Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <asm/io.h>
  28
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/nand.h>
  31#include <linux/mtd/doc2000.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34#include <linux/module.h>
  35
  36/* Where to look for the devices? */
  37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  39#endif
  40
  41static unsigned long doc_locations[] __initdata = {
  42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  44	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  45	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  46	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  47	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  48	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  49#else
  50	0xc8000, 0xca000, 0xcc000, 0xce000,
  51	0xd0000, 0xd2000, 0xd4000, 0xd6000,
  52	0xd8000, 0xda000, 0xdc000, 0xde000,
  53	0xe0000, 0xe2000, 0xe4000, 0xe6000,
  54	0xe8000, 0xea000, 0xec000, 0xee000,
  55#endif
  56#endif
  57	0xffffffff };
  58
  59static struct mtd_info *doclist = NULL;
  60
  61struct doc_priv {
  62	void __iomem *virtadr;
  63	unsigned long physadr;
  64	u_char ChipID;
  65	u_char CDSNControl;
  66	int chips_per_floor;	/* The number of chips detected on each floor */
  67	int curfloor;
  68	int curchip;
  69	int mh0_page;
  70	int mh1_page;
  71	struct mtd_info *nextdoc;
  72};
  73
  74/* This is the syndrome computed by the HW ecc generator upon reading an empty
  75   page, one with all 0xff for data and stored ecc code. */
  76static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  77
  78/* This is the ecc value computed by the HW ecc generator upon writing an empty
  79   page, one with all 0xff for data. */
  80static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  81
  82#define INFTL_BBT_RESERVED_BLOCKS 4
  83
  84#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  85#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  86#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  87
  88static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  89			      unsigned int bitmask);
  90static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  91
  92static int debug = 0;
  93module_param(debug, int, 0);
  94
  95static int try_dword = 1;
  96module_param(try_dword, int, 0);
  97
  98static int no_ecc_failures = 0;
  99module_param(no_ecc_failures, int, 0);
 100
 101static int no_autopart = 0;
 102module_param(no_autopart, int, 0);
 103
 104static int show_firmware_partition = 0;
 105module_param(show_firmware_partition, int, 0);
 106
 107#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 108static int inftl_bbt_write = 1;
 109#else
 110static int inftl_bbt_write = 0;
 111#endif
 112module_param(inftl_bbt_write, int, 0);
 113
 114static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 115module_param(doc_config_location, ulong, 0);
 116MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 117
 118/* Sector size for HW ECC */
 119#define SECTOR_SIZE 512
 120/* The sector bytes are packed into NB_DATA 10 bit words */
 121#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 122/* Number of roots */
 123#define NROOTS 4
 124/* First consective root */
 125#define FCR 510
 126/* Number of symbols */
 127#define NN 1023
 128
 129/* the Reed Solomon control structure */
 130static struct rs_control *rs_decoder;
 131
 132/*
 133 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 134 * which we must convert to a standard syndrome usable by the generic
 135 * Reed-Solomon library code.
 136 *
 137 * Fabrice Bellard figured this out in the old docecc code. I added
 138 * some comments, improved a minor bit and converted it to make use
 139 * of the generic Reed-Solomon library. tglx
 140 */
 141static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 142{
 143	int i, j, nerr, errpos[8];
 144	uint8_t parity;
 145	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 146
 147	memset(syn, 0, sizeof(syn));
 148	/* Convert the ecc bytes into words */
 149	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 150	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 151	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 152	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 153	parity = ecc[1];
 154
 155	/* Initialize the syndrome buffer */
 156	for (i = 0; i < NROOTS; i++)
 157		s[i] = ds[0];
 158	/*
 159	 *  Evaluate
 160	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 161	 *  where x = alpha^(FCR + i)
 162	 */
 163	for (j = 1; j < NROOTS; j++) {
 164		if (ds[j] == 0)
 165			continue;
 166		tmp = rs->index_of[ds[j]];
 167		for (i = 0; i < NROOTS; i++)
 168			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 169	}
 170
 171	/* Calc syn[i] = s[i] / alpha^(v + i) */
 172	for (i = 0; i < NROOTS; i++) {
 173		if (s[i])
 174			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 175	}
 176	/* Call the decoder library */
 177	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 178
 179	/* Incorrectable errors ? */
 180	if (nerr < 0)
 181		return nerr;
 182
 183	/*
 184	 * Correct the errors. The bitpositions are a bit of magic,
 185	 * but they are given by the design of the de/encoder circuit
 186	 * in the DoC ASIC's.
 187	 */
 188	for (i = 0; i < nerr; i++) {
 189		int index, bitpos, pos = 1015 - errpos[i];
 190		uint8_t val;
 191		if (pos >= NB_DATA && pos < 1019)
 192			continue;
 193		if (pos < NB_DATA) {
 194			/* extract bit position (MSB first) */
 195			pos = 10 * (NB_DATA - 1 - pos) - 6;
 196			/* now correct the following 10 bits. At most two bytes
 197			   can be modified since pos is even */
 198			index = (pos >> 3) ^ 1;
 199			bitpos = pos & 7;
 200			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 201				val = (uint8_t) (errval[i] >> (2 + bitpos));
 202				parity ^= val;
 203				if (index < SECTOR_SIZE)
 204					data[index] ^= val;
 205			}
 206			index = ((pos >> 3) + 1) ^ 1;
 207			bitpos = (bitpos + 10) & 7;
 208			if (bitpos == 0)
 209				bitpos = 8;
 210			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 211				val = (uint8_t) (errval[i] << (8 - bitpos));
 212				parity ^= val;
 213				if (index < SECTOR_SIZE)
 214					data[index] ^= val;
 215			}
 216		}
 217	}
 218	/* If the parity is wrong, no rescue possible */
 219	return parity ? -EBADMSG : nerr;
 220}
 221
 222static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 223{
 224	volatile char dummy;
 225	int i;
 226
 227	for (i = 0; i < cycles; i++) {
 228		if (DoC_is_Millennium(doc))
 229			dummy = ReadDOC(doc->virtadr, NOP);
 230		else if (DoC_is_MillenniumPlus(doc))
 231			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 232		else
 233			dummy = ReadDOC(doc->virtadr, DOCStatus);
 234	}
 235
 236}
 237
 238#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 239
 240/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 241static int _DoC_WaitReady(struct doc_priv *doc)
 242{
 243	void __iomem *docptr = doc->virtadr;
 244	unsigned long timeo = jiffies + (HZ * 10);
 245
 246	if (debug)
 247		printk("_DoC_WaitReady...\n");
 248	/* Out-of-line routine to wait for chip response */
 249	if (DoC_is_MillenniumPlus(doc)) {
 250		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 251			if (time_after(jiffies, timeo)) {
 252				printk("_DoC_WaitReady timed out.\n");
 253				return -EIO;
 254			}
 255			udelay(1);
 256			cond_resched();
 257		}
 258	} else {
 259		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 260			if (time_after(jiffies, timeo)) {
 261				printk("_DoC_WaitReady timed out.\n");
 262				return -EIO;
 263			}
 264			udelay(1);
 265			cond_resched();
 266		}
 267	}
 268
 269	return 0;
 270}
 271
 272static inline int DoC_WaitReady(struct doc_priv *doc)
 273{
 274	void __iomem *docptr = doc->virtadr;
 275	int ret = 0;
 276
 277	if (DoC_is_MillenniumPlus(doc)) {
 278		DoC_Delay(doc, 4);
 279
 280		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 281			/* Call the out-of-line routine to wait */
 282			ret = _DoC_WaitReady(doc);
 283	} else {
 284		DoC_Delay(doc, 4);
 285
 286		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 287			/* Call the out-of-line routine to wait */
 288			ret = _DoC_WaitReady(doc);
 289		DoC_Delay(doc, 2);
 290	}
 291
 292	if (debug)
 293		printk("DoC_WaitReady OK\n");
 294	return ret;
 295}
 296
 297static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 298{
 299	struct nand_chip *this = mtd->priv;
 300	struct doc_priv *doc = this->priv;
 301	void __iomem *docptr = doc->virtadr;
 302
 303	if (debug)
 304		printk("write_byte %02x\n", datum);
 305	WriteDOC(datum, docptr, CDSNSlowIO);
 306	WriteDOC(datum, docptr, 2k_CDSN_IO);
 307}
 308
 309static u_char doc2000_read_byte(struct mtd_info *mtd)
 310{
 311	struct nand_chip *this = mtd->priv;
 312	struct doc_priv *doc = this->priv;
 313	void __iomem *docptr = doc->virtadr;
 314	u_char ret;
 315
 316	ReadDOC(docptr, CDSNSlowIO);
 317	DoC_Delay(doc, 2);
 318	ret = ReadDOC(docptr, 2k_CDSN_IO);
 319	if (debug)
 320		printk("read_byte returns %02x\n", ret);
 321	return ret;
 322}
 323
 324static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 325{
 326	struct nand_chip *this = mtd->priv;
 327	struct doc_priv *doc = this->priv;
 328	void __iomem *docptr = doc->virtadr;
 329	int i;
 330	if (debug)
 331		printk("writebuf of %d bytes: ", len);
 332	for (i = 0; i < len; i++) {
 333		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 334		if (debug && i < 16)
 335			printk("%02x ", buf[i]);
 336	}
 337	if (debug)
 338		printk("\n");
 339}
 340
 341static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 342{
 343	struct nand_chip *this = mtd->priv;
 344	struct doc_priv *doc = this->priv;
 345	void __iomem *docptr = doc->virtadr;
 346	int i;
 347
 348	if (debug)
 349		printk("readbuf of %d bytes: ", len);
 350
 351	for (i = 0; i < len; i++) {
 352		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 353	}
 354}
 355
 356static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 357{
 358	struct nand_chip *this = mtd->priv;
 359	struct doc_priv *doc = this->priv;
 360	void __iomem *docptr = doc->virtadr;
 361	int i;
 362
 363	if (debug)
 364		printk("readbuf_dword of %d bytes: ", len);
 365
 366	if (unlikely((((unsigned long)buf) | len) & 3)) {
 367		for (i = 0; i < len; i++) {
 368			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 369		}
 370	} else {
 371		for (i = 0; i < len; i += 4) {
 372			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 373		}
 374	}
 375}
 376
 377static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 378{
 379	struct nand_chip *this = mtd->priv;
 380	struct doc_priv *doc = this->priv;
 381	uint16_t ret;
 382
 383	doc200x_select_chip(mtd, nr);
 384	doc200x_hwcontrol(mtd, NAND_CMD_READID,
 385			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 386	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 387	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 388
 389	/* We can't use dev_ready here, but at least we wait for the
 390	 * command to complete
 391	 */
 392	udelay(50);
 393
 394	ret = this->read_byte(mtd) << 8;
 395	ret |= this->read_byte(mtd);
 396
 397	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 398		/* First chip probe. See if we get same results by 32-bit access */
 399		union {
 400			uint32_t dword;
 401			uint8_t byte[4];
 402		} ident;
 403		void __iomem *docptr = doc->virtadr;
 404
 405		doc200x_hwcontrol(mtd, NAND_CMD_READID,
 406				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 407		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 408		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 409				  NAND_NCE | NAND_CTRL_CHANGE);
 410
 411		udelay(50);
 412
 413		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 414		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 415			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 416			this->read_buf = &doc2000_readbuf_dword;
 417		}
 418	}
 419
 420	return ret;
 421}
 422
 423static void __init doc2000_count_chips(struct mtd_info *mtd)
 424{
 425	struct nand_chip *this = mtd->priv;
 426	struct doc_priv *doc = this->priv;
 427	uint16_t mfrid;
 428	int i;
 429
 430	/* Max 4 chips per floor on DiskOnChip 2000 */
 431	doc->chips_per_floor = 4;
 432
 433	/* Find out what the first chip is */
 434	mfrid = doc200x_ident_chip(mtd, 0);
 435
 436	/* Find how many chips in each floor. */
 437	for (i = 1; i < 4; i++) {
 438		if (doc200x_ident_chip(mtd, i) != mfrid)
 439			break;
 440	}
 441	doc->chips_per_floor = i;
 442	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 443}
 444
 445static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 446{
 447	struct doc_priv *doc = this->priv;
 448
 449	int status;
 450
 451	DoC_WaitReady(doc);
 452	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 453	DoC_WaitReady(doc);
 454	status = (int)this->read_byte(mtd);
 455
 456	return status;
 457}
 458
 459static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 460{
 461	struct nand_chip *this = mtd->priv;
 462	struct doc_priv *doc = this->priv;
 463	void __iomem *docptr = doc->virtadr;
 464
 465	WriteDOC(datum, docptr, CDSNSlowIO);
 466	WriteDOC(datum, docptr, Mil_CDSN_IO);
 467	WriteDOC(datum, docptr, WritePipeTerm);
 468}
 469
 470static u_char doc2001_read_byte(struct mtd_info *mtd)
 471{
 472	struct nand_chip *this = mtd->priv;
 473	struct doc_priv *doc = this->priv;
 474	void __iomem *docptr = doc->virtadr;
 475
 476	//ReadDOC(docptr, CDSNSlowIO);
 477	/* 11.4.5 -- delay twice to allow extended length cycle */
 478	DoC_Delay(doc, 2);
 479	ReadDOC(docptr, ReadPipeInit);
 480	//return ReadDOC(docptr, Mil_CDSN_IO);
 481	return ReadDOC(docptr, LastDataRead);
 482}
 483
 484static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 485{
 486	struct nand_chip *this = mtd->priv;
 487	struct doc_priv *doc = this->priv;
 488	void __iomem *docptr = doc->virtadr;
 489	int i;
 490
 491	for (i = 0; i < len; i++)
 492		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 493	/* Terminate write pipeline */
 494	WriteDOC(0x00, docptr, WritePipeTerm);
 495}
 496
 497static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 498{
 499	struct nand_chip *this = mtd->priv;
 500	struct doc_priv *doc = this->priv;
 501	void __iomem *docptr = doc->virtadr;
 502	int i;
 503
 504	/* Start read pipeline */
 505	ReadDOC(docptr, ReadPipeInit);
 506
 507	for (i = 0; i < len - 1; i++)
 508		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 509
 510	/* Terminate read pipeline */
 511	buf[i] = ReadDOC(docptr, LastDataRead);
 512}
 513
 514static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 515{
 516	struct nand_chip *this = mtd->priv;
 517	struct doc_priv *doc = this->priv;
 518	void __iomem *docptr = doc->virtadr;
 519	u_char ret;
 520
 521	ReadDOC(docptr, Mplus_ReadPipeInit);
 522	ReadDOC(docptr, Mplus_ReadPipeInit);
 523	ret = ReadDOC(docptr, Mplus_LastDataRead);
 524	if (debug)
 525		printk("read_byte returns %02x\n", ret);
 526	return ret;
 527}
 528
 529static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 530{
 531	struct nand_chip *this = mtd->priv;
 532	struct doc_priv *doc = this->priv;
 533	void __iomem *docptr = doc->virtadr;
 534	int i;
 535
 536	if (debug)
 537		printk("writebuf of %d bytes: ", len);
 538	for (i = 0; i < len; i++) {
 539		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 540		if (debug && i < 16)
 541			printk("%02x ", buf[i]);
 542	}
 543	if (debug)
 544		printk("\n");
 545}
 546
 547static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 548{
 549	struct nand_chip *this = mtd->priv;
 550	struct doc_priv *doc = this->priv;
 551	void __iomem *docptr = doc->virtadr;
 552	int i;
 553
 554	if (debug)
 555		printk("readbuf of %d bytes: ", len);
 556
 557	/* Start read pipeline */
 558	ReadDOC(docptr, Mplus_ReadPipeInit);
 559	ReadDOC(docptr, Mplus_ReadPipeInit);
 560
 561	for (i = 0; i < len - 2; i++) {
 562		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 563		if (debug && i < 16)
 564			printk("%02x ", buf[i]);
 565	}
 566
 567	/* Terminate read pipeline */
 568	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 569	if (debug && i < 16)
 570		printk("%02x ", buf[len - 2]);
 571	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 572	if (debug && i < 16)
 573		printk("%02x ", buf[len - 1]);
 574	if (debug)
 575		printk("\n");
 576}
 577
 578static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 579{
 580	struct nand_chip *this = mtd->priv;
 581	struct doc_priv *doc = this->priv;
 582	void __iomem *docptr = doc->virtadr;
 583	int floor = 0;
 584
 585	if (debug)
 586		printk("select chip (%d)\n", chip);
 587
 588	if (chip == -1) {
 589		/* Disable flash internally */
 590		WriteDOC(0, docptr, Mplus_FlashSelect);
 591		return;
 592	}
 593
 594	floor = chip / doc->chips_per_floor;
 595	chip -= (floor * doc->chips_per_floor);
 596
 597	/* Assert ChipEnable and deassert WriteProtect */
 598	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 599	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 600
 601	doc->curchip = chip;
 602	doc->curfloor = floor;
 603}
 604
 605static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 606{
 607	struct nand_chip *this = mtd->priv;
 608	struct doc_priv *doc = this->priv;
 609	void __iomem *docptr = doc->virtadr;
 610	int floor = 0;
 611
 612	if (debug)
 613		printk("select chip (%d)\n", chip);
 614
 615	if (chip == -1)
 616		return;
 617
 618	floor = chip / doc->chips_per_floor;
 619	chip -= (floor * doc->chips_per_floor);
 620
 621	/* 11.4.4 -- deassert CE before changing chip */
 622	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 623
 624	WriteDOC(floor, docptr, FloorSelect);
 625	WriteDOC(chip, docptr, CDSNDeviceSelect);
 626
 627	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 628
 629	doc->curchip = chip;
 630	doc->curfloor = floor;
 631}
 632
 633#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 634
 635static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 636			      unsigned int ctrl)
 637{
 638	struct nand_chip *this = mtd->priv;
 639	struct doc_priv *doc = this->priv;
 640	void __iomem *docptr = doc->virtadr;
 641
 642	if (ctrl & NAND_CTRL_CHANGE) {
 643		doc->CDSNControl &= ~CDSN_CTRL_MSK;
 644		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 645		if (debug)
 646			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 647		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 648		/* 11.4.3 -- 4 NOPs after CSDNControl write */
 649		DoC_Delay(doc, 4);
 650	}
 651	if (cmd != NAND_CMD_NONE) {
 652		if (DoC_is_2000(doc))
 653			doc2000_write_byte(mtd, cmd);
 654		else
 655			doc2001_write_byte(mtd, cmd);
 656	}
 657}
 658
 659static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 660{
 661	struct nand_chip *this = mtd->priv;
 662	struct doc_priv *doc = this->priv;
 663	void __iomem *docptr = doc->virtadr;
 664
 665	/*
 666	 * Must terminate write pipeline before sending any commands
 667	 * to the device.
 668	 */
 669	if (command == NAND_CMD_PAGEPROG) {
 670		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 671		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 672	}
 673
 674	/*
 675	 * Write out the command to the device.
 676	 */
 677	if (command == NAND_CMD_SEQIN) {
 678		int readcmd;
 679
 680		if (column >= mtd->writesize) {
 681			/* OOB area */
 682			column -= mtd->writesize;
 683			readcmd = NAND_CMD_READOOB;
 684		} else if (column < 256) {
 685			/* First 256 bytes --> READ0 */
 686			readcmd = NAND_CMD_READ0;
 687		} else {
 688			column -= 256;
 689			readcmd = NAND_CMD_READ1;
 690		}
 691		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 692	}
 693	WriteDOC(command, docptr, Mplus_FlashCmd);
 694	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 695	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 696
 697	if (column != -1 || page_addr != -1) {
 698		/* Serially input address */
 699		if (column != -1) {
 700			/* Adjust columns for 16 bit buswidth */
 701			if (this->options & NAND_BUSWIDTH_16 &&
 702					!nand_opcode_8bits(command))
 703				column >>= 1;
 704			WriteDOC(column, docptr, Mplus_FlashAddress);
 705		}
 706		if (page_addr != -1) {
 707			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 708			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 709			/* One more address cycle for higher density devices */
 710			if (this->chipsize & 0x0c000000) {
 711				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 712				printk("high density\n");
 713			}
 714		}
 715		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 716		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 717		/* deassert ALE */
 718		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 719		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 720			WriteDOC(0, docptr, Mplus_FlashControl);
 721	}
 722
 723	/*
 724	 * program and erase have their own busy handlers
 725	 * status and sequential in needs no delay
 726	 */
 727	switch (command) {
 728
 729	case NAND_CMD_PAGEPROG:
 730	case NAND_CMD_ERASE1:
 731	case NAND_CMD_ERASE2:
 732	case NAND_CMD_SEQIN:
 733	case NAND_CMD_STATUS:
 734		return;
 735
 736	case NAND_CMD_RESET:
 737		if (this->dev_ready)
 738			break;
 739		udelay(this->chip_delay);
 740		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 741		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 742		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 743		while (!(this->read_byte(mtd) & 0x40)) ;
 744		return;
 745
 746		/* This applies to read commands */
 747	default:
 748		/*
 749		 * If we don't have access to the busy pin, we apply the given
 750		 * command delay
 751		 */
 752		if (!this->dev_ready) {
 753			udelay(this->chip_delay);
 754			return;
 755		}
 756	}
 757
 758	/* Apply this short delay always to ensure that we do wait tWB in
 759	 * any case on any machine. */
 760	ndelay(100);
 761	/* wait until command is processed */
 762	while (!this->dev_ready(mtd)) ;
 763}
 764
 765static int doc200x_dev_ready(struct mtd_info *mtd)
 766{
 767	struct nand_chip *this = mtd->priv;
 768	struct doc_priv *doc = this->priv;
 769	void __iomem *docptr = doc->virtadr;
 770
 771	if (DoC_is_MillenniumPlus(doc)) {
 772		/* 11.4.2 -- must NOP four times before checking FR/B# */
 773		DoC_Delay(doc, 4);
 774		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 775			if (debug)
 776				printk("not ready\n");
 777			return 0;
 778		}
 779		if (debug)
 780			printk("was ready\n");
 781		return 1;
 782	} else {
 783		/* 11.4.2 -- must NOP four times before checking FR/B# */
 784		DoC_Delay(doc, 4);
 785		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 786			if (debug)
 787				printk("not ready\n");
 788			return 0;
 789		}
 790		/* 11.4.2 -- Must NOP twice if it's ready */
 791		DoC_Delay(doc, 2);
 792		if (debug)
 793			printk("was ready\n");
 794		return 1;
 795	}
 796}
 797
 798static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 799{
 800	/* This is our last resort if we couldn't find or create a BBT.  Just
 801	   pretend all blocks are good. */
 802	return 0;
 803}
 804
 805static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 806{
 807	struct nand_chip *this = mtd->priv;
 808	struct doc_priv *doc = this->priv;
 809	void __iomem *docptr = doc->virtadr;
 810
 811	/* Prime the ECC engine */
 812	switch (mode) {
 813	case NAND_ECC_READ:
 814		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 815		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 816		break;
 817	case NAND_ECC_WRITE:
 818		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 819		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 820		break;
 821	}
 822}
 823
 824static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 825{
 826	struct nand_chip *this = mtd->priv;
 827	struct doc_priv *doc = this->priv;
 828	void __iomem *docptr = doc->virtadr;
 829
 830	/* Prime the ECC engine */
 831	switch (mode) {
 832	case NAND_ECC_READ:
 833		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 834		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 835		break;
 836	case NAND_ECC_WRITE:
 837		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 838		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 839		break;
 840	}
 841}
 842
 843/* This code is only called on write */
 844static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 845{
 846	struct nand_chip *this = mtd->priv;
 847	struct doc_priv *doc = this->priv;
 848	void __iomem *docptr = doc->virtadr;
 849	int i;
 850	int emptymatch = 1;
 851
 852	/* flush the pipeline */
 853	if (DoC_is_2000(doc)) {
 854		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 855		WriteDOC(0, docptr, 2k_CDSN_IO);
 856		WriteDOC(0, docptr, 2k_CDSN_IO);
 857		WriteDOC(0, docptr, 2k_CDSN_IO);
 858		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 859	} else if (DoC_is_MillenniumPlus(doc)) {
 860		WriteDOC(0, docptr, Mplus_NOP);
 861		WriteDOC(0, docptr, Mplus_NOP);
 862		WriteDOC(0, docptr, Mplus_NOP);
 863	} else {
 864		WriteDOC(0, docptr, NOP);
 865		WriteDOC(0, docptr, NOP);
 866		WriteDOC(0, docptr, NOP);
 867	}
 868
 869	for (i = 0; i < 6; i++) {
 870		if (DoC_is_MillenniumPlus(doc))
 871			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 872		else
 873			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 874		if (ecc_code[i] != empty_write_ecc[i])
 875			emptymatch = 0;
 876	}
 877	if (DoC_is_MillenniumPlus(doc))
 878		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 879	else
 880		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 881#if 0
 882	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 883	if (emptymatch) {
 884		/* Note: this somewhat expensive test should not be triggered
 885		   often.  It could be optimized away by examining the data in
 886		   the writebuf routine, and remembering the result. */
 887		for (i = 0; i < 512; i++) {
 888			if (dat[i] == 0xff)
 889				continue;
 890			emptymatch = 0;
 891			break;
 892		}
 893	}
 894	/* If emptymatch still =1, we do have an all-0xff data buffer.
 895	   Return all-0xff ecc value instead of the computed one, so
 896	   it'll look just like a freshly-erased page. */
 897	if (emptymatch)
 898		memset(ecc_code, 0xff, 6);
 899#endif
 900	return 0;
 901}
 902
 903static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 904				u_char *read_ecc, u_char *isnull)
 905{
 906	int i, ret = 0;
 907	struct nand_chip *this = mtd->priv;
 908	struct doc_priv *doc = this->priv;
 909	void __iomem *docptr = doc->virtadr;
 910	uint8_t calc_ecc[6];
 911	volatile u_char dummy;
 912	int emptymatch = 1;
 913
 914	/* flush the pipeline */
 915	if (DoC_is_2000(doc)) {
 916		dummy = ReadDOC(docptr, 2k_ECCStatus);
 917		dummy = ReadDOC(docptr, 2k_ECCStatus);
 918		dummy = ReadDOC(docptr, 2k_ECCStatus);
 919	} else if (DoC_is_MillenniumPlus(doc)) {
 920		dummy = ReadDOC(docptr, Mplus_ECCConf);
 921		dummy = ReadDOC(docptr, Mplus_ECCConf);
 922		dummy = ReadDOC(docptr, Mplus_ECCConf);
 923	} else {
 924		dummy = ReadDOC(docptr, ECCConf);
 925		dummy = ReadDOC(docptr, ECCConf);
 926		dummy = ReadDOC(docptr, ECCConf);
 927	}
 928
 929	/* Error occurred ? */
 930	if (dummy & 0x80) {
 931		for (i = 0; i < 6; i++) {
 932			if (DoC_is_MillenniumPlus(doc))
 933				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 934			else
 935				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 936			if (calc_ecc[i] != empty_read_syndrome[i])
 937				emptymatch = 0;
 938		}
 939		/* If emptymatch=1, the read syndrome is consistent with an
 940		   all-0xff data and stored ecc block.  Check the stored ecc. */
 941		if (emptymatch) {
 942			for (i = 0; i < 6; i++) {
 943				if (read_ecc[i] == 0xff)
 944					continue;
 945				emptymatch = 0;
 946				break;
 947			}
 948		}
 949		/* If emptymatch still =1, check the data block. */
 950		if (emptymatch) {
 951			/* Note: this somewhat expensive test should not be triggered
 952			   often.  It could be optimized away by examining the data in
 953			   the readbuf routine, and remembering the result. */
 954			for (i = 0; i < 512; i++) {
 955				if (dat[i] == 0xff)
 956					continue;
 957				emptymatch = 0;
 958				break;
 959			}
 960		}
 961		/* If emptymatch still =1, this is almost certainly a freshly-
 962		   erased block, in which case the ECC will not come out right.
 963		   We'll suppress the error and tell the caller everything's
 964		   OK.  Because it is. */
 965		if (!emptymatch)
 966			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
 967		if (ret > 0)
 968			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
 969	}
 970	if (DoC_is_MillenniumPlus(doc))
 971		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 972	else
 973		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 974	if (no_ecc_failures && mtd_is_eccerr(ret)) {
 975		printk(KERN_ERR "suppressing ECC failure\n");
 976		ret = 0;
 977	}
 978	return ret;
 979}
 980
 981//u_char mydatabuf[528];
 982
 983/* The strange out-of-order .oobfree list below is a (possibly unneeded)
 984 * attempt to retain compatibility.  It used to read:
 985 * 	.oobfree = { {8, 8} }
 986 * Since that leaves two bytes unusable, it was changed.  But the following
 987 * scheme might affect existing jffs2 installs by moving the cleanmarker:
 988 * 	.oobfree = { {6, 10} }
 989 * jffs2 seems to handle the above gracefully, but the current scheme seems
 990 * safer.  The only problem with it is that any code that parses oobfree must
 991 * be able to handle out-of-order segments.
 992 */
 993static struct nand_ecclayout doc200x_oobinfo = {
 994	.eccbytes = 6,
 995	.eccpos = {0, 1, 2, 3, 4, 5},
 996	.oobfree = {{8, 8}, {6, 2}}
 997};
 998
 999/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000   On successful return, buf will contain a copy of the media header for
1001   further processing.  id is the string to scan for, and will presumably be
1002   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1003   header.  The page #s of the found media headers are placed in mh0_page and
1004   mh1_page in the DOC private structure. */
1005static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006{
1007	struct nand_chip *this = mtd->priv;
1008	struct doc_priv *doc = this->priv;
1009	unsigned offs;
1010	int ret;
1011	size_t retlen;
1012
1013	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015		if (retlen != mtd->writesize)
1016			continue;
1017		if (ret) {
1018			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019		}
1020		if (memcmp(buf, id, 6))
1021			continue;
1022		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023		if (doc->mh0_page == -1) {
1024			doc->mh0_page = offs >> this->page_shift;
1025			if (!findmirror)
1026				return 1;
1027			continue;
1028		}
1029		doc->mh1_page = offs >> this->page_shift;
1030		return 2;
1031	}
1032	if (doc->mh0_page == -1) {
1033		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034		return 0;
1035	}
1036	/* Only one mediaheader was found.  We want buf to contain a
1037	   mediaheader on return, so we'll have to re-read the one we found. */
1038	offs = doc->mh0_page << this->page_shift;
1039	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040	if (retlen != mtd->writesize) {
1041		/* Insanity.  Give up. */
1042		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043		return 0;
1044	}
1045	return 1;
1046}
1047
1048static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049{
1050	struct nand_chip *this = mtd->priv;
1051	struct doc_priv *doc = this->priv;
1052	int ret = 0;
1053	u_char *buf;
1054	struct NFTLMediaHeader *mh;
1055	const unsigned psize = 1 << this->page_shift;
1056	int numparts = 0;
1057	unsigned blocks, maxblocks;
1058	int offs, numheaders;
1059
1060	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061	if (!buf) {
1062		return 0;
1063	}
1064	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065		goto out;
1066	mh = (struct NFTLMediaHeader *)buf;
1067
1068	le16_to_cpus(&mh->NumEraseUnits);
1069	le16_to_cpus(&mh->FirstPhysicalEUN);
1070	le32_to_cpus(&mh->FormattedSize);
1071
1072	printk(KERN_INFO "    DataOrgID        = %s\n"
1073			 "    NumEraseUnits    = %d\n"
1074			 "    FirstPhysicalEUN = %d\n"
1075			 "    FormattedSize    = %d\n"
1076			 "    UnitSizeFactor   = %d\n",
1077		mh->DataOrgID, mh->NumEraseUnits,
1078		mh->FirstPhysicalEUN, mh->FormattedSize,
1079		mh->UnitSizeFactor);
1080
1081	blocks = mtd->size >> this->phys_erase_shift;
1082	maxblocks = min(32768U, mtd->erasesize - psize);
1083
1084	if (mh->UnitSizeFactor == 0x00) {
1085		/* Auto-determine UnitSizeFactor.  The constraints are:
1086		   - There can be at most 32768 virtual blocks.
1087		   - There can be at most (virtual block size - page size)
1088		   virtual blocks (because MediaHeader+BBT must fit in 1).
1089		 */
1090		mh->UnitSizeFactor = 0xff;
1091		while (blocks > maxblocks) {
1092			blocks >>= 1;
1093			maxblocks = min(32768U, (maxblocks << 1) + psize);
1094			mh->UnitSizeFactor--;
1095		}
1096		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097	}
1098
1099	/* NOTE: The lines below modify internal variables of the NAND and MTD
1100	   layers; variables with have already been configured by nand_scan.
1101	   Unfortunately, we didn't know before this point what these values
1102	   should be.  Thus, this code is somewhat dependent on the exact
1103	   implementation of the NAND layer.  */
1104	if (mh->UnitSizeFactor != 0xff) {
1105		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108		blocks = mtd->size >> this->bbt_erase_shift;
1109		maxblocks = min(32768U, mtd->erasesize - psize);
1110	}
1111
1112	if (blocks > maxblocks) {
1113		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114		goto out;
1115	}
1116
1117	/* Skip past the media headers. */
1118	offs = max(doc->mh0_page, doc->mh1_page);
1119	offs <<= this->page_shift;
1120	offs += mtd->erasesize;
1121
1122	if (show_firmware_partition == 1) {
1123		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124		parts[0].offset = 0;
1125		parts[0].size = offs;
1126		numparts = 1;
1127	}
1128
1129	parts[numparts].name = " DiskOnChip BDTL partition";
1130	parts[numparts].offset = offs;
1131	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132
1133	offs += parts[numparts].size;
1134	numparts++;
1135
1136	if (offs < mtd->size) {
1137		parts[numparts].name = " DiskOnChip Remainder partition";
1138		parts[numparts].offset = offs;
1139		parts[numparts].size = mtd->size - offs;
1140		numparts++;
1141	}
1142
1143	ret = numparts;
1144 out:
1145	kfree(buf);
1146	return ret;
1147}
1148
1149/* This is a stripped-down copy of the code in inftlmount.c */
1150static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151{
1152	struct nand_chip *this = mtd->priv;
1153	struct doc_priv *doc = this->priv;
1154	int ret = 0;
1155	u_char *buf;
1156	struct INFTLMediaHeader *mh;
1157	struct INFTLPartition *ip;
1158	int numparts = 0;
1159	int blocks;
1160	int vshift, lastvunit = 0;
1161	int i;
1162	int end = mtd->size;
1163
1164	if (inftl_bbt_write)
1165		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166
1167	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168	if (!buf) {
1169		return 0;
1170	}
1171
1172	if (!find_media_headers(mtd, buf, "BNAND", 0))
1173		goto out;
1174	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175	mh = (struct INFTLMediaHeader *)buf;
1176
1177	le32_to_cpus(&mh->NoOfBootImageBlocks);
1178	le32_to_cpus(&mh->NoOfBinaryPartitions);
1179	le32_to_cpus(&mh->NoOfBDTLPartitions);
1180	le32_to_cpus(&mh->BlockMultiplierBits);
1181	le32_to_cpus(&mh->FormatFlags);
1182	le32_to_cpus(&mh->PercentUsed);
1183
1184	printk(KERN_INFO "    bootRecordID          = %s\n"
1185			 "    NoOfBootImageBlocks   = %d\n"
1186			 "    NoOfBinaryPartitions  = %d\n"
1187			 "    NoOfBDTLPartitions    = %d\n"
1188			 "    BlockMultiplerBits    = %d\n"
1189			 "    FormatFlgs            = %d\n"
1190			 "    OsakVersion           = %d.%d.%d.%d\n"
1191			 "    PercentUsed           = %d\n",
1192		mh->bootRecordID, mh->NoOfBootImageBlocks,
1193		mh->NoOfBinaryPartitions,
1194		mh->NoOfBDTLPartitions,
1195		mh->BlockMultiplierBits, mh->FormatFlags,
1196		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200		mh->PercentUsed);
1201
1202	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203
1204	blocks = mtd->size >> vshift;
1205	if (blocks > 32768) {
1206		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1207		goto out;
1208	}
1209
1210	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1213		goto out;
1214	}
1215
1216	/* Scan the partitions */
1217	for (i = 0; (i < 4); i++) {
1218		ip = &(mh->Partitions[i]);
1219		le32_to_cpus(&ip->virtualUnits);
1220		le32_to_cpus(&ip->firstUnit);
1221		le32_to_cpus(&ip->lastUnit);
1222		le32_to_cpus(&ip->flags);
1223		le32_to_cpus(&ip->spareUnits);
1224		le32_to_cpus(&ip->Reserved0);
1225
1226		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1227			"        virtualUnits    = %d\n"
1228			"        firstUnit       = %d\n"
1229			"        lastUnit        = %d\n"
1230			"        flags           = 0x%x\n"
1231			"        spareUnits      = %d\n",
1232			i, ip->virtualUnits, ip->firstUnit,
1233			ip->lastUnit, ip->flags,
1234			ip->spareUnits);
1235
1236		if ((show_firmware_partition == 1) &&
1237		    (i == 0) && (ip->firstUnit > 0)) {
1238			parts[0].name = " DiskOnChip IPL / Media Header partition";
1239			parts[0].offset = 0;
1240			parts[0].size = mtd->erasesize * ip->firstUnit;
1241			numparts = 1;
1242		}
1243
1244		if (ip->flags & INFTL_BINARY)
1245			parts[numparts].name = " DiskOnChip BDK partition";
1246		else
1247			parts[numparts].name = " DiskOnChip BDTL partition";
1248		parts[numparts].offset = ip->firstUnit << vshift;
1249		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250		numparts++;
1251		if (ip->lastUnit > lastvunit)
1252			lastvunit = ip->lastUnit;
1253		if (ip->flags & INFTL_LAST)
1254			break;
1255	}
1256	lastvunit++;
1257	if ((lastvunit << vshift) < end) {
1258		parts[numparts].name = " DiskOnChip Remainder partition";
1259		parts[numparts].offset = lastvunit << vshift;
1260		parts[numparts].size = end - parts[numparts].offset;
1261		numparts++;
1262	}
1263	ret = numparts;
1264 out:
1265	kfree(buf);
1266	return ret;
1267}
1268
1269static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270{
1271	int ret, numparts;
1272	struct nand_chip *this = mtd->priv;
1273	struct doc_priv *doc = this->priv;
1274	struct mtd_partition parts[2];
1275
1276	memset((char *)parts, 0, sizeof(parts));
1277	/* On NFTL, we have to find the media headers before we can read the
1278	   BBTs, since they're stored in the media header eraseblocks. */
1279	numparts = nftl_partscan(mtd, parts);
1280	if (!numparts)
1281		return -EIO;
1282	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284				NAND_BBT_VERSION;
1285	this->bbt_td->veroffs = 7;
1286	this->bbt_td->pages[0] = doc->mh0_page + 1;
1287	if (doc->mh1_page != -1) {
1288		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290					NAND_BBT_VERSION;
1291		this->bbt_md->veroffs = 7;
1292		this->bbt_md->pages[0] = doc->mh1_page + 1;
1293	} else {
1294		this->bbt_md = NULL;
1295	}
1296
1297	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1298	   At least as nand_bbt.c is currently written. */
1299	if ((ret = nand_scan_bbt(mtd, NULL)))
1300		return ret;
1301	mtd_device_register(mtd, NULL, 0);
1302	if (!no_autopart)
1303		mtd_device_register(mtd, parts, numparts);
1304	return 0;
1305}
1306
1307static int __init inftl_scan_bbt(struct mtd_info *mtd)
1308{
1309	int ret, numparts;
1310	struct nand_chip *this = mtd->priv;
1311	struct doc_priv *doc = this->priv;
1312	struct mtd_partition parts[5];
1313
1314	if (this->numchips > doc->chips_per_floor) {
1315		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1316		return -EIO;
1317	}
1318
1319	if (DoC_is_MillenniumPlus(doc)) {
1320		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1321		if (inftl_bbt_write)
1322			this->bbt_td->options |= NAND_BBT_WRITE;
1323		this->bbt_td->pages[0] = 2;
1324		this->bbt_md = NULL;
1325	} else {
1326		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1327		if (inftl_bbt_write)
1328			this->bbt_td->options |= NAND_BBT_WRITE;
1329		this->bbt_td->offs = 8;
1330		this->bbt_td->len = 8;
1331		this->bbt_td->veroffs = 7;
1332		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1333		this->bbt_td->reserved_block_code = 0x01;
1334		this->bbt_td->pattern = "MSYS_BBT";
1335
1336		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1337		if (inftl_bbt_write)
1338			this->bbt_md->options |= NAND_BBT_WRITE;
1339		this->bbt_md->offs = 8;
1340		this->bbt_md->len = 8;
1341		this->bbt_md->veroffs = 7;
1342		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1343		this->bbt_md->reserved_block_code = 0x01;
1344		this->bbt_md->pattern = "TBB_SYSM";
1345	}
1346
1347	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1348	   At least as nand_bbt.c is currently written. */
1349	if ((ret = nand_scan_bbt(mtd, NULL)))
1350		return ret;
1351	memset((char *)parts, 0, sizeof(parts));
1352	numparts = inftl_partscan(mtd, parts);
1353	/* At least for now, require the INFTL Media Header.  We could probably
1354	   do without it for non-INFTL use, since all it gives us is
1355	   autopartitioning, but I want to give it more thought. */
1356	if (!numparts)
1357		return -EIO;
1358	mtd_device_register(mtd, NULL, 0);
1359	if (!no_autopart)
1360		mtd_device_register(mtd, parts, numparts);
1361	return 0;
1362}
1363
1364static inline int __init doc2000_init(struct mtd_info *mtd)
1365{
1366	struct nand_chip *this = mtd->priv;
1367	struct doc_priv *doc = this->priv;
1368
1369	this->read_byte = doc2000_read_byte;
1370	this->write_buf = doc2000_writebuf;
1371	this->read_buf = doc2000_readbuf;
1372	this->scan_bbt = nftl_scan_bbt;
1373
1374	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1375	doc2000_count_chips(mtd);
1376	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1377	return (4 * doc->chips_per_floor);
1378}
1379
1380static inline int __init doc2001_init(struct mtd_info *mtd)
1381{
1382	struct nand_chip *this = mtd->priv;
1383	struct doc_priv *doc = this->priv;
1384
1385	this->read_byte = doc2001_read_byte;
1386	this->write_buf = doc2001_writebuf;
1387	this->read_buf = doc2001_readbuf;
1388
1389	ReadDOC(doc->virtadr, ChipID);
1390	ReadDOC(doc->virtadr, ChipID);
1391	ReadDOC(doc->virtadr, ChipID);
1392	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1393		/* It's not a Millennium; it's one of the newer
1394		   DiskOnChip 2000 units with a similar ASIC.
1395		   Treat it like a Millennium, except that it
1396		   can have multiple chips. */
1397		doc2000_count_chips(mtd);
1398		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1399		this->scan_bbt = inftl_scan_bbt;
1400		return (4 * doc->chips_per_floor);
1401	} else {
1402		/* Bog-standard Millennium */
1403		doc->chips_per_floor = 1;
1404		mtd->name = "DiskOnChip Millennium";
1405		this->scan_bbt = nftl_scan_bbt;
1406		return 1;
1407	}
1408}
1409
1410static inline int __init doc2001plus_init(struct mtd_info *mtd)
1411{
1412	struct nand_chip *this = mtd->priv;
1413	struct doc_priv *doc = this->priv;
1414
1415	this->read_byte = doc2001plus_read_byte;
1416	this->write_buf = doc2001plus_writebuf;
1417	this->read_buf = doc2001plus_readbuf;
1418	this->scan_bbt = inftl_scan_bbt;
1419	this->cmd_ctrl = NULL;
1420	this->select_chip = doc2001plus_select_chip;
1421	this->cmdfunc = doc2001plus_command;
1422	this->ecc.hwctl = doc2001plus_enable_hwecc;
1423
1424	doc->chips_per_floor = 1;
1425	mtd->name = "DiskOnChip Millennium Plus";
1426
1427	return 1;
1428}
1429
1430static int __init doc_probe(unsigned long physadr)
1431{
1432	unsigned char ChipID;
1433	struct mtd_info *mtd;
1434	struct nand_chip *nand;
1435	struct doc_priv *doc;
1436	void __iomem *virtadr;
1437	unsigned char save_control;
1438	unsigned char tmp, tmpb, tmpc;
1439	int reg, len, numchips;
1440	int ret = 0;
1441
1442	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1443		return -EBUSY;
1444	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1445	if (!virtadr) {
1446		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1447		ret = -EIO;
1448		goto error_ioremap;
1449	}
1450
1451	/* It's not possible to cleanly detect the DiskOnChip - the
1452	 * bootup procedure will put the device into reset mode, and
1453	 * it's not possible to talk to it without actually writing
1454	 * to the DOCControl register. So we store the current contents
1455	 * of the DOCControl register's location, in case we later decide
1456	 * that it's not a DiskOnChip, and want to put it back how we
1457	 * found it.
1458	 */
1459	save_control = ReadDOC(virtadr, DOCControl);
1460
1461	/* Reset the DiskOnChip ASIC */
1462	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1463	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1464
1465	/* Enable the DiskOnChip ASIC */
1466	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1467	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1468
1469	ChipID = ReadDOC(virtadr, ChipID);
1470
1471	switch (ChipID) {
1472	case DOC_ChipID_Doc2k:
1473		reg = DoC_2k_ECCStatus;
1474		break;
1475	case DOC_ChipID_DocMil:
1476		reg = DoC_ECCConf;
1477		break;
1478	case DOC_ChipID_DocMilPlus16:
1479	case DOC_ChipID_DocMilPlus32:
1480	case 0:
1481		/* Possible Millennium Plus, need to do more checks */
1482		/* Possibly release from power down mode */
1483		for (tmp = 0; (tmp < 4); tmp++)
1484			ReadDOC(virtadr, Mplus_Power);
1485
1486		/* Reset the Millennium Plus ASIC */
1487		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490
1491		mdelay(1);
1492		/* Enable the Millennium Plus ASIC */
1493		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1494		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1495		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1496		mdelay(1);
1497
1498		ChipID = ReadDOC(virtadr, ChipID);
1499
1500		switch (ChipID) {
1501		case DOC_ChipID_DocMilPlus16:
1502			reg = DoC_Mplus_Toggle;
1503			break;
1504		case DOC_ChipID_DocMilPlus32:
1505			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1506		default:
1507			ret = -ENODEV;
1508			goto notfound;
1509		}
1510		break;
1511
1512	default:
1513		ret = -ENODEV;
1514		goto notfound;
1515	}
1516	/* Check the TOGGLE bit in the ECC register */
1517	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1519	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1520	if ((tmp == tmpb) || (tmp != tmpc)) {
1521		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1522		ret = -ENODEV;
1523		goto notfound;
1524	}
1525
1526	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1527		unsigned char oldval;
1528		unsigned char newval;
1529		nand = mtd->priv;
1530		doc = nand->priv;
1531		/* Use the alias resolution register to determine if this is
1532		   in fact the same DOC aliased to a new address.  If writes
1533		   to one chip's alias resolution register change the value on
1534		   the other chip, they're the same chip. */
1535		if (ChipID == DOC_ChipID_DocMilPlus16) {
1536			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1537			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1538		} else {
1539			oldval = ReadDOC(doc->virtadr, AliasResolution);
1540			newval = ReadDOC(virtadr, AliasResolution);
1541		}
1542		if (oldval != newval)
1543			continue;
1544		if (ChipID == DOC_ChipID_DocMilPlus16) {
1545			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1546			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1547			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1548		} else {
1549			WriteDOC(~newval, virtadr, AliasResolution);
1550			oldval = ReadDOC(doc->virtadr, AliasResolution);
1551			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1552		}
1553		newval = ~newval;
1554		if (oldval == newval) {
1555			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1556			goto notfound;
1557		}
1558	}
1559
1560	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1561
1562	len = sizeof(struct mtd_info) +
1563	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1564	mtd = kzalloc(len, GFP_KERNEL);
1565	if (!mtd) {
1566		ret = -ENOMEM;
1567		goto fail;
1568	}
1569
1570	nand			= (struct nand_chip *) (mtd + 1);
1571	doc			= (struct doc_priv *) (nand + 1);
1572	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1573	nand->bbt_md		= nand->bbt_td + 1;
1574
1575	mtd->priv		= nand;
1576	mtd->owner		= THIS_MODULE;
1577
1578	nand->priv		= doc;
1579	nand->select_chip	= doc200x_select_chip;
1580	nand->cmd_ctrl		= doc200x_hwcontrol;
1581	nand->dev_ready		= doc200x_dev_ready;
1582	nand->waitfunc		= doc200x_wait;
1583	nand->block_bad		= doc200x_block_bad;
1584	nand->ecc.hwctl		= doc200x_enable_hwecc;
1585	nand->ecc.calculate	= doc200x_calculate_ecc;
1586	nand->ecc.correct	= doc200x_correct_data;
1587
1588	nand->ecc.layout	= &doc200x_oobinfo;
1589	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1590	nand->ecc.size		= 512;
1591	nand->ecc.bytes		= 6;
1592	nand->ecc.strength	= 2;
1593	nand->bbt_options	= NAND_BBT_USE_FLASH;
1594
1595	doc->physadr		= physadr;
1596	doc->virtadr		= virtadr;
1597	doc->ChipID		= ChipID;
1598	doc->curfloor		= -1;
1599	doc->curchip		= -1;
1600	doc->mh0_page		= -1;
1601	doc->mh1_page		= -1;
1602	doc->nextdoc		= doclist;
1603
1604	if (ChipID == DOC_ChipID_Doc2k)
1605		numchips = doc2000_init(mtd);
1606	else if (ChipID == DOC_ChipID_DocMilPlus16)
1607		numchips = doc2001plus_init(mtd);
1608	else
1609		numchips = doc2001_init(mtd);
1610
1611	if ((ret = nand_scan(mtd, numchips))) {
1612		/* DBB note: i believe nand_release is necessary here, as
1613		   buffers may have been allocated in nand_base.  Check with
1614		   Thomas. FIX ME! */
1615		/* nand_release will call mtd_device_unregister, but we
1616		   haven't yet added it.  This is handled without incident by
1617		   mtd_device_unregister, as far as I can tell. */
1618		nand_release(mtd);
1619		kfree(mtd);
1620		goto fail;
1621	}
1622
1623	/* Success! */
1624	doclist = mtd;
1625	return 0;
1626
1627 notfound:
1628	/* Put back the contents of the DOCControl register, in case it's not
1629	   actually a DiskOnChip.  */
1630	WriteDOC(save_control, virtadr, DOCControl);
1631 fail:
1632	iounmap(virtadr);
1633
1634error_ioremap:
1635	release_mem_region(physadr, DOC_IOREMAP_LEN);
1636
1637	return ret;
1638}
1639
1640static void release_nanddoc(void)
1641{
1642	struct mtd_info *mtd, *nextmtd;
1643	struct nand_chip *nand;
1644	struct doc_priv *doc;
1645
1646	for (mtd = doclist; mtd; mtd = nextmtd) {
1647		nand = mtd->priv;
1648		doc = nand->priv;
1649
1650		nextmtd = doc->nextdoc;
1651		nand_release(mtd);
1652		iounmap(doc->virtadr);
1653		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1654		kfree(mtd);
1655	}
1656}
1657
1658static int __init init_nanddoc(void)
1659{
1660	int i, ret = 0;
1661
1662	/* We could create the decoder on demand, if memory is a concern.
1663	 * This way we have it handy, if an error happens
1664	 *
1665	 * Symbolsize is 10 (bits)
1666	 * Primitve polynomial is x^10+x^3+1
1667	 * first consecutive root is 510
1668	 * primitve element to generate roots = 1
1669	 * generator polinomial degree = 4
1670	 */
1671	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1672	if (!rs_decoder) {
1673		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1674		return -ENOMEM;
1675	}
1676
1677	if (doc_config_location) {
1678		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1679		ret = doc_probe(doc_config_location);
1680		if (ret < 0)
1681			goto outerr;
1682	} else {
1683		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1684			doc_probe(doc_locations[i]);
1685		}
1686	}
1687	/* No banner message any more. Print a message if no DiskOnChip
1688	   found, so the user knows we at least tried. */
1689	if (!doclist) {
1690		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1691		ret = -ENODEV;
1692		goto outerr;
1693	}
1694	return 0;
1695 outerr:
1696	free_rs(rs_decoder);
1697	return ret;
1698}
1699
1700static void __exit cleanup_nanddoc(void)
1701{
1702	/* Cleanup the nand/DoC resources */
1703	release_nanddoc();
1704
1705	/* Free the reed solomon resources */
1706	if (rs_decoder) {
1707		free_rs(rs_decoder);
1708	}
1709}
1710
1711module_init(init_nanddoc);
1712module_exit(cleanup_nanddoc);
1713
1714MODULE_LICENSE("GPL");
1715MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1716MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");