Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *  Overview:
   3 *   Bad block table support for the NAND driver
   4 *
   5 *  Copyright © 2004 Thomas Gleixner (tglx@linutronix.de)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * Description:
  12 *
  13 * When nand_scan_bbt is called, then it tries to find the bad block table
  14 * depending on the options in the BBT descriptor(s). If no flash based BBT
  15 * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory
  16 * marked good / bad blocks. This information is used to create a memory BBT.
  17 * Once a new bad block is discovered then the "factory" information is updated
  18 * on the device.
  19 * If a flash based BBT is specified then the function first tries to find the
  20 * BBT on flash. If a BBT is found then the contents are read and the memory
  21 * based BBT is created. If a mirrored BBT is selected then the mirror is
  22 * searched too and the versions are compared. If the mirror has a greater
  23 * version number, then the mirror BBT is used to build the memory based BBT.
  24 * If the tables are not versioned, then we "or" the bad block information.
  25 * If one of the BBTs is out of date or does not exist it is (re)created.
  26 * If no BBT exists at all then the device is scanned for factory marked
  27 * good / bad blocks and the bad block tables are created.
  28 *
  29 * For manufacturer created BBTs like the one found on M-SYS DOC devices
  30 * the BBT is searched and read but never created
  31 *
  32 * The auto generated bad block table is located in the last good blocks
  33 * of the device. The table is mirrored, so it can be updated eventually.
  34 * The table is marked in the OOB area with an ident pattern and a version
  35 * number which indicates which of both tables is more up to date. If the NAND
  36 * controller needs the complete OOB area for the ECC information then the
  37 * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of
  38 * course): it moves the ident pattern and the version byte into the data area
  39 * and the OOB area will remain untouched.
  40 *
  41 * The table uses 2 bits per block
  42 * 11b:		block is good
  43 * 00b:		block is factory marked bad
  44 * 01b, 10b:	block is marked bad due to wear
  45 *
  46 * The memory bad block table uses the following scheme:
  47 * 00b:		block is good
  48 * 01b:		block is marked bad due to wear
  49 * 10b:		block is reserved (to protect the bbt area)
  50 * 11b:		block is factory marked bad
  51 *
  52 * Multichip devices like DOC store the bad block info per floor.
  53 *
  54 * Following assumptions are made:
  55 * - bbts start at a page boundary, if autolocated on a block boundary
  56 * - the space necessary for a bbt in FLASH does not exceed a block boundary
  57 *
  58 */
  59
  60#include <linux/slab.h>
  61#include <linux/types.h>
  62#include <linux/mtd/mtd.h>
  63#include <linux/mtd/bbm.h>
  64#include <linux/mtd/nand.h>
  65#include <linux/bitops.h>
  66#include <linux/delay.h>
  67#include <linux/vmalloc.h>
  68#include <linux/export.h>
  69#include <linux/string.h>
  70
  71#define BBT_BLOCK_GOOD		0x00
  72#define BBT_BLOCK_WORN		0x01
  73#define BBT_BLOCK_RESERVED	0x02
  74#define BBT_BLOCK_FACTORY_BAD	0x03
  75
  76#define BBT_ENTRY_MASK		0x03
  77#define BBT_ENTRY_SHIFT		2
  78
  79static int nand_update_bbt(struct mtd_info *mtd, loff_t offs);
  80
  81static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block)
  82{
  83	uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT];
  84	entry >>= (block & BBT_ENTRY_MASK) * 2;
  85	return entry & BBT_ENTRY_MASK;
  86}
  87
  88static inline void bbt_mark_entry(struct nand_chip *chip, int block,
  89		uint8_t mark)
  90{
  91	uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2);
  92	chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk;
  93}
  94
  95static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td)
  96{
  97	if (memcmp(buf, td->pattern, td->len))
  98		return -1;
  99	return 0;
 100}
 101
 102/**
 103 * check_pattern - [GENERIC] check if a pattern is in the buffer
 104 * @buf: the buffer to search
 105 * @len: the length of buffer to search
 106 * @paglen: the pagelength
 107 * @td: search pattern descriptor
 108 *
 109 * Check for a pattern at the given place. Used to search bad block tables and
 110 * good / bad block identifiers.
 111 */
 112static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
 113{
 114	if (td->options & NAND_BBT_NO_OOB)
 115		return check_pattern_no_oob(buf, td);
 116
 117	/* Compare the pattern */
 118	if (memcmp(buf + paglen + td->offs, td->pattern, td->len))
 119		return -1;
 120
 121	return 0;
 122}
 123
 124/**
 125 * check_short_pattern - [GENERIC] check if a pattern is in the buffer
 126 * @buf: the buffer to search
 127 * @td:	search pattern descriptor
 128 *
 129 * Check for a pattern at the given place. Used to search bad block tables and
 130 * good / bad block identifiers. Same as check_pattern, but no optional empty
 131 * check.
 132 */
 133static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
 134{
 135	/* Compare the pattern */
 136	if (memcmp(buf + td->offs, td->pattern, td->len))
 137		return -1;
 138	return 0;
 139}
 140
 141/**
 142 * add_marker_len - compute the length of the marker in data area
 143 * @td: BBT descriptor used for computation
 144 *
 145 * The length will be 0 if the marker is located in OOB area.
 146 */
 147static u32 add_marker_len(struct nand_bbt_descr *td)
 148{
 149	u32 len;
 150
 151	if (!(td->options & NAND_BBT_NO_OOB))
 152		return 0;
 153
 154	len = td->len;
 155	if (td->options & NAND_BBT_VERSION)
 156		len++;
 157	return len;
 158}
 159
 160/**
 161 * read_bbt - [GENERIC] Read the bad block table starting from page
 162 * @mtd: MTD device structure
 163 * @buf: temporary buffer
 164 * @page: the starting page
 165 * @num: the number of bbt descriptors to read
 166 * @td: the bbt describtion table
 167 * @offs: block number offset in the table
 168 *
 169 * Read the bad block table starting from page.
 170 */
 171static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
 172		struct nand_bbt_descr *td, int offs)
 173{
 174	int res, ret = 0, i, j, act = 0;
 175	struct nand_chip *this = mtd_to_nand(mtd);
 176	size_t retlen, len, totlen;
 177	loff_t from;
 178	int bits = td->options & NAND_BBT_NRBITS_MSK;
 179	uint8_t msk = (uint8_t)((1 << bits) - 1);
 180	u32 marker_len;
 181	int reserved_block_code = td->reserved_block_code;
 182
 183	totlen = (num * bits) >> 3;
 184	marker_len = add_marker_len(td);
 185	from = ((loff_t)page) << this->page_shift;
 186
 187	while (totlen) {
 188		len = min(totlen, (size_t)(1 << this->bbt_erase_shift));
 189		if (marker_len) {
 190			/*
 191			 * In case the BBT marker is not in the OOB area it
 192			 * will be just in the first page.
 193			 */
 194			len -= marker_len;
 195			from += marker_len;
 196			marker_len = 0;
 197		}
 198		res = mtd_read(mtd, from, len, &retlen, buf);
 199		if (res < 0) {
 200			if (mtd_is_eccerr(res)) {
 201				pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n",
 202					from & ~mtd->writesize);
 203				return res;
 204			} else if (mtd_is_bitflip(res)) {
 205				pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n",
 206					from & ~mtd->writesize);
 207				ret = res;
 208			} else {
 209				pr_info("nand_bbt: error reading BBT\n");
 210				return res;
 211			}
 212		}
 213
 214		/* Analyse data */
 215		for (i = 0; i < len; i++) {
 216			uint8_t dat = buf[i];
 217			for (j = 0; j < 8; j += bits, act++) {
 218				uint8_t tmp = (dat >> j) & msk;
 219				if (tmp == msk)
 220					continue;
 221				if (reserved_block_code && (tmp == reserved_block_code)) {
 222					pr_info("nand_read_bbt: reserved block at 0x%012llx\n",
 223						 (loff_t)(offs + act) <<
 224						 this->bbt_erase_shift);
 225					bbt_mark_entry(this, offs + act,
 226							BBT_BLOCK_RESERVED);
 227					mtd->ecc_stats.bbtblocks++;
 228					continue;
 229				}
 230				/*
 231				 * Leave it for now, if it's matured we can
 232				 * move this message to pr_debug.
 233				 */
 234				pr_info("nand_read_bbt: bad block at 0x%012llx\n",
 235					 (loff_t)(offs + act) <<
 236					 this->bbt_erase_shift);
 237				/* Factory marked bad or worn out? */
 238				if (tmp == 0)
 239					bbt_mark_entry(this, offs + act,
 240							BBT_BLOCK_FACTORY_BAD);
 241				else
 242					bbt_mark_entry(this, offs + act,
 243							BBT_BLOCK_WORN);
 244				mtd->ecc_stats.badblocks++;
 245			}
 246		}
 247		totlen -= len;
 248		from += len;
 249	}
 250	return ret;
 251}
 252
 253/**
 254 * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
 255 * @mtd: MTD device structure
 256 * @buf: temporary buffer
 257 * @td: descriptor for the bad block table
 258 * @chip: read the table for a specific chip, -1 read all chips; applies only if
 259 *        NAND_BBT_PERCHIP option is set
 260 *
 261 * Read the bad block table for all chips starting at a given page. We assume
 262 * that the bbt bits are in consecutive order.
 263 */
 264static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
 265{
 266	struct nand_chip *this = mtd_to_nand(mtd);
 267	int res = 0, i;
 268
 269	if (td->options & NAND_BBT_PERCHIP) {
 270		int offs = 0;
 271		for (i = 0; i < this->numchips; i++) {
 272			if (chip == -1 || chip == i)
 273				res = read_bbt(mtd, buf, td->pages[i],
 274					this->chipsize >> this->bbt_erase_shift,
 275					td, offs);
 276			if (res)
 277				return res;
 278			offs += this->chipsize >> this->bbt_erase_shift;
 279		}
 280	} else {
 281		res = read_bbt(mtd, buf, td->pages[0],
 282				mtd->size >> this->bbt_erase_shift, td, 0);
 283		if (res)
 284			return res;
 285	}
 286	return 0;
 287}
 288
 289/* BBT marker is in the first page, no OOB */
 290static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
 291			 struct nand_bbt_descr *td)
 292{
 293	size_t retlen;
 294	size_t len;
 295
 296	len = td->len;
 297	if (td->options & NAND_BBT_VERSION)
 298		len++;
 299
 300	return mtd_read(mtd, offs, len, &retlen, buf);
 301}
 302
 303/**
 304 * scan_read_oob - [GENERIC] Scan data+OOB region to buffer
 305 * @mtd: MTD device structure
 306 * @buf: temporary buffer
 307 * @offs: offset at which to scan
 308 * @len: length of data region to read
 309 *
 310 * Scan read data from data+OOB. May traverse multiple pages, interleaving
 311 * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest"
 312 * ECC condition (error or bitflip). May quit on the first (non-ECC) error.
 313 */
 314static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
 315			 size_t len)
 316{
 317	struct mtd_oob_ops ops;
 318	int res, ret = 0;
 319
 320	ops.mode = MTD_OPS_PLACE_OOB;
 321	ops.ooboffs = 0;
 322	ops.ooblen = mtd->oobsize;
 323
 324	while (len > 0) {
 325		ops.datbuf = buf;
 326		ops.len = min(len, (size_t)mtd->writesize);
 327		ops.oobbuf = buf + ops.len;
 328
 329		res = mtd_read_oob(mtd, offs, &ops);
 330		if (res) {
 331			if (!mtd_is_bitflip_or_eccerr(res))
 332				return res;
 333			else if (mtd_is_eccerr(res) || !ret)
 334				ret = res;
 335		}
 336
 337		buf += mtd->oobsize + mtd->writesize;
 338		len -= mtd->writesize;
 339		offs += mtd->writesize;
 340	}
 341	return ret;
 342}
 343
 344static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
 345			 size_t len, struct nand_bbt_descr *td)
 346{
 347	if (td->options & NAND_BBT_NO_OOB)
 348		return scan_read_data(mtd, buf, offs, td);
 349	else
 350		return scan_read_oob(mtd, buf, offs, len);
 351}
 352
 353/* Scan write data with oob to flash */
 354static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
 355			  uint8_t *buf, uint8_t *oob)
 356{
 357	struct mtd_oob_ops ops;
 358
 359	ops.mode = MTD_OPS_PLACE_OOB;
 360	ops.ooboffs = 0;
 361	ops.ooblen = mtd->oobsize;
 362	ops.datbuf = buf;
 363	ops.oobbuf = oob;
 364	ops.len = len;
 365
 366	return mtd_write_oob(mtd, offs, &ops);
 367}
 368
 369static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td)
 370{
 371	u32 ver_offs = td->veroffs;
 372
 373	if (!(td->options & NAND_BBT_NO_OOB))
 374		ver_offs += mtd->writesize;
 375	return ver_offs;
 376}
 377
 378/**
 379 * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
 380 * @mtd: MTD device structure
 381 * @buf: temporary buffer
 382 * @td: descriptor for the bad block table
 383 * @md:	descriptor for the bad block table mirror
 384 *
 385 * Read the bad block table(s) for all chips starting at a given page. We
 386 * assume that the bbt bits are in consecutive order.
 387 */
 388static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
 389			  struct nand_bbt_descr *td, struct nand_bbt_descr *md)
 390{
 391	struct nand_chip *this = mtd_to_nand(mtd);
 392
 393	/* Read the primary version, if available */
 394	if (td->options & NAND_BBT_VERSION) {
 395		scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift,
 396			      mtd->writesize, td);
 397		td->version[0] = buf[bbt_get_ver_offs(mtd, td)];
 398		pr_info("Bad block table at page %d, version 0x%02X\n",
 399			 td->pages[0], td->version[0]);
 400	}
 401
 402	/* Read the mirror version, if available */
 403	if (md && (md->options & NAND_BBT_VERSION)) {
 404		scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift,
 405			      mtd->writesize, md);
 406		md->version[0] = buf[bbt_get_ver_offs(mtd, md)];
 407		pr_info("Bad block table at page %d, version 0x%02X\n",
 408			 md->pages[0], md->version[0]);
 409	}
 410}
 411
 412/* Scan a given block partially */
 413static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
 414			   loff_t offs, uint8_t *buf, int numpages)
 415{
 416	struct mtd_oob_ops ops;
 417	int j, ret;
 418
 419	ops.ooblen = mtd->oobsize;
 420	ops.oobbuf = buf;
 421	ops.ooboffs = 0;
 422	ops.datbuf = NULL;
 423	ops.mode = MTD_OPS_PLACE_OOB;
 424
 425	for (j = 0; j < numpages; j++) {
 426		/*
 427		 * Read the full oob until read_oob is fixed to handle single
 428		 * byte reads for 16 bit buswidth.
 429		 */
 430		ret = mtd_read_oob(mtd, offs, &ops);
 431		/* Ignore ECC errors when checking for BBM */
 432		if (ret && !mtd_is_bitflip_or_eccerr(ret))
 433			return ret;
 434
 435		if (check_short_pattern(buf, bd))
 436			return 1;
 437
 438		offs += mtd->writesize;
 439	}
 440	return 0;
 441}
 442
 443/**
 444 * create_bbt - [GENERIC] Create a bad block table by scanning the device
 445 * @mtd: MTD device structure
 446 * @buf: temporary buffer
 447 * @bd: descriptor for the good/bad block search pattern
 448 * @chip: create the table for a specific chip, -1 read all chips; applies only
 449 *        if NAND_BBT_PERCHIP option is set
 450 *
 451 * Create a bad block table by scanning the device for the given good/bad block
 452 * identify pattern.
 453 */
 454static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
 455	struct nand_bbt_descr *bd, int chip)
 456{
 457	struct nand_chip *this = mtd_to_nand(mtd);
 458	int i, numblocks, numpages;
 459	int startblock;
 460	loff_t from;
 461
 462	pr_info("Scanning device for bad blocks\n");
 463
 464	if (bd->options & NAND_BBT_SCAN2NDPAGE)
 465		numpages = 2;
 466	else
 467		numpages = 1;
 468
 469	if (chip == -1) {
 470		numblocks = mtd->size >> this->bbt_erase_shift;
 471		startblock = 0;
 472		from = 0;
 473	} else {
 474		if (chip >= this->numchips) {
 475			pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n",
 476			       chip + 1, this->numchips);
 477			return -EINVAL;
 478		}
 479		numblocks = this->chipsize >> this->bbt_erase_shift;
 480		startblock = chip * numblocks;
 481		numblocks += startblock;
 482		from = (loff_t)startblock << this->bbt_erase_shift;
 483	}
 484
 485	if (this->bbt_options & NAND_BBT_SCANLASTPAGE)
 486		from += mtd->erasesize - (mtd->writesize * numpages);
 487
 488	for (i = startblock; i < numblocks; i++) {
 489		int ret;
 490
 491		BUG_ON(bd->options & NAND_BBT_NO_OOB);
 492
 493		ret = scan_block_fast(mtd, bd, from, buf, numpages);
 494		if (ret < 0)
 495			return ret;
 496
 497		if (ret) {
 498			bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD);
 499			pr_warn("Bad eraseblock %d at 0x%012llx\n",
 500				i, (unsigned long long)from);
 501			mtd->ecc_stats.badblocks++;
 502		}
 503
 504		from += (1 << this->bbt_erase_shift);
 505	}
 506	return 0;
 507}
 508
 509/**
 510 * search_bbt - [GENERIC] scan the device for a specific bad block table
 511 * @mtd: MTD device structure
 512 * @buf: temporary buffer
 513 * @td: descriptor for the bad block table
 514 *
 515 * Read the bad block table by searching for a given ident pattern. Search is
 516 * preformed either from the beginning up or from the end of the device
 517 * downwards. The search starts always at the start of a block. If the option
 518 * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains
 519 * the bad block information of this chip. This is necessary to provide support
 520 * for certain DOC devices.
 521 *
 522 * The bbt ident pattern resides in the oob area of the first page in a block.
 523 */
 524static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
 525{
 526	struct nand_chip *this = mtd_to_nand(mtd);
 527	int i, chips;
 528	int startblock, block, dir;
 529	int scanlen = mtd->writesize + mtd->oobsize;
 530	int bbtblocks;
 531	int blocktopage = this->bbt_erase_shift - this->page_shift;
 532
 533	/* Search direction top -> down? */
 534	if (td->options & NAND_BBT_LASTBLOCK) {
 535		startblock = (mtd->size >> this->bbt_erase_shift) - 1;
 536		dir = -1;
 537	} else {
 538		startblock = 0;
 539		dir = 1;
 540	}
 541
 542	/* Do we have a bbt per chip? */
 543	if (td->options & NAND_BBT_PERCHIP) {
 544		chips = this->numchips;
 545		bbtblocks = this->chipsize >> this->bbt_erase_shift;
 546		startblock &= bbtblocks - 1;
 547	} else {
 548		chips = 1;
 549		bbtblocks = mtd->size >> this->bbt_erase_shift;
 550	}
 551
 552	for (i = 0; i < chips; i++) {
 553		/* Reset version information */
 554		td->version[i] = 0;
 555		td->pages[i] = -1;
 556		/* Scan the maximum number of blocks */
 557		for (block = 0; block < td->maxblocks; block++) {
 558
 559			int actblock = startblock + dir * block;
 560			loff_t offs = (loff_t)actblock << this->bbt_erase_shift;
 561
 562			/* Read first page */
 563			scan_read(mtd, buf, offs, mtd->writesize, td);
 564			if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
 565				td->pages[i] = actblock << blocktopage;
 566				if (td->options & NAND_BBT_VERSION) {
 567					offs = bbt_get_ver_offs(mtd, td);
 568					td->version[i] = buf[offs];
 569				}
 570				break;
 571			}
 572		}
 573		startblock += this->chipsize >> this->bbt_erase_shift;
 574	}
 575	/* Check, if we found a bbt for each requested chip */
 576	for (i = 0; i < chips; i++) {
 577		if (td->pages[i] == -1)
 578			pr_warn("Bad block table not found for chip %d\n", i);
 579		else
 580			pr_info("Bad block table found at page %d, version 0x%02X\n",
 581				td->pages[i], td->version[i]);
 582	}
 583	return 0;
 584}
 585
 586/**
 587 * search_read_bbts - [GENERIC] scan the device for bad block table(s)
 588 * @mtd: MTD device structure
 589 * @buf: temporary buffer
 590 * @td: descriptor for the bad block table
 591 * @md: descriptor for the bad block table mirror
 592 *
 593 * Search and read the bad block table(s).
 594 */
 595static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf,
 596			     struct nand_bbt_descr *td,
 597			     struct nand_bbt_descr *md)
 598{
 599	/* Search the primary table */
 600	search_bbt(mtd, buf, td);
 601
 602	/* Search the mirror table */
 603	if (md)
 604		search_bbt(mtd, buf, md);
 605}
 606
 607/**
 608 * get_bbt_block - Get the first valid eraseblock suitable to store a BBT
 609 * @this: the NAND device
 610 * @td: the BBT description
 611 * @md: the mirror BBT descriptor
 612 * @chip: the CHIP selector
 613 *
 614 * This functions returns a positive block number pointing a valid eraseblock
 615 * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if
 616 * all blocks are already used of marked bad. If td->pages[chip] was already
 617 * pointing to a valid block we re-use it, otherwise we search for the next
 618 * valid one.
 619 */
 620static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td,
 621			 struct nand_bbt_descr *md, int chip)
 622{
 623	int startblock, dir, page, numblocks, i;
 624
 625	/*
 626	 * There was already a version of the table, reuse the page. This
 627	 * applies for absolute placement too, as we have the page number in
 628	 * td->pages.
 629	 */
 630	if (td->pages[chip] != -1)
 631		return td->pages[chip] >>
 632				(this->bbt_erase_shift - this->page_shift);
 633
 634	numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
 635	if (!(td->options & NAND_BBT_PERCHIP))
 636		numblocks *= this->numchips;
 637
 638	/*
 639	 * Automatic placement of the bad block table. Search direction
 640	 * top -> down?
 641	 */
 642	if (td->options & NAND_BBT_LASTBLOCK) {
 643		startblock = numblocks * (chip + 1) - 1;
 644		dir = -1;
 645	} else {
 646		startblock = chip * numblocks;
 647		dir = 1;
 648	}
 649
 650	for (i = 0; i < td->maxblocks; i++) {
 651		int block = startblock + dir * i;
 652
 653		/* Check, if the block is bad */
 654		switch (bbt_get_entry(this, block)) {
 655		case BBT_BLOCK_WORN:
 656		case BBT_BLOCK_FACTORY_BAD:
 657			continue;
 658		}
 659
 660		page = block << (this->bbt_erase_shift - this->page_shift);
 661
 662		/* Check, if the block is used by the mirror table */
 663		if (!md || md->pages[chip] != page)
 664			return block;
 665	}
 666
 667	return -ENOSPC;
 668}
 669
 670/**
 671 * mark_bbt_block_bad - Mark one of the block reserved for BBT bad
 672 * @this: the NAND device
 673 * @td: the BBT description
 674 * @chip: the CHIP selector
 675 * @block: the BBT block to mark
 676 *
 677 * Blocks reserved for BBT can become bad. This functions is an helper to mark
 678 * such blocks as bad. It takes care of updating the in-memory BBT, marking the
 679 * block as bad using a bad block marker and invalidating the associated
 680 * td->pages[] entry.
 681 */
 682static void mark_bbt_block_bad(struct nand_chip *this,
 683			       struct nand_bbt_descr *td,
 684			       int chip, int block)
 685{
 686	struct mtd_info *mtd = nand_to_mtd(this);
 687	loff_t to;
 688	int res;
 689
 690	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
 691
 692	to = (loff_t)block << this->bbt_erase_shift;
 693	res = this->block_markbad(mtd, to);
 694	if (res)
 695		pr_warn("nand_bbt: error %d while marking block %d bad\n",
 696			res, block);
 697
 698	td->pages[chip] = -1;
 699}
 700
 701/**
 702 * write_bbt - [GENERIC] (Re)write the bad block table
 703 * @mtd: MTD device structure
 704 * @buf: temporary buffer
 705 * @td: descriptor for the bad block table
 706 * @md: descriptor for the bad block table mirror
 707 * @chipsel: selector for a specific chip, -1 for all
 708 *
 709 * (Re)write the bad block table.
 710 */
 711static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
 712		     struct nand_bbt_descr *td, struct nand_bbt_descr *md,
 713		     int chipsel)
 714{
 715	struct nand_chip *this = mtd_to_nand(mtd);
 716	struct erase_info einfo;
 717	int i, res, chip = 0;
 718	int bits, page, offs, numblocks, sft, sftmsk;
 719	int nrchips, pageoffs, ooboffs;
 720	uint8_t msk[4];
 721	uint8_t rcode = td->reserved_block_code;
 722	size_t retlen, len = 0;
 723	loff_t to;
 724	struct mtd_oob_ops ops;
 725
 726	ops.ooblen = mtd->oobsize;
 727	ops.ooboffs = 0;
 728	ops.datbuf = NULL;
 729	ops.mode = MTD_OPS_PLACE_OOB;
 730
 731	if (!rcode)
 732		rcode = 0xff;
 733	/* Write bad block table per chip rather than per device? */
 734	if (td->options & NAND_BBT_PERCHIP) {
 735		numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
 736		/* Full device write or specific chip? */
 737		if (chipsel == -1) {
 738			nrchips = this->numchips;
 739		} else {
 740			nrchips = chipsel + 1;
 741			chip = chipsel;
 742		}
 743	} else {
 744		numblocks = (int)(mtd->size >> this->bbt_erase_shift);
 745		nrchips = 1;
 746	}
 747
 748	/* Loop through the chips */
 749	while (chip < nrchips) {
 750		int block;
 751
 752		block = get_bbt_block(this, td, md, chip);
 753		if (block < 0) {
 754			pr_err("No space left to write bad block table\n");
 755			res = block;
 756			goto outerr;
 757		}
 758
 759		/*
 760		 * get_bbt_block() returns a block number, shift the value to
 761		 * get a page number.
 762		 */
 763		page = block << (this->bbt_erase_shift - this->page_shift);
 764
 765		/* Set up shift count and masks for the flash table */
 766		bits = td->options & NAND_BBT_NRBITS_MSK;
 767		msk[2] = ~rcode;
 768		switch (bits) {
 769		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01;
 770			msk[3] = 0x01;
 771			break;
 772		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01;
 773			msk[3] = 0x03;
 774			break;
 775		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C;
 776			msk[3] = 0x0f;
 777			break;
 778		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F;
 779			msk[3] = 0xff;
 780			break;
 781		default: return -EINVAL;
 782		}
 783
 784		to = ((loff_t)page) << this->page_shift;
 785
 786		/* Must we save the block contents? */
 787		if (td->options & NAND_BBT_SAVECONTENT) {
 788			/* Make it block aligned */
 789			to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1);
 790			len = 1 << this->bbt_erase_shift;
 791			res = mtd_read(mtd, to, len, &retlen, buf);
 792			if (res < 0) {
 793				if (retlen != len) {
 794					pr_info("nand_bbt: error reading block for writing the bad block table\n");
 795					return res;
 796				}
 797				pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n");
 798			}
 799			/* Read oob data */
 800			ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
 801			ops.oobbuf = &buf[len];
 802			res = mtd_read_oob(mtd, to + mtd->writesize, &ops);
 803			if (res < 0 || ops.oobretlen != ops.ooblen)
 804				goto outerr;
 805
 806			/* Calc the byte offset in the buffer */
 807			pageoffs = page - (int)(to >> this->page_shift);
 808			offs = pageoffs << this->page_shift;
 809			/* Preset the bbt area with 0xff */
 810			memset(&buf[offs], 0xff, (size_t)(numblocks >> sft));
 811			ooboffs = len + (pageoffs * mtd->oobsize);
 812
 813		} else if (td->options & NAND_BBT_NO_OOB) {
 814			ooboffs = 0;
 815			offs = td->len;
 816			/* The version byte */
 817			if (td->options & NAND_BBT_VERSION)
 818				offs++;
 819			/* Calc length */
 820			len = (size_t)(numblocks >> sft);
 821			len += offs;
 822			/* Make it page aligned! */
 823			len = ALIGN(len, mtd->writesize);
 824			/* Preset the buffer with 0xff */
 825			memset(buf, 0xff, len);
 826			/* Pattern is located at the begin of first page */
 827			memcpy(buf, td->pattern, td->len);
 828		} else {
 829			/* Calc length */
 830			len = (size_t)(numblocks >> sft);
 831			/* Make it page aligned! */
 832			len = ALIGN(len, mtd->writesize);
 833			/* Preset the buffer with 0xff */
 834			memset(buf, 0xff, len +
 835			       (len >> this->page_shift)* mtd->oobsize);
 836			offs = 0;
 837			ooboffs = len;
 838			/* Pattern is located in oob area of first page */
 839			memcpy(&buf[ooboffs + td->offs], td->pattern, td->len);
 840		}
 841
 842		if (td->options & NAND_BBT_VERSION)
 843			buf[ooboffs + td->veroffs] = td->version[chip];
 844
 845		/* Walk through the memory table */
 846		for (i = 0; i < numblocks; i++) {
 847			uint8_t dat;
 848			int sftcnt = (i << (3 - sft)) & sftmsk;
 849			dat = bbt_get_entry(this, chip * numblocks + i);
 850			/* Do not store the reserved bbt blocks! */
 851			buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt);
 852		}
 853
 854		memset(&einfo, 0, sizeof(einfo));
 855		einfo.mtd = mtd;
 856		einfo.addr = to;
 857		einfo.len = 1 << this->bbt_erase_shift;
 858		res = nand_erase_nand(mtd, &einfo, 1);
 859		if (res < 0) {
 860			pr_warn("nand_bbt: error while erasing BBT block %d\n",
 861				res);
 862			mark_bbt_block_bad(this, td, chip, block);
 863			continue;
 864		}
 865
 866		res = scan_write_bbt(mtd, to, len, buf,
 867				td->options & NAND_BBT_NO_OOB ? NULL :
 868				&buf[len]);
 869		if (res < 0) {
 870			pr_warn("nand_bbt: error while writing BBT block %d\n",
 871				res);
 872			mark_bbt_block_bad(this, td, chip, block);
 873			continue;
 874		}
 875
 876		pr_info("Bad block table written to 0x%012llx, version 0x%02X\n",
 877			 (unsigned long long)to, td->version[chip]);
 878
 879		/* Mark it as used */
 880		td->pages[chip++] = page;
 881	}
 882	return 0;
 883
 884 outerr:
 885	pr_warn("nand_bbt: error while writing bad block table %d\n", res);
 886	return res;
 887}
 888
 889/**
 890 * nand_memory_bbt - [GENERIC] create a memory based bad block table
 891 * @mtd: MTD device structure
 892 * @bd: descriptor for the good/bad block search pattern
 893 *
 894 * The function creates a memory based bbt by scanning the device for
 895 * manufacturer / software marked good / bad blocks.
 896 */
 897static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
 898{
 899	struct nand_chip *this = mtd_to_nand(mtd);
 900
 901	return create_bbt(mtd, this->buffers->databuf, bd, -1);
 902}
 903
 904/**
 905 * check_create - [GENERIC] create and write bbt(s) if necessary
 906 * @mtd: MTD device structure
 907 * @buf: temporary buffer
 908 * @bd: descriptor for the good/bad block search pattern
 909 *
 910 * The function checks the results of the previous call to read_bbt and creates
 911 * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found
 912 * for the chip/device. Update is necessary if one of the tables is missing or
 913 * the version nr. of one table is less than the other.
 914 */
 915static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
 916{
 917	int i, chips, writeops, create, chipsel, res, res2;
 918	struct nand_chip *this = mtd_to_nand(mtd);
 919	struct nand_bbt_descr *td = this->bbt_td;
 920	struct nand_bbt_descr *md = this->bbt_md;
 921	struct nand_bbt_descr *rd, *rd2;
 922
 923	/* Do we have a bbt per chip? */
 924	if (td->options & NAND_BBT_PERCHIP)
 925		chips = this->numchips;
 926	else
 927		chips = 1;
 928
 929	for (i = 0; i < chips; i++) {
 930		writeops = 0;
 931		create = 0;
 932		rd = NULL;
 933		rd2 = NULL;
 934		res = res2 = 0;
 935		/* Per chip or per device? */
 936		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
 937		/* Mirrored table available? */
 938		if (md) {
 939			if (td->pages[i] == -1 && md->pages[i] == -1) {
 940				create = 1;
 941				writeops = 0x03;
 942			} else if (td->pages[i] == -1) {
 943				rd = md;
 944				writeops = 0x01;
 945			} else if (md->pages[i] == -1) {
 946				rd = td;
 947				writeops = 0x02;
 948			} else if (td->version[i] == md->version[i]) {
 949				rd = td;
 950				if (!(td->options & NAND_BBT_VERSION))
 951					rd2 = md;
 952			} else if (((int8_t)(td->version[i] - md->version[i])) > 0) {
 953				rd = td;
 954				writeops = 0x02;
 955			} else {
 956				rd = md;
 957				writeops = 0x01;
 958			}
 959		} else {
 960			if (td->pages[i] == -1) {
 961				create = 1;
 962				writeops = 0x01;
 963			} else {
 964				rd = td;
 965			}
 966		}
 967
 968		if (create) {
 969			/* Create the bad block table by scanning the device? */
 970			if (!(td->options & NAND_BBT_CREATE))
 971				continue;
 972
 973			/* Create the table in memory by scanning the chip(s) */
 974			if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY))
 975				create_bbt(mtd, buf, bd, chipsel);
 976
 977			td->version[i] = 1;
 978			if (md)
 979				md->version[i] = 1;
 980		}
 981
 982		/* Read back first? */
 983		if (rd) {
 984			res = read_abs_bbt(mtd, buf, rd, chipsel);
 985			if (mtd_is_eccerr(res)) {
 986				/* Mark table as invalid */
 987				rd->pages[i] = -1;
 988				rd->version[i] = 0;
 989				i--;
 990				continue;
 991			}
 992		}
 993		/* If they weren't versioned, read both */
 994		if (rd2) {
 995			res2 = read_abs_bbt(mtd, buf, rd2, chipsel);
 996			if (mtd_is_eccerr(res2)) {
 997				/* Mark table as invalid */
 998				rd2->pages[i] = -1;
 999				rd2->version[i] = 0;
1000				i--;
1001				continue;
1002			}
1003		}
1004
1005		/* Scrub the flash table(s)? */
1006		if (mtd_is_bitflip(res) || mtd_is_bitflip(res2))
1007			writeops = 0x03;
1008
1009		/* Update version numbers before writing */
1010		if (md) {
1011			td->version[i] = max(td->version[i], md->version[i]);
1012			md->version[i] = td->version[i];
1013		}
1014
1015		/* Write the bad block table to the device? */
1016		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
1017			res = write_bbt(mtd, buf, td, md, chipsel);
1018			if (res < 0)
1019				return res;
1020		}
1021
1022		/* Write the mirror bad block table to the device? */
1023		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
1024			res = write_bbt(mtd, buf, md, td, chipsel);
1025			if (res < 0)
1026				return res;
1027		}
1028	}
1029	return 0;
1030}
1031
1032/**
1033 * mark_bbt_regions - [GENERIC] mark the bad block table regions
1034 * @mtd: MTD device structure
1035 * @td: bad block table descriptor
1036 *
1037 * The bad block table regions are marked as "bad" to prevent accidental
1038 * erasures / writes. The regions are identified by the mark 0x02.
1039 */
1040static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
1041{
1042	struct nand_chip *this = mtd_to_nand(mtd);
1043	int i, j, chips, block, nrblocks, update;
1044	uint8_t oldval;
1045
1046	/* Do we have a bbt per chip? */
1047	if (td->options & NAND_BBT_PERCHIP) {
1048		chips = this->numchips;
1049		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
1050	} else {
1051		chips = 1;
1052		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
1053	}
1054
1055	for (i = 0; i < chips; i++) {
1056		if ((td->options & NAND_BBT_ABSPAGE) ||
1057		    !(td->options & NAND_BBT_WRITE)) {
1058			if (td->pages[i] == -1)
1059				continue;
1060			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
1061			oldval = bbt_get_entry(this, block);
1062			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
1063			if ((oldval != BBT_BLOCK_RESERVED) &&
1064					td->reserved_block_code)
1065				nand_update_bbt(mtd, (loff_t)block <<
1066						this->bbt_erase_shift);
1067			continue;
1068		}
1069		update = 0;
1070		if (td->options & NAND_BBT_LASTBLOCK)
1071			block = ((i + 1) * nrblocks) - td->maxblocks;
1072		else
1073			block = i * nrblocks;
1074		for (j = 0; j < td->maxblocks; j++) {
1075			oldval = bbt_get_entry(this, block);
1076			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
1077			if (oldval != BBT_BLOCK_RESERVED)
1078				update = 1;
1079			block++;
1080		}
1081		/*
1082		 * If we want reserved blocks to be recorded to flash, and some
1083		 * new ones have been marked, then we need to update the stored
1084		 * bbts.  This should only happen once.
1085		 */
1086		if (update && td->reserved_block_code)
1087			nand_update_bbt(mtd, (loff_t)(block - 1) <<
1088					this->bbt_erase_shift);
1089	}
1090}
1091
1092/**
1093 * verify_bbt_descr - verify the bad block description
1094 * @mtd: MTD device structure
1095 * @bd: the table to verify
1096 *
1097 * This functions performs a few sanity checks on the bad block description
1098 * table.
1099 */
1100static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd)
1101{
1102	struct nand_chip *this = mtd_to_nand(mtd);
1103	u32 pattern_len;
1104	u32 bits;
1105	u32 table_size;
1106
1107	if (!bd)
1108		return;
1109
1110	pattern_len = bd->len;
1111	bits = bd->options & NAND_BBT_NRBITS_MSK;
1112
1113	BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) &&
1114			!(this->bbt_options & NAND_BBT_USE_FLASH));
1115	BUG_ON(!bits);
1116
1117	if (bd->options & NAND_BBT_VERSION)
1118		pattern_len++;
1119
1120	if (bd->options & NAND_BBT_NO_OOB) {
1121		BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH));
1122		BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB));
1123		BUG_ON(bd->offs);
1124		if (bd->options & NAND_BBT_VERSION)
1125			BUG_ON(bd->veroffs != bd->len);
1126		BUG_ON(bd->options & NAND_BBT_SAVECONTENT);
1127	}
1128
1129	if (bd->options & NAND_BBT_PERCHIP)
1130		table_size = this->chipsize >> this->bbt_erase_shift;
1131	else
1132		table_size = mtd->size >> this->bbt_erase_shift;
1133	table_size >>= 3;
1134	table_size *= bits;
1135	if (bd->options & NAND_BBT_NO_OOB)
1136		table_size += pattern_len;
1137	BUG_ON(table_size > (1 << this->bbt_erase_shift));
1138}
1139
1140/**
1141 * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
1142 * @mtd: MTD device structure
1143 * @bd: descriptor for the good/bad block search pattern
1144 *
1145 * The function checks, if a bad block table(s) is/are already available. If
1146 * not it scans the device for manufacturer marked good / bad blocks and writes
1147 * the bad block table(s) to the selected place.
1148 *
1149 * The bad block table memory is allocated here. It must be freed by calling
1150 * the nand_free_bbt function.
1151 */
1152static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
1153{
1154	struct nand_chip *this = mtd_to_nand(mtd);
1155	int len, res;
1156	uint8_t *buf;
1157	struct nand_bbt_descr *td = this->bbt_td;
1158	struct nand_bbt_descr *md = this->bbt_md;
1159
1160	len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1;
1161	/*
1162	 * Allocate memory (2bit per block) and clear the memory bad block
1163	 * table.
1164	 */
1165	this->bbt = kzalloc(len, GFP_KERNEL);
1166	if (!this->bbt)
1167		return -ENOMEM;
1168
1169	/*
1170	 * If no primary table decriptor is given, scan the device to build a
1171	 * memory based bad block table.
1172	 */
1173	if (!td) {
1174		if ((res = nand_memory_bbt(mtd, bd))) {
1175			pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
1176			goto err;
1177		}
1178		return 0;
1179	}
1180	verify_bbt_descr(mtd, td);
1181	verify_bbt_descr(mtd, md);
1182
1183	/* Allocate a temporary buffer for one eraseblock incl. oob */
1184	len = (1 << this->bbt_erase_shift);
1185	len += (len >> this->page_shift) * mtd->oobsize;
1186	buf = vmalloc(len);
1187	if (!buf) {
1188		res = -ENOMEM;
1189		goto err;
1190	}
1191
1192	/* Is the bbt at a given page? */
1193	if (td->options & NAND_BBT_ABSPAGE) {
1194		read_abs_bbts(mtd, buf, td, md);
1195	} else {
1196		/* Search the bad block table using a pattern in oob */
1197		search_read_bbts(mtd, buf, td, md);
1198	}
1199
1200	res = check_create(mtd, buf, bd);
1201	if (res)
1202		goto err;
1203
1204	/* Prevent the bbt regions from erasing / writing */
1205	mark_bbt_region(mtd, td);
1206	if (md)
1207		mark_bbt_region(mtd, md);
1208
1209	vfree(buf);
1210	return 0;
1211
1212err:
1213	kfree(this->bbt);
1214	this->bbt = NULL;
1215	return res;
1216}
1217
1218/**
1219 * nand_update_bbt - update bad block table(s)
1220 * @mtd: MTD device structure
1221 * @offs: the offset of the newly marked block
1222 *
1223 * The function updates the bad block table(s).
1224 */
1225static int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
1226{
1227	struct nand_chip *this = mtd_to_nand(mtd);
1228	int len, res = 0;
1229	int chip, chipsel;
1230	uint8_t *buf;
1231	struct nand_bbt_descr *td = this->bbt_td;
1232	struct nand_bbt_descr *md = this->bbt_md;
1233
1234	if (!this->bbt || !td)
1235		return -EINVAL;
1236
1237	/* Allocate a temporary buffer for one eraseblock incl. oob */
1238	len = (1 << this->bbt_erase_shift);
1239	len += (len >> this->page_shift) * mtd->oobsize;
1240	buf = kmalloc(len, GFP_KERNEL);
1241	if (!buf)
1242		return -ENOMEM;
1243
1244	/* Do we have a bbt per chip? */
1245	if (td->options & NAND_BBT_PERCHIP) {
1246		chip = (int)(offs >> this->chip_shift);
1247		chipsel = chip;
1248	} else {
1249		chip = 0;
1250		chipsel = -1;
1251	}
1252
1253	td->version[chip]++;
1254	if (md)
1255		md->version[chip]++;
1256
1257	/* Write the bad block table to the device? */
1258	if (td->options & NAND_BBT_WRITE) {
1259		res = write_bbt(mtd, buf, td, md, chipsel);
1260		if (res < 0)
1261			goto out;
1262	}
1263	/* Write the mirror bad block table to the device? */
1264	if (md && (md->options & NAND_BBT_WRITE)) {
1265		res = write_bbt(mtd, buf, md, td, chipsel);
1266	}
1267
1268 out:
1269	kfree(buf);
1270	return res;
1271}
1272
1273/*
1274 * Define some generic bad / good block scan pattern which are used
1275 * while scanning a device for factory marked good / bad blocks.
1276 */
1277static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
1278
1279/* Generic flash bbt descriptors */
1280static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1281static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1282
1283static struct nand_bbt_descr bbt_main_descr = {
1284	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1285		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1286	.offs =	8,
1287	.len = 4,
1288	.veroffs = 12,
1289	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
1290	.pattern = bbt_pattern
1291};
1292
1293static struct nand_bbt_descr bbt_mirror_descr = {
1294	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1295		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1296	.offs =	8,
1297	.len = 4,
1298	.veroffs = 12,
1299	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
1300	.pattern = mirror_pattern
1301};
1302
1303static struct nand_bbt_descr bbt_main_no_oob_descr = {
1304	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1305		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
1306		| NAND_BBT_NO_OOB,
1307	.len = 4,
1308	.veroffs = 4,
1309	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
1310	.pattern = bbt_pattern
1311};
1312
1313static struct nand_bbt_descr bbt_mirror_no_oob_descr = {
1314	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1315		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
1316		| NAND_BBT_NO_OOB,
1317	.len = 4,
1318	.veroffs = 4,
1319	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
1320	.pattern = mirror_pattern
1321};
1322
1323#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB)
1324/**
1325 * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure
1326 * @this: NAND chip to create descriptor for
1327 *
1328 * This function allocates and initializes a nand_bbt_descr for BBM detection
1329 * based on the properties of @this. The new descriptor is stored in
1330 * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when
1331 * passed to this function.
1332 */
1333static int nand_create_badblock_pattern(struct nand_chip *this)
1334{
1335	struct nand_bbt_descr *bd;
1336	if (this->badblock_pattern) {
1337		pr_warn("Bad block pattern already allocated; not replacing\n");
1338		return -EINVAL;
1339	}
1340	bd = kzalloc(sizeof(*bd), GFP_KERNEL);
1341	if (!bd)
1342		return -ENOMEM;
1343	bd->options = this->bbt_options & BADBLOCK_SCAN_MASK;
1344	bd->offs = this->badblockpos;
1345	bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1;
1346	bd->pattern = scan_ff_pattern;
1347	bd->options |= NAND_BBT_DYNAMICSTRUCT;
1348	this->badblock_pattern = bd;
1349	return 0;
1350}
1351
1352/**
1353 * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
1354 * @mtd: MTD device structure
1355 *
1356 * This function selects the default bad block table support for the device and
1357 * calls the nand_scan_bbt function.
1358 */
1359int nand_default_bbt(struct mtd_info *mtd)
1360{
1361	struct nand_chip *this = mtd_to_nand(mtd);
1362	int ret;
1363
1364	/* Is a flash based bad block table requested? */
1365	if (this->bbt_options & NAND_BBT_USE_FLASH) {
1366		/* Use the default pattern descriptors */
1367		if (!this->bbt_td) {
1368			if (this->bbt_options & NAND_BBT_NO_OOB) {
1369				this->bbt_td = &bbt_main_no_oob_descr;
1370				this->bbt_md = &bbt_mirror_no_oob_descr;
1371			} else {
1372				this->bbt_td = &bbt_main_descr;
1373				this->bbt_md = &bbt_mirror_descr;
1374			}
1375		}
1376	} else {
1377		this->bbt_td = NULL;
1378		this->bbt_md = NULL;
1379	}
1380
1381	if (!this->badblock_pattern) {
1382		ret = nand_create_badblock_pattern(this);
1383		if (ret)
1384			return ret;
1385	}
1386
1387	return nand_scan_bbt(mtd, this->badblock_pattern);
1388}
1389
1390/**
1391 * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved
1392 * @mtd: MTD device structure
1393 * @offs: offset in the device
1394 */
1395int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs)
1396{
1397	struct nand_chip *this = mtd_to_nand(mtd);
1398	int block;
1399
1400	block = (int)(offs >> this->bbt_erase_shift);
1401	return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED;
1402}
1403
1404/**
1405 * nand_isbad_bbt - [NAND Interface] Check if a block is bad
1406 * @mtd: MTD device structure
1407 * @offs: offset in the device
1408 * @allowbbt: allow access to bad block table region
1409 */
1410int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
1411{
1412	struct nand_chip *this = mtd_to_nand(mtd);
1413	int block, res;
1414
1415	block = (int)(offs >> this->bbt_erase_shift);
1416	res = bbt_get_entry(this, block);
1417
1418	pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
1419		 (unsigned int)offs, block, res);
1420
1421	switch (res) {
1422	case BBT_BLOCK_GOOD:
1423		return 0;
1424	case BBT_BLOCK_WORN:
1425		return 1;
1426	case BBT_BLOCK_RESERVED:
1427		return allowbbt ? 0 : 1;
1428	}
1429	return 1;
1430}
1431
1432/**
1433 * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT
1434 * @mtd: MTD device structure
1435 * @offs: offset of the bad block
1436 */
1437int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs)
1438{
1439	struct nand_chip *this = mtd_to_nand(mtd);
1440	int block, ret = 0;
1441
1442	block = (int)(offs >> this->bbt_erase_shift);
1443
1444	/* Mark bad block in memory */
1445	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
1446
1447	/* Update flash-based bad block table */
1448	if (this->bbt_options & NAND_BBT_USE_FLASH)
1449		ret = nand_update_bbt(mtd, offs);
1450
1451	return ret;
1452}