Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Freescale Integrated Flash Controller NAND driver
   3 *
   4 * Copyright 2011-2012 Freescale Semiconductor, Inc
   5 *
   6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/of_address.h>
  27#include <linux/slab.h>
  28#include <linux/mtd/mtd.h>
  29#include <linux/mtd/nand.h>
  30#include <linux/mtd/partitions.h>
  31#include <linux/mtd/nand_ecc.h>
  32#include <linux/fsl_ifc.h>
  33
  34#define ERR_BYTE		0xFF /* Value returned for read
  35					bytes when read failed	*/
  36#define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
  37					for IFC NAND Machine	*/
  38
  39struct fsl_ifc_ctrl;
  40
  41/* mtd information per set */
  42struct fsl_ifc_mtd {
  43	struct nand_chip chip;
  44	struct fsl_ifc_ctrl *ctrl;
  45
  46	struct device *dev;
  47	int bank;		/* Chip select bank number		*/
  48	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
  49	u8 __iomem *vbase;      /* Chip select base virtual address	*/
  50};
  51
  52/* overview of the fsl ifc controller */
  53struct fsl_ifc_nand_ctrl {
  54	struct nand_hw_control controller;
  55	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
  56
  57	void __iomem *addr;	/* Address of assigned IFC buffer	*/
  58	unsigned int page;	/* Last page written to / read from	*/
  59	unsigned int read_bytes;/* Number of bytes read during command	*/
  60	unsigned int column;	/* Saved column from SEQIN		*/
  61	unsigned int index;	/* Pointer to next byte to 'read'	*/
  62	unsigned int oob;	/* Non zero if operating on OOB data	*/
  63	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
  64	unsigned int counter;	/* counter for the initializations	*/
  65	unsigned int max_bitflips;  /* Saved during READ0 cmd		*/
  66};
  67
  68static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
  69
  70/*
  71 * Generic flash bbt descriptors
  72 */
  73static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  74static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  75
  76static struct nand_bbt_descr bbt_main_descr = {
  77	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  78		   NAND_BBT_2BIT | NAND_BBT_VERSION,
  79	.offs =	2, /* 0 on 8-bit small page */
  80	.len = 4,
  81	.veroffs = 6,
  82	.maxblocks = 4,
  83	.pattern = bbt_pattern,
  84};
  85
  86static struct nand_bbt_descr bbt_mirror_descr = {
  87	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
  88		   NAND_BBT_2BIT | NAND_BBT_VERSION,
  89	.offs =	2, /* 0 on 8-bit small page */
  90	.len = 4,
  91	.veroffs = 6,
  92	.maxblocks = 4,
  93	.pattern = mirror_pattern,
  94};
  95
  96static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
  97				 struct mtd_oob_region *oobregion)
  98{
  99	struct nand_chip *chip = mtd_to_nand(mtd);
 100
 101	if (section)
 102		return -ERANGE;
 103
 104	oobregion->offset = 8;
 105	oobregion->length = chip->ecc.total;
 106
 107	return 0;
 108}
 109
 110static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
 111				  struct mtd_oob_region *oobregion)
 112{
 113	struct nand_chip *chip = mtd_to_nand(mtd);
 114
 115	if (section > 1)
 116		return -ERANGE;
 117
 118	if (mtd->writesize == 512 &&
 119	    !(chip->options & NAND_BUSWIDTH_16)) {
 120		if (!section) {
 121			oobregion->offset = 0;
 122			oobregion->length = 5;
 123		} else {
 124			oobregion->offset = 6;
 125			oobregion->length = 2;
 126		}
 127
 128		return 0;
 129	}
 130
 131	if (!section) {
 132		oobregion->offset = 2;
 133		oobregion->length = 6;
 134	} else {
 135		oobregion->offset = chip->ecc.total + 8;
 136		oobregion->length = mtd->oobsize - oobregion->offset;
 137	}
 138
 139	return 0;
 140}
 141
 142static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
 143	.ecc = fsl_ifc_ooblayout_ecc,
 144	.free = fsl_ifc_ooblayout_free,
 145};
 146
 147/*
 148 * Set up the IFC hardware block and page address fields, and the ifc nand
 149 * structure addr field to point to the correct IFC buffer in memory
 150 */
 151static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 152{
 153	struct nand_chip *chip = mtd_to_nand(mtd);
 154	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 155	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 156	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 157	int buf_num;
 158
 159	ifc_nand_ctrl->page = page_addr;
 160	/* Program ROW0/COL0 */
 161	ifc_out32(page_addr, &ifc->ifc_nand.row0);
 162	ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
 163
 164	buf_num = page_addr & priv->bufnum_mask;
 165
 166	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
 167	ifc_nand_ctrl->index = column;
 168
 169	/* for OOB data point to the second half of the buffer */
 170	if (oob)
 171		ifc_nand_ctrl->index += mtd->writesize;
 172}
 173
 174static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
 175{
 176	struct nand_chip *chip = mtd_to_nand(mtd);
 177	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 178	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
 179	u32 __iomem *mainarea = (u32 __iomem *)addr;
 180	u8 __iomem *oob = addr + mtd->writesize;
 181	struct mtd_oob_region oobregion = { };
 182	int i, section = 0;
 183
 184	for (i = 0; i < mtd->writesize / 4; i++) {
 185		if (__raw_readl(&mainarea[i]) != 0xffffffff)
 186			return 0;
 187	}
 188
 189	mtd_ooblayout_ecc(mtd, section++, &oobregion);
 190	while (oobregion.length) {
 191		for (i = 0; i < oobregion.length; i++) {
 192			if (__raw_readb(&oob[oobregion.offset + i]) != 0xff)
 193				return 0;
 194		}
 195
 196		mtd_ooblayout_ecc(mtd, section++, &oobregion);
 197	}
 198
 199	return 1;
 200}
 201
 202/* returns nonzero if entire page is blank */
 203static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
 204			  u32 *eccstat, unsigned int bufnum)
 205{
 206	u32 reg = eccstat[bufnum / 4];
 207	int errors;
 208
 209	errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
 210
 211	return errors;
 212}
 213
 214/*
 215 * execute IFC NAND command and wait for it to complete
 216 */
 217static void fsl_ifc_run_command(struct mtd_info *mtd)
 218{
 219	struct nand_chip *chip = mtd_to_nand(mtd);
 220	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 221	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 222	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 223	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 224	u32 eccstat[4];
 225	int i;
 226
 227	/* set the chip select for NAND Transaction */
 228	ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
 229		  &ifc->ifc_nand.nand_csel);
 230
 231	dev_vdbg(priv->dev,
 232			"%s: fir0=%08x fcr0=%08x\n",
 233			__func__,
 234			ifc_in32(&ifc->ifc_nand.nand_fir0),
 235			ifc_in32(&ifc->ifc_nand.nand_fcr0));
 236
 237	ctrl->nand_stat = 0;
 238
 239	/* start read/write seq */
 240	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
 241
 242	/* wait for command complete flag or timeout */
 243	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 244			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 245
 246	/* ctrl->nand_stat will be updated from IRQ context */
 247	if (!ctrl->nand_stat)
 248		dev_err(priv->dev, "Controller is not responding\n");
 249	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
 250		dev_err(priv->dev, "NAND Flash Timeout Error\n");
 251	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
 252		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
 253
 254	nctrl->max_bitflips = 0;
 255
 256	if (nctrl->eccread) {
 257		int errors;
 258		int bufnum = nctrl->page & priv->bufnum_mask;
 259		int sector = bufnum * chip->ecc.steps;
 260		int sector_end = sector + chip->ecc.steps - 1;
 261		__be32 *eccstat_regs;
 262
 263		if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
 264			eccstat_regs = ifc->ifc_nand.v2_nand_eccstat;
 265		else
 266			eccstat_regs = ifc->ifc_nand.v1_nand_eccstat;
 267
 268		for (i = sector / 4; i <= sector_end / 4; i++)
 269			eccstat[i] = ifc_in32(&eccstat_regs[i]);
 270
 271		for (i = sector; i <= sector_end; i++) {
 272			errors = check_read_ecc(mtd, ctrl, eccstat, i);
 273
 274			if (errors == 15) {
 275				/*
 276				 * Uncorrectable error.
 277				 * OK only if the whole page is blank.
 278				 *
 279				 * We disable ECCER reporting due to...
 280				 * erratum IFC-A002770 -- so report it now if we
 281				 * see an uncorrectable error in ECCSTAT.
 282				 */
 283				if (!is_blank(mtd, bufnum))
 284					ctrl->nand_stat |=
 285						IFC_NAND_EVTER_STAT_ECCER;
 286				break;
 287			}
 288
 289			mtd->ecc_stats.corrected += errors;
 290			nctrl->max_bitflips = max_t(unsigned int,
 291						    nctrl->max_bitflips,
 292						    errors);
 293		}
 294
 295		nctrl->eccread = 0;
 296	}
 297}
 298
 299static void fsl_ifc_do_read(struct nand_chip *chip,
 300			    int oob,
 301			    struct mtd_info *mtd)
 302{
 303	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 304	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 305	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 306
 307	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
 308	if (mtd->writesize > 512) {
 309		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 310			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 311			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 312			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
 313			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
 314			  &ifc->ifc_nand.nand_fir0);
 315		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 316
 317		ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
 318			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
 319			  &ifc->ifc_nand.nand_fcr0);
 320	} else {
 321		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 322			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 323			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
 324			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
 325			  &ifc->ifc_nand.nand_fir0);
 326		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
 327
 328		if (oob)
 329			ifc_out32(NAND_CMD_READOOB <<
 330				  IFC_NAND_FCR0_CMD0_SHIFT,
 331				  &ifc->ifc_nand.nand_fcr0);
 332		else
 333			ifc_out32(NAND_CMD_READ0 <<
 334				  IFC_NAND_FCR0_CMD0_SHIFT,
 335				  &ifc->ifc_nand.nand_fcr0);
 336	}
 337}
 338
 339/* cmdfunc send commands to the IFC NAND Machine */
 340static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 341			     int column, int page_addr) {
 342	struct nand_chip *chip = mtd_to_nand(mtd);
 343	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 344	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 345	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 346
 347	/* clear the read buffer */
 348	ifc_nand_ctrl->read_bytes = 0;
 349	if (command != NAND_CMD_PAGEPROG)
 350		ifc_nand_ctrl->index = 0;
 351
 352	switch (command) {
 353	/* READ0 read the entire buffer to use hardware ECC. */
 354	case NAND_CMD_READ0:
 355		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 356		set_addr(mtd, 0, page_addr, 0);
 357
 358		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 359		ifc_nand_ctrl->index += column;
 360
 361		if (chip->ecc.mode == NAND_ECC_HW)
 362			ifc_nand_ctrl->eccread = 1;
 363
 364		fsl_ifc_do_read(chip, 0, mtd);
 365		fsl_ifc_run_command(mtd);
 366		return;
 367
 368	/* READOOB reads only the OOB because no ECC is performed. */
 369	case NAND_CMD_READOOB:
 370		ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
 371		set_addr(mtd, column, page_addr, 1);
 372
 373		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 374
 375		fsl_ifc_do_read(chip, 1, mtd);
 376		fsl_ifc_run_command(mtd);
 377
 378		return;
 379
 380	case NAND_CMD_READID:
 381	case NAND_CMD_PARAM: {
 382		int timing = IFC_FIR_OP_RB;
 383		if (command == NAND_CMD_PARAM)
 384			timing = IFC_FIR_OP_RBCD;
 385
 386		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 387			  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 388			  (timing << IFC_NAND_FIR0_OP2_SHIFT),
 389			  &ifc->ifc_nand.nand_fir0);
 390		ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
 391			  &ifc->ifc_nand.nand_fcr0);
 392		ifc_out32(column, &ifc->ifc_nand.row3);
 393
 394		/*
 395		 * although currently it's 8 bytes for READID, we always read
 396		 * the maximum 256 bytes(for PARAM)
 397		 */
 398		ifc_out32(256, &ifc->ifc_nand.nand_fbcr);
 399		ifc_nand_ctrl->read_bytes = 256;
 400
 401		set_addr(mtd, 0, 0, 0);
 402		fsl_ifc_run_command(mtd);
 403		return;
 404	}
 405
 406	/* ERASE1 stores the block and page address */
 407	case NAND_CMD_ERASE1:
 408		set_addr(mtd, 0, page_addr, 0);
 409		return;
 410
 411	/* ERASE2 uses the block and page address from ERASE1 */
 412	case NAND_CMD_ERASE2:
 413		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 414			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 415			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
 416			  &ifc->ifc_nand.nand_fir0);
 417
 418		ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
 419			  (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
 420			  &ifc->ifc_nand.nand_fcr0);
 421
 422		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 423		ifc_nand_ctrl->read_bytes = 0;
 424		fsl_ifc_run_command(mtd);
 425		return;
 426
 427	/* SEQIN sets up the addr buffer and all registers except the length */
 428	case NAND_CMD_SEQIN: {
 429		u32 nand_fcr0;
 430		ifc_nand_ctrl->column = column;
 431		ifc_nand_ctrl->oob = 0;
 432
 433		if (mtd->writesize > 512) {
 434			nand_fcr0 =
 435				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
 436				(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
 437				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
 438
 439			ifc_out32(
 440				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 441				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
 442				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 443				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
 444				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
 445				&ifc->ifc_nand.nand_fir0);
 446			ifc_out32(
 447				(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
 448				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
 449				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
 450				&ifc->ifc_nand.nand_fir1);
 451		} else {
 452			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
 453					IFC_NAND_FCR0_CMD1_SHIFT) |
 454				    (NAND_CMD_SEQIN <<
 455					IFC_NAND_FCR0_CMD2_SHIFT) |
 456				    (NAND_CMD_STATUS <<
 457					IFC_NAND_FCR0_CMD3_SHIFT));
 458
 459			ifc_out32(
 460				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 461				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
 462				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
 463				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
 464				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
 465				&ifc->ifc_nand.nand_fir0);
 466			ifc_out32(
 467				(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
 468				(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
 469				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
 470				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
 471				&ifc->ifc_nand.nand_fir1);
 472
 473			if (column >= mtd->writesize)
 474				nand_fcr0 |=
 475				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
 476			else
 477				nand_fcr0 |=
 478				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
 479		}
 480
 481		if (column >= mtd->writesize) {
 482			/* OOB area --> READOOB */
 483			column -= mtd->writesize;
 484			ifc_nand_ctrl->oob = 1;
 485		}
 486		ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
 487		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
 488		return;
 489	}
 490
 491	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 492	case NAND_CMD_PAGEPROG: {
 493		if (ifc_nand_ctrl->oob) {
 494			ifc_out32(ifc_nand_ctrl->index -
 495				  ifc_nand_ctrl->column,
 496				  &ifc->ifc_nand.nand_fbcr);
 497		} else {
 498			ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
 499		}
 500
 501		fsl_ifc_run_command(mtd);
 502		return;
 503	}
 504
 505	case NAND_CMD_STATUS: {
 506		void __iomem *addr;
 507
 508		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 509			  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
 510			  &ifc->ifc_nand.nand_fir0);
 511		ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 512			  &ifc->ifc_nand.nand_fcr0);
 513		ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 514		set_addr(mtd, 0, 0, 0);
 515		ifc_nand_ctrl->read_bytes = 1;
 516
 517		fsl_ifc_run_command(mtd);
 518
 519		/*
 520		 * The chip always seems to report that it is
 521		 * write-protected, even when it is not.
 522		 */
 523		addr = ifc_nand_ctrl->addr;
 524		if (chip->options & NAND_BUSWIDTH_16)
 525			ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
 526		else
 527			ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
 528		return;
 529	}
 530
 531	case NAND_CMD_RESET:
 532		ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
 533			  &ifc->ifc_nand.nand_fir0);
 534		ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
 535			  &ifc->ifc_nand.nand_fcr0);
 536		fsl_ifc_run_command(mtd);
 537		return;
 538
 539	default:
 540		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
 541					__func__, command);
 542	}
 543}
 544
 545static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
 546{
 547	/* The hardware does not seem to support multiple
 548	 * chips per bank.
 549	 */
 550}
 551
 552/*
 553 * Write buf to the IFC NAND Controller Data Buffer
 554 */
 555static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 556{
 557	struct nand_chip *chip = mtd_to_nand(mtd);
 558	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 559	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 560
 561	if (len <= 0) {
 562		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 563		return;
 564	}
 565
 566	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
 567		dev_err(priv->dev,
 568			"%s: beyond end of buffer (%d requested, %u available)\n",
 569			__func__, len, bufsize - ifc_nand_ctrl->index);
 570		len = bufsize - ifc_nand_ctrl->index;
 571	}
 572
 573	memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
 574	ifc_nand_ctrl->index += len;
 575}
 576
 577/*
 578 * Read a byte from either the IFC hardware buffer
 579 * read function for 8-bit buswidth
 580 */
 581static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
 582{
 583	struct nand_chip *chip = mtd_to_nand(mtd);
 584	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 585	unsigned int offset;
 586
 587	/*
 588	 * If there are still bytes in the IFC buffer, then use the
 589	 * next byte.
 590	 */
 591	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 592		offset = ifc_nand_ctrl->index++;
 593		return ifc_in8(ifc_nand_ctrl->addr + offset);
 594	}
 595
 596	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 597	return ERR_BYTE;
 598}
 599
 600/*
 601 * Read two bytes from the IFC hardware buffer
 602 * read function for 16-bit buswith
 603 */
 604static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
 605{
 606	struct nand_chip *chip = mtd_to_nand(mtd);
 607	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 608	uint16_t data;
 609
 610	/*
 611	 * If there are still bytes in the IFC buffer, then use the
 612	 * next byte.
 613	 */
 614	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
 615		data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
 616		ifc_nand_ctrl->index += 2;
 617		return (uint8_t) data;
 618	}
 619
 620	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
 621	return ERR_BYTE;
 622}
 623
 624/*
 625 * Read from the IFC Controller Data Buffer
 626 */
 627static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 628{
 629	struct nand_chip *chip = mtd_to_nand(mtd);
 630	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 631	int avail;
 632
 633	if (len < 0) {
 634		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
 635		return;
 636	}
 637
 638	avail = min((unsigned int)len,
 639			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
 640	memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
 641	ifc_nand_ctrl->index += avail;
 642
 643	if (len > avail)
 644		dev_err(priv->dev,
 645			"%s: beyond end of buffer (%d requested, %d available)\n",
 646			__func__, len, avail);
 647}
 648
 649/*
 650 * This function is called after Program and Erase Operations to
 651 * check for success or failure.
 652 */
 653static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 654{
 655	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 656	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 657	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
 658	u32 nand_fsr;
 659
 660	/* Use READ_STATUS command, but wait for the device to be ready */
 661	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 662		  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
 663		  &ifc->ifc_nand.nand_fir0);
 664	ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
 665		  &ifc->ifc_nand.nand_fcr0);
 666	ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
 667	set_addr(mtd, 0, 0, 0);
 668	ifc_nand_ctrl->read_bytes = 1;
 669
 670	fsl_ifc_run_command(mtd);
 671
 672	nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
 673
 674	/*
 675	 * The chip always seems to report that it is
 676	 * write-protected, even when it is not.
 677	 */
 678	return nand_fsr | NAND_STATUS_WP;
 679}
 680
 681static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 682			     uint8_t *buf, int oob_required, int page)
 683{
 684	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 685	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 686	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 687
 688	fsl_ifc_read_buf(mtd, buf, mtd->writesize);
 689	if (oob_required)
 690		fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 691
 692	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
 693		dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
 694
 695	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 696		mtd->ecc_stats.failed++;
 697
 698	return nctrl->max_bitflips;
 699}
 700
 701/* ECC will be calculated automatically, and errors will be detected in
 702 * waitfunc.
 703 */
 704static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 705			       const uint8_t *buf, int oob_required, int page)
 706{
 707	fsl_ifc_write_buf(mtd, buf, mtd->writesize);
 708	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 709
 710	return 0;
 711}
 712
 713static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
 714{
 715	struct nand_chip *chip = mtd_to_nand(mtd);
 716	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 717
 718	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
 719							chip->numchips);
 720	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
 721							chip->chipsize);
 722	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
 723							chip->pagemask);
 724	dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
 725							chip->chip_delay);
 726	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
 727							chip->badblockpos);
 728	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
 729							chip->chip_shift);
 730	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
 731							chip->page_shift);
 732	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
 733							chip->phys_erase_shift);
 734	dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
 735							chip->ecc.mode);
 736	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
 737							chip->ecc.steps);
 738	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
 739							chip->ecc.bytes);
 740	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
 741							chip->ecc.total);
 742	dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
 743							mtd->ooblayout);
 744	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
 745	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
 746	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
 747							mtd->erasesize);
 748	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
 749							mtd->writesize);
 750	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
 751							mtd->oobsize);
 752
 753	return 0;
 754}
 755
 756static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 757{
 758	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 759	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 760	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 761	uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
 762	uint32_t cs = priv->bank;
 763
 764	/* Save CSOR and CSOR_ext */
 765	csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
 766	csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
 767
 768	/* chage PageSize 8K and SpareSize 1K*/
 769	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
 770	ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
 771	ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
 772
 773	/* READID */
 774	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
 775		    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
 776		    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
 777		    &ifc_runtime->ifc_nand.nand_fir0);
 778	ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
 779		    &ifc_runtime->ifc_nand.nand_fcr0);
 780	ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
 781
 782	ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
 783
 784	/* Program ROW0/COL0 */
 785	ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
 786	ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
 787
 788	/* set the chip select for NAND Transaction */
 789	ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
 790		&ifc_runtime->ifc_nand.nand_csel);
 791
 792	/* start read seq */
 793	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
 794		&ifc_runtime->ifc_nand.nandseq_strt);
 795
 796	/* wait for command complete flag or timeout */
 797	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 798			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 799
 800	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 801		printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
 802
 803	/* Restore CSOR and CSOR_ext */
 804	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
 805	ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
 806}
 807
 808static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 809{
 810	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 811	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
 812	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
 813	struct nand_chip *chip = &priv->chip;
 814	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 815	u32 csor;
 816
 817	/* Fill in fsl_ifc_mtd structure */
 818	mtd->dev.parent = priv->dev;
 819	nand_set_flash_node(chip, priv->dev->of_node);
 820
 821	/* fill in nand_chip structure */
 822	/* set up function call table */
 823	if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
 824		& CSPR_PORT_SIZE_16)
 825		chip->read_byte = fsl_ifc_read_byte16;
 826	else
 827		chip->read_byte = fsl_ifc_read_byte;
 828
 829	chip->write_buf = fsl_ifc_write_buf;
 830	chip->read_buf = fsl_ifc_read_buf;
 831	chip->select_chip = fsl_ifc_select_chip;
 832	chip->cmdfunc = fsl_ifc_cmdfunc;
 833	chip->waitfunc = fsl_ifc_wait;
 834
 835	chip->bbt_td = &bbt_main_descr;
 836	chip->bbt_md = &bbt_mirror_descr;
 837
 838	ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
 839
 840	/* set up nand options */
 841	chip->bbt_options = NAND_BBT_USE_FLASH;
 842	chip->options = NAND_NO_SUBPAGE_WRITE;
 843
 844	if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
 845		& CSPR_PORT_SIZE_16) {
 846		chip->read_byte = fsl_ifc_read_byte16;
 847		chip->options |= NAND_BUSWIDTH_16;
 848	} else {
 849		chip->read_byte = fsl_ifc_read_byte;
 850	}
 851
 852	chip->controller = &ifc_nand_ctrl->controller;
 853	nand_set_controller_data(chip, priv);
 854
 855	chip->ecc.read_page = fsl_ifc_read_page;
 856	chip->ecc.write_page = fsl_ifc_write_page;
 857
 858	csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
 859
 860	switch (csor & CSOR_NAND_PGS_MASK) {
 861	case CSOR_NAND_PGS_512:
 862		if (!(chip->options & NAND_BUSWIDTH_16)) {
 863			/* Avoid conflict with bad block marker */
 864			bbt_main_descr.offs = 0;
 865			bbt_mirror_descr.offs = 0;
 866		}
 867
 868		priv->bufnum_mask = 15;
 869		break;
 870
 871	case CSOR_NAND_PGS_2K:
 872		priv->bufnum_mask = 3;
 873		break;
 874
 875	case CSOR_NAND_PGS_4K:
 876		priv->bufnum_mask = 1;
 877		break;
 878
 879	case CSOR_NAND_PGS_8K:
 880		priv->bufnum_mask = 0;
 881		break;
 882
 883	default:
 884		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
 885		return -ENODEV;
 886	}
 887
 888	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
 889	if (csor & CSOR_NAND_ECC_DEC_EN) {
 890		chip->ecc.mode = NAND_ECC_HW;
 891		mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
 892
 893		/* Hardware generates ECC per 512 Bytes */
 894		chip->ecc.size = 512;
 895		if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
 896			chip->ecc.bytes = 8;
 897			chip->ecc.strength = 4;
 898		} else {
 899			chip->ecc.bytes = 16;
 900			chip->ecc.strength = 8;
 901		}
 902	} else {
 903		chip->ecc.mode = NAND_ECC_SOFT;
 904		chip->ecc.algo = NAND_ECC_HAMMING;
 905	}
 906
 907	if (ctrl->version == FSL_IFC_VERSION_1_1_0)
 908		fsl_ifc_sram_init(priv);
 909
 910	return 0;
 911}
 912
 913static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
 914{
 915	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 916
 917	nand_release(mtd);
 918
 919	kfree(mtd->name);
 920
 921	if (priv->vbase)
 922		iounmap(priv->vbase);
 923
 924	ifc_nand_ctrl->chips[priv->bank] = NULL;
 925
 926	return 0;
 927}
 928
 929static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
 930		      phys_addr_t addr)
 931{
 932	u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
 933
 934	if (!(cspr & CSPR_V))
 935		return 0;
 936	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
 937		return 0;
 938
 939	return (cspr & CSPR_BA) == convert_ifc_address(addr);
 940}
 941
 942static DEFINE_MUTEX(fsl_ifc_nand_mutex);
 943
 944static int fsl_ifc_nand_probe(struct platform_device *dev)
 945{
 946	struct fsl_ifc_runtime __iomem *ifc;
 947	struct fsl_ifc_mtd *priv;
 948	struct resource res;
 949	static const char *part_probe_types[]
 950		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
 951	int ret;
 952	int bank;
 953	struct device_node *node = dev->dev.of_node;
 954	struct mtd_info *mtd;
 955
 956	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
 957		return -ENODEV;
 958	ifc = fsl_ifc_ctrl_dev->rregs;
 959
 960	/* get, allocate and map the memory resource */
 961	ret = of_address_to_resource(node, 0, &res);
 962	if (ret) {
 963		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
 964		return ret;
 965	}
 966
 967	/* find which chip select it is connected to */
 968	for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
 969		if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
 970			break;
 971	}
 972
 973	if (bank >= fsl_ifc_ctrl_dev->banks) {
 974		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
 975			__func__);
 976		return -ENODEV;
 977	}
 978
 979	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
 980	if (!priv)
 981		return -ENOMEM;
 982
 983	mutex_lock(&fsl_ifc_nand_mutex);
 984	if (!fsl_ifc_ctrl_dev->nand) {
 985		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
 986		if (!ifc_nand_ctrl) {
 987			mutex_unlock(&fsl_ifc_nand_mutex);
 988			return -ENOMEM;
 989		}
 990
 991		ifc_nand_ctrl->read_bytes = 0;
 992		ifc_nand_ctrl->index = 0;
 993		ifc_nand_ctrl->addr = NULL;
 994		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
 995
 996		nand_hw_control_init(&ifc_nand_ctrl->controller);
 997	} else {
 998		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
 999	}
1000	mutex_unlock(&fsl_ifc_nand_mutex);
1001
1002	ifc_nand_ctrl->chips[bank] = priv;
1003	priv->bank = bank;
1004	priv->ctrl = fsl_ifc_ctrl_dev;
1005	priv->dev = &dev->dev;
1006
1007	priv->vbase = ioremap(res.start, resource_size(&res));
1008	if (!priv->vbase) {
1009		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1010		ret = -ENOMEM;
1011		goto err;
1012	}
1013
1014	dev_set_drvdata(priv->dev, priv);
1015
1016	ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1017		  IFC_NAND_EVTER_EN_FTOER_EN |
1018		  IFC_NAND_EVTER_EN_WPER_EN,
1019		  &ifc->ifc_nand.nand_evter_en);
1020
1021	/* enable NAND Machine Interrupts */
1022	ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1023		  IFC_NAND_EVTER_INTR_FTOERIR_EN |
1024		  IFC_NAND_EVTER_INTR_WPERIR_EN,
1025		  &ifc->ifc_nand.nand_evter_intr_en);
1026
1027	mtd = nand_to_mtd(&priv->chip);
1028	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1029	if (!mtd->name) {
1030		ret = -ENOMEM;
1031		goto err;
1032	}
1033
1034	ret = fsl_ifc_chip_init(priv);
1035	if (ret)
1036		goto err;
1037
1038	ret = nand_scan_ident(mtd, 1, NULL);
1039	if (ret)
1040		goto err;
1041
1042	ret = fsl_ifc_chip_init_tail(mtd);
1043	if (ret)
1044		goto err;
1045
1046	ret = nand_scan_tail(mtd);
1047	if (ret)
1048		goto err;
1049
1050	/* First look for RedBoot table or partitions on the command
1051	 * line, these take precedence over device tree information */
1052	mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1053
1054	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1055		 (unsigned long long)res.start, priv->bank);
1056	return 0;
1057
1058err:
1059	fsl_ifc_chip_remove(priv);
1060	return ret;
1061}
1062
1063static int fsl_ifc_nand_remove(struct platform_device *dev)
1064{
1065	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1066
1067	fsl_ifc_chip_remove(priv);
1068
1069	mutex_lock(&fsl_ifc_nand_mutex);
1070	ifc_nand_ctrl->counter--;
1071	if (!ifc_nand_ctrl->counter) {
1072		fsl_ifc_ctrl_dev->nand = NULL;
1073		kfree(ifc_nand_ctrl);
1074	}
1075	mutex_unlock(&fsl_ifc_nand_mutex);
1076
1077	return 0;
1078}
1079
1080static const struct of_device_id fsl_ifc_nand_match[] = {
1081	{
1082		.compatible = "fsl,ifc-nand",
1083	},
1084	{}
1085};
1086MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1087
1088static struct platform_driver fsl_ifc_nand_driver = {
1089	.driver = {
1090		.name	= "fsl,ifc-nand",
1091		.of_match_table = fsl_ifc_nand_match,
1092	},
1093	.probe       = fsl_ifc_nand_probe,
1094	.remove      = fsl_ifc_nand_remove,
1095};
1096
1097module_platform_driver(fsl_ifc_nand_driver);
1098
1099MODULE_LICENSE("GPL");
1100MODULE_AUTHOR("Freescale");
1101MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");