Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Code for working with individual keys, and sorted sets of keys with in a
   4 * btree node
   5 *
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
  10
  11#include "util.h"
  12#include "bset.h"
  13
  14#include <linux/console.h>
  15#include <linux/sched/clock.h>
  16#include <linux/random.h>
  17#include <linux/prefetch.h>
  18
  19#ifdef CONFIG_BCACHE_DEBUG
  20
  21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
  22{
  23	struct bkey *k, *next;
  24
  25	for (k = i->start; k < bset_bkey_last(i); k = next) {
  26		next = bkey_next(k);
  27
  28		pr_err("block %u key %u/%u: ", set,
  29		       (unsigned int) ((u64 *) k - i->d), i->keys);
  30
  31		if (b->ops->key_dump)
  32			b->ops->key_dump(b, k);
  33		else
  34			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
  35
  36		if (next < bset_bkey_last(i) &&
  37		    bkey_cmp(k, b->ops->is_extents ?
  38			     &START_KEY(next) : next) > 0)
  39			pr_err("Key skipped backwards\n");
  40	}
  41}
  42
  43void bch_dump_bucket(struct btree_keys *b)
  44{
  45	unsigned int i;
  46
  47	console_lock();
  48	for (i = 0; i <= b->nsets; i++)
  49		bch_dump_bset(b, b->set[i].data,
  50			      bset_sector_offset(b, b->set[i].data));
  51	console_unlock();
  52}
  53
  54int __bch_count_data(struct btree_keys *b)
  55{
  56	unsigned int ret = 0;
  57	struct btree_iter iter;
  58	struct bkey *k;
  59
  60	if (b->ops->is_extents)
  61		for_each_key(b, k, &iter)
  62			ret += KEY_SIZE(k);
  63	return ret;
  64}
  65
  66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
  67{
  68	va_list args;
  69	struct bkey *k, *p = NULL;
  70	struct btree_iter iter;
  71	const char *err;
  72
  73	for_each_key(b, k, &iter) {
  74		if (b->ops->is_extents) {
  75			err = "Keys out of order";
  76			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
  77				goto bug;
  78
  79			if (bch_ptr_invalid(b, k))
  80				continue;
  81
  82			err =  "Overlapping keys";
  83			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
  84				goto bug;
  85		} else {
  86			if (bch_ptr_bad(b, k))
  87				continue;
  88
  89			err = "Duplicate keys";
  90			if (p && !bkey_cmp(p, k))
  91				goto bug;
  92		}
  93		p = k;
  94	}
  95#if 0
  96	err = "Key larger than btree node key";
  97	if (p && bkey_cmp(p, &b->key) > 0)
  98		goto bug;
  99#endif
 100	return;
 101bug:
 102	bch_dump_bucket(b);
 103
 104	va_start(args, fmt);
 105	vprintk(fmt, args);
 106	va_end(args);
 107
 108	panic("bch_check_keys error:  %s:\n", err);
 109}
 110
 111static void bch_btree_iter_next_check(struct btree_iter *iter)
 112{
 113	struct bkey *k = iter->data->k, *next = bkey_next(k);
 114
 115	if (next < iter->data->end &&
 116	    bkey_cmp(k, iter->b->ops->is_extents ?
 117		     &START_KEY(next) : next) > 0) {
 118		bch_dump_bucket(iter->b);
 119		panic("Key skipped backwards\n");
 120	}
 121}
 122
 123#else
 124
 125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 126
 127#endif
 128
 129/* Keylists */
 130
 131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
 132{
 133	size_t oldsize = bch_keylist_nkeys(l);
 134	size_t newsize = oldsize + u64s;
 135	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 136	uint64_t *new_keys;
 137
 138	newsize = roundup_pow_of_two(newsize);
 139
 140	if (newsize <= KEYLIST_INLINE ||
 141	    roundup_pow_of_two(oldsize) == newsize)
 142		return 0;
 143
 144	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 145
 146	if (!new_keys)
 147		return -ENOMEM;
 148
 149	if (!old_keys)
 150		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 151
 152	l->keys_p = new_keys;
 153	l->top_p = new_keys + oldsize;
 154
 155	return 0;
 156}
 157
 158/* Pop the top key of keylist by pointing l->top to its previous key */
 159struct bkey *bch_keylist_pop(struct keylist *l)
 160{
 161	struct bkey *k = l->keys;
 162
 163	if (k == l->top)
 164		return NULL;
 165
 166	while (bkey_next(k) != l->top)
 167		k = bkey_next(k);
 168
 169	return l->top = k;
 170}
 171
 172/* Pop the bottom key of keylist and update l->top_p */
 173void bch_keylist_pop_front(struct keylist *l)
 174{
 175	l->top_p -= bkey_u64s(l->keys);
 176
 177	memmove(l->keys,
 178		bkey_next(l->keys),
 179		bch_keylist_bytes(l));
 180}
 181
 182/* Key/pointer manipulation */
 183
 184void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 185			      unsigned int i)
 186{
 187	BUG_ON(i > KEY_PTRS(src));
 188
 189	/* Only copy the header, key, and one pointer. */
 190	memcpy(dest, src, 2 * sizeof(uint64_t));
 191	dest->ptr[0] = src->ptr[i];
 192	SET_KEY_PTRS(dest, 1);
 193	/* We didn't copy the checksum so clear that bit. */
 194	SET_KEY_CSUM(dest, 0);
 195}
 196
 197bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 198{
 199	unsigned int i, len = 0;
 200
 201	if (bkey_cmp(where, &START_KEY(k)) <= 0)
 202		return false;
 203
 204	if (bkey_cmp(where, k) < 0)
 205		len = KEY_OFFSET(k) - KEY_OFFSET(where);
 206	else
 207		bkey_copy_key(k, where);
 208
 209	for (i = 0; i < KEY_PTRS(k); i++)
 210		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 211
 212	BUG_ON(len > KEY_SIZE(k));
 213	SET_KEY_SIZE(k, len);
 214	return true;
 215}
 216
 217bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 218{
 219	unsigned int len = 0;
 220
 221	if (bkey_cmp(where, k) >= 0)
 222		return false;
 223
 224	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 225
 226	if (bkey_cmp(where, &START_KEY(k)) > 0)
 227		len = KEY_OFFSET(where) - KEY_START(k);
 228
 229	bkey_copy_key(k, where);
 230
 231	BUG_ON(len > KEY_SIZE(k));
 232	SET_KEY_SIZE(k, len);
 233	return true;
 234}
 235
 236/* Auxiliary search trees */
 237
 238/* 32 bits total: */
 239#define BKEY_MID_BITS		3
 240#define BKEY_EXPONENT_BITS	7
 241#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 242#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
 243
 244struct bkey_float {
 245	unsigned int	exponent:BKEY_EXPONENT_BITS;
 246	unsigned int	m:BKEY_MID_BITS;
 247	unsigned int	mantissa:BKEY_MANTISSA_BITS;
 248} __packed;
 249
 250/*
 251 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 252 * it used to be 64, but I realized the lookup code would touch slightly less
 253 * memory if it was 128.
 254 *
 255 * It definites the number of bytes (in struct bset) per struct bkey_float in
 256 * the auxiliar search tree - when we're done searching the bset_float tree we
 257 * have this many bytes left that we do a linear search over.
 258 *
 259 * Since (after level 5) every level of the bset_tree is on a new cacheline,
 260 * we're touching one fewer cacheline in the bset tree in exchange for one more
 261 * cacheline in the linear search - but the linear search might stop before it
 262 * gets to the second cacheline.
 263 */
 264
 265#define BSET_CACHELINE		128
 266
 267/* Space required for the btree node keys */
 268static inline size_t btree_keys_bytes(struct btree_keys *b)
 269{
 270	return PAGE_SIZE << b->page_order;
 271}
 272
 273static inline size_t btree_keys_cachelines(struct btree_keys *b)
 274{
 275	return btree_keys_bytes(b) / BSET_CACHELINE;
 276}
 277
 278/* Space required for the auxiliary search trees */
 279static inline size_t bset_tree_bytes(struct btree_keys *b)
 280{
 281	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 282}
 283
 284/* Space required for the prev pointers */
 285static inline size_t bset_prev_bytes(struct btree_keys *b)
 286{
 287	return btree_keys_cachelines(b) * sizeof(uint8_t);
 288}
 289
 290/* Memory allocation */
 291
 292void bch_btree_keys_free(struct btree_keys *b)
 293{
 294	struct bset_tree *t = b->set;
 295
 296	if (bset_prev_bytes(b) < PAGE_SIZE)
 297		kfree(t->prev);
 298	else
 299		free_pages((unsigned long) t->prev,
 300			   get_order(bset_prev_bytes(b)));
 301
 302	if (bset_tree_bytes(b) < PAGE_SIZE)
 303		kfree(t->tree);
 304	else
 305		free_pages((unsigned long) t->tree,
 306			   get_order(bset_tree_bytes(b)));
 307
 308	free_pages((unsigned long) t->data, b->page_order);
 309
 310	t->prev = NULL;
 311	t->tree = NULL;
 312	t->data = NULL;
 313}
 
 314
 315int bch_btree_keys_alloc(struct btree_keys *b,
 316			 unsigned int page_order,
 317			 gfp_t gfp)
 318{
 319	struct bset_tree *t = b->set;
 320
 321	BUG_ON(t->data);
 322
 323	b->page_order = page_order;
 324
 325	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
 326	if (!t->data)
 327		goto err;
 328
 329	t->tree = bset_tree_bytes(b) < PAGE_SIZE
 330		? kmalloc(bset_tree_bytes(b), gfp)
 331		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 332	if (!t->tree)
 333		goto err;
 334
 335	t->prev = bset_prev_bytes(b) < PAGE_SIZE
 336		? kmalloc(bset_prev_bytes(b), gfp)
 337		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 338	if (!t->prev)
 339		goto err;
 340
 341	return 0;
 342err:
 343	bch_btree_keys_free(b);
 344	return -ENOMEM;
 345}
 
 346
 347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 348			 bool *expensive_debug_checks)
 349{
 
 
 350	b->ops = ops;
 351	b->expensive_debug_checks = expensive_debug_checks;
 352	b->nsets = 0;
 353	b->last_set_unwritten = 0;
 354
 
 
 
 355	/*
 356	 * struct btree_keys in embedded in struct btree, and struct
 357	 * bset_tree is embedded into struct btree_keys. They are all
 358	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
 359	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
 360	 * don't have to initiate b->set[].size and b->set[].data here
 361	 * any more.
 362	 */
 
 
 363}
 
 364
 365/* Binary tree stuff for auxiliary search trees */
 366
 367/*
 368 * return array index next to j when does in-order traverse
 369 * of a binary tree which is stored in a linear array
 370 */
 371static unsigned int inorder_next(unsigned int j, unsigned int size)
 372{
 373	if (j * 2 + 1 < size) {
 374		j = j * 2 + 1;
 375
 376		while (j * 2 < size)
 377			j *= 2;
 378	} else
 379		j >>= ffz(j) + 1;
 380
 381	return j;
 382}
 383
 384/*
 385 * return array index previous to j when does in-order traverse
 386 * of a binary tree which is stored in a linear array
 387 */
 388static unsigned int inorder_prev(unsigned int j, unsigned int size)
 389{
 390	if (j * 2 < size) {
 391		j = j * 2;
 392
 393		while (j * 2 + 1 < size)
 394			j = j * 2 + 1;
 395	} else
 396		j >>= ffs(j);
 397
 398	return j;
 399}
 400
 401/*
 402 * I have no idea why this code works... and I'm the one who wrote it
 403 *
 404 * However, I do know what it does:
 405 * Given a binary tree constructed in an array (i.e. how you normally implement
 406 * a heap), it converts a node in the tree - referenced by array index - to the
 407 * index it would have if you did an inorder traversal.
 408 *
 409 * Also tested for every j, size up to size somewhere around 6 million.
 410 *
 411 * The binary tree starts at array index 1, not 0
 412 * extra is a function of size:
 413 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 414 */
 415static unsigned int __to_inorder(unsigned int j,
 416				  unsigned int size,
 417				  unsigned int extra)
 418{
 419	unsigned int b = fls(j);
 420	unsigned int shift = fls(size - 1) - b;
 421
 422	j  ^= 1U << (b - 1);
 423	j <<= 1;
 424	j  |= 1;
 425	j <<= shift;
 426
 427	if (j > extra)
 428		j -= (j - extra) >> 1;
 429
 430	return j;
 431}
 432
 433/*
 434 * Return the cacheline index in bset_tree->data, where j is index
 435 * from a linear array which stores the auxiliar binary tree
 436 */
 437static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
 438{
 439	return __to_inorder(j, t->size, t->extra);
 440}
 441
 442static unsigned int __inorder_to_tree(unsigned int j,
 443				      unsigned int size,
 444				      unsigned int extra)
 445{
 446	unsigned int shift;
 447
 448	if (j > extra)
 449		j += j - extra;
 450
 451	shift = ffs(j);
 452
 453	j >>= shift;
 454	j  |= roundup_pow_of_two(size) >> shift;
 455
 456	return j;
 457}
 458
 459/*
 460 * Return an index from a linear array which stores the auxiliar binary
 461 * tree, j is the cacheline index of t->data.
 462 */
 463static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
 464{
 465	return __inorder_to_tree(j, t->size, t->extra);
 466}
 467
 468#if 0
 469void inorder_test(void)
 470{
 471	unsigned long done = 0;
 472	ktime_t start = ktime_get();
 473
 474	for (unsigned int size = 2;
 475	     size < 65536000;
 476	     size++) {
 477		unsigned int extra =
 478			(size - rounddown_pow_of_two(size - 1)) << 1;
 479		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
 480
 481		if (!(size % 4096))
 482			pr_notice("loop %u, %llu per us\n", size,
 483			       done / ktime_us_delta(ktime_get(), start));
 484
 485		while (1) {
 486			if (__inorder_to_tree(i, size, extra) != j)
 487				panic("size %10u j %10u i %10u", size, j, i);
 488
 489			if (__to_inorder(j, size, extra) != i)
 490				panic("size %10u j %10u i %10u", size, j, i);
 491
 492			if (j == rounddown_pow_of_two(size) - 1)
 493				break;
 494
 495			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 496
 497			j = inorder_next(j, size);
 498			i++;
 499		}
 500
 501		done += size - 1;
 502	}
 503}
 504#endif
 505
 506/*
 507 * Cacheline/offset <-> bkey pointer arithmetic:
 508 *
 509 * t->tree is a binary search tree in an array; each node corresponds to a key
 510 * in one cacheline in t->set (BSET_CACHELINE bytes).
 511 *
 512 * This means we don't have to store the full index of the key that a node in
 513 * the binary tree points to; to_inorder() gives us the cacheline, and then
 514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 515 *
 516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 517 * make this work.
 518 *
 519 * To construct the bfloat for an arbitrary key we need to know what the key
 520 * immediately preceding it is: we have to check if the two keys differ in the
 521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 522 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 523 */
 524
 525static struct bkey *cacheline_to_bkey(struct bset_tree *t,
 526				      unsigned int cacheline,
 527				      unsigned int offset)
 528{
 529	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 530}
 531
 532static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 533{
 534	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 535}
 536
 537static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
 538					 unsigned int cacheline,
 539					 struct bkey *k)
 540{
 541	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 542}
 543
 544static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
 545{
 546	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 547}
 548
 549static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
 550{
 551	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 552}
 553
 554/*
 555 * For the write set - the one we're currently inserting keys into - we don't
 556 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 557 */
 558static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
 559{
 560	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 561}
 562
 563static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 564{
 565	low >>= shift;
 566	low  |= (high << 1) << (63U - shift);
 567	return low;
 568}
 569
 570/*
 571 * Calculate mantissa value for struct bkey_float.
 572 * If most significant bit of f->exponent is not set, then
 573 *  - f->exponent >> 6 is 0
 574 *  - p[0] points to bkey->low
 575 *  - p[-1] borrows bits from KEY_INODE() of bkey->high
 576 * if most isgnificant bits of f->exponent is set, then
 577 *  - f->exponent >> 6 is 1
 578 *  - p[0] points to bits from KEY_INODE() of bkey->high
 579 *  - p[-1] points to other bits from KEY_INODE() of
 580 *    bkey->high too.
 581 * See make_bfloat() to check when most significant bit of f->exponent
 582 * is set or not.
 583 */
 584static inline unsigned int bfloat_mantissa(const struct bkey *k,
 585				       struct bkey_float *f)
 586{
 587	const uint64_t *p = &k->low - (f->exponent >> 6);
 588
 589	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 590}
 591
 592static void make_bfloat(struct bset_tree *t, unsigned int j)
 593{
 594	struct bkey_float *f = &t->tree[j];
 595	struct bkey *m = tree_to_bkey(t, j);
 596	struct bkey *p = tree_to_prev_bkey(t, j);
 597
 598	struct bkey *l = is_power_of_2(j)
 599		? t->data->start
 600		: tree_to_prev_bkey(t, j >> ffs(j));
 601
 602	struct bkey *r = is_power_of_2(j + 1)
 603		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 604		: tree_to_bkey(t, j >> (ffz(j) + 1));
 605
 606	BUG_ON(m < l || m > r);
 607	BUG_ON(bkey_next(p) != m);
 608
 609	/*
 610	 * If l and r have different KEY_INODE values (different backing
 611	 * device), f->exponent records how many least significant bits
 612	 * are different in KEY_INODE values and sets most significant
 613	 * bits to 1 (by +64).
 614	 * If l and r have same KEY_INODE value, f->exponent records
 615	 * how many different bits in least significant bits of bkey->low.
 616	 * See bfloat_mantiss() how the most significant bit of
 617	 * f->exponent is used to calculate bfloat mantissa value.
 618	 */
 619	if (KEY_INODE(l) != KEY_INODE(r))
 620		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 621	else
 622		f->exponent = fls64(r->low ^ l->low);
 623
 624	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 625
 626	/*
 627	 * Setting f->exponent = 127 flags this node as failed, and causes the
 628	 * lookup code to fall back to comparing against the original key.
 629	 */
 630
 631	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 632		f->mantissa = bfloat_mantissa(m, f) - 1;
 633	else
 634		f->exponent = 127;
 635}
 636
 637static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 638{
 639	if (t != b->set) {
 640		unsigned int j = roundup(t[-1].size,
 641				     64 / sizeof(struct bkey_float));
 642
 643		t->tree = t[-1].tree + j;
 644		t->prev = t[-1].prev + j;
 645	}
 646
 647	while (t < b->set + MAX_BSETS)
 648		t++->size = 0;
 649}
 650
 651static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 652{
 653	struct bset_tree *t = bset_tree_last(b);
 654
 655	BUG_ON(b->last_set_unwritten);
 656	b->last_set_unwritten = 1;
 657
 658	bset_alloc_tree(b, t);
 659
 660	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 661		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 662		t->size = 1;
 663	}
 664}
 665
 666void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 667{
 668	if (i != b->set->data) {
 669		b->set[++b->nsets].data = i;
 670		i->seq = b->set->data->seq;
 671	} else
 672		get_random_bytes(&i->seq, sizeof(uint64_t));
 673
 674	i->magic	= magic;
 675	i->version	= 0;
 676	i->keys		= 0;
 677
 678	bch_bset_build_unwritten_tree(b);
 679}
 
 680
 681/*
 682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
 683 * accelerate bkey search in a btree node (pointed by bset_tree->data in
 684 * memory). After search in the auxiliar tree by calling bset_search_tree(),
 685 * a struct bset_search_iter is returned which indicates range [l, r] from
 686 * bset_tree->data where the searching bkey might be inside. Then a followed
 687 * linear comparison does the exact search, see __bch_bset_search() for how
 688 * the auxiliary tree is used.
 689 */
 690void bch_bset_build_written_tree(struct btree_keys *b)
 691{
 692	struct bset_tree *t = bset_tree_last(b);
 693	struct bkey *prev = NULL, *k = t->data->start;
 694	unsigned int j, cacheline = 1;
 695
 696	b->last_set_unwritten = 0;
 697
 698	bset_alloc_tree(b, t);
 699
 700	t->size = min_t(unsigned int,
 701			bkey_to_cacheline(t, bset_bkey_last(t->data)),
 702			b->set->tree + btree_keys_cachelines(b) - t->tree);
 703
 704	if (t->size < 2) {
 705		t->size = 0;
 706		return;
 707	}
 708
 709	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 710
 711	/* First we figure out where the first key in each cacheline is */
 712	for (j = inorder_next(0, t->size);
 713	     j;
 714	     j = inorder_next(j, t->size)) {
 715		while (bkey_to_cacheline(t, k) < cacheline) {
 716			prev = k;
 717			k = bkey_next(k);
 718		}
 719
 720		t->prev[j] = bkey_u64s(prev);
 721		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 722	}
 723
 724	while (bkey_next(k) != bset_bkey_last(t->data))
 725		k = bkey_next(k);
 726
 727	t->end = *k;
 728
 729	/* Then we build the tree */
 730	for (j = inorder_next(0, t->size);
 731	     j;
 732	     j = inorder_next(j, t->size))
 733		make_bfloat(t, j);
 734}
 
 735
 736/* Insert */
 737
 738void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 739{
 740	struct bset_tree *t;
 741	unsigned int inorder, j = 1;
 742
 743	for (t = b->set; t <= bset_tree_last(b); t++)
 744		if (k < bset_bkey_last(t->data))
 745			goto found_set;
 746
 747	BUG();
 748found_set:
 749	if (!t->size || !bset_written(b, t))
 750		return;
 751
 752	inorder = bkey_to_cacheline(t, k);
 753
 754	if (k == t->data->start)
 755		goto fix_left;
 756
 757	if (bkey_next(k) == bset_bkey_last(t->data)) {
 758		t->end = *k;
 759		goto fix_right;
 760	}
 761
 762	j = inorder_to_tree(inorder, t);
 763
 764	if (j &&
 765	    j < t->size &&
 766	    k == tree_to_bkey(t, j))
 767fix_left:	do {
 768			make_bfloat(t, j);
 769			j = j * 2;
 770		} while (j < t->size);
 771
 772	j = inorder_to_tree(inorder + 1, t);
 773
 774	if (j &&
 775	    j < t->size &&
 776	    k == tree_to_prev_bkey(t, j))
 777fix_right:	do {
 778			make_bfloat(t, j);
 779			j = j * 2 + 1;
 780		} while (j < t->size);
 781}
 
 782
 783static void bch_bset_fix_lookup_table(struct btree_keys *b,
 784				      struct bset_tree *t,
 785				      struct bkey *k)
 786{
 787	unsigned int shift = bkey_u64s(k);
 788	unsigned int j = bkey_to_cacheline(t, k);
 789
 790	/* We're getting called from btree_split() or btree_gc, just bail out */
 791	if (!t->size)
 792		return;
 793
 794	/*
 795	 * k is the key we just inserted; we need to find the entry in the
 796	 * lookup table for the first key that is strictly greater than k:
 797	 * it's either k's cacheline or the next one
 798	 */
 799	while (j < t->size &&
 800	       table_to_bkey(t, j) <= k)
 801		j++;
 802
 803	/*
 804	 * Adjust all the lookup table entries, and find a new key for any that
 805	 * have gotten too big
 806	 */
 807	for (; j < t->size; j++) {
 808		t->prev[j] += shift;
 809
 810		if (t->prev[j] > 7) {
 811			k = table_to_bkey(t, j - 1);
 812
 813			while (k < cacheline_to_bkey(t, j, 0))
 814				k = bkey_next(k);
 815
 816			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 817		}
 818	}
 819
 820	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 821		return;
 822
 823	/* Possibly add a new entry to the end of the lookup table */
 824
 825	for (k = table_to_bkey(t, t->size - 1);
 826	     k != bset_bkey_last(t->data);
 827	     k = bkey_next(k))
 828		if (t->size == bkey_to_cacheline(t, k)) {
 829			t->prev[t->size] =
 830				bkey_to_cacheline_offset(t, t->size, k);
 831			t->size++;
 832		}
 833}
 834
 835/*
 836 * Tries to merge l and r: l should be lower than r
 837 * Returns true if we were able to merge. If we did merge, l will be the merged
 838 * key, r will be untouched.
 839 */
 840bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 841{
 842	if (!b->ops->key_merge)
 843		return false;
 844
 845	/*
 846	 * Generic header checks
 847	 * Assumes left and right are in order
 848	 * Left and right must be exactly aligned
 849	 */
 850	if (!bch_bkey_equal_header(l, r) ||
 851	     bkey_cmp(l, &START_KEY(r)))
 852		return false;
 853
 854	return b->ops->key_merge(b, l, r);
 855}
 
 856
 857void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 858		     struct bkey *insert)
 859{
 860	struct bset_tree *t = bset_tree_last(b);
 861
 862	BUG_ON(!b->last_set_unwritten);
 863	BUG_ON(bset_byte_offset(b, t->data) +
 864	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 865	       PAGE_SIZE << b->page_order);
 866
 867	memmove((uint64_t *) where + bkey_u64s(insert),
 868		where,
 869		(void *) bset_bkey_last(t->data) - (void *) where);
 870
 871	t->data->keys += bkey_u64s(insert);
 872	bkey_copy(where, insert);
 873	bch_bset_fix_lookup_table(b, t, where);
 874}
 
 875
 876unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 877			      struct bkey *replace_key)
 878{
 879	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
 880	struct bset *i = bset_tree_last(b)->data;
 881	struct bkey *m, *prev = NULL;
 882	struct btree_iter iter;
 883	struct bkey preceding_key_on_stack = ZERO_KEY;
 884	struct bkey *preceding_key_p = &preceding_key_on_stack;
 885
 886	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 887
 888	/*
 889	 * If k has preceding key, preceding_key_p will be set to address
 890	 *  of k's preceding key; otherwise preceding_key_p will be set
 891	 * to NULL inside preceding_key().
 892	 */
 893	if (b->ops->is_extents)
 894		preceding_key(&START_KEY(k), &preceding_key_p);
 895	else
 896		preceding_key(k, &preceding_key_p);
 897
 898	m = bch_btree_iter_init(b, &iter, preceding_key_p);
 899
 900	if (b->ops->insert_fixup(b, k, &iter, replace_key))
 901		return status;
 902
 903	status = BTREE_INSERT_STATUS_INSERT;
 904
 905	while (m != bset_bkey_last(i) &&
 906	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
 907		prev = m;
 908		m = bkey_next(m);
 909	}
 910
 911	/* prev is in the tree, if we merge we're done */
 912	status = BTREE_INSERT_STATUS_BACK_MERGE;
 913	if (prev &&
 914	    bch_bkey_try_merge(b, prev, k))
 915		goto merged;
 916#if 0
 917	status = BTREE_INSERT_STATUS_OVERWROTE;
 918	if (m != bset_bkey_last(i) &&
 919	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 920		goto copy;
 921#endif
 922	status = BTREE_INSERT_STATUS_FRONT_MERGE;
 923	if (m != bset_bkey_last(i) &&
 924	    bch_bkey_try_merge(b, k, m))
 925		goto copy;
 926
 927	bch_bset_insert(b, m, k);
 928copy:	bkey_copy(m, k);
 929merged:
 930	return status;
 931}
 
 932
 933/* Lookup */
 934
 935struct bset_search_iter {
 936	struct bkey *l, *r;
 937};
 938
 939static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 940						     const struct bkey *search)
 941{
 942	unsigned int li = 0, ri = t->size;
 943
 944	while (li + 1 != ri) {
 945		unsigned int m = (li + ri) >> 1;
 946
 947		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 948			ri = m;
 949		else
 950			li = m;
 951	}
 952
 953	return (struct bset_search_iter) {
 954		table_to_bkey(t, li),
 955		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 956	};
 957}
 958
 959static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 960						const struct bkey *search)
 961{
 962	struct bkey *l, *r;
 963	struct bkey_float *f;
 964	unsigned int inorder, j, n = 1;
 965
 966	do {
 967		unsigned int p = n << 4;
 
 968
 969		if (p < t->size)
 970			prefetch(&t->tree[p]);
 971
 972		j = n;
 973		f = &t->tree[j];
 974
 975		if (likely(f->exponent != 127)) {
 976			if (f->mantissa >= bfloat_mantissa(search, f))
 977				n = j * 2;
 978			else
 979				n = j * 2 + 1;
 980		} else {
 981			if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 982				n = j * 2;
 983			else
 984				n = j * 2 + 1;
 985		}
 
 
 
 
 
 986	} while (n < t->size);
 987
 988	inorder = to_inorder(j, t);
 989
 990	/*
 991	 * n would have been the node we recursed to - the low bit tells us if
 992	 * we recursed left or recursed right.
 993	 */
 994	if (n & 1) {
 995		l = cacheline_to_bkey(t, inorder, f->m);
 996
 997		if (++inorder != t->size) {
 998			f = &t->tree[inorder_next(j, t->size)];
 999			r = cacheline_to_bkey(t, inorder, f->m);
1000		} else
1001			r = bset_bkey_last(t->data);
1002	} else {
1003		r = cacheline_to_bkey(t, inorder, f->m);
1004
1005		if (--inorder) {
1006			f = &t->tree[inorder_prev(j, t->size)];
1007			l = cacheline_to_bkey(t, inorder, f->m);
1008		} else
1009			l = t->data->start;
1010	}
1011
1012	return (struct bset_search_iter) {l, r};
1013}
1014
1015struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1016			       const struct bkey *search)
1017{
1018	struct bset_search_iter i;
1019
1020	/*
1021	 * First, we search for a cacheline, then lastly we do a linear search
1022	 * within that cacheline.
1023	 *
1024	 * To search for the cacheline, there's three different possibilities:
1025	 *  * The set is too small to have a search tree, so we just do a linear
1026	 *    search over the whole set.
1027	 *  * The set is the one we're currently inserting into; keeping a full
1028	 *    auxiliary search tree up to date would be too expensive, so we
1029	 *    use a much simpler lookup table to do a binary search -
1030	 *    bset_search_write_set().
1031	 *  * Or we use the auxiliary search tree we constructed earlier -
1032	 *    bset_search_tree()
1033	 */
1034
1035	if (unlikely(!t->size)) {
1036		i.l = t->data->start;
1037		i.r = bset_bkey_last(t->data);
1038	} else if (bset_written(b, t)) {
1039		/*
1040		 * Each node in the auxiliary search tree covers a certain range
1041		 * of bits, and keys above and below the set it covers might
1042		 * differ outside those bits - so we have to special case the
1043		 * start and end - handle that here:
1044		 */
1045
1046		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1047			return bset_bkey_last(t->data);
1048
1049		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1050			return t->data->start;
1051
1052		i = bset_search_tree(t, search);
1053	} else {
1054		BUG_ON(!b->nsets &&
1055		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1056
1057		i = bset_search_write_set(t, search);
1058	}
1059
1060	if (btree_keys_expensive_checks(b)) {
1061		BUG_ON(bset_written(b, t) &&
1062		       i.l != t->data->start &&
1063		       bkey_cmp(tree_to_prev_bkey(t,
1064			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1065				search) > 0);
1066
1067		BUG_ON(i.r != bset_bkey_last(t->data) &&
1068		       bkey_cmp(i.r, search) <= 0);
1069	}
1070
1071	while (likely(i.l != i.r) &&
1072	       bkey_cmp(i.l, search) <= 0)
1073		i.l = bkey_next(i.l);
1074
1075	return i.l;
1076}
 
1077
1078/* Btree iterator */
1079
1080typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1081				 struct btree_iter_set);
1082
1083static inline bool btree_iter_cmp(struct btree_iter_set l,
1084				  struct btree_iter_set r)
1085{
1086	return bkey_cmp(l.k, r.k) > 0;
1087}
1088
1089static inline bool btree_iter_end(struct btree_iter *iter)
1090{
1091	return !iter->used;
1092}
1093
1094void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1095			 struct bkey *end)
1096{
1097	if (k != end)
1098		BUG_ON(!heap_add(iter,
1099				 ((struct btree_iter_set) { k, end }),
1100				 btree_iter_cmp));
1101}
1102
1103static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1104					  struct btree_iter *iter,
1105					  struct bkey *search,
1106					  struct bset_tree *start)
1107{
1108	struct bkey *ret = NULL;
1109
1110	iter->size = ARRAY_SIZE(iter->data);
1111	iter->used = 0;
1112
1113#ifdef CONFIG_BCACHE_DEBUG
1114	iter->b = b;
1115#endif
1116
1117	for (; start <= bset_tree_last(b); start++) {
1118		ret = bch_bset_search(b, start, search);
1119		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1120	}
1121
1122	return ret;
1123}
1124
1125struct bkey *bch_btree_iter_init(struct btree_keys *b,
1126				 struct btree_iter *iter,
1127				 struct bkey *search)
1128{
1129	return __bch_btree_iter_init(b, iter, search, b->set);
1130}
 
1131
1132static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1133						 btree_iter_cmp_fn *cmp)
1134{
1135	struct btree_iter_set b __maybe_unused;
1136	struct bkey *ret = NULL;
1137
1138	if (!btree_iter_end(iter)) {
1139		bch_btree_iter_next_check(iter);
1140
1141		ret = iter->data->k;
1142		iter->data->k = bkey_next(iter->data->k);
1143
1144		if (iter->data->k > iter->data->end) {
1145			WARN_ONCE(1, "bset was corrupt!\n");
1146			iter->data->k = iter->data->end;
1147		}
1148
1149		if (iter->data->k == iter->data->end)
1150			heap_pop(iter, b, cmp);
1151		else
1152			heap_sift(iter, 0, cmp);
1153	}
1154
1155	return ret;
1156}
1157
1158struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1159{
1160	return __bch_btree_iter_next(iter, btree_iter_cmp);
1161
1162}
 
1163
1164struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1165					struct btree_keys *b, ptr_filter_fn fn)
1166{
1167	struct bkey *ret;
1168
1169	do {
1170		ret = bch_btree_iter_next(iter);
1171	} while (ret && fn(b, ret));
1172
1173	return ret;
1174}
1175
1176/* Mergesort */
1177
1178void bch_bset_sort_state_free(struct bset_sort_state *state)
1179{
1180	mempool_exit(&state->pool);
 
1181}
1182
1183int bch_bset_sort_state_init(struct bset_sort_state *state,
1184			     unsigned int page_order)
1185{
1186	spin_lock_init(&state->time.lock);
1187
1188	state->page_order = page_order;
1189	state->crit_factor = int_sqrt(1 << page_order);
1190
1191	return mempool_init_page_pool(&state->pool, 1, page_order);
 
 
 
 
1192}
 
1193
1194static void btree_mergesort(struct btree_keys *b, struct bset *out,
1195			    struct btree_iter *iter,
1196			    bool fixup, bool remove_stale)
1197{
1198	int i;
1199	struct bkey *k, *last = NULL;
1200	BKEY_PADDED(k) tmp;
1201	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1202		? bch_ptr_bad
1203		: bch_ptr_invalid;
1204
1205	/* Heapify the iterator, using our comparison function */
1206	for (i = iter->used / 2 - 1; i >= 0; --i)
1207		heap_sift(iter, i, b->ops->sort_cmp);
1208
1209	while (!btree_iter_end(iter)) {
1210		if (b->ops->sort_fixup && fixup)
1211			k = b->ops->sort_fixup(iter, &tmp.k);
1212		else
1213			k = NULL;
1214
1215		if (!k)
1216			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1217
1218		if (bad(b, k))
1219			continue;
1220
1221		if (!last) {
1222			last = out->start;
1223			bkey_copy(last, k);
1224		} else if (!bch_bkey_try_merge(b, last, k)) {
1225			last = bkey_next(last);
1226			bkey_copy(last, k);
1227		}
1228	}
1229
1230	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1231
1232	pr_debug("sorted %i keys\n", out->keys);
1233}
1234
1235static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1236			 unsigned int start, unsigned int order, bool fixup,
1237			 struct bset_sort_state *state)
1238{
1239	uint64_t start_time;
1240	bool used_mempool = false;
1241	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1242						     order);
1243	if (!out) {
1244		struct page *outp;
1245
1246		BUG_ON(order > state->page_order);
1247
1248		outp = mempool_alloc(&state->pool, GFP_NOIO);
1249		out = page_address(outp);
1250		used_mempool = true;
1251		order = state->page_order;
1252	}
1253
1254	start_time = local_clock();
1255
1256	btree_mergesort(b, out, iter, fixup, false);
1257	b->nsets = start;
1258
1259	if (!start && order == b->page_order) {
1260		/*
1261		 * Our temporary buffer is the same size as the btree node's
1262		 * buffer, we can just swap buffers instead of doing a big
1263		 * memcpy()
1264		 *
1265		 * Don't worry event 'out' is allocated from mempool, it can
1266		 * still be swapped here. Because state->pool is a page mempool
1267		 * created by mempool_init_page_pool(), which allocates
1268		 * pages by alloc_pages() indeed.
1269		 */
1270
1271		out->magic	= b->set->data->magic;
1272		out->seq	= b->set->data->seq;
1273		out->version	= b->set->data->version;
1274		swap(out, b->set->data);
1275	} else {
1276		b->set[start].data->keys = out->keys;
1277		memcpy(b->set[start].data->start, out->start,
1278		       (void *) bset_bkey_last(out) - (void *) out->start);
1279	}
1280
1281	if (used_mempool)
1282		mempool_free(virt_to_page(out), &state->pool);
1283	else
1284		free_pages((unsigned long) out, order);
1285
1286	bch_bset_build_written_tree(b);
1287
1288	if (!start)
1289		bch_time_stats_update(&state->time, start_time);
1290}
1291
1292void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1293			    struct bset_sort_state *state)
1294{
1295	size_t order = b->page_order, keys = 0;
1296	struct btree_iter iter;
1297	int oldsize = bch_count_data(b);
1298
1299	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1300
1301	if (start) {
1302		unsigned int i;
1303
1304		for (i = start; i <= b->nsets; i++)
1305			keys += b->set[i].data->keys;
1306
1307		order = get_order(__set_bytes(b->set->data, keys));
1308	}
1309
1310	__btree_sort(b, &iter, start, order, false, state);
1311
1312	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1313}
 
1314
1315void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1316				    struct btree_iter *iter,
1317				    struct bset_sort_state *state)
1318{
1319	__btree_sort(b, iter, 0, b->page_order, true, state);
1320}
1321
1322void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1323			 struct bset_sort_state *state)
1324{
1325	uint64_t start_time = local_clock();
1326	struct btree_iter iter;
1327
 
1328	bch_btree_iter_init(b, &iter, NULL);
1329
1330	btree_mergesort(b, new->set->data, &iter, false, true);
1331
1332	bch_time_stats_update(&state->time, start_time);
1333
1334	new->set->size = 0; // XXX: why?
1335}
1336
1337#define SORT_CRIT	(4096 / sizeof(uint64_t))
1338
1339void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1340{
1341	unsigned int crit = SORT_CRIT;
1342	int i;
1343
1344	/* Don't sort if nothing to do */
1345	if (!b->nsets)
1346		goto out;
1347
1348	for (i = b->nsets - 1; i >= 0; --i) {
1349		crit *= state->crit_factor;
1350
1351		if (b->set[i].data->keys < crit) {
1352			bch_btree_sort_partial(b, i, state);
1353			return;
1354		}
1355	}
1356
1357	/* Sort if we'd overflow */
1358	if (b->nsets + 1 == MAX_BSETS) {
1359		bch_btree_sort(b, state);
1360		return;
1361	}
1362
1363out:
1364	bch_bset_build_written_tree(b);
1365}
 
1366
1367void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1368{
1369	unsigned int i;
1370
1371	for (i = 0; i <= b->nsets; i++) {
1372		struct bset_tree *t = &b->set[i];
1373		size_t bytes = t->data->keys * sizeof(uint64_t);
1374		size_t j;
1375
1376		if (bset_written(b, t)) {
1377			stats->sets_written++;
1378			stats->bytes_written += bytes;
1379
1380			stats->floats += t->size - 1;
1381
1382			for (j = 1; j < t->size; j++)
1383				if (t->tree[j].exponent == 127)
1384					stats->failed++;
1385		} else {
1386			stats->sets_unwritten++;
1387			stats->bytes_unwritten += bytes;
1388		}
1389	}
1390}
v4.10.11
 
   1/*
   2 * Code for working with individual keys, and sorted sets of keys with in a
   3 * btree node
   4 *
   5 * Copyright 2012 Google, Inc.
   6 */
   7
   8#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
   9
  10#include "util.h"
  11#include "bset.h"
  12
  13#include <linux/console.h>
 
  14#include <linux/random.h>
  15#include <linux/prefetch.h>
  16
  17#ifdef CONFIG_BCACHE_DEBUG
  18
  19void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set)
  20{
  21	struct bkey *k, *next;
  22
  23	for (k = i->start; k < bset_bkey_last(i); k = next) {
  24		next = bkey_next(k);
  25
  26		printk(KERN_ERR "block %u key %u/%u: ", set,
  27		       (unsigned) ((u64 *) k - i->d), i->keys);
  28
  29		if (b->ops->key_dump)
  30			b->ops->key_dump(b, k);
  31		else
  32			printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
  33
  34		if (next < bset_bkey_last(i) &&
  35		    bkey_cmp(k, b->ops->is_extents ?
  36			     &START_KEY(next) : next) > 0)
  37			printk(KERN_ERR "Key skipped backwards\n");
  38	}
  39}
  40
  41void bch_dump_bucket(struct btree_keys *b)
  42{
  43	unsigned i;
  44
  45	console_lock();
  46	for (i = 0; i <= b->nsets; i++)
  47		bch_dump_bset(b, b->set[i].data,
  48			      bset_sector_offset(b, b->set[i].data));
  49	console_unlock();
  50}
  51
  52int __bch_count_data(struct btree_keys *b)
  53{
  54	unsigned ret = 0;
  55	struct btree_iter iter;
  56	struct bkey *k;
  57
  58	if (b->ops->is_extents)
  59		for_each_key(b, k, &iter)
  60			ret += KEY_SIZE(k);
  61	return ret;
  62}
  63
  64void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
  65{
  66	va_list args;
  67	struct bkey *k, *p = NULL;
  68	struct btree_iter iter;
  69	const char *err;
  70
  71	for_each_key(b, k, &iter) {
  72		if (b->ops->is_extents) {
  73			err = "Keys out of order";
  74			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
  75				goto bug;
  76
  77			if (bch_ptr_invalid(b, k))
  78				continue;
  79
  80			err =  "Overlapping keys";
  81			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
  82				goto bug;
  83		} else {
  84			if (bch_ptr_bad(b, k))
  85				continue;
  86
  87			err = "Duplicate keys";
  88			if (p && !bkey_cmp(p, k))
  89				goto bug;
  90		}
  91		p = k;
  92	}
  93#if 0
  94	err = "Key larger than btree node key";
  95	if (p && bkey_cmp(p, &b->key) > 0)
  96		goto bug;
  97#endif
  98	return;
  99bug:
 100	bch_dump_bucket(b);
 101
 102	va_start(args, fmt);
 103	vprintk(fmt, args);
 104	va_end(args);
 105
 106	panic("bch_check_keys error:  %s:\n", err);
 107}
 108
 109static void bch_btree_iter_next_check(struct btree_iter *iter)
 110{
 111	struct bkey *k = iter->data->k, *next = bkey_next(k);
 112
 113	if (next < iter->data->end &&
 114	    bkey_cmp(k, iter->b->ops->is_extents ?
 115		     &START_KEY(next) : next) > 0) {
 116		bch_dump_bucket(iter->b);
 117		panic("Key skipped backwards\n");
 118	}
 119}
 120
 121#else
 122
 123static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 124
 125#endif
 126
 127/* Keylists */
 128
 129int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
 130{
 131	size_t oldsize = bch_keylist_nkeys(l);
 132	size_t newsize = oldsize + u64s;
 133	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 134	uint64_t *new_keys;
 135
 136	newsize = roundup_pow_of_two(newsize);
 137
 138	if (newsize <= KEYLIST_INLINE ||
 139	    roundup_pow_of_two(oldsize) == newsize)
 140		return 0;
 141
 142	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 143
 144	if (!new_keys)
 145		return -ENOMEM;
 146
 147	if (!old_keys)
 148		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 149
 150	l->keys_p = new_keys;
 151	l->top_p = new_keys + oldsize;
 152
 153	return 0;
 154}
 155
 
 156struct bkey *bch_keylist_pop(struct keylist *l)
 157{
 158	struct bkey *k = l->keys;
 159
 160	if (k == l->top)
 161		return NULL;
 162
 163	while (bkey_next(k) != l->top)
 164		k = bkey_next(k);
 165
 166	return l->top = k;
 167}
 168
 
 169void bch_keylist_pop_front(struct keylist *l)
 170{
 171	l->top_p -= bkey_u64s(l->keys);
 172
 173	memmove(l->keys,
 174		bkey_next(l->keys),
 175		bch_keylist_bytes(l));
 176}
 177
 178/* Key/pointer manipulation */
 179
 180void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 181			      unsigned i)
 182{
 183	BUG_ON(i > KEY_PTRS(src));
 184
 185	/* Only copy the header, key, and one pointer. */
 186	memcpy(dest, src, 2 * sizeof(uint64_t));
 187	dest->ptr[0] = src->ptr[i];
 188	SET_KEY_PTRS(dest, 1);
 189	/* We didn't copy the checksum so clear that bit. */
 190	SET_KEY_CSUM(dest, 0);
 191}
 192
 193bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 194{
 195	unsigned i, len = 0;
 196
 197	if (bkey_cmp(where, &START_KEY(k)) <= 0)
 198		return false;
 199
 200	if (bkey_cmp(where, k) < 0)
 201		len = KEY_OFFSET(k) - KEY_OFFSET(where);
 202	else
 203		bkey_copy_key(k, where);
 204
 205	for (i = 0; i < KEY_PTRS(k); i++)
 206		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 207
 208	BUG_ON(len > KEY_SIZE(k));
 209	SET_KEY_SIZE(k, len);
 210	return true;
 211}
 212
 213bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 214{
 215	unsigned len = 0;
 216
 217	if (bkey_cmp(where, k) >= 0)
 218		return false;
 219
 220	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 221
 222	if (bkey_cmp(where, &START_KEY(k)) > 0)
 223		len = KEY_OFFSET(where) - KEY_START(k);
 224
 225	bkey_copy_key(k, where);
 226
 227	BUG_ON(len > KEY_SIZE(k));
 228	SET_KEY_SIZE(k, len);
 229	return true;
 230}
 231
 232/* Auxiliary search trees */
 233
 234/* 32 bits total: */
 235#define BKEY_MID_BITS		3
 236#define BKEY_EXPONENT_BITS	7
 237#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 238#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
 239
 240struct bkey_float {
 241	unsigned	exponent:BKEY_EXPONENT_BITS;
 242	unsigned	m:BKEY_MID_BITS;
 243	unsigned	mantissa:BKEY_MANTISSA_BITS;
 244} __packed;
 245
 246/*
 247 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 248 * it used to be 64, but I realized the lookup code would touch slightly less
 249 * memory if it was 128.
 250 *
 251 * It definites the number of bytes (in struct bset) per struct bkey_float in
 252 * the auxiliar search tree - when we're done searching the bset_float tree we
 253 * have this many bytes left that we do a linear search over.
 254 *
 255 * Since (after level 5) every level of the bset_tree is on a new cacheline,
 256 * we're touching one fewer cacheline in the bset tree in exchange for one more
 257 * cacheline in the linear search - but the linear search might stop before it
 258 * gets to the second cacheline.
 259 */
 260
 261#define BSET_CACHELINE		128
 262
 263/* Space required for the btree node keys */
 264static inline size_t btree_keys_bytes(struct btree_keys *b)
 265{
 266	return PAGE_SIZE << b->page_order;
 267}
 268
 269static inline size_t btree_keys_cachelines(struct btree_keys *b)
 270{
 271	return btree_keys_bytes(b) / BSET_CACHELINE;
 272}
 273
 274/* Space required for the auxiliary search trees */
 275static inline size_t bset_tree_bytes(struct btree_keys *b)
 276{
 277	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 278}
 279
 280/* Space required for the prev pointers */
 281static inline size_t bset_prev_bytes(struct btree_keys *b)
 282{
 283	return btree_keys_cachelines(b) * sizeof(uint8_t);
 284}
 285
 286/* Memory allocation */
 287
 288void bch_btree_keys_free(struct btree_keys *b)
 289{
 290	struct bset_tree *t = b->set;
 291
 292	if (bset_prev_bytes(b) < PAGE_SIZE)
 293		kfree(t->prev);
 294	else
 295		free_pages((unsigned long) t->prev,
 296			   get_order(bset_prev_bytes(b)));
 297
 298	if (bset_tree_bytes(b) < PAGE_SIZE)
 299		kfree(t->tree);
 300	else
 301		free_pages((unsigned long) t->tree,
 302			   get_order(bset_tree_bytes(b)));
 303
 304	free_pages((unsigned long) t->data, b->page_order);
 305
 306	t->prev = NULL;
 307	t->tree = NULL;
 308	t->data = NULL;
 309}
 310EXPORT_SYMBOL(bch_btree_keys_free);
 311
 312int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
 
 
 313{
 314	struct bset_tree *t = b->set;
 315
 316	BUG_ON(t->data);
 317
 318	b->page_order = page_order;
 319
 320	t->data = (void *) __get_free_pages(gfp, b->page_order);
 321	if (!t->data)
 322		goto err;
 323
 324	t->tree = bset_tree_bytes(b) < PAGE_SIZE
 325		? kmalloc(bset_tree_bytes(b), gfp)
 326		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 327	if (!t->tree)
 328		goto err;
 329
 330	t->prev = bset_prev_bytes(b) < PAGE_SIZE
 331		? kmalloc(bset_prev_bytes(b), gfp)
 332		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 333	if (!t->prev)
 334		goto err;
 335
 336	return 0;
 337err:
 338	bch_btree_keys_free(b);
 339	return -ENOMEM;
 340}
 341EXPORT_SYMBOL(bch_btree_keys_alloc);
 342
 343void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 344			 bool *expensive_debug_checks)
 345{
 346	unsigned i;
 347
 348	b->ops = ops;
 349	b->expensive_debug_checks = expensive_debug_checks;
 350	b->nsets = 0;
 351	b->last_set_unwritten = 0;
 352
 353	/* XXX: shouldn't be needed */
 354	for (i = 0; i < MAX_BSETS; i++)
 355		b->set[i].size = 0;
 356	/*
 357	 * Second loop starts at 1 because b->keys[0]->data is the memory we
 358	 * allocated
 
 
 
 
 359	 */
 360	for (i = 1; i < MAX_BSETS; i++)
 361		b->set[i].data = NULL;
 362}
 363EXPORT_SYMBOL(bch_btree_keys_init);
 364
 365/* Binary tree stuff for auxiliary search trees */
 366
 367static unsigned inorder_next(unsigned j, unsigned size)
 
 
 
 
 368{
 369	if (j * 2 + 1 < size) {
 370		j = j * 2 + 1;
 371
 372		while (j * 2 < size)
 373			j *= 2;
 374	} else
 375		j >>= ffz(j) + 1;
 376
 377	return j;
 378}
 379
 380static unsigned inorder_prev(unsigned j, unsigned size)
 
 
 
 
 381{
 382	if (j * 2 < size) {
 383		j = j * 2;
 384
 385		while (j * 2 + 1 < size)
 386			j = j * 2 + 1;
 387	} else
 388		j >>= ffs(j);
 389
 390	return j;
 391}
 392
 393/* I have no idea why this code works... and I'm the one who wrote it
 
 394 *
 395 * However, I do know what it does:
 396 * Given a binary tree constructed in an array (i.e. how you normally implement
 397 * a heap), it converts a node in the tree - referenced by array index - to the
 398 * index it would have if you did an inorder traversal.
 399 *
 400 * Also tested for every j, size up to size somewhere around 6 million.
 401 *
 402 * The binary tree starts at array index 1, not 0
 403 * extra is a function of size:
 404 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 405 */
 406static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
 
 
 407{
 408	unsigned b = fls(j);
 409	unsigned shift = fls(size - 1) - b;
 410
 411	j  ^= 1U << (b - 1);
 412	j <<= 1;
 413	j  |= 1;
 414	j <<= shift;
 415
 416	if (j > extra)
 417		j -= (j - extra) >> 1;
 418
 419	return j;
 420}
 421
 422static unsigned to_inorder(unsigned j, struct bset_tree *t)
 
 
 
 
 423{
 424	return __to_inorder(j, t->size, t->extra);
 425}
 426
 427static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
 
 
 428{
 429	unsigned shift;
 430
 431	if (j > extra)
 432		j += j - extra;
 433
 434	shift = ffs(j);
 435
 436	j >>= shift;
 437	j  |= roundup_pow_of_two(size) >> shift;
 438
 439	return j;
 440}
 441
 442static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
 
 
 
 
 443{
 444	return __inorder_to_tree(j, t->size, t->extra);
 445}
 446
 447#if 0
 448void inorder_test(void)
 449{
 450	unsigned long done = 0;
 451	ktime_t start = ktime_get();
 452
 453	for (unsigned size = 2;
 454	     size < 65536000;
 455	     size++) {
 456		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 457		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
 
 458
 459		if (!(size % 4096))
 460			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
 461			       done / ktime_us_delta(ktime_get(), start));
 462
 463		while (1) {
 464			if (__inorder_to_tree(i, size, extra) != j)
 465				panic("size %10u j %10u i %10u", size, j, i);
 466
 467			if (__to_inorder(j, size, extra) != i)
 468				panic("size %10u j %10u i %10u", size, j, i);
 469
 470			if (j == rounddown_pow_of_two(size) - 1)
 471				break;
 472
 473			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 474
 475			j = inorder_next(j, size);
 476			i++;
 477		}
 478
 479		done += size - 1;
 480	}
 481}
 482#endif
 483
 484/*
 485 * Cacheline/offset <-> bkey pointer arithmetic:
 486 *
 487 * t->tree is a binary search tree in an array; each node corresponds to a key
 488 * in one cacheline in t->set (BSET_CACHELINE bytes).
 489 *
 490 * This means we don't have to store the full index of the key that a node in
 491 * the binary tree points to; to_inorder() gives us the cacheline, and then
 492 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 493 *
 494 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 495 * make this work.
 496 *
 497 * To construct the bfloat for an arbitrary key we need to know what the key
 498 * immediately preceding it is: we have to check if the two keys differ in the
 499 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 500 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 501 */
 502
 503static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
 504				      unsigned offset)
 
 505{
 506	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 507}
 508
 509static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 510{
 511	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 512}
 513
 514static unsigned bkey_to_cacheline_offset(struct bset_tree *t,
 515					 unsigned cacheline,
 516					 struct bkey *k)
 517{
 518	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 519}
 520
 521static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
 522{
 523	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 524}
 525
 526static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
 527{
 528	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 529}
 530
 531/*
 532 * For the write set - the one we're currently inserting keys into - we don't
 533 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 534 */
 535static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
 536{
 537	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 538}
 539
 540static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 541{
 542	low >>= shift;
 543	low  |= (high << 1) << (63U - shift);
 544	return low;
 545}
 546
 547static inline unsigned bfloat_mantissa(const struct bkey *k,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548				       struct bkey_float *f)
 549{
 550	const uint64_t *p = &k->low - (f->exponent >> 6);
 
 551	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 552}
 553
 554static void make_bfloat(struct bset_tree *t, unsigned j)
 555{
 556	struct bkey_float *f = &t->tree[j];
 557	struct bkey *m = tree_to_bkey(t, j);
 558	struct bkey *p = tree_to_prev_bkey(t, j);
 559
 560	struct bkey *l = is_power_of_2(j)
 561		? t->data->start
 562		: tree_to_prev_bkey(t, j >> ffs(j));
 563
 564	struct bkey *r = is_power_of_2(j + 1)
 565		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 566		: tree_to_bkey(t, j >> (ffz(j) + 1));
 567
 568	BUG_ON(m < l || m > r);
 569	BUG_ON(bkey_next(p) != m);
 570
 
 
 
 
 
 
 
 
 
 
 571	if (KEY_INODE(l) != KEY_INODE(r))
 572		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 573	else
 574		f->exponent = fls64(r->low ^ l->low);
 575
 576	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 577
 578	/*
 579	 * Setting f->exponent = 127 flags this node as failed, and causes the
 580	 * lookup code to fall back to comparing against the original key.
 581	 */
 582
 583	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 584		f->mantissa = bfloat_mantissa(m, f) - 1;
 585	else
 586		f->exponent = 127;
 587}
 588
 589static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 590{
 591	if (t != b->set) {
 592		unsigned j = roundup(t[-1].size,
 593				     64 / sizeof(struct bkey_float));
 594
 595		t->tree = t[-1].tree + j;
 596		t->prev = t[-1].prev + j;
 597	}
 598
 599	while (t < b->set + MAX_BSETS)
 600		t++->size = 0;
 601}
 602
 603static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 604{
 605	struct bset_tree *t = bset_tree_last(b);
 606
 607	BUG_ON(b->last_set_unwritten);
 608	b->last_set_unwritten = 1;
 609
 610	bset_alloc_tree(b, t);
 611
 612	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 613		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 614		t->size = 1;
 615	}
 616}
 617
 618void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 619{
 620	if (i != b->set->data) {
 621		b->set[++b->nsets].data = i;
 622		i->seq = b->set->data->seq;
 623	} else
 624		get_random_bytes(&i->seq, sizeof(uint64_t));
 625
 626	i->magic	= magic;
 627	i->version	= 0;
 628	i->keys		= 0;
 629
 630	bch_bset_build_unwritten_tree(b);
 631}
 632EXPORT_SYMBOL(bch_bset_init_next);
 633
 
 
 
 
 
 
 
 
 
 634void bch_bset_build_written_tree(struct btree_keys *b)
 635{
 636	struct bset_tree *t = bset_tree_last(b);
 637	struct bkey *prev = NULL, *k = t->data->start;
 638	unsigned j, cacheline = 1;
 639
 640	b->last_set_unwritten = 0;
 641
 642	bset_alloc_tree(b, t);
 643
 644	t->size = min_t(unsigned,
 645			bkey_to_cacheline(t, bset_bkey_last(t->data)),
 646			b->set->tree + btree_keys_cachelines(b) - t->tree);
 647
 648	if (t->size < 2) {
 649		t->size = 0;
 650		return;
 651	}
 652
 653	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 654
 655	/* First we figure out where the first key in each cacheline is */
 656	for (j = inorder_next(0, t->size);
 657	     j;
 658	     j = inorder_next(j, t->size)) {
 659		while (bkey_to_cacheline(t, k) < cacheline)
 660			prev = k, k = bkey_next(k);
 
 
 661
 662		t->prev[j] = bkey_u64s(prev);
 663		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 664	}
 665
 666	while (bkey_next(k) != bset_bkey_last(t->data))
 667		k = bkey_next(k);
 668
 669	t->end = *k;
 670
 671	/* Then we build the tree */
 672	for (j = inorder_next(0, t->size);
 673	     j;
 674	     j = inorder_next(j, t->size))
 675		make_bfloat(t, j);
 676}
 677EXPORT_SYMBOL(bch_bset_build_written_tree);
 678
 679/* Insert */
 680
 681void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 682{
 683	struct bset_tree *t;
 684	unsigned inorder, j = 1;
 685
 686	for (t = b->set; t <= bset_tree_last(b); t++)
 687		if (k < bset_bkey_last(t->data))
 688			goto found_set;
 689
 690	BUG();
 691found_set:
 692	if (!t->size || !bset_written(b, t))
 693		return;
 694
 695	inorder = bkey_to_cacheline(t, k);
 696
 697	if (k == t->data->start)
 698		goto fix_left;
 699
 700	if (bkey_next(k) == bset_bkey_last(t->data)) {
 701		t->end = *k;
 702		goto fix_right;
 703	}
 704
 705	j = inorder_to_tree(inorder, t);
 706
 707	if (j &&
 708	    j < t->size &&
 709	    k == tree_to_bkey(t, j))
 710fix_left:	do {
 711			make_bfloat(t, j);
 712			j = j * 2;
 713		} while (j < t->size);
 714
 715	j = inorder_to_tree(inorder + 1, t);
 716
 717	if (j &&
 718	    j < t->size &&
 719	    k == tree_to_prev_bkey(t, j))
 720fix_right:	do {
 721			make_bfloat(t, j);
 722			j = j * 2 + 1;
 723		} while (j < t->size);
 724}
 725EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
 726
 727static void bch_bset_fix_lookup_table(struct btree_keys *b,
 728				      struct bset_tree *t,
 729				      struct bkey *k)
 730{
 731	unsigned shift = bkey_u64s(k);
 732	unsigned j = bkey_to_cacheline(t, k);
 733
 734	/* We're getting called from btree_split() or btree_gc, just bail out */
 735	if (!t->size)
 736		return;
 737
 738	/* k is the key we just inserted; we need to find the entry in the
 
 739	 * lookup table for the first key that is strictly greater than k:
 740	 * it's either k's cacheline or the next one
 741	 */
 742	while (j < t->size &&
 743	       table_to_bkey(t, j) <= k)
 744		j++;
 745
 746	/* Adjust all the lookup table entries, and find a new key for any that
 
 747	 * have gotten too big
 748	 */
 749	for (; j < t->size; j++) {
 750		t->prev[j] += shift;
 751
 752		if (t->prev[j] > 7) {
 753			k = table_to_bkey(t, j - 1);
 754
 755			while (k < cacheline_to_bkey(t, j, 0))
 756				k = bkey_next(k);
 757
 758			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 759		}
 760	}
 761
 762	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 763		return;
 764
 765	/* Possibly add a new entry to the end of the lookup table */
 766
 767	for (k = table_to_bkey(t, t->size - 1);
 768	     k != bset_bkey_last(t->data);
 769	     k = bkey_next(k))
 770		if (t->size == bkey_to_cacheline(t, k)) {
 771			t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k);
 
 772			t->size++;
 773		}
 774}
 775
 776/*
 777 * Tries to merge l and r: l should be lower than r
 778 * Returns true if we were able to merge. If we did merge, l will be the merged
 779 * key, r will be untouched.
 780 */
 781bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 782{
 783	if (!b->ops->key_merge)
 784		return false;
 785
 786	/*
 787	 * Generic header checks
 788	 * Assumes left and right are in order
 789	 * Left and right must be exactly aligned
 790	 */
 791	if (!bch_bkey_equal_header(l, r) ||
 792	     bkey_cmp(l, &START_KEY(r)))
 793		return false;
 794
 795	return b->ops->key_merge(b, l, r);
 796}
 797EXPORT_SYMBOL(bch_bkey_try_merge);
 798
 799void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 800		     struct bkey *insert)
 801{
 802	struct bset_tree *t = bset_tree_last(b);
 803
 804	BUG_ON(!b->last_set_unwritten);
 805	BUG_ON(bset_byte_offset(b, t->data) +
 806	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 807	       PAGE_SIZE << b->page_order);
 808
 809	memmove((uint64_t *) where + bkey_u64s(insert),
 810		where,
 811		(void *) bset_bkey_last(t->data) - (void *) where);
 812
 813	t->data->keys += bkey_u64s(insert);
 814	bkey_copy(where, insert);
 815	bch_bset_fix_lookup_table(b, t, where);
 816}
 817EXPORT_SYMBOL(bch_bset_insert);
 818
 819unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 820			      struct bkey *replace_key)
 821{
 822	unsigned status = BTREE_INSERT_STATUS_NO_INSERT;
 823	struct bset *i = bset_tree_last(b)->data;
 824	struct bkey *m, *prev = NULL;
 825	struct btree_iter iter;
 
 
 826
 827	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 828
 829	m = bch_btree_iter_init(b, &iter, b->ops->is_extents
 830				? PRECEDING_KEY(&START_KEY(k))
 831				: PRECEDING_KEY(k));
 
 
 
 
 
 
 
 
 832
 833	if (b->ops->insert_fixup(b, k, &iter, replace_key))
 834		return status;
 835
 836	status = BTREE_INSERT_STATUS_INSERT;
 837
 838	while (m != bset_bkey_last(i) &&
 839	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
 840		prev = m, m = bkey_next(m);
 
 
 841
 842	/* prev is in the tree, if we merge we're done */
 843	status = BTREE_INSERT_STATUS_BACK_MERGE;
 844	if (prev &&
 845	    bch_bkey_try_merge(b, prev, k))
 846		goto merged;
 847#if 0
 848	status = BTREE_INSERT_STATUS_OVERWROTE;
 849	if (m != bset_bkey_last(i) &&
 850	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 851		goto copy;
 852#endif
 853	status = BTREE_INSERT_STATUS_FRONT_MERGE;
 854	if (m != bset_bkey_last(i) &&
 855	    bch_bkey_try_merge(b, k, m))
 856		goto copy;
 857
 858	bch_bset_insert(b, m, k);
 859copy:	bkey_copy(m, k);
 860merged:
 861	return status;
 862}
 863EXPORT_SYMBOL(bch_btree_insert_key);
 864
 865/* Lookup */
 866
 867struct bset_search_iter {
 868	struct bkey *l, *r;
 869};
 870
 871static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 872						     const struct bkey *search)
 873{
 874	unsigned li = 0, ri = t->size;
 875
 876	while (li + 1 != ri) {
 877		unsigned m = (li + ri) >> 1;
 878
 879		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 880			ri = m;
 881		else
 882			li = m;
 883	}
 884
 885	return (struct bset_search_iter) {
 886		table_to_bkey(t, li),
 887		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 888	};
 889}
 890
 891static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 892						const struct bkey *search)
 893{
 894	struct bkey *l, *r;
 895	struct bkey_float *f;
 896	unsigned inorder, j, n = 1;
 897
 898	do {
 899		unsigned p = n << 4;
 900		p &= ((int) (p - t->size)) >> 31;
 901
 902		prefetch(&t->tree[p]);
 
 903
 904		j = n;
 905		f = &t->tree[j];
 906
 907		/*
 908		 * n = (f->mantissa > bfloat_mantissa())
 909		 *	? j * 2
 910		 *	: j * 2 + 1;
 911		 *
 912		 * We need to subtract 1 from f->mantissa for the sign bit trick
 913		 * to work  - that's done in make_bfloat()
 914		 */
 915		if (likely(f->exponent != 127))
 916			n = j * 2 + (((unsigned)
 917				      (f->mantissa -
 918				       bfloat_mantissa(search, f))) >> 31);
 919		else
 920			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 921				? j * 2
 922				: j * 2 + 1;
 923	} while (n < t->size);
 924
 925	inorder = to_inorder(j, t);
 926
 927	/*
 928	 * n would have been the node we recursed to - the low bit tells us if
 929	 * we recursed left or recursed right.
 930	 */
 931	if (n & 1) {
 932		l = cacheline_to_bkey(t, inorder, f->m);
 933
 934		if (++inorder != t->size) {
 935			f = &t->tree[inorder_next(j, t->size)];
 936			r = cacheline_to_bkey(t, inorder, f->m);
 937		} else
 938			r = bset_bkey_last(t->data);
 939	} else {
 940		r = cacheline_to_bkey(t, inorder, f->m);
 941
 942		if (--inorder) {
 943			f = &t->tree[inorder_prev(j, t->size)];
 944			l = cacheline_to_bkey(t, inorder, f->m);
 945		} else
 946			l = t->data->start;
 947	}
 948
 949	return (struct bset_search_iter) {l, r};
 950}
 951
 952struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
 953			       const struct bkey *search)
 954{
 955	struct bset_search_iter i;
 956
 957	/*
 958	 * First, we search for a cacheline, then lastly we do a linear search
 959	 * within that cacheline.
 960	 *
 961	 * To search for the cacheline, there's three different possibilities:
 962	 *  * The set is too small to have a search tree, so we just do a linear
 963	 *    search over the whole set.
 964	 *  * The set is the one we're currently inserting into; keeping a full
 965	 *    auxiliary search tree up to date would be too expensive, so we
 966	 *    use a much simpler lookup table to do a binary search -
 967	 *    bset_search_write_set().
 968	 *  * Or we use the auxiliary search tree we constructed earlier -
 969	 *    bset_search_tree()
 970	 */
 971
 972	if (unlikely(!t->size)) {
 973		i.l = t->data->start;
 974		i.r = bset_bkey_last(t->data);
 975	} else if (bset_written(b, t)) {
 976		/*
 977		 * Each node in the auxiliary search tree covers a certain range
 978		 * of bits, and keys above and below the set it covers might
 979		 * differ outside those bits - so we have to special case the
 980		 * start and end - handle that here:
 981		 */
 982
 983		if (unlikely(bkey_cmp(search, &t->end) >= 0))
 984			return bset_bkey_last(t->data);
 985
 986		if (unlikely(bkey_cmp(search, t->data->start) < 0))
 987			return t->data->start;
 988
 989		i = bset_search_tree(t, search);
 990	} else {
 991		BUG_ON(!b->nsets &&
 992		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
 993
 994		i = bset_search_write_set(t, search);
 995	}
 996
 997	if (btree_keys_expensive_checks(b)) {
 998		BUG_ON(bset_written(b, t) &&
 999		       i.l != t->data->start &&
1000		       bkey_cmp(tree_to_prev_bkey(t,
1001			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1002				search) > 0);
1003
1004		BUG_ON(i.r != bset_bkey_last(t->data) &&
1005		       bkey_cmp(i.r, search) <= 0);
1006	}
1007
1008	while (likely(i.l != i.r) &&
1009	       bkey_cmp(i.l, search) <= 0)
1010		i.l = bkey_next(i.l);
1011
1012	return i.l;
1013}
1014EXPORT_SYMBOL(__bch_bset_search);
1015
1016/* Btree iterator */
1017
1018typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1019				 struct btree_iter_set);
1020
1021static inline bool btree_iter_cmp(struct btree_iter_set l,
1022				  struct btree_iter_set r)
1023{
1024	return bkey_cmp(l.k, r.k) > 0;
1025}
1026
1027static inline bool btree_iter_end(struct btree_iter *iter)
1028{
1029	return !iter->used;
1030}
1031
1032void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1033			 struct bkey *end)
1034{
1035	if (k != end)
1036		BUG_ON(!heap_add(iter,
1037				 ((struct btree_iter_set) { k, end }),
1038				 btree_iter_cmp));
1039}
1040
1041static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1042					  struct btree_iter *iter,
1043					  struct bkey *search,
1044					  struct bset_tree *start)
1045{
1046	struct bkey *ret = NULL;
 
1047	iter->size = ARRAY_SIZE(iter->data);
1048	iter->used = 0;
1049
1050#ifdef CONFIG_BCACHE_DEBUG
1051	iter->b = b;
1052#endif
1053
1054	for (; start <= bset_tree_last(b); start++) {
1055		ret = bch_bset_search(b, start, search);
1056		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1057	}
1058
1059	return ret;
1060}
1061
1062struct bkey *bch_btree_iter_init(struct btree_keys *b,
1063				 struct btree_iter *iter,
1064				 struct bkey *search)
1065{
1066	return __bch_btree_iter_init(b, iter, search, b->set);
1067}
1068EXPORT_SYMBOL(bch_btree_iter_init);
1069
1070static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1071						 btree_iter_cmp_fn *cmp)
1072{
1073	struct btree_iter_set unused;
1074	struct bkey *ret = NULL;
1075
1076	if (!btree_iter_end(iter)) {
1077		bch_btree_iter_next_check(iter);
1078
1079		ret = iter->data->k;
1080		iter->data->k = bkey_next(iter->data->k);
1081
1082		if (iter->data->k > iter->data->end) {
1083			WARN_ONCE(1, "bset was corrupt!\n");
1084			iter->data->k = iter->data->end;
1085		}
1086
1087		if (iter->data->k == iter->data->end)
1088			heap_pop(iter, unused, cmp);
1089		else
1090			heap_sift(iter, 0, cmp);
1091	}
1092
1093	return ret;
1094}
1095
1096struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1097{
1098	return __bch_btree_iter_next(iter, btree_iter_cmp);
1099
1100}
1101EXPORT_SYMBOL(bch_btree_iter_next);
1102
1103struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1104					struct btree_keys *b, ptr_filter_fn fn)
1105{
1106	struct bkey *ret;
1107
1108	do {
1109		ret = bch_btree_iter_next(iter);
1110	} while (ret && fn(b, ret));
1111
1112	return ret;
1113}
1114
1115/* Mergesort */
1116
1117void bch_bset_sort_state_free(struct bset_sort_state *state)
1118{
1119	if (state->pool)
1120		mempool_destroy(state->pool);
1121}
1122
1123int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
 
1124{
1125	spin_lock_init(&state->time.lock);
1126
1127	state->page_order = page_order;
1128	state->crit_factor = int_sqrt(1 << page_order);
1129
1130	state->pool = mempool_create_page_pool(1, page_order);
1131	if (!state->pool)
1132		return -ENOMEM;
1133
1134	return 0;
1135}
1136EXPORT_SYMBOL(bch_bset_sort_state_init);
1137
1138static void btree_mergesort(struct btree_keys *b, struct bset *out,
1139			    struct btree_iter *iter,
1140			    bool fixup, bool remove_stale)
1141{
1142	int i;
1143	struct bkey *k, *last = NULL;
1144	BKEY_PADDED(k) tmp;
1145	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1146		? bch_ptr_bad
1147		: bch_ptr_invalid;
1148
1149	/* Heapify the iterator, using our comparison function */
1150	for (i = iter->used / 2 - 1; i >= 0; --i)
1151		heap_sift(iter, i, b->ops->sort_cmp);
1152
1153	while (!btree_iter_end(iter)) {
1154		if (b->ops->sort_fixup && fixup)
1155			k = b->ops->sort_fixup(iter, &tmp.k);
1156		else
1157			k = NULL;
1158
1159		if (!k)
1160			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1161
1162		if (bad(b, k))
1163			continue;
1164
1165		if (!last) {
1166			last = out->start;
1167			bkey_copy(last, k);
1168		} else if (!bch_bkey_try_merge(b, last, k)) {
1169			last = bkey_next(last);
1170			bkey_copy(last, k);
1171		}
1172	}
1173
1174	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1175
1176	pr_debug("sorted %i keys", out->keys);
1177}
1178
1179static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1180			 unsigned start, unsigned order, bool fixup,
1181			 struct bset_sort_state *state)
1182{
1183	uint64_t start_time;
1184	bool used_mempool = false;
1185	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1186						     order);
1187	if (!out) {
1188		struct page *outp;
1189
1190		BUG_ON(order > state->page_order);
1191
1192		outp = mempool_alloc(state->pool, GFP_NOIO);
1193		out = page_address(outp);
1194		used_mempool = true;
1195		order = state->page_order;
1196	}
1197
1198	start_time = local_clock();
1199
1200	btree_mergesort(b, out, iter, fixup, false);
1201	b->nsets = start;
1202
1203	if (!start && order == b->page_order) {
1204		/*
1205		 * Our temporary buffer is the same size as the btree node's
1206		 * buffer, we can just swap buffers instead of doing a big
1207		 * memcpy()
 
 
 
 
 
1208		 */
1209
1210		out->magic	= b->set->data->magic;
1211		out->seq	= b->set->data->seq;
1212		out->version	= b->set->data->version;
1213		swap(out, b->set->data);
1214	} else {
1215		b->set[start].data->keys = out->keys;
1216		memcpy(b->set[start].data->start, out->start,
1217		       (void *) bset_bkey_last(out) - (void *) out->start);
1218	}
1219
1220	if (used_mempool)
1221		mempool_free(virt_to_page(out), state->pool);
1222	else
1223		free_pages((unsigned long) out, order);
1224
1225	bch_bset_build_written_tree(b);
1226
1227	if (!start)
1228		bch_time_stats_update(&state->time, start_time);
1229}
1230
1231void bch_btree_sort_partial(struct btree_keys *b, unsigned start,
1232			    struct bset_sort_state *state)
1233{
1234	size_t order = b->page_order, keys = 0;
1235	struct btree_iter iter;
1236	int oldsize = bch_count_data(b);
1237
1238	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1239
1240	if (start) {
1241		unsigned i;
1242
1243		for (i = start; i <= b->nsets; i++)
1244			keys += b->set[i].data->keys;
1245
1246		order = get_order(__set_bytes(b->set->data, keys));
1247	}
1248
1249	__btree_sort(b, &iter, start, order, false, state);
1250
1251	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1252}
1253EXPORT_SYMBOL(bch_btree_sort_partial);
1254
1255void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1256				    struct btree_iter *iter,
1257				    struct bset_sort_state *state)
1258{
1259	__btree_sort(b, iter, 0, b->page_order, true, state);
1260}
1261
1262void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1263			 struct bset_sort_state *state)
1264{
1265	uint64_t start_time = local_clock();
 
1266
1267	struct btree_iter iter;
1268	bch_btree_iter_init(b, &iter, NULL);
1269
1270	btree_mergesort(b, new->set->data, &iter, false, true);
1271
1272	bch_time_stats_update(&state->time, start_time);
1273
1274	new->set->size = 0; // XXX: why?
1275}
1276
1277#define SORT_CRIT	(4096 / sizeof(uint64_t))
1278
1279void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1280{
1281	unsigned crit = SORT_CRIT;
1282	int i;
1283
1284	/* Don't sort if nothing to do */
1285	if (!b->nsets)
1286		goto out;
1287
1288	for (i = b->nsets - 1; i >= 0; --i) {
1289		crit *= state->crit_factor;
1290
1291		if (b->set[i].data->keys < crit) {
1292			bch_btree_sort_partial(b, i, state);
1293			return;
1294		}
1295	}
1296
1297	/* Sort if we'd overflow */
1298	if (b->nsets + 1 == MAX_BSETS) {
1299		bch_btree_sort(b, state);
1300		return;
1301	}
1302
1303out:
1304	bch_bset_build_written_tree(b);
1305}
1306EXPORT_SYMBOL(bch_btree_sort_lazy);
1307
1308void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1309{
1310	unsigned i;
1311
1312	for (i = 0; i <= b->nsets; i++) {
1313		struct bset_tree *t = &b->set[i];
1314		size_t bytes = t->data->keys * sizeof(uint64_t);
1315		size_t j;
1316
1317		if (bset_written(b, t)) {
1318			stats->sets_written++;
1319			stats->bytes_written += bytes;
1320
1321			stats->floats += t->size - 1;
1322
1323			for (j = 1; j < t->size; j++)
1324				if (t->tree[j].exponent == 127)
1325					stats->failed++;
1326		} else {
1327			stats->sets_unwritten++;
1328			stats->bytes_unwritten += bytes;
1329		}
1330	}
1331}