Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Code for working with individual keys, and sorted sets of keys with in a
   4 * btree node
   5 *
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
  10
  11#include "util.h"
  12#include "bset.h"
  13
  14#include <linux/console.h>
  15#include <linux/sched/clock.h>
  16#include <linux/random.h>
  17#include <linux/prefetch.h>
  18
  19#ifdef CONFIG_BCACHE_DEBUG
  20
  21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
  22{
  23	struct bkey *k, *next;
  24
  25	for (k = i->start; k < bset_bkey_last(i); k = next) {
  26		next = bkey_next(k);
  27
  28		pr_err("block %u key %u/%u: ", set,
  29		       (unsigned int) ((u64 *) k - i->d), i->keys);
  30
  31		if (b->ops->key_dump)
  32			b->ops->key_dump(b, k);
  33		else
  34			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
  35
  36		if (next < bset_bkey_last(i) &&
  37		    bkey_cmp(k, b->ops->is_extents ?
  38			     &START_KEY(next) : next) > 0)
  39			pr_err("Key skipped backwards\n");
  40	}
  41}
  42
  43void bch_dump_bucket(struct btree_keys *b)
  44{
  45	unsigned int i;
  46
  47	console_lock();
  48	for (i = 0; i <= b->nsets; i++)
  49		bch_dump_bset(b, b->set[i].data,
  50			      bset_sector_offset(b, b->set[i].data));
  51	console_unlock();
  52}
  53
  54int __bch_count_data(struct btree_keys *b)
  55{
  56	unsigned int ret = 0;
  57	struct btree_iter iter;
  58	struct bkey *k;
  59
 
 
  60	if (b->ops->is_extents)
  61		for_each_key(b, k, &iter)
  62			ret += KEY_SIZE(k);
  63	return ret;
  64}
  65
  66void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
  67{
  68	va_list args;
  69	struct bkey *k, *p = NULL;
  70	struct btree_iter iter;
  71	const char *err;
  72
 
 
  73	for_each_key(b, k, &iter) {
  74		if (b->ops->is_extents) {
  75			err = "Keys out of order";
  76			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
  77				goto bug;
  78
  79			if (bch_ptr_invalid(b, k))
  80				continue;
  81
  82			err =  "Overlapping keys";
  83			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
  84				goto bug;
  85		} else {
  86			if (bch_ptr_bad(b, k))
  87				continue;
  88
  89			err = "Duplicate keys";
  90			if (p && !bkey_cmp(p, k))
  91				goto bug;
  92		}
  93		p = k;
  94	}
  95#if 0
  96	err = "Key larger than btree node key";
  97	if (p && bkey_cmp(p, &b->key) > 0)
  98		goto bug;
  99#endif
 100	return;
 101bug:
 102	bch_dump_bucket(b);
 103
 104	va_start(args, fmt);
 105	vprintk(fmt, args);
 106	va_end(args);
 107
 108	panic("bch_check_keys error:  %s:\n", err);
 109}
 110
 111static void bch_btree_iter_next_check(struct btree_iter *iter)
 112{
 113	struct bkey *k = iter->data->k, *next = bkey_next(k);
 114
 115	if (next < iter->data->end &&
 116	    bkey_cmp(k, iter->b->ops->is_extents ?
 117		     &START_KEY(next) : next) > 0) {
 118		bch_dump_bucket(iter->b);
 119		panic("Key skipped backwards\n");
 120	}
 121}
 122
 123#else
 124
 125static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 126
 127#endif
 128
 129/* Keylists */
 130
 131int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
 132{
 133	size_t oldsize = bch_keylist_nkeys(l);
 134	size_t newsize = oldsize + u64s;
 135	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 136	uint64_t *new_keys;
 137
 138	newsize = roundup_pow_of_two(newsize);
 139
 140	if (newsize <= KEYLIST_INLINE ||
 141	    roundup_pow_of_two(oldsize) == newsize)
 142		return 0;
 143
 144	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 145
 146	if (!new_keys)
 147		return -ENOMEM;
 148
 149	if (!old_keys)
 150		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 151
 152	l->keys_p = new_keys;
 153	l->top_p = new_keys + oldsize;
 154
 155	return 0;
 156}
 157
 158/* Pop the top key of keylist by pointing l->top to its previous key */
 159struct bkey *bch_keylist_pop(struct keylist *l)
 160{
 161	struct bkey *k = l->keys;
 162
 163	if (k == l->top)
 164		return NULL;
 165
 166	while (bkey_next(k) != l->top)
 167		k = bkey_next(k);
 168
 169	return l->top = k;
 170}
 171
 172/* Pop the bottom key of keylist and update l->top_p */
 173void bch_keylist_pop_front(struct keylist *l)
 174{
 175	l->top_p -= bkey_u64s(l->keys);
 176
 177	memmove(l->keys,
 178		bkey_next(l->keys),
 179		bch_keylist_bytes(l));
 180}
 181
 182/* Key/pointer manipulation */
 183
 184void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 185			      unsigned int i)
 186{
 187	BUG_ON(i > KEY_PTRS(src));
 188
 189	/* Only copy the header, key, and one pointer. */
 190	memcpy(dest, src, 2 * sizeof(uint64_t));
 191	dest->ptr[0] = src->ptr[i];
 192	SET_KEY_PTRS(dest, 1);
 193	/* We didn't copy the checksum so clear that bit. */
 194	SET_KEY_CSUM(dest, 0);
 195}
 196
 197bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 198{
 199	unsigned int i, len = 0;
 200
 201	if (bkey_cmp(where, &START_KEY(k)) <= 0)
 202		return false;
 203
 204	if (bkey_cmp(where, k) < 0)
 205		len = KEY_OFFSET(k) - KEY_OFFSET(where);
 206	else
 207		bkey_copy_key(k, where);
 208
 209	for (i = 0; i < KEY_PTRS(k); i++)
 210		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 211
 212	BUG_ON(len > KEY_SIZE(k));
 213	SET_KEY_SIZE(k, len);
 214	return true;
 215}
 216
 217bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 218{
 219	unsigned int len = 0;
 220
 221	if (bkey_cmp(where, k) >= 0)
 222		return false;
 223
 224	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 225
 226	if (bkey_cmp(where, &START_KEY(k)) > 0)
 227		len = KEY_OFFSET(where) - KEY_START(k);
 228
 229	bkey_copy_key(k, where);
 230
 231	BUG_ON(len > KEY_SIZE(k));
 232	SET_KEY_SIZE(k, len);
 233	return true;
 234}
 235
 236/* Auxiliary search trees */
 237
 238/* 32 bits total: */
 239#define BKEY_MID_BITS		3
 240#define BKEY_EXPONENT_BITS	7
 241#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 242#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
 243
 244struct bkey_float {
 245	unsigned int	exponent:BKEY_EXPONENT_BITS;
 246	unsigned int	m:BKEY_MID_BITS;
 247	unsigned int	mantissa:BKEY_MANTISSA_BITS;
 248} __packed;
 249
 250/*
 251 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 252 * it used to be 64, but I realized the lookup code would touch slightly less
 253 * memory if it was 128.
 254 *
 255 * It definites the number of bytes (in struct bset) per struct bkey_float in
 256 * the auxiliar search tree - when we're done searching the bset_float tree we
 257 * have this many bytes left that we do a linear search over.
 258 *
 259 * Since (after level 5) every level of the bset_tree is on a new cacheline,
 260 * we're touching one fewer cacheline in the bset tree in exchange for one more
 261 * cacheline in the linear search - but the linear search might stop before it
 262 * gets to the second cacheline.
 263 */
 264
 265#define BSET_CACHELINE		128
 266
 267/* Space required for the btree node keys */
 268static inline size_t btree_keys_bytes(struct btree_keys *b)
 269{
 270	return PAGE_SIZE << b->page_order;
 271}
 272
 273static inline size_t btree_keys_cachelines(struct btree_keys *b)
 274{
 275	return btree_keys_bytes(b) / BSET_CACHELINE;
 276}
 277
 278/* Space required for the auxiliary search trees */
 279static inline size_t bset_tree_bytes(struct btree_keys *b)
 280{
 281	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 282}
 283
 284/* Space required for the prev pointers */
 285static inline size_t bset_prev_bytes(struct btree_keys *b)
 286{
 287	return btree_keys_cachelines(b) * sizeof(uint8_t);
 288}
 289
 290/* Memory allocation */
 291
 292void bch_btree_keys_free(struct btree_keys *b)
 293{
 294	struct bset_tree *t = b->set;
 295
 296	if (bset_prev_bytes(b) < PAGE_SIZE)
 297		kfree(t->prev);
 298	else
 299		free_pages((unsigned long) t->prev,
 300			   get_order(bset_prev_bytes(b)));
 301
 302	if (bset_tree_bytes(b) < PAGE_SIZE)
 303		kfree(t->tree);
 304	else
 305		free_pages((unsigned long) t->tree,
 306			   get_order(bset_tree_bytes(b)));
 307
 308	free_pages((unsigned long) t->data, b->page_order);
 309
 310	t->prev = NULL;
 311	t->tree = NULL;
 312	t->data = NULL;
 313}
 314
 315int bch_btree_keys_alloc(struct btree_keys *b,
 316			 unsigned int page_order,
 317			 gfp_t gfp)
 318{
 319	struct bset_tree *t = b->set;
 320
 321	BUG_ON(t->data);
 322
 323	b->page_order = page_order;
 324
 325	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
 326	if (!t->data)
 327		goto err;
 328
 329	t->tree = bset_tree_bytes(b) < PAGE_SIZE
 330		? kmalloc(bset_tree_bytes(b), gfp)
 331		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 332	if (!t->tree)
 333		goto err;
 334
 335	t->prev = bset_prev_bytes(b) < PAGE_SIZE
 336		? kmalloc(bset_prev_bytes(b), gfp)
 337		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 338	if (!t->prev)
 339		goto err;
 340
 341	return 0;
 342err:
 343	bch_btree_keys_free(b);
 344	return -ENOMEM;
 345}
 346
 347void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 348			 bool *expensive_debug_checks)
 349{
 350	b->ops = ops;
 351	b->expensive_debug_checks = expensive_debug_checks;
 352	b->nsets = 0;
 353	b->last_set_unwritten = 0;
 354
 355	/*
 356	 * struct btree_keys in embedded in struct btree, and struct
 357	 * bset_tree is embedded into struct btree_keys. They are all
 358	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
 359	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
 360	 * don't have to initiate b->set[].size and b->set[].data here
 361	 * any more.
 362	 */
 363}
 364
 365/* Binary tree stuff for auxiliary search trees */
 366
 367/*
 368 * return array index next to j when does in-order traverse
 369 * of a binary tree which is stored in a linear array
 370 */
 371static unsigned int inorder_next(unsigned int j, unsigned int size)
 372{
 373	if (j * 2 + 1 < size) {
 374		j = j * 2 + 1;
 375
 376		while (j * 2 < size)
 377			j *= 2;
 378	} else
 379		j >>= ffz(j) + 1;
 380
 381	return j;
 382}
 383
 384/*
 385 * return array index previous to j when does in-order traverse
 386 * of a binary tree which is stored in a linear array
 387 */
 388static unsigned int inorder_prev(unsigned int j, unsigned int size)
 389{
 390	if (j * 2 < size) {
 391		j = j * 2;
 392
 393		while (j * 2 + 1 < size)
 394			j = j * 2 + 1;
 395	} else
 396		j >>= ffs(j);
 397
 398	return j;
 399}
 400
 401/*
 402 * I have no idea why this code works... and I'm the one who wrote it
 403 *
 404 * However, I do know what it does:
 405 * Given a binary tree constructed in an array (i.e. how you normally implement
 406 * a heap), it converts a node in the tree - referenced by array index - to the
 407 * index it would have if you did an inorder traversal.
 408 *
 409 * Also tested for every j, size up to size somewhere around 6 million.
 410 *
 411 * The binary tree starts at array index 1, not 0
 412 * extra is a function of size:
 413 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 414 */
 415static unsigned int __to_inorder(unsigned int j,
 416				  unsigned int size,
 417				  unsigned int extra)
 418{
 419	unsigned int b = fls(j);
 420	unsigned int shift = fls(size - 1) - b;
 421
 422	j  ^= 1U << (b - 1);
 423	j <<= 1;
 424	j  |= 1;
 425	j <<= shift;
 426
 427	if (j > extra)
 428		j -= (j - extra) >> 1;
 429
 430	return j;
 431}
 432
 433/*
 434 * Return the cacheline index in bset_tree->data, where j is index
 435 * from a linear array which stores the auxiliar binary tree
 436 */
 437static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
 438{
 439	return __to_inorder(j, t->size, t->extra);
 440}
 441
 442static unsigned int __inorder_to_tree(unsigned int j,
 443				      unsigned int size,
 444				      unsigned int extra)
 445{
 446	unsigned int shift;
 447
 448	if (j > extra)
 449		j += j - extra;
 450
 451	shift = ffs(j);
 452
 453	j >>= shift;
 454	j  |= roundup_pow_of_two(size) >> shift;
 455
 456	return j;
 457}
 458
 459/*
 460 * Return an index from a linear array which stores the auxiliar binary
 461 * tree, j is the cacheline index of t->data.
 462 */
 463static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
 464{
 465	return __inorder_to_tree(j, t->size, t->extra);
 466}
 467
 468#if 0
 469void inorder_test(void)
 470{
 471	unsigned long done = 0;
 472	ktime_t start = ktime_get();
 473
 474	for (unsigned int size = 2;
 475	     size < 65536000;
 476	     size++) {
 477		unsigned int extra =
 478			(size - rounddown_pow_of_two(size - 1)) << 1;
 479		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
 480
 481		if (!(size % 4096))
 482			pr_notice("loop %u, %llu per us\n", size,
 483			       done / ktime_us_delta(ktime_get(), start));
 484
 485		while (1) {
 486			if (__inorder_to_tree(i, size, extra) != j)
 487				panic("size %10u j %10u i %10u", size, j, i);
 488
 489			if (__to_inorder(j, size, extra) != i)
 490				panic("size %10u j %10u i %10u", size, j, i);
 491
 492			if (j == rounddown_pow_of_two(size) - 1)
 493				break;
 494
 495			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 496
 497			j = inorder_next(j, size);
 498			i++;
 499		}
 500
 501		done += size - 1;
 502	}
 503}
 504#endif
 505
 506/*
 507 * Cacheline/offset <-> bkey pointer arithmetic:
 508 *
 509 * t->tree is a binary search tree in an array; each node corresponds to a key
 510 * in one cacheline in t->set (BSET_CACHELINE bytes).
 511 *
 512 * This means we don't have to store the full index of the key that a node in
 513 * the binary tree points to; to_inorder() gives us the cacheline, and then
 514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 515 *
 516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 517 * make this work.
 518 *
 519 * To construct the bfloat for an arbitrary key we need to know what the key
 520 * immediately preceding it is: we have to check if the two keys differ in the
 521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 522 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 523 */
 524
 525static struct bkey *cacheline_to_bkey(struct bset_tree *t,
 526				      unsigned int cacheline,
 527				      unsigned int offset)
 528{
 529	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 530}
 531
 532static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 533{
 534	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 535}
 536
 537static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
 538					 unsigned int cacheline,
 539					 struct bkey *k)
 540{
 541	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 542}
 543
 544static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
 545{
 546	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 547}
 548
 549static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
 550{
 551	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 552}
 553
 554/*
 555 * For the write set - the one we're currently inserting keys into - we don't
 556 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 557 */
 558static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
 559{
 560	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 561}
 562
 563static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 564{
 565	low >>= shift;
 566	low  |= (high << 1) << (63U - shift);
 567	return low;
 568}
 569
 570/*
 571 * Calculate mantissa value for struct bkey_float.
 572 * If most significant bit of f->exponent is not set, then
 573 *  - f->exponent >> 6 is 0
 574 *  - p[0] points to bkey->low
 575 *  - p[-1] borrows bits from KEY_INODE() of bkey->high
 576 * if most isgnificant bits of f->exponent is set, then
 577 *  - f->exponent >> 6 is 1
 578 *  - p[0] points to bits from KEY_INODE() of bkey->high
 579 *  - p[-1] points to other bits from KEY_INODE() of
 580 *    bkey->high too.
 581 * See make_bfloat() to check when most significant bit of f->exponent
 582 * is set or not.
 583 */
 584static inline unsigned int bfloat_mantissa(const struct bkey *k,
 585				       struct bkey_float *f)
 586{
 587	const uint64_t *p = &k->low - (f->exponent >> 6);
 588
 589	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 590}
 591
 592static void make_bfloat(struct bset_tree *t, unsigned int j)
 593{
 594	struct bkey_float *f = &t->tree[j];
 595	struct bkey *m = tree_to_bkey(t, j);
 596	struct bkey *p = tree_to_prev_bkey(t, j);
 597
 598	struct bkey *l = is_power_of_2(j)
 599		? t->data->start
 600		: tree_to_prev_bkey(t, j >> ffs(j));
 601
 602	struct bkey *r = is_power_of_2(j + 1)
 603		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 604		: tree_to_bkey(t, j >> (ffz(j) + 1));
 605
 606	BUG_ON(m < l || m > r);
 607	BUG_ON(bkey_next(p) != m);
 608
 609	/*
 610	 * If l and r have different KEY_INODE values (different backing
 611	 * device), f->exponent records how many least significant bits
 612	 * are different in KEY_INODE values and sets most significant
 613	 * bits to 1 (by +64).
 614	 * If l and r have same KEY_INODE value, f->exponent records
 615	 * how many different bits in least significant bits of bkey->low.
 616	 * See bfloat_mantiss() how the most significant bit of
 617	 * f->exponent is used to calculate bfloat mantissa value.
 618	 */
 619	if (KEY_INODE(l) != KEY_INODE(r))
 620		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 621	else
 622		f->exponent = fls64(r->low ^ l->low);
 623
 624	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 625
 626	/*
 627	 * Setting f->exponent = 127 flags this node as failed, and causes the
 628	 * lookup code to fall back to comparing against the original key.
 629	 */
 630
 631	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 632		f->mantissa = bfloat_mantissa(m, f) - 1;
 633	else
 634		f->exponent = 127;
 635}
 636
 637static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 638{
 639	if (t != b->set) {
 640		unsigned int j = roundup(t[-1].size,
 641				     64 / sizeof(struct bkey_float));
 642
 643		t->tree = t[-1].tree + j;
 644		t->prev = t[-1].prev + j;
 645	}
 646
 647	while (t < b->set + MAX_BSETS)
 648		t++->size = 0;
 649}
 650
 651static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 652{
 653	struct bset_tree *t = bset_tree_last(b);
 654
 655	BUG_ON(b->last_set_unwritten);
 656	b->last_set_unwritten = 1;
 657
 658	bset_alloc_tree(b, t);
 659
 660	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 661		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 662		t->size = 1;
 663	}
 664}
 665
 666void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 667{
 668	if (i != b->set->data) {
 669		b->set[++b->nsets].data = i;
 670		i->seq = b->set->data->seq;
 671	} else
 672		get_random_bytes(&i->seq, sizeof(uint64_t));
 673
 674	i->magic	= magic;
 675	i->version	= 0;
 676	i->keys		= 0;
 677
 678	bch_bset_build_unwritten_tree(b);
 679}
 680
 681/*
 682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
 683 * accelerate bkey search in a btree node (pointed by bset_tree->data in
 684 * memory). After search in the auxiliar tree by calling bset_search_tree(),
 685 * a struct bset_search_iter is returned which indicates range [l, r] from
 686 * bset_tree->data where the searching bkey might be inside. Then a followed
 687 * linear comparison does the exact search, see __bch_bset_search() for how
 688 * the auxiliary tree is used.
 689 */
 690void bch_bset_build_written_tree(struct btree_keys *b)
 691{
 692	struct bset_tree *t = bset_tree_last(b);
 693	struct bkey *prev = NULL, *k = t->data->start;
 694	unsigned int j, cacheline = 1;
 695
 696	b->last_set_unwritten = 0;
 697
 698	bset_alloc_tree(b, t);
 699
 700	t->size = min_t(unsigned int,
 701			bkey_to_cacheline(t, bset_bkey_last(t->data)),
 702			b->set->tree + btree_keys_cachelines(b) - t->tree);
 703
 704	if (t->size < 2) {
 705		t->size = 0;
 706		return;
 707	}
 708
 709	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 710
 711	/* First we figure out where the first key in each cacheline is */
 712	for (j = inorder_next(0, t->size);
 713	     j;
 714	     j = inorder_next(j, t->size)) {
 715		while (bkey_to_cacheline(t, k) < cacheline) {
 716			prev = k;
 717			k = bkey_next(k);
 718		}
 719
 720		t->prev[j] = bkey_u64s(prev);
 721		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 722	}
 723
 724	while (bkey_next(k) != bset_bkey_last(t->data))
 725		k = bkey_next(k);
 726
 727	t->end = *k;
 728
 729	/* Then we build the tree */
 730	for (j = inorder_next(0, t->size);
 731	     j;
 732	     j = inorder_next(j, t->size))
 733		make_bfloat(t, j);
 734}
 735
 736/* Insert */
 737
 738void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 739{
 740	struct bset_tree *t;
 741	unsigned int inorder, j = 1;
 742
 743	for (t = b->set; t <= bset_tree_last(b); t++)
 744		if (k < bset_bkey_last(t->data))
 745			goto found_set;
 746
 747	BUG();
 748found_set:
 749	if (!t->size || !bset_written(b, t))
 750		return;
 751
 752	inorder = bkey_to_cacheline(t, k);
 753
 754	if (k == t->data->start)
 755		goto fix_left;
 756
 757	if (bkey_next(k) == bset_bkey_last(t->data)) {
 758		t->end = *k;
 759		goto fix_right;
 760	}
 761
 762	j = inorder_to_tree(inorder, t);
 763
 764	if (j &&
 765	    j < t->size &&
 766	    k == tree_to_bkey(t, j))
 767fix_left:	do {
 768			make_bfloat(t, j);
 769			j = j * 2;
 770		} while (j < t->size);
 771
 772	j = inorder_to_tree(inorder + 1, t);
 773
 774	if (j &&
 775	    j < t->size &&
 776	    k == tree_to_prev_bkey(t, j))
 777fix_right:	do {
 778			make_bfloat(t, j);
 779			j = j * 2 + 1;
 780		} while (j < t->size);
 781}
 782
 783static void bch_bset_fix_lookup_table(struct btree_keys *b,
 784				      struct bset_tree *t,
 785				      struct bkey *k)
 786{
 787	unsigned int shift = bkey_u64s(k);
 788	unsigned int j = bkey_to_cacheline(t, k);
 789
 790	/* We're getting called from btree_split() or btree_gc, just bail out */
 791	if (!t->size)
 792		return;
 793
 794	/*
 795	 * k is the key we just inserted; we need to find the entry in the
 796	 * lookup table for the first key that is strictly greater than k:
 797	 * it's either k's cacheline or the next one
 798	 */
 799	while (j < t->size &&
 800	       table_to_bkey(t, j) <= k)
 801		j++;
 802
 803	/*
 804	 * Adjust all the lookup table entries, and find a new key for any that
 805	 * have gotten too big
 806	 */
 807	for (; j < t->size; j++) {
 808		t->prev[j] += shift;
 809
 810		if (t->prev[j] > 7) {
 811			k = table_to_bkey(t, j - 1);
 812
 813			while (k < cacheline_to_bkey(t, j, 0))
 814				k = bkey_next(k);
 815
 816			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 817		}
 818	}
 819
 820	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 821		return;
 822
 823	/* Possibly add a new entry to the end of the lookup table */
 824
 825	for (k = table_to_bkey(t, t->size - 1);
 826	     k != bset_bkey_last(t->data);
 827	     k = bkey_next(k))
 828		if (t->size == bkey_to_cacheline(t, k)) {
 829			t->prev[t->size] =
 830				bkey_to_cacheline_offset(t, t->size, k);
 831			t->size++;
 832		}
 833}
 834
 835/*
 836 * Tries to merge l and r: l should be lower than r
 837 * Returns true if we were able to merge. If we did merge, l will be the merged
 838 * key, r will be untouched.
 839 */
 840bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 841{
 842	if (!b->ops->key_merge)
 843		return false;
 844
 845	/*
 846	 * Generic header checks
 847	 * Assumes left and right are in order
 848	 * Left and right must be exactly aligned
 849	 */
 850	if (!bch_bkey_equal_header(l, r) ||
 851	     bkey_cmp(l, &START_KEY(r)))
 852		return false;
 853
 854	return b->ops->key_merge(b, l, r);
 855}
 856
 857void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 858		     struct bkey *insert)
 859{
 860	struct bset_tree *t = bset_tree_last(b);
 861
 862	BUG_ON(!b->last_set_unwritten);
 863	BUG_ON(bset_byte_offset(b, t->data) +
 864	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 865	       PAGE_SIZE << b->page_order);
 866
 867	memmove((uint64_t *) where + bkey_u64s(insert),
 868		where,
 869		(void *) bset_bkey_last(t->data) - (void *) where);
 870
 871	t->data->keys += bkey_u64s(insert);
 872	bkey_copy(where, insert);
 873	bch_bset_fix_lookup_table(b, t, where);
 874}
 875
 876unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 877			      struct bkey *replace_key)
 878{
 879	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
 880	struct bset *i = bset_tree_last(b)->data;
 881	struct bkey *m, *prev = NULL;
 882	struct btree_iter iter;
 883	struct bkey preceding_key_on_stack = ZERO_KEY;
 884	struct bkey *preceding_key_p = &preceding_key_on_stack;
 885
 886	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 887
 
 
 888	/*
 889	 * If k has preceding key, preceding_key_p will be set to address
 890	 *  of k's preceding key; otherwise preceding_key_p will be set
 891	 * to NULL inside preceding_key().
 892	 */
 893	if (b->ops->is_extents)
 894		preceding_key(&START_KEY(k), &preceding_key_p);
 895	else
 896		preceding_key(k, &preceding_key_p);
 897
 898	m = bch_btree_iter_init(b, &iter, preceding_key_p);
 899
 900	if (b->ops->insert_fixup(b, k, &iter, replace_key))
 901		return status;
 902
 903	status = BTREE_INSERT_STATUS_INSERT;
 904
 905	while (m != bset_bkey_last(i) &&
 906	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
 907		prev = m;
 908		m = bkey_next(m);
 909	}
 910
 911	/* prev is in the tree, if we merge we're done */
 912	status = BTREE_INSERT_STATUS_BACK_MERGE;
 913	if (prev &&
 914	    bch_bkey_try_merge(b, prev, k))
 915		goto merged;
 916#if 0
 917	status = BTREE_INSERT_STATUS_OVERWROTE;
 918	if (m != bset_bkey_last(i) &&
 919	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 920		goto copy;
 921#endif
 922	status = BTREE_INSERT_STATUS_FRONT_MERGE;
 923	if (m != bset_bkey_last(i) &&
 924	    bch_bkey_try_merge(b, k, m))
 925		goto copy;
 926
 927	bch_bset_insert(b, m, k);
 928copy:	bkey_copy(m, k);
 929merged:
 930	return status;
 931}
 932
 933/* Lookup */
 934
 935struct bset_search_iter {
 936	struct bkey *l, *r;
 937};
 938
 939static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 940						     const struct bkey *search)
 941{
 942	unsigned int li = 0, ri = t->size;
 943
 944	while (li + 1 != ri) {
 945		unsigned int m = (li + ri) >> 1;
 946
 947		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 948			ri = m;
 949		else
 950			li = m;
 951	}
 952
 953	return (struct bset_search_iter) {
 954		table_to_bkey(t, li),
 955		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 956	};
 957}
 958
 959static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 960						const struct bkey *search)
 961{
 962	struct bkey *l, *r;
 963	struct bkey_float *f;
 964	unsigned int inorder, j, n = 1;
 965
 966	do {
 967		unsigned int p = n << 4;
 968
 969		if (p < t->size)
 970			prefetch(&t->tree[p]);
 971
 972		j = n;
 973		f = &t->tree[j];
 974
 975		if (likely(f->exponent != 127)) {
 976			if (f->mantissa >= bfloat_mantissa(search, f))
 977				n = j * 2;
 978			else
 979				n = j * 2 + 1;
 980		} else {
 981			if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 982				n = j * 2;
 983			else
 984				n = j * 2 + 1;
 985		}
 986	} while (n < t->size);
 987
 988	inorder = to_inorder(j, t);
 989
 990	/*
 991	 * n would have been the node we recursed to - the low bit tells us if
 992	 * we recursed left or recursed right.
 993	 */
 994	if (n & 1) {
 995		l = cacheline_to_bkey(t, inorder, f->m);
 996
 997		if (++inorder != t->size) {
 998			f = &t->tree[inorder_next(j, t->size)];
 999			r = cacheline_to_bkey(t, inorder, f->m);
1000		} else
1001			r = bset_bkey_last(t->data);
1002	} else {
1003		r = cacheline_to_bkey(t, inorder, f->m);
1004
1005		if (--inorder) {
1006			f = &t->tree[inorder_prev(j, t->size)];
1007			l = cacheline_to_bkey(t, inorder, f->m);
1008		} else
1009			l = t->data->start;
1010	}
1011
1012	return (struct bset_search_iter) {l, r};
1013}
1014
1015struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1016			       const struct bkey *search)
1017{
1018	struct bset_search_iter i;
1019
1020	/*
1021	 * First, we search for a cacheline, then lastly we do a linear search
1022	 * within that cacheline.
1023	 *
1024	 * To search for the cacheline, there's three different possibilities:
1025	 *  * The set is too small to have a search tree, so we just do a linear
1026	 *    search over the whole set.
1027	 *  * The set is the one we're currently inserting into; keeping a full
1028	 *    auxiliary search tree up to date would be too expensive, so we
1029	 *    use a much simpler lookup table to do a binary search -
1030	 *    bset_search_write_set().
1031	 *  * Or we use the auxiliary search tree we constructed earlier -
1032	 *    bset_search_tree()
1033	 */
1034
1035	if (unlikely(!t->size)) {
1036		i.l = t->data->start;
1037		i.r = bset_bkey_last(t->data);
1038	} else if (bset_written(b, t)) {
1039		/*
1040		 * Each node in the auxiliary search tree covers a certain range
1041		 * of bits, and keys above and below the set it covers might
1042		 * differ outside those bits - so we have to special case the
1043		 * start and end - handle that here:
1044		 */
1045
1046		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1047			return bset_bkey_last(t->data);
1048
1049		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1050			return t->data->start;
1051
1052		i = bset_search_tree(t, search);
1053	} else {
1054		BUG_ON(!b->nsets &&
1055		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1056
1057		i = bset_search_write_set(t, search);
1058	}
1059
1060	if (btree_keys_expensive_checks(b)) {
1061		BUG_ON(bset_written(b, t) &&
1062		       i.l != t->data->start &&
1063		       bkey_cmp(tree_to_prev_bkey(t,
1064			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1065				search) > 0);
1066
1067		BUG_ON(i.r != bset_bkey_last(t->data) &&
1068		       bkey_cmp(i.r, search) <= 0);
1069	}
1070
1071	while (likely(i.l != i.r) &&
1072	       bkey_cmp(i.l, search) <= 0)
1073		i.l = bkey_next(i.l);
1074
1075	return i.l;
1076}
1077
1078/* Btree iterator */
1079
1080typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1081				 struct btree_iter_set);
1082
1083static inline bool btree_iter_cmp(struct btree_iter_set l,
1084				  struct btree_iter_set r)
1085{
1086	return bkey_cmp(l.k, r.k) > 0;
 
 
 
1087}
1088
1089static inline bool btree_iter_end(struct btree_iter *iter)
1090{
1091	return !iter->used;
1092}
1093
1094void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1095			 struct bkey *end)
1096{
 
 
 
 
 
1097	if (k != end)
1098		BUG_ON(!heap_add(iter,
1099				 ((struct btree_iter_set) { k, end }),
1100				 btree_iter_cmp));
 
1101}
1102
1103static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1104					  struct btree_iter *iter,
1105					  struct bkey *search,
1106					  struct bset_tree *start)
1107{
1108	struct bkey *ret = NULL;
1109
1110	iter->size = ARRAY_SIZE(iter->data);
1111	iter->used = 0;
1112
1113#ifdef CONFIG_BCACHE_DEBUG
1114	iter->b = b;
1115#endif
1116
1117	for (; start <= bset_tree_last(b); start++) {
1118		ret = bch_bset_search(b, start, search);
1119		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1120	}
1121
1122	return ret;
1123}
1124
1125struct bkey *bch_btree_iter_init(struct btree_keys *b,
1126				 struct btree_iter *iter,
1127				 struct bkey *search)
1128{
1129	return __bch_btree_iter_init(b, iter, search, b->set);
1130}
1131
1132static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1133						 btree_iter_cmp_fn *cmp)
1134{
1135	struct btree_iter_set b __maybe_unused;
1136	struct bkey *ret = NULL;
 
 
 
 
1137
1138	if (!btree_iter_end(iter)) {
1139		bch_btree_iter_next_check(iter);
1140
1141		ret = iter->data->k;
1142		iter->data->k = bkey_next(iter->data->k);
1143
1144		if (iter->data->k > iter->data->end) {
1145			WARN_ONCE(1, "bset was corrupt!\n");
1146			iter->data->k = iter->data->end;
1147		}
1148
1149		if (iter->data->k == iter->data->end)
1150			heap_pop(iter, b, cmp);
 
 
 
 
1151		else
1152			heap_sift(iter, 0, cmp);
1153	}
1154
1155	return ret;
1156}
1157
1158struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1159{
1160	return __bch_btree_iter_next(iter, btree_iter_cmp);
1161
1162}
1163
1164struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1165					struct btree_keys *b, ptr_filter_fn fn)
1166{
1167	struct bkey *ret;
1168
1169	do {
1170		ret = bch_btree_iter_next(iter);
1171	} while (ret && fn(b, ret));
1172
1173	return ret;
1174}
1175
1176/* Mergesort */
1177
1178void bch_bset_sort_state_free(struct bset_sort_state *state)
1179{
1180	mempool_exit(&state->pool);
1181}
1182
1183int bch_bset_sort_state_init(struct bset_sort_state *state,
1184			     unsigned int page_order)
1185{
1186	spin_lock_init(&state->time.lock);
1187
1188	state->page_order = page_order;
1189	state->crit_factor = int_sqrt(1 << page_order);
1190
1191	return mempool_init_page_pool(&state->pool, 1, page_order);
1192}
1193
1194static void btree_mergesort(struct btree_keys *b, struct bset *out,
1195			    struct btree_iter *iter,
1196			    bool fixup, bool remove_stale)
1197{
1198	int i;
1199	struct bkey *k, *last = NULL;
1200	BKEY_PADDED(k) tmp;
1201	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1202		? bch_ptr_bad
1203		: bch_ptr_invalid;
 
 
 
 
1204
1205	/* Heapify the iterator, using our comparison function */
1206	for (i = iter->used / 2 - 1; i >= 0; --i)
1207		heap_sift(iter, i, b->ops->sort_cmp);
1208
1209	while (!btree_iter_end(iter)) {
1210		if (b->ops->sort_fixup && fixup)
1211			k = b->ops->sort_fixup(iter, &tmp.k);
1212		else
1213			k = NULL;
1214
1215		if (!k)
1216			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1217
1218		if (bad(b, k))
1219			continue;
1220
1221		if (!last) {
1222			last = out->start;
1223			bkey_copy(last, k);
1224		} else if (!bch_bkey_try_merge(b, last, k)) {
1225			last = bkey_next(last);
1226			bkey_copy(last, k);
1227		}
1228	}
1229
1230	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1231
1232	pr_debug("sorted %i keys\n", out->keys);
1233}
1234
1235static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1236			 unsigned int start, unsigned int order, bool fixup,
1237			 struct bset_sort_state *state)
1238{
1239	uint64_t start_time;
1240	bool used_mempool = false;
1241	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1242						     order);
1243	if (!out) {
1244		struct page *outp;
1245
1246		BUG_ON(order > state->page_order);
1247
1248		outp = mempool_alloc(&state->pool, GFP_NOIO);
1249		out = page_address(outp);
1250		used_mempool = true;
1251		order = state->page_order;
1252	}
1253
1254	start_time = local_clock();
1255
1256	btree_mergesort(b, out, iter, fixup, false);
1257	b->nsets = start;
1258
1259	if (!start && order == b->page_order) {
1260		/*
1261		 * Our temporary buffer is the same size as the btree node's
1262		 * buffer, we can just swap buffers instead of doing a big
1263		 * memcpy()
1264		 *
1265		 * Don't worry event 'out' is allocated from mempool, it can
1266		 * still be swapped here. Because state->pool is a page mempool
1267		 * created by mempool_init_page_pool(), which allocates
1268		 * pages by alloc_pages() indeed.
1269		 */
1270
1271		out->magic	= b->set->data->magic;
1272		out->seq	= b->set->data->seq;
1273		out->version	= b->set->data->version;
1274		swap(out, b->set->data);
1275	} else {
1276		b->set[start].data->keys = out->keys;
1277		memcpy(b->set[start].data->start, out->start,
1278		       (void *) bset_bkey_last(out) - (void *) out->start);
1279	}
1280
1281	if (used_mempool)
1282		mempool_free(virt_to_page(out), &state->pool);
1283	else
1284		free_pages((unsigned long) out, order);
1285
1286	bch_bset_build_written_tree(b);
1287
1288	if (!start)
1289		bch_time_stats_update(&state->time, start_time);
1290}
1291
1292void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1293			    struct bset_sort_state *state)
1294{
1295	size_t order = b->page_order, keys = 0;
1296	struct btree_iter iter;
1297	int oldsize = bch_count_data(b);
1298
 
1299	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1300
1301	if (start) {
1302		unsigned int i;
1303
1304		for (i = start; i <= b->nsets; i++)
1305			keys += b->set[i].data->keys;
1306
1307		order = get_order(__set_bytes(b->set->data, keys));
1308	}
1309
1310	__btree_sort(b, &iter, start, order, false, state);
1311
1312	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1313}
1314
1315void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1316				    struct btree_iter *iter,
1317				    struct bset_sort_state *state)
1318{
1319	__btree_sort(b, iter, 0, b->page_order, true, state);
1320}
1321
1322void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1323			 struct bset_sort_state *state)
1324{
1325	uint64_t start_time = local_clock();
1326	struct btree_iter iter;
 
 
1327
1328	bch_btree_iter_init(b, &iter, NULL);
1329
1330	btree_mergesort(b, new->set->data, &iter, false, true);
1331
1332	bch_time_stats_update(&state->time, start_time);
1333
1334	new->set->size = 0; // XXX: why?
1335}
1336
1337#define SORT_CRIT	(4096 / sizeof(uint64_t))
1338
1339void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1340{
1341	unsigned int crit = SORT_CRIT;
1342	int i;
1343
1344	/* Don't sort if nothing to do */
1345	if (!b->nsets)
1346		goto out;
1347
1348	for (i = b->nsets - 1; i >= 0; --i) {
1349		crit *= state->crit_factor;
1350
1351		if (b->set[i].data->keys < crit) {
1352			bch_btree_sort_partial(b, i, state);
1353			return;
1354		}
1355	}
1356
1357	/* Sort if we'd overflow */
1358	if (b->nsets + 1 == MAX_BSETS) {
1359		bch_btree_sort(b, state);
1360		return;
1361	}
1362
1363out:
1364	bch_bset_build_written_tree(b);
1365}
1366
1367void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1368{
1369	unsigned int i;
1370
1371	for (i = 0; i <= b->nsets; i++) {
1372		struct bset_tree *t = &b->set[i];
1373		size_t bytes = t->data->keys * sizeof(uint64_t);
1374		size_t j;
1375
1376		if (bset_written(b, t)) {
1377			stats->sets_written++;
1378			stats->bytes_written += bytes;
1379
1380			stats->floats += t->size - 1;
1381
1382			for (j = 1; j < t->size; j++)
1383				if (t->tree[j].exponent == 127)
1384					stats->failed++;
1385		} else {
1386			stats->sets_unwritten++;
1387			stats->bytes_unwritten += bytes;
1388		}
1389	}
1390}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Code for working with individual keys, and sorted sets of keys with in a
   4 * btree node
   5 *
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
  10
  11#include "util.h"
  12#include "bset.h"
  13
  14#include <linux/console.h>
  15#include <linux/sched/clock.h>
  16#include <linux/random.h>
  17#include <linux/prefetch.h>
  18
  19#ifdef CONFIG_BCACHE_DEBUG
  20
  21void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
  22{
  23	struct bkey *k, *next;
  24
  25	for (k = i->start; k < bset_bkey_last(i); k = next) {
  26		next = bkey_next(k);
  27
  28		pr_err("block %u key %u/%u: ", set,
  29		       (unsigned int) ((u64 *) k - i->d), i->keys);
  30
  31		if (b->ops->key_dump)
  32			b->ops->key_dump(b, k);
  33		else
  34			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
  35
  36		if (next < bset_bkey_last(i) &&
  37		    bkey_cmp(k, b->ops->is_extents ?
  38			     &START_KEY(next) : next) > 0)
  39			pr_err("Key skipped backwards\n");
  40	}
  41}
  42
  43void bch_dump_bucket(struct btree_keys *b)
  44{
  45	unsigned int i;
  46
  47	console_lock();
  48	for (i = 0; i <= b->nsets; i++)
  49		bch_dump_bset(b, b->set[i].data,
  50			      bset_sector_offset(b, b->set[i].data));
  51	console_unlock();
  52}
  53
  54int __bch_count_data(struct btree_keys *b)
  55{
  56	unsigned int ret = 0;
  57	struct btree_iter iter;
  58	struct bkey *k;
  59
  60	min_heap_init(&iter.heap, NULL, MAX_BSETS);
  61
  62	if (b->ops->is_extents)
  63		for_each_key(b, k, &iter)
  64			ret += KEY_SIZE(k);
  65	return ret;
  66}
  67
  68void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
  69{
  70	va_list args;
  71	struct bkey *k, *p = NULL;
  72	struct btree_iter iter;
  73	const char *err;
  74
  75	min_heap_init(&iter.heap, NULL, MAX_BSETS);
  76
  77	for_each_key(b, k, &iter) {
  78		if (b->ops->is_extents) {
  79			err = "Keys out of order";
  80			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
  81				goto bug;
  82
  83			if (bch_ptr_invalid(b, k))
  84				continue;
  85
  86			err =  "Overlapping keys";
  87			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
  88				goto bug;
  89		} else {
  90			if (bch_ptr_bad(b, k))
  91				continue;
  92
  93			err = "Duplicate keys";
  94			if (p && !bkey_cmp(p, k))
  95				goto bug;
  96		}
  97		p = k;
  98	}
  99#if 0
 100	err = "Key larger than btree node key";
 101	if (p && bkey_cmp(p, &b->key) > 0)
 102		goto bug;
 103#endif
 104	return;
 105bug:
 106	bch_dump_bucket(b);
 107
 108	va_start(args, fmt);
 109	vprintk(fmt, args);
 110	va_end(args);
 111
 112	panic("bch_check_keys error:  %s:\n", err);
 113}
 114
 115static void bch_btree_iter_next_check(struct btree_iter *iter)
 116{
 117	struct bkey *k = iter->heap.data->k, *next = bkey_next(k);
 118
 119	if (next < iter->heap.data->end &&
 120	    bkey_cmp(k, iter->b->ops->is_extents ?
 121		     &START_KEY(next) : next) > 0) {
 122		bch_dump_bucket(iter->b);
 123		panic("Key skipped backwards\n");
 124	}
 125}
 126
 127#else
 128
 129static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 130
 131#endif
 132
 133/* Keylists */
 134
 135int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
 136{
 137	size_t oldsize = bch_keylist_nkeys(l);
 138	size_t newsize = oldsize + u64s;
 139	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 140	uint64_t *new_keys;
 141
 142	newsize = roundup_pow_of_two(newsize);
 143
 144	if (newsize <= KEYLIST_INLINE ||
 145	    roundup_pow_of_two(oldsize) == newsize)
 146		return 0;
 147
 148	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 149
 150	if (!new_keys)
 151		return -ENOMEM;
 152
 153	if (!old_keys)
 154		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 155
 156	l->keys_p = new_keys;
 157	l->top_p = new_keys + oldsize;
 158
 159	return 0;
 160}
 161
 162/* Pop the top key of keylist by pointing l->top to its previous key */
 163struct bkey *bch_keylist_pop(struct keylist *l)
 164{
 165	struct bkey *k = l->keys;
 166
 167	if (k == l->top)
 168		return NULL;
 169
 170	while (bkey_next(k) != l->top)
 171		k = bkey_next(k);
 172
 173	return l->top = k;
 174}
 175
 176/* Pop the bottom key of keylist and update l->top_p */
 177void bch_keylist_pop_front(struct keylist *l)
 178{
 179	l->top_p -= bkey_u64s(l->keys);
 180
 181	memmove(l->keys,
 182		bkey_next(l->keys),
 183		bch_keylist_bytes(l));
 184}
 185
 186/* Key/pointer manipulation */
 187
 188void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 189			      unsigned int i)
 190{
 191	BUG_ON(i > KEY_PTRS(src));
 192
 193	/* Only copy the header, key, and one pointer. */
 194	memcpy(dest, src, 2 * sizeof(uint64_t));
 195	dest->ptr[0] = src->ptr[i];
 196	SET_KEY_PTRS(dest, 1);
 197	/* We didn't copy the checksum so clear that bit. */
 198	SET_KEY_CSUM(dest, 0);
 199}
 200
 201bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 202{
 203	unsigned int i, len = 0;
 204
 205	if (bkey_cmp(where, &START_KEY(k)) <= 0)
 206		return false;
 207
 208	if (bkey_cmp(where, k) < 0)
 209		len = KEY_OFFSET(k) - KEY_OFFSET(where);
 210	else
 211		bkey_copy_key(k, where);
 212
 213	for (i = 0; i < KEY_PTRS(k); i++)
 214		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 215
 216	BUG_ON(len > KEY_SIZE(k));
 217	SET_KEY_SIZE(k, len);
 218	return true;
 219}
 220
 221bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 222{
 223	unsigned int len = 0;
 224
 225	if (bkey_cmp(where, k) >= 0)
 226		return false;
 227
 228	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 229
 230	if (bkey_cmp(where, &START_KEY(k)) > 0)
 231		len = KEY_OFFSET(where) - KEY_START(k);
 232
 233	bkey_copy_key(k, where);
 234
 235	BUG_ON(len > KEY_SIZE(k));
 236	SET_KEY_SIZE(k, len);
 237	return true;
 238}
 239
 240/* Auxiliary search trees */
 241
 242/* 32 bits total: */
 243#define BKEY_MID_BITS		3
 244#define BKEY_EXPONENT_BITS	7
 245#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 246#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
 247
 248struct bkey_float {
 249	unsigned int	exponent:BKEY_EXPONENT_BITS;
 250	unsigned int	m:BKEY_MID_BITS;
 251	unsigned int	mantissa:BKEY_MANTISSA_BITS;
 252} __packed;
 253
 254/*
 255 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 256 * it used to be 64, but I realized the lookup code would touch slightly less
 257 * memory if it was 128.
 258 *
 259 * It definites the number of bytes (in struct bset) per struct bkey_float in
 260 * the auxiliar search tree - when we're done searching the bset_float tree we
 261 * have this many bytes left that we do a linear search over.
 262 *
 263 * Since (after level 5) every level of the bset_tree is on a new cacheline,
 264 * we're touching one fewer cacheline in the bset tree in exchange for one more
 265 * cacheline in the linear search - but the linear search might stop before it
 266 * gets to the second cacheline.
 267 */
 268
 269#define BSET_CACHELINE		128
 270
 271/* Space required for the btree node keys */
 272static inline size_t btree_keys_bytes(struct btree_keys *b)
 273{
 274	return PAGE_SIZE << b->page_order;
 275}
 276
 277static inline size_t btree_keys_cachelines(struct btree_keys *b)
 278{
 279	return btree_keys_bytes(b) / BSET_CACHELINE;
 280}
 281
 282/* Space required for the auxiliary search trees */
 283static inline size_t bset_tree_bytes(struct btree_keys *b)
 284{
 285	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 286}
 287
 288/* Space required for the prev pointers */
 289static inline size_t bset_prev_bytes(struct btree_keys *b)
 290{
 291	return btree_keys_cachelines(b) * sizeof(uint8_t);
 292}
 293
 294/* Memory allocation */
 295
 296void bch_btree_keys_free(struct btree_keys *b)
 297{
 298	struct bset_tree *t = b->set;
 299
 300	if (bset_prev_bytes(b) < PAGE_SIZE)
 301		kfree(t->prev);
 302	else
 303		free_pages((unsigned long) t->prev,
 304			   get_order(bset_prev_bytes(b)));
 305
 306	if (bset_tree_bytes(b) < PAGE_SIZE)
 307		kfree(t->tree);
 308	else
 309		free_pages((unsigned long) t->tree,
 310			   get_order(bset_tree_bytes(b)));
 311
 312	free_pages((unsigned long) t->data, b->page_order);
 313
 314	t->prev = NULL;
 315	t->tree = NULL;
 316	t->data = NULL;
 317}
 318
 319int bch_btree_keys_alloc(struct btree_keys *b,
 320			 unsigned int page_order,
 321			 gfp_t gfp)
 322{
 323	struct bset_tree *t = b->set;
 324
 325	BUG_ON(t->data);
 326
 327	b->page_order = page_order;
 328
 329	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
 330	if (!t->data)
 331		goto err;
 332
 333	t->tree = bset_tree_bytes(b) < PAGE_SIZE
 334		? kmalloc(bset_tree_bytes(b), gfp)
 335		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 336	if (!t->tree)
 337		goto err;
 338
 339	t->prev = bset_prev_bytes(b) < PAGE_SIZE
 340		? kmalloc(bset_prev_bytes(b), gfp)
 341		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 342	if (!t->prev)
 343		goto err;
 344
 345	return 0;
 346err:
 347	bch_btree_keys_free(b);
 348	return -ENOMEM;
 349}
 350
 351void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 352			 bool *expensive_debug_checks)
 353{
 354	b->ops = ops;
 355	b->expensive_debug_checks = expensive_debug_checks;
 356	b->nsets = 0;
 357	b->last_set_unwritten = 0;
 358
 359	/*
 360	 * struct btree_keys in embedded in struct btree, and struct
 361	 * bset_tree is embedded into struct btree_keys. They are all
 362	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
 363	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
 364	 * don't have to initiate b->set[].size and b->set[].data here
 365	 * any more.
 366	 */
 367}
 368
 369/* Binary tree stuff for auxiliary search trees */
 370
 371/*
 372 * return array index next to j when does in-order traverse
 373 * of a binary tree which is stored in a linear array
 374 */
 375static unsigned int inorder_next(unsigned int j, unsigned int size)
 376{
 377	if (j * 2 + 1 < size) {
 378		j = j * 2 + 1;
 379
 380		while (j * 2 < size)
 381			j *= 2;
 382	} else
 383		j >>= ffz(j) + 1;
 384
 385	return j;
 386}
 387
 388/*
 389 * return array index previous to j when does in-order traverse
 390 * of a binary tree which is stored in a linear array
 391 */
 392static unsigned int inorder_prev(unsigned int j, unsigned int size)
 393{
 394	if (j * 2 < size) {
 395		j = j * 2;
 396
 397		while (j * 2 + 1 < size)
 398			j = j * 2 + 1;
 399	} else
 400		j >>= ffs(j);
 401
 402	return j;
 403}
 404
 405/*
 406 * I have no idea why this code works... and I'm the one who wrote it
 407 *
 408 * However, I do know what it does:
 409 * Given a binary tree constructed in an array (i.e. how you normally implement
 410 * a heap), it converts a node in the tree - referenced by array index - to the
 411 * index it would have if you did an inorder traversal.
 412 *
 413 * Also tested for every j, size up to size somewhere around 6 million.
 414 *
 415 * The binary tree starts at array index 1, not 0
 416 * extra is a function of size:
 417 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 418 */
 419static unsigned int __to_inorder(unsigned int j,
 420				  unsigned int size,
 421				  unsigned int extra)
 422{
 423	unsigned int b = fls(j);
 424	unsigned int shift = fls(size - 1) - b;
 425
 426	j  ^= 1U << (b - 1);
 427	j <<= 1;
 428	j  |= 1;
 429	j <<= shift;
 430
 431	if (j > extra)
 432		j -= (j - extra) >> 1;
 433
 434	return j;
 435}
 436
 437/*
 438 * Return the cacheline index in bset_tree->data, where j is index
 439 * from a linear array which stores the auxiliar binary tree
 440 */
 441static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
 442{
 443	return __to_inorder(j, t->size, t->extra);
 444}
 445
 446static unsigned int __inorder_to_tree(unsigned int j,
 447				      unsigned int size,
 448				      unsigned int extra)
 449{
 450	unsigned int shift;
 451
 452	if (j > extra)
 453		j += j - extra;
 454
 455	shift = ffs(j);
 456
 457	j >>= shift;
 458	j  |= roundup_pow_of_two(size) >> shift;
 459
 460	return j;
 461}
 462
 463/*
 464 * Return an index from a linear array which stores the auxiliar binary
 465 * tree, j is the cacheline index of t->data.
 466 */
 467static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
 468{
 469	return __inorder_to_tree(j, t->size, t->extra);
 470}
 471
 472#if 0
 473void inorder_test(void)
 474{
 475	unsigned long done = 0;
 476	ktime_t start = ktime_get();
 477
 478	for (unsigned int size = 2;
 479	     size < 65536000;
 480	     size++) {
 481		unsigned int extra =
 482			(size - rounddown_pow_of_two(size - 1)) << 1;
 483		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
 484
 485		if (!(size % 4096))
 486			pr_notice("loop %u, %llu per us\n", size,
 487			       done / ktime_us_delta(ktime_get(), start));
 488
 489		while (1) {
 490			if (__inorder_to_tree(i, size, extra) != j)
 491				panic("size %10u j %10u i %10u", size, j, i);
 492
 493			if (__to_inorder(j, size, extra) != i)
 494				panic("size %10u j %10u i %10u", size, j, i);
 495
 496			if (j == rounddown_pow_of_two(size) - 1)
 497				break;
 498
 499			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 500
 501			j = inorder_next(j, size);
 502			i++;
 503		}
 504
 505		done += size - 1;
 506	}
 507}
 508#endif
 509
 510/*
 511 * Cacheline/offset <-> bkey pointer arithmetic:
 512 *
 513 * t->tree is a binary search tree in an array; each node corresponds to a key
 514 * in one cacheline in t->set (BSET_CACHELINE bytes).
 515 *
 516 * This means we don't have to store the full index of the key that a node in
 517 * the binary tree points to; to_inorder() gives us the cacheline, and then
 518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 519 *
 520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 521 * make this work.
 522 *
 523 * To construct the bfloat for an arbitrary key we need to know what the key
 524 * immediately preceding it is: we have to check if the two keys differ in the
 525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 527 */
 528
 529static struct bkey *cacheline_to_bkey(struct bset_tree *t,
 530				      unsigned int cacheline,
 531				      unsigned int offset)
 532{
 533	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 534}
 535
 536static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 537{
 538	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 539}
 540
 541static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
 542					 unsigned int cacheline,
 543					 struct bkey *k)
 544{
 545	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 546}
 547
 548static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
 549{
 550	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 551}
 552
 553static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
 554{
 555	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 556}
 557
 558/*
 559 * For the write set - the one we're currently inserting keys into - we don't
 560 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 561 */
 562static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
 563{
 564	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 565}
 566
 567static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 568{
 569	low >>= shift;
 570	low  |= (high << 1) << (63U - shift);
 571	return low;
 572}
 573
 574/*
 575 * Calculate mantissa value for struct bkey_float.
 576 * If most significant bit of f->exponent is not set, then
 577 *  - f->exponent >> 6 is 0
 578 *  - p[0] points to bkey->low
 579 *  - p[-1] borrows bits from KEY_INODE() of bkey->high
 580 * if most isgnificant bits of f->exponent is set, then
 581 *  - f->exponent >> 6 is 1
 582 *  - p[0] points to bits from KEY_INODE() of bkey->high
 583 *  - p[-1] points to other bits from KEY_INODE() of
 584 *    bkey->high too.
 585 * See make_bfloat() to check when most significant bit of f->exponent
 586 * is set or not.
 587 */
 588static inline unsigned int bfloat_mantissa(const struct bkey *k,
 589				       struct bkey_float *f)
 590{
 591	const uint64_t *p = &k->low - (f->exponent >> 6);
 592
 593	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 594}
 595
 596static void make_bfloat(struct bset_tree *t, unsigned int j)
 597{
 598	struct bkey_float *f = &t->tree[j];
 599	struct bkey *m = tree_to_bkey(t, j);
 600	struct bkey *p = tree_to_prev_bkey(t, j);
 601
 602	struct bkey *l = is_power_of_2(j)
 603		? t->data->start
 604		: tree_to_prev_bkey(t, j >> ffs(j));
 605
 606	struct bkey *r = is_power_of_2(j + 1)
 607		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 608		: tree_to_bkey(t, j >> (ffz(j) + 1));
 609
 610	BUG_ON(m < l || m > r);
 611	BUG_ON(bkey_next(p) != m);
 612
 613	/*
 614	 * If l and r have different KEY_INODE values (different backing
 615	 * device), f->exponent records how many least significant bits
 616	 * are different in KEY_INODE values and sets most significant
 617	 * bits to 1 (by +64).
 618	 * If l and r have same KEY_INODE value, f->exponent records
 619	 * how many different bits in least significant bits of bkey->low.
 620	 * See bfloat_mantiss() how the most significant bit of
 621	 * f->exponent is used to calculate bfloat mantissa value.
 622	 */
 623	if (KEY_INODE(l) != KEY_INODE(r))
 624		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 625	else
 626		f->exponent = fls64(r->low ^ l->low);
 627
 628	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 629
 630	/*
 631	 * Setting f->exponent = 127 flags this node as failed, and causes the
 632	 * lookup code to fall back to comparing against the original key.
 633	 */
 634
 635	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 636		f->mantissa = bfloat_mantissa(m, f) - 1;
 637	else
 638		f->exponent = 127;
 639}
 640
 641static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 642{
 643	if (t != b->set) {
 644		unsigned int j = roundup(t[-1].size,
 645				     64 / sizeof(struct bkey_float));
 646
 647		t->tree = t[-1].tree + j;
 648		t->prev = t[-1].prev + j;
 649	}
 650
 651	while (t < b->set + MAX_BSETS)
 652		t++->size = 0;
 653}
 654
 655static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 656{
 657	struct bset_tree *t = bset_tree_last(b);
 658
 659	BUG_ON(b->last_set_unwritten);
 660	b->last_set_unwritten = 1;
 661
 662	bset_alloc_tree(b, t);
 663
 664	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 665		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 666		t->size = 1;
 667	}
 668}
 669
 670void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 671{
 672	if (i != b->set->data) {
 673		b->set[++b->nsets].data = i;
 674		i->seq = b->set->data->seq;
 675	} else
 676		get_random_bytes(&i->seq, sizeof(uint64_t));
 677
 678	i->magic	= magic;
 679	i->version	= 0;
 680	i->keys		= 0;
 681
 682	bch_bset_build_unwritten_tree(b);
 683}
 684
 685/*
 686 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
 687 * accelerate bkey search in a btree node (pointed by bset_tree->data in
 688 * memory). After search in the auxiliar tree by calling bset_search_tree(),
 689 * a struct bset_search_iter is returned which indicates range [l, r] from
 690 * bset_tree->data where the searching bkey might be inside. Then a followed
 691 * linear comparison does the exact search, see __bch_bset_search() for how
 692 * the auxiliary tree is used.
 693 */
 694void bch_bset_build_written_tree(struct btree_keys *b)
 695{
 696	struct bset_tree *t = bset_tree_last(b);
 697	struct bkey *prev = NULL, *k = t->data->start;
 698	unsigned int j, cacheline = 1;
 699
 700	b->last_set_unwritten = 0;
 701
 702	bset_alloc_tree(b, t);
 703
 704	t->size = min_t(unsigned int,
 705			bkey_to_cacheline(t, bset_bkey_last(t->data)),
 706			b->set->tree + btree_keys_cachelines(b) - t->tree);
 707
 708	if (t->size < 2) {
 709		t->size = 0;
 710		return;
 711	}
 712
 713	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 714
 715	/* First we figure out where the first key in each cacheline is */
 716	for (j = inorder_next(0, t->size);
 717	     j;
 718	     j = inorder_next(j, t->size)) {
 719		while (bkey_to_cacheline(t, k) < cacheline) {
 720			prev = k;
 721			k = bkey_next(k);
 722		}
 723
 724		t->prev[j] = bkey_u64s(prev);
 725		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 726	}
 727
 728	while (bkey_next(k) != bset_bkey_last(t->data))
 729		k = bkey_next(k);
 730
 731	t->end = *k;
 732
 733	/* Then we build the tree */
 734	for (j = inorder_next(0, t->size);
 735	     j;
 736	     j = inorder_next(j, t->size))
 737		make_bfloat(t, j);
 738}
 739
 740/* Insert */
 741
 742void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 743{
 744	struct bset_tree *t;
 745	unsigned int inorder, j = 1;
 746
 747	for (t = b->set; t <= bset_tree_last(b); t++)
 748		if (k < bset_bkey_last(t->data))
 749			goto found_set;
 750
 751	BUG();
 752found_set:
 753	if (!t->size || !bset_written(b, t))
 754		return;
 755
 756	inorder = bkey_to_cacheline(t, k);
 757
 758	if (k == t->data->start)
 759		goto fix_left;
 760
 761	if (bkey_next(k) == bset_bkey_last(t->data)) {
 762		t->end = *k;
 763		goto fix_right;
 764	}
 765
 766	j = inorder_to_tree(inorder, t);
 767
 768	if (j &&
 769	    j < t->size &&
 770	    k == tree_to_bkey(t, j))
 771fix_left:	do {
 772			make_bfloat(t, j);
 773			j = j * 2;
 774		} while (j < t->size);
 775
 776	j = inorder_to_tree(inorder + 1, t);
 777
 778	if (j &&
 779	    j < t->size &&
 780	    k == tree_to_prev_bkey(t, j))
 781fix_right:	do {
 782			make_bfloat(t, j);
 783			j = j * 2 + 1;
 784		} while (j < t->size);
 785}
 786
 787static void bch_bset_fix_lookup_table(struct btree_keys *b,
 788				      struct bset_tree *t,
 789				      struct bkey *k)
 790{
 791	unsigned int shift = bkey_u64s(k);
 792	unsigned int j = bkey_to_cacheline(t, k);
 793
 794	/* We're getting called from btree_split() or btree_gc, just bail out */
 795	if (!t->size)
 796		return;
 797
 798	/*
 799	 * k is the key we just inserted; we need to find the entry in the
 800	 * lookup table for the first key that is strictly greater than k:
 801	 * it's either k's cacheline or the next one
 802	 */
 803	while (j < t->size &&
 804	       table_to_bkey(t, j) <= k)
 805		j++;
 806
 807	/*
 808	 * Adjust all the lookup table entries, and find a new key for any that
 809	 * have gotten too big
 810	 */
 811	for (; j < t->size; j++) {
 812		t->prev[j] += shift;
 813
 814		if (t->prev[j] > 7) {
 815			k = table_to_bkey(t, j - 1);
 816
 817			while (k < cacheline_to_bkey(t, j, 0))
 818				k = bkey_next(k);
 819
 820			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 821		}
 822	}
 823
 824	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 825		return;
 826
 827	/* Possibly add a new entry to the end of the lookup table */
 828
 829	for (k = table_to_bkey(t, t->size - 1);
 830	     k != bset_bkey_last(t->data);
 831	     k = bkey_next(k))
 832		if (t->size == bkey_to_cacheline(t, k)) {
 833			t->prev[t->size] =
 834				bkey_to_cacheline_offset(t, t->size, k);
 835			t->size++;
 836		}
 837}
 838
 839/*
 840 * Tries to merge l and r: l should be lower than r
 841 * Returns true if we were able to merge. If we did merge, l will be the merged
 842 * key, r will be untouched.
 843 */
 844bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 845{
 846	if (!b->ops->key_merge)
 847		return false;
 848
 849	/*
 850	 * Generic header checks
 851	 * Assumes left and right are in order
 852	 * Left and right must be exactly aligned
 853	 */
 854	if (!bch_bkey_equal_header(l, r) ||
 855	     bkey_cmp(l, &START_KEY(r)))
 856		return false;
 857
 858	return b->ops->key_merge(b, l, r);
 859}
 860
 861void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 862		     struct bkey *insert)
 863{
 864	struct bset_tree *t = bset_tree_last(b);
 865
 866	BUG_ON(!b->last_set_unwritten);
 867	BUG_ON(bset_byte_offset(b, t->data) +
 868	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 869	       PAGE_SIZE << b->page_order);
 870
 871	memmove((uint64_t *) where + bkey_u64s(insert),
 872		where,
 873		(void *) bset_bkey_last(t->data) - (void *) where);
 874
 875	t->data->keys += bkey_u64s(insert);
 876	bkey_copy(where, insert);
 877	bch_bset_fix_lookup_table(b, t, where);
 878}
 879
 880unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 881			      struct bkey *replace_key)
 882{
 883	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
 884	struct bset *i = bset_tree_last(b)->data;
 885	struct bkey *m, *prev = NULL;
 886	struct btree_iter iter;
 887	struct bkey preceding_key_on_stack = ZERO_KEY;
 888	struct bkey *preceding_key_p = &preceding_key_on_stack;
 889
 890	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 891
 892	min_heap_init(&iter.heap, NULL, MAX_BSETS);
 893
 894	/*
 895	 * If k has preceding key, preceding_key_p will be set to address
 896	 *  of k's preceding key; otherwise preceding_key_p will be set
 897	 * to NULL inside preceding_key().
 898	 */
 899	if (b->ops->is_extents)
 900		preceding_key(&START_KEY(k), &preceding_key_p);
 901	else
 902		preceding_key(k, &preceding_key_p);
 903
 904	m = bch_btree_iter_init(b, &iter, preceding_key_p);
 905
 906	if (b->ops->insert_fixup(b, k, &iter, replace_key))
 907		return status;
 908
 909	status = BTREE_INSERT_STATUS_INSERT;
 910
 911	while (m != bset_bkey_last(i) &&
 912	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
 913		prev = m;
 914		m = bkey_next(m);
 915	}
 916
 917	/* prev is in the tree, if we merge we're done */
 918	status = BTREE_INSERT_STATUS_BACK_MERGE;
 919	if (prev &&
 920	    bch_bkey_try_merge(b, prev, k))
 921		goto merged;
 922#if 0
 923	status = BTREE_INSERT_STATUS_OVERWROTE;
 924	if (m != bset_bkey_last(i) &&
 925	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 926		goto copy;
 927#endif
 928	status = BTREE_INSERT_STATUS_FRONT_MERGE;
 929	if (m != bset_bkey_last(i) &&
 930	    bch_bkey_try_merge(b, k, m))
 931		goto copy;
 932
 933	bch_bset_insert(b, m, k);
 934copy:	bkey_copy(m, k);
 935merged:
 936	return status;
 937}
 938
 939/* Lookup */
 940
 941struct bset_search_iter {
 942	struct bkey *l, *r;
 943};
 944
 945static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 946						     const struct bkey *search)
 947{
 948	unsigned int li = 0, ri = t->size;
 949
 950	while (li + 1 != ri) {
 951		unsigned int m = (li + ri) >> 1;
 952
 953		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 954			ri = m;
 955		else
 956			li = m;
 957	}
 958
 959	return (struct bset_search_iter) {
 960		table_to_bkey(t, li),
 961		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 962	};
 963}
 964
 965static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 966						const struct bkey *search)
 967{
 968	struct bkey *l, *r;
 969	struct bkey_float *f;
 970	unsigned int inorder, j, n = 1;
 971
 972	do {
 973		unsigned int p = n << 4;
 974
 975		if (p < t->size)
 976			prefetch(&t->tree[p]);
 977
 978		j = n;
 979		f = &t->tree[j];
 980
 981		if (likely(f->exponent != 127)) {
 982			if (f->mantissa >= bfloat_mantissa(search, f))
 983				n = j * 2;
 984			else
 985				n = j * 2 + 1;
 986		} else {
 987			if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 988				n = j * 2;
 989			else
 990				n = j * 2 + 1;
 991		}
 992	} while (n < t->size);
 993
 994	inorder = to_inorder(j, t);
 995
 996	/*
 997	 * n would have been the node we recursed to - the low bit tells us if
 998	 * we recursed left or recursed right.
 999	 */
1000	if (n & 1) {
1001		l = cacheline_to_bkey(t, inorder, f->m);
1002
1003		if (++inorder != t->size) {
1004			f = &t->tree[inorder_next(j, t->size)];
1005			r = cacheline_to_bkey(t, inorder, f->m);
1006		} else
1007			r = bset_bkey_last(t->data);
1008	} else {
1009		r = cacheline_to_bkey(t, inorder, f->m);
1010
1011		if (--inorder) {
1012			f = &t->tree[inorder_prev(j, t->size)];
1013			l = cacheline_to_bkey(t, inorder, f->m);
1014		} else
1015			l = t->data->start;
1016	}
1017
1018	return (struct bset_search_iter) {l, r};
1019}
1020
1021struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1022			       const struct bkey *search)
1023{
1024	struct bset_search_iter i;
1025
1026	/*
1027	 * First, we search for a cacheline, then lastly we do a linear search
1028	 * within that cacheline.
1029	 *
1030	 * To search for the cacheline, there's three different possibilities:
1031	 *  * The set is too small to have a search tree, so we just do a linear
1032	 *    search over the whole set.
1033	 *  * The set is the one we're currently inserting into; keeping a full
1034	 *    auxiliary search tree up to date would be too expensive, so we
1035	 *    use a much simpler lookup table to do a binary search -
1036	 *    bset_search_write_set().
1037	 *  * Or we use the auxiliary search tree we constructed earlier -
1038	 *    bset_search_tree()
1039	 */
1040
1041	if (unlikely(!t->size)) {
1042		i.l = t->data->start;
1043		i.r = bset_bkey_last(t->data);
1044	} else if (bset_written(b, t)) {
1045		/*
1046		 * Each node in the auxiliary search tree covers a certain range
1047		 * of bits, and keys above and below the set it covers might
1048		 * differ outside those bits - so we have to special case the
1049		 * start and end - handle that here:
1050		 */
1051
1052		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1053			return bset_bkey_last(t->data);
1054
1055		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1056			return t->data->start;
1057
1058		i = bset_search_tree(t, search);
1059	} else {
1060		BUG_ON(!b->nsets &&
1061		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1062
1063		i = bset_search_write_set(t, search);
1064	}
1065
1066	if (btree_keys_expensive_checks(b)) {
1067		BUG_ON(bset_written(b, t) &&
1068		       i.l != t->data->start &&
1069		       bkey_cmp(tree_to_prev_bkey(t,
1070			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1071				search) > 0);
1072
1073		BUG_ON(i.r != bset_bkey_last(t->data) &&
1074		       bkey_cmp(i.r, search) <= 0);
1075	}
1076
1077	while (likely(i.l != i.r) &&
1078	       bkey_cmp(i.l, search) <= 0)
1079		i.l = bkey_next(i.l);
1080
1081	return i.l;
1082}
1083
1084/* Btree iterator */
1085
1086typedef bool (new_btree_iter_cmp_fn)(const void *, const void *, void *);
 
1087
1088static inline bool new_btree_iter_cmp(const void *l, const void *r, void __always_unused *args)
 
1089{
1090	const struct btree_iter_set *_l = l;
1091	const struct btree_iter_set *_r = r;
1092
1093	return bkey_cmp(_l->k, _r->k) <= 0;
1094}
1095
1096static inline bool btree_iter_end(struct btree_iter *iter)
1097{
1098	return !iter->heap.nr;
1099}
1100
1101void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1102			 struct bkey *end)
1103{
1104	const struct min_heap_callbacks callbacks = {
1105		.less = new_btree_iter_cmp,
1106		.swp = NULL,
1107	};
1108
1109	if (k != end)
1110		BUG_ON(!min_heap_push(&iter->heap,
1111				 &((struct btree_iter_set) { k, end }),
1112				 &callbacks,
1113				 NULL));
1114}
1115
1116static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1117					  struct btree_iter *iter,
1118					  struct bkey *search,
1119					  struct bset_tree *start)
1120{
1121	struct bkey *ret = NULL;
1122
1123	iter->heap.size = ARRAY_SIZE(iter->heap.preallocated);
1124	iter->heap.nr = 0;
1125
1126#ifdef CONFIG_BCACHE_DEBUG
1127	iter->b = b;
1128#endif
1129
1130	for (; start <= bset_tree_last(b); start++) {
1131		ret = bch_bset_search(b, start, search);
1132		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1133	}
1134
1135	return ret;
1136}
1137
1138struct bkey *bch_btree_iter_init(struct btree_keys *b,
1139				 struct btree_iter *iter,
1140				 struct bkey *search)
1141{
1142	return __bch_btree_iter_init(b, iter, search, b->set);
1143}
1144
1145static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1146						 new_btree_iter_cmp_fn *cmp)
1147{
1148	struct btree_iter_set b __maybe_unused;
1149	struct bkey *ret = NULL;
1150	const struct min_heap_callbacks callbacks = {
1151		.less = cmp,
1152		.swp = NULL,
1153	};
1154
1155	if (!btree_iter_end(iter)) {
1156		bch_btree_iter_next_check(iter);
1157
1158		ret = iter->heap.data->k;
1159		iter->heap.data->k = bkey_next(iter->heap.data->k);
1160
1161		if (iter->heap.data->k > iter->heap.data->end) {
1162			WARN_ONCE(1, "bset was corrupt!\n");
1163			iter->heap.data->k = iter->heap.data->end;
1164		}
1165
1166		if (iter->heap.data->k == iter->heap.data->end) {
1167			if (iter->heap.nr) {
1168				b = min_heap_peek(&iter->heap)[0];
1169				min_heap_pop(&iter->heap, &callbacks, NULL);
1170			}
1171		}
1172		else
1173			min_heap_sift_down(&iter->heap, 0, &callbacks, NULL);
1174	}
1175
1176	return ret;
1177}
1178
1179struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1180{
1181	return __bch_btree_iter_next(iter, new_btree_iter_cmp);
1182
1183}
1184
1185struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1186					struct btree_keys *b, ptr_filter_fn fn)
1187{
1188	struct bkey *ret;
1189
1190	do {
1191		ret = bch_btree_iter_next(iter);
1192	} while (ret && fn(b, ret));
1193
1194	return ret;
1195}
1196
1197/* Mergesort */
1198
1199void bch_bset_sort_state_free(struct bset_sort_state *state)
1200{
1201	mempool_exit(&state->pool);
1202}
1203
1204int bch_bset_sort_state_init(struct bset_sort_state *state,
1205			     unsigned int page_order)
1206{
1207	spin_lock_init(&state->time.lock);
1208
1209	state->page_order = page_order;
1210	state->crit_factor = int_sqrt(1 << page_order);
1211
1212	return mempool_init_page_pool(&state->pool, 1, page_order);
1213}
1214
1215static void btree_mergesort(struct btree_keys *b, struct bset *out,
1216			    struct btree_iter *iter,
1217			    bool fixup, bool remove_stale)
1218{
 
1219	struct bkey *k, *last = NULL;
1220	BKEY_PADDED(k) tmp;
1221	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1222		? bch_ptr_bad
1223		: bch_ptr_invalid;
1224	const struct min_heap_callbacks callbacks = {
1225		.less = b->ops->sort_cmp,
1226		.swp = NULL,
1227	};
1228
1229	/* Heapify the iterator, using our comparison function */
1230	min_heapify_all(&iter->heap, &callbacks, NULL);
 
1231
1232	while (!btree_iter_end(iter)) {
1233		if (b->ops->sort_fixup && fixup)
1234			k = b->ops->sort_fixup(iter, &tmp.k);
1235		else
1236			k = NULL;
1237
1238		if (!k)
1239			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1240
1241		if (bad(b, k))
1242			continue;
1243
1244		if (!last) {
1245			last = out->start;
1246			bkey_copy(last, k);
1247		} else if (!bch_bkey_try_merge(b, last, k)) {
1248			last = bkey_next(last);
1249			bkey_copy(last, k);
1250		}
1251	}
1252
1253	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1254
1255	pr_debug("sorted %i keys\n", out->keys);
1256}
1257
1258static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1259			 unsigned int start, unsigned int order, bool fixup,
1260			 struct bset_sort_state *state)
1261{
1262	uint64_t start_time;
1263	bool used_mempool = false;
1264	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1265						     order);
1266	if (!out) {
1267		struct page *outp;
1268
1269		BUG_ON(order > state->page_order);
1270
1271		outp = mempool_alloc(&state->pool, GFP_NOIO);
1272		out = page_address(outp);
1273		used_mempool = true;
1274		order = state->page_order;
1275	}
1276
1277	start_time = local_clock();
1278
1279	btree_mergesort(b, out, iter, fixup, false);
1280	b->nsets = start;
1281
1282	if (!start && order == b->page_order) {
1283		/*
1284		 * Our temporary buffer is the same size as the btree node's
1285		 * buffer, we can just swap buffers instead of doing a big
1286		 * memcpy()
1287		 *
1288		 * Don't worry event 'out' is allocated from mempool, it can
1289		 * still be swapped here. Because state->pool is a page mempool
1290		 * created by mempool_init_page_pool(), which allocates
1291		 * pages by alloc_pages() indeed.
1292		 */
1293
1294		out->magic	= b->set->data->magic;
1295		out->seq	= b->set->data->seq;
1296		out->version	= b->set->data->version;
1297		swap(out, b->set->data);
1298	} else {
1299		b->set[start].data->keys = out->keys;
1300		memcpy(b->set[start].data->start, out->start,
1301		       (void *) bset_bkey_last(out) - (void *) out->start);
1302	}
1303
1304	if (used_mempool)
1305		mempool_free(virt_to_page(out), &state->pool);
1306	else
1307		free_pages((unsigned long) out, order);
1308
1309	bch_bset_build_written_tree(b);
1310
1311	if (!start)
1312		bch_time_stats_update(&state->time, start_time);
1313}
1314
1315void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1316			    struct bset_sort_state *state)
1317{
1318	size_t order = b->page_order, keys = 0;
1319	struct btree_iter iter;
1320	int oldsize = bch_count_data(b);
1321
1322	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1323	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1324
1325	if (start) {
1326		unsigned int i;
1327
1328		for (i = start; i <= b->nsets; i++)
1329			keys += b->set[i].data->keys;
1330
1331		order = get_order(__set_bytes(b->set->data, keys));
1332	}
1333
1334	__btree_sort(b, &iter, start, order, false, state);
1335
1336	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1337}
1338
1339void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1340				    struct btree_iter *iter,
1341				    struct bset_sort_state *state)
1342{
1343	__btree_sort(b, iter, 0, b->page_order, true, state);
1344}
1345
1346void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1347			 struct bset_sort_state *state)
1348{
1349	uint64_t start_time = local_clock();
1350	struct btree_iter iter;
1351
1352	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1353
1354	bch_btree_iter_init(b, &iter, NULL);
1355
1356	btree_mergesort(b, new->set->data, &iter, false, true);
1357
1358	bch_time_stats_update(&state->time, start_time);
1359
1360	new->set->size = 0; // XXX: why?
1361}
1362
1363#define SORT_CRIT	(4096 / sizeof(uint64_t))
1364
1365void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1366{
1367	unsigned int crit = SORT_CRIT;
1368	int i;
1369
1370	/* Don't sort if nothing to do */
1371	if (!b->nsets)
1372		goto out;
1373
1374	for (i = b->nsets - 1; i >= 0; --i) {
1375		crit *= state->crit_factor;
1376
1377		if (b->set[i].data->keys < crit) {
1378			bch_btree_sort_partial(b, i, state);
1379			return;
1380		}
1381	}
1382
1383	/* Sort if we'd overflow */
1384	if (b->nsets + 1 == MAX_BSETS) {
1385		bch_btree_sort(b, state);
1386		return;
1387	}
1388
1389out:
1390	bch_bset_build_written_tree(b);
1391}
1392
1393void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1394{
1395	unsigned int i;
1396
1397	for (i = 0; i <= b->nsets; i++) {
1398		struct bset_tree *t = &b->set[i];
1399		size_t bytes = t->data->keys * sizeof(uint64_t);
1400		size_t j;
1401
1402		if (bset_written(b, t)) {
1403			stats->sets_written++;
1404			stats->bytes_written += bytes;
1405
1406			stats->floats += t->size - 1;
1407
1408			for (j = 1; j < t->size; j++)
1409				if (t->tree[j].exponent == 127)
1410					stats->failed++;
1411		} else {
1412			stats->sets_unwritten++;
1413			stats->bytes_unwritten += bytes;
1414		}
1415	}
1416}