Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37
  38#include <asm/mach/flash.h>
  39#include <linux/platform_data/mtd-mxc_nand.h>
  40
  41#define DRIVER_NAME "mxc_nand"
  42
  43/* Addresses for NFC registers */
  44#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
  45#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
  46#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
  47#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
  48#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
  49#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
  50#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
  51#define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
  52#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
  53#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
  54#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
  55#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
  56#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
  57#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
  58#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
  59#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
  60#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
  61#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
  62#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
  63#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
  64#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
  65#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
  66
  67#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
  68#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
  69#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
  70#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
  71#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
  72#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
  73#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
  74#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
  75#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
  76#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
  77
  78#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
  79
  80/*
  81 * Operation modes for the NFC. Valid for v1, v2 and v3
  82 * type controllers.
  83 */
  84#define NFC_CMD				(1 << 0)
  85#define NFC_ADDR			(1 << 1)
  86#define NFC_INPUT			(1 << 2)
  87#define NFC_OUTPUT			(1 << 3)
  88#define NFC_ID				(1 << 4)
  89#define NFC_STATUS			(1 << 5)
  90
  91#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
  92#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
  93
  94#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
  95#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
  96#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
  97
  98#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
  99
 100#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
 101
 102#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
 103#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
 104#define NFC_V3_WRPROT_LOCK		(1 << 1)
 105#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
 106#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
 107
 108#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 109
 110#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
 111#define NFC_V3_CONFIG2_PS_512			(0 << 0)
 112#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
 113#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
 114#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
 115#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
 116#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
 117#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
 118#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
 119#define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
 120#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
 121#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
 122#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
 123#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
 124
 125#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
 126#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
 127#define NFC_V3_CONFIG3_FW8			(1 << 3)
 128#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
 129#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
 130#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
 131#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
 132
 133#define NFC_V3_IPC			(host->regs_ip + 0x2C)
 134#define NFC_V3_IPC_CREQ			(1 << 0)
 135#define NFC_V3_IPC_INT			(1 << 31)
 136
 137#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
 138
 139struct mxc_nand_host;
 140
 141struct mxc_nand_devtype_data {
 142	void (*preset)(struct mtd_info *);
 143	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 144	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 145	void (*send_page)(struct mtd_info *, unsigned int);
 146	void (*send_read_id)(struct mxc_nand_host *);
 147	uint16_t (*get_dev_status)(struct mxc_nand_host *);
 148	int (*check_int)(struct mxc_nand_host *);
 149	void (*irq_control)(struct mxc_nand_host *, int);
 150	u32 (*get_ecc_status)(struct mxc_nand_host *);
 151	const struct mtd_ooblayout_ops *ooblayout;
 152	void (*select_chip)(struct mtd_info *mtd, int chip);
 153	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 154			u_char *read_ecc, u_char *calc_ecc);
 155	int (*setup_data_interface)(struct mtd_info *mtd,
 156				    const struct nand_data_interface *conf,
 157				    bool check_only);
 158
 159	/*
 160	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 161	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
 162	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 163	 */
 164	int irqpending_quirk;
 165	int needs_ip;
 166
 167	size_t regs_offset;
 168	size_t spare0_offset;
 169	size_t axi_offset;
 170
 171	int spare_len;
 172	int eccbytes;
 173	int eccsize;
 174	int ppb_shift;
 175};
 176
 177struct mxc_nand_host {
 178	struct nand_chip	nand;
 179	struct device		*dev;
 180
 181	void __iomem		*spare0;
 182	void __iomem		*main_area0;
 183
 184	void __iomem		*base;
 185	void __iomem		*regs;
 186	void __iomem		*regs_axi;
 187	void __iomem		*regs_ip;
 188	int			status_request;
 189	struct clk		*clk;
 190	int			clk_act;
 191	int			irq;
 192	int			eccsize;
 193	int			used_oobsize;
 194	int			active_cs;
 195
 196	struct completion	op_completion;
 197
 198	uint8_t			*data_buf;
 199	unsigned int		buf_start;
 200
 201	const struct mxc_nand_devtype_data *devtype_data;
 202	struct mxc_nand_platform_data pdata;
 203};
 204
 205static const char * const part_probes[] = {
 206	"cmdlinepart", "RedBoot", "ofpart", NULL };
 207
 208static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 209{
 210	int i;
 211	u32 *t = trg;
 212	const __iomem u32 *s = src;
 213
 214	for (i = 0; i < (size >> 2); i++)
 215		*t++ = __raw_readl(s++);
 216}
 217
 218static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
 219{
 220	int i;
 221	u16 *t = trg;
 222	const __iomem u16 *s = src;
 223
 224	/* We assume that src (IO) is always 32bit aligned */
 225	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
 226		memcpy32_fromio(trg, src, size);
 227		return;
 228	}
 229
 230	for (i = 0; i < (size >> 1); i++)
 231		*t++ = __raw_readw(s++);
 232}
 233
 234static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
 235{
 236	/* __iowrite32_copy use 32bit size values so divide by 4 */
 237	__iowrite32_copy(trg, src, size / 4);
 238}
 239
 240static void memcpy16_toio(void __iomem *trg, const void *src, int size)
 241{
 242	int i;
 243	__iomem u16 *t = trg;
 244	const u16 *s = src;
 245
 246	/* We assume that trg (IO) is always 32bit aligned */
 247	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
 248		memcpy32_toio(trg, src, size);
 249		return;
 250	}
 251
 252	for (i = 0; i < (size >> 1); i++)
 253		__raw_writew(*s++, t++);
 254}
 255
 256static int check_int_v3(struct mxc_nand_host *host)
 257{
 258	uint32_t tmp;
 259
 260	tmp = readl(NFC_V3_IPC);
 261	if (!(tmp & NFC_V3_IPC_INT))
 262		return 0;
 263
 264	tmp &= ~NFC_V3_IPC_INT;
 265	writel(tmp, NFC_V3_IPC);
 266
 267	return 1;
 268}
 269
 270static int check_int_v1_v2(struct mxc_nand_host *host)
 271{
 272	uint32_t tmp;
 273
 274	tmp = readw(NFC_V1_V2_CONFIG2);
 275	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 276		return 0;
 277
 278	if (!host->devtype_data->irqpending_quirk)
 279		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 280
 281	return 1;
 282}
 283
 284static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 285{
 286	uint16_t tmp;
 287
 288	tmp = readw(NFC_V1_V2_CONFIG1);
 289
 290	if (activate)
 291		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 292	else
 293		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 294
 295	writew(tmp, NFC_V1_V2_CONFIG1);
 296}
 297
 298static void irq_control_v3(struct mxc_nand_host *host, int activate)
 299{
 300	uint32_t tmp;
 301
 302	tmp = readl(NFC_V3_CONFIG2);
 303
 304	if (activate)
 305		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 306	else
 307		tmp |= NFC_V3_CONFIG2_INT_MSK;
 308
 309	writel(tmp, NFC_V3_CONFIG2);
 310}
 311
 312static void irq_control(struct mxc_nand_host *host, int activate)
 313{
 314	if (host->devtype_data->irqpending_quirk) {
 315		if (activate)
 316			enable_irq(host->irq);
 317		else
 318			disable_irq_nosync(host->irq);
 319	} else {
 320		host->devtype_data->irq_control(host, activate);
 321	}
 322}
 323
 324static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 325{
 326	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 327}
 328
 329static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 330{
 331	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 332}
 333
 334static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 335{
 336	return readl(NFC_V3_ECC_STATUS_RESULT);
 337}
 338
 339static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 340{
 341	struct mxc_nand_host *host = dev_id;
 342
 343	if (!host->devtype_data->check_int(host))
 344		return IRQ_NONE;
 345
 346	irq_control(host, 0);
 347
 348	complete(&host->op_completion);
 349
 350	return IRQ_HANDLED;
 351}
 352
 353/* This function polls the NANDFC to wait for the basic operation to
 354 * complete by checking the INT bit of config2 register.
 355 */
 356static int wait_op_done(struct mxc_nand_host *host, int useirq)
 357{
 358	int ret = 0;
 359
 360	/*
 361	 * If operation is already complete, don't bother to setup an irq or a
 362	 * loop.
 363	 */
 364	if (host->devtype_data->check_int(host))
 365		return 0;
 366
 367	if (useirq) {
 368		unsigned long timeout;
 369
 370		reinit_completion(&host->op_completion);
 371
 372		irq_control(host, 1);
 373
 374		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
 375		if (!timeout && !host->devtype_data->check_int(host)) {
 376			dev_dbg(host->dev, "timeout waiting for irq\n");
 377			ret = -ETIMEDOUT;
 378		}
 379	} else {
 380		int max_retries = 8000;
 381		int done;
 382
 383		do {
 384			udelay(1);
 385
 386			done = host->devtype_data->check_int(host);
 387			if (done)
 388				break;
 389
 390		} while (--max_retries);
 391
 392		if (!done) {
 393			dev_dbg(host->dev, "timeout polling for completion\n");
 394			ret = -ETIMEDOUT;
 395		}
 396	}
 397
 398	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
 399
 400	return ret;
 401}
 402
 403static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 404{
 405	/* fill command */
 406	writel(cmd, NFC_V3_FLASH_CMD);
 407
 408	/* send out command */
 409	writel(NFC_CMD, NFC_V3_LAUNCH);
 410
 411	/* Wait for operation to complete */
 412	wait_op_done(host, useirq);
 413}
 414
 415/* This function issues the specified command to the NAND device and
 416 * waits for completion. */
 417static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 418{
 419	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 420
 421	writew(cmd, NFC_V1_V2_FLASH_CMD);
 422	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 423
 424	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 425		int max_retries = 100;
 426		/* Reset completion is indicated by NFC_CONFIG2 */
 427		/* being set to 0 */
 428		while (max_retries-- > 0) {
 429			if (readw(NFC_V1_V2_CONFIG2) == 0) {
 430				break;
 431			}
 432			udelay(1);
 433		}
 434		if (max_retries < 0)
 435			pr_debug("%s: RESET failed\n", __func__);
 436	} else {
 437		/* Wait for operation to complete */
 438		wait_op_done(host, useirq);
 439	}
 440}
 441
 442static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 443{
 444	/* fill address */
 445	writel(addr, NFC_V3_FLASH_ADDR0);
 446
 447	/* send out address */
 448	writel(NFC_ADDR, NFC_V3_LAUNCH);
 449
 450	wait_op_done(host, 0);
 451}
 452
 453/* This function sends an address (or partial address) to the
 454 * NAND device. The address is used to select the source/destination for
 455 * a NAND command. */
 456static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 457{
 458	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
 459
 460	writew(addr, NFC_V1_V2_FLASH_ADDR);
 461	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 462
 463	/* Wait for operation to complete */
 464	wait_op_done(host, islast);
 465}
 466
 467static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 468{
 469	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 470	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 471	uint32_t tmp;
 472
 473	tmp = readl(NFC_V3_CONFIG1);
 474	tmp &= ~(7 << 4);
 475	writel(tmp, NFC_V3_CONFIG1);
 476
 477	/* transfer data from NFC ram to nand */
 478	writel(ops, NFC_V3_LAUNCH);
 479
 480	wait_op_done(host, false);
 481}
 482
 483static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 484{
 485	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 486	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 487
 488	/* NANDFC buffer 0 is used for page read/write */
 489	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 490
 491	writew(ops, NFC_V1_V2_CONFIG2);
 492
 493	/* Wait for operation to complete */
 494	wait_op_done(host, true);
 495}
 496
 497static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 498{
 499	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 500	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 501	int bufs, i;
 502
 503	if (mtd->writesize > 512)
 504		bufs = 4;
 505	else
 506		bufs = 1;
 507
 508	for (i = 0; i < bufs; i++) {
 509
 510		/* NANDFC buffer 0 is used for page read/write */
 511		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 512
 513		writew(ops, NFC_V1_V2_CONFIG2);
 514
 515		/* Wait for operation to complete */
 516		wait_op_done(host, true);
 517	}
 518}
 519
 520static void send_read_id_v3(struct mxc_nand_host *host)
 521{
 522	/* Read ID into main buffer */
 523	writel(NFC_ID, NFC_V3_LAUNCH);
 524
 525	wait_op_done(host, true);
 526
 527	memcpy32_fromio(host->data_buf, host->main_area0, 16);
 528}
 529
 530/* Request the NANDFC to perform a read of the NAND device ID. */
 531static void send_read_id_v1_v2(struct mxc_nand_host *host)
 532{
 533	/* NANDFC buffer 0 is used for device ID output */
 534	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 535
 536	writew(NFC_ID, NFC_V1_V2_CONFIG2);
 537
 538	/* Wait for operation to complete */
 539	wait_op_done(host, true);
 540
 541	memcpy32_fromio(host->data_buf, host->main_area0, 16);
 542}
 543
 544static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 545{
 546	writew(NFC_STATUS, NFC_V3_LAUNCH);
 547	wait_op_done(host, true);
 548
 549	return readl(NFC_V3_CONFIG1) >> 16;
 550}
 551
 552/* This function requests the NANDFC to perform a read of the
 553 * NAND device status and returns the current status. */
 554static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 555{
 556	void __iomem *main_buf = host->main_area0;
 557	uint32_t store;
 558	uint16_t ret;
 559
 560	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 561
 562	/*
 563	 * The device status is stored in main_area0. To
 564	 * prevent corruption of the buffer save the value
 565	 * and restore it afterwards.
 566	 */
 567	store = readl(main_buf);
 568
 569	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 570	wait_op_done(host, true);
 571
 572	ret = readw(main_buf);
 573
 574	writel(store, main_buf);
 575
 576	return ret;
 577}
 578
 579/* This functions is used by upper layer to checks if device is ready */
 580static int mxc_nand_dev_ready(struct mtd_info *mtd)
 581{
 582	/*
 583	 * NFC handles R/B internally. Therefore, this function
 584	 * always returns status as ready.
 585	 */
 586	return 1;
 587}
 588
 589static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 590{
 591	/*
 592	 * If HW ECC is enabled, we turn it on during init. There is
 593	 * no need to enable again here.
 594	 */
 595}
 596
 597static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 598				 u_char *read_ecc, u_char *calc_ecc)
 599{
 600	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 601	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 602
 603	/*
 604	 * 1-Bit errors are automatically corrected in HW.  No need for
 605	 * additional correction.  2-Bit errors cannot be corrected by
 606	 * HW ECC, so we need to return failure
 607	 */
 608	uint16_t ecc_status = get_ecc_status_v1(host);
 609
 610	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 611		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 612		return -EBADMSG;
 613	}
 614
 615	return 0;
 616}
 617
 618static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 619				 u_char *read_ecc, u_char *calc_ecc)
 620{
 621	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 622	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 623	u32 ecc_stat, err;
 624	int no_subpages = 1;
 625	int ret = 0;
 626	u8 ecc_bit_mask, err_limit;
 627
 628	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 629	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 630
 631	no_subpages = mtd->writesize >> 9;
 632
 633	ecc_stat = host->devtype_data->get_ecc_status(host);
 634
 635	do {
 636		err = ecc_stat & ecc_bit_mask;
 637		if (err > err_limit) {
 638			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
 639			return -EBADMSG;
 640		} else {
 641			ret += err;
 642		}
 643		ecc_stat >>= 4;
 644	} while (--no_subpages);
 645
 646	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
 647
 648	return ret;
 649}
 650
 651static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 652				  u_char *ecc_code)
 653{
 654	return 0;
 655}
 656
 657static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 658{
 659	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 660	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 661	uint8_t ret;
 662
 663	/* Check for status request */
 664	if (host->status_request)
 665		return host->devtype_data->get_dev_status(host) & 0xFF;
 666
 667	if (nand_chip->options & NAND_BUSWIDTH_16) {
 668		/* only take the lower byte of each word */
 669		ret = *(uint16_t *)(host->data_buf + host->buf_start);
 670
 671		host->buf_start += 2;
 672	} else {
 673		ret = *(uint8_t *)(host->data_buf + host->buf_start);
 674		host->buf_start++;
 675	}
 676
 677	pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
 678	return ret;
 679}
 680
 681static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 682{
 683	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 684	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 685	uint16_t ret;
 686
 687	ret = *(uint16_t *)(host->data_buf + host->buf_start);
 688	host->buf_start += 2;
 689
 690	return ret;
 691}
 692
 693/* Write data of length len to buffer buf. The data to be
 694 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 695 * Operation by the NFC, the data is written to NAND Flash */
 696static void mxc_nand_write_buf(struct mtd_info *mtd,
 697				const u_char *buf, int len)
 698{
 699	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 700	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 701	u16 col = host->buf_start;
 702	int n = mtd->oobsize + mtd->writesize - col;
 703
 704	n = min(n, len);
 705
 706	memcpy(host->data_buf + col, buf, n);
 707
 708	host->buf_start += n;
 709}
 710
 711/* Read the data buffer from the NAND Flash. To read the data from NAND
 712 * Flash first the data output cycle is initiated by the NFC, which copies
 713 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 714 */
 715static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 716{
 717	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 718	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 719	u16 col = host->buf_start;
 720	int n = mtd->oobsize + mtd->writesize - col;
 721
 722	n = min(n, len);
 723
 724	memcpy(buf, host->data_buf + col, n);
 725
 726	host->buf_start += n;
 727}
 728
 729/* This function is used by upper layer for select and
 730 * deselect of the NAND chip */
 731static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
 732{
 733	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 734	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 735
 736	if (chip == -1) {
 737		/* Disable the NFC clock */
 738		if (host->clk_act) {
 739			clk_disable_unprepare(host->clk);
 740			host->clk_act = 0;
 741		}
 742		return;
 743	}
 744
 745	if (!host->clk_act) {
 746		/* Enable the NFC clock */
 747		clk_prepare_enable(host->clk);
 748		host->clk_act = 1;
 749	}
 750}
 751
 752static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
 753{
 754	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 755	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 756
 757	if (chip == -1) {
 758		/* Disable the NFC clock */
 759		if (host->clk_act) {
 760			clk_disable_unprepare(host->clk);
 761			host->clk_act = 0;
 762		}
 763		return;
 764	}
 765
 766	if (!host->clk_act) {
 767		/* Enable the NFC clock */
 768		clk_prepare_enable(host->clk);
 769		host->clk_act = 1;
 770	}
 771
 772	host->active_cs = chip;
 773	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 774}
 775
 776/*
 777 * The controller splits a page into data chunks of 512 bytes + partial oob.
 778 * There are writesize / 512 such chunks, the size of the partial oob parts is
 779 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
 780 * contains additionally the byte lost by rounding (if any).
 781 * This function handles the needed shuffling between host->data_buf (which
 782 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
 783 * spare) and the NFC buffer.
 784 */
 785static void copy_spare(struct mtd_info *mtd, bool bfrom)
 786{
 787	struct nand_chip *this = mtd_to_nand(mtd);
 788	struct mxc_nand_host *host = nand_get_controller_data(this);
 789	u16 i, oob_chunk_size;
 790	u16 num_chunks = mtd->writesize / 512;
 791
 792	u8 *d = host->data_buf + mtd->writesize;
 793	u8 __iomem *s = host->spare0;
 794	u16 sparebuf_size = host->devtype_data->spare_len;
 795
 796	/* size of oob chunk for all but possibly the last one */
 797	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
 798
 799	if (bfrom) {
 800		for (i = 0; i < num_chunks - 1; i++)
 801			memcpy16_fromio(d + i * oob_chunk_size,
 802					s + i * sparebuf_size,
 803					oob_chunk_size);
 804
 805		/* the last chunk */
 806		memcpy16_fromio(d + i * oob_chunk_size,
 807				s + i * sparebuf_size,
 808				host->used_oobsize - i * oob_chunk_size);
 809	} else {
 810		for (i = 0; i < num_chunks - 1; i++)
 811			memcpy16_toio(&s[i * sparebuf_size],
 812				      &d[i * oob_chunk_size],
 813				      oob_chunk_size);
 814
 815		/* the last chunk */
 816		memcpy16_toio(&s[i * sparebuf_size],
 817			      &d[i * oob_chunk_size],
 818			      host->used_oobsize - i * oob_chunk_size);
 819	}
 820}
 821
 822/*
 823 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
 824 * the upper layers perform a read/write buf operation, the saved column address
 825 * is used to index into the full page. So usually this function is called with
 826 * column == 0 (unless no column cycle is needed indicated by column == -1)
 827 */
 828static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 829{
 830	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 831	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 832
 833	/* Write out column address, if necessary */
 834	if (column != -1) {
 835		host->devtype_data->send_addr(host, column & 0xff,
 836					      page_addr == -1);
 837		if (mtd->writesize > 512)
 838			/* another col addr cycle for 2k page */
 839			host->devtype_data->send_addr(host,
 840						      (column >> 8) & 0xff,
 841						      false);
 842	}
 843
 844	/* Write out page address, if necessary */
 845	if (page_addr != -1) {
 846		/* paddr_0 - p_addr_7 */
 847		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 848
 849		if (mtd->writesize > 512) {
 850			if (mtd->size >= 0x10000000) {
 851				/* paddr_8 - paddr_15 */
 852				host->devtype_data->send_addr(host,
 853						(page_addr >> 8) & 0xff,
 854						false);
 855				host->devtype_data->send_addr(host,
 856						(page_addr >> 16) & 0xff,
 857						true);
 858			} else
 859				/* paddr_8 - paddr_15 */
 860				host->devtype_data->send_addr(host,
 861						(page_addr >> 8) & 0xff, true);
 862		} else {
 863			/* One more address cycle for higher density devices */
 864			if (mtd->size >= 0x4000000) {
 865				/* paddr_8 - paddr_15 */
 866				host->devtype_data->send_addr(host,
 867						(page_addr >> 8) & 0xff,
 868						false);
 869				host->devtype_data->send_addr(host,
 870						(page_addr >> 16) & 0xff,
 871						true);
 872			} else
 873				/* paddr_8 - paddr_15 */
 874				host->devtype_data->send_addr(host,
 875						(page_addr >> 8) & 0xff, true);
 876		}
 877	}
 878}
 879
 880static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
 881				struct mtd_oob_region *oobregion)
 882{
 883	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 884
 885	if (section >= nand_chip->ecc.steps)
 886		return -ERANGE;
 887
 888	oobregion->offset = (section * 16) + 6;
 889	oobregion->length = nand_chip->ecc.bytes;
 890
 891	return 0;
 892}
 893
 894static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
 895				 struct mtd_oob_region *oobregion)
 896{
 897	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 898
 899	if (section > nand_chip->ecc.steps)
 900		return -ERANGE;
 901
 902	if (!section) {
 903		if (mtd->writesize <= 512) {
 904			oobregion->offset = 0;
 905			oobregion->length = 5;
 906		} else {
 907			oobregion->offset = 2;
 908			oobregion->length = 4;
 909		}
 910	} else {
 911		oobregion->offset = ((section - 1) * 16) +
 912				    nand_chip->ecc.bytes + 6;
 913		if (section < nand_chip->ecc.steps)
 914			oobregion->length = (section * 16) + 6 -
 915					    oobregion->offset;
 916		else
 917			oobregion->length = mtd->oobsize - oobregion->offset;
 918	}
 919
 920	return 0;
 921}
 922
 923static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
 924	.ecc = mxc_v1_ooblayout_ecc,
 925	.free = mxc_v1_ooblayout_free,
 926};
 927
 928static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
 929				struct mtd_oob_region *oobregion)
 930{
 931	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 932	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 933
 934	if (section >= nand_chip->ecc.steps)
 935		return -ERANGE;
 936
 937	oobregion->offset = (section * stepsize) + 7;
 938	oobregion->length = nand_chip->ecc.bytes;
 939
 940	return 0;
 941}
 942
 943static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
 944				 struct mtd_oob_region *oobregion)
 945{
 946	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 947	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 948
 949	if (section >= nand_chip->ecc.steps)
 950		return -ERANGE;
 951
 952	if (!section) {
 953		if (mtd->writesize <= 512) {
 954			oobregion->offset = 0;
 955			oobregion->length = 5;
 956		} else {
 957			oobregion->offset = 2;
 958			oobregion->length = 4;
 959		}
 960	} else {
 961		oobregion->offset = section * stepsize;
 962		oobregion->length = 7;
 963	}
 964
 965	return 0;
 966}
 967
 968static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
 969	.ecc = mxc_v2_ooblayout_ecc,
 970	.free = mxc_v2_ooblayout_free,
 971};
 972
 973/*
 974 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 975 * on how much oob the nand chip has. For 8bit ecc we need at least
 976 * 26 bytes of oob data per 512 byte block.
 977 */
 978static int get_eccsize(struct mtd_info *mtd)
 979{
 980	int oobbytes_per_512 = 0;
 981
 982	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 983
 984	if (oobbytes_per_512 < 26)
 985		return 4;
 986	else
 987		return 8;
 988}
 989
 990static void preset_v1(struct mtd_info *mtd)
 991{
 992	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 993	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 994	uint16_t config1 = 0;
 995
 996	if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
 997		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 998
 999	if (!host->devtype_data->irqpending_quirk)
1000		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1001
1002	host->eccsize = 1;
1003
1004	writew(config1, NFC_V1_V2_CONFIG1);
1005	/* preset operation */
1006
1007	/* Unlock the internal RAM Buffer */
1008	writew(0x2, NFC_V1_V2_CONFIG);
1009
1010	/* Blocks to be unlocked */
1011	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1012	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1013
1014	/* Unlock Block Command for given address range */
1015	writew(0x4, NFC_V1_V2_WRPROT);
1016}
1017
1018static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
1019					const struct nand_data_interface *conf,
1020					bool check_only)
1021{
1022	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1024	int tRC_min_ns, tRC_ps, ret;
1025	unsigned long rate, rate_round;
1026	const struct nand_sdr_timings *timings;
1027	u16 config1;
1028
1029	timings = nand_get_sdr_timings(conf);
1030	if (IS_ERR(timings))
1031		return -ENOTSUPP;
1032
1033	config1 = readw(NFC_V1_V2_CONFIG1);
1034
1035	tRC_min_ns = timings->tRC_min / 1000;
1036	rate = 1000000000 / tRC_min_ns;
1037
1038	/*
1039	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1040	 * does one access per clock cycle. Otherwise the controller does one
1041	 * access in two clock cycles, thus we have to double the rate to the
1042	 * controller.
1043	 */
1044	if (tRC_min_ns < 30) {
1045		rate_round = clk_round_rate(host->clk, rate);
1046		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1047		tRC_ps = 1000000000 / (rate_round / 1000);
1048	} else {
1049		rate *= 2;
1050		rate_round = clk_round_rate(host->clk, rate);
1051		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1052		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1053	}
1054
1055	/*
1056	 * The timing values compared against are from the i.MX25 Automotive
1057	 * datasheet, Table 50. NFC Timing Parameters
1058	 */
1059	if (timings->tCLS_min > tRC_ps - 1000 ||
1060	    timings->tCLH_min > tRC_ps - 2000 ||
1061	    timings->tCS_min > tRC_ps - 1000 ||
1062	    timings->tCH_min > tRC_ps - 2000 ||
1063	    timings->tWP_min > tRC_ps - 1500 ||
1064	    timings->tALS_min > tRC_ps ||
1065	    timings->tALH_min > tRC_ps - 3000 ||
1066	    timings->tDS_min > tRC_ps ||
1067	    timings->tDH_min > tRC_ps - 5000 ||
1068	    timings->tWC_min > 2 * tRC_ps ||
1069	    timings->tWH_min > tRC_ps - 2500 ||
1070	    timings->tRR_min > 6 * tRC_ps ||
1071	    timings->tRP_min > 3 * tRC_ps / 2 ||
1072	    timings->tRC_min > 2 * tRC_ps ||
1073	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1074		dev_dbg(host->dev, "Timing out of bounds\n");
1075		return -EINVAL;
1076	}
1077
1078	if (check_only)
1079		return 0;
1080
1081	ret = clk_set_rate(host->clk, rate);
1082	if (ret)
1083		return ret;
1084
1085	writew(config1, NFC_V1_V2_CONFIG1);
1086
1087	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1088		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1089		"normal");
1090
1091	return 0;
1092}
1093
1094static void preset_v2(struct mtd_info *mtd)
1095{
1096	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1097	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1098	uint16_t config1 = 0;
1099
1100	config1 |= NFC_V2_CONFIG1_FP_INT;
1101
1102	if (!host->devtype_data->irqpending_quirk)
1103		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1104
1105	if (mtd->writesize) {
1106		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1107
1108		if (nand_chip->ecc.mode == NAND_ECC_HW)
1109			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1110
1111		host->eccsize = get_eccsize(mtd);
1112		if (host->eccsize == 4)
1113			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1114
1115		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1116	} else {
1117		host->eccsize = 1;
1118	}
1119
1120	writew(config1, NFC_V1_V2_CONFIG1);
1121	/* preset operation */
1122
1123	/* Unlock the internal RAM Buffer */
1124	writew(0x2, NFC_V1_V2_CONFIG);
1125
1126	/* Blocks to be unlocked */
1127	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1128	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1129	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1130	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1131	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1132	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1133	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1134	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1135
1136	/* Unlock Block Command for given address range */
1137	writew(0x4, NFC_V1_V2_WRPROT);
1138}
1139
1140static void preset_v3(struct mtd_info *mtd)
1141{
1142	struct nand_chip *chip = mtd_to_nand(mtd);
1143	struct mxc_nand_host *host = nand_get_controller_data(chip);
1144	uint32_t config2, config3;
1145	int i, addr_phases;
1146
1147	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1148	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1149
1150	/* Unlock the internal RAM Buffer */
1151	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1152			NFC_V3_WRPROT);
1153
1154	/* Blocks to be unlocked */
1155	for (i = 0; i < NAND_MAX_CHIPS; i++)
1156		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1157
1158	writel(0, NFC_V3_IPC);
1159
1160	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1161		NFC_V3_CONFIG2_2CMD_PHASES |
1162		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1163		NFC_V3_CONFIG2_ST_CMD(0x70) |
1164		NFC_V3_CONFIG2_INT_MSK |
1165		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1166
1167	addr_phases = fls(chip->pagemask) >> 3;
1168
1169	if (mtd->writesize == 2048) {
1170		config2 |= NFC_V3_CONFIG2_PS_2048;
1171		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1172	} else if (mtd->writesize == 4096) {
1173		config2 |= NFC_V3_CONFIG2_PS_4096;
1174		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1175	} else {
1176		config2 |= NFC_V3_CONFIG2_PS_512;
1177		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1178	}
1179
1180	if (mtd->writesize) {
1181		if (chip->ecc.mode == NAND_ECC_HW)
1182			config2 |= NFC_V3_CONFIG2_ECC_EN;
1183
1184		config2 |= NFC_V3_CONFIG2_PPB(
1185				ffs(mtd->erasesize / mtd->writesize) - 6,
1186				host->devtype_data->ppb_shift);
1187		host->eccsize = get_eccsize(mtd);
1188		if (host->eccsize == 8)
1189			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1190	}
1191
1192	writel(config2, NFC_V3_CONFIG2);
1193
1194	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1195			NFC_V3_CONFIG3_NO_SDMA |
1196			NFC_V3_CONFIG3_RBB_MODE |
1197			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1198			NFC_V3_CONFIG3_ADD_OP(0);
1199
1200	if (!(chip->options & NAND_BUSWIDTH_16))
1201		config3 |= NFC_V3_CONFIG3_FW8;
1202
1203	writel(config3, NFC_V3_CONFIG3);
1204
1205	writel(0, NFC_V3_DELAY_LINE);
1206}
1207
1208/* Used by the upper layer to write command to NAND Flash for
1209 * different operations to be carried out on NAND Flash */
1210static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1211				int column, int page_addr)
1212{
1213	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1214	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1215
1216	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1217	      command, column, page_addr);
1218
1219	/* Reset command state information */
1220	host->status_request = false;
1221
1222	/* Command pre-processing step */
1223	switch (command) {
1224	case NAND_CMD_RESET:
1225		host->devtype_data->preset(mtd);
1226		host->devtype_data->send_cmd(host, command, false);
1227		break;
1228
1229	case NAND_CMD_STATUS:
1230		host->buf_start = 0;
1231		host->status_request = true;
1232
1233		host->devtype_data->send_cmd(host, command, true);
1234		WARN_ONCE(column != -1 || page_addr != -1,
1235			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1236			  command, column, page_addr);
1237		mxc_do_addr_cycle(mtd, column, page_addr);
1238		break;
1239
1240	case NAND_CMD_READ0:
1241	case NAND_CMD_READOOB:
1242		if (command == NAND_CMD_READ0)
1243			host->buf_start = column;
1244		else
1245			host->buf_start = column + mtd->writesize;
1246
1247		command = NAND_CMD_READ0; /* only READ0 is valid */
1248
1249		host->devtype_data->send_cmd(host, command, false);
1250		WARN_ONCE(column < 0,
1251			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1252			  command, column, page_addr);
1253		mxc_do_addr_cycle(mtd, 0, page_addr);
1254
1255		if (mtd->writesize > 512)
1256			host->devtype_data->send_cmd(host,
1257					NAND_CMD_READSTART, true);
1258
1259		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1260
1261		memcpy32_fromio(host->data_buf, host->main_area0,
1262				mtd->writesize);
1263		copy_spare(mtd, true);
1264		break;
1265
1266	case NAND_CMD_SEQIN:
1267		if (column >= mtd->writesize)
1268			/* call ourself to read a page */
1269			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1270
1271		host->buf_start = column;
1272
1273		host->devtype_data->send_cmd(host, command, false);
1274		WARN_ONCE(column < -1,
1275			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1276			  command, column, page_addr);
1277		mxc_do_addr_cycle(mtd, 0, page_addr);
1278		break;
1279
1280	case NAND_CMD_PAGEPROG:
1281		memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1282		copy_spare(mtd, false);
1283		host->devtype_data->send_page(mtd, NFC_INPUT);
1284		host->devtype_data->send_cmd(host, command, true);
1285		WARN_ONCE(column != -1 || page_addr != -1,
1286			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1287			  command, column, page_addr);
1288		mxc_do_addr_cycle(mtd, column, page_addr);
1289		break;
1290
1291	case NAND_CMD_READID:
1292		host->devtype_data->send_cmd(host, command, true);
1293		mxc_do_addr_cycle(mtd, column, page_addr);
1294		host->devtype_data->send_read_id(host);
1295		host->buf_start = 0;
1296		break;
1297
1298	case NAND_CMD_ERASE1:
1299	case NAND_CMD_ERASE2:
1300		host->devtype_data->send_cmd(host, command, false);
1301		WARN_ONCE(column != -1,
1302			  "Unexpected column value (cmd=%u, col=%d)\n",
1303			  command, column);
1304		mxc_do_addr_cycle(mtd, column, page_addr);
1305
1306		break;
1307	case NAND_CMD_PARAM:
1308		host->devtype_data->send_cmd(host, command, false);
1309		mxc_do_addr_cycle(mtd, column, page_addr);
1310		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1311		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1312		host->buf_start = 0;
1313		break;
1314	default:
1315		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1316			  command);
1317		break;
1318	}
1319}
1320
1321static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1322				      struct nand_chip *chip, int addr,
1323				      u8 *subfeature_param)
1324{
1325	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1326	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1327	int i;
1328
1329	if (!chip->onfi_version ||
1330	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
1331	      & ONFI_OPT_CMD_SET_GET_FEATURES))
1332		return -EINVAL;
1333
1334	host->buf_start = 0;
1335
1336	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1337		chip->write_byte(mtd, subfeature_param[i]);
1338
1339	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1340	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1341	mxc_do_addr_cycle(mtd, addr, -1);
1342	host->devtype_data->send_page(mtd, NFC_INPUT);
1343
1344	return 0;
1345}
1346
1347static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1348				      struct nand_chip *chip, int addr,
1349				      u8 *subfeature_param)
1350{
1351	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1352	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1353	int i;
1354
1355	if (!chip->onfi_version ||
1356	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
1357	      & ONFI_OPT_CMD_SET_GET_FEATURES))
1358		return -EINVAL;
1359
1360	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1361	mxc_do_addr_cycle(mtd, addr, -1);
1362	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1363	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1364	host->buf_start = 0;
1365
1366	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1367		*subfeature_param++ = chip->read_byte(mtd);
1368
1369	return 0;
1370}
1371
1372/*
1373 * The generic flash bbt decriptors overlap with our ecc
1374 * hardware, so define some i.MX specific ones.
1375 */
1376static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1377static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1378
1379static struct nand_bbt_descr bbt_main_descr = {
1380	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1381	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1382	.offs = 0,
1383	.len = 4,
1384	.veroffs = 4,
1385	.maxblocks = 4,
1386	.pattern = bbt_pattern,
1387};
1388
1389static struct nand_bbt_descr bbt_mirror_descr = {
1390	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1391	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1392	.offs = 0,
1393	.len = 4,
1394	.veroffs = 4,
1395	.maxblocks = 4,
1396	.pattern = mirror_pattern,
1397};
1398
1399/* v1 + irqpending_quirk: i.MX21 */
1400static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1401	.preset = preset_v1,
1402	.send_cmd = send_cmd_v1_v2,
1403	.send_addr = send_addr_v1_v2,
1404	.send_page = send_page_v1,
1405	.send_read_id = send_read_id_v1_v2,
1406	.get_dev_status = get_dev_status_v1_v2,
1407	.check_int = check_int_v1_v2,
1408	.irq_control = irq_control_v1_v2,
1409	.get_ecc_status = get_ecc_status_v1,
1410	.ooblayout = &mxc_v1_ooblayout_ops,
1411	.select_chip = mxc_nand_select_chip_v1_v3,
1412	.correct_data = mxc_nand_correct_data_v1,
1413	.irqpending_quirk = 1,
1414	.needs_ip = 0,
1415	.regs_offset = 0xe00,
1416	.spare0_offset = 0x800,
1417	.spare_len = 16,
1418	.eccbytes = 3,
1419	.eccsize = 1,
1420};
1421
1422/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1423static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1424	.preset = preset_v1,
1425	.send_cmd = send_cmd_v1_v2,
1426	.send_addr = send_addr_v1_v2,
1427	.send_page = send_page_v1,
1428	.send_read_id = send_read_id_v1_v2,
1429	.get_dev_status = get_dev_status_v1_v2,
1430	.check_int = check_int_v1_v2,
1431	.irq_control = irq_control_v1_v2,
1432	.get_ecc_status = get_ecc_status_v1,
1433	.ooblayout = &mxc_v1_ooblayout_ops,
1434	.select_chip = mxc_nand_select_chip_v1_v3,
1435	.correct_data = mxc_nand_correct_data_v1,
1436	.irqpending_quirk = 0,
1437	.needs_ip = 0,
1438	.regs_offset = 0xe00,
1439	.spare0_offset = 0x800,
1440	.axi_offset = 0,
1441	.spare_len = 16,
1442	.eccbytes = 3,
1443	.eccsize = 1,
1444};
1445
1446/* v21: i.MX25, i.MX35 */
1447static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1448	.preset = preset_v2,
1449	.send_cmd = send_cmd_v1_v2,
1450	.send_addr = send_addr_v1_v2,
1451	.send_page = send_page_v2,
1452	.send_read_id = send_read_id_v1_v2,
1453	.get_dev_status = get_dev_status_v1_v2,
1454	.check_int = check_int_v1_v2,
1455	.irq_control = irq_control_v1_v2,
1456	.get_ecc_status = get_ecc_status_v2,
1457	.ooblayout = &mxc_v2_ooblayout_ops,
1458	.select_chip = mxc_nand_select_chip_v2,
1459	.correct_data = mxc_nand_correct_data_v2_v3,
1460	.setup_data_interface = mxc_nand_v2_setup_data_interface,
1461	.irqpending_quirk = 0,
1462	.needs_ip = 0,
1463	.regs_offset = 0x1e00,
1464	.spare0_offset = 0x1000,
1465	.axi_offset = 0,
1466	.spare_len = 64,
1467	.eccbytes = 9,
1468	.eccsize = 0,
1469};
1470
1471/* v3.2a: i.MX51 */
1472static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1473	.preset = preset_v3,
1474	.send_cmd = send_cmd_v3,
1475	.send_addr = send_addr_v3,
1476	.send_page = send_page_v3,
1477	.send_read_id = send_read_id_v3,
1478	.get_dev_status = get_dev_status_v3,
1479	.check_int = check_int_v3,
1480	.irq_control = irq_control_v3,
1481	.get_ecc_status = get_ecc_status_v3,
1482	.ooblayout = &mxc_v2_ooblayout_ops,
1483	.select_chip = mxc_nand_select_chip_v1_v3,
1484	.correct_data = mxc_nand_correct_data_v2_v3,
1485	.irqpending_quirk = 0,
1486	.needs_ip = 1,
1487	.regs_offset = 0,
1488	.spare0_offset = 0x1000,
1489	.axi_offset = 0x1e00,
1490	.spare_len = 64,
1491	.eccbytes = 0,
1492	.eccsize = 0,
1493	.ppb_shift = 7,
1494};
1495
1496/* v3.2b: i.MX53 */
1497static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1498	.preset = preset_v3,
1499	.send_cmd = send_cmd_v3,
1500	.send_addr = send_addr_v3,
1501	.send_page = send_page_v3,
1502	.send_read_id = send_read_id_v3,
1503	.get_dev_status = get_dev_status_v3,
1504	.check_int = check_int_v3,
1505	.irq_control = irq_control_v3,
1506	.get_ecc_status = get_ecc_status_v3,
1507	.ooblayout = &mxc_v2_ooblayout_ops,
1508	.select_chip = mxc_nand_select_chip_v1_v3,
1509	.correct_data = mxc_nand_correct_data_v2_v3,
1510	.irqpending_quirk = 0,
1511	.needs_ip = 1,
1512	.regs_offset = 0,
1513	.spare0_offset = 0x1000,
1514	.axi_offset = 0x1e00,
1515	.spare_len = 64,
1516	.eccbytes = 0,
1517	.eccsize = 0,
1518	.ppb_shift = 8,
1519};
1520
1521static inline int is_imx21_nfc(struct mxc_nand_host *host)
1522{
1523	return host->devtype_data == &imx21_nand_devtype_data;
1524}
1525
1526static inline int is_imx27_nfc(struct mxc_nand_host *host)
1527{
1528	return host->devtype_data == &imx27_nand_devtype_data;
1529}
1530
1531static inline int is_imx25_nfc(struct mxc_nand_host *host)
1532{
1533	return host->devtype_data == &imx25_nand_devtype_data;
1534}
1535
1536static inline int is_imx51_nfc(struct mxc_nand_host *host)
1537{
1538	return host->devtype_data == &imx51_nand_devtype_data;
1539}
1540
1541static inline int is_imx53_nfc(struct mxc_nand_host *host)
1542{
1543	return host->devtype_data == &imx53_nand_devtype_data;
1544}
1545
1546static const struct platform_device_id mxcnd_devtype[] = {
1547	{
1548		.name = "imx21-nand",
1549		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1550	}, {
1551		.name = "imx27-nand",
1552		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1553	}, {
1554		.name = "imx25-nand",
1555		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1556	}, {
1557		.name = "imx51-nand",
1558		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1559	}, {
1560		.name = "imx53-nand",
1561		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1562	}, {
1563		/* sentinel */
1564	}
1565};
1566MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1567
1568#ifdef CONFIG_OF
1569static const struct of_device_id mxcnd_dt_ids[] = {
1570	{
1571		.compatible = "fsl,imx21-nand",
1572		.data = &imx21_nand_devtype_data,
1573	}, {
1574		.compatible = "fsl,imx27-nand",
1575		.data = &imx27_nand_devtype_data,
1576	}, {
1577		.compatible = "fsl,imx25-nand",
1578		.data = &imx25_nand_devtype_data,
1579	}, {
1580		.compatible = "fsl,imx51-nand",
1581		.data = &imx51_nand_devtype_data,
1582	}, {
1583		.compatible = "fsl,imx53-nand",
1584		.data = &imx53_nand_devtype_data,
1585	},
1586	{ /* sentinel */ }
1587};
1588MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1589
1590static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1591{
1592	struct device_node *np = host->dev->of_node;
1593	const struct of_device_id *of_id =
1594		of_match_device(mxcnd_dt_ids, host->dev);
1595
1596	if (!np)
1597		return 1;
1598
1599	host->devtype_data = of_id->data;
1600
1601	return 0;
1602}
1603#else
1604static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1605{
1606	return 1;
1607}
1608#endif
1609
1610static int mxcnd_probe(struct platform_device *pdev)
1611{
1612	struct nand_chip *this;
1613	struct mtd_info *mtd;
1614	struct mxc_nand_host *host;
1615	struct resource *res;
1616	int err = 0;
1617
1618	/* Allocate memory for MTD device structure and private data */
1619	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1620			GFP_KERNEL);
1621	if (!host)
1622		return -ENOMEM;
1623
1624	/* allocate a temporary buffer for the nand_scan_ident() */
1625	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1626	if (!host->data_buf)
1627		return -ENOMEM;
1628
1629	host->dev = &pdev->dev;
1630	/* structures must be linked */
1631	this = &host->nand;
1632	mtd = nand_to_mtd(this);
1633	mtd->dev.parent = &pdev->dev;
1634	mtd->name = DRIVER_NAME;
1635
1636	/* 50 us command delay time */
1637	this->chip_delay = 5;
1638
1639	nand_set_controller_data(this, host);
1640	nand_set_flash_node(this, pdev->dev.of_node),
1641	this->dev_ready = mxc_nand_dev_ready;
1642	this->cmdfunc = mxc_nand_command;
1643	this->read_byte = mxc_nand_read_byte;
1644	this->read_word = mxc_nand_read_word;
1645	this->write_buf = mxc_nand_write_buf;
1646	this->read_buf = mxc_nand_read_buf;
1647	this->onfi_set_features = mxc_nand_onfi_set_features;
1648	this->onfi_get_features = mxc_nand_onfi_get_features;
1649
1650	host->clk = devm_clk_get(&pdev->dev, NULL);
1651	if (IS_ERR(host->clk))
1652		return PTR_ERR(host->clk);
1653
1654	err = mxcnd_probe_dt(host);
1655	if (err > 0) {
1656		struct mxc_nand_platform_data *pdata =
1657					dev_get_platdata(&pdev->dev);
1658		if (pdata) {
1659			host->pdata = *pdata;
1660			host->devtype_data = (struct mxc_nand_devtype_data *)
1661						pdev->id_entry->driver_data;
1662		} else {
1663			err = -ENODEV;
1664		}
1665	}
1666	if (err < 0)
1667		return err;
1668
1669	this->setup_data_interface = host->devtype_data->setup_data_interface;
1670
1671	if (host->devtype_data->needs_ip) {
1672		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1673		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1674		if (IS_ERR(host->regs_ip))
1675			return PTR_ERR(host->regs_ip);
1676
1677		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1678	} else {
1679		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680	}
1681
1682	host->base = devm_ioremap_resource(&pdev->dev, res);
1683	if (IS_ERR(host->base))
1684		return PTR_ERR(host->base);
1685
1686	host->main_area0 = host->base;
1687
1688	if (host->devtype_data->regs_offset)
1689		host->regs = host->base + host->devtype_data->regs_offset;
1690	host->spare0 = host->base + host->devtype_data->spare0_offset;
1691	if (host->devtype_data->axi_offset)
1692		host->regs_axi = host->base + host->devtype_data->axi_offset;
1693
1694	this->ecc.bytes = host->devtype_data->eccbytes;
1695	host->eccsize = host->devtype_data->eccsize;
1696
1697	this->select_chip = host->devtype_data->select_chip;
1698	this->ecc.size = 512;
1699	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1700
1701	if (host->pdata.hw_ecc) {
1702		this->ecc.mode = NAND_ECC_HW;
1703	} else {
1704		this->ecc.mode = NAND_ECC_SOFT;
1705		this->ecc.algo = NAND_ECC_HAMMING;
1706	}
1707
1708	/* NAND bus width determines access functions used by upper layer */
1709	if (host->pdata.width == 2)
1710		this->options |= NAND_BUSWIDTH_16;
1711
1712	/* update flash based bbt */
1713	if (host->pdata.flash_bbt)
1714		this->bbt_options |= NAND_BBT_USE_FLASH;
1715
1716	init_completion(&host->op_completion);
1717
1718	host->irq = platform_get_irq(pdev, 0);
1719	if (host->irq < 0)
1720		return host->irq;
1721
1722	/*
1723	 * Use host->devtype_data->irq_control() here instead of irq_control()
1724	 * because we must not disable_irq_nosync without having requested the
1725	 * irq.
1726	 */
1727	host->devtype_data->irq_control(host, 0);
1728
1729	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1730			0, DRIVER_NAME, host);
1731	if (err)
1732		return err;
1733
1734	err = clk_prepare_enable(host->clk);
1735	if (err)
1736		return err;
1737	host->clk_act = 1;
1738
1739	/*
1740	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1741	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1742	 * on this machine.
1743	 */
1744	if (host->devtype_data->irqpending_quirk) {
1745		disable_irq_nosync(host->irq);
1746		host->devtype_data->irq_control(host, 1);
1747	}
1748
1749	/* first scan to find the device and get the page size */
1750	err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1751	if (err)
1752		goto escan;
1753
1754	switch (this->ecc.mode) {
1755	case NAND_ECC_HW:
1756		this->ecc.calculate = mxc_nand_calculate_ecc;
1757		this->ecc.hwctl = mxc_nand_enable_hwecc;
1758		this->ecc.correct = host->devtype_data->correct_data;
1759		break;
1760
1761	case NAND_ECC_SOFT:
1762		break;
1763
1764	default:
1765		err = -EINVAL;
1766		goto escan;
1767	}
1768
1769	if (this->bbt_options & NAND_BBT_USE_FLASH) {
1770		this->bbt_td = &bbt_main_descr;
1771		this->bbt_md = &bbt_mirror_descr;
1772	}
1773
1774	/* allocate the right size buffer now */
1775	devm_kfree(&pdev->dev, (void *)host->data_buf);
1776	host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1777					GFP_KERNEL);
1778	if (!host->data_buf) {
1779		err = -ENOMEM;
1780		goto escan;
1781	}
1782
1783	/* Call preset again, with correct writesize this time */
1784	host->devtype_data->preset(mtd);
1785
1786	if (!this->ecc.bytes) {
1787		if (host->eccsize == 8)
1788			this->ecc.bytes = 18;
1789		else if (host->eccsize == 4)
1790			this->ecc.bytes = 9;
1791	}
1792
1793	/*
1794	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1795	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1796	 * into copying invalid data to/from the spare IO buffer, as this
1797	 * might cause ECC data corruption when doing sub-page write to a
1798	 * partially written page.
1799	 */
1800	host->used_oobsize = min(mtd->oobsize, 218U);
1801
1802	if (this->ecc.mode == NAND_ECC_HW) {
1803		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1804			this->ecc.strength = 1;
1805		else
1806			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1807	}
1808
1809	/* second phase scan */
1810	err = nand_scan_tail(mtd);
1811	if (err)
1812		goto escan;
1813
1814	/* Register the partitions */
1815	mtd_device_parse_register(mtd, part_probes,
1816			NULL,
1817			host->pdata.parts,
1818			host->pdata.nr_parts);
1819
1820	platform_set_drvdata(pdev, host);
1821
1822	return 0;
1823
1824escan:
1825	if (host->clk_act)
1826		clk_disable_unprepare(host->clk);
1827
1828	return err;
1829}
1830
1831static int mxcnd_remove(struct platform_device *pdev)
1832{
1833	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1834
1835	nand_release(nand_to_mtd(&host->nand));
1836	if (host->clk_act)
1837		clk_disable_unprepare(host->clk);
1838
1839	return 0;
1840}
1841
1842static struct platform_driver mxcnd_driver = {
1843	.driver = {
1844		   .name = DRIVER_NAME,
1845		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1846	},
1847	.id_table = mxcnd_devtype,
1848	.probe = mxcnd_probe,
1849	.remove = mxcnd_remove,
1850};
1851module_platform_driver(mxcnd_driver);
1852
1853MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1854MODULE_DESCRIPTION("MXC NAND MTD driver");
1855MODULE_LICENSE("GPL");