Linux Audio

Check our new training course

Loading...
  1/*
  2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3 *
  4 * The data sheet for this device can be found at:
  5 *    http://wiki.laptop.org/go/Datasheets 
  6 *
  7 * Copyright © 2006 Red Hat, Inc.
  8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9 */
 10
 11#define DEBUG
 12
 13#include <linux/device.h>
 14#undef DEBUG
 15#include <linux/mtd/mtd.h>
 16#include <linux/mtd/nand.h>
 17#include <linux/mtd/partitions.h>
 18#include <linux/rslib.h>
 19#include <linux/pci.h>
 20#include <linux/delay.h>
 21#include <linux/interrupt.h>
 22#include <linux/dma-mapping.h>
 23#include <linux/slab.h>
 24#include <linux/module.h>
 25#include <asm/io.h>
 26
 27#define CAFE_NAND_CTRL1		0x00
 28#define CAFE_NAND_CTRL2		0x04
 29#define CAFE_NAND_CTRL3		0x08
 30#define CAFE_NAND_STATUS	0x0c
 31#define CAFE_NAND_IRQ		0x10
 32#define CAFE_NAND_IRQ_MASK	0x14
 33#define CAFE_NAND_DATA_LEN	0x18
 34#define CAFE_NAND_ADDR1		0x1c
 35#define CAFE_NAND_ADDR2		0x20
 36#define CAFE_NAND_TIMING1	0x24
 37#define CAFE_NAND_TIMING2	0x28
 38#define CAFE_NAND_TIMING3	0x2c
 39#define CAFE_NAND_NONMEM	0x30
 40#define CAFE_NAND_ECC_RESULT	0x3C
 41#define CAFE_NAND_DMA_CTRL	0x40
 42#define CAFE_NAND_DMA_ADDR0	0x44
 43#define CAFE_NAND_DMA_ADDR1	0x48
 44#define CAFE_NAND_ECC_SYN01	0x50
 45#define CAFE_NAND_ECC_SYN23	0x54
 46#define CAFE_NAND_ECC_SYN45	0x58
 47#define CAFE_NAND_ECC_SYN67	0x5c
 48#define CAFE_NAND_READ_DATA	0x1000
 49#define CAFE_NAND_WRITE_DATA	0x2000
 50
 51#define CAFE_GLOBAL_CTRL	0x3004
 52#define CAFE_GLOBAL_IRQ		0x3008
 53#define CAFE_GLOBAL_IRQ_MASK	0x300c
 54#define CAFE_NAND_RESET		0x3034
 55
 56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
 57#define CTRL1_CHIPSELECT	(1<<19)
 58
 59struct cafe_priv {
 60	struct nand_chip nand;
 61	struct pci_dev *pdev;
 62	void __iomem *mmio;
 63	struct rs_control *rs;
 64	uint32_t ctl1;
 65	uint32_t ctl2;
 66	int datalen;
 67	int nr_data;
 68	int data_pos;
 69	int page_addr;
 70	dma_addr_t dmaaddr;
 71	unsigned char *dmabuf;
 72};
 73
 74static int usedma = 1;
 75module_param(usedma, int, 0644);
 76
 77static int skipbbt = 0;
 78module_param(skipbbt, int, 0644);
 79
 80static int debug = 0;
 81module_param(debug, int, 0644);
 82
 83static int regdebug = 0;
 84module_param(regdebug, int, 0644);
 85
 86static int checkecc = 1;
 87module_param(checkecc, int, 0644);
 88
 89static unsigned int numtimings;
 90static int timing[3];
 91module_param_array(timing, int, &numtimings, 0644);
 92
 93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
 94
 95/* Hrm. Why isn't this already conditional on something in the struct device? */
 96#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
 97
 98/* Make it easier to switch to PIO if we need to */
 99#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101
102static int cafe_device_ready(struct mtd_info *mtd)
103{
104	struct cafe_priv *cafe = mtd->priv;
105	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
106	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
107
108	cafe_writel(cafe, irqs, NAND_IRQ);
109
110	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
111		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
112		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
113
114	return result;
115}
116
117
118static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
119{
120	struct cafe_priv *cafe = mtd->priv;
121
122	if (usedma)
123		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
124	else
125		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
126
127	cafe->datalen += len;
128
129	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
130		len, cafe->datalen);
131}
132
133static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
134{
135	struct cafe_priv *cafe = mtd->priv;
136
137	if (usedma)
138		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
139	else
140		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
141
142	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
143		  len, cafe->datalen);
144	cafe->datalen += len;
145}
146
147static uint8_t cafe_read_byte(struct mtd_info *mtd)
148{
149	struct cafe_priv *cafe = mtd->priv;
150	uint8_t d;
151
152	cafe_read_buf(mtd, &d, 1);
153	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
154
155	return d;
156}
157
158static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
159			      int column, int page_addr)
160{
161	struct cafe_priv *cafe = mtd->priv;
162	int adrbytes = 0;
163	uint32_t ctl1;
164	uint32_t doneint = 0x80000000;
165
166	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
167		command, column, page_addr);
168
169	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
170		/* Second half of a command we already calculated */
171		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
172		ctl1 = cafe->ctl1;
173		cafe->ctl2 &= ~(1<<30);
174		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
175			  cafe->ctl1, cafe->nr_data);
176		goto do_command;
177	}
178	/* Reset ECC engine */
179	cafe_writel(cafe, 0, NAND_CTRL2);
180
181	/* Emulate NAND_CMD_READOOB on large-page chips */
182	if (mtd->writesize > 512 &&
183	    command == NAND_CMD_READOOB) {
184		column += mtd->writesize;
185		command = NAND_CMD_READ0;
186	}
187
188	/* FIXME: Do we need to send read command before sending data
189	   for small-page chips, to position the buffer correctly? */
190
191	if (column != -1) {
192		cafe_writel(cafe, column, NAND_ADDR1);
193		adrbytes = 2;
194		if (page_addr != -1)
195			goto write_adr2;
196	} else if (page_addr != -1) {
197		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
198		page_addr >>= 16;
199	write_adr2:
200		cafe_writel(cafe, page_addr, NAND_ADDR2);
201		adrbytes += 2;
202		if (mtd->size > mtd->writesize << 16)
203			adrbytes++;
204	}
205
206	cafe->data_pos = cafe->datalen = 0;
207
208	/* Set command valid bit, mask in the chip select bit  */
209	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
210
211	/* Set RD or WR bits as appropriate */
212	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
213		ctl1 |= (1<<26); /* rd */
214		/* Always 5 bytes, for now */
215		cafe->datalen = 4;
216		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
217		adrbytes = 1;
218	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
219		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
220		ctl1 |= 1<<26; /* rd */
221		/* For now, assume just read to end of page */
222		cafe->datalen = mtd->writesize + mtd->oobsize - column;
223	} else if (command == NAND_CMD_SEQIN)
224		ctl1 |= 1<<25; /* wr */
225
226	/* Set number of address bytes */
227	if (adrbytes)
228		ctl1 |= ((adrbytes-1)|8) << 27;
229
230	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
231		/* Ignore the first command of a pair; the hardware
232		   deals with them both at once, later */
233		cafe->ctl1 = ctl1;
234		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
235			  cafe->ctl1, cafe->datalen);
236		return;
237	}
238	/* RNDOUT and READ0 commands need a following byte */
239	if (command == NAND_CMD_RNDOUT)
240		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
241	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
242		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
243
244 do_command:
245	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
246		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
247
248	/* NB: The datasheet lies -- we really should be subtracting 1 here */
249	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
250	cafe_writel(cafe, 0x90000000, NAND_IRQ);
251	if (usedma && (ctl1 & (3<<25))) {
252		uint32_t dmactl = 0xc0000000 + cafe->datalen;
253		/* If WR or RD bits set, set up DMA */
254		if (ctl1 & (1<<26)) {
255			/* It's a read */
256			dmactl |= (1<<29);
257			/* ... so it's done when the DMA is done, not just
258			   the command. */
259			doneint = 0x10000000;
260		}
261		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
262	}
263	cafe->datalen = 0;
264
265	if (unlikely(regdebug)) {
266		int i;
267		printk("About to write command %08x to register 0\n", ctl1);
268		for (i=4; i< 0x5c; i+=4)
269			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270	}
271
272	cafe_writel(cafe, ctl1, NAND_CTRL1);
273	/* Apply this short delay always to ensure that we do wait tWB in
274	 * any case on any machine. */
275	ndelay(100);
276
277	if (1) {
278		int c;
279		uint32_t irqs;
280
281		for (c = 500000; c != 0; c--) {
282			irqs = cafe_readl(cafe, NAND_IRQ);
283			if (irqs & doneint)
284				break;
285			udelay(1);
286			if (!(c % 100000))
287				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
288			cpu_relax();
289		}
290		cafe_writel(cafe, doneint, NAND_IRQ);
291		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
292			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293	}
294
295	WARN_ON(cafe->ctl2 & (1<<30));
296
297	switch (command) {
298
299	case NAND_CMD_CACHEDPROG:
300	case NAND_CMD_PAGEPROG:
301	case NAND_CMD_ERASE1:
302	case NAND_CMD_ERASE2:
303	case NAND_CMD_SEQIN:
304	case NAND_CMD_RNDIN:
305	case NAND_CMD_STATUS:
306	case NAND_CMD_DEPLETE1:
307	case NAND_CMD_RNDOUT:
308	case NAND_CMD_STATUS_ERROR:
309	case NAND_CMD_STATUS_ERROR0:
310	case NAND_CMD_STATUS_ERROR1:
311	case NAND_CMD_STATUS_ERROR2:
312	case NAND_CMD_STATUS_ERROR3:
313		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314		return;
315	}
316	nand_wait_ready(mtd);
317	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318}
319
320static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
321{
322	struct cafe_priv *cafe = mtd->priv;
323
324	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326	/* Mask the appropriate bit into the stored value of ctl1
327	   which will be used by cafe_nand_cmdfunc() */
328	if (chipnr)
329		cafe->ctl1 |= CTRL1_CHIPSELECT;
330	else
331		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332}
333
334static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335{
336	struct mtd_info *mtd = id;
337	struct cafe_priv *cafe = mtd->priv;
338	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
339	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
340	if (!irqs)
341		return IRQ_NONE;
342
343	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
344	return IRQ_HANDLED;
345}
346
347static void cafe_nand_bug(struct mtd_info *mtd)
348{
349	BUG();
350}
351
352static int cafe_nand_write_oob(struct mtd_info *mtd,
353			       struct nand_chip *chip, int page)
354{
355	int status = 0;
356
357	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
358	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
359	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
360	status = chip->waitfunc(mtd, chip);
361
362	return status & NAND_STATUS_FAIL ? -EIO : 0;
363}
364
365/* Don't use -- use nand_read_oob_std for now */
366static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
367			      int page)
368{
369	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
370	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
371	return 0;
372}
373/**
374 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
375 * @mtd:	mtd info structure
376 * @chip:	nand chip info structure
377 * @buf:	buffer to store read data
378 * @oob_required:	caller expects OOB data read to chip->oob_poi
379 *
380 * The hw generator calculates the error syndrome automatically. Therefor
381 * we need a special oob layout and handling.
382 */
383static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
384			       uint8_t *buf, int oob_required, int page)
385{
386	struct cafe_priv *cafe = mtd->priv;
387	unsigned int max_bitflips = 0;
388
389	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
390		     cafe_readl(cafe, NAND_ECC_RESULT),
391		     cafe_readl(cafe, NAND_ECC_SYN01));
392
393	chip->read_buf(mtd, buf, mtd->writesize);
394	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
395
396	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
397		unsigned short syn[8], pat[4];
398		int pos[4];
399		u8 *oob = chip->oob_poi;
400		int i, n;
401
402		for (i=0; i<8; i+=2) {
403			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
404			syn[i] = cafe->rs->index_of[tmp & 0xfff];
405			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
406		}
407
408		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
409		                pat);
410
411		for (i = 0; i < n; i++) {
412			int p = pos[i];
413
414			/* The 12-bit symbols are mapped to bytes here */
415
416			if (p > 1374) {
417				/* out of range */
418				n = -1374;
419			} else if (p == 0) {
420				/* high four bits do not correspond to data */
421				if (pat[i] > 0xff)
422					n = -2048;
423				else
424					buf[0] ^= pat[i];
425			} else if (p == 1365) {
426				buf[2047] ^= pat[i] >> 4;
427				oob[0] ^= pat[i] << 4;
428			} else if (p > 1365) {
429				if ((p & 1) == 1) {
430					oob[3*p/2 - 2048] ^= pat[i] >> 4;
431					oob[3*p/2 - 2047] ^= pat[i] << 4;
432				} else {
433					oob[3*p/2 - 2049] ^= pat[i] >> 8;
434					oob[3*p/2 - 2048] ^= pat[i];
435				}
436			} else if ((p & 1) == 1) {
437				buf[3*p/2] ^= pat[i] >> 4;
438				buf[3*p/2 + 1] ^= pat[i] << 4;
439			} else {
440				buf[3*p/2 - 1] ^= pat[i] >> 8;
441				buf[3*p/2] ^= pat[i];
442			}
443		}
444
445		if (n < 0) {
446			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
447				cafe_readl(cafe, NAND_ADDR2) * 2048);
448			for (i = 0; i < 0x5c; i += 4)
449				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
450			mtd->ecc_stats.failed++;
451		} else {
452			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
453			mtd->ecc_stats.corrected += n;
454			max_bitflips = max_t(unsigned int, max_bitflips, n);
455		}
456	}
457
458	return max_bitflips;
459}
460
461static struct nand_ecclayout cafe_oobinfo_2048 = {
462	.eccbytes = 14,
463	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
464	.oobfree = {{14, 50}}
465};
466
467/* Ick. The BBT code really ought to be able to work this bit out
468   for itself from the above, at least for the 2KiB case */
469static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
470static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
471
472static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
473static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
474
475
476static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
477	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
478		| NAND_BBT_2BIT | NAND_BBT_VERSION,
479	.offs =	14,
480	.len = 4,
481	.veroffs = 18,
482	.maxblocks = 4,
483	.pattern = cafe_bbt_pattern_2048
484};
485
486static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
487	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
488		| NAND_BBT_2BIT | NAND_BBT_VERSION,
489	.offs =	14,
490	.len = 4,
491	.veroffs = 18,
492	.maxblocks = 4,
493	.pattern = cafe_mirror_pattern_2048
494};
495
496static struct nand_ecclayout cafe_oobinfo_512 = {
497	.eccbytes = 14,
498	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
499	.oobfree = {{14, 2}}
500};
501
502static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
503	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
504		| NAND_BBT_2BIT | NAND_BBT_VERSION,
505	.offs =	14,
506	.len = 1,
507	.veroffs = 15,
508	.maxblocks = 4,
509	.pattern = cafe_bbt_pattern_512
510};
511
512static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
513	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
514		| NAND_BBT_2BIT | NAND_BBT_VERSION,
515	.offs =	14,
516	.len = 1,
517	.veroffs = 15,
518	.maxblocks = 4,
519	.pattern = cafe_mirror_pattern_512
520};
521
522
523static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
524					  struct nand_chip *chip,
525					  const uint8_t *buf, int oob_required)
526{
527	struct cafe_priv *cafe = mtd->priv;
528
529	chip->write_buf(mtd, buf, mtd->writesize);
530	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
531
532	/* Set up ECC autogeneration */
533	cafe->ctl2 |= (1<<30);
534}
535
536static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
537				const uint8_t *buf, int oob_required, int page,
538				int cached, int raw)
539{
540	int status;
541
542	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
543
544	if (unlikely(raw))
545		chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
546	else
547		chip->ecc.write_page(mtd, chip, buf, oob_required);
548
549	/*
550	 * Cached progamming disabled for now, Not sure if its worth the
551	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
552	 */
553	cached = 0;
554
555	if (!cached || !(chip->options & NAND_CACHEPRG)) {
556
557		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
558		status = chip->waitfunc(mtd, chip);
559		/*
560		 * See if operation failed and additional status checks are
561		 * available
562		 */
563		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
564			status = chip->errstat(mtd, chip, FL_WRITING, status,
565					       page);
566
567		if (status & NAND_STATUS_FAIL)
568			return -EIO;
569	} else {
570		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
571		status = chip->waitfunc(mtd, chip);
572	}
573
574#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
575	/* Send command to read back the data */
576	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
577
578	if (chip->verify_buf(mtd, buf, mtd->writesize))
579		return -EIO;
580#endif
581	return 0;
582}
583
584static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
585{
586	return 0;
587}
588
589/* F_2[X]/(X**6+X+1)  */
590static unsigned short __devinit gf64_mul(u8 a, u8 b)
591{
592	u8 c;
593	unsigned int i;
594
595	c = 0;
596	for (i = 0; i < 6; i++) {
597		if (a & 1)
598			c ^= b;
599		a >>= 1;
600		b <<= 1;
601		if ((b & 0x40) != 0)
602			b ^= 0x43;
603	}
604
605	return c;
606}
607
608/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
609static u16 __devinit gf4096_mul(u16 a, u16 b)
610{
611	u8 ah, al, bh, bl, ch, cl;
612
613	ah = a >> 6;
614	al = a & 0x3f;
615	bh = b >> 6;
616	bl = b & 0x3f;
617
618	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
619	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
620
621	return (ch << 6) ^ cl;
622}
623
624static int __devinit cafe_mul(int x)
625{
626	if (x == 0)
627		return 1;
628	return gf4096_mul(x, 0xe01);
629}
630
631static int __devinit cafe_nand_probe(struct pci_dev *pdev,
632				     const struct pci_device_id *ent)
633{
634	struct mtd_info *mtd;
635	struct cafe_priv *cafe;
636	uint32_t ctrl;
637	int err = 0;
638
639	/* Very old versions shared the same PCI ident for all three
640	   functions on the chip. Verify the class too... */
641	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
642		return -ENODEV;
643
644	err = pci_enable_device(pdev);
645	if (err)
646		return err;
647
648	pci_set_master(pdev);
649
650	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
651	if (!mtd) {
652		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
653		return  -ENOMEM;
654	}
655	cafe = (void *)(&mtd[1]);
656
657	mtd->dev.parent = &pdev->dev;
658	mtd->priv = cafe;
659	mtd->owner = THIS_MODULE;
660
661	cafe->pdev = pdev;
662	cafe->mmio = pci_iomap(pdev, 0, 0);
663	if (!cafe->mmio) {
664		dev_warn(&pdev->dev, "failed to iomap\n");
665		err = -ENOMEM;
666		goto out_free_mtd;
667	}
668	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
669					  &cafe->dmaaddr, GFP_KERNEL);
670	if (!cafe->dmabuf) {
671		err = -ENOMEM;
672		goto out_ior;
673	}
674	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
675
676	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
677	if (!cafe->rs) {
678		err = -ENOMEM;
679		goto out_ior;
680	}
681
682	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
683	cafe->nand.dev_ready = cafe_device_ready;
684	cafe->nand.read_byte = cafe_read_byte;
685	cafe->nand.read_buf = cafe_read_buf;
686	cafe->nand.write_buf = cafe_write_buf;
687	cafe->nand.select_chip = cafe_select_chip;
688
689	cafe->nand.chip_delay = 0;
690
691	/* Enable the following for a flash based bad block table */
692	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
693	cafe->nand.options = NAND_OWN_BUFFERS;
694
695	if (skipbbt) {
696		cafe->nand.options |= NAND_SKIP_BBTSCAN;
697		cafe->nand.block_bad = cafe_nand_block_bad;
698	}
699
700	if (numtimings && numtimings != 3) {
701		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
702	}
703
704	if (numtimings == 3) {
705		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
706			     timing[0], timing[1], timing[2]);
707	} else {
708		timing[0] = cafe_readl(cafe, NAND_TIMING1);
709		timing[1] = cafe_readl(cafe, NAND_TIMING2);
710		timing[2] = cafe_readl(cafe, NAND_TIMING3);
711
712		if (timing[0] | timing[1] | timing[2]) {
713			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
714				     timing[0], timing[1], timing[2]);
715		} else {
716			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
717			timing[0] = timing[1] = timing[2] = 0xffffffff;
718		}
719	}
720
721	/* Start off by resetting the NAND controller completely */
722	cafe_writel(cafe, 1, NAND_RESET);
723	cafe_writel(cafe, 0, NAND_RESET);
724
725	cafe_writel(cafe, timing[0], NAND_TIMING1);
726	cafe_writel(cafe, timing[1], NAND_TIMING2);
727	cafe_writel(cafe, timing[2], NAND_TIMING3);
728
729	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
730	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
731			  "CAFE NAND", mtd);
732	if (err) {
733		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
734		goto out_free_dma;
735	}
736
737	/* Disable master reset, enable NAND clock */
738	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
739	ctrl &= 0xffffeff0;
740	ctrl |= 0x00007000;
741	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
742	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
743	cafe_writel(cafe, 0, NAND_DMA_CTRL);
744
745	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
746	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
747
748	/* Set up DMA address */
749	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
750	if (sizeof(cafe->dmaaddr) > 4)
751		/* Shift in two parts to shut the compiler up */
752		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753	else
754		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
755
756	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
757		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
758
759	/* Enable NAND IRQ in global IRQ mask register */
760	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
761	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
762		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
763
764	/* Scan to find existence of the device */
765	if (nand_scan_ident(mtd, 2, NULL)) {
766		err = -ENXIO;
767		goto out_irq;
768	}
769
770	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
771	if (mtd->writesize == 2048)
772		cafe->ctl2 |= 1<<29; /* 2KiB page size */
773
774	/* Set up ECC according to the type of chip we found */
775	if (mtd->writesize == 2048) {
776		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
777		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
778		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
779	} else if (mtd->writesize == 512) {
780		cafe->nand.ecc.layout = &cafe_oobinfo_512;
781		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
782		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783	} else {
784		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
785		       mtd->writesize);
786		goto out_irq;
787	}
788	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
789	cafe->nand.ecc.size = mtd->writesize;
790	cafe->nand.ecc.bytes = 14;
791	cafe->nand.ecc.strength = 4;
792	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
793	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
794	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
795	cafe->nand.write_page = cafe_nand_write_page;
796	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
797	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
798	cafe->nand.ecc.read_page = cafe_nand_read_page;
799	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
800
801	err = nand_scan_tail(mtd);
802	if (err)
803		goto out_irq;
804
805	pci_set_drvdata(pdev, mtd);
806
807	mtd->name = "cafe_nand";
808	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
809
810	goto out;
811
812 out_irq:
813	/* Disable NAND IRQ in global IRQ mask register */
814	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
815	free_irq(pdev->irq, mtd);
816 out_free_dma:
817	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
818 out_ior:
819	pci_iounmap(pdev, cafe->mmio);
820 out_free_mtd:
821	kfree(mtd);
822 out:
823	return err;
824}
825
826static void __devexit cafe_nand_remove(struct pci_dev *pdev)
827{
828	struct mtd_info *mtd = pci_get_drvdata(pdev);
829	struct cafe_priv *cafe = mtd->priv;
830
831	/* Disable NAND IRQ in global IRQ mask register */
832	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
833	free_irq(pdev->irq, mtd);
834	nand_release(mtd);
835	free_rs(cafe->rs);
836	pci_iounmap(pdev, cafe->mmio);
837	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
838	kfree(mtd);
839}
840
841static const struct pci_device_id cafe_nand_tbl[] = {
842	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
843	  PCI_ANY_ID, PCI_ANY_ID },
844	{ }
845};
846
847MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
848
849static int cafe_nand_resume(struct pci_dev *pdev)
850{
851	uint32_t ctrl;
852	struct mtd_info *mtd = pci_get_drvdata(pdev);
853	struct cafe_priv *cafe = mtd->priv;
854
855       /* Start off by resetting the NAND controller completely */
856	cafe_writel(cafe, 1, NAND_RESET);
857	cafe_writel(cafe, 0, NAND_RESET);
858	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
859
860	/* Restore timing configuration */
861	cafe_writel(cafe, timing[0], NAND_TIMING1);
862	cafe_writel(cafe, timing[1], NAND_TIMING2);
863	cafe_writel(cafe, timing[2], NAND_TIMING3);
864
865        /* Disable master reset, enable NAND clock */
866	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
867	ctrl &= 0xffffeff0;
868	ctrl |= 0x00007000;
869	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
870	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
871	cafe_writel(cafe, 0, NAND_DMA_CTRL);
872	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
873	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
874
875	/* Set up DMA address */
876	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
877	if (sizeof(cafe->dmaaddr) > 4)
878	/* Shift in two parts to shut the compiler up */
879		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
880	else
881		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
882
883	/* Enable NAND IRQ in global IRQ mask register */
884	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
885	return 0;
886}
887
888static struct pci_driver cafe_nand_pci_driver = {
889	.name = "CAFÉ NAND",
890	.id_table = cafe_nand_tbl,
891	.probe = cafe_nand_probe,
892	.remove = __devexit_p(cafe_nand_remove),
893	.resume = cafe_nand_resume,
894};
895
896module_pci_driver(cafe_nand_pci_driver);
897
898MODULE_LICENSE("GPL");
899MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
900MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");