Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <linux/io.h>
  28
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/nand.h>
  31#include <linux/mtd/doc2000.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34#include <linux/module.h>
  35
  36/* Where to look for the devices? */
  37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  39#endif
  40
  41static unsigned long doc_locations[] __initdata = {
  42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  44	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  45	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  46	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  47	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  48	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  49#else
  50	0xc8000, 0xca000, 0xcc000, 0xce000,
  51	0xd0000, 0xd2000, 0xd4000, 0xd6000,
  52	0xd8000, 0xda000, 0xdc000, 0xde000,
  53	0xe0000, 0xe2000, 0xe4000, 0xe6000,
  54	0xe8000, 0xea000, 0xec000, 0xee000,
  55#endif
  56#endif
  57	0xffffffff };
  58
  59static struct mtd_info *doclist = NULL;
  60
  61struct doc_priv {
  62	void __iomem *virtadr;
  63	unsigned long physadr;
  64	u_char ChipID;
  65	u_char CDSNControl;
  66	int chips_per_floor;	/* The number of chips detected on each floor */
  67	int curfloor;
  68	int curchip;
  69	int mh0_page;
  70	int mh1_page;
  71	struct mtd_info *nextdoc;
  72
  73	/* Handle the last stage of initialization (BBT scan, partitioning) */
  74	int (*late_init)(struct mtd_info *mtd);
  75};
  76
  77/* This is the ecc value computed by the HW ecc generator upon writing an empty
  78   page, one with all 0xff for data. */
  79static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  80
  81#define INFTL_BBT_RESERVED_BLOCKS 4
  82
  83#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  84#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  85#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  86
  87static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  88			      unsigned int bitmask);
  89static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  90
  91static int debug = 0;
  92module_param(debug, int, 0);
  93
  94static int try_dword = 1;
  95module_param(try_dword, int, 0);
  96
  97static int no_ecc_failures = 0;
  98module_param(no_ecc_failures, int, 0);
  99
 100static int no_autopart = 0;
 101module_param(no_autopart, int, 0);
 102
 103static int show_firmware_partition = 0;
 104module_param(show_firmware_partition, int, 0);
 105
 106#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 107static int inftl_bbt_write = 1;
 108#else
 109static int inftl_bbt_write = 0;
 110#endif
 111module_param(inftl_bbt_write, int, 0);
 112
 113static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 114module_param(doc_config_location, ulong, 0);
 115MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 116
 117/* Sector size for HW ECC */
 118#define SECTOR_SIZE 512
 119/* The sector bytes are packed into NB_DATA 10 bit words */
 120#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 121/* Number of roots */
 122#define NROOTS 4
 123/* First consective root */
 124#define FCR 510
 125/* Number of symbols */
 126#define NN 1023
 127
 128/* the Reed Solomon control structure */
 129static struct rs_control *rs_decoder;
 130
 131/*
 132 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 133 * which we must convert to a standard syndrome usable by the generic
 134 * Reed-Solomon library code.
 135 *
 136 * Fabrice Bellard figured this out in the old docecc code. I added
 137 * some comments, improved a minor bit and converted it to make use
 138 * of the generic Reed-Solomon library. tglx
 139 */
 140static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 141{
 142	int i, j, nerr, errpos[8];
 143	uint8_t parity;
 144	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 145
 146	memset(syn, 0, sizeof(syn));
 147	/* Convert the ecc bytes into words */
 148	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 149	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 150	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 151	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 152	parity = ecc[1];
 153
 154	/* Initialize the syndrome buffer */
 155	for (i = 0; i < NROOTS; i++)
 156		s[i] = ds[0];
 157	/*
 158	 *  Evaluate
 159	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 160	 *  where x = alpha^(FCR + i)
 161	 */
 162	for (j = 1; j < NROOTS; j++) {
 163		if (ds[j] == 0)
 164			continue;
 165		tmp = rs->index_of[ds[j]];
 166		for (i = 0; i < NROOTS; i++)
 167			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 168	}
 169
 170	/* Calc syn[i] = s[i] / alpha^(v + i) */
 171	for (i = 0; i < NROOTS; i++) {
 172		if (s[i])
 173			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 174	}
 175	/* Call the decoder library */
 176	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 177
 178	/* Incorrectable errors ? */
 179	if (nerr < 0)
 180		return nerr;
 181
 182	/*
 183	 * Correct the errors. The bitpositions are a bit of magic,
 184	 * but they are given by the design of the de/encoder circuit
 185	 * in the DoC ASIC's.
 186	 */
 187	for (i = 0; i < nerr; i++) {
 188		int index, bitpos, pos = 1015 - errpos[i];
 189		uint8_t val;
 190		if (pos >= NB_DATA && pos < 1019)
 191			continue;
 192		if (pos < NB_DATA) {
 193			/* extract bit position (MSB first) */
 194			pos = 10 * (NB_DATA - 1 - pos) - 6;
 195			/* now correct the following 10 bits. At most two bytes
 196			   can be modified since pos is even */
 197			index = (pos >> 3) ^ 1;
 198			bitpos = pos & 7;
 199			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 200				val = (uint8_t) (errval[i] >> (2 + bitpos));
 201				parity ^= val;
 202				if (index < SECTOR_SIZE)
 203					data[index] ^= val;
 204			}
 205			index = ((pos >> 3) + 1) ^ 1;
 206			bitpos = (bitpos + 10) & 7;
 207			if (bitpos == 0)
 208				bitpos = 8;
 209			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 210				val = (uint8_t) (errval[i] << (8 - bitpos));
 211				parity ^= val;
 212				if (index < SECTOR_SIZE)
 213					data[index] ^= val;
 214			}
 215		}
 216	}
 217	/* If the parity is wrong, no rescue possible */
 218	return parity ? -EBADMSG : nerr;
 219}
 220
 221static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 222{
 223	volatile char dummy;
 224	int i;
 225
 226	for (i = 0; i < cycles; i++) {
 227		if (DoC_is_Millennium(doc))
 228			dummy = ReadDOC(doc->virtadr, NOP);
 229		else if (DoC_is_MillenniumPlus(doc))
 230			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 231		else
 232			dummy = ReadDOC(doc->virtadr, DOCStatus);
 233	}
 234
 235}
 236
 237#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 238
 239/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 240static int _DoC_WaitReady(struct doc_priv *doc)
 241{
 242	void __iomem *docptr = doc->virtadr;
 243	unsigned long timeo = jiffies + (HZ * 10);
 244
 245	if (debug)
 246		printk("_DoC_WaitReady...\n");
 247	/* Out-of-line routine to wait for chip response */
 248	if (DoC_is_MillenniumPlus(doc)) {
 249		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 250			if (time_after(jiffies, timeo)) {
 251				printk("_DoC_WaitReady timed out.\n");
 252				return -EIO;
 253			}
 254			udelay(1);
 255			cond_resched();
 256		}
 257	} else {
 258		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 259			if (time_after(jiffies, timeo)) {
 260				printk("_DoC_WaitReady timed out.\n");
 261				return -EIO;
 262			}
 263			udelay(1);
 264			cond_resched();
 265		}
 266	}
 267
 268	return 0;
 269}
 270
 271static inline int DoC_WaitReady(struct doc_priv *doc)
 272{
 273	void __iomem *docptr = doc->virtadr;
 274	int ret = 0;
 275
 276	if (DoC_is_MillenniumPlus(doc)) {
 277		DoC_Delay(doc, 4);
 278
 279		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 280			/* Call the out-of-line routine to wait */
 281			ret = _DoC_WaitReady(doc);
 282	} else {
 283		DoC_Delay(doc, 4);
 284
 285		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 286			/* Call the out-of-line routine to wait */
 287			ret = _DoC_WaitReady(doc);
 288		DoC_Delay(doc, 2);
 289	}
 290
 291	if (debug)
 292		printk("DoC_WaitReady OK\n");
 293	return ret;
 294}
 295
 296static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 297{
 298	struct nand_chip *this = mtd_to_nand(mtd);
 299	struct doc_priv *doc = nand_get_controller_data(this);
 300	void __iomem *docptr = doc->virtadr;
 301
 302	if (debug)
 303		printk("write_byte %02x\n", datum);
 304	WriteDOC(datum, docptr, CDSNSlowIO);
 305	WriteDOC(datum, docptr, 2k_CDSN_IO);
 306}
 307
 308static u_char doc2000_read_byte(struct mtd_info *mtd)
 309{
 310	struct nand_chip *this = mtd_to_nand(mtd);
 311	struct doc_priv *doc = nand_get_controller_data(this);
 312	void __iomem *docptr = doc->virtadr;
 313	u_char ret;
 314
 315	ReadDOC(docptr, CDSNSlowIO);
 316	DoC_Delay(doc, 2);
 317	ret = ReadDOC(docptr, 2k_CDSN_IO);
 318	if (debug)
 319		printk("read_byte returns %02x\n", ret);
 320	return ret;
 321}
 322
 323static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 324{
 325	struct nand_chip *this = mtd_to_nand(mtd);
 326	struct doc_priv *doc = nand_get_controller_data(this);
 327	void __iomem *docptr = doc->virtadr;
 328	int i;
 329	if (debug)
 330		printk("writebuf of %d bytes: ", len);
 331	for (i = 0; i < len; i++) {
 332		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 333		if (debug && i < 16)
 334			printk("%02x ", buf[i]);
 335	}
 336	if (debug)
 337		printk("\n");
 338}
 339
 340static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 341{
 342	struct nand_chip *this = mtd_to_nand(mtd);
 343	struct doc_priv *doc = nand_get_controller_data(this);
 344	void __iomem *docptr = doc->virtadr;
 345	int i;
 346
 347	if (debug)
 348		printk("readbuf of %d bytes: ", len);
 349
 350	for (i = 0; i < len; i++) {
 351		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 352	}
 353}
 354
 355static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 356{
 357	struct nand_chip *this = mtd_to_nand(mtd);
 358	struct doc_priv *doc = nand_get_controller_data(this);
 359	void __iomem *docptr = doc->virtadr;
 360	int i;
 361
 362	if (debug)
 363		printk("readbuf_dword of %d bytes: ", len);
 364
 365	if (unlikely((((unsigned long)buf) | len) & 3)) {
 366		for (i = 0; i < len; i++) {
 367			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 368		}
 369	} else {
 370		for (i = 0; i < len; i += 4) {
 371			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 372		}
 373	}
 374}
 375
 376static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 377{
 378	struct nand_chip *this = mtd_to_nand(mtd);
 379	struct doc_priv *doc = nand_get_controller_data(this);
 380	uint16_t ret;
 381
 382	doc200x_select_chip(mtd, nr);
 383	doc200x_hwcontrol(mtd, NAND_CMD_READID,
 384			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 385	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 386	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 387
 388	/* We can't use dev_ready here, but at least we wait for the
 389	 * command to complete
 390	 */
 391	udelay(50);
 392
 393	ret = this->read_byte(mtd) << 8;
 394	ret |= this->read_byte(mtd);
 395
 396	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 397		/* First chip probe. See if we get same results by 32-bit access */
 398		union {
 399			uint32_t dword;
 400			uint8_t byte[4];
 401		} ident;
 402		void __iomem *docptr = doc->virtadr;
 403
 404		doc200x_hwcontrol(mtd, NAND_CMD_READID,
 405				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 406		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 407		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 408				  NAND_NCE | NAND_CTRL_CHANGE);
 409
 410		udelay(50);
 411
 412		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 413		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 414			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 415			this->read_buf = &doc2000_readbuf_dword;
 416		}
 417	}
 418
 419	return ret;
 420}
 421
 422static void __init doc2000_count_chips(struct mtd_info *mtd)
 423{
 424	struct nand_chip *this = mtd_to_nand(mtd);
 425	struct doc_priv *doc = nand_get_controller_data(this);
 426	uint16_t mfrid;
 427	int i;
 428
 429	/* Max 4 chips per floor on DiskOnChip 2000 */
 430	doc->chips_per_floor = 4;
 431
 432	/* Find out what the first chip is */
 433	mfrid = doc200x_ident_chip(mtd, 0);
 434
 435	/* Find how many chips in each floor. */
 436	for (i = 1; i < 4; i++) {
 437		if (doc200x_ident_chip(mtd, i) != mfrid)
 438			break;
 439	}
 440	doc->chips_per_floor = i;
 441	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 442}
 443
 444static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 445{
 446	struct doc_priv *doc = nand_get_controller_data(this);
 447
 448	int status;
 449
 450	DoC_WaitReady(doc);
 451	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 452	DoC_WaitReady(doc);
 453	status = (int)this->read_byte(mtd);
 454
 455	return status;
 456}
 457
 458static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 459{
 460	struct nand_chip *this = mtd_to_nand(mtd);
 461	struct doc_priv *doc = nand_get_controller_data(this);
 462	void __iomem *docptr = doc->virtadr;
 463
 464	WriteDOC(datum, docptr, CDSNSlowIO);
 465	WriteDOC(datum, docptr, Mil_CDSN_IO);
 466	WriteDOC(datum, docptr, WritePipeTerm);
 467}
 468
 469static u_char doc2001_read_byte(struct mtd_info *mtd)
 470{
 471	struct nand_chip *this = mtd_to_nand(mtd);
 472	struct doc_priv *doc = nand_get_controller_data(this);
 473	void __iomem *docptr = doc->virtadr;
 474
 475	//ReadDOC(docptr, CDSNSlowIO);
 476	/* 11.4.5 -- delay twice to allow extended length cycle */
 477	DoC_Delay(doc, 2);
 478	ReadDOC(docptr, ReadPipeInit);
 479	//return ReadDOC(docptr, Mil_CDSN_IO);
 480	return ReadDOC(docptr, LastDataRead);
 481}
 482
 483static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 484{
 485	struct nand_chip *this = mtd_to_nand(mtd);
 486	struct doc_priv *doc = nand_get_controller_data(this);
 487	void __iomem *docptr = doc->virtadr;
 488	int i;
 489
 490	for (i = 0; i < len; i++)
 491		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 492	/* Terminate write pipeline */
 493	WriteDOC(0x00, docptr, WritePipeTerm);
 494}
 495
 496static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 497{
 498	struct nand_chip *this = mtd_to_nand(mtd);
 499	struct doc_priv *doc = nand_get_controller_data(this);
 500	void __iomem *docptr = doc->virtadr;
 501	int i;
 502
 503	/* Start read pipeline */
 504	ReadDOC(docptr, ReadPipeInit);
 505
 506	for (i = 0; i < len - 1; i++)
 507		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 508
 509	/* Terminate read pipeline */
 510	buf[i] = ReadDOC(docptr, LastDataRead);
 511}
 512
 513static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 514{
 515	struct nand_chip *this = mtd_to_nand(mtd);
 516	struct doc_priv *doc = nand_get_controller_data(this);
 517	void __iomem *docptr = doc->virtadr;
 518	u_char ret;
 519
 520	ReadDOC(docptr, Mplus_ReadPipeInit);
 521	ReadDOC(docptr, Mplus_ReadPipeInit);
 522	ret = ReadDOC(docptr, Mplus_LastDataRead);
 523	if (debug)
 524		printk("read_byte returns %02x\n", ret);
 525	return ret;
 526}
 527
 528static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 529{
 530	struct nand_chip *this = mtd_to_nand(mtd);
 531	struct doc_priv *doc = nand_get_controller_data(this);
 532	void __iomem *docptr = doc->virtadr;
 533	int i;
 534
 535	if (debug)
 536		printk("writebuf of %d bytes: ", len);
 537	for (i = 0; i < len; i++) {
 538		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 539		if (debug && i < 16)
 540			printk("%02x ", buf[i]);
 541	}
 542	if (debug)
 543		printk("\n");
 544}
 545
 546static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 547{
 548	struct nand_chip *this = mtd_to_nand(mtd);
 549	struct doc_priv *doc = nand_get_controller_data(this);
 550	void __iomem *docptr = doc->virtadr;
 551	int i;
 552
 553	if (debug)
 554		printk("readbuf of %d bytes: ", len);
 555
 556	/* Start read pipeline */
 557	ReadDOC(docptr, Mplus_ReadPipeInit);
 558	ReadDOC(docptr, Mplus_ReadPipeInit);
 559
 560	for (i = 0; i < len - 2; i++) {
 561		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 562		if (debug && i < 16)
 563			printk("%02x ", buf[i]);
 564	}
 565
 566	/* Terminate read pipeline */
 567	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 568	if (debug && i < 16)
 569		printk("%02x ", buf[len - 2]);
 570	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 571	if (debug && i < 16)
 572		printk("%02x ", buf[len - 1]);
 573	if (debug)
 574		printk("\n");
 575}
 576
 577static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 578{
 579	struct nand_chip *this = mtd_to_nand(mtd);
 580	struct doc_priv *doc = nand_get_controller_data(this);
 581	void __iomem *docptr = doc->virtadr;
 582	int floor = 0;
 583
 584	if (debug)
 585		printk("select chip (%d)\n", chip);
 586
 587	if (chip == -1) {
 588		/* Disable flash internally */
 589		WriteDOC(0, docptr, Mplus_FlashSelect);
 590		return;
 591	}
 592
 593	floor = chip / doc->chips_per_floor;
 594	chip -= (floor * doc->chips_per_floor);
 595
 596	/* Assert ChipEnable and deassert WriteProtect */
 597	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 598	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 599
 600	doc->curchip = chip;
 601	doc->curfloor = floor;
 602}
 603
 604static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 605{
 606	struct nand_chip *this = mtd_to_nand(mtd);
 607	struct doc_priv *doc = nand_get_controller_data(this);
 608	void __iomem *docptr = doc->virtadr;
 609	int floor = 0;
 610
 611	if (debug)
 612		printk("select chip (%d)\n", chip);
 613
 614	if (chip == -1)
 615		return;
 616
 617	floor = chip / doc->chips_per_floor;
 618	chip -= (floor * doc->chips_per_floor);
 619
 620	/* 11.4.4 -- deassert CE before changing chip */
 621	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 622
 623	WriteDOC(floor, docptr, FloorSelect);
 624	WriteDOC(chip, docptr, CDSNDeviceSelect);
 625
 626	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 627
 628	doc->curchip = chip;
 629	doc->curfloor = floor;
 630}
 631
 632#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 633
 634static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 635			      unsigned int ctrl)
 636{
 637	struct nand_chip *this = mtd_to_nand(mtd);
 638	struct doc_priv *doc = nand_get_controller_data(this);
 639	void __iomem *docptr = doc->virtadr;
 640
 641	if (ctrl & NAND_CTRL_CHANGE) {
 642		doc->CDSNControl &= ~CDSN_CTRL_MSK;
 643		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 644		if (debug)
 645			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 646		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 647		/* 11.4.3 -- 4 NOPs after CSDNControl write */
 648		DoC_Delay(doc, 4);
 649	}
 650	if (cmd != NAND_CMD_NONE) {
 651		if (DoC_is_2000(doc))
 652			doc2000_write_byte(mtd, cmd);
 653		else
 654			doc2001_write_byte(mtd, cmd);
 655	}
 656}
 657
 658static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 659{
 660	struct nand_chip *this = mtd_to_nand(mtd);
 661	struct doc_priv *doc = nand_get_controller_data(this);
 662	void __iomem *docptr = doc->virtadr;
 663
 664	/*
 665	 * Must terminate write pipeline before sending any commands
 666	 * to the device.
 667	 */
 668	if (command == NAND_CMD_PAGEPROG) {
 669		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 670		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 671	}
 672
 673	/*
 674	 * Write out the command to the device.
 675	 */
 676	if (command == NAND_CMD_SEQIN) {
 677		int readcmd;
 678
 679		if (column >= mtd->writesize) {
 680			/* OOB area */
 681			column -= mtd->writesize;
 682			readcmd = NAND_CMD_READOOB;
 683		} else if (column < 256) {
 684			/* First 256 bytes --> READ0 */
 685			readcmd = NAND_CMD_READ0;
 686		} else {
 687			column -= 256;
 688			readcmd = NAND_CMD_READ1;
 689		}
 690		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 691	}
 692	WriteDOC(command, docptr, Mplus_FlashCmd);
 693	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 694	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 695
 696	if (column != -1 || page_addr != -1) {
 697		/* Serially input address */
 698		if (column != -1) {
 699			/* Adjust columns for 16 bit buswidth */
 700			if (this->options & NAND_BUSWIDTH_16 &&
 701					!nand_opcode_8bits(command))
 702				column >>= 1;
 703			WriteDOC(column, docptr, Mplus_FlashAddress);
 704		}
 705		if (page_addr != -1) {
 706			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 707			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 708			/* One more address cycle for higher density devices */
 709			if (this->chipsize & 0x0c000000) {
 710				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 711				printk("high density\n");
 712			}
 713		}
 714		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 715		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 716		/* deassert ALE */
 717		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 718		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 719			WriteDOC(0, docptr, Mplus_FlashControl);
 720	}
 721
 722	/*
 723	 * program and erase have their own busy handlers
 724	 * status and sequential in needs no delay
 725	 */
 726	switch (command) {
 727
 728	case NAND_CMD_PAGEPROG:
 729	case NAND_CMD_ERASE1:
 730	case NAND_CMD_ERASE2:
 731	case NAND_CMD_SEQIN:
 732	case NAND_CMD_STATUS:
 733		return;
 734
 735	case NAND_CMD_RESET:
 736		if (this->dev_ready)
 737			break;
 738		udelay(this->chip_delay);
 739		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 740		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 741		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 742		while (!(this->read_byte(mtd) & 0x40)) ;
 743		return;
 744
 745		/* This applies to read commands */
 746	default:
 747		/*
 748		 * If we don't have access to the busy pin, we apply the given
 749		 * command delay
 750		 */
 751		if (!this->dev_ready) {
 752			udelay(this->chip_delay);
 753			return;
 754		}
 755	}
 756
 757	/* Apply this short delay always to ensure that we do wait tWB in
 758	 * any case on any machine. */
 759	ndelay(100);
 760	/* wait until command is processed */
 761	while (!this->dev_ready(mtd)) ;
 762}
 763
 764static int doc200x_dev_ready(struct mtd_info *mtd)
 765{
 766	struct nand_chip *this = mtd_to_nand(mtd);
 767	struct doc_priv *doc = nand_get_controller_data(this);
 768	void __iomem *docptr = doc->virtadr;
 769
 770	if (DoC_is_MillenniumPlus(doc)) {
 771		/* 11.4.2 -- must NOP four times before checking FR/B# */
 772		DoC_Delay(doc, 4);
 773		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 774			if (debug)
 775				printk("not ready\n");
 776			return 0;
 777		}
 778		if (debug)
 779			printk("was ready\n");
 780		return 1;
 781	} else {
 782		/* 11.4.2 -- must NOP four times before checking FR/B# */
 783		DoC_Delay(doc, 4);
 784		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 785			if (debug)
 786				printk("not ready\n");
 787			return 0;
 788		}
 789		/* 11.4.2 -- Must NOP twice if it's ready */
 790		DoC_Delay(doc, 2);
 791		if (debug)
 792			printk("was ready\n");
 793		return 1;
 794	}
 795}
 796
 797static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
 798{
 799	/* This is our last resort if we couldn't find or create a BBT.  Just
 800	   pretend all blocks are good. */
 801	return 0;
 802}
 803
 804static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 805{
 806	struct nand_chip *this = mtd_to_nand(mtd);
 807	struct doc_priv *doc = nand_get_controller_data(this);
 808	void __iomem *docptr = doc->virtadr;
 809
 810	/* Prime the ECC engine */
 811	switch (mode) {
 812	case NAND_ECC_READ:
 813		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 814		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 815		break;
 816	case NAND_ECC_WRITE:
 817		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 818		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 819		break;
 820	}
 821}
 822
 823static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 824{
 825	struct nand_chip *this = mtd_to_nand(mtd);
 826	struct doc_priv *doc = nand_get_controller_data(this);
 827	void __iomem *docptr = doc->virtadr;
 828
 829	/* Prime the ECC engine */
 830	switch (mode) {
 831	case NAND_ECC_READ:
 832		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 833		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 834		break;
 835	case NAND_ECC_WRITE:
 836		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 837		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 838		break;
 839	}
 840}
 841
 842/* This code is only called on write */
 843static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 844{
 845	struct nand_chip *this = mtd_to_nand(mtd);
 846	struct doc_priv *doc = nand_get_controller_data(this);
 847	void __iomem *docptr = doc->virtadr;
 848	int i;
 849	int emptymatch = 1;
 850
 851	/* flush the pipeline */
 852	if (DoC_is_2000(doc)) {
 853		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 854		WriteDOC(0, docptr, 2k_CDSN_IO);
 855		WriteDOC(0, docptr, 2k_CDSN_IO);
 856		WriteDOC(0, docptr, 2k_CDSN_IO);
 857		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 858	} else if (DoC_is_MillenniumPlus(doc)) {
 859		WriteDOC(0, docptr, Mplus_NOP);
 860		WriteDOC(0, docptr, Mplus_NOP);
 861		WriteDOC(0, docptr, Mplus_NOP);
 862	} else {
 863		WriteDOC(0, docptr, NOP);
 864		WriteDOC(0, docptr, NOP);
 865		WriteDOC(0, docptr, NOP);
 866	}
 867
 868	for (i = 0; i < 6; i++) {
 869		if (DoC_is_MillenniumPlus(doc))
 870			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 871		else
 872			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 873		if (ecc_code[i] != empty_write_ecc[i])
 874			emptymatch = 0;
 875	}
 876	if (DoC_is_MillenniumPlus(doc))
 877		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 878	else
 879		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 880#if 0
 881	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 882	if (emptymatch) {
 883		/* Note: this somewhat expensive test should not be triggered
 884		   often.  It could be optimized away by examining the data in
 885		   the writebuf routine, and remembering the result. */
 886		for (i = 0; i < 512; i++) {
 887			if (dat[i] == 0xff)
 888				continue;
 889			emptymatch = 0;
 890			break;
 891		}
 892	}
 893	/* If emptymatch still =1, we do have an all-0xff data buffer.
 894	   Return all-0xff ecc value instead of the computed one, so
 895	   it'll look just like a freshly-erased page. */
 896	if (emptymatch)
 897		memset(ecc_code, 0xff, 6);
 898#endif
 899	return 0;
 900}
 901
 902static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 903				u_char *read_ecc, u_char *isnull)
 904{
 905	int i, ret = 0;
 906	struct nand_chip *this = mtd_to_nand(mtd);
 907	struct doc_priv *doc = nand_get_controller_data(this);
 908	void __iomem *docptr = doc->virtadr;
 909	uint8_t calc_ecc[6];
 910	volatile u_char dummy;
 911
 912	/* flush the pipeline */
 913	if (DoC_is_2000(doc)) {
 914		dummy = ReadDOC(docptr, 2k_ECCStatus);
 915		dummy = ReadDOC(docptr, 2k_ECCStatus);
 916		dummy = ReadDOC(docptr, 2k_ECCStatus);
 917	} else if (DoC_is_MillenniumPlus(doc)) {
 918		dummy = ReadDOC(docptr, Mplus_ECCConf);
 919		dummy = ReadDOC(docptr, Mplus_ECCConf);
 920		dummy = ReadDOC(docptr, Mplus_ECCConf);
 921	} else {
 922		dummy = ReadDOC(docptr, ECCConf);
 923		dummy = ReadDOC(docptr, ECCConf);
 924		dummy = ReadDOC(docptr, ECCConf);
 925	}
 926
 927	/* Error occurred ? */
 928	if (dummy & 0x80) {
 929		for (i = 0; i < 6; i++) {
 930			if (DoC_is_MillenniumPlus(doc))
 931				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 932			else
 933				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 934		}
 935
 936		ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
 937		if (ret > 0)
 938			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
 939	}
 940	if (DoC_is_MillenniumPlus(doc))
 941		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 942	else
 943		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 944	if (no_ecc_failures && mtd_is_eccerr(ret)) {
 945		printk(KERN_ERR "suppressing ECC failure\n");
 946		ret = 0;
 947	}
 948	return ret;
 949}
 950
 951//u_char mydatabuf[528];
 952
 953static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
 954				 struct mtd_oob_region *oobregion)
 955{
 956	if (section)
 957		return -ERANGE;
 958
 959	oobregion->offset = 0;
 960	oobregion->length = 6;
 961
 962	return 0;
 963}
 964
 965static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
 966				  struct mtd_oob_region *oobregion)
 967{
 968	if (section > 1)
 969		return -ERANGE;
 970
 971	/*
 972	 * The strange out-of-order free bytes definition is a (possibly
 973	 * unneeded) attempt to retain compatibility.  It used to read:
 974	 *	.oobfree = { {8, 8} }
 975	 * Since that leaves two bytes unusable, it was changed.  But the
 976	 * following scheme might affect existing jffs2 installs by moving the
 977	 * cleanmarker:
 978	 *	.oobfree = { {6, 10} }
 979	 * jffs2 seems to handle the above gracefully, but the current scheme
 980	 * seems safer. The only problem with it is that any code retrieving
 981	 * free bytes position must be able to handle out-of-order segments.
 982	 */
 983	if (!section) {
 984		oobregion->offset = 8;
 985		oobregion->length = 8;
 986	} else {
 987		oobregion->offset = 6;
 988		oobregion->length = 2;
 989	}
 990
 991	return 0;
 992}
 993
 994static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
 995	.ecc = doc200x_ooblayout_ecc,
 996	.free = doc200x_ooblayout_free,
 997};
 998
 999/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000   On successful return, buf will contain a copy of the media header for
1001   further processing.  id is the string to scan for, and will presumably be
1002   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1003   header.  The page #s of the found media headers are placed in mh0_page and
1004   mh1_page in the DOC private structure. */
1005static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006{
1007	struct nand_chip *this = mtd_to_nand(mtd);
1008	struct doc_priv *doc = nand_get_controller_data(this);
1009	unsigned offs;
1010	int ret;
1011	size_t retlen;
1012
1013	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015		if (retlen != mtd->writesize)
1016			continue;
1017		if (ret) {
1018			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019		}
1020		if (memcmp(buf, id, 6))
1021			continue;
1022		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023		if (doc->mh0_page == -1) {
1024			doc->mh0_page = offs >> this->page_shift;
1025			if (!findmirror)
1026				return 1;
1027			continue;
1028		}
1029		doc->mh1_page = offs >> this->page_shift;
1030		return 2;
1031	}
1032	if (doc->mh0_page == -1) {
1033		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034		return 0;
1035	}
1036	/* Only one mediaheader was found.  We want buf to contain a
1037	   mediaheader on return, so we'll have to re-read the one we found. */
1038	offs = doc->mh0_page << this->page_shift;
1039	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040	if (retlen != mtd->writesize) {
1041		/* Insanity.  Give up. */
1042		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043		return 0;
1044	}
1045	return 1;
1046}
1047
1048static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049{
1050	struct nand_chip *this = mtd_to_nand(mtd);
1051	struct doc_priv *doc = nand_get_controller_data(this);
1052	int ret = 0;
1053	u_char *buf;
1054	struct NFTLMediaHeader *mh;
1055	const unsigned psize = 1 << this->page_shift;
1056	int numparts = 0;
1057	unsigned blocks, maxblocks;
1058	int offs, numheaders;
1059
1060	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061	if (!buf) {
1062		return 0;
1063	}
1064	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065		goto out;
1066	mh = (struct NFTLMediaHeader *)buf;
1067
1068	le16_to_cpus(&mh->NumEraseUnits);
1069	le16_to_cpus(&mh->FirstPhysicalEUN);
1070	le32_to_cpus(&mh->FormattedSize);
1071
1072	printk(KERN_INFO "    DataOrgID        = %s\n"
1073			 "    NumEraseUnits    = %d\n"
1074			 "    FirstPhysicalEUN = %d\n"
1075			 "    FormattedSize    = %d\n"
1076			 "    UnitSizeFactor   = %d\n",
1077		mh->DataOrgID, mh->NumEraseUnits,
1078		mh->FirstPhysicalEUN, mh->FormattedSize,
1079		mh->UnitSizeFactor);
1080
1081	blocks = mtd->size >> this->phys_erase_shift;
1082	maxblocks = min(32768U, mtd->erasesize - psize);
1083
1084	if (mh->UnitSizeFactor == 0x00) {
1085		/* Auto-determine UnitSizeFactor.  The constraints are:
1086		   - There can be at most 32768 virtual blocks.
1087		   - There can be at most (virtual block size - page size)
1088		   virtual blocks (because MediaHeader+BBT must fit in 1).
1089		 */
1090		mh->UnitSizeFactor = 0xff;
1091		while (blocks > maxblocks) {
1092			blocks >>= 1;
1093			maxblocks = min(32768U, (maxblocks << 1) + psize);
1094			mh->UnitSizeFactor--;
1095		}
1096		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097	}
1098
1099	/* NOTE: The lines below modify internal variables of the NAND and MTD
1100	   layers; variables with have already been configured by nand_scan.
1101	   Unfortunately, we didn't know before this point what these values
1102	   should be.  Thus, this code is somewhat dependent on the exact
1103	   implementation of the NAND layer.  */
1104	if (mh->UnitSizeFactor != 0xff) {
1105		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108		blocks = mtd->size >> this->bbt_erase_shift;
1109		maxblocks = min(32768U, mtd->erasesize - psize);
1110	}
1111
1112	if (blocks > maxblocks) {
1113		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114		goto out;
1115	}
1116
1117	/* Skip past the media headers. */
1118	offs = max(doc->mh0_page, doc->mh1_page);
1119	offs <<= this->page_shift;
1120	offs += mtd->erasesize;
1121
1122	if (show_firmware_partition == 1) {
1123		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124		parts[0].offset = 0;
1125		parts[0].size = offs;
1126		numparts = 1;
1127	}
1128
1129	parts[numparts].name = " DiskOnChip BDTL partition";
1130	parts[numparts].offset = offs;
1131	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132
1133	offs += parts[numparts].size;
1134	numparts++;
1135
1136	if (offs < mtd->size) {
1137		parts[numparts].name = " DiskOnChip Remainder partition";
1138		parts[numparts].offset = offs;
1139		parts[numparts].size = mtd->size - offs;
1140		numparts++;
1141	}
1142
1143	ret = numparts;
1144 out:
1145	kfree(buf);
1146	return ret;
1147}
1148
1149/* This is a stripped-down copy of the code in inftlmount.c */
1150static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151{
1152	struct nand_chip *this = mtd_to_nand(mtd);
1153	struct doc_priv *doc = nand_get_controller_data(this);
1154	int ret = 0;
1155	u_char *buf;
1156	struct INFTLMediaHeader *mh;
1157	struct INFTLPartition *ip;
1158	int numparts = 0;
1159	int blocks;
1160	int vshift, lastvunit = 0;
1161	int i;
1162	int end = mtd->size;
1163
1164	if (inftl_bbt_write)
1165		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166
1167	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168	if (!buf) {
1169		return 0;
1170	}
1171
1172	if (!find_media_headers(mtd, buf, "BNAND", 0))
1173		goto out;
1174	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175	mh = (struct INFTLMediaHeader *)buf;
1176
1177	le32_to_cpus(&mh->NoOfBootImageBlocks);
1178	le32_to_cpus(&mh->NoOfBinaryPartitions);
1179	le32_to_cpus(&mh->NoOfBDTLPartitions);
1180	le32_to_cpus(&mh->BlockMultiplierBits);
1181	le32_to_cpus(&mh->FormatFlags);
1182	le32_to_cpus(&mh->PercentUsed);
1183
1184	printk(KERN_INFO "    bootRecordID          = %s\n"
1185			 "    NoOfBootImageBlocks   = %d\n"
1186			 "    NoOfBinaryPartitions  = %d\n"
1187			 "    NoOfBDTLPartitions    = %d\n"
1188			 "    BlockMultiplerBits    = %d\n"
1189			 "    FormatFlgs            = %d\n"
1190			 "    OsakVersion           = %d.%d.%d.%d\n"
1191			 "    PercentUsed           = %d\n",
1192		mh->bootRecordID, mh->NoOfBootImageBlocks,
1193		mh->NoOfBinaryPartitions,
1194		mh->NoOfBDTLPartitions,
1195		mh->BlockMultiplierBits, mh->FormatFlags,
1196		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200		mh->PercentUsed);
1201
1202	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203
1204	blocks = mtd->size >> vshift;
1205	if (blocks > 32768) {
1206		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1207		goto out;
1208	}
1209
1210	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1213		goto out;
1214	}
1215
1216	/* Scan the partitions */
1217	for (i = 0; (i < 4); i++) {
1218		ip = &(mh->Partitions[i]);
1219		le32_to_cpus(&ip->virtualUnits);
1220		le32_to_cpus(&ip->firstUnit);
1221		le32_to_cpus(&ip->lastUnit);
1222		le32_to_cpus(&ip->flags);
1223		le32_to_cpus(&ip->spareUnits);
1224		le32_to_cpus(&ip->Reserved0);
1225
1226		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1227			"        virtualUnits    = %d\n"
1228			"        firstUnit       = %d\n"
1229			"        lastUnit        = %d\n"
1230			"        flags           = 0x%x\n"
1231			"        spareUnits      = %d\n",
1232			i, ip->virtualUnits, ip->firstUnit,
1233			ip->lastUnit, ip->flags,
1234			ip->spareUnits);
1235
1236		if ((show_firmware_partition == 1) &&
1237		    (i == 0) && (ip->firstUnit > 0)) {
1238			parts[0].name = " DiskOnChip IPL / Media Header partition";
1239			parts[0].offset = 0;
1240			parts[0].size = mtd->erasesize * ip->firstUnit;
1241			numparts = 1;
1242		}
1243
1244		if (ip->flags & INFTL_BINARY)
1245			parts[numparts].name = " DiskOnChip BDK partition";
1246		else
1247			parts[numparts].name = " DiskOnChip BDTL partition";
1248		parts[numparts].offset = ip->firstUnit << vshift;
1249		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250		numparts++;
1251		if (ip->lastUnit > lastvunit)
1252			lastvunit = ip->lastUnit;
1253		if (ip->flags & INFTL_LAST)
1254			break;
1255	}
1256	lastvunit++;
1257	if ((lastvunit << vshift) < end) {
1258		parts[numparts].name = " DiskOnChip Remainder partition";
1259		parts[numparts].offset = lastvunit << vshift;
1260		parts[numparts].size = end - parts[numparts].offset;
1261		numparts++;
1262	}
1263	ret = numparts;
1264 out:
1265	kfree(buf);
1266	return ret;
1267}
1268
1269static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270{
1271	int ret, numparts;
1272	struct nand_chip *this = mtd_to_nand(mtd);
1273	struct doc_priv *doc = nand_get_controller_data(this);
1274	struct mtd_partition parts[2];
1275
1276	memset((char *)parts, 0, sizeof(parts));
1277	/* On NFTL, we have to find the media headers before we can read the
1278	   BBTs, since they're stored in the media header eraseblocks. */
1279	numparts = nftl_partscan(mtd, parts);
1280	if (!numparts)
1281		return -EIO;
1282	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284				NAND_BBT_VERSION;
1285	this->bbt_td->veroffs = 7;
1286	this->bbt_td->pages[0] = doc->mh0_page + 1;
1287	if (doc->mh1_page != -1) {
1288		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290					NAND_BBT_VERSION;
1291		this->bbt_md->veroffs = 7;
1292		this->bbt_md->pages[0] = doc->mh1_page + 1;
1293	} else {
1294		this->bbt_md = NULL;
1295	}
1296
1297	ret = this->scan_bbt(mtd);
1298	if (ret)
1299		return ret;
1300
1301	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1302}
1303
1304static int __init inftl_scan_bbt(struct mtd_info *mtd)
1305{
1306	int ret, numparts;
1307	struct nand_chip *this = mtd_to_nand(mtd);
1308	struct doc_priv *doc = nand_get_controller_data(this);
1309	struct mtd_partition parts[5];
1310
1311	if (this->numchips > doc->chips_per_floor) {
1312		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1313		return -EIO;
1314	}
1315
1316	if (DoC_is_MillenniumPlus(doc)) {
1317		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1318		if (inftl_bbt_write)
1319			this->bbt_td->options |= NAND_BBT_WRITE;
1320		this->bbt_td->pages[0] = 2;
1321		this->bbt_md = NULL;
1322	} else {
1323		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1324		if (inftl_bbt_write)
1325			this->bbt_td->options |= NAND_BBT_WRITE;
1326		this->bbt_td->offs = 8;
1327		this->bbt_td->len = 8;
1328		this->bbt_td->veroffs = 7;
1329		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1330		this->bbt_td->reserved_block_code = 0x01;
1331		this->bbt_td->pattern = "MSYS_BBT";
1332
1333		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1334		if (inftl_bbt_write)
1335			this->bbt_md->options |= NAND_BBT_WRITE;
1336		this->bbt_md->offs = 8;
1337		this->bbt_md->len = 8;
1338		this->bbt_md->veroffs = 7;
1339		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1340		this->bbt_md->reserved_block_code = 0x01;
1341		this->bbt_md->pattern = "TBB_SYSM";
1342	}
1343
1344	ret = this->scan_bbt(mtd);
1345	if (ret)
1346		return ret;
1347
1348	memset((char *)parts, 0, sizeof(parts));
1349	numparts = inftl_partscan(mtd, parts);
1350	/* At least for now, require the INFTL Media Header.  We could probably
1351	   do without it for non-INFTL use, since all it gives us is
1352	   autopartitioning, but I want to give it more thought. */
1353	if (!numparts)
1354		return -EIO;
1355	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1356}
1357
1358static inline int __init doc2000_init(struct mtd_info *mtd)
1359{
1360	struct nand_chip *this = mtd_to_nand(mtd);
1361	struct doc_priv *doc = nand_get_controller_data(this);
1362
1363	this->read_byte = doc2000_read_byte;
1364	this->write_buf = doc2000_writebuf;
1365	this->read_buf = doc2000_readbuf;
1366	doc->late_init = nftl_scan_bbt;
1367
1368	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1369	doc2000_count_chips(mtd);
1370	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1371	return (4 * doc->chips_per_floor);
1372}
1373
1374static inline int __init doc2001_init(struct mtd_info *mtd)
1375{
1376	struct nand_chip *this = mtd_to_nand(mtd);
1377	struct doc_priv *doc = nand_get_controller_data(this);
1378
1379	this->read_byte = doc2001_read_byte;
1380	this->write_buf = doc2001_writebuf;
1381	this->read_buf = doc2001_readbuf;
1382
1383	ReadDOC(doc->virtadr, ChipID);
1384	ReadDOC(doc->virtadr, ChipID);
1385	ReadDOC(doc->virtadr, ChipID);
1386	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1387		/* It's not a Millennium; it's one of the newer
1388		   DiskOnChip 2000 units with a similar ASIC.
1389		   Treat it like a Millennium, except that it
1390		   can have multiple chips. */
1391		doc2000_count_chips(mtd);
1392		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1393		doc->late_init = inftl_scan_bbt;
1394		return (4 * doc->chips_per_floor);
1395	} else {
1396		/* Bog-standard Millennium */
1397		doc->chips_per_floor = 1;
1398		mtd->name = "DiskOnChip Millennium";
1399		doc->late_init = nftl_scan_bbt;
1400		return 1;
1401	}
1402}
1403
1404static inline int __init doc2001plus_init(struct mtd_info *mtd)
1405{
1406	struct nand_chip *this = mtd_to_nand(mtd);
1407	struct doc_priv *doc = nand_get_controller_data(this);
1408
1409	this->read_byte = doc2001plus_read_byte;
1410	this->write_buf = doc2001plus_writebuf;
1411	this->read_buf = doc2001plus_readbuf;
1412	doc->late_init = inftl_scan_bbt;
1413	this->cmd_ctrl = NULL;
1414	this->select_chip = doc2001plus_select_chip;
1415	this->cmdfunc = doc2001plus_command;
1416	this->ecc.hwctl = doc2001plus_enable_hwecc;
1417
1418	doc->chips_per_floor = 1;
1419	mtd->name = "DiskOnChip Millennium Plus";
1420
1421	return 1;
1422}
1423
1424static int __init doc_probe(unsigned long physadr)
1425{
1426	unsigned char ChipID;
1427	struct mtd_info *mtd;
1428	struct nand_chip *nand;
1429	struct doc_priv *doc;
1430	void __iomem *virtadr;
1431	unsigned char save_control;
1432	unsigned char tmp, tmpb, tmpc;
1433	int reg, len, numchips;
1434	int ret = 0;
1435
1436	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1437		return -EBUSY;
1438	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1439	if (!virtadr) {
1440		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1441		ret = -EIO;
1442		goto error_ioremap;
1443	}
1444
1445	/* It's not possible to cleanly detect the DiskOnChip - the
1446	 * bootup procedure will put the device into reset mode, and
1447	 * it's not possible to talk to it without actually writing
1448	 * to the DOCControl register. So we store the current contents
1449	 * of the DOCControl register's location, in case we later decide
1450	 * that it's not a DiskOnChip, and want to put it back how we
1451	 * found it.
1452	 */
1453	save_control = ReadDOC(virtadr, DOCControl);
1454
1455	/* Reset the DiskOnChip ASIC */
1456	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1457	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1458
1459	/* Enable the DiskOnChip ASIC */
1460	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1461	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1462
1463	ChipID = ReadDOC(virtadr, ChipID);
1464
1465	switch (ChipID) {
1466	case DOC_ChipID_Doc2k:
1467		reg = DoC_2k_ECCStatus;
1468		break;
1469	case DOC_ChipID_DocMil:
1470		reg = DoC_ECCConf;
1471		break;
1472	case DOC_ChipID_DocMilPlus16:
1473	case DOC_ChipID_DocMilPlus32:
1474	case 0:
1475		/* Possible Millennium Plus, need to do more checks */
1476		/* Possibly release from power down mode */
1477		for (tmp = 0; (tmp < 4); tmp++)
1478			ReadDOC(virtadr, Mplus_Power);
1479
1480		/* Reset the Millennium Plus ASIC */
1481		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1482		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1483		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1484
1485		mdelay(1);
1486		/* Enable the Millennium Plus ASIC */
1487		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490		mdelay(1);
1491
1492		ChipID = ReadDOC(virtadr, ChipID);
1493
1494		switch (ChipID) {
1495		case DOC_ChipID_DocMilPlus16:
1496			reg = DoC_Mplus_Toggle;
1497			break;
1498		case DOC_ChipID_DocMilPlus32:
1499			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1500		default:
1501			ret = -ENODEV;
1502			goto notfound;
1503		}
1504		break;
1505
1506	default:
1507		ret = -ENODEV;
1508		goto notfound;
1509	}
1510	/* Check the TOGGLE bit in the ECC register */
1511	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1513	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1514	if ((tmp == tmpb) || (tmp != tmpc)) {
1515		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1516		ret = -ENODEV;
1517		goto notfound;
1518	}
1519
1520	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1521		unsigned char oldval;
1522		unsigned char newval;
1523		nand = mtd_to_nand(mtd);
1524		doc = nand_get_controller_data(nand);
1525		/* Use the alias resolution register to determine if this is
1526		   in fact the same DOC aliased to a new address.  If writes
1527		   to one chip's alias resolution register change the value on
1528		   the other chip, they're the same chip. */
1529		if (ChipID == DOC_ChipID_DocMilPlus16) {
1530			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1531			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1532		} else {
1533			oldval = ReadDOC(doc->virtadr, AliasResolution);
1534			newval = ReadDOC(virtadr, AliasResolution);
1535		}
1536		if (oldval != newval)
1537			continue;
1538		if (ChipID == DOC_ChipID_DocMilPlus16) {
1539			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1540			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1541			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1542		} else {
1543			WriteDOC(~newval, virtadr, AliasResolution);
1544			oldval = ReadDOC(doc->virtadr, AliasResolution);
1545			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1546		}
1547		newval = ~newval;
1548		if (oldval == newval) {
1549			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1550			goto notfound;
1551		}
1552	}
1553
1554	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1555
1556	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1557	      (2 * sizeof(struct nand_bbt_descr));
1558	nand = kzalloc(len, GFP_KERNEL);
1559	if (!nand) {
1560		ret = -ENOMEM;
1561		goto fail;
1562	}
1563
1564	mtd			= nand_to_mtd(nand);
1565	doc			= (struct doc_priv *) (nand + 1);
1566	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1567	nand->bbt_md		= nand->bbt_td + 1;
1568
1569	mtd->owner		= THIS_MODULE;
1570	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1571
1572	nand_set_controller_data(nand, doc);
1573	nand->select_chip	= doc200x_select_chip;
1574	nand->cmd_ctrl		= doc200x_hwcontrol;
1575	nand->dev_ready		= doc200x_dev_ready;
1576	nand->waitfunc		= doc200x_wait;
1577	nand->block_bad		= doc200x_block_bad;
1578	nand->ecc.hwctl		= doc200x_enable_hwecc;
1579	nand->ecc.calculate	= doc200x_calculate_ecc;
1580	nand->ecc.correct	= doc200x_correct_data;
1581
1582	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1583	nand->ecc.size		= 512;
1584	nand->ecc.bytes		= 6;
1585	nand->ecc.strength	= 2;
1586	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
1587	nand->bbt_options	= NAND_BBT_USE_FLASH;
1588	/* Skip the automatic BBT scan so we can run it manually */
1589	nand->options		|= NAND_SKIP_BBTSCAN;
1590
1591	doc->physadr		= physadr;
1592	doc->virtadr		= virtadr;
1593	doc->ChipID		= ChipID;
1594	doc->curfloor		= -1;
1595	doc->curchip		= -1;
1596	doc->mh0_page		= -1;
1597	doc->mh1_page		= -1;
1598	doc->nextdoc		= doclist;
1599
1600	if (ChipID == DOC_ChipID_Doc2k)
1601		numchips = doc2000_init(mtd);
1602	else if (ChipID == DOC_ChipID_DocMilPlus16)
1603		numchips = doc2001plus_init(mtd);
1604	else
1605		numchips = doc2001_init(mtd);
1606
1607	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1608		/* DBB note: i believe nand_release is necessary here, as
1609		   buffers may have been allocated in nand_base.  Check with
1610		   Thomas. FIX ME! */
1611		/* nand_release will call mtd_device_unregister, but we
1612		   haven't yet added it.  This is handled without incident by
1613		   mtd_device_unregister, as far as I can tell. */
1614		nand_release(mtd);
1615		kfree(nand);
1616		goto fail;
1617	}
1618
1619	/* Success! */
1620	doclist = mtd;
1621	return 0;
1622
1623 notfound:
1624	/* Put back the contents of the DOCControl register, in case it's not
1625	   actually a DiskOnChip.  */
1626	WriteDOC(save_control, virtadr, DOCControl);
1627 fail:
1628	iounmap(virtadr);
1629
1630error_ioremap:
1631	release_mem_region(physadr, DOC_IOREMAP_LEN);
1632
1633	return ret;
1634}
1635
1636static void release_nanddoc(void)
1637{
1638	struct mtd_info *mtd, *nextmtd;
1639	struct nand_chip *nand;
1640	struct doc_priv *doc;
1641
1642	for (mtd = doclist; mtd; mtd = nextmtd) {
1643		nand = mtd_to_nand(mtd);
1644		doc = nand_get_controller_data(nand);
1645
1646		nextmtd = doc->nextdoc;
1647		nand_release(mtd);
1648		iounmap(doc->virtadr);
1649		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1650		kfree(nand);
1651	}
1652}
1653
1654static int __init init_nanddoc(void)
1655{
1656	int i, ret = 0;
1657
1658	/* We could create the decoder on demand, if memory is a concern.
1659	 * This way we have it handy, if an error happens
1660	 *
1661	 * Symbolsize is 10 (bits)
1662	 * Primitve polynomial is x^10+x^3+1
1663	 * first consecutive root is 510
1664	 * primitve element to generate roots = 1
1665	 * generator polinomial degree = 4
1666	 */
1667	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668	if (!rs_decoder) {
1669		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1670		return -ENOMEM;
1671	}
1672
1673	if (doc_config_location) {
1674		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1675		ret = doc_probe(doc_config_location);
1676		if (ret < 0)
1677			goto outerr;
1678	} else {
1679		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1680			doc_probe(doc_locations[i]);
1681		}
1682	}
1683	/* No banner message any more. Print a message if no DiskOnChip
1684	   found, so the user knows we at least tried. */
1685	if (!doclist) {
1686		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1687		ret = -ENODEV;
1688		goto outerr;
1689	}
1690	return 0;
1691 outerr:
1692	free_rs(rs_decoder);
1693	return ret;
1694}
1695
1696static void __exit cleanup_nanddoc(void)
1697{
1698	/* Cleanup the nand/DoC resources */
1699	release_nanddoc();
1700
1701	/* Free the reed solomon resources */
1702	if (rs_decoder) {
1703		free_rs(rs_decoder);
1704	}
1705}
1706
1707module_init(init_nanddoc);
1708module_exit(cleanup_nanddoc);
1709
1710MODULE_LICENSE("GPL");
1711MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1712MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");