Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3 *
  4 * The data sheet for this device can be found at:
  5 *    http://wiki.laptop.org/go/Datasheets 
  6 *
  7 * Copyright © 2006 Red Hat, Inc.
  8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9 */
 10
 11#define DEBUG
 12
 13#include <linux/device.h>
 14#undef DEBUG
 15#include <linux/mtd/mtd.h>
 16#include <linux/mtd/nand.h>
 17#include <linux/mtd/partitions.h>
 18#include <linux/rslib.h>
 19#include <linux/pci.h>
 20#include <linux/delay.h>
 21#include <linux/interrupt.h>
 22#include <linux/dma-mapping.h>
 23#include <linux/slab.h>
 24#include <linux/module.h>
 25#include <asm/io.h>
 26
 27#define CAFE_NAND_CTRL1		0x00
 28#define CAFE_NAND_CTRL2		0x04
 29#define CAFE_NAND_CTRL3		0x08
 30#define CAFE_NAND_STATUS	0x0c
 31#define CAFE_NAND_IRQ		0x10
 32#define CAFE_NAND_IRQ_MASK	0x14
 33#define CAFE_NAND_DATA_LEN	0x18
 34#define CAFE_NAND_ADDR1		0x1c
 35#define CAFE_NAND_ADDR2		0x20
 36#define CAFE_NAND_TIMING1	0x24
 37#define CAFE_NAND_TIMING2	0x28
 38#define CAFE_NAND_TIMING3	0x2c
 39#define CAFE_NAND_NONMEM	0x30
 40#define CAFE_NAND_ECC_RESULT	0x3C
 41#define CAFE_NAND_DMA_CTRL	0x40
 42#define CAFE_NAND_DMA_ADDR0	0x44
 43#define CAFE_NAND_DMA_ADDR1	0x48
 44#define CAFE_NAND_ECC_SYN01	0x50
 45#define CAFE_NAND_ECC_SYN23	0x54
 46#define CAFE_NAND_ECC_SYN45	0x58
 47#define CAFE_NAND_ECC_SYN67	0x5c
 48#define CAFE_NAND_READ_DATA	0x1000
 49#define CAFE_NAND_WRITE_DATA	0x2000
 50
 51#define CAFE_GLOBAL_CTRL	0x3004
 52#define CAFE_GLOBAL_IRQ		0x3008
 53#define CAFE_GLOBAL_IRQ_MASK	0x300c
 54#define CAFE_NAND_RESET		0x3034
 55
 56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
 57#define CTRL1_CHIPSELECT	(1<<19)
 58
 59struct cafe_priv {
 60	struct nand_chip nand;
 61	struct pci_dev *pdev;
 62	void __iomem *mmio;
 63	struct rs_control *rs;
 64	uint32_t ctl1;
 65	uint32_t ctl2;
 66	int datalen;
 67	int nr_data;
 68	int data_pos;
 69	int page_addr;
 70	dma_addr_t dmaaddr;
 71	unsigned char *dmabuf;
 72};
 73
 74static int usedma = 1;
 75module_param(usedma, int, 0644);
 76
 77static int skipbbt = 0;
 78module_param(skipbbt, int, 0644);
 79
 80static int debug = 0;
 81module_param(debug, int, 0644);
 82
 83static int regdebug = 0;
 84module_param(regdebug, int, 0644);
 85
 86static int checkecc = 1;
 87module_param(checkecc, int, 0644);
 88
 89static unsigned int numtimings;
 90static int timing[3];
 91module_param_array(timing, int, &numtimings, 0644);
 92
 93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
 94
 95/* Hrm. Why isn't this already conditional on something in the struct device? */
 96#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
 97
 98/* Make it easier to switch to PIO if we need to */
 99#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101
102static int cafe_device_ready(struct mtd_info *mtd)
103{
104	struct nand_chip *chip = mtd_to_nand(mtd);
105	struct cafe_priv *cafe = nand_get_controller_data(chip);
106	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108
109	cafe_writel(cafe, irqs, NAND_IRQ);
110
111	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114
115	return result;
116}
117
118
119static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
120{
121	struct nand_chip *chip = mtd_to_nand(mtd);
122	struct cafe_priv *cafe = nand_get_controller_data(chip);
123
124	if (usedma)
125		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126	else
127		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129	cafe->datalen += len;
130
131	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132		len, cafe->datalen);
133}
134
135static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136{
137	struct nand_chip *chip = mtd_to_nand(mtd);
138	struct cafe_priv *cafe = nand_get_controller_data(chip);
139
140	if (usedma)
141		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
142	else
143		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
144
145	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
146		  len, cafe->datalen);
147	cafe->datalen += len;
148}
149
150static uint8_t cafe_read_byte(struct mtd_info *mtd)
151{
152	struct nand_chip *chip = mtd_to_nand(mtd);
153	struct cafe_priv *cafe = nand_get_controller_data(chip);
154	uint8_t d;
155
156	cafe_read_buf(mtd, &d, 1);
157	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
158
159	return d;
160}
161
162static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
163			      int column, int page_addr)
164{
165	struct nand_chip *chip = mtd_to_nand(mtd);
166	struct cafe_priv *cafe = nand_get_controller_data(chip);
167	int adrbytes = 0;
168	uint32_t ctl1;
169	uint32_t doneint = 0x80000000;
170
171	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
172		command, column, page_addr);
173
174	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
175		/* Second half of a command we already calculated */
176		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
177		ctl1 = cafe->ctl1;
178		cafe->ctl2 &= ~(1<<30);
179		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
180			  cafe->ctl1, cafe->nr_data);
181		goto do_command;
182	}
183	/* Reset ECC engine */
184	cafe_writel(cafe, 0, NAND_CTRL2);
185
186	/* Emulate NAND_CMD_READOOB on large-page chips */
187	if (mtd->writesize > 512 &&
188	    command == NAND_CMD_READOOB) {
189		column += mtd->writesize;
190		command = NAND_CMD_READ0;
191	}
192
193	/* FIXME: Do we need to send read command before sending data
194	   for small-page chips, to position the buffer correctly? */
195
196	if (column != -1) {
197		cafe_writel(cafe, column, NAND_ADDR1);
198		adrbytes = 2;
199		if (page_addr != -1)
200			goto write_adr2;
201	} else if (page_addr != -1) {
202		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
203		page_addr >>= 16;
204	write_adr2:
205		cafe_writel(cafe, page_addr, NAND_ADDR2);
206		adrbytes += 2;
207		if (mtd->size > mtd->writesize << 16)
208			adrbytes++;
209	}
210
211	cafe->data_pos = cafe->datalen = 0;
212
213	/* Set command valid bit, mask in the chip select bit  */
214	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
215
216	/* Set RD or WR bits as appropriate */
217	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
218		ctl1 |= (1<<26); /* rd */
219		/* Always 5 bytes, for now */
220		cafe->datalen = 4;
221		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
222		adrbytes = 1;
223	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
224		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
225		ctl1 |= 1<<26; /* rd */
226		/* For now, assume just read to end of page */
227		cafe->datalen = mtd->writesize + mtd->oobsize - column;
228	} else if (command == NAND_CMD_SEQIN)
229		ctl1 |= 1<<25; /* wr */
230
231	/* Set number of address bytes */
232	if (adrbytes)
233		ctl1 |= ((adrbytes-1)|8) << 27;
234
235	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
236		/* Ignore the first command of a pair; the hardware
237		   deals with them both at once, later */
238		cafe->ctl1 = ctl1;
239		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
240			  cafe->ctl1, cafe->datalen);
241		return;
242	}
243	/* RNDOUT and READ0 commands need a following byte */
244	if (command == NAND_CMD_RNDOUT)
245		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
246	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
247		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
248
249 do_command:
250	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
251		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
252
253	/* NB: The datasheet lies -- we really should be subtracting 1 here */
254	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
255	cafe_writel(cafe, 0x90000000, NAND_IRQ);
256	if (usedma && (ctl1 & (3<<25))) {
257		uint32_t dmactl = 0xc0000000 + cafe->datalen;
258		/* If WR or RD bits set, set up DMA */
259		if (ctl1 & (1<<26)) {
260			/* It's a read */
261			dmactl |= (1<<29);
262			/* ... so it's done when the DMA is done, not just
263			   the command. */
264			doneint = 0x10000000;
265		}
266		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
267	}
268	cafe->datalen = 0;
269
270	if (unlikely(regdebug)) {
271		int i;
272		printk("About to write command %08x to register 0\n", ctl1);
273		for (i=4; i< 0x5c; i+=4)
274			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
275	}
276
277	cafe_writel(cafe, ctl1, NAND_CTRL1);
278	/* Apply this short delay always to ensure that we do wait tWB in
279	 * any case on any machine. */
280	ndelay(100);
281
282	if (1) {
283		int c;
284		uint32_t irqs;
285
286		for (c = 500000; c != 0; c--) {
287			irqs = cafe_readl(cafe, NAND_IRQ);
288			if (irqs & doneint)
289				break;
290			udelay(1);
291			if (!(c % 100000))
292				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
293			cpu_relax();
294		}
295		cafe_writel(cafe, doneint, NAND_IRQ);
296		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
297			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
298	}
299
300	WARN_ON(cafe->ctl2 & (1<<30));
301
302	switch (command) {
303
304	case NAND_CMD_CACHEDPROG:
305	case NAND_CMD_PAGEPROG:
306	case NAND_CMD_ERASE1:
307	case NAND_CMD_ERASE2:
308	case NAND_CMD_SEQIN:
309	case NAND_CMD_RNDIN:
310	case NAND_CMD_STATUS:
311	case NAND_CMD_RNDOUT:
312		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
313		return;
314	}
315	nand_wait_ready(mtd);
316	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
317}
318
319static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
320{
321	struct nand_chip *chip = mtd_to_nand(mtd);
322	struct cafe_priv *cafe = nand_get_controller_data(chip);
323
324	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326	/* Mask the appropriate bit into the stored value of ctl1
327	   which will be used by cafe_nand_cmdfunc() */
328	if (chipnr)
329		cafe->ctl1 |= CTRL1_CHIPSELECT;
330	else
331		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332}
333
334static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335{
336	struct mtd_info *mtd = id;
337	struct nand_chip *chip = mtd_to_nand(mtd);
338	struct cafe_priv *cafe = nand_get_controller_data(chip);
339	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341	if (!irqs)
342		return IRQ_NONE;
343
344	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345	return IRQ_HANDLED;
346}
347
348static void cafe_nand_bug(struct mtd_info *mtd)
349{
350	BUG();
351}
352
353static int cafe_nand_write_oob(struct mtd_info *mtd,
354			       struct nand_chip *chip, int page)
355{
356	int status = 0;
357
358	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361	status = chip->waitfunc(mtd, chip);
362
363	return status & NAND_STATUS_FAIL ? -EIO : 0;
364}
365
366/* Don't use -- use nand_read_oob_std for now */
367static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368			      int page)
369{
370	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372	return 0;
373}
374/**
375 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
376 * @mtd:	mtd info structure
377 * @chip:	nand chip info structure
378 * @buf:	buffer to store read data
379 * @oob_required:	caller expects OOB data read to chip->oob_poi
380 *
381 * The hw generator calculates the error syndrome automatically. Therefore
382 * we need a special oob layout and handling.
383 */
384static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385			       uint8_t *buf, int oob_required, int page)
386{
387	struct cafe_priv *cafe = nand_get_controller_data(chip);
388	unsigned int max_bitflips = 0;
389
390	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
391		     cafe_readl(cafe, NAND_ECC_RESULT),
392		     cafe_readl(cafe, NAND_ECC_SYN01));
393
394	chip->read_buf(mtd, buf, mtd->writesize);
395	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
396
397	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
398		unsigned short syn[8], pat[4];
399		int pos[4];
400		u8 *oob = chip->oob_poi;
401		int i, n;
402
403		for (i=0; i<8; i+=2) {
404			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
405			syn[i] = cafe->rs->index_of[tmp & 0xfff];
406			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
407		}
408
409		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
410		                pat);
411
412		for (i = 0; i < n; i++) {
413			int p = pos[i];
414
415			/* The 12-bit symbols are mapped to bytes here */
416
417			if (p > 1374) {
418				/* out of range */
419				n = -1374;
420			} else if (p == 0) {
421				/* high four bits do not correspond to data */
422				if (pat[i] > 0xff)
423					n = -2048;
424				else
425					buf[0] ^= pat[i];
426			} else if (p == 1365) {
427				buf[2047] ^= pat[i] >> 4;
428				oob[0] ^= pat[i] << 4;
429			} else if (p > 1365) {
430				if ((p & 1) == 1) {
431					oob[3*p/2 - 2048] ^= pat[i] >> 4;
432					oob[3*p/2 - 2047] ^= pat[i] << 4;
433				} else {
434					oob[3*p/2 - 2049] ^= pat[i] >> 8;
435					oob[3*p/2 - 2048] ^= pat[i];
436				}
437			} else if ((p & 1) == 1) {
438				buf[3*p/2] ^= pat[i] >> 4;
439				buf[3*p/2 + 1] ^= pat[i] << 4;
440			} else {
441				buf[3*p/2 - 1] ^= pat[i] >> 8;
442				buf[3*p/2] ^= pat[i];
443			}
444		}
445
446		if (n < 0) {
447			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
448				cafe_readl(cafe, NAND_ADDR2) * 2048);
449			for (i = 0; i < 0x5c; i += 4)
450				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
451			mtd->ecc_stats.failed++;
452		} else {
453			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
454			mtd->ecc_stats.corrected += n;
455			max_bitflips = max_t(unsigned int, max_bitflips, n);
456		}
457	}
458
459	return max_bitflips;
460}
461
462static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
463			      struct mtd_oob_region *oobregion)
464{
465	struct nand_chip *chip = mtd_to_nand(mtd);
466
467	if (section)
468		return -ERANGE;
469
470	oobregion->offset = 0;
471	oobregion->length = chip->ecc.total;
472
473	return 0;
474}
475
476static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
477			       struct mtd_oob_region *oobregion)
478{
479	struct nand_chip *chip = mtd_to_nand(mtd);
480
481	if (section)
482		return -ERANGE;
483
484	oobregion->offset = chip->ecc.total;
485	oobregion->length = mtd->oobsize - chip->ecc.total;
486
487	return 0;
488}
489
490static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
491	.ecc = cafe_ooblayout_ecc,
492	.free = cafe_ooblayout_free,
493};
494
495/* Ick. The BBT code really ought to be able to work this bit out
496   for itself from the above, at least for the 2KiB case */
497static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
498static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
499
500static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
501static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
502
503
504static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
505	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
506		| NAND_BBT_2BIT | NAND_BBT_VERSION,
507	.offs =	14,
508	.len = 4,
509	.veroffs = 18,
510	.maxblocks = 4,
511	.pattern = cafe_bbt_pattern_2048
512};
513
514static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
515	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
516		| NAND_BBT_2BIT | NAND_BBT_VERSION,
517	.offs =	14,
518	.len = 4,
519	.veroffs = 18,
520	.maxblocks = 4,
521	.pattern = cafe_mirror_pattern_2048
522};
523
524static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
525	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
526		| NAND_BBT_2BIT | NAND_BBT_VERSION,
527	.offs =	14,
528	.len = 1,
529	.veroffs = 15,
530	.maxblocks = 4,
531	.pattern = cafe_bbt_pattern_512
532};
533
534static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
535	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
536		| NAND_BBT_2BIT | NAND_BBT_VERSION,
537	.offs =	14,
538	.len = 1,
539	.veroffs = 15,
540	.maxblocks = 4,
541	.pattern = cafe_mirror_pattern_512
542};
543
544
545static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
546					  struct nand_chip *chip,
547					  const uint8_t *buf, int oob_required,
548					  int page)
549{
550	struct cafe_priv *cafe = nand_get_controller_data(chip);
551
552	chip->write_buf(mtd, buf, mtd->writesize);
553	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
554
555	/* Set up ECC autogeneration */
556	cafe->ctl2 |= (1<<30);
557
558	return 0;
559}
560
561static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
562{
563	return 0;
564}
565
566/* F_2[X]/(X**6+X+1)  */
567static unsigned short gf64_mul(u8 a, u8 b)
568{
569	u8 c;
570	unsigned int i;
571
572	c = 0;
573	for (i = 0; i < 6; i++) {
574		if (a & 1)
575			c ^= b;
576		a >>= 1;
577		b <<= 1;
578		if ((b & 0x40) != 0)
579			b ^= 0x43;
580	}
581
582	return c;
583}
584
585/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
586static u16 gf4096_mul(u16 a, u16 b)
587{
588	u8 ah, al, bh, bl, ch, cl;
589
590	ah = a >> 6;
591	al = a & 0x3f;
592	bh = b >> 6;
593	bl = b & 0x3f;
594
595	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
596	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
597
598	return (ch << 6) ^ cl;
599}
600
601static int cafe_mul(int x)
602{
603	if (x == 0)
604		return 1;
605	return gf4096_mul(x, 0xe01);
606}
607
608static int cafe_nand_probe(struct pci_dev *pdev,
609				     const struct pci_device_id *ent)
610{
611	struct mtd_info *mtd;
612	struct cafe_priv *cafe;
613	uint32_t ctrl;
614	int err = 0;
615	int old_dma;
616	struct nand_buffers *nbuf;
617
618	/* Very old versions shared the same PCI ident for all three
619	   functions on the chip. Verify the class too... */
620	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
621		return -ENODEV;
622
623	err = pci_enable_device(pdev);
624	if (err)
625		return err;
626
627	pci_set_master(pdev);
628
629	cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
630	if (!cafe)
631		return  -ENOMEM;
632
633	mtd = nand_to_mtd(&cafe->nand);
634	mtd->dev.parent = &pdev->dev;
635	nand_set_controller_data(&cafe->nand, cafe);
636
637	cafe->pdev = pdev;
638	cafe->mmio = pci_iomap(pdev, 0, 0);
639	if (!cafe->mmio) {
640		dev_warn(&pdev->dev, "failed to iomap\n");
641		err = -ENOMEM;
642		goto out_free_mtd;
643	}
644
645	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
646	if (!cafe->rs) {
647		err = -ENOMEM;
648		goto out_ior;
649	}
650
651	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
652	cafe->nand.dev_ready = cafe_device_ready;
653	cafe->nand.read_byte = cafe_read_byte;
654	cafe->nand.read_buf = cafe_read_buf;
655	cafe->nand.write_buf = cafe_write_buf;
656	cafe->nand.select_chip = cafe_select_chip;
657
658	cafe->nand.chip_delay = 0;
659
660	/* Enable the following for a flash based bad block table */
661	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
662	cafe->nand.options = NAND_OWN_BUFFERS;
663
664	if (skipbbt) {
665		cafe->nand.options |= NAND_SKIP_BBTSCAN;
666		cafe->nand.block_bad = cafe_nand_block_bad;
667	}
668
669	if (numtimings && numtimings != 3) {
670		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
671	}
672
673	if (numtimings == 3) {
674		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
675			     timing[0], timing[1], timing[2]);
676	} else {
677		timing[0] = cafe_readl(cafe, NAND_TIMING1);
678		timing[1] = cafe_readl(cafe, NAND_TIMING2);
679		timing[2] = cafe_readl(cafe, NAND_TIMING3);
680
681		if (timing[0] | timing[1] | timing[2]) {
682			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
683				     timing[0], timing[1], timing[2]);
684		} else {
685			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
686			timing[0] = timing[1] = timing[2] = 0xffffffff;
687		}
688	}
689
690	/* Start off by resetting the NAND controller completely */
691	cafe_writel(cafe, 1, NAND_RESET);
692	cafe_writel(cafe, 0, NAND_RESET);
693
694	cafe_writel(cafe, timing[0], NAND_TIMING1);
695	cafe_writel(cafe, timing[1], NAND_TIMING2);
696	cafe_writel(cafe, timing[2], NAND_TIMING3);
697
698	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
699	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
700			  "CAFE NAND", mtd);
701	if (err) {
702		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
703		goto out_ior;
704	}
705
706	/* Disable master reset, enable NAND clock */
707	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
708	ctrl &= 0xffffeff0;
709	ctrl |= 0x00007000;
710	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
711	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
712	cafe_writel(cafe, 0, NAND_DMA_CTRL);
713
714	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
715	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
716
717	/* Enable NAND IRQ in global IRQ mask register */
718	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
719	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
720		cafe_readl(cafe, GLOBAL_CTRL),
721		cafe_readl(cafe, GLOBAL_IRQ_MASK));
722
723	/* Do not use the DMA for the nand_scan_ident() */
724	old_dma = usedma;
725	usedma = 0;
726
727	/* Scan to find existence of the device */
728	err = nand_scan_ident(mtd, 2, NULL);
729	if (err)
730		goto out_irq;
731
732	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
733				2112 + sizeof(struct nand_buffers) +
734				mtd->writesize + mtd->oobsize,
735				&cafe->dmaaddr, GFP_KERNEL);
736	if (!cafe->dmabuf) {
737		err = -ENOMEM;
738		goto out_irq;
739	}
740	cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
741
742	/* Set up DMA address */
743	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
744	if (sizeof(cafe->dmaaddr) > 4)
745		/* Shift in two parts to shut the compiler up */
746		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
747	else
748		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
749
750	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
751		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
752
753	/* this driver does not need the @ecccalc and @ecccode */
754	nbuf->ecccalc = NULL;
755	nbuf->ecccode = NULL;
756	nbuf->databuf = (uint8_t *)(nbuf + 1);
757
758	/* Restore the DMA flag */
759	usedma = old_dma;
760
761	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
762	if (mtd->writesize == 2048)
763		cafe->ctl2 |= 1<<29; /* 2KiB page size */
764
765	/* Set up ECC according to the type of chip we found */
766	mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
767	if (mtd->writesize == 2048) {
768		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
769		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
770	} else if (mtd->writesize == 512) {
771		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
772		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
773	} else {
774		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
775		       mtd->writesize);
776		goto out_free_dma;
777	}
778	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
779	cafe->nand.ecc.size = mtd->writesize;
780	cafe->nand.ecc.bytes = 14;
781	cafe->nand.ecc.strength = 4;
782	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
783	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
784	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
785	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
786	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
787	cafe->nand.ecc.read_page = cafe_nand_read_page;
788	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
789
790	err = nand_scan_tail(mtd);
791	if (err)
792		goto out_free_dma;
793
794	pci_set_drvdata(pdev, mtd);
795
796	mtd->name = "cafe_nand";
797	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
798
799	goto out;
800
801 out_free_dma:
802	dma_free_coherent(&cafe->pdev->dev,
803			2112 + sizeof(struct nand_buffers) +
804			mtd->writesize + mtd->oobsize,
805			cafe->dmabuf, cafe->dmaaddr);
806 out_irq:
807	/* Disable NAND IRQ in global IRQ mask register */
808	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
809	free_irq(pdev->irq, mtd);
810 out_ior:
811	pci_iounmap(pdev, cafe->mmio);
812 out_free_mtd:
813	kfree(cafe);
814 out:
815	return err;
816}
817
818static void cafe_nand_remove(struct pci_dev *pdev)
819{
820	struct mtd_info *mtd = pci_get_drvdata(pdev);
821	struct nand_chip *chip = mtd_to_nand(mtd);
822	struct cafe_priv *cafe = nand_get_controller_data(chip);
823
824	/* Disable NAND IRQ in global IRQ mask register */
825	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
826	free_irq(pdev->irq, mtd);
827	nand_release(mtd);
828	free_rs(cafe->rs);
829	pci_iounmap(pdev, cafe->mmio);
830	dma_free_coherent(&cafe->pdev->dev,
831			2112 + sizeof(struct nand_buffers) +
832			mtd->writesize + mtd->oobsize,
833			cafe->dmabuf, cafe->dmaaddr);
834	kfree(cafe);
835}
836
837static const struct pci_device_id cafe_nand_tbl[] = {
838	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
839	  PCI_ANY_ID, PCI_ANY_ID },
840	{ }
841};
842
843MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
844
845static int cafe_nand_resume(struct pci_dev *pdev)
846{
847	uint32_t ctrl;
848	struct mtd_info *mtd = pci_get_drvdata(pdev);
849	struct nand_chip *chip = mtd_to_nand(mtd);
850	struct cafe_priv *cafe = nand_get_controller_data(chip);
851
852       /* Start off by resetting the NAND controller completely */
853	cafe_writel(cafe, 1, NAND_RESET);
854	cafe_writel(cafe, 0, NAND_RESET);
855	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
856
857	/* Restore timing configuration */
858	cafe_writel(cafe, timing[0], NAND_TIMING1);
859	cafe_writel(cafe, timing[1], NAND_TIMING2);
860	cafe_writel(cafe, timing[2], NAND_TIMING3);
861
862        /* Disable master reset, enable NAND clock */
863	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
864	ctrl &= 0xffffeff0;
865	ctrl |= 0x00007000;
866	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
867	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
868	cafe_writel(cafe, 0, NAND_DMA_CTRL);
869	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
870	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
871
872	/* Set up DMA address */
873	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
874	if (sizeof(cafe->dmaaddr) > 4)
875	/* Shift in two parts to shut the compiler up */
876		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
877	else
878		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
879
880	/* Enable NAND IRQ in global IRQ mask register */
881	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
882	return 0;
883}
884
885static struct pci_driver cafe_nand_pci_driver = {
886	.name = "CAFÉ NAND",
887	.id_table = cafe_nand_tbl,
888	.probe = cafe_nand_probe,
889	.remove = cafe_nand_remove,
890	.resume = cafe_nand_resume,
891};
892
893module_pci_driver(cafe_nand_pci_driver);
894
895MODULE_LICENSE("GPL");
896MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
897MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");