}
1622	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1623		dev_err(&info->pdev->dev,
1624			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1625		return false;
1626	}
1627	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1628		dev_err(&info->pdev->dev, "ELM not available\n");
1629		return false;
1630	}
1631
1632	return true;
1633}
1634
1635static const char * const nand_xfer_types[] = {
1636	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1637	[NAND_OMAP_POLLED] = "polled",
1638	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1639	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1640};
1641
1642static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1643{
1644	struct device_node *child = dev->of_node;
1645	int i;
1646	const char *s;
1647	u32 cs;
1648
1649	if (of_property_read_u32(child, "reg", &cs) < 0) {
1650		dev_err(dev, "reg not found in DT\n");
1651		return -EINVAL;
1652	}
1653
1654	info->gpmc_cs = cs;
1655
1656	/* detect availability of ELM module. Won't be present pre-OMAP4 */
1657	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1658	if (!info->elm_of_node) {
1659		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1660		if (!info->elm_of_node)
1661			dev_dbg(dev, "ti,elm-id not in DT\n");
1662	}
1663
1664	/* select ecc-scheme for NAND */
1665	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1666		dev_err(dev, "ti,nand-ecc-opt not found\n");
1667		return -EINVAL;
1668	}
1669
1670	if (!strcmp(s, "sw")) {
1671		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1672	} else if (!strcmp(s, "ham1") ||
1673		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1674		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
1675	} else if (!strcmp(s, "bch4")) {
1676		if (info->elm_of_node)
1677			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1678		else
1679			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1680	} else if (!strcmp(s, "bch8")) {
1681		if (info->elm_of_node)
1682			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1683		else
1684			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1685	} else if (!strcmp(s, "bch16")) {
1686		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
1687	} else {
1688		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1689		return -EINVAL;
1690	}
1691
1692	/* select data transfer mode */
1693	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1694		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1695			if (!strcasecmp(s, nand_xfer_types[i])) {
1696				info->xfer_type = i;
1697				return 0;
1698			}
1699		}
1700
1701		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1702		return -EINVAL;
1703	}
1704
1705	return 0;
1706}
1707
1708static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1709			      struct mtd_oob_region *oobregion)
1710{
1711	struct omap_nand_info *info = mtd_to_omap(mtd);
1712	struct nand_chip *chip = &info->nand;
1713	int off = BADBLOCK_MARKER_LENGTH;
1714
1715	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1716	    !(chip->options & NAND_BUSWIDTH_16))
1717		off = 1;
1718
1719	if (section)
1720		return -ERANGE;
1721
1722	oobregion->offset = off;
1723	oobregion->length = chip->ecc.total;
1724
1725	return 0;
1726}
1727
1728static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1729			       struct mtd_oob_region *oobregion)
1730{
1731	struct omap_nand_info *info = mtd_to_omap(mtd);
1732	struct nand_chip *chip = &info->nand;
1733	int off = BADBLOCK_MARKER_LENGTH;
1734
1735	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1736	    !(chip->options & NAND_BUSWIDTH_16))
1737		off = 1;
1738
1739	if (section)
1740		return -ERANGE;
1741
1742	off += chip->ecc.total;
1743	if (off >= mtd->oobsize)
1744		return -ERANGE;
1745
1746	oobregion->offset = off;
1747	oobregion->length = mtd->oobsize - off;
1748
1749	return 0;
1750}
1751
1752static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1753	.ecc = omap_ooblayout_ecc,
1754	.free = omap_ooblayout_free,
1755};
1756
1757static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1758				 struct mtd_oob_region *oobregion)
1759{
1760	struct nand_chip *chip = mtd_to_nand(mtd);
1761	int off = BADBLOCK_MARKER_LENGTH;
1762
1763	if (section >= chip->ecc.steps)
1764		return -ERANGE;
1765
1766	/*
1767	 * When SW correction is employed, one OMAP specific marker byte is
1768	 * reserved after each ECC step.
1769	 */
1770	oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1771	oobregion->length = chip->ecc.bytes;
1772
1773	return 0;
1774}
1775
1776static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1777				  struct mtd_oob_region *oobregion)
1778{
1779	struct nand_chip *chip = mtd_to_nand(mtd);
1780	int off = BADBLOCK_MARKER_LENGTH;
1781
1782	if (section)
1783		return -ERANGE;
1784
1785	/*
1786	 * When SW correction is employed, one OMAP specific marker byte is
1787	 * reserved after each ECC step.
1788	 */
1789	off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1790	if (off >= mtd->oobsize)
1791		return -ERANGE;
1792
1793	oobregion->offset = off;
1794	oobregion->length = mtd->oobsize - off;
1795
1796	return 0;
1797}
1798
1799static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1800	.ecc = omap_sw_ooblayout_ecc,
1801	.free = omap_sw_ooblayout_free,
1802};
1803
1804static int omap_nand_probe(struct platform_device *pdev)
1805{
1806	struct omap_nand_info		*info;
1807	struct omap_nand_platform_data	*pdata = NULL;
1808	struct mtd_info			*mtd;
1809	struct nand_chip		*nand_chip;
1810	int				err;
1811	dma_cap_mask_t			mask;
1812	struct resource			*res;
1813	struct device			*dev = &pdev->dev;
1814	int				min_oobbytes = BADBLOCK_MARKER_LENGTH;
1815	int				oobbytes_per_step;
1816
1817	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1818				GFP_KERNEL);
1819	if (!info)
1820		return -ENOMEM;
1821
1822	info->pdev = pdev;
1823
1824	if (dev->of_node) {
1825		if (omap_get_dt_info(dev, info))
1826			return -EINVAL;
1827	} else {
1828		pdata = dev_get_platdata(&pdev->dev);
1829		if (!pdata) {
1830			dev_err(&pdev->dev, "platform data missing\n");
1831			return -EINVAL;
1832		}
1833
1834		info->gpmc_cs = pdata->cs;
1835		info->reg = pdata->reg;
1836		info->ecc_opt = pdata->ecc_opt;
1837		if (pdata->dev_ready)
1838			dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1839
1840		info->xfer_type = pdata->xfer_type;
1841		info->devsize = pdata->devsize;
1842		info->elm_of_node = pdata->elm_of_node;
1843		info->flash_bbt = pdata->flash_bbt;
1844	}
1845
1846	platform_set_drvdata(pdev, info);
1847	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1848	if (!info->ops) {
1849		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1850		return -ENODEV;
1851	}
1852
1853	nand_chip		= &info->nand;
1854	mtd			= nand_to_mtd(nand_chip);
1855	mtd->dev.parent		= &pdev->dev;
1856	nand_chip->ecc.priv	= NULL;
1857	nand_set_flash_node(nand_chip, dev->of_node);
1858
1859	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1860	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1861	if (IS_ERR(nand_chip->IO_ADDR_R))
1862		return PTR_ERR(nand_chip->IO_ADDR_R);
1863
1864	info->phys_base = res->start;
1865
1866	nand_chip->controller = &omap_gpmc_controller;
1867
1868	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1869	nand_chip->cmd_ctrl  = omap_hwcontrol;
1870
1871	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1872						    GPIOD_IN);
1873	if (IS_ERR(info->ready_gpiod)) {
1874		dev_err(dev, "failed to get ready gpio\n");
1875		return PTR_ERR(info->ready_gpiod);
1876	}
1877
1878	/*
1879	 * If RDY/BSY line is connected to OMAP then use the omap ready
1880	 * function and the generic nand_wait function which reads the status
1881	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1882	 * chip delay which is slightly more than tR (AC Timing) of the NAND
1883	 * device and read status register until you get a failure or success
1884	 */
1885	if (info->ready_gpiod) {
1886		nand_chip->dev_ready = omap_dev_ready;
1887		nand_chip->chip_delay = 0;
1888	} else {
1889		nand_chip->waitfunc = omap_wait;
1890		nand_chip->chip_delay = 50;
1891	}
1892
1893	if (info->flash_bbt)
1894		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1895
1896	/* scan NAND device connected to chip controller */
1897	nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
1898	err = nand_scan_ident(mtd, 1, NULL);
1899	if (err) {
1900		dev_err(&info->pdev->dev,
1901			"scan failed, may be bus-width mismatch\n");
1902		goto return_error;
1903	}
1904
1905	if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1906		nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1907	else
1908		nand_chip->options |= NAND_SKIP_BBTSCAN;
1909
1910	/* re-populate low-level callbacks based on xfer modes */
1911	switch (info->xfer_type) {
1912	case NAND_OMAP_PREFETCH_POLLED:
1913		nand_chip->read_buf   = omap_read_buf_pref;
1914		nand_chip->write_buf  = omap_write_buf_pref;
1915		break;
1916
1917	case NAND_OMAP_POLLED:
1918		/* Use nand_base defaults for {read,write}_buf */
1919		break;
1920
1921	case NAND_OMAP_PREFETCH_DMA:
1922		dma_cap_zero(mask);
1923		dma_cap_set(DMA_SLAVE, mask);
1924		info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
1925
1926		if (IS_ERR(info->dma)) {
1927			dev_err(&pdev->dev, "DMA engine request failed\n");
1928			err = PTR_ERR(info->dma);
1929			goto return_error;
1930		} else {
1931			struct dma_slave_config cfg;
1932
1933			memset(&cfg, 0, sizeof(cfg));
1934			cfg.src_addr = info->phys_base;
1935			cfg.dst_addr = info->phys_base;
1936			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1937			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1938			cfg.src_maxburst = 16;
1939			cfg.dst_maxburst = 16;
1940			err = dmaengine_slave_config(info->dma, &cfg);
1941			if (err) {
1942				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1943					err);
1944				goto return_error;
1945			}
1946			nand_chip->read_buf   = omap_read_buf_dma_pref;
1947			nand_chip->write_buf  = omap_write_buf_dma_pref;
1948		}
1949		break;
1950
1951	case NAND_OMAP_PREFETCH_IRQ:
1952		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1953		if (info->gpmc_irq_fifo <= 0) {
1954			dev_err(&pdev->dev, "error getting fifo irq\n");
1955			err = -ENODEV;
1956			goto return_error;
1957		}
1958		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1959					omap_nand_irq, IRQF_SHARED,
1960					"gpmc-nand-fifo", info);
1961		if (err) {
1962			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1963						info->gpmc_irq_fifo, err);
1964			info->gpmc_irq_fifo = 0;
1965			goto return_error;
1966		}
1967
1968		info->gpmc_irq_count = platform_get_irq(pdev, 1);
1969		if (info->gpmc_irq_count <= 0) {
1970			dev_err(&pdev->dev, "error getting count irq\n");
1971			err = -ENODEV;
1972			goto return_error;
1973		}
1974		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1975					omap_nand_irq, IRQF_SHARED,
1976					"gpmc-nand-count", info);
1977		if (err) {
1978			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1979						info->gpmc_irq_count, err);
1980			info->gpmc_irq_count = 0;
1981			goto return_error;
1982		}
1983
1984		nand_chip->read_buf  = omap_read_buf_irq_pref;
1985		nand_chip->write_buf = omap_write_buf_irq_pref;
1986
1987		break;
1988
1989	default:
1990		dev_err(&pdev->dev,
1991			"xfer_type(%d) not supported!\n", info->xfer_type);
1992		err = -EINVAL;
1993		goto return_error;
1994	}
1995
1996	if (!omap2_nand_ecc_check(info, pdata)) {
1997		err = -EINVAL;
1998		goto return_error;
1999	}
2000
2001	/*
2002	 * Bail out earlier to let NAND_ECC_SOFT code create its own
2003	 * ooblayout instead of using ours.
2004	 */
2005	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2006		nand_chip->ecc.mode = NAND_ECC_SOFT;
2007		nand_chip->ecc.algo = NAND_ECC_HAMMING;
2008		goto scan_tail;
2009	}
2010
2011	/* populate MTD interface based on ECC scheme */
2012	switch (info->ecc_opt) {
2013	case OMAP_ECC_HAM1_CODE_HW:
2014		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2015		nand_chip->ecc.mode             = NAND_ECC_HW;
2016		nand_chip->ecc.bytes            = 3;
2017		nand_chip->ecc.size             = 512;
2018		nand_chip->ecc.strength         = 1;
2019		nand_chip->ecc.calculate        = omap_calculate_ecc;
2020		nand_chip->ecc.hwctl            = omap_enable_hwecc;
2021		nand_chip->ecc.correct          = omap_correct_data;
2022		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2023		oobbytes_per_step		= nand_chip->ecc.bytes;
2024
2025		if (!(nand_chip->options & NAND_BUSWIDTH_16))
2026			min_oobbytes		= 1;
2027
2028		break;
2029
2030	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2031		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2032		nand_chip->ecc.mode		= NAND_ECC_HW;
2033		nand_chip->ecc.size		= 512;
2034		nand_chip->ecc.bytes		= 7;
2035		nand_chip->ecc.strength		= 4;
2036		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2037		nand_chip->ecc.correct		= nand_bch_correct_data;
2038		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2039		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2040		/* Reserve one byte for the OMAP marker */
2041		oobbytes_per_step		= nand_chip->ecc.bytes + 1;
2042		/* software bch library is used for locating errors */
2043		nand_chip->ecc.priv		= nand_bch_init(mtd);
2044		if (!nand_chip->ecc.priv) {
2045			dev_err(&info->pdev->dev, "unable to use BCH library\n");
2046			err = -EINVAL;
2047			goto return_error;
2048		}
2049		break;
2050
2051	case OMAP_ECC_BCH4_CODE_HW:
2052		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2053		nand_chip->ecc.mode		= NAND_ECC_HW;
2054		nand_chip->ecc.size		= 512;
2055		/* 14th bit is kept reserved for ROM-code compatibility */
2056		nand_chip->ecc.bytes		= 7 + 1;
2057		nand_chip->ecc.strength		= 4;
2058		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2059		nand_chip->ecc.correct		= omap_elm_correct_data;
2060		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2061		nand_chip->ecc.read_page	= omap_read_page_bch;
2062		nand_chip->ecc.write_page	= omap_write_page_bch;
2063		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2064		oobbytes_per_step		= nand_chip->ecc.bytes;
2065
2066		err = elm_config(info->elm_dev, BCH4_ECC,
2067				 mtd->writesize / nand_chip->ecc.size,
2068				 nand_chip->ecc.size, nand_chip->ecc.bytes);
2069		if (err < 0)
2070			goto return_error;
2071		break;
2072
2073	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2074		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2075		nand_chip->ecc.mode		= NAND_ECC_HW;
2076		nand_chip->ecc.size		= 512;
2077		nand_chip->ecc.bytes		= 13;
2078		nand_chip->ecc.strength		= 8;
2079		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2080		nand_chip->ecc.correct		= nand_bch_correct_data;
2081		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2082		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2083		/* Reserve one byte for the OMAP marker */
2084		oobbytes_per_step		= nand_chip->ecc.bytes + 1;
2085		/* software bch library is used for locating errors */
2086		nand_chip->ecc.priv		= nand_bch_init(mtd);
2087		if (!nand_chip->ecc.priv) {
2088			dev_err(&info->pdev->dev, "unable to use BCH library\n");
2089			err = -EINVAL;
2090			goto return_error;
2091		}
2092		break;
2093
2094	case OMAP_ECC_BCH8_CODE_HW:
2095		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2096		nand_chip->ecc.mode		= NAND_ECC_HW;
2097		nand_chip->ecc.size		= 512;
2098		/* 14th bit is kept reserved for ROM-code compatibility */
2099		nand_chip->ecc.bytes		= 13 + 1;
2100		nand_chip->ecc.strength		= 8;
2101		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2102		nand_chip->ecc.correct		= omap_elm_correct_data;
2103		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2104		nand_chip->ecc.read_page	= omap_read_page_bch;
2105		nand_chip->ecc.write_page	= omap_write_page_bch;
2106		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2107		oobbytes_per_step		= nand_chip->ecc.bytes;
2108
2109		err = elm_config(info->elm_dev, BCH8_ECC,
2110				 mtd->writesize / nand_chip->ecc.size,
2111				 nand_chip->ecc.size, nand_chip->ecc.bytes);
2112		if (err < 0)
2113			goto return_error;
2114
2115		break;
2116
2117	case OMAP_ECC_BCH16_CODE_HW:
2118		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2119		nand_chip->ecc.mode		= NAND_ECC_HW;
2120		nand_chip->ecc.size		= 512;
2121		nand_chip->ecc.bytes		= 26;
2122		nand_chip->ecc.strength		= 16;
2123		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2124		nand_chip->ecc.correct		= omap_elm_correct_data;
2125		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2126		nand_chip->ecc.read_page	= omap_read_page_bch;
2127		nand_chip->ecc.write_page	= omap_write_page_bch;
2128		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2129		oobbytes_per_step		= nand_chip->ecc.bytes;
2130
2131		err = elm_config(info->elm_dev, BCH16_ECC,
2132				 mtd->writesize / nand_chip->ecc.size,
2133				 nand_chip->ecc.size, nand_chip->ecc.bytes);
2134		if (err < 0)
2135			goto return_error;
2136
2137		break;
2138	default:
2139		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2140		err = -EINVAL;
2141		goto return_error;
2142	}
2143
2144	/* check if NAND device's OOB is enough to store ECC signatures */
2145	min_oobbytes += (oobbytes_per_step *
2146			 (mtd->writesize / nand_chip->ecc.size));
2147	if (mtd->oobsize < min_oobbytes) {
2148		dev_err(&info->pdev->dev,
2149			"not enough OOB bytes required = %d, available=%d\n",
2150			min_oobbytes, mtd->oobsize);
2151		err = -EINVAL;
2152		goto return_error;
2153	}
2154
2155scan_tail:
2156	/* second phase scan */
2157	err = nand_scan_tail(mtd);
2158	if (err)
2159		goto return_error;
2160
2161	if (dev->of_node)
2162		mtd_device_register(mtd, NULL, 0);
2163	else
2164		mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2165
2166	platform_set_drvdata(pdev, mtd);
2167
2168	return 0;
2169
2170return_error:
2171	if (!IS_ERR_OR_NULL(info->dma))
2172		dma_release_channel(info->dma);
2173	if (nand_chip->ecc.priv) {
2174		nand_bch_free(nand_chip->ecc.priv);
2175		nand_chip->ecc.priv = NULL;
2176	}
2177	return err;
2178}
2179
2180static int omap_nand_remove(struct platform_device *pdev)
2181{
2182	struct mtd_info *mtd = platform_get_drvdata(pdev);
2183	struct nand_chip *nand_chip = mtd_to_nand(mtd);
2184	struct omap_nand_info *info = mtd_to_omap(mtd);
2185	if (nand_chip->ecc.priv) {
2186		nand_bch_free(nand_chip->ecc.priv);
2187		nand_chip->ecc.priv = NULL;
2188	}
2189	if (info->dma)
2190		dma_release_channel(info->dma);
2191	nand_release(mtd);
2192	return 0;
2193}
2194
2195static const struct of_device_id omap_nand_ids[] = {
2196	{ .compatible = "ti,omap2-nand", },
2197	{},
2198};
2199MODULE_DEVICE_TABLE(of, omap_nand_ids);
2200
2201static struct platform_driver omap_nand_driver = {
2202	.probe		= omap_nand_probe,
2203	.remove		= omap_nand_remove,
2204	.driver		= {
2205		.name	= DRIVER_NAME,
2206		.of_match_table = of_match_ptr(omap_nand_ids),
2207	},
2208};
2209
2210module_platform_driver(omap_nand_driver);
2211
2212MODULE_ALIAS("platform:" DRIVER_NAME);
2213MODULE_LICENSE("GPL");
2214MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");