Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/of_mtd.h>
  38
  39#include <asm/mach/flash.h>
  40#include <linux/platform_data/mtd-mxc_nand.h>
  41
  42#define DRIVER_NAME "mxc_nand"
  43
  44/* Addresses for NFC registers */
  45#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
  46#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
  47#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
  48#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
  49#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
  50#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
  51#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
  52#define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
  53#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
  54#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
  55#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
  56#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
  57#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
  58#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
  59#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
  60#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
  61#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
  62#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
  63#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
  64#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
  65#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
  66#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
  67
  68#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
  69#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
  70#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
  71#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
  72#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
  73#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
  74#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
  75#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
  76#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
  77#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
  78
  79#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
  80
  81/*
  82 * Operation modes for the NFC. Valid for v1, v2 and v3
  83 * type controllers.
  84 */
  85#define NFC_CMD				(1 << 0)
  86#define NFC_ADDR			(1 << 1)
  87#define NFC_INPUT			(1 << 2)
  88#define NFC_OUTPUT			(1 << 3)
  89#define NFC_ID				(1 << 4)
  90#define NFC_STATUS			(1 << 5)
  91
  92#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
  93#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
  94
  95#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
  96#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
  97#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
  98
  99#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
 100
 101#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
 102
 103#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
 104#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
 105#define NFC_V3_WRPROT_LOCK		(1 << 1)
 106#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
 107#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
 108
 109#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 110
 111#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
 112#define NFC_V3_CONFIG2_PS_512			(0 << 0)
 113#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
 114#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
 115#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
 116#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
 117#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
 118#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
 119#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
 120#define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
 121#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
 122#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
 123#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
 124#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
 125
 126#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
 127#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
 128#define NFC_V3_CONFIG3_FW8			(1 << 3)
 129#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
 130#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
 131#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
 132#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
 133
 134#define NFC_V3_IPC			(host->regs_ip + 0x2C)
 135#define NFC_V3_IPC_CREQ			(1 << 0)
 136#define NFC_V3_IPC_INT			(1 << 31)
 137
 138#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
 139
 140struct mxc_nand_host;
 141
 142struct mxc_nand_devtype_data {
 143	void (*preset)(struct mtd_info *);
 144	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 145	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 146	void (*send_page)(struct mtd_info *, unsigned int);
 147	void (*send_read_id)(struct mxc_nand_host *);
 148	uint16_t (*get_dev_status)(struct mxc_nand_host *);
 149	int (*check_int)(struct mxc_nand_host *);
 150	void (*irq_control)(struct mxc_nand_host *, int);
 151	u32 (*get_ecc_status)(struct mxc_nand_host *);
 152	struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
 153	void (*select_chip)(struct mtd_info *mtd, int chip);
 154	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 155			u_char *read_ecc, u_char *calc_ecc);
 156
 157	/*
 158	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 159	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
 160	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 161	 */
 162	int irqpending_quirk;
 163	int needs_ip;
 164
 165	size_t regs_offset;
 166	size_t spare0_offset;
 167	size_t axi_offset;
 168
 169	int spare_len;
 170	int eccbytes;
 171	int eccsize;
 172	int ppb_shift;
 173};
 174
 175struct mxc_nand_host {
 176	struct mtd_info		mtd;
 177	struct nand_chip	nand;
 178	struct device		*dev;
 179
 180	void __iomem		*spare0;
 181	void __iomem		*main_area0;
 182
 183	void __iomem		*base;
 184	void __iomem		*regs;
 185	void __iomem		*regs_axi;
 186	void __iomem		*regs_ip;
 187	int			status_request;
 188	struct clk		*clk;
 189	int			clk_act;
 190	int			irq;
 191	int			eccsize;
 192	int			active_cs;
 193
 194	struct completion	op_completion;
 195
 196	uint8_t			*data_buf;
 197	unsigned int		buf_start;
 198
 199	const struct mxc_nand_devtype_data *devtype_data;
 200	struct mxc_nand_platform_data pdata;
 201};
 202
 203/* OOB placement block for use with hardware ecc generation */
 204static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
 205	.eccbytes = 5,
 206	.eccpos = {6, 7, 8, 9, 10},
 207	.oobfree = {{0, 5}, {12, 4}, }
 208};
 209
 210static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
 211	.eccbytes = 20,
 212	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
 213		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
 214	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
 215};
 216
 217/* OOB description for 512 byte pages with 16 byte OOB */
 218static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
 219	.eccbytes = 1 * 9,
 220	.eccpos = {
 221		 7,  8,  9, 10, 11, 12, 13, 14, 15
 222	},
 223	.oobfree = {
 224		{.offset = 0, .length = 5}
 225	}
 226};
 227
 228/* OOB description for 2048 byte pages with 64 byte OOB */
 229static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
 230	.eccbytes = 4 * 9,
 231	.eccpos = {
 232		 7,  8,  9, 10, 11, 12, 13, 14, 15,
 233		23, 24, 25, 26, 27, 28, 29, 30, 31,
 234		39, 40, 41, 42, 43, 44, 45, 46, 47,
 235		55, 56, 57, 58, 59, 60, 61, 62, 63
 236	},
 237	.oobfree = {
 238		{.offset = 2, .length = 4},
 239		{.offset = 16, .length = 7},
 240		{.offset = 32, .length = 7},
 241		{.offset = 48, .length = 7}
 242	}
 243};
 244
 245/* OOB description for 4096 byte pages with 128 byte OOB */
 246static struct nand_ecclayout nandv2_hw_eccoob_4k = {
 247	.eccbytes = 8 * 9,
 248	.eccpos = {
 249		7,  8,  9, 10, 11, 12, 13, 14, 15,
 250		23, 24, 25, 26, 27, 28, 29, 30, 31,
 251		39, 40, 41, 42, 43, 44, 45, 46, 47,
 252		55, 56, 57, 58, 59, 60, 61, 62, 63,
 253		71, 72, 73, 74, 75, 76, 77, 78, 79,
 254		87, 88, 89, 90, 91, 92, 93, 94, 95,
 255		103, 104, 105, 106, 107, 108, 109, 110, 111,
 256		119, 120, 121, 122, 123, 124, 125, 126, 127,
 257	},
 258	.oobfree = {
 259		{.offset = 2, .length = 4},
 260		{.offset = 16, .length = 7},
 261		{.offset = 32, .length = 7},
 262		{.offset = 48, .length = 7},
 263		{.offset = 64, .length = 7},
 264		{.offset = 80, .length = 7},
 265		{.offset = 96, .length = 7},
 266		{.offset = 112, .length = 7},
 267	}
 268};
 269
 270static const char * const part_probes[] = {
 271	"cmdlinepart", "RedBoot", "ofpart", NULL };
 272
 273static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 274{
 275	int i;
 276	u32 *t = trg;
 277	const __iomem u32 *s = src;
 278
 279	for (i = 0; i < (size >> 2); i++)
 280		*t++ = __raw_readl(s++);
 281}
 282
 283static void memcpy32_toio(void __iomem *trg, const void *src, int size)
 284{
 285	int i;
 286	u32 __iomem *t = trg;
 287	const u32 *s = src;
 288
 289	for (i = 0; i < (size >> 2); i++)
 290		__raw_writel(*s++, t++);
 291}
 292
 293static int check_int_v3(struct mxc_nand_host *host)
 294{
 295	uint32_t tmp;
 296
 297	tmp = readl(NFC_V3_IPC);
 298	if (!(tmp & NFC_V3_IPC_INT))
 299		return 0;
 300
 301	tmp &= ~NFC_V3_IPC_INT;
 302	writel(tmp, NFC_V3_IPC);
 303
 304	return 1;
 305}
 306
 307static int check_int_v1_v2(struct mxc_nand_host *host)
 308{
 309	uint32_t tmp;
 310
 311	tmp = readw(NFC_V1_V2_CONFIG2);
 312	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 313		return 0;
 314
 315	if (!host->devtype_data->irqpending_quirk)
 316		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 317
 318	return 1;
 319}
 320
 321static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 322{
 323	uint16_t tmp;
 324
 325	tmp = readw(NFC_V1_V2_CONFIG1);
 326
 327	if (activate)
 328		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 329	else
 330		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 331
 332	writew(tmp, NFC_V1_V2_CONFIG1);
 333}
 334
 335static void irq_control_v3(struct mxc_nand_host *host, int activate)
 336{
 337	uint32_t tmp;
 338
 339	tmp = readl(NFC_V3_CONFIG2);
 340
 341	if (activate)
 342		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 343	else
 344		tmp |= NFC_V3_CONFIG2_INT_MSK;
 345
 346	writel(tmp, NFC_V3_CONFIG2);
 347}
 348
 349static void irq_control(struct mxc_nand_host *host, int activate)
 350{
 351	if (host->devtype_data->irqpending_quirk) {
 352		if (activate)
 353			enable_irq(host->irq);
 354		else
 355			disable_irq_nosync(host->irq);
 356	} else {
 357		host->devtype_data->irq_control(host, activate);
 358	}
 359}
 360
 361static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 362{
 363	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 364}
 365
 366static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 367{
 368	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 369}
 370
 371static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 372{
 373	return readl(NFC_V3_ECC_STATUS_RESULT);
 374}
 375
 376static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 377{
 378	struct mxc_nand_host *host = dev_id;
 379
 380	if (!host->devtype_data->check_int(host))
 381		return IRQ_NONE;
 382
 383	irq_control(host, 0);
 384
 385	complete(&host->op_completion);
 386
 387	return IRQ_HANDLED;
 388}
 389
 390/* This function polls the NANDFC to wait for the basic operation to
 391 * complete by checking the INT bit of config2 register.
 392 */
 393static void wait_op_done(struct mxc_nand_host *host, int useirq)
 394{
 395	int max_retries = 8000;
 396
 397	if (useirq) {
 398		if (!host->devtype_data->check_int(host)) {
 399			reinit_completion(&host->op_completion);
 400			irq_control(host, 1);
 401			wait_for_completion(&host->op_completion);
 402		}
 403	} else {
 404		while (max_retries-- > 0) {
 405			if (host->devtype_data->check_int(host))
 406				break;
 407
 408			udelay(1);
 409		}
 410		if (max_retries < 0)
 411			pr_debug("%s: INT not set\n", __func__);
 412	}
 413}
 414
 415static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 416{
 417	/* fill command */
 418	writel(cmd, NFC_V3_FLASH_CMD);
 419
 420	/* send out command */
 421	writel(NFC_CMD, NFC_V3_LAUNCH);
 422
 423	/* Wait for operation to complete */
 424	wait_op_done(host, useirq);
 425}
 426
 427/* This function issues the specified command to the NAND device and
 428 * waits for completion. */
 429static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 430{
 431	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 432
 433	writew(cmd, NFC_V1_V2_FLASH_CMD);
 434	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 435
 436	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 437		int max_retries = 100;
 438		/* Reset completion is indicated by NFC_CONFIG2 */
 439		/* being set to 0 */
 440		while (max_retries-- > 0) {
 441			if (readw(NFC_V1_V2_CONFIG2) == 0) {
 442				break;
 443			}
 444			udelay(1);
 445		}
 446		if (max_retries < 0)
 447			pr_debug("%s: RESET failed\n", __func__);
 448	} else {
 449		/* Wait for operation to complete */
 450		wait_op_done(host, useirq);
 451	}
 452}
 453
 454static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 455{
 456	/* fill address */
 457	writel(addr, NFC_V3_FLASH_ADDR0);
 458
 459	/* send out address */
 460	writel(NFC_ADDR, NFC_V3_LAUNCH);
 461
 462	wait_op_done(host, 0);
 463}
 464
 465/* This function sends an address (or partial address) to the
 466 * NAND device. The address is used to select the source/destination for
 467 * a NAND command. */
 468static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 469{
 470	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
 471
 472	writew(addr, NFC_V1_V2_FLASH_ADDR);
 473	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 474
 475	/* Wait for operation to complete */
 476	wait_op_done(host, islast);
 477}
 478
 479static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 480{
 481	struct nand_chip *nand_chip = mtd->priv;
 482	struct mxc_nand_host *host = nand_chip->priv;
 483	uint32_t tmp;
 484
 485	tmp = readl(NFC_V3_CONFIG1);
 486	tmp &= ~(7 << 4);
 487	writel(tmp, NFC_V3_CONFIG1);
 488
 489	/* transfer data from NFC ram to nand */
 490	writel(ops, NFC_V3_LAUNCH);
 491
 492	wait_op_done(host, false);
 493}
 494
 495static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 496{
 497	struct nand_chip *nand_chip = mtd->priv;
 498	struct mxc_nand_host *host = nand_chip->priv;
 499
 500	/* NANDFC buffer 0 is used for page read/write */
 501	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 502
 503	writew(ops, NFC_V1_V2_CONFIG2);
 504
 505	/* Wait for operation to complete */
 506	wait_op_done(host, true);
 507}
 508
 509static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 510{
 511	struct nand_chip *nand_chip = mtd->priv;
 512	struct mxc_nand_host *host = nand_chip->priv;
 513	int bufs, i;
 514
 515	if (mtd->writesize > 512)
 516		bufs = 4;
 517	else
 518		bufs = 1;
 519
 520	for (i = 0; i < bufs; i++) {
 521
 522		/* NANDFC buffer 0 is used for page read/write */
 523		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 524
 525		writew(ops, NFC_V1_V2_CONFIG2);
 526
 527		/* Wait for operation to complete */
 528		wait_op_done(host, true);
 529	}
 530}
 531
 532static void send_read_id_v3(struct mxc_nand_host *host)
 533{
 534	struct nand_chip *this = &host->nand;
 535
 536	/* Read ID into main buffer */
 537	writel(NFC_ID, NFC_V3_LAUNCH);
 538
 539	wait_op_done(host, true);
 540
 541	memcpy32_fromio(host->data_buf, host->main_area0, 16);
 542
 543	if (this->options & NAND_BUSWIDTH_16) {
 544		/* compress the ID info */
 545		host->data_buf[1] = host->data_buf[2];
 546		host->data_buf[2] = host->data_buf[4];
 547		host->data_buf[3] = host->data_buf[6];
 548		host->data_buf[4] = host->data_buf[8];
 549		host->data_buf[5] = host->data_buf[10];
 550	}
 551}
 552
 553/* Request the NANDFC to perform a read of the NAND device ID. */
 554static void send_read_id_v1_v2(struct mxc_nand_host *host)
 555{
 556	struct nand_chip *this = &host->nand;
 557
 558	/* NANDFC buffer 0 is used for device ID output */
 559	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 560
 561	writew(NFC_ID, NFC_V1_V2_CONFIG2);
 562
 563	/* Wait for operation to complete */
 564	wait_op_done(host, true);
 565
 566	memcpy32_fromio(host->data_buf, host->main_area0, 16);
 567
 568	if (this->options & NAND_BUSWIDTH_16) {
 569		/* compress the ID info */
 570		host->data_buf[1] = host->data_buf[2];
 571		host->data_buf[2] = host->data_buf[4];
 572		host->data_buf[3] = host->data_buf[6];
 573		host->data_buf[4] = host->data_buf[8];
 574		host->data_buf[5] = host->data_buf[10];
 575	}
 576}
 577
 578static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 579{
 580	writew(NFC_STATUS, NFC_V3_LAUNCH);
 581	wait_op_done(host, true);
 582
 583	return readl(NFC_V3_CONFIG1) >> 16;
 584}
 585
 586/* This function requests the NANDFC to perform a read of the
 587 * NAND device status and returns the current status. */
 588static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 589{
 590	void __iomem *main_buf = host->main_area0;
 591	uint32_t store;
 592	uint16_t ret;
 593
 594	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 595
 596	/*
 597	 * The device status is stored in main_area0. To
 598	 * prevent corruption of the buffer save the value
 599	 * and restore it afterwards.
 600	 */
 601	store = readl(main_buf);
 602
 603	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 604	wait_op_done(host, true);
 605
 606	ret = readw(main_buf);
 607
 608	writel(store, main_buf);
 609
 610	return ret;
 611}
 612
 613/* This functions is used by upper layer to checks if device is ready */
 614static int mxc_nand_dev_ready(struct mtd_info *mtd)
 615{
 616	/*
 617	 * NFC handles R/B internally. Therefore, this function
 618	 * always returns status as ready.
 619	 */
 620	return 1;
 621}
 622
 623static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 624{
 625	/*
 626	 * If HW ECC is enabled, we turn it on during init. There is
 627	 * no need to enable again here.
 628	 */
 629}
 630
 631static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 632				 u_char *read_ecc, u_char *calc_ecc)
 633{
 634	struct nand_chip *nand_chip = mtd->priv;
 635	struct mxc_nand_host *host = nand_chip->priv;
 636
 637	/*
 638	 * 1-Bit errors are automatically corrected in HW.  No need for
 639	 * additional correction.  2-Bit errors cannot be corrected by
 640	 * HW ECC, so we need to return failure
 641	 */
 642	uint16_t ecc_status = get_ecc_status_v1(host);
 643
 644	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 645		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 646		return -1;
 647	}
 648
 649	return 0;
 650}
 651
 652static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 653				 u_char *read_ecc, u_char *calc_ecc)
 654{
 655	struct nand_chip *nand_chip = mtd->priv;
 656	struct mxc_nand_host *host = nand_chip->priv;
 657	u32 ecc_stat, err;
 658	int no_subpages = 1;
 659	int ret = 0;
 660	u8 ecc_bit_mask, err_limit;
 661
 662	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 663	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 664
 665	no_subpages = mtd->writesize >> 9;
 666
 667	ecc_stat = host->devtype_data->get_ecc_status(host);
 668
 669	do {
 670		err = ecc_stat & ecc_bit_mask;
 671		if (err > err_limit) {
 672			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
 673			return -1;
 674		} else {
 675			ret += err;
 676		}
 677		ecc_stat >>= 4;
 678	} while (--no_subpages);
 679
 680	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
 681
 682	return ret;
 683}
 684
 685static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 686				  u_char *ecc_code)
 687{
 688	return 0;
 689}
 690
 691static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 692{
 693	struct nand_chip *nand_chip = mtd->priv;
 694	struct mxc_nand_host *host = nand_chip->priv;
 695	uint8_t ret;
 696
 697	/* Check for status request */
 698	if (host->status_request)
 699		return host->devtype_data->get_dev_status(host) & 0xFF;
 700
 701	ret = *(uint8_t *)(host->data_buf + host->buf_start);
 702	host->buf_start++;
 703
 704	return ret;
 705}
 706
 707static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 708{
 709	struct nand_chip *nand_chip = mtd->priv;
 710	struct mxc_nand_host *host = nand_chip->priv;
 711	uint16_t ret;
 712
 713	ret = *(uint16_t *)(host->data_buf + host->buf_start);
 714	host->buf_start += 2;
 715
 716	return ret;
 717}
 718
 719/* Write data of length len to buffer buf. The data to be
 720 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 721 * Operation by the NFC, the data is written to NAND Flash */
 722static void mxc_nand_write_buf(struct mtd_info *mtd,
 723				const u_char *buf, int len)
 724{
 725	struct nand_chip *nand_chip = mtd->priv;
 726	struct mxc_nand_host *host = nand_chip->priv;
 727	u16 col = host->buf_start;
 728	int n = mtd->oobsize + mtd->writesize - col;
 729
 730	n = min(n, len);
 731
 732	memcpy(host->data_buf + col, buf, n);
 733
 734	host->buf_start += n;
 735}
 736
 737/* Read the data buffer from the NAND Flash. To read the data from NAND
 738 * Flash first the data output cycle is initiated by the NFC, which copies
 739 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 740 */
 741static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 742{
 743	struct nand_chip *nand_chip = mtd->priv;
 744	struct mxc_nand_host *host = nand_chip->priv;
 745	u16 col = host->buf_start;
 746	int n = mtd->oobsize + mtd->writesize - col;
 747
 748	n = min(n, len);
 749
 750	memcpy(buf, host->data_buf + col, n);
 751
 752	host->buf_start += n;
 753}
 754
 755/* This function is used by upper layer for select and
 756 * deselect of the NAND chip */
 757static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
 758{
 759	struct nand_chip *nand_chip = mtd->priv;
 760	struct mxc_nand_host *host = nand_chip->priv;
 761
 762	if (chip == -1) {
 763		/* Disable the NFC clock */
 764		if (host->clk_act) {
 765			clk_disable_unprepare(host->clk);
 766			host->clk_act = 0;
 767		}
 768		return;
 769	}
 770
 771	if (!host->clk_act) {
 772		/* Enable the NFC clock */
 773		clk_prepare_enable(host->clk);
 774		host->clk_act = 1;
 775	}
 776}
 777
 778static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
 779{
 780	struct nand_chip *nand_chip = mtd->priv;
 781	struct mxc_nand_host *host = nand_chip->priv;
 782
 783	if (chip == -1) {
 784		/* Disable the NFC clock */
 785		if (host->clk_act) {
 786			clk_disable_unprepare(host->clk);
 787			host->clk_act = 0;
 788		}
 789		return;
 790	}
 791
 792	if (!host->clk_act) {
 793		/* Enable the NFC clock */
 794		clk_prepare_enable(host->clk);
 795		host->clk_act = 1;
 796	}
 797
 798	host->active_cs = chip;
 799	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 800}
 801
 802/*
 803 * Function to transfer data to/from spare area.
 804 */
 805static void copy_spare(struct mtd_info *mtd, bool bfrom)
 806{
 807	struct nand_chip *this = mtd->priv;
 808	struct mxc_nand_host *host = this->priv;
 809	u16 i, j;
 810	u16 n = mtd->writesize >> 9;
 811	u8 *d = host->data_buf + mtd->writesize;
 812	u8 __iomem *s = host->spare0;
 813	u16 t = host->devtype_data->spare_len;
 814
 815	j = (mtd->oobsize / n >> 1) << 1;
 816
 817	if (bfrom) {
 818		for (i = 0; i < n - 1; i++)
 819			memcpy32_fromio(d + i * j, s + i * t, j);
 820
 821		/* the last section */
 822		memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
 823	} else {
 824		for (i = 0; i < n - 1; i++)
 825			memcpy32_toio(&s[i * t], &d[i * j], j);
 826
 827		/* the last section */
 828		memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
 829	}
 830}
 831
 832static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 833{
 834	struct nand_chip *nand_chip = mtd->priv;
 835	struct mxc_nand_host *host = nand_chip->priv;
 836
 837	/* Write out column address, if necessary */
 838	if (column != -1) {
 839		/*
 840		 * MXC NANDFC can only perform full page+spare or
 841		 * spare-only read/write.  When the upper layers
 842		 * perform a read/write buf operation, the saved column
 843		  * address is used to index into the full page.
 844		 */
 845		host->devtype_data->send_addr(host, 0, page_addr == -1);
 846		if (mtd->writesize > 512)
 847			/* another col addr cycle for 2k page */
 848			host->devtype_data->send_addr(host, 0, false);
 849	}
 850
 851	/* Write out page address, if necessary */
 852	if (page_addr != -1) {
 853		/* paddr_0 - p_addr_7 */
 854		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 855
 856		if (mtd->writesize > 512) {
 857			if (mtd->size >= 0x10000000) {
 858				/* paddr_8 - paddr_15 */
 859				host->devtype_data->send_addr(host,
 860						(page_addr >> 8) & 0xff,
 861						false);
 862				host->devtype_data->send_addr(host,
 863						(page_addr >> 16) & 0xff,
 864						true);
 865			} else
 866				/* paddr_8 - paddr_15 */
 867				host->devtype_data->send_addr(host,
 868						(page_addr >> 8) & 0xff, true);
 869		} else {
 870			/* One more address cycle for higher density devices */
 871			if (mtd->size >= 0x4000000) {
 872				/* paddr_8 - paddr_15 */
 873				host->devtype_data->send_addr(host,
 874						(page_addr >> 8) & 0xff,
 875						false);
 876				host->devtype_data->send_addr(host,
 877						(page_addr >> 16) & 0xff,
 878						true);
 879			} else
 880				/* paddr_8 - paddr_15 */
 881				host->devtype_data->send_addr(host,
 882						(page_addr >> 8) & 0xff, true);
 883		}
 884	}
 885}
 886
 887/*
 888 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 889 * on how much oob the nand chip has. For 8bit ecc we need at least
 890 * 26 bytes of oob data per 512 byte block.
 891 */
 892static int get_eccsize(struct mtd_info *mtd)
 893{
 894	int oobbytes_per_512 = 0;
 895
 896	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 897
 898	if (oobbytes_per_512 < 26)
 899		return 4;
 900	else
 901		return 8;
 902}
 903
 904static void preset_v1(struct mtd_info *mtd)
 905{
 906	struct nand_chip *nand_chip = mtd->priv;
 907	struct mxc_nand_host *host = nand_chip->priv;
 908	uint16_t config1 = 0;
 909
 910	if (nand_chip->ecc.mode == NAND_ECC_HW)
 911		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 912
 913	if (!host->devtype_data->irqpending_quirk)
 914		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
 915
 916	host->eccsize = 1;
 917
 918	writew(config1, NFC_V1_V2_CONFIG1);
 919	/* preset operation */
 920
 921	/* Unlock the internal RAM Buffer */
 922	writew(0x2, NFC_V1_V2_CONFIG);
 923
 924	/* Blocks to be unlocked */
 925	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
 926	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
 927
 928	/* Unlock Block Command for given address range */
 929	writew(0x4, NFC_V1_V2_WRPROT);
 930}
 931
 932static void preset_v2(struct mtd_info *mtd)
 933{
 934	struct nand_chip *nand_chip = mtd->priv;
 935	struct mxc_nand_host *host = nand_chip->priv;
 936	uint16_t config1 = 0;
 937
 938	if (nand_chip->ecc.mode == NAND_ECC_HW)
 939		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 940
 941	config1 |= NFC_V2_CONFIG1_FP_INT;
 942
 943	if (!host->devtype_data->irqpending_quirk)
 944		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
 945
 946	if (mtd->writesize) {
 947		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
 948
 949		host->eccsize = get_eccsize(mtd);
 950		if (host->eccsize == 4)
 951			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
 952
 953		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
 954	} else {
 955		host->eccsize = 1;
 956	}
 957
 958	writew(config1, NFC_V1_V2_CONFIG1);
 959	/* preset operation */
 960
 961	/* Unlock the internal RAM Buffer */
 962	writew(0x2, NFC_V1_V2_CONFIG);
 963
 964	/* Blocks to be unlocked */
 965	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
 966	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
 967	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
 968	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
 969	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
 970	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
 971	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
 972	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
 973
 974	/* Unlock Block Command for given address range */
 975	writew(0x4, NFC_V1_V2_WRPROT);
 976}
 977
 978static void preset_v3(struct mtd_info *mtd)
 979{
 980	struct nand_chip *chip = mtd->priv;
 981	struct mxc_nand_host *host = chip->priv;
 982	uint32_t config2, config3;
 983	int i, addr_phases;
 984
 985	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
 986	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
 987
 988	/* Unlock the internal RAM Buffer */
 989	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
 990			NFC_V3_WRPROT);
 991
 992	/* Blocks to be unlocked */
 993	for (i = 0; i < NAND_MAX_CHIPS; i++)
 994		writel(0x0 |	(0xffff << 16),
 995				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
 996
 997	writel(0, NFC_V3_IPC);
 998
 999	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000		NFC_V3_CONFIG2_2CMD_PHASES |
1001		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002		NFC_V3_CONFIG2_ST_CMD(0x70) |
1003		NFC_V3_CONFIG2_INT_MSK |
1004		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005
1006	if (chip->ecc.mode == NAND_ECC_HW)
1007		config2 |= NFC_V3_CONFIG2_ECC_EN;
1008
1009	addr_phases = fls(chip->pagemask) >> 3;
1010
1011	if (mtd->writesize == 2048) {
1012		config2 |= NFC_V3_CONFIG2_PS_2048;
1013		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014	} else if (mtd->writesize == 4096) {
1015		config2 |= NFC_V3_CONFIG2_PS_4096;
1016		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017	} else {
1018		config2 |= NFC_V3_CONFIG2_PS_512;
1019		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020	}
1021
1022	if (mtd->writesize) {
1023		config2 |= NFC_V3_CONFIG2_PPB(
1024				ffs(mtd->erasesize / mtd->writesize) - 6,
1025				host->devtype_data->ppb_shift);
1026		host->eccsize = get_eccsize(mtd);
1027		if (host->eccsize == 8)
1028			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029	}
1030
1031	writel(config2, NFC_V3_CONFIG2);
1032
1033	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034			NFC_V3_CONFIG3_NO_SDMA |
1035			NFC_V3_CONFIG3_RBB_MODE |
1036			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037			NFC_V3_CONFIG3_ADD_OP(0);
1038
1039	if (!(chip->options & NAND_BUSWIDTH_16))
1040		config3 |= NFC_V3_CONFIG3_FW8;
1041
1042	writel(config3, NFC_V3_CONFIG3);
1043
1044	writel(0, NFC_V3_DELAY_LINE);
1045}
1046
1047/* Used by the upper layer to write command to NAND Flash for
1048 * different operations to be carried out on NAND Flash */
1049static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050				int column, int page_addr)
1051{
1052	struct nand_chip *nand_chip = mtd->priv;
1053	struct mxc_nand_host *host = nand_chip->priv;
1054
1055	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056	      command, column, page_addr);
1057
1058	/* Reset command state information */
1059	host->status_request = false;
1060
1061	/* Command pre-processing step */
1062	switch (command) {
1063	case NAND_CMD_RESET:
1064		host->devtype_data->preset(mtd);
1065		host->devtype_data->send_cmd(host, command, false);
1066		break;
1067
1068	case NAND_CMD_STATUS:
1069		host->buf_start = 0;
1070		host->status_request = true;
1071
1072		host->devtype_data->send_cmd(host, command, true);
1073		mxc_do_addr_cycle(mtd, column, page_addr);
1074		break;
1075
1076	case NAND_CMD_READ0:
1077	case NAND_CMD_READOOB:
1078		if (command == NAND_CMD_READ0)
1079			host->buf_start = column;
1080		else
1081			host->buf_start = column + mtd->writesize;
1082
1083		command = NAND_CMD_READ0; /* only READ0 is valid */
1084
1085		host->devtype_data->send_cmd(host, command, false);
1086		mxc_do_addr_cycle(mtd, column, page_addr);
1087
1088		if (mtd->writesize > 512)
1089			host->devtype_data->send_cmd(host,
1090					NAND_CMD_READSTART, true);
1091
1092		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093
1094		memcpy32_fromio(host->data_buf, host->main_area0,
1095				mtd->writesize);
1096		copy_spare(mtd, true);
1097		break;
1098
1099	case NAND_CMD_SEQIN:
1100		if (column >= mtd->writesize)
1101			/* call ourself to read a page */
1102			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103
1104		host->buf_start = column;
1105
1106		host->devtype_data->send_cmd(host, command, false);
1107		mxc_do_addr_cycle(mtd, column, page_addr);
1108		break;
1109
1110	case NAND_CMD_PAGEPROG:
1111		memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112		copy_spare(mtd, false);
1113		host->devtype_data->send_page(mtd, NFC_INPUT);
1114		host->devtype_data->send_cmd(host, command, true);
1115		mxc_do_addr_cycle(mtd, column, page_addr);
1116		break;
1117
1118	case NAND_CMD_READID:
1119		host->devtype_data->send_cmd(host, command, true);
1120		mxc_do_addr_cycle(mtd, column, page_addr);
1121		host->devtype_data->send_read_id(host);
1122		host->buf_start = column;
1123		break;
1124
1125	case NAND_CMD_ERASE1:
1126	case NAND_CMD_ERASE2:
1127		host->devtype_data->send_cmd(host, command, false);
1128		mxc_do_addr_cycle(mtd, column, page_addr);
1129
1130		break;
1131	}
1132}
1133
1134/*
1135 * The generic flash bbt decriptors overlap with our ecc
1136 * hardware, so define some i.MX specific ones.
1137 */
1138static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140
1141static struct nand_bbt_descr bbt_main_descr = {
1142	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144	.offs = 0,
1145	.len = 4,
1146	.veroffs = 4,
1147	.maxblocks = 4,
1148	.pattern = bbt_pattern,
1149};
1150
1151static struct nand_bbt_descr bbt_mirror_descr = {
1152	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154	.offs = 0,
1155	.len = 4,
1156	.veroffs = 4,
1157	.maxblocks = 4,
1158	.pattern = mirror_pattern,
1159};
1160
1161/* v1 + irqpending_quirk: i.MX21 */
1162static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163	.preset = preset_v1,
1164	.send_cmd = send_cmd_v1_v2,
1165	.send_addr = send_addr_v1_v2,
1166	.send_page = send_page_v1,
1167	.send_read_id = send_read_id_v1_v2,
1168	.get_dev_status = get_dev_status_v1_v2,
1169	.check_int = check_int_v1_v2,
1170	.irq_control = irq_control_v1_v2,
1171	.get_ecc_status = get_ecc_status_v1,
1172	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175	.select_chip = mxc_nand_select_chip_v1_v3,
1176	.correct_data = mxc_nand_correct_data_v1,
1177	.irqpending_quirk = 1,
1178	.needs_ip = 0,
1179	.regs_offset = 0xe00,
1180	.spare0_offset = 0x800,
1181	.spare_len = 16,
1182	.eccbytes = 3,
1183	.eccsize = 1,
1184};
1185
1186/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188	.preset = preset_v1,
1189	.send_cmd = send_cmd_v1_v2,
1190	.send_addr = send_addr_v1_v2,
1191	.send_page = send_page_v1,
1192	.send_read_id = send_read_id_v1_v2,
1193	.get_dev_status = get_dev_status_v1_v2,
1194	.check_int = check_int_v1_v2,
1195	.irq_control = irq_control_v1_v2,
1196	.get_ecc_status = get_ecc_status_v1,
1197	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200	.select_chip = mxc_nand_select_chip_v1_v3,
1201	.correct_data = mxc_nand_correct_data_v1,
1202	.irqpending_quirk = 0,
1203	.needs_ip = 0,
1204	.regs_offset = 0xe00,
1205	.spare0_offset = 0x800,
1206	.axi_offset = 0,
1207	.spare_len = 16,
1208	.eccbytes = 3,
1209	.eccsize = 1,
1210};
1211
1212/* v21: i.MX25, i.MX35 */
1213static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214	.preset = preset_v2,
1215	.send_cmd = send_cmd_v1_v2,
1216	.send_addr = send_addr_v1_v2,
1217	.send_page = send_page_v2,
1218	.send_read_id = send_read_id_v1_v2,
1219	.get_dev_status = get_dev_status_v1_v2,
1220	.check_int = check_int_v1_v2,
1221	.irq_control = irq_control_v1_v2,
1222	.get_ecc_status = get_ecc_status_v2,
1223	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225	.ecclayout_4k = &nandv2_hw_eccoob_4k,
1226	.select_chip = mxc_nand_select_chip_v2,
1227	.correct_data = mxc_nand_correct_data_v2_v3,
1228	.irqpending_quirk = 0,
1229	.needs_ip = 0,
1230	.regs_offset = 0x1e00,
1231	.spare0_offset = 0x1000,
1232	.axi_offset = 0,
1233	.spare_len = 64,
1234	.eccbytes = 9,
1235	.eccsize = 0,
1236};
1237
1238/* v3.2a: i.MX51 */
1239static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240	.preset = preset_v3,
1241	.send_cmd = send_cmd_v3,
1242	.send_addr = send_addr_v3,
1243	.send_page = send_page_v3,
1244	.send_read_id = send_read_id_v3,
1245	.get_dev_status = get_dev_status_v3,
1246	.check_int = check_int_v3,
1247	.irq_control = irq_control_v3,
1248	.get_ecc_status = get_ecc_status_v3,
1249	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252	.select_chip = mxc_nand_select_chip_v1_v3,
1253	.correct_data = mxc_nand_correct_data_v2_v3,
1254	.irqpending_quirk = 0,
1255	.needs_ip = 1,
1256	.regs_offset = 0,
1257	.spare0_offset = 0x1000,
1258	.axi_offset = 0x1e00,
1259	.spare_len = 64,
1260	.eccbytes = 0,
1261	.eccsize = 0,
1262	.ppb_shift = 7,
1263};
1264
1265/* v3.2b: i.MX53 */
1266static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267	.preset = preset_v3,
1268	.send_cmd = send_cmd_v3,
1269	.send_addr = send_addr_v3,
1270	.send_page = send_page_v3,
1271	.send_read_id = send_read_id_v3,
1272	.get_dev_status = get_dev_status_v3,
1273	.check_int = check_int_v3,
1274	.irq_control = irq_control_v3,
1275	.get_ecc_status = get_ecc_status_v3,
1276	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279	.select_chip = mxc_nand_select_chip_v1_v3,
1280	.correct_data = mxc_nand_correct_data_v2_v3,
1281	.irqpending_quirk = 0,
1282	.needs_ip = 1,
1283	.regs_offset = 0,
1284	.spare0_offset = 0x1000,
1285	.axi_offset = 0x1e00,
1286	.spare_len = 64,
1287	.eccbytes = 0,
1288	.eccsize = 0,
1289	.ppb_shift = 8,
1290};
1291
1292static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293{
1294	return host->devtype_data == &imx21_nand_devtype_data;
1295}
1296
1297static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298{
1299	return host->devtype_data == &imx27_nand_devtype_data;
1300}
1301
1302static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303{
1304	return host->devtype_data == &imx25_nand_devtype_data;
1305}
1306
1307static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308{
1309	return host->devtype_data == &imx51_nand_devtype_data;
1310}
1311
1312static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313{
1314	return host->devtype_data == &imx53_nand_devtype_data;
1315}
1316
1317static struct platform_device_id mxcnd_devtype[] = {
1318	{
1319		.name = "imx21-nand",
1320		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321	}, {
1322		.name = "imx27-nand",
1323		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324	}, {
1325		.name = "imx25-nand",
1326		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327	}, {
1328		.name = "imx51-nand",
1329		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330	}, {
1331		.name = "imx53-nand",
1332		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333	}, {
1334		/* sentinel */
1335	}
1336};
1337MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338
1339#ifdef CONFIG_OF_MTD
1340static const struct of_device_id mxcnd_dt_ids[] = {
1341	{
1342		.compatible = "fsl,imx21-nand",
1343		.data = &imx21_nand_devtype_data,
1344	}, {
1345		.compatible = "fsl,imx27-nand",
1346		.data = &imx27_nand_devtype_data,
1347	}, {
1348		.compatible = "fsl,imx25-nand",
1349		.data = &imx25_nand_devtype_data,
1350	}, {
1351		.compatible = "fsl,imx51-nand",
1352		.data = &imx51_nand_devtype_data,
1353	}, {
1354		.compatible = "fsl,imx53-nand",
1355		.data = &imx53_nand_devtype_data,
1356	},
1357	{ /* sentinel */ }
1358};
1359
1360static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361{
1362	struct device_node *np = host->dev->of_node;
1363	struct mxc_nand_platform_data *pdata = &host->pdata;
1364	const struct of_device_id *of_id =
1365		of_match_device(mxcnd_dt_ids, host->dev);
1366	int buswidth;
1367
1368	if (!np)
1369		return 1;
1370
1371	if (of_get_nand_ecc_mode(np) >= 0)
1372		pdata->hw_ecc = 1;
1373
1374	pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375
1376	buswidth = of_get_nand_bus_width(np);
1377	if (buswidth < 0)
1378		return buswidth;
1379
1380	pdata->width = buswidth / 8;
1381
1382	host->devtype_data = of_id->data;
1383
1384	return 0;
1385}
1386#else
1387static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388{
1389	return 1;
1390}
1391#endif
1392
1393static int mxcnd_probe(struct platform_device *pdev)
1394{
1395	struct nand_chip *this;
1396	struct mtd_info *mtd;
1397	struct mxc_nand_host *host;
1398	struct resource *res;
1399	int err = 0;
1400
1401	/* Allocate memory for MTD device structure and private data */
1402	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1403			GFP_KERNEL);
1404	if (!host)
1405		return -ENOMEM;
1406
1407	/* allocate a temporary buffer for the nand_scan_ident() */
1408	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1409	if (!host->data_buf)
1410		return -ENOMEM;
1411
1412	host->dev = &pdev->dev;
1413	/* structures must be linked */
1414	this = &host->nand;
1415	mtd = &host->mtd;
1416	mtd->priv = this;
1417	mtd->owner = THIS_MODULE;
1418	mtd->dev.parent = &pdev->dev;
1419	mtd->name = DRIVER_NAME;
1420
1421	/* 50 us command delay time */
1422	this->chip_delay = 5;
1423
1424	this->priv = host;
1425	this->dev_ready = mxc_nand_dev_ready;
1426	this->cmdfunc = mxc_nand_command;
1427	this->read_byte = mxc_nand_read_byte;
1428	this->read_word = mxc_nand_read_word;
1429	this->write_buf = mxc_nand_write_buf;
1430	this->read_buf = mxc_nand_read_buf;
1431
1432	host->clk = devm_clk_get(&pdev->dev, NULL);
1433	if (IS_ERR(host->clk))
1434		return PTR_ERR(host->clk);
1435
1436	err = mxcnd_probe_dt(host);
1437	if (err > 0) {
1438		struct mxc_nand_platform_data *pdata =
1439					dev_get_platdata(&pdev->dev);
1440		if (pdata) {
1441			host->pdata = *pdata;
1442			host->devtype_data = (struct mxc_nand_devtype_data *)
1443						pdev->id_entry->driver_data;
1444		} else {
1445			err = -ENODEV;
1446		}
1447	}
1448	if (err < 0)
1449		return err;
1450
1451	if (host->devtype_data->needs_ip) {
1452		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1453		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1454		if (IS_ERR(host->regs_ip))
1455			return PTR_ERR(host->regs_ip);
1456
1457		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1458	} else {
1459		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1460	}
1461
1462	host->base = devm_ioremap_resource(&pdev->dev, res);
1463	if (IS_ERR(host->base))
1464		return PTR_ERR(host->base);
1465
1466	host->main_area0 = host->base;
1467
1468	if (host->devtype_data->regs_offset)
1469		host->regs = host->base + host->devtype_data->regs_offset;
1470	host->spare0 = host->base + host->devtype_data->spare0_offset;
1471	if (host->devtype_data->axi_offset)
1472		host->regs_axi = host->base + host->devtype_data->axi_offset;
1473
1474	this->ecc.bytes = host->devtype_data->eccbytes;
1475	host->eccsize = host->devtype_data->eccsize;
1476
1477	this->select_chip = host->devtype_data->select_chip;
1478	this->ecc.size = 512;
1479	this->ecc.layout = host->devtype_data->ecclayout_512;
1480
1481	if (host->pdata.hw_ecc) {
1482		this->ecc.calculate = mxc_nand_calculate_ecc;
1483		this->ecc.hwctl = mxc_nand_enable_hwecc;
1484		this->ecc.correct = host->devtype_data->correct_data;
1485		this->ecc.mode = NAND_ECC_HW;
1486	} else {
1487		this->ecc.mode = NAND_ECC_SOFT;
1488	}
1489
1490	/* NAND bus width determines access functions used by upper layer */
1491	if (host->pdata.width == 2)
1492		this->options |= NAND_BUSWIDTH_16;
1493
1494	if (host->pdata.flash_bbt) {
1495		this->bbt_td = &bbt_main_descr;
1496		this->bbt_md = &bbt_mirror_descr;
1497		/* update flash based bbt */
1498		this->bbt_options |= NAND_BBT_USE_FLASH;
1499	}
1500
1501	init_completion(&host->op_completion);
1502
1503	host->irq = platform_get_irq(pdev, 0);
1504	if (host->irq < 0)
1505		return host->irq;
1506
1507	/*
1508	 * Use host->devtype_data->irq_control() here instead of irq_control()
1509	 * because we must not disable_irq_nosync without having requested the
1510	 * irq.
1511	 */
1512	host->devtype_data->irq_control(host, 0);
1513
1514	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1515			0, DRIVER_NAME, host);
1516	if (err)
1517		return err;
1518
1519	err = clk_prepare_enable(host->clk);
1520	if (err)
1521		return err;
1522	host->clk_act = 1;
1523
1524	/*
1525	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1526	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1527	 * on this machine.
1528	 */
1529	if (host->devtype_data->irqpending_quirk) {
1530		disable_irq_nosync(host->irq);
1531		host->devtype_data->irq_control(host, 1);
1532	}
1533
1534	/* first scan to find the device and get the page size */
1535	if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1536		err = -ENXIO;
1537		goto escan;
1538	}
1539
1540	/* allocate the right size buffer now */
1541	devm_kfree(&pdev->dev, (void *)host->data_buf);
1542	host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1543					GFP_KERNEL);
1544	if (!host->data_buf) {
1545		err = -ENOMEM;
1546		goto escan;
1547	}
1548
1549	/* Call preset again, with correct writesize this time */
1550	host->devtype_data->preset(mtd);
1551
1552	if (mtd->writesize == 2048)
1553		this->ecc.layout = host->devtype_data->ecclayout_2k;
1554	else if (mtd->writesize == 4096)
1555		this->ecc.layout = host->devtype_data->ecclayout_4k;
1556
1557	if (this->ecc.mode == NAND_ECC_HW) {
1558		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1559			this->ecc.strength = 1;
1560		else
1561			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1562	}
1563
1564	/* second phase scan */
1565	if (nand_scan_tail(mtd)) {
1566		err = -ENXIO;
1567		goto escan;
1568	}
1569
1570	/* Register the partitions */
1571	mtd_device_parse_register(mtd, part_probes,
1572			&(struct mtd_part_parser_data){
1573				.of_node = pdev->dev.of_node,
1574			},
1575			host->pdata.parts,
1576			host->pdata.nr_parts);
1577
1578	platform_set_drvdata(pdev, host);
1579
1580	return 0;
1581
1582escan:
1583	if (host->clk_act)
1584		clk_disable_unprepare(host->clk);
1585
1586	return err;
1587}
1588
1589static int mxcnd_remove(struct platform_device *pdev)
1590{
1591	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1592
1593	nand_release(&host->mtd);
1594	if (host->clk_act)
1595		clk_disable_unprepare(host->clk);
1596
1597	return 0;
1598}
1599
1600static struct platform_driver mxcnd_driver = {
1601	.driver = {
1602		   .name = DRIVER_NAME,
1603		   .owner = THIS_MODULE,
1604		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1605	},
1606	.id_table = mxcnd_devtype,
1607	.probe = mxcnd_probe,
1608	.remove = mxcnd_remove,
1609};
1610module_platform_driver(mxcnd_driver);
1611
1612MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1613MODULE_DESCRIPTION("MXC NAND MTD driver");
1614MODULE_LICENSE("GPL");